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• An intrusion detection method for ICS based on BiSRU is proposed.5

• Skip connection is employed to alleviate the vanishing gradient problem.

• Bidirectional structure optimization is used to improve the training effec-

tiveness.

• The proposed method has higher accuracy and shorter training time than

other methods.10
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Abstract

With the development of computer and network technologies, the original secu-

tiry of industrial control systems (ICSs) has been compromised, and security is-

sues have become increasingly prominent. Effective intrusion detection methods

for ICSs have been proposed. Recently, intrusion detection methods based on

deep learning, such as long short-term memory and gated recurrent units, have

immensely improved the detection accuracy compared with traditional method-

s. However, there are still problems that remain to be solved, such as vanishing

gradient and low training efficiency. Therefore, this study proposed an intrusion

detection method based on a bidirectional simple recurrent unit (BiSRU). With

skip connections employed, the optimized bidirectional structure in the SRU neu-

ral network is able to alleviate the vanishing gradient problem and improve the

training effectiveness. Two standard industrial datasets from Mississippi State U-

niversity are used in the simulation. The results show that the proposed method is
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1 INTRODUCTION

more accurate and requires less training time than other methods.

Keywords: industrial control system, intrusion detection, deep learning, neural

network, bidirectional simple recurrent unit

1. Introduction

Early industrial control systems (ICSs) use special networks and operating20

systems that have no connection to the Ethernet or Internet, and there are ba-

sically no network security issues [1]. With the development of computer and

network technologies, many ICSs have used the Ethernet, wireless network e-

quipment, and general operating systems to connect with management systems

and remote terminals [2]. The connections between ICSs and the Internet have25

become increasingly concentrated, and security issues have become increasingly

prominent. Meanwhile, new vulnerabilities are increasingly discovered in ICSs,

including supervisory control and data acquisition (SCADA) systems, distributed

control systems, and programmable logic controllers. Attacks on ICSs via the In-

ternet continue to occur, causing potentially serious safety hazards to the industrial30

Internet [3]. Therefore, the security capability of ICSs should be improved.

The intrusion detection of ICSs has been widely investigated in recent years.

Some scholars have proposed intrusion detection methods for ICSs based on re-

current neural network (RNN). However, time-series algorithms have two short-
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1 INTRODUCTION

comings. First, shallow architectures cannot correctly identify minority class ex-35

amples with complex features. With the increase in network layers, vanishing

gradients seriously degenerate the model and make it difficult to converge, result-

ing in low accuracy of intrusion detection. Second, scaling recurrent networks,

such as long short-term memory (LSTM) and gated recurrent unit (GRU), suffer

from the time dependence of state computations, i.e., the computation of each step40

is suspended until the complete execution of the previous step. This sequential

dependency causes recurrent networks to be slower than other models and limits

their parallelizability. This paper improves the simple recurrent unit (SRU) [4] to

the bidirectional SRU (BiSRU) model to solve the two above problems. Skip con-

nection [5] are applied to alleviate vanishing gradients, and bidirectional structure45

optimization improves the accuracy of ICS intrusion detection. BiSRU is com-

pared with LSTM, GRU, CNN and three traditional machine learning methods

through simulations with the gas pipeline and water storage tank standard indus-

trial datasets of the Mississippi State University Center for critical infrastructure

protection [6].50

The rest of this paper is organized as follows: Section 2 introduces the related

works. Section 3 presents the existing problems of RNNs. Section 4 proposes an

intrusion detection method for ICS based on BiSRU. Section 5 shows the simula-
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tion details and results. Finally, we conclude our work in Section 6.

2. Related Work55

In this section, we briefly survey the relevant works, including traditional in-

trusion detection methods and recently proposed deep learning-based methods.

