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Abstract

The Flattened Brazilian Disk test was designed for measuring both the tensile

strength and fracture toughness of rocks. Using cohesive zone modelling, we

found that the method is practically not suitable for extracting the fracture

toughness, while it works well in calibrating the tensile strength. The flat-

tened Brazilian disk provides a very narrow window for the variation of load

during failure, < 15%, insufficient to reflect the change in fracture tough-

ness among different materials. The crack propagation throughout failure is

highly unstable and dynamic, where linear elastic fracture mechanics is not

applicable. These findings were supported by experimental data. In con-

trast, the Semi-Circular Bend test, with a pre-crack, can properly measure

the fracture toughness but cannot capture the change in the tensile strength.

In general, un-cracked disk specimens are suitable for measuring the tensile

∗Corresponding author
Email addresses: haiyang.yu@materials.ox.ac.uk (Haiyang Yu ),

jianying.he@materials.ox.ac.uk (Jianying He), zhiliang.zhang@ntnu.no (Zhiliang
Zhang)

Preprint submitted to Engineering Fracture Mechanics November 30, 2020



strength and pre-cracked specimens for the fracture toughness. It is very

challenging, if not impossible, to measure both with a single test. It is fur-

ther implied that the first peak on the loading curve in such kind of tests

is trustworthy for extracting mechanical properties, while the following sec-

ond turning point (if existing) is unreliable as it may contain dynamic effect.

These results provide useful reference for the selection and design of test

methods using Brazilian disk related geometries.

Keywords: Flattened Brazilian Disk, Semi-Circular Bend Specimen,

Fracture toughness, Cohesive zone modelling

1. Introduction

The tensile strength and fracture toughness are key parameters governing

the failure properties of brittle materials such as rocks. Due to the brittle

nature, it is hard to measure these properties directly using tensile tests [1].

The Brazilian disk test is a well established indirect method for calibrating

these properties. A circular disk is subjected to compression, which triggers

tensile failure at the center of the specimen, the tensile properties can then

be deduced from the loading curves based on linear elastic fracture mechanics

(LEFM) theory [2]. Theoretically this geometry can be used to extract both

the tensile strength and fracture toughness. Hondros [2] gave the complete

stress solution under an arc load, and Guo et al. [3] proposed a formula-

tion to extract the fracture toughness. This method however has practical

drawbacks. Wang and Xing [4] pointed out that the primary crack initiation

at the centre region of the Brazilian disc during the test was a key problem
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which cannot be guaranteed in practice. Failure initiated close to the loading

platens [5] also undermines the accuracy of the test.

In the past decades, a large amount of research has been conducted on

Brazilian disk test methods, endeavouring to increase the accuracy and/or

reduce the complexity of the calibration. Fowell and Xu [6], Fowell [7] uti-

lized a cracked chevron notched Brazilian disk (CCNBD) geometry to extract

the mode I fracture toughness, a formula was derived relating the fracture

toughness to the maximum load on the loading curve. This approach guar-

antees crack initiation from the notch and benefits from a higher failure load

which usually means better accuracy. A more accurate calibration of the

minimum dimensionless stress intensity factor was given by Wang et al. [8].

A similar approach which also uses the maximum load to calculate the frac-

ture toughness is the Semi-Circular Bend Specimen (SCB) [9]. A typical

loading curve in a SCB test is illustrated in Fig. 1(a). Wang et al. [10] in-

(a) (b)

Fig. 1 (a) A typical loading curve in a SCB test, reproduced from [9] and (b) a
typical loading curve in a FBD test, reproduced from [10].

troduced a flattened Brazilian disk (FBD) method which guarantees central

crack initiation when the flat end is longer than a critical value. The tensile
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strength can be extracted from the load at the first peak of the loading curve

which corresponds to crack initiation. This specimen is easy to prepare and

the application of load is convenient. Fowell et al. [11] reviewed the FBD

geometry and compared it with other existing methods. Huang et al. [12]

used the FBD test to measure the tensile strength of rocks, pointing out that

the optimal flattened loading angle was 20− 30◦ and that angles too large or

too small violated the central tensile splitting failure principle. Wang et al.

