
Blockchain-based Power Energy Trading Management

HAO WANG∗, Norwegian University of Science and Technology, Norway
SHENGLAN MA and CHAONIAN GUO, Fujian Rural Credit Union, China
YULEI WU∗, University of Exeter, United Kingdom
HONG-NING DAI,Macau University of Science and Technology, Macau
DI WU, Norwegian University of Science and Technology, Norway

Distributed peer-to-peer (P2P) power energy markets are emerging quickly. Due to central governance and
lack of effective information aggregation mechanisms, energy trading cannot be efficiently scheduled and
tracked. We devise a new distributed energy transaction system over energy IIoT based on predictive analytics,
blockchain and smart contract technologies. We propose a solution for scheduling distributed energy sources
based on theMinimum Cut Maximum Flow (MCMF) theory. Blockchain is used to record transactions and reach
consensus. Payment clearing for the actual power consumption is executed via smart contracts. Experimental
results on real data show that our solution is practical and achieves a lower total cost for power energy
consumption.
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1 INTRODUCTION
The scheduling and transaction management of distributed power energy resources in energy
markets is a subject of great relevance in nowadays energy systems [18, 19]. The consumers want
the power supply with lowest cost possible and the producers would like to sell all their energy
with highest price possible, while the transporters mainly focus on power transportation efficiency
and dissipation. Management of the consumption, production and transportation of power energy
between these parties is of paramount importance for a city and the related energy market.
Many countries have been trying to facilitate the distribution of the markets for power energy

production and consumption. Chinese government recently announced policies to encourage the
distributed clean energy sources such as photovoltaic and wind power to connect to the State Grid
for sell [21]. However, there are several challenges and problems in the energy-trading market as
follows:
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• Due to the tradition of central governance and the lack of effective aggregation mechanisms,
the distributed clean energy sources cannot be efficiently connected to the State Grid and be
efficiently used; this would result in the waste of energy.
• The consumers and producers cannot make the transactions directly, and it is difficult to
track the prices for power buying and selling because of the centralized market.
• The price structure of the power energy market varies considerably for different time periods
and different energy sources. A comprehensive strategy model is needed for the overall
scheduling of the distributed energy resources.

In the city domain, clean energy produced by plots, such as residential houses and factories, is
cheaper than the grid energy most of the time. Due to the challenges and problems mentioned
above, there are not many competitions between different energy sources and peer-to-peer energy
trading for plots. This paper aims to handle the prediction and scheduling on the distributed
energy from various domains of a city, for minimizing the total energy consumption cost of the
whole city domain given a predefined price policy of grid and clean power. We collect the data of
power consumption, production and transportation from the sensors over the Internet-of-Things
(IoT) networks, and record the data in blockchain ledgers [33]. The collected data are used for
the prediction of power consumption and production capabilities. Smart contract is triggered
periodically for the payment and the clearing of the power consumption bills.

The main contributions of this paper are summarized as follows:
• We study the aggregation of distributed energy transactions in a city domain sector to
minimize the energy consumption cost. A distributed energy transaction system (DETS) is
proposed based on predictive analytics, blockchain and smart contract technologies over
energy Industrial Internet-of-Things (E-IIoT).
• Time-series data are collected and analyzed for the prediction of energy consumption and
production. We propose a solution for scheduling of distributed power energy sources based
on the Minimum Cut Maximum Flow theory. Blockchain is used to record these data and
reach consensus of the transactions. Payments clearing for the actual power consumption is
executed with smart contracts.
• Application results with real consumption data, show that our solution achieves a lower
total cost for power energy consumption. Performance evaluation over smart contracts
demonstrates that our system is practical.

The rest of the paper is organized as follows. Section 2 reviews briefly on related studies. Section 3
presents the proposed distributed energy transaction system, including the design of ledgers and
blockchain operations. Section 4 formulates the problem and the assumptions of the distributed
energy scheduling, and proposes our solution, which includes algorithms for scheduling, control,
and smart-contract-based payment clearing. In Section 5, we implement an industrial application
to validate our proposed system, and we present the analysis and discussions of the experimental
results in a real-world application setting. Section 6 concludes the paper and presents our future
work.

2 RELATEDWORK
Renewable energy-aware pricing scheme was established to minimize the total electricity cost
among all customers through cross entropy optimization, which can reach the theoretical lower
bound of the community wide total electricity bill [15]. To obtain the energy availability and the
minimum selling cost negotiated in market, an aggregator was provided to manage and integrate
the distributed energy resources in energy systems and markets [24]. Game theory, with proper
penalty and payoff depending on the behavior of the consumers, was presented to balance energy
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consumption in clustered wireless sensor networks [32]. This scheme has obtained the Nash
equilibrium strategy of the clustering game through convex optimization. Specifically, each sensor
node can achieve its own maximal payoff when it makes the decision according to this strategy.