Traditional machine learning-based methods used to be popular for ICS secu-

rity protection. Researchers usually focus on one of the two steps in traditional

methods, namely, feature extraction and classification. Shin et al. [7] first studied60

intrusion detection methods for wireless industrial sensor networks and designed

a hierarchical framework for detection and data processing. Dai et al. [8] used

different discretization and feature selection algorithms to extract the differences

among multiple optimal feature subsets. Liang et al. [9] proposed an industri-

al network intrusion detection algorithm based on a multifeature data clustering65

optimization model, which selects a node with a high security coefficient as the

cluster center and matches the multifeature data around the center into a cluster.

The above methods pay more attention to feature selection, while some methods

focus on the classification algorithm. Nader et al. [10] proposed a one-class clas-

sification for intrusion detection in SCADA systems by using the support vector70

data description. Ren et al. [11] proposed a detection model based on weighted
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naive Bayes that was optimized with the particle swarm optimization algorith-

m. Ponomarev et al. [12] proposed an approach to detect intrusions in network-

attached ICSs by using a reduced error pruning tree (REPtree). Although machine

learning-based methods have achieved good performance in recent years, they still75

have their own inherent defects; for example, SVMs experience a bottleneck as

the number of samples grows, naive Bayes methods are not suitable for data with

related attributes, and decision trees have poor generalization ability. Thus, there

is an urgent need to study the intrusion detection problem and propose a method

with a higher detection rate.80

Fortunately, in recent years, the emerging deep learning method has achieved

great success in various fields, especially in computer vision [13] and speech

recognition [14]. Such success has encouraged many scholars in the security field

to pursue security solutions for ICSs based on deep learning. Wei et al. [15] pro-

posed a data traffic prediction model based on an autoregressive moving average85

using time series data. Wang [16] proposed a network intrusion detection system

using the naive Bayes classifier and deep neural network (DNN). Yang et al. [17]

proposed a deep-learrning-based network intrusion detection system and used the

convolutional neural network (CNN) to extract the features. Abassi et al. [18] pro-

posed an attack detection model that leverages DNN and decision tree classifiers90
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to detect cyber-attacks from the new representations.

Due to the time-series attributes in network traffic data, RNNs seem to be a

good choice. Fang et al. [19] proposed an intrusion detection model based on a

hybrid CNN and RNN model, which can accurately identify the type of network

traffic, to solve the advanced persistent threat in power information networks. Yu95

et al. [20] presented an ICS intrusion detection method based on LSTM to im-

prove the insufficient timing memory capability of RNN. Xu et al. [21] introduced

a novel intrusion detection system consisting of an RNN with GRU to simplify the

memory unit structure of LSTM and reduce the calculation time of the algorithm

while maintaining the classification accuracy. Most of the above time-series RN-100

N methods have problems of vanishing gradients and low parallelizability, which

limit their performance in ICS intrusion detection.

3. Existing Problems of RNNs

3.1. Time-consuming problems in RNN training

An RNN is a special kind of neural network with self-connections in the field105

of deep learning. The network state of the previous moment can be transferred to

the current moment, and the state of the current moment can be transferred to the

next moment through a self-recurrent connection in the hidden layer, which makes
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RNNs suitable for time-series problems. Compared with CNNs, this sequential

dependency makes LSTM, GRU, or other RNNs unable to be parallelized, thereby110

limiting the training speed of the model.

Taking LSTM as an example, the calculation process of LSTM is as follows.

ot = σ (Wo [ht−1, xt] + bo) , ht = ot � tanh (ct) . (1)

where xt, ct and ot are the input, memory unit and output gate of the network

at time step t, respectively; Wo and bo are the weight and bias parameters; ht−1

and ht are the output of the previous layer and the current layer, respectively; σ

is the activation function; and � is the dot product. From Equation (1), it can be115

seen that output ht of the current moment indirectly depends on output ht−1 at the

previous time, which limits the parallelizability and increases the training time.

Similarly, the same sequential dependence situation occurs in GRU.

3.2. Vanishing Gradient Problem

During the gradient descent calculation, the chain rule is used to conduct error

backpropagation to obtain the minimum partial derivative of the loss function of

the hidden state. The specific recurrence formula is expressed as follows.

