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SUMMARY
The hippocampus and the entorhinal cortex are considered the main brain structures for allocentric represen-
tationof theexternal environment.Here,weshowthat theamygdalaand the ventral visual streamare involved in
allocentric representation. Thirty-one youngmen explored 35 virtual environments during high-resolution func-
tional magnetic resonance imaging (fMRI) of the medial temporal lobe (MTL) and were subsequently tested on
recall of the allocentric pattern of the objects in each environment—in other words, the positions of the objects
relative to each other and to the outer perimeter. We find increasingly unique brain activation patterns associ-
ated with increasing allocentric accuracy in distinct neural populations in the perirhinal cortex, parahippocam-
pal cortex, fusiformcortex, amygdala, hippocampus, and entorhinal cortex. In contrast to the traditional viewof
a hierarchical MTL network with the hippocampus at the top, we demonstrate, using recently developed graph
analyses, a hierarchical allocentric MTL network without a main connector hub.
INTRODUCTION

Mental representation of the external environment without refer-

ence to self-position, or allocentric representation, is critical for

our way-finding ability (O’Keefe and Conway, 1978; Tolman,

1948). It has long been a goal of neuroscientific research to iden-

tify the brain structures involved in allocentric representation and

understand how these structures interact (Ekstrom et al., 2014,

2017; Epstein et al., 2017). An allocentric representation contains

viewpoint-independent information on spatial locations—in

other words, it contains the positions of landmarks or objects

in relation to each other, in contrast to an egocentric representa-

tion, which contains the positions of landmarks relative to the

navigator (O’Keefe and Conway, 1978). Allocentric positional

patterns of objects form two-dimensional (2D) overviews of the

surrounding environment and are fundamental components of

cognitive maps. It is not known where in the human brain cogni-

tive maps are generated and stored (Ekstrom et al., 2017), nor

whether the brain uses actual world geometry (i.e., accurate dis-

tances and angles between object positions—‘‘Euclidean met-

rics’’) when constructing such maps.

The hippocampus and entorhinal cortex are considered the

primary brain regions for allocentric representation in rats and

humans (Ekstrom et al., 2014; Epstein et al., 2017; Evensmoen
This is an open access article und
et al., 2015). However, it is an open question whether and to

what extent other parts of the medial temporal lobe (MTL) sub-

serve this function. A virtual navigation study in monkeys re-

vealed that neuronal activity in a part of the ventral visual stream

called the parahippocampal cortex (PHC) (Rosenke et al., 2018)

conveyed more information about spatial location than activity in

other MTL structures (Furuya et al., 2014), suggesting that the

ventral visual stream is critically involved in spatial processing

in primates. Human lesion studies have linked the PHC to recall

of the positions of objects in the environment (Bohbot et al.,

1998; Kolarik et al., 2016, 2018). Furthermore, an fMRI study

showed increased PHC activation when a central landmark

was used to remember spatial locations (Zhang and Ekstrom,

2013), and similarity between fMRI activation patterns in the

PHC and hippocampus has been linked to map-drawing perfor-

mance (across subjects) (Stokes et al., 2015). Moreover, rats

with perirhinal lesions have been shown to use a primarily non-al-

locentric navigation strategy (Ramos, 2017), suggesting that the

perirhinal cortex may also play a role in allocentric representa-

tion. The PHC and perirhinal cortex are strongly connected to

both hippocampal place cells and entorhinal grid cells in rodents

as well as humans (Burke et al., 2018). Finally, the amygdala, well

known for its role in emotional processing (LaBar and Cabeza,

2006), has a high percentage of place-responsive cells in
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humans, as seen in Figure S4 in Jacobs et al. (2010), suggesting

that it has a role in spatial processing as well. These findings

point toward possible roles in spatial processing for various

MTL structures outside the hippocampal-entorhinal circuit.

Here, we demonstrate that accurate allocentric representation

is subserved by multiple MTL structures, including the hippo-

campus and the entorhinal cortex, as well as the amygdala, peri-

rhinal cortex, and ventral visual stream structures.

RESULTS

Assessment of environmental encoding
To investigate allocentric representation in the human MTL, we

acquired high-resolution fMRI (1.9 mm isotropic) data while

healthy, right-handed young men freely explored 35 unique vir-

tual environments (rooms), each of which contained 5 objects

that were placed inside the room in a unique positional (spatial)

pattern. The participants had 30 s to explore the room, followed

by a 15-s ‘‘post-exploration period’’ with a fixation cross on the

screen, in which they were free to engage in non-stimulus-driven

encoding (Figure 1A) (Cohen et al., 2015). After every five rooms,

the participants were tasked with dragging and dropping the ob-

jects from each room into a 2D overview representation of the

room (Figure 1B). During these tests (seven in total) there was

no fMRI BOLD (blood oxygen level-dependent imaging) scan-

ning. The behavioral data collected in these tests were used as

explanatory variables in the subsequent fMRI analyses.

To assess the accuracy of environmental encoding, the re-

sponses to the drag-and-drop task were quantified and three

measures of allocentric accuracy (1–3) were obtained, all three

of which were based on the ‘‘positional pattern’’ of the objects

in the room (i.e., the angles and distances between them, regard-

less of the identities of the objects) (Figure 1C). (1) Pattern accu-

racy represents the accuracy of the positional pattern of objects,

after correcting for rotation and translation (relative to the correct

positional pattern) using the Kabsch algorithm (Kabsch, 1976),

as well as up or down scaling of the positional pattern, mini-

mizing the root mean square deviation from the correct posi-

tional pattern (Horecka et al., 2018; Umeyama, 1991) (see

Method details). Scaling was done because spatial representa-

tions in humans are often scaled up or down (i.e., either com-

pressed or expanded) (Horecka et al., 2018; Spiers et al.,

2001; Tversky, 1992). The encoded positional patterns of objects

were on average scaled up (expanded) by a factor of 1.11 ± 0.06,

rotated �0.48� ± 2.1�, and translated 0.84 ± 0.2 absolute virtual

meters, relative to the correct positional pattern. After transla-

tion, rotation, and scaling, the positions provided by the partici-

pants were on average 0.75 ± 0.17 absolute virtual meters from

the correct positions; before translation, rotation, and scaling,

the positions were off by 1.32 ± 0.33 absolute virtual meters.

(2) Environmental geometry is the degree to which the positional

pattern is correct relative to the room’s outer perimeter (the

walls). Environmental geometry is defined as the inverse of the

degree of translation, rotation, and scaling performed to obtain

Pattern accuracy, and thus a high environmental geometry

score, implies low degrees of rotation, translation, and scaling,

relative to the room’s walls. (3) Euclidean map is defined such

that a high score reflects ‘‘high scores on both pattern accuracy
2 Cell Reports 34, 108658, January 19, 2021
and environmental geometry.’’ A Euclidean map constitutes a

cognitive map of the environment, including its outer perimeter;

however, it does not take into account the identity of the objects.

Finally, recall of which object was located in which position was

also measured, and this is termed (4) object identity. The partic-

ipants remembered on average 1.24 ± 0.15 objects correctly per

environment (Figure S1A). Importantly, the present approach

allows us to conduct a complete study of the components of al-

locentric representation, in contrast to previous fMRI studies,

which typically limited the analyses to singular aspects of allo-

centric representation, such as direction of movement (Bellmund

et al., 2016; Chadwick et al., 2015; Deuker et al., 2016) or the dis-

tance between pairs of landmarks (Deuker et al., 2016; Hirshhorn

et al., 2012; Kyle et al., 2015; Morgan et al., 2011; Nau et al.,

2020; Nielson et al., 2015).

Different levels of recall accuracy
To identify neural substrates of allocentric representation, it was

necessary to find MTL regions that showed consistent modula-

tion of fMRI activation patterns across different levels of allocen-

tric accuracy. For this purpose, recalled positional patterns were

compared to the correct positional patterns and classified as

having either ‘‘fine’’ (high), ‘‘medium,’’ or ‘‘coarse’’ (low) allocen-

tric accuracy. These three categories were later used as levels of

accuracy in multivariate fMRI analyses of activation pattern

dissimilarity. Trials with accuracy at or below chance level

were categorized as ‘‘failed.’’ Chance level was defined by

finding the cutoff point between two distributions while maxi-

mizing sensitivity and specificity (Figure S1). The first distribution

was that of the actual accuracy scores, the recalled positional

pattern compared to the correct positional pattern, across all

participants and environments; the second distribution con-

tained comparisons between the recalled positional pattern

and the correct patterns from all of the other environments,

across all of the participants. For pattern accuracy and environ-

mental geometry, the thresholds between fine, medium, and

coarse trials were defined such that, across participants, the

average number of trials was the same for all three categories.

