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Surface gravity wavepackets in intermediate water depth experiencing an abrupt depth
decrease are investigated experimentally. The experiments provide validation for the
second-order (in steepness) theory for narrow-banded surface gravity wavepackets ex-
periencing a sudden depth transition derived in a companion paper (Li et al. 2020).
We observe the generation of free second-order sub- and super-harmonic wavepackets
due to the sudden depth transition, in addition to changes to the main (first-order)
wavepacket and its second-order bound waves. Locally, just after the step, this leads
to the superposition of different wavepacket components. Thereafter, separation occurs
because of the different group speeds of the free second-order sub- and super-harmonic
wavepackets compared to the main packet. Experiments show that the local superposition
of waves can lead to significant amplification of wave crests near the top of a step, as
predicted by theory. In addition to a step, we also experimentally examine more gradual
depth changes in the form of 1:1 and 1:3 slopes to explore the limits of the theory’s
validity. Although we find small differences in amplitude and phase comparing these
steep slopes to a step, these experiments suggest that the theoretical model derived in
Li et al. (2020) for wavepackets travelling over a step is applicable to slopes steeper than
1:3.

1. Introduction

Ocean waves have been studied extensively by scientists and engineers. The distribution
of wave heights given a stationary background sea state is of obvious interest. Particularly
noteworthy are situations where large waves occur more frequently than would be
expected in a linear model (Onorato et al. 2013; Adcock & Taylor 2014; Trulsen 2018).
One mechanism which can cause this is where waves pass over a step, or steep slope, in
the seabed. In a linear model with normally distributed random components, the free
surface of the waves is expected to have a kurtosis of 3. Values of kurtosis as large as
3.6 have been observed in both numerical and experimental studies of waves at the top
of slopes, meaning that a varying bathymetry can cause an increase in the size of large
waves (Sergeeva et al. 2011; Trulsen et al. 2012; Gramstad et al. 2013; Kashima et al.
2014; Viotti & Dias 2014; Ma et al. 2014; Ducrozet & Gouin 2017; Trulsen et al. 2020;
Zhang et al. 2019; Bolles et al. 2019; Majda et al. 2019; Zheng et al. 2020).
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A number of attempts have been made to explain this phenomenon over the last
decade. A review by Trulsen (2018) concludes that the transition over slopes can be
a possible mechanism triggering non-equilibrium wave dynamics. A figure summarising
experimental and numerical studies of this is given in Trulsen et al. (2020). Our figure 1
extends this figure by adding additional studies as well as whether a peak in kurtosis is
observed or predicted. Wave components at second order in wave steepness are found to
be important (Gramstad et al. 2013; Viotti & Dias 2014; Zhang et al. 2019; Zheng et al.
2020). Two non-dimensional parameters are believed to play a key role in the problem
(Trulsen et al. 2020; Li et al. 2020). Specifically, these parameters are k0hd and hs/hd,
composed of three characteristic lengths; the characteristic wavelength λ0 = 2π/k0 (with
k0 the wave-number), and the two water depths hd and hs on the deeper and shallower
side, respectively.

Since the 1960s there have been extensive studies of waves over a varying bathymetry
that focus on other aspects. We review only those experimental studies most relevant
to this paper. Seminally, Beji & Battjes (1993) and Grue (1992) have examined changes
to spectral shape due to the amplification of bound harmonics in response to varying
bathymetry. As the first to systematically examine the role of depth transitions in
enhancing the probability of abnormally large waves, Trulsen et al. (2020) found there
can be a local maximum of the kurtosis and skewness of the surface elevation close to
the shallower side of a (1:20) underwater slope. Similar experiments were conducted and
analysed by Zhang et al. (2019). The sudden peak in kurtosis and skewness has also been
observed in the laboratory when waves propagate over a step (Bolles et al. 2019) and on
top of a shoal by (Trulsen et al. 2020). In addition, Monsalve Gutiérrez (2017) observed
free super-harmonic monochromatic waves at second order for weakly nonlinear regular
waves over a step.

