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A B S T R A C T   

Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephos-
phorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. 
Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple 
myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, 
anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, 
we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma 
context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered 
questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.   

1. Introduction 

The roles of protein tyrosine kinases (PTKs) in oncogenic processes 
have been extensively investigated during the last decades. Interest-
ingly, their counterparts, the protein tyrosine phosphatases (PTPs), have 
largely been neglected for a long time. This might be due to the false 
notion that PTPs were enzymes whose function was only to counteract 
PTKs in a linear manner from receptor to target genes. However, it is 
now known that phosphorylation/dephosphorylation networks are 
tightly regulated through a complex combination of negative and posi-
tive feedback loops, and both PTPs and PTKs are equally important in 
regulating these processes [1]. In addition, PTPs have long been regar-
ded as “undruggable” due to their highly conserved structure and their 
preference for recognizing negatively charged molecules. However, 
during the last years it has been clarified that these enzymes can be 
considered feasible drug targets by demonstrating the reactivation of 
tumor suppressor phosphatases or inhibition of oncogenic phosphatases 
[2]. Allosteric activation or inhibition of the catalytic domain or regu-
latory domains are promising possibilities to modulate PTP activity. For 
instance, many receptor-like PTPs are inactivated by dimerization. 
Therefore, inhibitors that target the extracellular domains of these 
phosphatases and induce their dimerization could be used to block 

downstream signaling [3]. 
Multiple myeloma (MM) is a cancer of plasma cells (PCs), which is 

characterized by the production of monoclonal immunoglobulin, ane-
mia, and the destruction of bone. Introduction of proteasome inhibitors, 
immuno-modulators (IMiDs), and monoclonal antibodies against cluster 
of differentiation (CD)38 (a glycoprotein on the surface of myeloma 
cells) have resulted in significant improvements in survival for patients 
with MM. Despite these advances in treatment in recent years, MM is 
still considered a fatal disease. A specific trait of MM is its particular 
location to the bone marrow (BM) and the cells’ dependency on signals 
from this environment such as cytokines. External signals activate 
crucial intracellular oncogenic signaling pathways such as mitogen- 
activated protein kinase (MAPK)/extracellular signal-regulated kinase 
(ERK), Janus kinase (JAK)/signal transducer and activator of tran-
scription (STAT) and SRC [4,5]. A deeper understanding of mechanisms 
involved in perturbation of these signaling pathways could help to 
improve therapy outcome. Even though expression of many tyrosine 
phosphatases is shown to be dysregulated in various cancers, their role is 
not well studied in MM. A literature search on MM and kinases and 
phosphatases in Pubmed demonstrated a large discrepancy between the 
two enzyme classes. For this, we used the terms “MM” and “phosphatase 
or kinase” as keywords with no restriction on the year of publication. 
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While 2609 studies analyzed the role of kinases in MM, only 670 studies 
could be found on the role of phosphatases in MM. 

PTPs can be divided into three separate superfamilies depending on 
recent structure-sequence-based phosphatase classification: Class I (105 
genes), II (1 gene) and III (3 genes) [6,7]. The phosphatases discussed in 
this review belong to class I, with the exception of cell division cycle 
(CDC)25A, -B and -C, which constitute class III. A literature search of the 
109 known PTPs (by gene or protein name) and MM revealed that only 
19 (17.4%) of them have been investigated in MM, and few of them in 
detail. In this review, we highlight the PTPs that have been previously 
described in MM or have a role that can be relevant in a myeloma 
context. In addition, we show the expression level of these PTPs and 
investigate their clinical significance in MM patients. The aim of this 
review is to emphasize that despite the importance of PTPs in MM 
pathogenesis, their role has not been well investigated. 

2. Protein tyrosine phosphatases in multiple myeloma 

2.1. CD45 phosphatase 

CD45 (encoded by the gene PTPRC) is a receptor PTP that was 
originally known as leukocyte common antigen since its presence dis-
tinguishes leukocytes from erythrocytes and non-hematopoietic cells 
[8]. CD45 plays a critical role in regulating antigen receptor signaling, 
which is essential for lymphocyte development, survival, and function 
[9]. CD45 contains a single transmembrane domain. Its cytoplasmic 
portion consists of tandem PTPase domains and a C-terminal tail and 
utilizes the same chemical mechanism for catalysis of substrate as other 
PTPs [10]. Progression of MM is associated with a decline in CD45 on 
the MM cells, as in normal plasma cell differentiation [11,12]. 