[10] claimed that the mode I fracture toughness can be extracted from the

same FBD test, which is a major advantage of this method. After failure

initiation, the crack first propagates unstably and then stably towards the

flat end, so the load drops following the first peak on the loading curve and

then increases. Therefore, the fracture toughness can be calculated from the

minimum load after the first peak. A typical loading curve in a FBD test

is illustrated in Fig. 1(b). However, the effectiveness of this method in cal-

ibrating the fracture toughness has not been rigorously validated [11, 13].

According to Keles and Tutluoglu [14], the FBD test could give overesti-

mation of the fracture toughness compared to the ISRM suggested CCNBD

method.

We recently employed the FBD method to test the fracture properties of

pre-baked carbon anodes for aluminum production, considering the advan-

tage that the tensile strength and fracture toughness can be obtained within a

single test. The specimens were manufactured as recommended in [10] with a

loading angle α = 30◦. The method gave sensible value of tensile strength but

overestimated the fracture toughness. We then revisited the FBD method

with cohesive zone modelling (CZM) approach. CZM is an ideal approach
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to modelling material failure featured by a fracture process zone (FPZ) [15].

Comparison between CZM and the classical fracture mechanics was made by

Jin and Sun [16], Wang [17]. On condition that the size of FPZ is small rel-

ative to the crack length, the stress field of CZM approaches that of LEFM,

and these two can be regarded equivalent. So CZM can be used to reproduce

and verify the LEFM based models. Inconsistency was found between our

CZM simulation and the FBD model. The variation in the cohesive energy,

thus the fracture toughness, could not be properly reflected on the loading

curves of the simulated FBD tests. The major issue with the FBD test was

shown to be the crack propagating in a highly dynamic manner after failure

so the assumption that the applied stress intensity factor equals the fracture

toughness is not appropriate, which is elaborated in section 4.

To find an alternative approach to measuring the fracture toughness, we

analysed the SCB method and verified that it is consistent with the CZM

results. The SCB test, however, is not suitable for measuring the tensile

strength, in contrast to the FBD test. Based on these results, we further

discussed the suitability of using the reference points, i.e. the maximum load

and the turning point following the first peak, to extract the mechanical

properties. With these aspects elaborated, we gave our answer to the ques-

tion whether it is possible to measure both the tensile strength and fracture

toughness with a single test.

2. Models

Failure in rock like material is mostly brittle, so the models for fracture

toughness calibration are usually based on LEFM. Using dimensional analy-
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sis, the relation can be drawn between applied stress intensity factor KI , the

external load and geometric dimensions of the disk; by equating the fracture

toughness KIC to KI at a proper point, KIC can be extracted from the load-

ing curve. Here we briefly review the FBD model and the SCB model which

are concerned in this work.

2.1. The FBD model and the SCB model

The geometry of the FBD model is shown in Fig. 2(a). Two flat ends are

introduced to the original Brazilian disk to enforce crack initiation from the

disk centre. It was shown by Wang et al. [10] that the opening stress reaches

its maximum at the centre and thus guarantees central failure initiation under

the condition 2α ≥ 20◦. In this scenario, the tensile strength of the material

(a) (b)

B

2R

2a

2R

2s

a

Fig. 2 Illustration of (a) the FBD test and (b) the SCB test.

is expressed as

σt = k
2PC1

πDt
(1)
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where PC1 is the force at the first peak on the loading curve, as shown in

Fig. 1(b); k is a coefficient depending on the loading angle, k = 0.9644 for

2α = 20◦ and k = 0.9205 for 2α = 30◦; t is the thickness of the sample.