This paper presents an experimental study which aims to validate and explore the
limitations of the second-order theory (in steepness) for narrow-banded surface gravity
wavepackets experiencing a sudden depth transition derived in a companion paper (Li
et al. 2020). Different from all previous experimental studies, which have examined
random or regular waves, we employ deterministic wave groups, which allow us to cleanly
examine the physical mechanism at work. This study considers vertical steps as well as
1:1 and 1:3 slopes and investigates a range of wave parameters and water depths.

This paper is laid out as follows. The theoretical framework employed is briefly reviewed
in § 2, where the focus is on the application of the theory rather than the derivation,
which is given in Li et al. (2020). The experimental matrix and setup are detailed in § 3.
§ 4 analyses the experimental results and compares to the theoretical model of Li et al.
(2020). Conclusions are drawn in § 5.

2. Review of the theoretical model of Li et al. (2020)

Before introducing our experiments, we briefly review the theoretical model in the
companion paper (Li et al. 2020). This theoretical model (i) is based on potential flow
theory neglecting surface tension, (ii) is correct to second order in wave steepness k0A,
where k0 and A are the carrier wavenumber and amplitude, (iii) is valid for wavepacket
of narrow bandwidth, and (iv) assumes the forcing of second-order terms by first-order
evanescent waves near the depth transition is negligible. Finally, for the sub-harmonic
bound and free waves at second order, we employ the additional assumption that the
packet is long relative to the water depth (see § 2.6.3 in Li et al. (2020)).
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Figure 1. Summary of studies of wave statistics affected by changes in bathymetry. In the
figure, the dimensionless group velocity cgω/g (where cg denotes the group velocity, ω is the
wave frequency, and g the gravitational acceleration) based on the linear dispersion relationship
is plotted (the red solid curve) as a function of dimensionless water depth kh (where h denotes
water depth, and k the wavenumber). The symbol  denotes the two ends of water depths
examined in the listed studies, from the depth on the shallower side khs to the deeper side khd.
In the figure, the parameters in the brackets respectively denote khs, khd, the slope gradient,
the method used (where FNPFS denotes fully nonlinear potential flow solver, NLS nonlinear
Schrödinger equation), and whether a local peak found is found at the top of the depth transition
(Y/N).

2.1. Governing equations and boundary conditions

We consider weakly nonlinear unidirectional waves propagating over an abrupt change
of depth. The abrupt depth change is modeled by a vertical wall, meaning that the
water depth changes from a constant hd to a constant hs at x = 0, with x denoting the
horizontal coordinate. This is illustrated in figure 2. It is assumed that hd > hs and that
the water depth is intermediate (kh = O(1)) on both sides of the step. Extremely shallow
water is not considered. The system can be described as a boundary value problem:

∇2Φ = 0 for − h(x) < z < 0, (2.1a)

D

Dt
(z − ζ) = 0, gζ +

∂Φ

∂t
+

1

2
(∇Φ)

2
= 0 for z = ζ(x, t), (2.1b)

∂Φ

∂z
= 0 for z = −h(x), (2.1c)

[Φ]x→0− = [Φ]x→0+ ,

[
∂Φ

∂x

]
x→0−

=

[
∂Φ

∂x

]
x→0+

for − hs < z < 0, (2.1d)[
∂Φ

∂x

]
x→0

= 0 for − hd < z < −hs, (2.1e)

in which Φ(x, z, t) is the velocity potential, ζ(x, t) is the surface elevation, and g is the
gravitational acceleration.
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2.2. Overall structure of the solutions

In Li et al. (2020) a perturbation expansion in the dimensionless wave steepness ε and a
multiple-scales expansion in the bandwidth parameter δ leads to approximate solutions of
the boundary value problem (2.1). The solutions are expressed as functions of an incident
wavepacket that is assumed known. Specifically,