Clinical significance [13,14] of CD45 subsets in MM is a matter of 
debate. However, analysis of RNA seq data on purified MM cells from 
767 diagnostic patient samples in the online database MM research 
foundation (MMRF) CoMMpass IA13 (https://research.themmrf.org/) 
supports studies showing that patients with lower CD45 expression have 
longer overall and progression-free survival (Fig. 1A). There is also an 
inconsistency in the description of the proliferative capability of MM 
cells expressing CD45 [15–19]. One of the models reported is that MM 
has various stages of progression. Immature CD45+ PCs predominate at 
the initial stage of progression. Immature CD45+ MM cells have high 
capacity of homing in co-culture with bone marrow stromal cells 
(BMSC) due to high levels of homing receptors and proteases [20,21]. In 
addition, these immature MM cells are the subpopulation that can grow 
in response to interleukin (IL)-6, the most important growth factor for 
myeloma cells [22]. Upon IL-6 stimulation, STAT3 and MAPK are acti-
vated in both CD45+ and CD45– cells [23,24]. However, IL-6-induced 
proliferation of myeloma cells is not dependent only on activation of 
these molecules but requires also activation of LCK/YES1 novel tyrosine 
kinase (LYN) (a member of the SRC family of PTKs) associated with 
CD45 [12,23,24]. Moreover, IL-6 causes elevation of myeloid cell leu-
kemia (MCL)1, an anti-apoptotic protein, in CD45+ U266 cells but not in 
CD45– U266 cells [22]. These features of CD45+ MM cells allow them to 
be the predominant BM homing clone in MM [25]. 

Even though CD45 expression is an advantage for MM cells when 
responding to IL-6, it also results in apoptosis of CD45+ myeloma cells 
dependent upon circumstantial stimuli. In a study of MM cell lines, it 
was indicated that the CD45+ population activated LYN in response to 
cell stress. In this context, active LYN leads to activation of phospholi-
pase C gamma (PLCG), followed by high Ca2+ influx and induction of 
apoptosis [26–29]. This finding supports the notion that CD45+

Fig. 1. The phosphatase CD45 (PTPRC) in MM. A) Kaplan-Meier curves showing overall and progression-free survival in MM patients dichotomized in two equal 
groups with high and low CD45 expression, derived from MMRF CoMMpass IA13. The survival curves were compared with the log-rank test. The statistical analysis 
was performed in Graphpad Prism (version 5.03). 
B) Model showing decline in CD45 during the progression of MM. 
C) Schematic figure showing how and why elotuzumab activates natural killer (NK) cells but has no inhibitory effect on multiple myeloma (MM) despite of the lack of 
Ewing’s sarcoma-associated transcript (EAT)-2. Figures B and C were created with BioRender. 
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immature myeloma cells are growing but are mortal, depending on the 
environment, whereas CD45– cells are resting but relatively resistant to 
apoptosis [22]. Moreover, even though IL-6 is a growth factor only for 
CD45+ human MM cell lines (HMCLs), other growth factors such as 
insulin-like growth factor 1 (IGF1), fibroblast growth factor (FGF), he-
patocyte growth factor (HGF) and epidermal growth factor (EGF) are 
growth promoting only for CD45– HMCLs [30]. It should be noted that 
the amount of IL-6 is limited in the BM of MM patients [22]. Therefore, 
relatively low levels of IL-6 in the BM promote CD45+ cell apoptosis 
under physiological conditions or lead to their differentiation into CD45 
– MM cells [22,25]. Consequently, at the end, the balance between the 
CD45+ and CD45– compartments is inverted in MM ([16,28] and 
Fig. 1B). 

Interestingly, expression of CD45 influences how MM cells respond 
to various drugs, which can be beneficial for the choice of treatment. For 
instance, CD45 negatively regulates the phosphoinositide 3-kinase 
(PI3K) pathway [28,31]. Therefore, CD45– MM cells are more respon-
sive to inhibitors that target this pathway [28,32,33]. Contrary to CD45– 

MM cell subpopulations with an active PI3K pathway, CD45+ sub-
populations have an active JAK/STAT pathway and are more sensitive to 
JAK inhibitors than CD45– cells [34]. 