∂l

∂h0
=

(
∂ht
∂h0

)T

∗ ∂l

∂ht
=

(
r∑

i=1

mt
iuiv

T
i

)T

∗ ∂l

∂ht
=

r∑
i=1

mt
iuivi ∗

∂l

∂ht
. (2)
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3.2 Vanishing Gradient Problem 3 EXISTING PROBLEMS OF RNNS

where l is the loss function, h0 is the hidden state, ht is the output gate of the120

network at time step t, and m, u, and v are variables during singular value de-

compositions. When t is large, the partial derivative value of the loss function to

the cell state only depends on the maximum singular value mi. The t power of

mi tends to be infinitesimal and causes the gradient to vanish when mi < 1. The

vanishing gradient problem invalidates the gradient descent algorithm and reduces125

the long-distance dependence of the NN.

Existing Solution for Vanishing Gradients: To alleviate gradient vanishing in

the back propagation of RNNs, a complex structure composed of gates is intro-

duced to control the information flow to hidden neurons and to ensure that the

feedback path can enable timely and effective gradient calculation feedback. L-130

STM and GRU are two typical examples.

(1) In LSTM, input, output, and forget gates are added to the neurons of an RNN.

A forget gate can alleviate the vanishing gradient when it propagates back-

ward with the time series. A forget gate controls the self-connection unit and

determines which parts of the historical information should be discarded, and

the calculation is as follows.

ct = ft ∗ ct−1 + it ∗
∼
ct . (3)
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3.2 Vanishing Gradient Problem 3 EXISTING PROBLEMS OF RNNS

where ct−1 and ct are the memory units at the current unit and previous unit,

respectively, and it, ft and
∼
ct are the input gate, the forget gate and the new

status information, respectively. The LSTM cell is illustrated in Figure 1(a).

(a) LSTM (b) GRU

Figure 1. Structure of cells

(2) The GRU model is a simplified structure of LSTM. The input and forget gates

of LSTM are combined to form a new control gate, that is, the update gate.

Update gate zt can determine whether the current data are important to the

entire model and whether to ignore the current input data. The calculation is

as follows.

zt = σ (Wz[ht−1, xt]) . (4)

where Wz is the weight parameter of the update gate, ht−1 is the output of135
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4 PROPOSED APPROACH

the previous step, xt is the input of the current step, and σ is the activation

function. The GRU cell is illustrated in Figure 1(b).

Relying on the complex structure composed of gates, the gradient information

can provide feedback, and to some extent, the LSTM and GRU models can alle-

viate the vanishing gradient problem. However, in the industrial control intrusion140

detection tasks, when increasing the depth of LSTM and GRU, the vanishing gra-

dient problem still exists, which makes the convergence of the final model difficult

and decreases the accuracy of intrusion detection.

4. Proposed Approach

As mentioned above, most of the existing RNN methods have the problems145

of vanishing gradients and low effectiveness in model training. To address the

above two problems, in this paper, we propose a bidirectional simple recurrent

unit (BiSRU)-based intrusion detection model in which a simple recurrent unit

(SRU) is used to replace the LSTM and GRU to reduce the training time. The

skip connection strategy is employed to alleviate the vanishing gradient problem,150

and moreover, the bidirectional structure can be used to better extract the sequence

feature information.
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4.1. SRU

An SRU is designed to facilitate the training of deep models with highly par-

allelized implementation [4]. Due to the efficiency of SRU, it is utilized to replace155

LSTM and GRU to improve the efficiency of model training in RNN. The main

improvements of SRUs are twofold: the dependence of the current time step on the

previous time step is completely eliminated, and the use of parallel computations

accelerate the training of the model.