There are some recent studies in the forecasting of energy consumption, Yu et al. [34] presented
a clustering protocol for local electricity consumption forecast and optimization, providing an
efficient approach for energy usage management solutions. With this protocol, they ensured that
electricity consumption is balanced at the distribution system level. In [16], the authors developed
a series of neural networks to design a decision support system for predicting, analyzing and
monitoring the performance indicators in the field of renewable energy, which could forecasts
the total active energy export and the total active power, when knowing the solar irradiation, the
ambient temperature, the humidity, the wind direction and the wind speed.
Management of hybrid energy has attracted extensive attentions. Hill et al. [8] presented a

technical overview of battery energy storage systems and integrated solar power to the electricity
distribution system, and illustrated a variety of modes of operations for battery energy storage
systems in grid-tied solar applications. It can obtain more effective grid management and create
a dispatchable power product from as-available resources. In [28], the authors introduced a two-
stage power control strategy to smooth the power output of a grid connected photovoltaic power
plant. This scheme allows the customers to choose between photovoltaic power and grid power. A
unified power management scheme was proposed for a grid interactive hybrid micro-grid with
hybrid energy storage systems in [11]. The technique did not require forecasting of weather and
measurement of load currents or powers, which reduced the complexity and the number of sensors.
Decentralized and distributed power system integrated with photovoltaic power were presented
in [30] for the reliability of hybrid power systems. Li et al. [13] studied the reliability issue of power
grid w.r.t. the increasing demand on charging the Plug-in Electric Vehicles.

Peak shaving is an important strategy for distributed power energy scheduling and management.
Different peak shaving methods [27] have been presented, including the integration of energy
storage system, demand side management, and integration of electric vehicle to the grid. There has
been a significant increase in penetration of customer-owned photovoltaic panels [8, 22, 28] for
energy storage systems. The authors of [23] proposed a home energy management scheme for cost
and peak load reduction for single household.

Blockchain technology has led to an increasing interest in wide span of technical communities,
such as finance [5], supply chain [1], public service [25], healthcare [17] and IoT [7, 31]. It is
considered as an implementation of a shared secure distributed ledger, where the participants can
read from and write to, when specific constraints are met. Smart contracts [26] provide the ability
to directly track and execute complex agreements between parties without human interaction,
which resides on the blockchain, and as such its code can be inspected by every network participant.
Blockchain technology is applied in power energy markets with IIoT because of its advantages
of decentralization, anonymity and fairness [2, 12, 14, 20]. Our previous work [29] has indicated
that permissioned blockchain is applicable to decentralized transaction systems. In this paper, we
integrate the permissioned blockchain, namely Hyperledger Fabric [3], for data storage, energy
transaction, pre-sell, and bill payments. Different entities in the energy market are extracted as
blockchain peers participating in the deal.

3 BLOCKCHAIN BASED DISTRIBUTED ENERGY TRANSACTION SYSTEM
3.1 System Description
We aim to aggregate the transactions for a distributed power energy market. The system has been
designed in a flexible and feasible way. Using the different domains and adjustable parameters,
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Fig. 1. Blockchain-based distributed power energy transaction management over E-IIoT. Part A is a sketch of
DETS. Part B shows the detail logical frame of AD. Part C shows the relationship between ADs, TD and SPD.
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it can be readily adopted in power markets in the context of different countries. In Figure 1, red
arrows indicate control signals using communicationmessages. Green arrows represent hyperledger
synchronizations between the blockchain nodes. Light blue denotes the power flow. Navy blue
arrows indicate the data collecting operations from sensors. Consider the following system and
entities depicted in Figure 1:

• Autonomous Domain (AD): In each AD there are several CDs and PDs, or just CDs without any
PD, or just PDs without any CD. AD is the minimum unit to deal with energy transactions:
buying, selling energy from other ADs or the SPD. In AD, consensus (Con) could be made for
the electricity price for each CD and PD through smart contracts.
• Consumer Domain (CD): CD is the basic unit that connects to the electricity storage of PDs in
its AD. In each CD there are several users. A user is the atomic power consumption unit in
CD, which could be a family or an enterprise with a smart meter to measure the power usage.
• Producer Domain (PD): PD provides the self-produced energy, which could be for self use, or
be sold to other ADs through the transaction pool, or be sold to the SPD. In each PD, there is
an electricity storage and a switch controlled by the E-IIoT. If the volume and voltage of the
storage is lower than a normal value, the switch will turn to the wire of buying electricity
from the SPD. If the volume and voltage of the storage exceeds the maximum threshold, the
switch will turn to the wire of selling electricity to SPD.
• Special Producer Domain (SPD): SPD provides unlimited power energy from the State Grid,
such as hydro power, nuclear power and coal power. SPD does not consider the limit of
storage, but PD does. Therefore, PD needs cost computation and SPD cannot be a sub-domain
of PD.
• Transportation Domain (TD): The power energy is transported in TDs between ADs. When
electricity is transported in TD between ADs, there exists power dissipation.

The above entities represent the blockchain peers in the DETS, who can share all the power
transaction information. The detailed data of power consumption, production and transportation
are recorded in blockchain. Smart contract is distributed between these peers for electricity presell
and bill payment clearing. In CD, PD and TD, E-IIoT is introduced to collect the data of power
consumption, power productivity and power dissipation rate with secondary equipment such as
smart meter, watt meter and volt meter. For E-IIoT, Zigbee and Narrow Band IoT [4] technologies
and sensors are deployed for data collection and control signal transmission. Autonomous server
(AS) is responsible for local optimization of power energy consumption and distribution, and voted
autonomous server (VAS) is used for global prediction and optimization. Coordinator (CO) is for
forwarding the collected data from the sensor network.
The flows for data and control signals of all operations are depicted in Figure 1. There are four

types of flows in DETS: power flow, sensor data flow, control signal flow and smart contract (SC)
flow. Control signal is used for the power flow/sources switching inside ADs. Sensor data flow
gathered from secondary equipment (SE) would be distributed to different blockchain peers (BP)
for storage. SPD, ADs and TDs will get the consensus for power presell in the transaction pool
and generate SC to BP, as shown in part A of Figure 1. PDs and CDs in a single AD will get the
consensus through VS for the power scheduling and switch control signal, as shown in part C of
Figure 1. The acronyms for entities mentioned above have been summarized as follows:

3.2 Ledgers Design and Operations in DETS
Five groups of data are collected from sensors in E-IIoT and appended to ledgers of the blockchain in
every Δ𝑡 : consumed electricity, consumed self-produced electricity, productive electricity, residual
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A Summary of Acronyms
AD Autonomous Domain CD Consumer Domain
PD Producer Domain SPD Special Producer Domain
TD Transportation Domain
AS Autonomous Server VAS Voted Autonomous Server
CO Coordinator SC Smart Contract
SE Secondary Equipment BP Blockchain Peer

electricity in storage and power dissipation rate as shown in Table 1. For example, Ledger-CE-AD-
CD-User represents the consumed electricity for each user of every CD from all ADs. For all entries
there are indexes 𝑖 , 𝑗 and 𝑘 to label specific user’s 𝑑𝑎𝑡𝑎. Ledger-CE-AD-CD-User belongs to the
same CD converge into Ledger-CE-AD-CD for this CD, and Ledger-CE-AD-CD belongs to the same
AD converge into Ledger-CE-AD.

Table 1. Data recorded in ledgers of blockchain from sensors

Categories

Ledgers
(ID:Ledger-) Entries

Consumed
Electricity

CE-AD-CD-User (𝑡, 𝑖, 𝑗, 𝑘, 𝑑𝑎𝑡𝑎): consumed electricity for user𝑘 in CD𝑗 of AD𝑖

CE-AD-CD (𝑡, 𝑖, 𝑗, 𝑑𝑎𝑡𝑎): consumed electricity for CD𝑗 of AD𝑖

CE-AD (𝑡, 𝑖, 𝑑𝑎𝑡𝑎): consumed electricity for AD𝑖

Consumed
Self-prod
Electricity

CSE-AD-CD (𝑡, 𝑖, 𝑗, 𝑑𝑎𝑡𝑎): consumed self-produced electricity for CD𝑗 of AD𝑖

CSE-AD (𝑡, 𝑖, 𝑑𝑎𝑡𝑎): consumed self-produced electricity for AD𝑖

Productive
Electricity

PE-AD-PD (𝑡, 𝑖, 𝑗, 𝑑𝑎𝑡𝑎): self-produced electricity for PD𝑗 in AD𝑖

PE-AD (𝑡, 𝑖, 𝑑𝑎𝑡𝑎): self-producted electricity for AD𝑖

Residual
Electricity

RE-AD-PD (𝑡, 𝑖, 𝑗, 𝑑𝑎𝑡𝑎): redidual electricity for PD𝑗 in AD𝑖

RE-AD (𝑡, 𝑖, 𝑑𝑎𝑡𝑎): redidual electricity for AD𝑖

Sold
Electricity

SE-AD-PD (𝑡, 𝑖, 𝑗, 𝑑𝑎𝑡𝑎): sold electricity for PD𝑗 in AD𝑖

SE-AD (𝑡, 𝑖, 𝑑𝑎𝑡𝑎): sold electricity for AD𝑖

Power
Dissipation

Rate

pdr (𝑡,𝑚, 𝑟𝑚): power dissipation rate for TD𝑚

For DETS, the main operations can be summarized as sets OP = {OP1,OP2,OP3,OP4,OP5}.
Each operation has its time interval, as depicted in Figure 2. OP1 is repeated in Δ𝑡 among the
E-IIoT, then CO writes the data into blockchain peer. OP2, OP3, OP4 and OP4 are repeated in
Δ𝑇 sequentially by AS/VAS and BP. For prediction, 𝐿 past feedbacks are used iteratively.

4 FORMULATION AND IMPLEMENTATION FOR DETS
In this section, we present the problem definition and assumption about the distributed energy
scheduling, to maximized the energy usage and minimized the consumption cost for the overall
city sector.

4.1 Problem Formulations
Based on the system framework for the management and scheduling of power energy market as
given in Section 3, we assume that: 1) power supply from SPD is unlimited, while supply from PDs
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Fig. 2. The main operations for DETS in each time slot: OP1, collecting data from E-IIoT to block entries;
OP2, reading data from BP, voting one AS as VAS and predicting for power scheduling of ADs in city sector;
OP3, generating and installing of SC for power presell; OP4, reading control signal from BP and transmitting
it over E-IIoT to specific power source for each AD according to prediction; OP5, generating and installing of
SC for bill payment and clearing between different entities.

is limited; 2) the power price of SPD varies with time interval Δ𝑇 , and the power price of PD is
fixed for PDs; 3) the power prices of SPD and PD at any moment are public to all ADs; 4) in the city
sector, the total power energy consumption at (𝑡 + Δ𝑇 ) is fixed:

𝐸 = 𝐸𝑏 + 𝐸𝑠 , (1)

where 𝐸𝑏, 𝐸𝑠 can be summarized as the following equations respectively:

𝐸𝑏 = 𝐸𝑏0 + 𝐸𝑏1 =
𝑁∑
𝑖=1

𝑏𝑒
𝑠𝑝𝑑

𝑖
+

𝑁∑
𝑖=1

𝑁∑
𝑗=1
𝑏𝑒𝑖 𝑗 , (2)

𝐸𝑠 =

𝑁∑
𝑖=1

𝑐𝑒𝑠𝑖 . (3)

Let function 𝑓𝑖 denote the power consumption cost of each AD𝑖 ,

𝑓𝑖 = 𝑏𝑒
𝑠𝑝𝑑

𝑖
𝑝𝑟𝑠𝑝𝑑 +

𝑁∑
𝑗=1
𝑏𝑒𝑖 𝑗𝑝𝑟𝑝𝑑 −

𝑁∑
𝑗=1

𝑠𝑒𝑖 𝑗 (𝑝𝑟𝑝𝑑 + 𝑝𝑟𝑖 𝑗 ) . (4)
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Variables and parameters
𝑡 current time
Δ𝑡 time interval for data collection from sensor networks
Δ𝑇 time interval for prediction and smart contract

execution, Δ𝑇 = 𝑛Δ𝑡
𝑁 number of ADs in the city sector
𝐾 number of ADs with PD
𝑀 number of TDs between all ADs
𝐿 number of samples for prediction
𝐸 total power consumption of all ADs at (𝑡 + Δ𝑇 )
𝐸𝑏 total power consumption of all ADs bought from other

ADs and SPD at (𝑡 + Δ𝑇 )
𝐸𝑠 total self-produced power consumption of all ADs at

(𝑡 + Δ𝑇 )
𝐸𝑏0 total power consumption of all ADs bought from SPD

at (𝑡 + Δ𝑇 )
𝐸𝑏1 total power consumption of all ADs bought from other

ADs at (𝑡 + Δ𝑇 )
𝑐𝑒𝑖 power consumption of AD𝑖 at (𝑡 + Δ𝑇 )
𝑐𝑒𝑠𝑖 power consumption of self-produced electricity for

AD𝑖 at (𝑡 + Δ𝑇 )
𝑏𝑒𝑖 𝑗 bought electricity from AD𝑗 for AD𝑖 at (𝑡 + Δ𝑇 )
𝑠𝑒𝑖 𝑗 sold electricity to AD𝑗 for AD𝑖 at (𝑡 + Δ𝑇 ),

𝑠𝑒𝑖 𝑗 = 𝑏𝑒 𝑗𝑖
𝑝𝑒𝑖 power production of AD𝑖 at (𝑡 + Δ𝑇 )
𝑟𝑒𝑖 residual electricity of AD𝑖 at (𝑡 + Δ𝑇 )
𝑟𝑒𝑚𝑎𝑥

𝑖 maximum of redisual electricity for AD𝑖 at (𝑡 + Δ𝑇 )
𝑏𝑒

𝑠𝑝𝑑

𝑖
bought electricity from SPD for AD𝑖 at (𝑡 + Δ𝑇 )

𝑝𝑟𝑖 𝑗 minimum price for dissipation of power transportation
between AD𝑖 and AD𝑗 of TDs

𝑝𝑟𝑝𝑑 fixed power price for PD
𝑝𝑟𝑠𝑝𝑑 power price for SPD at (𝑡 + Δ𝑇 )
𝑝𝑑𝑟 power dissipation rate

For the city sector, the aim is to minimize the total consumption cost function 𝐹 for power energy.
And the problem can be summarized as follows :

min 𝐹 = min
𝑁∑
𝑖=1

𝑓𝑖 (5a)

s.t. 𝑐𝑒𝑖 = 𝑏𝑒
𝑠𝑝𝑑

𝑖
+ 𝑐𝑒𝑠𝑖 +

𝑁∑
𝑗=1
𝑏𝑒𝑖 𝑗 , (5b)

𝑁∑
𝑗=1

𝑠𝑒𝑖 𝑗 ≤ (𝑟𝑒𝑖 + 𝑝𝑒𝑖 ) − 𝑐𝑒𝑠𝑖 , (5c)

𝑐𝑒𝑠𝑖 + 𝑝𝑒𝑖 ≤ 𝑟𝑒𝑚𝑎𝑥
𝑖 , (5d)

𝑏𝑒𝑖 𝑗 = 𝑠𝑒 𝑗𝑖 ,∀𝑖, 𝑗 ∈ [1, 𝑁 ] . (5e)

ACM Trans. Internet Technol., Vol. 0, No. 0, Article 0. Publication date: 0000.



Blockchain-based Power Energy Trading Management 0:9

According to (2), (4) and (5e), 𝐹 can be derived as:

𝐹 =

𝑁∑
𝑖=1

𝑏𝑒
𝑠𝑝𝑑

𝑖
𝑝𝑟𝑠𝑝𝑑 +

𝑁∑
𝑖=1

𝑁∑
𝑗=1
𝑏𝑒𝑖 𝑗𝑝𝑟𝑝𝑑

−
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑠𝑒𝑖 𝑗 (𝑝𝑟𝑝𝑑 + 𝑝𝑟𝑖 𝑗 )

= 𝐸𝑏𝑝𝑟𝑠𝑝𝑑 −
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑠𝑒𝑖 𝑗 (𝑝𝑟𝑠𝑝𝑑 + 𝑝𝑟𝑖 𝑗 ). (6)