The expression of CD45 in myeloma cells also affects to what extent 
the cells are responsive to signaling lymphocytic activation molecule 
(SLAMF)7 antibodies. SLAM family receptors are hematopoietic-cell- 
specific receptors playing critical roles in immune regulation. High 
expression of SLAMF7 in MM led to the introduction of a monoclonal 
antibody against SLAM7, elotuzumab, as treatment for MM. In natural 
killer (NK) cells, SLAMF7 is usually a positive regulator of NK cell 
activation. Elotuzumab binding to SLAM7 on the surface of NK cells 
recruits the adaptor protein Ewing’s sarcoma-associated transcript 2 
(EAT-2). EAT-2 signaling leads to NK cell activation and enhances 
cytotoxicity toward the tumor cell. Therefore, EAT-2 is required for 
SLAMF7 to activate NK cells. In the absence of EAT-2, SLAMF7 mediates 
inhibitory effects. Many MM cells, even though they express SLAMF7 
and lack EAT-2, are not inhibited by elotuzumab in vitro. Using NK cells 
lacking EAT-2, it has been found that SLAMF7 mediates its inhibitory 
effect through SLAMF7 phosphorylation, which further phosphorylates 
the SH-2 containing inositol 5′ polyphosphatase (SHIP)1. Phosphoryla-
tion of SLAM7 and SHIP1 is triggered through SRC family kinases 
including SRC, LYN and FYN. As most mature MM cells are negative for 

CD45 and have inactive SRC family kinases, they are not inhibited by 
elotuzumab. This explains why elotuzumab has no direct effect on MM 
cells in vitro but rather eliminates these cells by activating normal im-
mune cells, such as NK cells ([35,36] and Fig. 1C). 

2.2. Mitogen-activated protein kinase phosphatases (MKPs) 

MKPs represent a subfamily within a larger group of dual-specificity 
PTPs (DUSP), which can dephosphorylate serine, threonine as well as 
tyrosine residues. MKPs play an important role in determining the 
magnitude and duration of MAPK signaling by dephosphorylating and 
deactivating MAPK [37]. MKPs form a family with 10 members 
including DUSP1, DUSP2, DUSP4, DUSP5, DUSP6, DUSP7, DUSP8, 
DUSP9, DUSP10, and DUSP16. Our analysis of the MMRF CoMMpass 
IA13 database indicated that DUSP1 and DUSP5 are highly expressed on 
the mRNA level in MM PCs with transcripts per million (TPM) values 
that reach above 1000 (Fig. 2A). In addition, analyzing gene expression 
data obtained from the public database Oncomine (Agnelli Myeloma 3, 
Zhan myeloma 3 and Zhan myeloma datasets) (https://www.oncomine. 
org/), we found that DSUP1 and DUSP5 are significantly higher 
expressed in PCs from MM and monoclonal gammopathy of undeter-
mined significance (MGUS) patients than in normal PC samples ([38] 
and Table 1). This supports possible importance of these phosphatases in 
MM. A study by Walker et al. identified DUSP2 and protein tyrosine 
phosphatase non-receptor (PTPN)11 as mutated driver genes in some 
newly diagnosed MM patients [39]. DUSP2 was expressed higher in PCs 
from 12 smoldering MM patients than in 22 normal BM control cells 
(Table 1). 

Previous gene expression analysis of MM cells with clinical infor-
mation identified DUSP6 to be induced in MM cells harboring a 
constitutively active mutant NRAS gene [40] and DUSP6 and DUSP10 as 
genes that were associated with poor prognosis (Fig. 3 and [41,42]). 
Interestingly, DUSP6 was also among the genes that were expressed 
higher in MM PCs than in normal control PCs in Agnelli Myeloma 3, 
Zhan myeloma 3 and Zhan myeloma datasets (Table 1). Higher 
expression of DUSP10 was only found in Angeli Myeloma 3 dataset, 
which is a comparison of BM PCs from 133 MM patients with PCs from 5 
healthy controls (Table 1). The chromosomal translocation t(4; 14) is 
seen in about 10–20% of the cases of MM and is associated with a poor 
prognosis. This translocation is associated with upregulated expression 