The SRU mainly includes a forget gate and a memory unit. The forget gate,

which indicates the importance of the previous step to the current state, is used

to adjust the memory unit. The memory unit is used to calculate the final output

state. Typically, a single layer of an SRU involves the following computations:

∼
xt = Wxxt, (5)

ft = σ (Wfxt + bf ) , (6)

ct = ft � ct−1 + (1− ft)�
∼
xt, (7)

ht = g (ct) , (8)
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where the subscript t is the time step, xt is the input, Wx and Wf are the weight160

parameters, bf is the bias and σ and g are the activation functions.
∼
xt in Equation

(5) is the temporary state. ft in Equation (6) is the forget gate, which indicates

the importance of the previous step to the current state. ct in Equation (7) is the

memory unit. ht in Equation (8) is the output of the network. As seen from the

above equations, the conversion between the gate control unit and the input only165

depends on the input of the current time step. Thus, the matrix operation with a

large amount of calculations can be processed in parallel. Although the calculation

of memory unit ct still depends on the previous time step, the calculation of ct and

ht in the SRU only involves point multiplication with low computational cost.

4.2. Skip Connection170

Skip connections [22] from hidden layers to output layers have long been used

in NNs and can alleviate the vanishing gradient problem. Thus, we apply it to the

final state output calculation of the SRU to alleviate the vanishing gradient in deep

NNs. First, reset gate rt is set as follows:

rt = σ (Wrxt + br) . (9)

Then, output state ht is calculated by skip connections:

ht = rt � g (ct) + (1− rt)� xt. (10)
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(1− rt) � xt allows the gradient to directly propagate to the previous layer with

skip connections, which is equivalent to adding one to the partial derivative of

the cell-state loss function: ∂l
∂h

= ∂(f+h)
∂h

= 1 + ∂f
∂h

. The method can effectively

back propagate the error and alleviate the vanishing gradient problem, although

the value of the derivative is extremely small. The SRU with skip connections is175

shown in Figure 2.

Figure 2. SRU cell

4.3. BiSRU

The traditional time-series model, which usually reads the sample sequence

from front to back, can obtain the forward information of the sample sequence.

However, this method is unsuitable for sample information with complex se-180

quences and uncertain correlations and affects the subsequent sample analysis.
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4.3 BiSRU 4 PROPOSED APPROACH

Therefore, this paper uses a bidirectional structure to effectively obtain the se-

quence feature information in the intrusion detection samples. The structure of

the BiSRU model is shown in Figure 3.

Figure 3. Structure of BiSRU

In Figure 3,
→
x and

←
x are the forward and reverse readings of the sample se-185

quence, respectively.
→
c and

←
c are the memory units of the forward and reverse

SRUs, respectively.
→
h and

←
h are the output states of the forward and reverse SRUs,

respectively.

The overall flow of ICS intrusion detection based on BiSRU is shown in Figure

4.190
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5 SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

Figure 4. Flowchart of the intrusion detection model

5. Simulation Experiments and Results Analysis

5.1. Implementation Details

The proposed method is compared with three traditional machine learning-

based methods (Naive Bayes [11], SVM [10] and REPtree [12]) and three deep-

learning-based methods, including two methods with RNN structures (LSTM [20]195

and GRU [21]) and one CNN model [17]. Experiments were conducted on a

workstation with an AMD Ryzen 5 2600 six-core processor@ 3.85 GHz, 16 GB

15



5.1 Implementation Details 5 SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

RAM, GTX 1660Ti@6G GPU and a Windows 10 64-bit operating system. We

used the latest version of Keras packages for the implementation of the BiSRU

model. The specific parameters of the simulation platform are presented in Table200

1.

Table 1

Experimental parameters

Parameter name Description Value(Gas) Value(Water)

depth Hidden layer size 4 5

optimizer Gradient descent algorithm Adam Adam

activation Activation function softmax softmax

epochs Iteration size 20 8

batch size Samples per epoch 128 128

unit Hidden unit size 128 128

dropout Random deactivation rate 0.1 0.1
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5.2 Dataset 5 SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

5.2. Dataset

Table 2

Description of datasets

attack type Describe Number(Gas) Number(Water)