𝐸𝑏 and 𝑝𝑟𝑠𝑝𝑑 are fixed at (𝑡 + Δ𝑇 ) and according to (5c), equation (6) has a minimum value if and
only if:

𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑠𝑒𝑖 𝑗 =

𝑁∑
𝑖=1

[
(𝑟𝑒𝑖 + 𝑝𝑒𝑖 ) − 𝑐𝑒𝑠𝑖

]
,

which means all the ADs should sell their residual electricity after self consumption as much as
possible. Then, the problem can be rewritten as:

min 𝐹 = max
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑠𝑒𝑖 𝑗 (𝑝𝑟𝑠𝑝𝑑 + 𝑝𝑟𝑖 𝑗 ), (7a)

s.t.
𝑁∑
𝑖=1

𝑁∑
𝑗=1

𝑠𝑒𝑖 𝑗 ≤
𝑁∑
𝑖=1

[
(𝑟𝑒𝑖 + 𝑝𝑒𝑖 ) − 𝑐𝑒𝑠𝑖

]
. (7b)

It can be seen from (7a) and (7b) that all ADs should try to sell out the residual power energy
if any. This is a multi-source multi-sink Minimum Cut Maximum Flow (MCMF) problem [6]. The
minimum cut means the dissipation of transportation power should be less, and maximum flow
means the residual electricity should be sold and transported to other ADs as much as possible.
The MCMF problem is based on a directed graph representation of the dynamic resource allocation
problem. The directed graph is represented by G = ⟨V, E⟩, with V corresponding to the set of
vertices and E is the set of arcs.

4.2 Solutions
LetC = [𝑐𝑒𝑖 ]1×𝑁 , P = [𝑝𝑒𝑖 ]1×𝑁 , andR = [𝑟𝑒𝑖 ]1×𝑁 denote the power consumption, power production
and power residual of ADs, respectively at time (𝑡 + Δ𝑇 ). Power residual R can be collected from
the storage at any moment. For C and P, there is some regularity in all industries for electricity
consumption, and power producitivity depends on the seasonal variances of climate a lot. Therefore,
the predictive analytics approach is introduced to address this problem. For the time series prediction
issue, there are many algorithms with excellent performance. In this work we select the Long Short
Term Memory (LSTM) [9] method to predict the electricity consumption and production at next
Δ𝑇 . LSTM has been proven effective in sequence learning with temporal correlations, and it has
been successfully applied in power load forecasting [10]. We need to handle the prediction and the
actual scheduling of the power energy transaction, payments, and deal with the deviation between
prediction and reality for next interval. In particular, to predict the data at (𝑡 + Δ𝑇 ), the past 𝐿
data will be used in training. For AD𝑖 , 𝑖 ∈ [1, 𝑁 ], data are extracted from blockchain as series:
𝐶𝐸𝑖 = {𝑐𝑒𝑡−(𝐿−1)Δ𝑇𝑖

, 𝑐𝑒
𝑡−(𝐿−2)Δ𝑇
𝑖

, ..., 𝑐𝑒𝑡𝑖 }, and 𝑃𝐸𝑖 = {𝑝𝑒
𝑡−(𝐿−1)Δ𝑇
𝑖

, 𝑝𝑒
𝑡−(𝐿−2)Δ𝑇
𝑖

, ..., 𝑝𝑒𝑡𝑖 }, for training
predictors P𝑐𝑒

𝑖 , P𝑝𝑒

𝑖
. Then, C = {P𝑐𝑒

𝑖 (𝑡 + Δ𝑇 ), 𝑖 ∈ [1, 𝑁 ]}, P = {P
𝑝𝑒

𝑖
(𝑡 + Δ𝑇 ), 𝑖 ∈ [1, 𝑁 ]}.
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Algorithm 1: Power Energy Scheduling
Input: ADs, C, P, R
Output: B, S
1: Initialize: AD𝑝 ← ∅, AD𝑛𝑝 ← ∅, S← ∅, B← ∅
2: Divide ADs into AD𝑝 and AD𝑛𝑝

3: for Each AD𝑘 ∈ AD𝑝 do
4: Separate CDs and PDs in AD𝑘 into two parts: {PD𝑘 }, {AD𝑘 }
5: end for
6: Form graph G𝑎 = ⟨V𝑎, E𝑎⟩, with:
V𝑎 = {AD𝑖 |𝑖 ∈ [1, 𝑁 ]} ∪ {PD𝑖 |𝑖 ∈ [1, 𝐾]} ∪
{SPD} ∪ {𝑠, 𝑡 },
E𝑎 = {TD𝑖 |𝑖 ∈ [1, 𝑀]} ∪ {𝑎𝑒}

7: Initialize the capacity and cost of each edge ∈ E𝑎 according to C, P,R
8: B = MCMF𝑎𝑝 (G𝑎)
9: S =