Fig. 2. RNA-seq data showing expression of A) protein tyrosine phosphatases described in this review paper and B) some important protein tyrosine kinases in 767 
newly diagnosed MM patients derived from MMRF CoMMpass IA13. Note the large differences in Y axis scale between plots. TPM: Transcripts per million. The grey 
line shows the mean expression. 
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of fibroblast growth factor receptor (FGFR)3 and myeloma SET domain 
protein (MMSET). Gene expression analysis defined DUSP10 to be more 
highly expressed in t(4; 14) MM cells than in t(4; 14)-negative tumors 
[43]. Knocking down FGFR3 in a MM cell line led to downregulation of 

DUSP6 [44] and DUSP2 [45] implicating DUSP family members in 
FGFR3 signaling. Moreover, a study by Shi et al. indicated that DUSP1 
plays a role in resistance to proteasome inhibitors for MM patients. p38 
MAPK was activated upon proteasome inhibitor treatment. This 

Table 1 
Microarray gene expression analyses of the list of the protein tyrosine phosphatases in myeloma and MGUS patients from 3 different datasets.   

Angeli Myeloma 3 Zhan myeloma 3 Zhan myeloma 

MGUS (11) vs. normal 
(5) PC 

MM (133) vs. normal (5) 
PC 

MGUS (44) vs. normal 
(22) PC 

SMM (12) vs. normal 
(22) PC 

MGUS (5) vs. normal 
(37) PC and tonsil BC 
(7) 

MM (74) vs. normal (37) 
PC and tonsil BC (7) 

Fold 
change 

pvalue Fold 
change 

pvalue Fold 
change 

pvalue Fold 
change 

pvalue Fold 
change 

pvalue Fold 
change 

pvalue 

DUSP1 1.73 0.049 1.83 0.03   1.52 0.03   1.54 0.01 
DUSP2       2.63 0.01     
DUSP5 2.99 0.006 3.98 0.003 1.48 0.011 2.59 1.84E- 

04 
1.71 0.042 2.84 1.46E- 

07 
DUSP6   1.64 1.33E- 

05 
1.68 0.004 2.86 0.005   1.50 3.84E- 

06 
DUSP10 1.35 0.022 1.52 0.004         
PTP4A1   1.57 0.02   1.76 3.96E- 

04   
1.41 1.04E- 

07 
PTP4A2     1.35 9.44E- 

04 
1.64 5.20E- 

04     
PTP4A3 1.66 0.045 3.09 3.45E- 

04 
3.19 2.03E- 

04 
10.75 1.2E-04     

CDC25A   1.38 0.002         
CDC25B       1.80 0.02     
CDC25C         1.51 0.02   
CDC14B     1.55 3.49E- 

05 
2.22 0.001     

PTPN11     1.37 6.29E- 
04 

2.07 6.81E- 
06     

PTPN6       1.44 0.03     
PTPN1 1.53 0.04   1.59 0.023 1.31 0.03     
PTPN2       1.48 1.25E- 

04     
PTPN7     1.44 9.85E- 

04       
PTPRD 1.38 8.79E- 

04       
1.60 0.021   

PTPRK   1.79 0.02 2.66 9.48E- 
10 

3.79 2.49E- 
04 

2.39 0.052 4.29 1.48E- 
14 

Data is derived from Oncomine (http://www.oncomine.org). Samples compared in each dataset are indicated in the table. Numbers in parentheses represent the 
number of samples in each clinical group. Only the described PTPs with fold change ≥1.3 and p-value ≤0.05 are listed in the table. DUSP10, PTP4A3, CDC14B, PTPN6 
probes were not detected in Zhan myeloma. In other case, the blank means fold change is lower or P value higher than the described threshold. t-Test was used to 
calculate the P value. MM: Multiple Myeloma, MGUS: Monoclonal gammopathy of undetermined significance, SMM: Smoldering Multiple Myeloma, PC: Plasma cell, 
BC: B cell. 