Normal Normal data 61156 172415

NMRI Naive malicious response injection attack 2763 9187

CMRI Complex malicious response injection attack 15466 24920

MSCI1 Malicious state command injection attack 782 1833

MPCI Malicious parameter command injection attack 7637 3725

MFCI Malicious function command injection attack 573 1320

DoS Denial-of-service attack 1837 1237

RECO Reconnaissance attack 6805 34002

The gas pipeline and water storage tank standard industrial datasets are used,

which were proposed by Mississippi State University in 2014. As a relatively

complete datasets, they have been used for simulation experiments of ICS intru-205

sion detection in recent years [24, 25]. The first dataset is collected from a set

of gas pipeline systems based on Modbus-TCP, which has a similar composition

and structure as the SCADA system in the actual production environment. The

gas pipeline dataset contains large-scale samples of normal data and seven types

of attack data (61156 benign samples and 35863 malicious samples). The water210

storage tank dataset contains normal data and seven types of attack data and has

1The number of MSCI samples is small, and the characteristics of MSCI are complex and easy

to be mistakenly detected as detected as CMRI; we used ADASYN [23] to synthesize those data.
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5.3 Benchmarking Metrics 5 SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

enough samples (172415 benign samples and 76224 malicious samples); the de-

tails can be seen in Table 2. Before feeding into the model, the data need to be

preprocessed by min-max standardization and one-hot encoding. The dimensions

of the input vector for the two datasets are 26 and 23, respectively.215

5.3. Benchmarking Metrics

The overall accuracy (ACC), true positive rate (TPR), false positive rate (FPR),

and false negative rate (FNR) are used as key performance indicators to evaluate

the proposed method. Because the datasets of gas pipeline systems and water

storage tank systems are imbalanced, we introduced the Matthews correlation co-

efficient (MCC) to evaluate the performance. The calculations of the five metrics

are as follows:

ACC =
TP + TN

TP + FP + TN + FN
, (11)

TPR =
TP

TP + FN
, (12)

FPR =
FP

FP + TN
, (13)

FNR =
FN

TP + FN
, (14)
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MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
, (15)

where TP represents the number of detected benign samples. TN denotes the

number of detected malicious samples. FP is the number of malicious samples

detected as benign, and FN indicates the number of benign samples detected as

malicious.220

5.4. Selection of network layers

To verify the effectiveness of BiSRU in ICSs, we conduct an ablation study by

comparing the proposed BiSRU with two other RNN structures, LSTM [20] and

GRU [21]. When selecting the number of network layers, accuracy and computa-

tional time are the main concerns. Since the time consumption will increase with225

an increase in the number of network layers, NNs with a low number of layers are

selected when accuracy is ensured. Therefore, a set of experiments to determine

the influence of the number of hidden layers in an RNN is designed, and the NN

structure as the number of hidden layers is varied from 1 to 15 is tested.
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(a) gas pipeline, depth=1 (b) water storage tank, depth=1

Figure 5. Detection results of normal data and various types of attack data

(a) gas pipeline (b) water storage tank

Figure 6. Accuracy comparison of different depths

As shown in Figure 5(a) and Figure 5(b), the recognition rates of the three230

algorithms for MSCI data in the gas pipeline dataset and CMRI data in the water

storage tank dataset in the one hidden layer NN are low and are nearly 0%. The

complexity of the model should be improved, and a NN with a deeper hidden layer

20



5.4 Selection of network layers 5 SIMULATION EXPERIMENTS AND RESULTS ANALYSIS

should be used to detect such data.

As shown in Figure 6, the three network models with different depths are235

compared. Overall, the three models achieve the highest accuracy in the network

with 4 - 5 hidden layers on the gas pipeline dataset and water storage tank dataset.