[
𝑏𝑒𝑖, 𝑗

]𝑇
𝑁×𝑁

10: return B, S

From the description in Section 3, we divide ADs into two groups: AD𝑝 and AD𝑛𝑝 , where AD𝑝

denotes the ADs with PDs and AD𝑛𝑝 denotes the ADs without PDs. Then PDs, CDs in AD𝑝 can
be separated to two parts for new graph. SPD is also added to the graph for the solving of MCMF
problem. Augmenting path is used to solve this issue [29], in which vertices source 𝑠 , sink 𝑡 and
also the augmenting edges 𝑎𝑒 are augmented to original graph G, generating a new graph G𝑎 .
Hence, G𝑎 = ⟨V𝑎, E𝑎⟩ will haveV𝑎 = {AD𝑖 |𝑖 ∈ [1, 𝑁 ]} ∪ {PD𝑖 |𝑖 ∈ [1, 𝐾]} ∪ {SPD} ∪ {𝑠, 𝑡 } and E𝑎 =
{TD𝑖 |𝑖 ∈ [1, 𝑀]} ∪ {𝑎𝑒}. It can be inferred that |V𝑎 | = (𝑁 +𝐾 + 3) and |E𝑎 | = (𝑀 +𝑁 +𝐾 + 2). For the
target of power scheduling from AD𝑝 and SPD to AD𝑛𝑝 or AD𝑝 , we have to solve the shortest path
for graph G𝑎 . After that, the standard augmenting path algorithm can be applied to G for MCMF,
naming it MCMF𝑎𝑝 . Let S =

[
𝑠𝑒𝑖, 𝑗

]
𝑁×𝑁 denotes the scheduling energy between all ADs, where 𝑠𝑒𝑖 𝑗

means power energy selling from AD𝑖 to AD𝑗 ; and let B =
[
𝑏𝑒𝑖, 𝑗

]
𝑁×𝑁 =

[
𝑠𝑒𝑖, 𝑗

]𝑇
𝑁×𝑁 . The power

energy scheduling algorithm can be summarized as Algorithm 1.

Algorithm 2: Switch Signal Control over E-IIoT
Input: AD𝑖 , C, R, S
Output: Control signal for Switches in AD𝑖

1: for Each PD𝑗 ∈ AD𝑖 do
2: Switch (Condition):
3: Case 𝑐𝑒𝑖 > 0 and 𝑟𝑒 𝑗 > threshold:
4: Turn Switch𝑗 to selling wire, update 𝑠𝑒𝑖 , 𝑐𝑒𝑖
5: Case 𝑐𝑒𝑖 > 0 and 𝑟𝑒 𝑗 < threshold:
6: Turn Switch𝑗 to buying wire, update 𝑐𝑒𝑖
7: Case 𝑐𝑒𝑖 == 0 and 𝑟𝑒 𝑗 > threshold:
8: Turn Switch𝑗 to selling wire, update 𝑠𝑒𝑖
9: Case 𝑐𝑒𝑖 == 0 and 𝑟𝑒 𝑗 < threshold:
10: Break Switch𝑗

11: end for
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When S is resolved, the related SM for power presell scheme between all ADs is generated
and installed at every peer of the blockchain for consensus. Once the consensus is reached, it is
triggered for execution, which would lead AS sending the control signals to switches for specific
energy sources scheduling. Algorithm 2 depicts the detailed control algorithm of power switches
in each AD.

Algorithm 3: Smart Contract for Power Energy Consumption and Transportation Payment
Input: S, C∗, 𝑝𝑟𝑠𝑝𝑑 , 𝑝𝑟𝑝𝑑 , Ledger-CE-AD, Ledger-CES-AD, Ledger-SE-AD, Ledger-pdr
Output: P1,P2,P3,P4
1: Initialize v𝑐𝑒 , v𝑐𝑒𝑠 , v𝑠𝑒 from Ledgers

Initialize P1,P2,P3,P4 with 0
2: for 𝑠𝑒𝑖 𝑗 ∈ S and 𝑠𝑖 𝑗 ≠ 0 do
3: Initialize pdr with entries from Ledger-pdr: r =

[
𝑟1, 𝑟2, ..., 𝑟𝑀1

]
4: 𝑟𝑏𝑒 𝑗 = v𝑐𝑒 [ 𝑗] − v𝑐𝑒𝑠 [ 𝑗]

5: 𝑟𝑠𝑒𝑖 𝑗 = v𝑠𝑒 [𝑖]
𝑠𝑒𝑖 𝑗

sum(v𝑖 )
𝑀1∏
𝑚=1

(
1 − 𝑟𝑚

)
6: 𝑟𝑠𝑒 𝑗 =

𝑛∑
𝑘=1

𝑟𝑠𝑒𝑘 𝑗

7: if 𝑟𝑠𝑒 𝑗 < 𝑟𝑏𝑒 𝑗 then
8: for 𝑘 ← 1 𝑡𝑜 𝑁 do
9: P1 [𝑘, 𝑗] = 𝑟𝑠𝑒𝑘 𝑗𝑝𝑟𝑝𝑑
10: end for
11: P2 [ 𝑗] = (𝑟𝑏𝑒 𝑗 − 𝑟𝑠𝑒 𝑗 )𝑝𝑟𝑠𝑝𝑑
12: else
13: for 𝑘 ← 1 𝑡𝑜 𝑁 do
14: P1 [𝑘, 𝑗] =

𝑟𝑠𝑒𝑘 𝑗

𝑟𝑠𝑒 𝑗
𝑟𝑏𝑒 𝑗𝑝𝑟𝑝𝑑

15: end for
16: P3 [ 𝑗] = P3 [ 𝑗] +

𝑟𝑠𝑒𝑖 𝑗

𝑟𝑠𝑒 𝑗
(𝑟𝑠𝑒 𝑗 − 𝑟𝑏𝑒 𝑗 )𝑝𝑟𝑝𝑑

17: end if
18: P4 [ 𝑗] = 𝑟𝑏𝑒 𝑗𝑟𝑖 𝑗
19: end for
20: return P1,P2,P3,P4

After interval Δ𝑇 passed, all ADs, TDs and SPD should clear the bills for power energy consump-
tion and transportation. C∗ =

[
𝑐𝑒𝑠𝑖

]
1×𝑁 denotes the self-produced power energy that each AD uses.