After failure, the crack propagates towards the end of the FBD. For a

central through crack with length 2a, the applied stress intensity factor is

expressed as

KI =
P√
Rt

Φ(α, a/R) (2)

where P is the applied force and R the radius of the disk. Φ is the dimen-

sionless stress intensity factor, its variation with the growth of the crack was

calibrated numerically, and the curve for the case 2α = 30◦ is reproduced here

in Fig. 3. Assuming that fracture toughness KIC is a material constant and

that KI = KIC , the fracture toughness can be determined at any moment

during crack propagation [10]. Theoretically, the lower peak PC2 in Fig. 1(b)

corresponds to the Φmax in Fig. 3 and is therefore ideal for calculating the

fracture toughness

KIC =
PC2√
Rt

Φmax, Φmax = 0.5895 for 2α = 30◦ (3)

Equation 3 is theoretically sound, but there seems to be practical difficulty

in its application. Under the assumption KI = KIC as explicitly stated in

[10], it directly gives PC2/PC1 = Φmin/Φmax. According to Fig. 3, this ratio

can be less than 1/5 if we take Φmin = 0.1 right after crack initiation, which

is even smaller for cases with 2α < 30◦. Such dramatic drop in the loading

curve has never been recorded in FBD experiments [10, 13, 14, 18]. Extended

discussion regarding this issue will be presented in the next section.
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Fig. 3 The variation of dimensionless stress intensity factor with half central crack
length, for the case with 2α = 30◦. The figure is reproduced from [10].

The geometry of the SCB test is presented in Fig. 2(b). Based on LEFM

and assuming KI = KIC at the initiation of failure, the mode I fracture

toughness is determined as [19]

KIC = Y ′(a,R, s)
Pmax

√
πa

2RB
(4)

where Pmax is the peak on the loading curve as shown in Fig. 1(a), a the

pre-existing crack length, R the radius of the disk, B the thickness and s

the span length. Y ′(a,R, s) is the dimensionless stress intensity factor and

was determined using the finite element method [9]. It was suggested that

the test should be done at a constant displacement rate of not greater than
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0.2mm/min to avoid any dynamic effect.

Under the condition of quasi-static loading, the crack length a in Equa-

tion 4 is practically measurable (equal to the length of the pre-crack) in the

SCB test, and little dynamic influence exists at the event of failure initiation.

This is a major difference between the FBD and SCB methods in determining

the fracture toughness.

2.2. Cohesive zone model

CZM is a phenomenological representation of interface separation during

crack propagation, with a layer of cohesive elements inserted along the an-

ticipated crack path between the solid elements representing the matrix, e.g.

along the central ligament of the FBD and SCB specimens. The constitutive

behavior of the cohesive element is described by the so-called traction sepa-

ration law (TSL) characterized by the cohesive strength, σC and the critical

cohesive separation δC [20]. Upon loading, the cohesive stress first increases

until σC is reached, triggering material degradation (softening), complete

failure of the element then occurs as the cohesive separation reaches δC . The

area under the TSL curve represents the critical energy release rate also re-

ferred to as the cohesive energy GC . The TSL can take several forms, and

the simplest bi-linear form is adopted here, as illustrated in Fig. 4. In CZM

there exists a near-tip process zone where the opening stress field is finite.

When loaded, the cohesive element closest to the crack tip rapidly reaches

its cohesive strength and moves on to the softening phase of the TSL; the

adjacent cohesive elements also gradually develop to this phase. The region

inside which cohesive elements are in the softening phase is defined as the

failure process zone (FPZ), and the length of this zone is denoted lFPZ . A
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Fig. 4 A bilinear TSL with parameters used in one of the simulations in this work.
The initial stiffness of the cohesive element ECZM was set as 10× the Young’s
modulus of the matrix material, Ematrix, in order to minimize the influence on the
global stiffness [21].

detailed illustration of FPZ is found in [22]. Many studies were dedicated to

estimating lFPZ in different scenarios. Turon et al. [23] gave a summary of

these studies and concluded that the models have the general form

lFPZ = ME
GC

σ2
C

(5)

where E is the effective Young’s modulus of the matrix material and M a

coefficient dependent on the TSL; M = 0.21 is adopted in this work following

Hui et al. [24].
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Here we use CZM as a flexible virtual experimental method to probe the

effectiveness of the LEFM based models. For this purpose, we just need

to tailor the modelling parameters such that lFPZ is small compared to the

characteristic dimension of the specimen, under which condition CZM results

are approximately the same as LEFM results. CZM and LEFM are generally

deemed applicable if a primary central crack is distinguishable in the disk

after the test. In practice, secondary cracks and crack branching can also be

observed. To model the complex cracking pattern, phase field modelling has

proven an efficient tool [25, 26].