For the Euclidean map, the average pattern accuracy score be-

tween fine Euclidean map and fine pattern accuracy was not

different (w = 241, p = 0.2), and the average environmental ge-

ometry score between fine Euclidean map and fine environ-

mental geometry also not different (w = 249, p = 0.2).

Allocentric positions and object identity are encoded by
separate neural populations
Increased dissimilarity of neural activation patterns has been

associated with more accurate encoding (Alm et al., 2019; Cha-

nales et al., 2017; Copara et al., 2014; Favila et al., 2016; Jenkins

and Ranganath, 2016; Koolschijn et al., 2019; LaRocque et al.,

2013), and reduced memory interference has been suggested

to be the underlyingmechanism for this (Brunec et al., 2020; Cle-

wett et al., 2019; Favila et al., 2016). We therefore wanted to find

out whether increased allocentric accuracy during environ-

mental encoding was associated with more dissimilar fMRI acti-

vation patterns in the MTL. For this purpose, we used a reliable

multivoxel representational similarity analysis (RSA) (Figure S2A)

(Kriegeskorte and Bandettini, 2007; Kriegeskorte et al., 2006; Nili



Figure 1. The fMRI paradigm and assessment of environmental encoding

(A) Left: the fMRI paradigm involved free exploration of the environment from a first-person perspective using a joystick to move around (environmental

exploration), followed by a post-exploration encoding period while fixating on a cross, and, subsequently, an odd-even judgment task (baseline). Right: the

individual movement of all participants (differently colored lines for each participant) in one of the environments.

(B) After 5 environments had been presented, the participant’s recall was evaluated. Left: in the allocentric positions test, the participant viewed the environment

from a 2D overview and was asked to drag and drop the objects into their correct locations using the joystick. Right: an actual response from one of the par-

ticipants, with colors indicating object identity.

(C) Assessment of participant responses: Top row, left: pattern accuracy reflects the degree towhich the relative positions of the objects (their positional pattern)were

correctly recalled, when object identity is disregarded and the pattern has been translated, rotated, and scaled relative to the correct positional pattern. Center:

environmental geometry reflects the degree to which the positional pattern, as recalled by the participant, had to be rotated, translated, and scaled to perfectly align

with the outer wall (independent of pattern accuracy). Right: Euclideanmap reflects the degree towhich the participant’s response displayed a high degree of pattern

accuracy as well as high environmental geometry (see Method details). Bottom row, left: object identity reflects how many objects were recalled in their correct

positionswithin thepositionalpattern (independentofpatternaccuracy).Right: examplesofhigh (‘‘fine’’),medium (‘‘medium’’), and low (‘‘coarse’’) accuracy responses.

See also Figure S1.
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Figure 2. Allocentric accuracy and object

identity encoded in separate neural popula-

tions

(A) Left column: the measured allocentric vari-

ables, Euclidean map (green), pattern accuracy

(blue), environmental geometry (yellow), and

object identity (i.e., number of objects correctly

placed within positional pattern [red]). Right

column: the statistical model used to test for

allocentric accuracy. Of note, the model predicts

a consistent modulation of activation pattern

dissimilarity with increasing encoding accuracy.

(B) Medial temporal lobe voxels that showed

consistent modulation of activation pattern

dissimilarity as allocentric encoding became

more accurate (from coarse via medium to

fine) (green, blue, and yellow) or as more ob-

jects were correctly placed (red). Subsequent

analyses revealed that allocentric accuracy

was associated with increasingly unique brain

activation (see Results). Results are shown for

environmental exploration (top row) and post-

exploration (bottom row). Permutation-based

cluster mass corrected thresholds of p < 0.05

were used, taking into account both the size of the

clusters and the size of the voxel-wise activations

within the clusters. The ‘‘x =’’ in the lower left

corner of each brain image indicates the sagittal

position in MNI space.

See Figure S2, Table S1, and Table S2 for

more details on activation locations, and Table

S4 for activation pattern dissimilarity-based classi-

fication.
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et al., 2014; Walther et al., 2016), including a multivariate noise

normalization that corrects for noise-related co-variance across

voxels (Walther et al., 2016), such as a set of voxels being sup-

plied by the same artery. For each voxel in the MTL, a 4-mm-

radius sphere (‘‘searchlight’’) was defined, with the target voxel

as the center. An initial univariate general linear model (GLM)

analysis was used to extract the univariate activation for every

voxel within the sphere for each of the three levels of accuracy

(coarse, medium, and fine). Thus, for each level of accuracy,

there was an associated activation pattern—distribution of uni-

variate activations (betas from the GLM)—within the sphere.

The RSA analysis tested whether the activation patterns became

more or less similar with increasing allocentric accuracy (Figures

2A and S2A) and revealed that activation pattern dissimilarity

throughout the MTL was consistently modulated by the

increasing level of pattern accuracy (from coarse to medium to

fine) (Figures 2B and S2B; Tables S1 and S2). These findings
4 Cell Reports 34, 108658, January 19, 2021
are consistent with multiple MTL regions

being specialized for allocentric repre-

sentation. Similar results were obtained

for the Euclidean map. For environmental

geometry, only the anterior hippocampus

showed a consistent modulation with

increased accuracy, and the effect was

only observed in the post-exploration

period. There were no effects for models
in which medium accuracy was compared to fine and coarse,

and we found no relationship between the correlation effects

(i.e., activation pattern dissimilarities, from coarse to medium

to fine), and average success rate across subjects. For object

identity, activation pattern dissimilarity was consistently modu-

lated by the increasing level of accuracy (from 0–1 to 2 to 3–5 ob-

jects recalled), in the same set of subregions as for pattern accu-

racy and Euclidean map. The only exception to this was the

amygdala (Figures 2 and S2B; Tables S1 and S2). Finally, the po-

sitional pattern representation for allocentric representations

was located to the posterior medial entorhinal cortex and medial

perirhinal cortex, while object identity was primarily located in

the anterior lateral entorhinal cortex and lateral perirhinal cortex.

The divisions of the entorhinal and perirhinal cortices into ante-

rior/posterior and lateral/medial regions were made by an expe-

rienced neuroanatomist and based on finding the central Mon-

treal Neurological Institute (MNI) coordinates along the
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anterior-posterior and lateral/medial axes (see Method details).

The present findings support the hypothesis that the perirhinal

cortex is functionally segregated into a medial (area 35) and a

lateral (area 36) component (Burke et al., 2018). The present re-

sults show that allocentric and object identity representations

are encoded in a widespread network of distinct but neighboring

neural populations throughout the MTL. Leave-one-subject-out

cross-validated nearest-neighbor classifiers, trained on the acti-

vation pattern dissimilarities for peak regions of interest (ROIs)

from the RSA analyses (Euclidean map, pattern accuracy, envi-

ronmental geometry, and object position), showed an average

classification accuracy of 0.83 ± 0.26 for the classes from the

model activation pattern dissimilarity matrix (RDM) (Table S4),

confirming the validity of the RSA results.

Our findings show that activation pattern dissimilarity associ-

ated with allocentric MTL processing is consistently modulated

by increasing levels of accuracy. One possible explanation is

that the accurate (‘‘fine ‘‘) trials drive the increases in activation

pattern dissimilarity; another possibility is that the least accurate

(‘‘coarse’’) drive increases in dissimilarity. To resolve this ambi-

guity, we used RSA analyses that allowed dissimilarity compar-

isons between ‘‘fine’’ and baseline (last 5 s of odd-even) and

‘‘coarse’’ and baseline. The results showed that ‘‘fine’’ displayed

significantly larger dissimilarity between its activation patterns

and baseline than ‘‘coarse’’ did between its activation patterns

and baseline (Table S3), indicating that increased dissimilarity

is driven by ‘‘fine’’ trials. Conversely, for object identity, the least

accurate or failed trials (0–1 object remembered) showed higher

degrees of dissimilarity compared to baseline.