ζ = ζI + ζR + ζEd for x < 0, ζ = ζT + ζEs for x > 0; (2.2a,b)

where the subscripts I, R, T , and E denote the incident, reflected, transmitted, and
evanescent waves, respectively; and d and s denote the deeper and shallower sides. Up
to the second order in steepness ε, the free surface can be expressed as

ζI(x, t) = εζ
(11,0)
I + ε2

[
ζ
(22,0)
I,b + δζ

(20,1)
I,b

]
, (2.3a)

ζR(x, z, t) = εζ
(11,0)
R + ε2

[
ζ
(22,0)
R,b + ζ

(22,0)
R,f + δ

(
ζ
(20,1)
R,b + ζ

(20,1)
R,f

)]
, (2.3b)

ζEd(x, t) = ε

N→∞∑
n=1

ζ
(11,0)
En︸ ︷︷ ︸

ζ
(11,0)
Ed

+ε2


N→∞∑
n=1

ζ
(22,0)
En︸ ︷︷ ︸

ζ
(22,0)
Ed

+δ

N→∞∑
n=1

ζ
(20,1)
En︸ ︷︷ ︸

ζ
(20,1)
Ed

 , (2.3c)

ζT (x, t) = εζ
(11,0)
T + ε2

[
ζ
(22,0)
T,b + ζ

(22,0)
T,f + δ

(
ζ
(20,1)
T,b + ζ

(20,1)
T,f

)]
, (2.3d)

ζEs(x, t) = ε

M→∞∑
m=1

ζ
(11,0)
Em︸ ︷︷ ︸

ζ
(11,0)
Es

+ε2


M→∞∑
m=1

ζ
(22,0)
Em︸ ︷︷ ︸

ζ
(22,0)
Es

+δ

M→∞∑
m=1

ζ
(20,1)
Em︸ ︷︷ ︸

ζ
(20,1)
Es

 , (2.3e)

where the superscripts (iq, j) denote the terms of O(εiδj) that are proportional to the
harmonics exp(iqψ0), with q = 0 corresponding to the sub-harmonic or ‘mean’ and q = 2
to the super-harmonic. The subscripts b and f denote the second-order bound and free
wavepackets, respectively.

In (2.3), we have only given those terms that we might expect to observe in our
experiments (see Li et al. (2020) for full details). At first order in wave steepness,

an incident wavepacket is reflected (Φ
(11,0)
R ) and transmitted (Φ

(11,0)
T ), complemented

by the generation of evanescent waves (Φ
(11,0)
Ed on the deeper side and Φ

(11,0)
Es on the

shallower side) near the step (cf. Massel (1983)). Both bound and free wavepackets can be
distinguished at second order. First, bound waves are generated by combinations of linear
waves, also arising in the absence of a step (cf. recent experiments by Calvert et al. (2019))
and propagating together with the main (first-order) wavepacket. When the bound waves
experience the depth transition, free waves are released in both directions. Free waves
satisfy the linear dispersion relation and, hence, propagate independently. It is these free
and bound second-order wavepackets that this paper will examine experimentally.

3. Experimental methodology

3.1. Set-up, wave generation and data acquisition

We carried out experiments in the 35 m flume in the COAST (Coastal, Ocean and
Sediment Transport) Laboratory at the University of Plymouth, UK. A schematic of the
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Figure 2. Diagram of test set-up including gauge, step, beach and wavemaker positions. Dashed
lines denote the locations of the slopes, when installed. The horizontal positions of the gauges
are listed in table 1.

Gauge no. 1 2 3 4 5 6 7 8

Position x (m) −1.88 −0.10 0.00 0.10 0.30 0.50 0.70 0.90

Gauge no. 9 10 11 12 13 14 15 16

Position x (m) 1.10 1.50 5.00 7.50 10.0 14.0 15.0 18.0

Table 1. Horizontal positions of the gauges relative to the top of the depth transition
(x = 0), as indicated in figure 2.

experiments is given in figure 2. The flume has a width of 0.6 m. It was filled to a depth
hd, and a false floor of a height of hstep = 0.35 m was installed from 7.5 m to 22.5 m away
from the wavemaker. Hence, the water depth on the shallower side is hs = hd−hstep

and
depends on the deeper water depth hd, which is varied in the experiments whilst keeping
h

step
constant. In our experiments, we set hd to be 0.55 m and 0.75 m.