3. Experiment

We performed a series of FBD tests on pre-baked carbon anodes used

in the electrolytic production of aluminum. The anodes were sampled in

cylindrical shape with length of 170mm and diameter of 135mm. General

properties of this material are summarized in Table 1 [27, 28] (note that there

was a mistake in [27], the Young’s mdulus should be deducted by a half).

Considering the convenient specimen preparation and especially the ability

Table 1 General properties of pre-baked carbon.

Density (g/cm3) 1.54-1.63
Young’s modulus E(MPa) 3500-5500
Tensile strength σt(MPa) 3.5-10.0

Fracture toughness KIC(MPa
√
m) 1.21-1.60

Fracture strain εC 0.06%-0.10%

to extract both the tensile strength and fracture toughness from a single

test, the FBD method was adopted to calibrate the tensile properties for the
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target material. In this round we tested 4 cylindrical samples, each cylinder

was cut to three pieces with a thickness of t = 50mm, 12 in total, which were

then manufactured to FBD specimens with a loading angle of 2α = 30◦.

Compression test was conducted using a standard Instron test system with

appropriate load cell. Displacement-controlled loading with a constant dis-

placement rate of 1 mm/min was applied. The load–displacement curve was

recorded and the load was continued until the specimen fractured. The test

is considered valid if a primary crack is observed in the central region of the

disk and the first peak PC1 and second peak PC2 are clearly distinguishable

on the loading curve. In this round of tests we had 9 valid ones. The loading

curves and failed specimens in three typical tests, indexed S1, S2 and S3,

are presented in Fig. 5. By extracting PC1 and PC2 from the loading curve

and using Equation 3, the tensile strength and fracture toughness were ob-

tained, as summarized in Table 2. The values for the tensile strength were

Table 2 Summary of the test results.

S1 S2 S3

PC1(kN) 69.96 72.97 78.70
PC2(kN) 60.60 64.02 69.30
E(MPa) 3750 3850 4000
σt(MPa) 6.30 6.57 7.07

KIC(MPa
√
m) 2.84 3.00 3.24

reasonable, while the mode I fracture toughness seemed overestimated. To

probe the reason, we interpreted the results with CZM. The simulations were

performed via ABAQUS [29]. Due to symmetry, a quarter of the disk was

modelled. The matrix was modelled with plane strain elements, 12006 in to-
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(a) (b)

( c) (d)

(e) (f)

Fig. 5 (a) and (b) are respectively the loading curve and the final state of the
specimen S1; (c) and (d) are respectively the loading curve and the final state
of the specimen S2; (e) and (f) are respectively the loading curve and the final
state of the specimen S3. The CZM simulated curves of the three tests and the
modelling parameters are also included in sub-figures (a), (c) and (e), respectively.
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tal. Contact with small glide was defined between a rigid plate and the disk,