The allocentric MTL network is hierarchical with three
main modules
To assess connectivity between the MTL regions found to be

involved in environmental encoding, we performed a high-reli-

ability multivariate distance correlation analysis (Geerligs et al.,

2016) combined with state-of-the-art graph theory (Figure 3A)

(Jeub et al., 2018). The peak voxels from the RSA analyses of

environmental encoding, consisting of data from four separate

GLMs (Figure 2A), were used to select functional ROIs. The

ROIs are listed in Figure 3 and include subregions within the

PHC, perirhinal cortex, hippocampus, entorhinal cortex, amyg-

dala, and the fusiform gyrus, which is part of the ventral visual

stream. The multivariate distance correlation analysis showed

that all subregions were significantly connected with each other

during both the environmental exploration and the post-explora-

tion periods (Figure 3B). This means that the subregions showed

a similar change in activation pattern dissimilarity from one trial

to the next throughout the experiment (Basti et al., 2020; Geerligs

et al., 2016; Ritchey et al., 2014; Stokes et al., 2015) (see Method

details).

A multiresolution consensus clustering analysis based on

graph theory starts with all of the nodes belonging to the same

module, then searches for pairwise co-classifications of the no-

des and, where significant co-classifications exist, divides the

original module into sub-modules at ever more fine-grained

levels, until nomore significant sub-modules are found. This pro-

cess is based on the strength of the connections between the

nodes and enables detection of a hierarchy of nested modules
across levels (Jeub et al., 2018) (see Figure 4). This analysis re-

vealed that the nodes of the allocentric network formed a dy-

namic hierarchical connectivity structure with three (bilateral)

top-level (main) modules that changed from the environmental

exploration to the post-exploration period (Figure 4). This hierar-

chical structure appeared to be preserved at an individual level

(Figures S3C and S3D). All of the top-level modules supported

the encoding of object identity and pattern accuracy and/or

Euclidean map, except for a posterior-medial entorhinal and

PHC module in the post-exploration period, which supported

only pattern accuracy and Euclidean map. The entorhinal cortex

was in a module separate from the hippocampus and the para-

hippocampal cortex for the environmental exploration period

(magenta module in Figure 4), even though the entorhinal cortex

shares strong anatomical connections with both structures

(Burke et al., 2018; Ritchey et al., 2015). This is consistent with

brain connectivity being dynamic and optimized for the task at

hand (Bassett et al., 2011; Braun et al., 2015; Cole et al., 2014;

Saggar et al., 2018; Schedlbauer and Ekstrom, 2019; van den

Heuvel and Sporns, 2013) and, moreover, suggests that models

for allocentric representation based solely on structural (anatom-

ical) connections within the MTL are inadequate. Furthermore,

no singular subregion was part of all of the modules for the envi-

ronmental exploration period, but the fusiform cortex, hippo-

campus, PHC, and perirhinal cortex were part of two out of the

three main modules. In the post-exploration period, the PHC

was the only subregion that was part of all of the modules. All

in all, these observations indicate that the allocentric MTL

network is characterized by three main modules that change

with the task at hand and are not linked together by any singular

MTL region. Stability analyses using a leave-one-subject-out

approach revealed that the top-level partitions with one subject

missing consistently were identical to the top-level partition

when data from all of the subjects were used. Similarly, the

top-level partitions using a ‘‘leave-one-trial-out’’ approach

were identical to the top-level partition when using data from

all of the trials for the environmental exploration period, and high-

ly similar for the post-exploration period, with an average overlap

of 93% ± 11% (based on the adjusted Rand similarity coeffi-

cient), which confirms the validity of our connectivity analyses.

The allocentric MTL network contains several central
nodes with no connector hub
If a single brain structure, such as the hippocampus, sits atop

an allocentric processing hierarchy in the MTL, then we would

expect it to receive information from all of the other MTL struc-

tures and act as a connector hub. A connector hub has both a

higher degree of centrality (degree centrality and betweenness

centrality) and a higher degree of connectivity across modules

(participation coefficient) than other nodes, indicating that it

links nodes from different modules to each other (Rubinov

and Sporns, 2010; van den Heuvel and Sporns, 2013). We

tested this hypothesis by applying graph analysis (see Method

details) to the multivariate distance correlation matrix. We did

not find a singular brain structure (node) with a higher degree

centrality (i.e., a higher number of connections) or participation

coefficient (i.e., a larger number of connections across main

modules) than all of the other nodes in the network (Rubinov
Cell Reports 34, 108658, January 19, 2021 5



Figure 3. The allocentric MTL network

(A) A searchlight was defined for eachmedial temporal lobe (MTL) voxel that showed a local peak effect for pattern accuracy, environmental geometry, Euclidean

map, or object identity encoding. The searchlights were grouped together based on whether the peak voxel originated from the environmental exploration or the

post-exploration period, to establish separate MTL networks for environmental exploration and post-exploration. For each searchlight, the voxel-wise activation

was estimated for every environment using a univariate GLM, followed by a multivariate noise normalization of the (multivoxel) activation patterns. The activation

pattern dissimilarities between all of the environments were then calculated, resulting in one activation pattern dissimilarity matrix for each searchlight. Now,

functional connectivity could be estimated between the searchlights by computing the pairwise correlation (Kendall’s t) between the activation pattern

dissimilarity matrices. The functional connectivity thus reflects to what extent the MTL structures showed a similar change in activation pattern dissimilarity from

one environment to another throughout the experiment.

(B) Average correlation (Kendall’s t) across all of the subjects and between functional regions of interest, from the allocentric encoding analyses, for the envi-

ronmental exploration (left column) and post-exploration (right column). A 2-sided Wilcoxon signed rank test showed that there was significant correlation,

indicating functional connectivity, between all of the nodes in the allocentric MTL network, using a threshold corresponding to p < 0.05 (false discovery rate [FDR]

corrected).
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and Sporns, 2010) (Figure 5; Tables S5 and S6). For between-

ness centrality, we did find a larger number of shortest commu-

nication paths between other nodes passing through the tem-

poro-occipital fusiform cortex than the other nodes in the

MTL network (Rubinov and Sporns, 2010) (Tables S5 and S6);

however, there was no singular structure (node) consistently

demonstrating higher betweenness centrality, degree central-

ity, and participation coefficient than other nodes in the

network. These findings demonstrate that allocentric represen-

tation is not completely encoded in one specific MTL region,
6 Cell Reports 34, 108658, January 19, 2021
but rather is an emergent property of a network comprising a

set of core regions within the MTL. Consistent with this, asso-

ciations between behavioral performance and global graph

measures were significant between pattern accuracy and

global allocentric network efficiency (Figure 6; Table S7),

concordant with previous studies demonstrating a relationship

between task performance and global efficiency of task-related

brain networks (Bullmore and Sporns, 2012). Global efficiency

is defined as the average inverse shortest path length between

every pair of nodes in the network, and is a measure of the



Figure 4. The allocentric MTL network is hierarchical

Left: a multiresolution consensus clustering analysis of the functional connectivity data revealed a hierarchical allocentric MTL network with 3 (anterior-posterior)

top-level (main) modules (magenta, green, and brown) for the environmental exploration period (top row) and the post-exploration period (bottom row). The

anatomical locations are functional peaks from the different allocentric features and object identity encoding analyses (4 separate GLMs). The multiresolution

clustering analysis starts with the assumption that all of the nodes belong to the same module. It then divides this module into sub-modules at ever more fine-

grained levels, based on significant pairwise co-classification of the nodes, enabling detection of a hierarchy of nested modules across levels.

Right: the MTL nodes overlaid on an MNI template of the brain. All of the branches of the tree were significant, with a threshold of p < 0.05.

See also Figure S3.
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overall capacity of the network to transfer information in parallel

(Bullmore and Sporns, 2012).

DISCUSSION

Wedemonstrate here allocentric representation in distinct neural

populations in the human MTL of healthy young men, including

structures not predicted by existing models (Ekstrom et al.,

2014, 2017; Epstein et al., 2017), such as the fusiform gyrus
(ventral visual stream), amygdala, and perirhinal cortex. These

structures, together with the parahippocampal cortex, the hip-

pocampus, and the entorhinal cortex, comprise an extensive

MTL network for allocentric representation. Contrary to the clas-

sical models, we found no evidence that the hippocampus is a

main (connector) hub within the hierarchical allocentric MTL

network, suggesting that allocentric encoding originates from a

network of closely linked nodes, rather than an individual brain

region.
Cell Reports 34, 108658, January 19, 2021 7



Figure 5. The allocentric MTL network in-

cludes several central nodes

(A) The spheres represent nodes with a signifi-

cantly higher number of connections than the

other nodes (degree centrality) in the allocentric

MTL network (see also Tables S5 and S6). A lighter

node color indicates higher degree centrality.