Meanwhile, the vanishing gradient in LSTM and GRU appears when using 11 and

13 hidden layers, respectively, on the gas pipeline dataset and 11 and 12 hidden

layers, respectively, on the water storage tank dataset, causing the accuracy to240

drop to approximately 60%. Meanwhile, BiSRU does not exhibit a vanishing

gradient until the 15 hidden-layer NN, and its accuracy remains higher than 92%

on both datasets. This verifies the robustness of BiSRU, as its performance is not

affected by different depths of the hidden layers, and it can effectively alleviate

the vanishing gradient problem.245

As shown in Figure 7, BiSRU has the shortest model training time compared

with LSTM and GRU. The results of the proposed method exceed other techniques

with a flat curve in all metrics on the gas pipeline and water storage tank dataset.
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(a) gas pipeline (b) water storage tank

Figure 7. Training time comparison of different depths

(a) gas pipeline, depth=4 (b) water storage tank, depth=5

Figure 8. Detection accuracy for normal data and various types of attack data

5.5. Results

Experiments were conducted with the same hardware, software environment,250

and algorithm parameters. The ratio of the training set to the test data was 8:2.

The results were compared in terms of the metrics ACC, TPR, FPR, FNR and

22
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MCC for each classification algorithm.

As shown in Figure 8, the accuracy of BiSRU for MSCI data in the gas pipeline

dataset and CMRI data in the water storage tank dataset are higher than those of255

the other algorithms, and BiSRUs recognition rate for other samples is basically

the same as those of LSTM and GRU.

Table 3

Benchmarking metrics for the different algorithms (gas pipeline)

ACC/% TPR/% FPR/% FNR/% MCC

Naive Bayes 93.52 96.55 11.52 3.44 86.11

SVM 95.35 96.79 7.45 3.00 89.99

REPtree 92.85 94.98 9.21 5.02 85.80

CNN 95.97 94.66 1.74 5.34 91.58

LSTM 94.09 95.23 7.67 4.77 87.61

GRU 95.43 94.04 2.13 5.96 90.46

BiSRU 96.23 97.28 5.91 2.31 92.15
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Table 4

Benchmarking metrics for the different algorithms (water storage tank)

ACC/% TPR/% FPR/% FNR/% MCC

Naive Bayes 58.91 43.85 0.33 56.14 41.37

SVM 92.70 96.33 16.49 3.67 81.72

REPtree 92.10 99.60 26.92 0.39 80.43

CNN 89.95 87.41 0.10 12.59 76.42

LSTM 89.15 86.54 0.10 13.45 74.53

GRU 89.27 86.67 0.10 13.32 74.82

BiSRU 92.94 96.00 13.56 4.00 83.60

As shown in Table 3, the benchmarking metrics for the 8 algorithms on the gas

pipeline dataset and water storage tank dataset were compared. Compared with

other methods, BiSRU has the highest ACC, TPR and MCC and the lowest FNR260

on the gas pipeline dataset, and its FPR is slightly higher than that of the CNN and

GRU. Through the comprehensive evaluation, BiSRU obtains the best intrusion

detection effectiveness on this dataset. As shown in Table 4, because the water

storage tank dataset is imbalanced, we should pay more attention to the MCC

data. Although other methods have one or more benchmarking metrics (TPR,265

FPR or FNR) that are better than those of our proposed method, BiSRU maintains

consistent results in all 5 metrics, especially for MCC, which shows that BiSRU

has the best performance on the imbalanced dataset. Therefore, BiSRU is suitable
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6 CONCLUSION

for large-scale high-dimensional network traffic data generated by the SCADA

system.270

6. Conclusion

Vanishing gradients and model training inefficiency emerge when the recur-

rent neural networks deal with large-scale network traffic data in industrial con-

trol systems that are high-dimensional and time-series. This study proposed an

intrusion detection method for industrial control systems based on Bidirectional275

simple recurrent unit, which introduces skip connections and bidirectional struc-

ture optimization, to solve these problems. Two datasets proposed by the key

infrastructure protection center of Mississippi State University are used in the

simulation experiments. The results show that the proposed model has superior

performance to the other six companion methods. Additionally, compared to the280

other two recurrent neural networks, long short-term memory and gated recurrent

unit, the proposed model has higher accuracy and shorter training time. In future

work, the optimization of neural network performance considering false positive

rate and the recognition of unknown attack types will be studied.
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