Fig. 3. Kaplan-Meier curves showing association between expression level of some protein tyrosine phosphatases (PTPs) and overall survival of patients with MM. 
Data derived from MMRF CoMMpass IA13. 767 patients were divided in two groups of equal size. We did analysis on all the PTPs shown in Fig. 2A and in this figure, 
we only include the ones that were statistically significant. The survival curves were compared with the log-rank test. The statistical analysis was performed in 
Graphpad Prism (version 5.03). 
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activation resulted in induction of anti-apoptotic DUSP1, in association 
with suppressed activation of the pro-apoptotic c-Jun-N-terminal kinase 
(JNK) [46]. It is clear from the limited literature and data available that 
DUSPs might have important roles in MM pathogenesis, but more 
detailed studies are necessary to clarify their function. 

2.3. Protein tyrosine phosphatase 4A (PTP4A) family 

Phosphatases of regenerating liver (PRL) constitute a family of small 
proteins of approximately 20 kDa that consists of three members, PRL-1, 
-2 and -3 (encoded by PTP4A1, -2 and -3). There is evidence for upre-
gulation of the three PRL family members in various human cancers. In 
contrast to PRL-1 and PRL-2, which are ubiquitously expressed in 
various tissues, expression of PRL-3 is restricted to a few specific organs 
and cancer cells, which makes it an attractive target for cancer treatment 
[47–49]. While all three PTP4As are expressed on the mRNA level in MM 
PCs, PTP4A3 stands out as more highly expressed than the other two 
PRL members, with TPM values reaching 1000 in some patients 
(Fig. 2A). Nevertheless, analysis of datasets derived from Oncomine 
showed higher expression of all PTP4As in MM and/or MGUS PCs than 
in healthy PCs (Table 1). In addition, PRL-2 and PRL-3 expression was 
associated with poor prognosis in MM patients (Fig. 3). This emphasizes 
the possible importance of these phosphatases in MM. However, no 
studies have been performed until now on biological roles of PRL-1 and 
PRL-2 in MM progression. 

Several studies have been carried out on PRL-3’s role in MM. PTP4A3 
is shown to be consistently highly expressed in MM and MGUS PCs 
compared to PCs from healthy donors ([50] and Table 1). A study of 320 
newly diagnosed MM patients by Broyl et al. defined 3 novel subgroups 
of MM. One of these novel clusters composed of 9 patients (2.8%) and 
showed upregulation of PTPs PRL-3 and PTPRZ1 as well as suppressor of 
cytokine signaling (SOCS)3 [51]. Moreover, PRL-3 is proposed as a 
biomarker in MM to identify high-risk patients upon treatment with 
proteasome inhibitors and IMiDs [52]. Fagerli et al. introduced PRL-3 as 
an effector protein downstream of IL-6 [50]. Later studies showed that 
forced expression of PRL-3 enhances MM cell survival in the absence of 
or in suboptimal concentrations of IL-6. This implies that ectopic PRL-3 
expression makes the cells less dependent on IL-6 for their viability. This 
is possibly due to activation of STAT3, STAT1, AKT, ERK1/2 and SRC 
family kinase members by PRL-3 [4,52,53]. Subsequently, the expres-
sion of MYC and anti-apoptotic genes will be enhanced, which leads to 
MM cells being resistant to bortezomib. Chong et al. suggested that 
activation of STAT3 happened through direct deactivation of SRC ho-
mology region 2 (SH-2) domain-containing phosphatase (SHP)2 by 
PRL-3, thus blocking the GP130 (Tyr 759)-mediated repression of 
STAT3 activity. The study of five independent cohorts confirmed that 
the STAT3 activation signature was significantly enriched in patients 
with high PRL-3 expression [52]. 

2.4. Cell division cycle 14 (CDC14) phosphatases 

Among the large family of DUSPs the CDC14 family is one of the most 
extensively studied, mainly because of the essential role of these phos-
phatases in regulating late mitotic events and mitotic exit [54]. In ver-
tebrates, three homologs of yeast CDC14 have been characterized 
(CDC14A, CDC14B and CDC14C). While CDC14C does not seem to be 
expressed in PCs from MM patients (Average TPM below 1), CDC14B 
and to lesser extent CDC14A are both expressed on the mRNA level 
(Fig. 2A). Zhan Myeloma 3 dataset in Oncomine indicates differential 
expression of CDC14B in 12 smoldering MM and 44 MGUS PCs 
compared to 22 normal PC samples (Table 1). Chromosome 1 abnor-
malities are among the most common cytogenetic findings in MM [55] 
and associated with poor prognosis [56]. Marzin et al. and Walker et al. 
both reported that 23–27% of MM cases had 1p deletions in the region 
between 1p12–1p21 [57,58]. Using gene expression profiling, Shaugh-
nessy et al. showed that 50% of the downregulated genes in high-risk 

MM were located on chromosome 1p, suggesting that loss of certain 
tumor suppressor gene (s) within the 1p region may contribute to the 
aggressiveness of MM [59]. Later, Chang et al. identified CDC14A as the 
candidate tumor suppressor gene in this region. MM patients with 1p21 
deletions had a significantly shorter progression-free and overall sur-
vival than patients without 1p21 deletions [56]. 