The selling electricity from AD𝑖 to other ADs can be denoted as vector v𝑖 = [𝑠𝑒𝑖1, 𝑠𝑒𝑖2, ..., 𝑠𝑒𝑖𝑁 ],
meanwhile, the selling electricity to a given AD𝑗 from other ADs can be denoted as vector

v𝑗 =
[
𝑠𝑒1𝑗 , 𝑠𝑒2𝑗 , ..., 𝑠𝑒𝑁 𝑗

]𝑇 . Let sum(v𝑖 ) =
𝑁∑
𝑘=1

𝑠𝑒𝑖𝑘 , and sum(v𝑗 ) =
𝑁∑
𝑘=1

𝑠𝑒𝑘 𝑗 . Vector r = [𝑟1, 𝑟2, ..., 𝑟𝑀 ]

indicates the power dissipation rate, 𝑝𝑑𝑟 , in all𝑀 TDs, in which 𝑟𝑖 ∈ [0, 1]. For all possible payment
directions, there would be P1: AD to AD, P2: AD to SPD, P3: SPD to AD and P4: AD to TD. In
our payment solution, sensor data are obtained from the blockchain for the bills clearing: Ledger-
CE-AD for actual electricity consumption, Ledger-CES-AD for actual self-producted electricity
consumption, Ledger-SE-AD for actual sold electricity and Ledger-pdr for actual power dissipation
rate. From these data, each AD𝑗 ∈ AD𝑛𝑝 , the actual bought electricity 𝑟𝑏𝑒 𝑗 of AD𝑗 , and the actual
sold electricity 𝑟𝑠𝑒 𝑗 from all AD𝑖 ∈ AD𝑝 to AD𝑗 can be derived. Then, the payment will be cleared
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by the offset of 𝑟𝑏𝑒 𝑗 and 𝑟𝑠𝑒 𝑗 . The detailed SM for the payment clearing is summarized as Algorithm
3. After the SM is generated every (𝑡 + Δ𝑇 ), it is installed to every peers of the blockchain in DETS
for the triggering and executing between all entities.

5 INDUSTRIAL APPLICATION
In this section, we compare our proposed strategy Presell Contract Strategy with 2 mono-strategies,
namely Internal Usage only Strategy and Sell only Strategy. We apply the 3 strategies to one city
in Guangdong Province, which is covered by the China Southern Power Grid, then analyze the
results with 3 scenarios, peak, off-peak, and valley hour, with real monthly data from May 20 to
June 20, 2018. The data set has 6921 rows and 4 columns, including domain, month, timestamp and
power cost. In addition, the experimental results for a single AD are analyzed for power usage.

5.1 Application Setup
Three scenarios: peak, off-peak and valley hour are selected as the next Δ𝑇 for application. Three
strategies: Presell Contract Strategy (PCS) between all ADs based on predictive analytics and smart
contract, Internal Usage only Strategy (IUS) – self-produced electricity only for internal usage for
all ADs, and Sell only Strategy (SS) – self-produced electricity only for selling for all ADs.

s

PD1

PD2

PD3

CD2

CD6

CD3

CD5

CD4

CD1

t
TDs

SPD

AD1

AD2

AD3

AD3

AD4

AD6

source

sink

AD1

AD5

AD2

Fig. 3. The constructed graph G𝑎 for application

The application has been carried out within 6 ADs: AD1(PD1, CD1), AD2(PD2, CD2), AD3(PD3,
CD6), AD4(CD3), AD5(CD4), AD6(CD5). Figure 3 shows the related graph, in which the PDs and
CDs in same AD have been separated for Algorithm 1, while the cost between these PD and AD are
0. The source and sink vertices are added to the graph for augmenting path. Table 2 is the electricity
price in different types of AD for the next Δ𝑇 in the three scenarios, in which we could see that
the price of PD is fixed and that of SPD is varied in different scenarios. Table 3 gives all the power
dissipation rates between PDs and CDs. The configurations of the smart meter, storage, switch
controller for applications are ’sicamp201’, ’ETNHF12-420wp-x’ and ’LBT-LTS4P-N’, respectively.

5.2 Application Process
The application works in the following steps: 1) The electricity production and consumption data:
P, C are predicted using LSTM; 2) The electricity scheduling scheme S between ADs is derived from
Algorithm 1, and the internal control for power scheduling of each AD is derived from Algorithm 2;
3) Calculate the actual electricity consumption costs, in different scenarios of three strategies, given
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Table 2. The electricity price of SPD and PD at different scenarios

– 𝑝𝑟𝑠𝑝𝑑 𝑝𝑟𝑝𝑑
Type Industrial Residential Commercial –
Peak 1.00390 0.97380 1.29260 0.45300

Off-peak 0.60840 0.59020 0.78340 0.45300
Valley 0.30420 0.25910 0.19590 0.45300

Table 3. The power dissipation rate between PDs and ADs

– CD1 CD2 CD3 CD4 CD5 CD6
PD1 0 .00605 .00297 .00762 .00131 .00511
PD2 .00013 0 .00024 .00007 .00050 .00054
PD3 .01736 .06231 .02562 .01653 .01074 0

the current electricity price and other captured data from E-IIoT such as 𝑝𝑑𝑟 . The unit for electricity
and price is kWh and CNY, respectively. Note that Δ𝑇 is set to 1 hour, and 𝑛 is 10. For the choice of
𝑛, we have experimented with 5, 10, 20, and 50, and the impact on the results is neglectable. Thus,
we fix the value of 𝑛 at 10 for the whole application.