(B) The level of connections across network mod-

ules (participation) for each node in the allocentric

MTL network (see also Tables S5 and S6 and Fig-

ureS3). A lighter color indicates higher participation

rate. Both degree centrality and participation were

estimated across subject-specific allocentric MTL

networks. Importantly, there was no significant

variation in temporal signal-to-noise ratios across

the MTL nodes in the environmental exploration

period, and there was no relationship between

temporal signal-to-noise ratio and degree centrality

or participation (Table S8). A FDR-corrected sig-

nificance level of p < 0.05 was used.
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The fusiform gyrus was the only structure in the allocentric

MTL network with an increased number of shortest communica-

tion paths passing through it, and the parahippocampal cortex

the only MTL structure with a node that showed both a high

degree of centrality and a high degree of connectivity across

modules. The fusiform gyrus and the parahippocampal cortex

are parts of the ventral visual stream (Rosenke et al., 2018) and

specific to primates (the fusiform gyrus exists only in hominoids)

(Ekstrom, 2015; Weiner and Zilles, 2016). Primates define where

they are based on what they see, using their advanced visual

system and spatial view cells that encode space within an allo-

centric framework (Rolls and Wirth, 2018), which is consistent

with the notion that the human ability to use small-scale maps

depends on a high-resolution visual system (Ekstrom, 2015).

Mammals with less evolved visual systems, such as rodents

(Kaas, 2005), define where they are based on where they are

located using for example their whiskers (Rolls and Wirth,

2018). In rodents, there is no parahippocampal cortex but in

the postrhinal cortex, a structure with similar connectivity to

the parahippocampal cortex (Burwell, 2001); a small proportion

of cells have coarse place fields that seem to support perceptual

rather than mnemonic functions (Burwell and Hafeman, 2003). In

primates, as cortical areas became larger over the course of
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evolution, and acquired more neurons,

processing likely transitioned from global

to local comparisons, i.e., neurons with

specific response properties were group-

ed with adjoining groups of functionally

related neurons, leading to modular com-

putations of input (Kaas, 2005). We spec-

ulate that the postrhinal cortex in rodents

evolved into specialized modules for

accurate allocentric representation in

modern primates. Thus, the evolutionary

expansion of primate temporal lobes,

together with the highly evolved primate

visual systems, may have provided the
ventral visual stream with a crucial role in allocentric representa-

tion in humans.

A recent study in rodents showed that post-training stimula-

tion of the pathway from the amygdala to the medial entorhinal

cortex enhanced the retention of spatial memories in a Barnes’s

maze, but did not affect foot shock learning (Wahlstrom et al.,

2018). This suggests that, although the amygdala is important

for emotional memory, including foot shock learning (LaBar

and Cabeza, 2006), theremay be at least one amygdala pathway

uniquely involved in spatial memory. In humans, an intracranial

electroencephalogram (EEG) study found place cells in the

amygdala that fire when the subject occupies specific spatial lo-

cations, but no ‘‘path cells,’’ cells that fire in response to a spe-

cific path chosen through an environment (Jacobs et al., 2010;

Miller et al., 2013). It should be noted that place cell firing does

not prove allocentric processing (Ekstrom et al., 2014); however,

in contrast to these previous studies, our findings clearly demon-

strate that in humans, the amygdala is involved in allocentric

representation of positional patterns.

A long-held view has been that allocentric representation

emerges within a hierarchical MTL network, in which different

components are processed separately and then added together

in the hippocampus to form a cognitive map (Banta Lavenex



Figure 6. Global efficiency in the allocentric

MTL network is related to encoded allocen-

tric accuracy

Left: mixed linear model analyses showed that

increased global efficiency of the allocentric

network is associated with more accurate en-

coding of the objects’ positional patterns (pattern

accuracy) across participants. Global efficiency is

a measure of the network’s overall capacity to

transfer information in parallel (Bullmore and

Sporns, 2012), while modularity was defined as

the number of top-level (main) modules in the al-

locentricMTL network. Right: the predicted values

(marginal effects) with 95% confidence intervals

for pattern accuracy (line plots) in the model, with

global efficiency as the dependent variable, while

controlling for network density. Density is the

number of connections present in the network

divided by the total possible number of connections. The dots represent raw data points. *p < 0.05 (FDR corrected); ‘‘na’’ indicates that the measure did not

explain individual variance in global efficiency or modularity.

See also Table S7 and Figure S3.
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et al., 2014; Ritchey et al., 2015). This view is based on the major

anatomical connections established in primates (Aggleton, 2012)

and resting-state fMRI studies in humans (Ritchey et al., 2015). It

proposes that the PHC and the posterior medial entorhinal cor-

tex form a positional information pathway, whereas the perirhinal

cortex and the anterior lateral entorhinal cortex form an object

identity information pathway. Both pathways lead to the hippo-

campus, which ‘‘may serve as sites of integration between the

two systems,’’ together with the ventromedial prefrontal cortex

(Ritchey et al., 2015). More recently, however, based on findings

in rats, it has been argued that mental representations of objects

and environmental positions are integrated in non-hippocampal

MTL regions, including the perirhinal and entorhinal cortices

(Connor and Knierim, 2017). Here, we show that in humans, ob-

jects and environmental positions are integrated in the perirhinal

cortex, the PHC, the fusiform cortex, and to some extent the en-

torhinal cortex. Moreover, the largest effects for Euclidean map

were not located in the hippocampus or the entorhinal cortex,

previously described as likely to be the primary brain regions

for ‘‘map-like spatial codes’’ in humans (Epstein et al., 2017),

but in the perirhinal cortex, PHC, fusiform cortex, and the amyg-

dala. The finding that core regions within the emotional and

visual networks of the brain are also core regions in the allocen-

tric network of the brain, together with the recent observation

that activation patterns in the visual cortices are the best predic-

tors of emotion category (Kragel et al., 2019), suggest that these

three cognitive systems are more closely intertwined than

previously believed.

Our network analyses demonstrated that the allocentric MTL

network consists of nodes with a high degree of interconnected-

ness, and that most main modules in the network support en-

coding of object position and allocentric representations. This

suggests that a successful allocentric representation emerges

from ‘‘non-additive computations shared across multiple inter-

acting brain regions’’ (Ekstrom et al., 2014, 2017; Huffman and

Ekstrom, 2019), rather than being the product of activation in a

single brain region. This is supported by selective hippocampal

lesions in monkeys resulting in no robust memory impairment
(Basile et al., 2020), as well as increased MTL connectivity for

recall of episodic memories in humans (Geib et al., 2017; King

et al., 2015; Schedlbauer et al., 2014; Westphal et al., 2017),

including successful versus unsuccessful episodic retrieval

(King et al., 2015; Schedlbauer et al., 2014). This stands in

contrast to the traditional view of a hierarchical MTL network,

with the hippocampus as the central node. Our findings show

that object identity and positional representations are present

in all main networkmodules except one, suggesting that allocen-

tric information and object identity are integrated in multiple MTL

structures, including but not limited to the hippocampus. More-

over, we found no connector hub in the allocentric MTL network.

Rather, successful allocentric recall was associated with a high

degree of global efficiency in the MTL network, supporting the

idea that allocentric representation is an emergent property of

the MTL network.

The anterior hippocampus was the only MTL structure that

was associated with environmental geometry. Previous studies

suggest that the posterior hippocampus is particularly important

for learning the location of an object’s position relative to a circu-

lar environmental boundary (Doeller et al., 2008), and that hippo-

campal place cells are attuned to the outer perimeter of the envi-

ronment (O’Keefe and Burgess, 1996). Our findings demonstrate

that one particular component of allocentric representation,

environmental geometry, appears to depend primarily on the

anterior hippocampus within the MTL network.

The posterior-medial entorhinal cortex was associated with

Euclidean map and pattern accuracy, and the anterior-lateral

entorhinal cortex with object identity and pattern accuracy.

Previous fMRI studies have found allocentric representation in

the posterior (medial) entorhinal cortex (Chadwick et al., 2015;

Shine et al., 2019) and anterior entorhinal cortex (Shine et al.,

2019). Only the anterior (lateral) entorhinal cortex has been

involved in the representation of allocentric landmark direction

(Shine et al., 2019) and localization based on landmarks (Chen

et al., 2019). This indicates that the posterior-medial entorhinal

cortex supports allocentric representation of positional patterns,

while the anterior-lateral entorhinal cortex supports the linkage
Cell Reports 34, 108658, January 19, 2021 9
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of landmarks to (scaled) allocentric representations (in humans).