displacement was applied to the plate to simulate displacement controlled

compression in the test. Crack is anticipated to initiate from the centre and

propagate to the flat ends, so the central diameter of the disk was modelled

with cohesive elements. Details regarding applying symmetry condition to

CZM is found in [30]. To ensure sufficient resolution of the FPZ, the cohesive

region was refined, given 500 elements in total. Bilinear TSL as shown in

Fig. 4 was adopted. The results of the simulation are detailed in Fig. 5. To

determine the cohesive parameters, we first estimated the elastic modulus of

the material to be ≈ 4000 MPa; taking this value and considering the general

properties of the target material as listed in Table 1, it could be estimated

that the critical cohesive separation was in the magnitude of 0.1 mm; we

therefore took the critical separation as δC = 0.1 mm and varied the cohe-

sive stress σC to fit the experimental loading curve; the fracture toughness

was then naturally obtained upon determination of σC . In this process, it

is noted that only σC was strictly fitted from the experiments, while δC was

prescribed empirically. This is because it’s actually only possible to deter-

mine σC but impossible to determine δC using the FBD test, which will be

elaborated later in Fig. 7 in section 4. With the aforementioned parameter

determining procedure, the test results are effectively captured, with a ten-

sile strength σC in general agreement with the prediction by Equation 1 but

a KIC substantially smaller than predicted by Equation 3. Considering that

the size of the FPZ is only a tenth of the specimen dimension, there should

be good agreement between the CZM and LEFM results. The discrepancy

observed here is unexpected and needs investigation.
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4. Discussion

4.1. The FBD model

With CZM, it is possible to follow crack propagation. The first peak PC1

on the loading curve corresponded to failure initiation as expected, but the

half crack length at the second point PC2 was found to be a ≈ 0.91R. This is

in contrast to Fig. 3 where PC2 is anticipated to occur at a half crack length

of a ≈ 0.73R. Further, it was observed that the crack length in CZM simula-

tions increased only marginally with further loading beyond the second point

PC2. Also considering that the half crack length a ≈ 0.91R gives about 95%

central ligament separation, we judge that the CZM specimen has completely

failed at point PC2. To support this, we simulated two simple cases without

cohesive elements: 1) an intact FBD specimen and 2) a completely failed

FBD specimen; the difference between these two lies in that the DOFs of the

central line were set free in the latter case. The same mechanical parameters

fitted for test S2 were applied to these cases and the results are plotted with

the CZM loading curve in Fig. 6. This figure also sets the upper and lower

limits for the load during an FBD test at a given displacement: the load

cannot be smaller than that in the completely failed state indicated by the

red dashed line. Apparently, the ratio between the lower and upper limit

at the same displacement is constant for a given FBD specimen, we further

found that this ratio is marginally dependent on the elastic properties, that

is, varying the elastic modulus and Poisson’s ratio has practically no influ-

ence on the ratio. In other words, given a geometry and assuming failure by

central cracking, the PC2/PC1 ratio is approximately constant, e.g. in the

current case with 2α = 30◦ we have PC2/PC1 ≈ 0.85. This value agrees with
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Fig. 6 CZM loading curve versus the compression of an intact FBD assuming no
damage and a failed FBD assuming complete damage along the central ligament.

the test results.

According to Equation 1, PC1 is fixed given a tensile strength of the

material. PC2 is then limited to a narrow range (0.85PC1, PC1), which is

insufficient to distinguish the variation of fracture toughness among different

materials. This can be directly demonstrated using CZM. To study the

variation with tensile properties, we selected the parameters calibrated for

test S2 in Fig. 5(c) as the reference and denote the tensile strength as σ0,

the mode I fracture toughness as KIC0 and the fracture energy as G0. The

cohesive parameters were then varied with respect to the reference. Keeping

σt = σ0 and decreasing GC to 0.1G0, there was little change in PC2 as shown
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in Fig. 7, while Equation 3 expects a 63.38% reduction in PC2 (1 −
√

0.1 =

0.6338, note the relation KIC =
√
EGC). This indicates the FBD model is

unsuitable for measuring fracture toughness. It is noted that small variation

is still observed in the peak load PC1 among the four cases concerned in the

figure, this is caused by a change in the FPZ size with different GC . The

variation, however, is reasonably small, and the difference tends to vanish as

GC further decreases, bringing the results closer in line with Equation 1.
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Fig. 7 Loading curves of the FBD specimen with different cohesive parameters.
The parameters are normalized using the reference case G0 and σ0.