2.5. Cell division cycle 25 (CDC25) phosphatases 

CDC25 phosphatases regulate transitions between cell cycle phases 
during normal cell division and are key targets of the checkpoint ma-
chinery activated in response to DNA damage to ensure genetic stability. 
In mammalian cells, three isoforms have been identified: CDC25A, 
CDC25B and CDC25C. Fig. 2A shows the expression of all three isoforms 
of CDC25 on the mRNA level in MM PCs. In addition, CDC25 over-
expression has been reported in various types of human malignancies 
including MM (Table 1) and has been correlated with tumor aggres-
siveness and poor prognosis (Fig. 3 and [60,61]). Checkpoint responses 
are initiated by ataxia telangiectasia mutated (ATM) and ataxia telan-
giectasia and Rad3-related (ATR), which induce checkpoint kinases 
(CHEK1 and CHEK2) and subsequently lead to phosphorylation and 
degradation of CDC25. CDC25 degradation further halts the cells at S 
phase of the cell cycle. ATM and ATR alterations (mutations and de-
letions) occur in a small subset of MM patients, 4.3% and 1.5% of newly 
diagnosed patients, respectively, resulting in cell cycle progression in 
the presence of DNA damage and eventually genomic instability of MM 
cells [62]. Gene expression analysis showed that so-called side popula-
tion cells, which are cells with tumor-initiating characteristics, from five 
MM cell lines express higher levels of genes involved in the cell cycle and 
mitosis including CDC25C, than non-side population cells [63]. 

Various compounds such as arsenic trioxide (As2O3) [64] and pter-
ostilbene [65] have been reported to induce cell cycle arrest and 
apoptosis in MM cells through downregulation or inhibition of CDC25. 
Pterostilbene, a natural dimethylated analog of resveratrol, down-
regulates CDC25, and is an efficient agent in treating MM cells resistant 
to bortezomib [65]. Therefore, CDC25 may be an important future 
target in MM treatment. 

2.6. Protein tyrosine phosphatase non-receptor type 6 and 11 (PTPN6 
and PTPN11) 

SHP2, encoded by the PTPN11 gene, is an oncogene and its over-
expression and mutation are common in various types of carcinomas 
[66]. However, some tumor-suppressive roles of SHP2 are also reported, 
which will be discussed later here. 

SHP2 has been shown to positively regulate the ability of several 
receptor tyrosine kinases to activate the MAPK/ERK and PI3K/AKT 
signaling cascades [67,68]. Agazie et al. found that SHP2 was required 
for the transformation of mouse fibroblast cells expressing oncogenic 
receptor tyrosine kinase FGFR3. Given that mutations activating FGFR3 
are relatively frequent in MM patients, these observations may indicate 
that SHP2 also plays an oncogenic role in MM cells [69,70]. Even though 
the exact mechanisms of how SHP2 mediates activation of signaling 
pathways downstream of receptor tyrosine kinases are still under study, 
it is known that both the PTP activity of SHP2 and its tyrosyl phos-
phorylation might play a role in mediating the actions of this phos-
phatase [71]. In the latter case, SHP2 functions as a scaffold protein [72, 
73]. Furthermore, it has been shown that SHP2 is needed for the growth 
of mutant KRAS-driven cancers [74]. These studies were not done in 
MM, but it is well known that RAS mutations are detectable in up to 50% 
of newly diagnosed MM patients. Consequently, SHP2 inhibition can be 
relevant in the context of MM [75]. Importantly, Zhou et al., by using a 
tissue-specific gene knockout approach, found a key regulatory role of 
SHP2 in osteoclastogenesis. SHP2 is required for receptor activator of 
nuclear factor kappa-В ligand (RANKL)-induced formation of osteo-
clasts. Thus, SHP2 can possibly serve as a target for treatment of 
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myeloma patients who suffer from bone fragility due to high osteoclast 
activity [76]. 