For augmenting path, the capacity of the arcs from the source is set as the electricity volume to sell
for PDs or SPD, and the capacity of the arcs to sink is set to electricity to buy for CDs. Meanwhile, the
cost of all augmenting path is 0. The capacity of TDs is unlimited for city sector, denoted as∞, and the
cost each TD𝑚 is denoted as 𝑝𝑟𝑝𝑑 (1+ 𝑟𝑚). For instances, from PD3 to CD3 the cost is 0 because they
are in the same AD, and from PD3 to CD5 the cost is the 𝑝𝑟𝑝𝑑 (1+𝑟35) = .45300×(1+ .01074) = .45787.
For LSTM prediction, 𝐿 is set to 8 for prediction sample and a [8, 8, 1] network is constructed for
training, where there are 6 hidden layers and each layer has 50 nodes. Learning efficiency is 0.001,
the number of epochs is 500 and the ratio for training set is 0.8.

5.3 Application Results
5.3.1 Application between ADs. According to Algorithm 1, the power scheduling scheme between
ADs in peak, off-peak and valley hour are derived as S𝑝 , S𝑜𝑝 and S𝑣 :

S𝑝 =
©«
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 52
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ª®¬, S𝑜𝑝 =
©«
0 0 0 0 0 0
0 0 0 3739 2739 198
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

ª®¬,
S𝑣 = ( 0 )6×6 .

Figure 4 depicts the total consumption costs of all ADs in scenarios peak, off-peak and valley for
strategies PCS, IUS and SS. It could be seen from the results that at peak and off-peak hour, the cost
of strategy SS is higher than strategy PCS, especially current Δ𝑇 is off-peak hour and next Δ𝑇 is
peak hour, when the electricity price goes up and ADs could store the extra electricity for sell in
valley hour, then sell it in peak hour. For strategy IUS, because of internal usage of self-productive
electricity, it will reduce the consumption cost. In peak hour, PD with PCS strategy cost is more
than IUS and SS, because it supplies for another domain instead of itself. It will cost a little more in
the local domain, but it reduces the total cost in all systems. However, the total cost is still higher
than strategy PCS. Also, some ADs will waste the productivity when the storage are over capacity.

5.3.2 Application inside AD. Figure 5 depicts the internal electricity scheduling results of AD2
during the whole Δ𝑇 (Δ𝑇 = 10Δ𝑡 ). There are 6 variables in the scheduling: actual consumption

ACM Trans. Internet Technol., Vol. 0, No. 0, Article 0. Publication date: 0000.



0:14 Wang, et al.

Fig. 4. The electricity consumption cost (unit: CNY yuan) of all ADs in three scenarios for different strategies

electricity 𝑐𝑒 , actual production of electricity 𝑝𝑒 , residual electricity 𝑟𝑒1 before selling, selling
electricity 𝑠𝑒1 through PCS, selling electricity 𝑠𝑒2 after PCS and residual electricity 𝑟𝑒2 after all
selling. From Algorithm 2, we know that if the selling of electricity for PCS is completed and the
residual electricity reaches the threshold of power storage volume, the switch will be turned to
TD for power selling for SPD. It can be derived from Figure 6 that for the first 6 Δ𝑡 , the residual
electricity can be sold out through PCS after self use. Especially at the 4th Δ𝑡 , after the selling
of electricity through PCS, there are still residual electricity from self production. Therefore the
electricity is sold to SPD, otherwise this self produced volume would be wasted.

Fig. 5. The internal electricity scheduling (in kWh) of a single AD

5.3.3 Application of Blockchain and Smart Contract. A Redhat server has been used for the evalua-
tion of Hyperledger Fabric, which provides 6 peers (nodes). Hyperledger Fabric SDK fabric-go-sdk
and Beego have been integrated to invoke the API Invoke and Query. We have composed this
blockchain cluster for payments clearing of smart contracts and connected these demo applications
to a local bank. The number of concurrent transactions is set to 10. The TPS – transaction per
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second, has reached 670.237 during one performance testing. This transaction speed can meet the
processing requirement of most of the medium and small banks in China, and also it can support
the delay of transactions and inquires of the power industries. The results indicate that our scheme
is extendable and applicable for fast energy trading, therefore enabling frequent electricity energy
trading among different entities.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have presented a distributed energy transaction system over E-IIoT. Ledgers have
been designed for the storage of historical data collected from sensors. These data are extracted for
LSTM prediction of power consumption and production. We have presented our solution based
on the MCMF theory for the scheduling among different domains according to the prediction
results. We have also designed smart contracts for payments clearing over Hyperledger Fabric. The
experiments for real city monthly data have been performed in several scenarios and the results
have demonstrated the feasibility of our solution.

We are further elaborating our system, such as considering the scheduling scheme in continuous
Δ𝑇 , which will have a different optimal model. The impact of prediction accuracy over overall
consumption cost is to be analyzed.
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