As mentioned, Equation 3 and Fig. 3 predict that PC2 can be as low as

0.2PC1 in an FBD test, which is very hard, if not impossible to obtain in

reality. A relatively large drop PC2/PC1 ≈ 0.5 was recorded in [10]. Though
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this value is still far larger than expected by LEFM, it is substantially smaller

than the lower limit predicted in Fig. 6(b). We suspect this could be due to

secondary damage or even loosen loading module during the test, as the load

should not be smaller than that at complete failure. As a further step, we

took the CZM case with σt = σ0 and GC = 0.1G0 as an example, as it has

the smallest FPZ size and thus best represents LEFM [16]. We tracked the

crack propagation to a = 0.73R as shown in Fig. 8(a), which possesses the

largest dimensionless stress intensity factor and should correspond to PC2 on

the loading curve, as indicated by Equation 3 and Fig. 3. The applied stress

intensity factor at this stage was evaluated as Kapp = 1.17MPa
√
m, which

is far larger than the intrinsic fracture toughness defined in CZM, KIC =

KCZM = 0.34MPa
√
m. Therefore, the basic assumption for the FBD model

(a) (b)

0.34

0.26

CZM

app

K MPa m

K MPa m

= ×

= ×

0.34

1.17

CZM

app

K MPa m

K MPa m

= ×

= ×

Fig. 8 The stress contour and calculated Kapp for (a) the FBD specimen at a =
0.73R with the theoretically maximum dimensionless stress intensity factor and
(b) the SCB specimen immediately after crack initiation.

that Kapp = KIC holds during the crack propagation [10] isn’t true. Actually,

even at the peak in Fig. 3 (a = 0.73R) which indicates the transition from

unstable to stable crack propagation [10], Kapp ≈ 3KIC so crack propagation
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is still highly dynamic. Therefore, the crack keeps extending until complete

failure and this ”turning” point (a = 0.73R) is actually not captured on the

loading curve. These are the problems that undermine the accuracy of the

FBD model in the measurement of the fracture toughness. In 1993, Guo et al.

[3] proposed a method for measuring mode I fracture toughness using a full

Brazilian disk without a pre-crack; the formulation was very similar to the

FBD test. Zhao et al. [31] wrote a discussion on this method and expressed

similar concern, which is cited here: “... the stored strain energy for the un-

cracked disk at the failure initiation point is far more than the energy needed

to fracture the sample; therefore, it is suspected that second lower point on the

loading curve is NOT corresponding to the maximum stress intensity factor,

but corresponds to the situation where the sample had already broken into

two halves. Because of restriction by the jaws on the disk, the two broken

halves can still stay in position to take the external load.” This seems to be

supported by our observation. It should be mentioned that cohesive zone

simulations were only performed on the standard flattened Brazilian disk

tests, but we didn’t actually simulate the conventional Brazilian disk tests.

With CZM, we quantitatively studied the energetics during crack prop-

agation. A well known issue with CZM is its numerical divergence at crack

initiation, which interrupts the simulation. This was carefully studied by Yu

et al. [15] taking a bilinear TSL. Using a two element model, it was shown

that the divergence was caused by a so-called snap-back issue in a uniaxial

tension scenario. A solution could be using the Riks method or enforcing

the local crack tip displacement as proposed in [32, 33] so that the remote

displacement can decrease when failure initiates. Such approaches are suit-
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able if the purpose of the simulation is to capture the post-failure behaviour

of the structure. In a constant displacement scenario, divergence occurs due

to the existence of several solutions at failure causing numerical instability.

Energetically, in both cases the strain energy released by the structure dur-

ing failure is larger than the energy that can be consumed by the cohesive

elements. Take the snap-back case for instance, the total strain energy is zero

at complete failure, releasing all the stored energy, the remote displacement

therefore tends to reduce so that some strain energy is maintained and the

release matches cohesive consumption. Following this idea, a viscous regu-

larization scheme is often applied to compensate for the excess in available

energy, with the formulation detailed in [15]. Numerically this part of energy

is classified as viscous dissipation, in reality it could represent the part of

energy consumed due to dynamic effects, such as dynamic wave propagation

in the matrix.