In addition, SHP2 is an important regulator of programmed cell 
death protein (PD)-1/PD-ligand 1 (PD-L1) signaling, which also makes it 
an interesting target for cancer therapy. PD-1 is an immune checkpoint 
molecule and reduces the T cell function. Many cancer cells evade death 
by becoming invisible to the host’s immune system when they start to 
express ligands of checkpoint receptors (such as PD-L1) [77]. Upon 
binding of tumor-derived PD-L1 on T cells, PD-1 is phosphorylated and 
recruits SHP2, which antagonizes T cell activation [78]. Overexpression 
of PD-L1 on primary MM cells and plasma dendritic cells in MM patients 
has been demonstrated [77]. Therefore, PD-1/PD-L1 axis blockade in 
MM is a hot topic, despite the observation of serious side effects in 
clinical trials combining PD-1/PD-L1 inhibitor with IMiDs [77]. The role 
of SHP2 as a regulator of the PD-1/PD-L1 pathway adds another ratio-
nale for targeting SHP2 in MM. 

The oncogenic role of SHP2 might be the reason for the inverse 
correlation between SHP2 expression and degree of MM response to 
treatment with dexamethasone/thalidomide [79–81]. 

SHP1 encoded by PTPN6 is another PTP, which, despite sharing 
homologous structure and sequence with SHP2, is known as a putative 
tumor suppressor [66]. In addition, while PTPN6 is primarily expressed 
in hematopoietic cells, PTPN11 is more ubiquitously expressed ([82] 
and Fig. 2A). As for SHP1, studies have revealed that SHP2 also shows 
some tumor-suppressive capabilities through direct or indirect inacti-
vation of JAK/STAT [82,83]. Gene expression profiling of PTPN6, 

PTPN11 and SOCS1 in PCs freshly isolated from the BM of MM patients 
and from healthy donors demonstrated significantly lower level of 
PTPN6 and PTPN11 gene expression in patient PCs [79]. This can be 
explained by hypermethylation of these phosphatase genes in myeloma 
samples during active disease [82,84,85]. Moreover, a study of 
phospho-STAT3 status in patients’ BM specimens by immunohisto-
chemistry showed a negative correlation between the sustained activa-
tion of the JAK/STAT3 pathway and the gene expression of PTPN6, 
PTPN11 and SOCS1 in patient PCs [79]. Various drugs such as icariside II 
and capillarisin are reported to inhibit STAT3 by induction/phosphor-
ylation of SHP1 and/or SHP2 expression [86,87]. 

Surprisingly, when we analyzed SHP1 and SHP2 expression in 
Oncomine, we observed that both PTPs are more highly expressed in 
smoldering myeloma PCs compared to normal healthy controls in Zhan 
myeloma 3 datasets (Table 1). In addition, high expression of both PTPs 
is associated with poor prognosis (Fig. 3). The conflicting results on 
oncogenic or tumor-suppressive roles of both SHP1 and SHP2 indicate 
that more detailed investigations for instance by knock out/down 
studies in MM should be performed to explain these apparently contrary 
roles. 

2.7. Other protein tyrosine phosphatases 

Various other PTPs are reported to play a key role in regulating 
phosphotyrosyl protein homeostasis in MM cells. Among these are 
PTPN7 [88], which is shown to be overexpressed in MM [89] and MGUS 