This is consistent with findings in rodents showing multimodal

integration in the anterior-lateral but not the posterior-medial

entorhinal cortex (Doan et al., 2019). Moreover, we found that

object identity representation was located more anterior and

more lateral in the entorhinal cortex than any effect related to ac-

curate representation of allocentric patterns. This suggests that

representations becomemore landmark oriented, as well as less

accurate, along the posterior-anterior andmedial-lateral entorhi-

nal axes, with no clear boundary between the posterior-medial

and anterior-lateral entorhinal cortices.

It is well established that human spatial representation tends

to be scaled down or up; in other words, distances between ob-

ject landmarks may be compressed or expanded (Ekstrom et al.,

2014; Horecka et al., 2018; Tversky, 1992). Conversely, for a rep-

resentation to be Euclidean (representing actual world geome-

try), scaling must be absent or minimal. We report an average

expansion of the encoded distances between objects (pattern

accuracy) by a factor of �1.1, similar to what was observed for

a 2D spatial pattern (Horecka et al., 2018) and in accordance

with geometrically inconsistent representation in humans (War-

ren et al., 2017). We also report activation associated with

Euclidean representation (Euclidean maps) in separate, albeit

neighboring, neural populations throughout the MTL. Associa-

tions between accurate positional representation and brain acti-

vation in theMTL have been reported (Baumann et al., 2010; Kyle

et al., 2015), including a negative correlation between MTL acti-

vation and absolute metric error on a trial-by-trial basis (Bau-

mann et al., 2010), as well as a positive correlation between

MTL activation patterns associated with store-distance accu-

racy and classification accuracy in a virtual-city environment

(Kyle et al., 2015). It has been suggested that the brain scales

environmental information to construct an ‘‘environmental hier-

archy’’ of encoded information, presumed to be conducive to

efficient retrieval (Kim and Maguire, 2018; Tversky, 1992), but it

is unclear why the brain supports both Euclidean and scaled po-

sitional representations.

The environments used in the present study were medium

sized (50–90 virtual m2), but they had no internal structural bar-

riers and no connection to the outer world or other rooms, result-

ing in a relatively low level of complexity. We used environments

of limited complexity to achievemaximal experimental control so

as to enable the study of allocentric representation in isolation

from confounding factors typically associated with complex en-

vironments, such as target or path planning, route selection, de-

cision making, and brain activation associated with merging

local parts of a larger environment (Wolbers and Wiener, 2014).

Another important consideration was that the participants had

to be able to learn the environment in <30 s, which is within the

range of recommended block length for fMRI experiments

(Wager and Nichols, 2003). Nevertheless, the limited complexity

of these environments limits the generalizability of our findings to

larger and more complex environments.

Our findings demonstrate that the human brain encodes

scaled and true Euclidean representations in distinct but neigh-

boring neural populations in the MTL of young men, including

the fusiform cortex, the amygdala, and the perirhinal cortex.

These structures were not predicted by existing models and
10 Cell Reports 34, 108658, January 19, 2021
appear to be part of a network of extensively connected, hierar-

chically organized MTL regions.
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Grid-cell representations in mental simulation. eLife 5, e17089.

Bohbot, V.D., Kalina, M., Stepankova, K., Spackova, N., Petrides, M., and Na-

del, L. (1998). Spatial memory deficits in patients with lesions to the right hip-

pocampus and to the right parahippocampal cortex. Neuropsychologia 36,

1217–1238.
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Materials availability
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Data and code availability
Access to data by qualified investigators are subject to scientific and ethical review and must comply with the European

Union General Data Protection Regulations (GDPR), Norwegian laws and regulations, and NTNU regulations. Completion of

a material transfer agreement (MTA) signed by an institutional official will be required in order to access the data. Access

to the fMRI paradigm can be achieved through completion of a material transfer agreement (MTA) signed by an institutional

official.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Thirty-one men (18 - 27 years, mean 21 years) with no history of neurological disorders, head trauma, previous or current DSM-

IV axis I diagnosis of psychiatric illness, including substance abuse, were recruited. Moreover, we only recruited male subjects

in order to reduce variability in the data. They were all right handed, ascertained with the Edinburgh Handedness Inventory, with

mean score 88.4 ± 29.7%. All participants provided written informed consent prior to participation and received 1000 Norwe-

gian kroner as reimbursement. The study was approved by the Regional Committee for Medical Research Ethics in central

Norway.
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METHOD DETAILS

Image acquisition
Functional and anatomical MR images were acquired with a 32-channel Head Matrix Coil on a 3T Siemens Trio scanner, and on a 3T

Siemens Skyra scanner replacing the Trio for the last seven participants (Siemens AG, Erlangen, Germany) (see Ladstein et al., 2016).

Foam pads were used to minimize head motion. The fMRI stimuli were presented using a LCD monitor with 12803 1024 resolution,

and the subject moved inside the environment using a MRI compatible joystick (Current Designs, Philadelphia, US). The participants

were first allowed to familiarize themselves with the presentation equipment and joystick, and then completed practice trials from the

different experimental conditions. Scanning was commenced when complete task compliance was ensured.

T2* weighted, blood-oxygen-level-dependent (BOLD) sensitive images were acquired during the environmental encoding task, us-

ing a 2D echo-planar imaging pulse sequence and limited field of view (FOV) optimized to cover themedial temporal lobe with highest

possible spatial resolution. The slices were positioned as close to 90� on the anterior-posterior direction of the hippocampus as

possible. FOV = 220 mm x 220 mm, slice thickness = 1.9 mm (no gap), number of slices = 40, matrix = 116x116 yielding

1.9x1.9x1.9mm3 voxels (TR = 2110.8 ms, TE = 28 ms, flip angle = 90�). For the last seven participants, the 2D echo-planar imaging

parameters differed slightly (FOV = 220 mm x 220 mm, slice thickness = 2.0 mm (no gap), number of slices = 40, matrix = 116x116

yielding 1.9x1.9x2.0mm3 voxels, TR = 2253.2 ms, TE = 28 ms, flip angle = 90�). GRAPPA acceleration was used, with a factor of four.

Scanning parameters were optimized for reduction of susceptibility-induced signal loss in areas near the medial temporal lobe, and

there was no effect of an anterior-posterior distortion correction (Holland et al., 2010), so this step was dropped from the image pre-

processing. Each functional run contained 143 volumes, and for the last seven participants 134 volumes. For anatomical reference, a

T1 weighted (T1W) 3D volume was acquired using a MPRAGE sequence (TR = 2300 ms, TE = 2.94 ms, FOV = 256 mm x 256 mm x

192 mm, matrix 256x256x192 yielding a resolution of 1.0x1.0x1.0 mm3, flip angle = 8�).

fMRI paradigm
The participants were exposed to a total of 35 virtual environments during BOLD fMRI scanning. The fMRI paradigm was a block

design consisting of seven runs, with 5 blocks in each run, with one environment per block. Within each block, there were three

periods; environmental exploration (30 s), post-exploration (with fixation cross; 15 s), and an odd-even task (15 s) (Figure 1A).

Between runs, the participants were tested on recall of environmental information from each of the five blocks. The environments

were presented in a random sequence across participants, within and between runs.

Each environment was a room with a door and an outer perimeter (walls), which had one of 10 geometric shapes. All environments

were between 50 and 90 virtual m2 large and contained five unique, unrelated objects (Figures 1A and 1B). Within each environment,

the objects were positioned in a unique pattern (Figure 1B). In the environmental exploration period, the participants started out posi-

tioned at the door of the room (environment) andwere free to explore the environment froma first-person perspective (using a joystick

with moving speed set to two virtual m/s) (Figure 1A). Average movement across all participants and all environments was 26.4 ± 7.8

virtual meters. The participants were instructed to memorize the environment in the post-exploration period, while fixating on a cross

on the computer screen. During the odd-even task, the participants were instructed to push the right joystick button when an even

number (< 100) appeared on the screen and the left joystick button when an odd number (< 100) appeared (numbers presented at

random). The participants were explicitly instructed to focus on getting the odd-even judgments correct, and behavioral data were

analyzed to verify compliance. The purpose of the odd- even period was to function as an implicit baseline for fMRI data analysis.

The virtual environments were developed in collaboration with Terra Vision AS (Terra Vision, Trondheim, Norway) using the Torque

game engine (Garage Games, Eugene, Oregon, US).