The same issue was encountered when modelling the FBD test. In Fig. 5

the failure displacement is around 0.82mm. The strain energy release at

complete failure assuming negligible change in the displacement can be eas-

ily extracted using the two simple cases in Fig. 6, ≈ 0.48N · m. The total

cohesive energy consumption at complete failure, taking the approximate

value KIC = 1.1MPa
√
m in Fig. 5, is only ≈ 0.19N ·m. We therefore used

the viscous regularization method to dissipate the extra released energy in

the CZM simulation. The failure load is unaffected as long as the applied

viscosity coefficient is sufficiently small, which was determined via a conver-

gence study. The energy evolution for the case σC = σ0, GC = 0.1G0 in Fig. 7

is plotted in Fig. 9(a). The viscous dissipation is close to 20 times as large
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as the cohesive energy consumption during failure, meaning that the crack

propagation is highly dynamic during the entire failure process, so that the

theoretical maximum point of dimensionless stress intensity factor in Fig. 3

cannot be properly captured.

So far, it can be concluded that Equation 3 is unsuitable for extracting

the fracture toughness. This equation is theoretically correct, but 1) the FBD

geometry gives a very small window for the variation of PC2 such that PC2 is

practically insensitive to the change in the fracture toughness and 2) the crack

propagation from the uncracked specimen is highly dynamic so the theoretical

turning point cannot be measured in practice. Meanwhile, it should be noted

that the FBD model works well in predicting the tensile strength. This is

verified by simulating a further case with σC = 2σ0, GC = 0.1G0 as shown in

Fig. 7. The first peak PC1 doubled with the fracture strength, and the exact

value agrees well with Equation 1.

4.2. The SCB model

Now that it is not possible to calibrate both the tensile strength and

fracture toughness within a single test, we need a separate experiment to

measure the fracture toughness. According to Zhao et al. [31], the tests

on pre-cracked specimens are likely to give more accurate prediction. The

CCNBD test and the SCB test are within this category. Compared with the

conventional pre-notched three point bending test, these methods benefit

from simpler sample preparation and a larger failure load which gives higher

accuracy. Here we take the SCB model as an example and study it with

CZM for two purpose, to verify its effectiveness for our future tests and to

further contrast it with the FBD model.
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(a) (b)

Fig. 9 The evolution of energies during failure in the (a) FBD specimen and
(b) SCB specimen, for the case GC = 0.1G0 and σC = 0.1σ0 which is the most
representative of the LEFM case. The energy is normalized by the total cohesive
energy at complete separation of the specimen, GCZM,total = GC · ACZM with
ACZM being the total area of the cohesive interface. It is noted that the cohesive
consumption is ≈ 1 in (a) but is overshadowed by other curves.

As shown in Fig. 2(b), the radius of the disk was selected as R = 50mm,

the span 2s = 80mm and the thickness t = 50mm. A pre-crack with length

a = 0.5R was introduced. Due to symmetry, a half of the disk was modelled

in ABAQUS, assuming plane strain condition. The central ligament was

modelled with cohesive elements with a fine mesh resolution. The entire

model has 1914 plane strain elements and 180 cohesive elements.

We took the same five combinations of cohesive parameters as presented

in Fig. 7 and plotted the simulated loading curves in Fig. 10. The variation

in GC and thus in KIC are captured very well. Among these, the case with

σt = σ0, GC = 0.1G0 and the case with σt = σ0, GC = 0.25G0 are the most

representative of the LEFM results, we had Pmax = 870N in the former

and Pmax = 1300N in the latter, and the ratio between these two is 0.67,

very close to the expectation of Equation 4, 1/
√

2.5 = 0.63. Further, taking
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Fig. 10 Loading curves of the SCB specimen with different cohesive parameters.
The parameters are normalized using the reference case G0 and σ0.