Fig. 4. Overview of signaling pathways regulated by some protein tyrosine phosphatases discussed in this review. Protein tyrosine phosphatases (Red hexagons) 
together with protein kinases (Pink triangles) regulate crucial biological functions in the cell such as growth, survival, migration and invasion. Protein tyrosine 
phosphatases shown in the figure are: CD45, DUSP, SHP2, SHP1, PTP4A3. Protein tyrosine kinases shown in the figure are: Raf, MEK, ERK, MAPKKK, MKK, P38 
MAPK, JNK, LYN, AKT, PI3K. 
Abbreviations: CD45 (Cluster of differentiation 45), DUSP (Dual-specificity phosphatase), SHP1 and SHP2: (SRC Homology Phosphatase 1 and 2), PTP4A3 (Protein 
tyrosine phosphatase type IVA 3), ERK (Extracellular signal-regulated kinases), P38 MAPK (Mitogen activated protein kinase), JNK (c- Jun N-terminal kinases), 
MAPKKK (MAPK kinase kinase), MKK and MEK (MAPK kinase), PI3K (Phosphoinositide 3-kinases), RTK (Receptor tyrosine kinase), IL-6R (Interleukin-6 receptor). 
The figure was created with BioRender. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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patients (Table 1), and PTPN1 and PTPN2, which are suggested to be key 
negative regulators of FGFR3 [88]. These phosphatases seem to be 
expressed in myeloma cells (Fig. 2A). In addition to PTPN6 and PTPN11, 
which were mentioned earlier, a series of other phosphatases such as 
PTPRD, PTPRT, PTPRK, PTPN9, and PTPN2 are described to play a role 
in STAT3 inactivation. However, these studies did not include MM [83]. 
As IL-6/STAT3 signaling is a crucial pathway regulating MM growth and 
proliferation, study of these phosphatases in MM can be of great interest. 
Except for PTPRT, which does not seem to be expressed in MM (Average 
TPM below 1), the others are expressed on the mRNA level, but with 
relatively low TPM values (Fig. 2A). Interestingly, in contrast to the 
possible role of PTPRK as tumor suppressor by inhibiting STAT3, gene 
expression analysis derived from Angela Myeloma 3, Zhan Myeloma 3 
and Zhan Myeloma datasets in Oncomine indicated that PTPRK was 
consistently upregulated in MM and MGUS PCs compared to normal PCs 
(Table 1). Therefore, further investigations are necessary to decipher the 
role of these phosphatases in MM. 

2.8. Protein kinases vs. protein tyrosine phosphatases 

Fig. 4 shows an overview of some PTPs discussed here and their 
possible roles in MM pathogenesis. As indicated in this figure, most of 
the phosphatases we reported here were described in the context of 3 
crucial pathways: JAK/STAT, PI3K and MAPK pathway. Therefore, we 
chose the best-known kinases in these pathways and compared their 
expression pattern in MM plasma cells to phosphatases that affect these 
pathways. These kinases are: JNK (MAPK8, MAPK9, MAPK10)/P38 
MAPK (MAPK11, MAPK12, MAPK13, MAPK14)/MAPK1 and MAPK3/ 
AKT (AKT1, AKT2)/JAK (JAK1, JAK2). While the expression of the 
selected kinases has the value of 0–200 TPM (Fig. 2B), this value was up 
to 2000 (Fig. 2A) for some of the phosphatases that might regulate the 
same pathways. Even though gene expression (TPM value) does not 
necessarily represent the protein expression, this comparison still points 
to the equal importance of these two groups of proteins with counter-
acting functions. 

3. Concluding remarks 

Protein phosphorylation/dephosphorylation controls many aspects 
of cell biology and is often dysregulated in pathological conditions. It is 
now clear that even though kinases and phosphatases may work in op-
position, they also work together to regulate signaling pathways. 
Therefore, phosphatases as kinases are critical components of signal 
transduction and their dysregulation supports the development of 
various tumors such as MM. Based on literature review and analysis of 
public databases, there are many candidate phosphatases that are 
clearly worthy to be studied in more detail in MM. For instance, DUSP1, 
DUSP5 and PTP4A3 are the top three PTPs with the highest TPM value 
compared to the other PTPs in MM. Even though the mRNA level does 
not necessarily correlate with the protein level, the high mRNA level 
encourages the study of these phosphatases in more detail. In addition, 
some of the PTPs such as the CDC25 family, PRL-2, PRL-3, SHP2, SHP1, 
DUSP6 and DUSP10 have clinical significance for MM patients and/or 
are differentially expressed in MM/MGUS compared to normal plasma 
cells. This indicates that expression of these PTPs can be used as a tool to 
evaluate dysregulation of normal plasma cells and emphasizes their 
importance in MM pathogenesis. However, the research on these phos-
phatases in general is very limited and further studies are necessary to 
unravel mechanisms by which PTPs may contribute to MM progression. 
This might subsequently lead to development of targeted drugs to be 
used either alone or in combination with proteasome inhibitors, IMiDs 
or other drugs in MM treatment. 
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