Tests between the runs
Between runs, with no ongoing functional image acquisition, the participants were given three sets of tests (1-3) that assessed recall

of various spatial and non-spatial information from each of the five recently learned environments (Figures 1B and 1C). The partic-

ipants viewed the tests on the computer screen while lying in the scanner and responded by dragging and dropping objects using

the joystick. The tests were programmed usingHTML and JavaScript (Hansen et al., 2015). Data from the first two tests were not used

in the analyses presented in this paper. The first test (1) assessed recall of which objects had been presented together, i.e., in the

same environment. In the second test (2), the participants were asked to assign a given group of objects to the environment in which

they had been presented, based on the geometry of the perimeter of the environment. Finally (3), the participants performed the al-

locentric position test (Figure 1b), from which several allocentric measures were obtained (detailed below; see Figure 1C). For each

environment (block), the five objects belonging to that environment were presented next to a 2D overview of the environment (see

Figure 1B), and the participants were asked to drag and drop each object into its original location. Participants were instructed to

position each object as accurately as possible. Three allocentric measures were derived: Pattern accuracy, Environmental geometry,

and Euclidean map (Figure 1C); Object identity was also assessed (see explanation below).

Measures of post-exploration accuracy
Pattern accuracy indicates whether the participant accurately reproduced the positional pattern of the five objects presented in a

given block, regardless of the identity of the objects (Figure 1C). The participant response (drag-and-drop into the 2D overview)
Cell Reports 34, 108658, January 19, 2021 e2
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was translated so that the geometric center (centroid) of the recalled positional pattern matched the center of the correct positional

pattern (as originally presented during the environmental exploration period). Then the recalled positional pattern was rotated into

alignment with the correct positional pattern, minimizing the root mean square deviation between the patterns (Kabsch, 1976).

Next, the recalled positional pattern was scaled (up or down) minimizing the root mean square deviation between the patterns

(Umeyama, 1991). The purpose of the first two transformations (translation, rotation) was to disentangle the positional pattern as

such from its relation to the environment’s perimeter (walls of the room). The purpose of scaling was to account for the fact that hu-

man spatial representations are sometimes compressed or expanded (Tversky, 1992). After these transformations, Pattern accuracy

was obtained as the inverse of the total sumof squares error after all transformations had been performed. That is, for each position in

the transformed positional pattern, the squared error was obtained with respect to the closest position in the correct positional

pattern, and all such squared errors were summed to obtain a total sum of squares error. Pattern accuracy was classified as fine,

medium, coarse, or ‘‘failed.’’ The thresholds between coarse, medium, and finewere defined such that, across participants, the num-

ber of trials in each category was identical (after chance level was determined; see below). Responses were categorized as ‘‘failed’’ if

the level of accuracy did not exceed chance level (see below).

Environmental geometry indicates how accurately the recalled positional pattern was located relative to the perimeter of the envi-

ronment (Figure 1C). It was defined as the difference between Pattern accuracy and the inverse of the total sums of squares for the

recalled positional pattern before translation, rotation, and scaling. Thus, high Environmental geometry implies a low degree of rota-

tion, translation, and scaling relative to the perimeter of the environment. Responses were classified as fine, medium, coarse, or

‘‘failed,’’ as described above.

The third allocentric measure obtained from the allocentric position test was Euclidean map, defined as a response obtaining high

scores on both Pattern accuracy and Environmental geometry (Figure 1C). A high Euclidean map score means the participant

correctly recalled the positional pattern as such, i.e., the angles and relative distances between the objects, as well as accurately

recalling the positioning of this pattern relative to the perimeter of the environment.

Finally, Object identity indicates how accurately the participant recalled which object was placed where within the positional

pattern (Figure 1C) (requiring at least a ‘‘coarse’’ level of Pattern accuracy; if Pattern accuracy was ‘‘failed,’’ Object identity was

not calculated). Participant responses were classified into three categories according to number of objects correctly remembered:

0-1, 2, 3-5 (see below).

Post-experiment questionnaire
After MRI scanning, the participants were given a questionnaire designed to find out which strategies the participants had employed

in order to successfully encode environmental features. The questionnaire had a nine-point scale, ranging from ‘‘strongly agree’’ (9) to

‘‘strongly disagree’’ (1). The participants indicated to what extent they agreed with the following statements: (a) ‘‘I knew the positions

of the objects from a first person perspective after the environmental exploration period’’; (b) ‘‘I knew the relative positions of the ob-

jects from a 3rd person perspective after the environmental exploration period’’; (c) ‘‘I associated the objects together into a coherent

representation during the environmental exploration period’’; (d) ‘‘In the post-exploration period, I imagined the environment from a

first person perspective’’; (e) ‘‘In the post-exploration period, I imagined the environment from a bird’s eye view’’; and (f) ‘‘In the post-

exploration period, I envisioned the environment as a whole.’’ The post-experiment questionnaire revealed that the participants

visualized the environments from both a first-person perspective (on a scale from 1 to 9, the average score was 7.3 ± 1.7 for the

environmental exploration period and 6.8 ± 2.5 for the post-exploration period) and a third-person perspective (environmental

exploration period: 6.8 ± 2.3; post-exploration period: 5.0 ± 3.1) (Evensmoen et al., 2015).

fMRI preprocessing
Preprocessing of the fMRI data was performed using FMRIPREP (Esteban et al., 2019) (https://fmriprep.readthedocs.io/en/stable/

index.html), a Nipype based tool (https://nipype.readthedocs.io/en/latest/). Each T1-weighted volume was corrected for intensity

non-uniformity using N4BiasFieldCorrection v2.1.0 and skull-stripped using antsBrainExtraction.sh v2.1.0 (using the OASIS template)

(ANTs v2.1.0, http://stnava.github.io/ANTs/). Brain surfaces were reconstructed using recon-all from FreeSurfer v6.0.0 (https://surfer.

nmr.mgh.harvard.edu/fswiki), and the brain mask estimated previously was refined with a custom variation of themethod to reconcile

ANTs-derived and FreeSurfer-derived segmentations of the cortical gray-matter of Mindboggle (https://mindboggle.info/). Spatial

normalization to the ICBM 152 Nonlinear Asymmetrical template version 2009c (http://www.bic.mni.mcgill.ca/ServicesAtlases/

ICBM152NLin2009) was performed through nonlinear registration with the antsRegistration tool of ANTs, using brain-extracted ver-

sions of both T1-weighted volume and template. Brain tissue segmentation of cerebrospinal fluid, white-matter, and gray-matter was

performed on the brain-extracted T1-weighted image using fast (FSL v5.0.9). Functional data were motion corrected using mcflirt

(FSL). This was followed by co-registration to the corresponding T1-weighted image using boundary-based registration with 9 de-

grees of freedom, using bbregister (FreeSurfer v6.0.0). Motion correcting transformations, BOLD-to-T1w transformation and T1w-

to-template (MNI) warp were concatenated and applied in a single step using antsApplyTransforms with Lanczos interpolation.

Regions of interest
AnMTLmask was used in all fMRI analyses. This mask included all subregions within the MTL bilaterally (Frankó et al., 2014), as well

as MTL white matter. To make sure that the parahippocampal place area was covered, the lingual gyrus and the fusiform gyrus were
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also included (Epstein, 2008). The entorhinal and perirhinal cortices were divided into an anterior subregion and a posterior subregion

based on finding the central MNI-coordinate along the anterior-posterior axis, and similarly into a lateral subregion and a medial

subregion based on finding the central MNI-coordinates along the lateral/medial axis for each MRI slice.

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral data analysis
The purpose of including a category of ‘‘failed’’ responses was to be able to identify trials where it was unlikely that allocentric encod-

ing had taken place, such that including these trials would introduce noise into the analyses. ‘‘Failed’’ was defined as ‘‘accuracy

(Pattern, Environmental geometry, Euclidean map, or Object identity) at or below chance level.’’ Chance level was estimated by

comparing the distribution of scores when a recalled positional pattern was compared to the correct positional pattern, with the dis-

tribution of scores when the response was compared to the correct positional patterns from an extended set of 120 environments

(excluding the correct one) (Figure S1A). The optimal cut-off value between these two distributions was estimated using R 3.3.3

(R Development Core Team, 2016) and the pROC package (Robin et al., 2011). We constructed a receiver operating characteristics

(ROC) curve by plotting true positive fraction (sensitivity) versus true negative fraction (specificity) for different thresholds (or cut-off

values) between the two distributions (Figure S1B). The optimal threshold between the two distributions was estimated byminimizing

the misclassification fractions, using the best method argument in the pROC package. For Pattern accuracy and Environmental

geometry, the thresholds between fine, medium, and coarse trials were defined so that the average number of trials in each category

was identical, using three significant digits, across participants. For Pattern accuracy, the thresholds were 3919 and 9335, and for

Environmental geometry 6290 and 14775. For Euclidean map, the average number of trials was 5.6 ± 4.5 for fine, 10.6 ± 4.0 for

medium, and 14.0 ± 4.0 for coarse. Finally, the two-sidedWilcoxon signed rank test was used to assess whether the average Pattern

accuracy score was higher for fine Euclidean map than fine Pattern accuracy and whether the average Environmental boundary

accuracy score was higher for fine Euclidean map than fine Environmental boundary. A significance level of alpha = 0.05 was

used corrected for multiple comparisons using a 5% false discovery rate (FDR).