Pmax = 870N into Equation 4 and according to the coefficients provided by

Kuruppu et al. [9], the fracture toughness extracted from the loading curve

is KIC = 0.32MPa
√
m, which is in good agreement with that converted

directly from the cohesive parameters GC = 0.1G0 → KC = 0.34MPa
√
m.

These prove that the SCB model gives satisfactory prediction of the fracture

toughness.

The SCB model (Equation 4) was derived based on a similar proce-

dure as the FBD model also assuming Kapp = KIC at failure. We took

the moment when the crack starts to propagate in the SCB specimen as

illustrated in Fig. 8(b) and evaluated the applied stress intensity factor
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Kapp = 0.26MPa
√
m. In contrast to the FBD model where Kapp is sub-

stantially larger than KIC , the assumption that Kapp = KIC approximately

holds in the SCB model. This indicates that the assumption of quasi-static

crack propagation holds, at least at the beginning of crack propagation in this

model. Similarly, we plotted the evolution of energies during failure in the

SCB simulation in Fig. 9(b). The released strain energy in this test is mainly

consumed by the cohesive zone, with marginal viscous dissipation/dynamic

effect. This is further evidence that the crack propagation can be regarded

as quasi-static in this model and so the assumption of Kapp = KIC is appro-

priate.

We further simulated the case with σt = 2σ0, GC = 0.1G0 and included

the loading curve in Fig. 10. Apparently, the SCB model cannot distinguish

the difference in the tensile strength given the same fracture toughness. This

is sensible as the crack tip stress field is theoretically singular according to

LEFM and the change in tensile strength makes little difference to crack

propagation.

5. Summary

Triggered by an inconsistency observed in the FBD tests on pre-baked

carbon, we re-examined the applicability of the FBD geometry in measuring

mode I fracture toughness. CZM was employed to simulate the test data and

to revisit the FBD model. It was found that the tensile strength could be

properly calibrated by the FBD model using the maximum load PC1 corre-

sponding to crack initiation. However, this model is unsuitable for calibrating

the fracture toughness due to the following reasons:
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(I) Although theoretically correct, the FBD geometry gives a very narrow

window for the variation of the load: under the condition that the

displacement keeps constant during failure, which is true for the test,

the lowest possible load after failure is just PC2 = 85%PC1. So PC2

is insufficient to capture the change in KIC which can easily vary by

> 15% among different materials.

(II) Due to the absence of a pre-crack, the stored strain energy is much

higher than that can be consumed by the creation of new free sur-

faces, this makes the crack propagation highly unstable and dynamic

throughout failure. PC2 corresponds to complete failure of the spec-

imen in reality instead of to the theoretical maximum dimensionless

stress intensity factor in Fig. 3. In other words, Kapp = KIC does NOT

hold throughout the test, therefore the LEFM based equation should

not be used to extract KIC .

We further verified the effectiveness of the SCB test in measuring the

fracture toughness. Due to the existence of a pre-crack in this model, the

stored strain energy is lower and comparable to that can be consumed by

static crack propagation, such that dynamic effect is marginal and Kapp =

KIC holds approximately at crack propagation. This makes the SCB test a

feasible approach to calibrating the mode I fracture toughness. As expected,

the SCB model was found unsuitable to extracting the tensile strength of the

material.

The conclusions could be projected beyond the current results. Generally

speaking, the FBD model is to some extent representative of disk compres-

sion tests without introducing a pre-crack, e.g. the full Brazilian disk test [3],
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and the SCB model of pre-cracked disk compression tests e.g. the CCNBD

test [6], another method recommended by ISRM. The former seems more

suitable for measuring the tensile strength from PC1 and the latter for mea-

suring the fracture toughness from Pmax. These peak points are reliable as

they are the conversion point from quasi-static loading to (possibly dynamic)

failure, so the statically based strength theory and LEFM theory still apply.

The usage of the so-called second turning point after failure, e.g. PC2 to ex-

tract mechanical properties should be examined carefully, as it may bring in

dynamic effect. These provide useful clues for the selection and development

of test methods.
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