When measuring accurate recall of Object identity, only trials where Pattern accuracy was above chance level were included. The

object position score was divided into correct recall of the positions of three or more objects (3-5 obj) (avg. no. of environments: 2.8 ±

1.7), two objects (2 obj) (avg. no. of environments: 10.1 ± 4.1), and one or no object (0-1 obj) (avg. no. of environments: 18.6 ± 2.5).

Activation pattern similarity analyses
The fMRI data were first subjected to a univariate (single-subject) analysis in SPM 12 (Penny et al., 2011). Brain activity was modeled

using a general linear model (GLM) with the default options. Three models were used to investigate associations between accuracy

measurements and activation pattern dissimilarity. The first model was used to investigate Pattern accuracy, the second Environ-

mental geometry and Euclidean map, and the third, object identity. In the first model, the independent variables were, in addition

to intercept, Pattern accuracy (with four levels: fine, medium, coarse, and failed) for the environmental exploration period and for

the post-exploration period, resulting in a total of 9 regressors (see Figure S2A). The odd-even condition served as implicit baseline.

In the secondmodel, only regressors for trials with at least a ‘‘coarse’’ score on Pattern accuracy were included. Therefore, two extra

covariates were added, one representing failed Pattern accuracy for the exploration period and one for the post-exploration period;

hence, the total number of regressors for Environmental geometry and Euclidean map was 11. In the third model, the levels of ac-

curacy for Object identity were 0-1 (coarse), 2 (medium), and 3-5 (fine); here there was no ‘‘failed’’ condition, and only regressors

for trials with at least ‘‘coarse’’ on Pattern accuracy were included), resulting in a total of 9 regressors for Object identity. These

models allow the BOLD response in a given voxel to be non-linearly modulated by level of accuracy. One participant was excluded

from the Pattern accuracy analysis, four from the Euclidean map analysis, and three from the Object identity analysis, due to lack of

trials in one level of encoding.

In order to test for associations between encoding accuracy and changes in MTL activation patterns, we used amultivariate repre-

sentational similarity analysis (RSA) (Nili et al., 2014), implemented in MATLAB (R2018a, Mathworks, Natick, Massachusetts, U.S.A.).

The multivariate analysis was restricted to the MTL mask described above. A spherical ‘‘searchlight’’ was obtained for each voxel

using amaximum radius of 10mm to create searchlights consisting of 30 voxels (each 2mm3). This resulted in an average searchlight

radius of 4 mm, previously shown to be optimal for detection performance (Kriegeskorte et al., 2006). Non-spherical searchlights

were allowed for voxels close to the borders of the MTL to make sure that each searchlight contained the same number of voxels.

The searchlights were investigated separately and independently of each other. For each searchlight, three activation maps were

generated, containing the betas from the univariate GLM analysis for ‘‘fine,’’ ‘‘medium,’’ or ‘‘coarse’’(0-1, 2, 3-5 for Object identity)

with odd-even as an implicit baseline (see Figure S2A). A multivariate noise normalization was then applied to these activation maps,

by first extracting the GLM residual for each voxel, then using those residuals to create a covariance matrix between all voxels, and

finally using that covariance matrix to perform a spatial pre-whitening of the regression coefficients (Walther et al., 2016). The next

step was to generate pairwise activation pattern dissimilarity maps for fine versus medium, fine versus coarse, and medium versus

coarse, using an Euclidean distancemeasure (equivalent to computing theMahalanobis distance between activity patterns) (Walther

et al., 2016). Subsequently, in order to assesswhether the activation pattern dissimilarity was consistently modulated across all levels

of accuracy, the dissimilarity mapswere correlated with amodel representing an increasing order of dissimilarity from coarse through
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medium to fine (Figures 2A and S2A). Thus, for the central voxel of the searchlight region a correlation score was obtained that ex-

pressed the degree to which the similarity of activation patterns centered around that voxel were consistently modulated by accuracy

(coarse-medium-fine). Kendall’s tA was used to assess whether the observed activation pattern dissimilarities could be predicted by

the accuracymodel, because it also allowsmonotonic (not strictly linear) relationships (Nili et al., 2014). Smoothing was performed on

the single-subject level after estimation of the activation pattern dissimilarities, so as not to reduce the ‘‘spatial fine structure of the

data’’ (Kriegeskorte et al., 2006), and the resulting correlation maps were smoothed with a Gaussian kernel of 4 mm. To test whether

the correlation effects were significantly different from zero at group level, the smoothed correlation maps were tested non-paramet-

rically with one-sample permutation based t tests using the program Randomise (Winkler et al., 2014), part of the FSL software pack-

age. In addition, to test if there was a relationship between the correlation effects andmean individual success rate, we ran the group

level model with the average success rate across subjects as a covariate. Inference used cluster mass statistics (Bullmore et al.,

1999; Nichols and Hayasaka, 2003), with a cluster forming threshold set at p = 0.0005. The cluster mass threshold takes into account

both the size of the clusters and the activation effect of the voxels within the cluster (Bullmore et al., 1999). Clusters were considered

significant at p = 0.05, corrected for multiple testing using the non-parametric distribution of the maximum statistic. For visualization

purposes, the data were resampled to 1mm3 resolution.

The analysis procedure described in the previous paragraph evaluates whether activation pattern dissimilarity is consistently

modulated by increasing level of accuracy. However, it does not determine whether activation pattern dissimilarity is driven by

the most accurate (‘‘fine’’) or the least accurate (‘‘coarse’’) trials. In order to determine that, we obtained activation pattern dissim-

ilarity estimates for fine versus baseline (last five seconds of odd-even) and for coarse versus baseline. In this analysis, the first

approximately 10 s of the odd-even period functioned as implicit baseline, and the last 5 s of odd-even were added as a covariate

for the purpose of comparison with ‘‘fine’’ and ‘‘coarse.’’ First, as before, brain activity was modeled on the single-subject level in

SPM 12, using a GLM with similar models as in the initial analyses, with the exception that the odd-even period now was split, as

described above. Second, the data were taken into the RSA toolbox, and activation pattern dissimilarities were estimated for search-

lights centered on voxels that showed a peak effect for encoding of allocentric accuracy or object id. Third, to get an overall estimate

of whether activation pattern dissimilarity within the medial temporal lobe was driven by ‘‘fine’’ or ‘‘coarse’’ trials, we used mixed

linear models with maximum likelihood estimates. The data were analyzed in R, using the mixed linear model package lme4 (Bates

et al., 2015). The R package sjPlot was used for visualization. In these analyses, activation pattern dissimilarity was employed as the

dependent variable, and independent variables were selected on the basis of whether their inclusion improved the second-order AIC

(Akaike information criteria) value of the model (https://cran.r-project.org/web/packages/AICcmodavg/index.html). In addition, ab-

solute measures of goodness-of-fit were evaluated to determine whether the included variables indeed were informative. First, we

tested for random intercepts across participants. The fixed effects independent variables tested for inclusion in the model were en-

coding accuracy (accurate and least accurate), time (environmental exploration and post-exploration), and allocentric measure

(Pattern accuracy, Environmental geometry, and Euclidean map). A similar analysis was then conducted for Object identity, using

correct recall of the positions of three or more objects (3-5 obj) instead of ‘‘fine’’ and correct recall of one object or none (0-1 obj)

instead of ‘‘coarse.’’

To confirm the validity of our RSA results we ran a leave-one-subject out crossvalidated nearest neighbor classifiers procedure in

MATLAB, with the predicted dissimilarities in the model RDM (see Figure 2A) as classes. First, we extracted normalized activation

pattern dissimilarity matrices for each peak voxel ROI from the Euclidean map, Pattern accuracy, Environmental geometry, and Ob-

ject position RSA analysis. Second, a five-nearest neighbor classifier (with Euclidean distance as distance metric) was trained on the

dissimilarity matrices for each of the functional ROIs and n-1 subjects, and then the classifier was tested on the left out subject. Third,

chance level for the classification was estimated by shuffling a vector with the classes used in classification and comparing that

against a vector with the correct classes 5000 times and estimating the average across all 5000 permutations. Finally, the two-sided

Wilcoxon signed rank test was used to assess whether the classification accuracies were above chance level. A significance level of

alpha = 0.05 was used, corrected for multiple comparisons using a 5% false discovery rate (FDR). The peak voxel ROIs used con-

sisted of the peak voxel as well as neighboring voxels, resulting in seven voxels in total (to allow for some individual anatomical

variation).

Representational connectivity
We assessed functional connectivity between the MTL structures that were involved in environmental encoding (see Figure 3). This

connectivity analysis was limited to searchlights centered on voxels that showed a local peak effect for allocentric or object encoding

(see above) (Figure 3A). These searchlights originated from four separate GLMs, i.e., Pattern accuracy, Environmental geometry,

Euclidean map, and Object identity, thus avoiding the introduction of unwanted dependencies among the tests. Functional connec-

tivity was defined as the extent to which these searchlights showed a similar change in activation pattern dissimilarity from one envi-

ronment to another throughout the experiment, as assessed by a multivariate distance correlation (Basti et al., 2020; Geerligs et al.,

2016; Ritchey et al., 2014; Stokes et al., 2015). First, the activity was modeled on a single-subject level in SPM 12, using a univariate

GLMwith, in addition to the intercept, one independent variable for each exploration and post-exploration period (see Figure 3A). This

resulted in a total of 71 regressors. The Odd-even period was used as an implicit baseline in the univariate GLM. The data were then

taken into the RSA toolbox, and an activation pattern dissimilarity matrix (RDM) was estimated for each searchlight. For the search-

lights that showed peak effect for allocentric or object encoding during environmental exploration, the RDMwas limited to activation
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pattern dissimilarities between environmental exploration periods. Similarly, for searchlights that showed peak effect related to allo-

centric or object encoding during the post-exploration period, the RDMwas limited to activation pattern dissimilarities between post-

exploration periods. For each subject, pairwise correlation analyses (Kendall’s tA) between the searchlight-specific RDMs (Nili et al.,

2014) produced one correlation matrix for the environmental exploration periods and one for the post-exploration periods. A higher

Kendall’s tA was interpreted as indicating stronger functional connectivity. The two-sided Wilcoxon signed rank test was performed

on a group level, allowing for assessment of whether the connectivity (Kendall’s tA) between pairs of searchlights or nodes was sig-

nificant. A significance level of alpha = 0.05 was used, corrected for multiple comparisons using a 5% false discovery rate (FDR).

Graph analysis
Graph analyses of the allocentric network were performed separately for the environmental exploration and the post-exploration

period, consisting of (1) a multiresolution consensus clustering analysis to evaluate hierarchical connectivity (Jeub et al., 2018), (2)

evaluation of the centrality of individual nodes within the network by using graph measures from the Brain Connectivity toolbox (Ru-

binov and Sporns, 2010) (https://sites.google.com/site/bctnet/), and (3) analysis of the relationship between average behavioral per-

formance and global graphmeasures from theBrain Connectivity toolbox. The average network across all the participants was inves-

tigated. In addition, the participants’ individual networks were analyzed to explore individual differences in connectivity. Negative

edge weights were set to zero.

First, a multiresolution consensus clustering analysis (Jeub et al., 2018) was used to evaluate the level of hierarchical organization

within the allocentric MTL network. We applied an event sampling procedure to estimate themodular partitioning of the network for a

set of 10000 samples (see below) that covered all scales present in the network approximately equally. Modularity for each sample

was evaluated using the iterated GenLouvain algorithm, resulting in a set of multiresolution partitions. The complete set of multire-

solution partitions was then tested for hierarchical clustering using a divisive consensus clustering algorithm. The hierarchical

consensus clustering algorithm started with the partition where all nodes were part of one module, and then divided all modules

based on significant pairwise co-classification of nodes until no module could be further subdivided. This resulted in a tree of nested

partitions, with a set of levels that each represented a unique partition. A test level of alpha < 0.05 was used for all branches in the tree

(see below). The sample size and the p value threshold in the multiresolution clustering analysis were selected by evaluating which

combination of p value threshold (0.05, 0.01,0.001, or 0.0001) and partition size in the initial ensemble (1000, 10000, 100000, or

1000000) that gave the highest average Z-score of the rand-coefficient, when comparing the finest-level partition for each combina-

tion of p value threshold and partition size with the finest-level partition for all other combinations of p value thresholds and number of

partitions. Further, we extracted the number of modules in the top-level partition of the tree. Finally, to compare the top-level partition

for each individual with the top-level partition estimated at a group level we used the adjusted Rand similarity coefficient and the

Z-score of the Rand coefficient if the adjusted Rand similarity coefficient was relatively small (positive Z-scores imply that the

partitions are similar) (Traud et al., 2011).

We also included ‘‘leave-one subject out’’ and ‘‘leave-one trial out’’ cluster stability analyses. The ‘‘leave-one subject out’’ analysis

involved removing the data from one subject before running the multiresolution consensus clustering analysis, and then comparing

the top-level partition from this analysis with the top-level partition from all the subjects (similar to the cluster stability analysis imple-

mented in the R package clValid (Brock et al., 2008) (https://cran.r-project.org/web/packages/clValid/index.html)). The measure

used for this comparison was the adjusted Rand similarity coefficient, and the Z-score of the Rand coefficient in cases where

the adjusted Rand similarity coefficient was relatively small (Traud et al., 2011). The ‘‘leave-one trial out’’ was identical to the

‘‘leave-one subject out’’ except that individual trials were left out of the analysis instead of subjects.

Second, a set of measures that described the centrality of the nodes in the allocentric network and the overall global efficiency of

the allocentric network were estimated using the Brain Connectivity toolbox (Rubinov and Sporns, 2010) in MATLAB. For the individ-

ual nodes within the network from each subject, degree centrality, betweenness centrality, eigenvector centrality, participation,

within-module degree z-score, strength, and clustering were estimated. The scores for these individual node measures were then

standardized within the subject-specific allocentric MTL networks:

zi =
xi � m

s
; 1%i%N

using the mean m and the standard deviation s across all nodes. Finally, for each node in the allocentric MTL network a two-sided

Wilcoxon signed rank test was performed on the group level for each of the centrality measures, to assess whether any of the nodes

showed a higher level of centrality than the other nodes. A significance threshold of p = 0.05 was used, corrected for multiple com-

parisons using a 5% False Discovery Rate (FDR). The brain networks were visualized using the BrainNet Viewer (Xia et al., 2013). For

the network as a whole, global efficiency was estimated (see (Bullmore and Sporns, 2012; Rubinov and Sporns, 2010) for details and

interpretations of these measures).

Third, we explored the relationships between average behavioral performance (Pattern accuracy, Environmental geometry,

Euclidean map, Object identity) and global graph measures from the participants’ individual networks (global efficiency and number

of top-level modules in the allocentric network). The global graph measures were used as dependent variables in separate mixed

linear models implemented in R, as described above. The independent variables were selected on the basis of whether their inclusion

improved the second-order AIC value in each case. First, we tested for random intercepts across participants. The fixed effects
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independent variables tested for inclusion were all spatial measures in separate models (Pattern accuracy, Environmental geometry,

Euclidean map, and Object identity), time (environmental exploration and post-exploration), interaction effects (‘‘spatial measure’’

* time), while the global graph measure density was included as a nuisance variable (see Table S7). Once the best model was

selected, the relationship between behavioral performance and global graph measure was tested for statistical significance. A sig-

nificance threshold of p = 0.05 was used, and the analyses were FDR corrected for the total number of explanatory variables, across

all models, (Table S7), with a 5% expected false positive rate.

Temporal signal-to-noise ratio
Finally, we evaluated the temporal SNR (signal-to-noise ratio) (mean signal over time divided by the temporal standard deviation) for

the searchlights that showed a peak effect (for the Euclidean map, Pattern accuracy, Environmental geometry, or Object position

RSA analysis) using FSL. First, to evaluate if the temporal SNR differed across the searchlights, the different searchlights were

used as a dependent variable and temporal SNR as an independent variable in mixed linear models implemented in R, as described

above. Second, to evaluate if variability in SNR across the searchlights could explain the variability in the main graph measures used,

degree centrality and participation were used as dependent variables and temporal SNR as an independent variable in mixed linear

models. The Environmental exploration period and Post-exploration period were analyzed separately. The significance threshold

was corrected for the total number of explanatory variables, across all models, using a 5% False Discovery Rate (FDR).
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