We used a double-element piston-type wavemaker to generate a focused wave group
with a narrow-banded Gaussian spectrum that linearly focuses to a Gaussian packet in
space.

AI(x, t) = A0 exp

(
−

(x− xf − cg0(t− tf))2

2σ2

)
(3.1)

in which A0 is the focused wave amplitude for a uniform depth hd at a measurement
zone located at xf = 1.0 m (i.e. 8.5 m from the resting position of the wavemaker) and
at tf = 32 s; cg0 is the group velocity of the carrier wave on the deeper side, and σ is
the characteristic envelope length that leads to δ = 1/(k0σ). We note that the focused
amplitude As on the shallower side differs from the input A0 by a factor of |T0| where T0
denotes the transmitted coefficient for the linear carrier wave, i.e. As = |T0|A0. A total of
16 resistance-type wave gauges provided 128 Hz free surface elevation measurements at
different locations depicted in figure 2 and defined in table 1. The measured free surface
signals, not the input signal, provided the parameters used to predict the theoretical
surface elevation for each experiment.

The wave paddles are controlled by a first-order signal, and hence both super- and
sub-harmonic error waves (Schäffer 1996) are expected to be generated, which have
to be taken into account when analysing the experiments. After propagating through
the measurement zone, the dispersed wave packets were absorbed by mesh-filled wedges
within an absorption zone located at the downstream end of the wave flume.

3.2. Experimental matrix

The main set of experiments are outlined in table 2. These consist of steps with
two depth ratios hs/hd and a range of different peak frequencies f0 (or ω0) for each
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Cases f0 hd
hs

hd
k0hd k0shs ε δ Cases f0 hd

hs

hd
k0hd k0shs ε δ

(Hz) (m) (Hz) (m)

A1 0.60 0.55 0.36 1.03 0.57 0.04 0.1 B1∗ 0.55 0.75 0.53 1.13 0.76 0.06 0.1

A2 (C2,D2) 0.65 – – 1.15 0.62 0.04 0.1 B2∗ 0.7 – – 1.60 1.02 0.08 0.1

A3 (C3,D3) 0.70 – – 1.27 0.67 – – B3 0.8 – – 2.00 1.22 0.08 0.1

A4 (C4,D4) 0.75 – – 1.40 0.73 – – B4 1.05 – – 3.34 1.86 0.08 0.1

A5∗ (C5,D5) 0.80 – – 1.55 0.79 – – B5 1.4 – – 5.92 3.17 0.08 0.1

A6 (C6,D6) 0.85 – – 1.71 0.85 – –

A7 (C7,D7) 0.90 – – 1.88 0.91 – –

A8 (C8,D8) 0.95 – – 2.06 0.97 – –

Table 2. Parameters of the main set of experiments. In the table, ε = k0A0 and δ = 1/(k0σ);
the sets A and B are for steps with hd = 0.5 m and 0.75 m, respectively; the sets C and D are
for slopes of 1:1 and 1:3, respectively. Cases with a ‘*’ have been repeated at least 3 times.

depth. In addition, for hd = 0.55 m, two sloped seabed structures with 1:1 and 1:3
slopes were examined with different frequencies f0. The wave frequencies were chosen to
guarantee that the depths on both sides of the abrupt depth transition are intermediate.
The different frequencies and depth ratios are chosen to examine the effects of both
the depth ratio hs/hd and wave frequencies. The wave steepness ε = k0A0 and band-
width δ = 1/(k0σ) were carefully selected and tested such that second-order effects are
measurable but small enough that higher-order effects (i.e. O(δ2ε, ε3) due to linear and
non-linear dispersion, respectively) do not play a significant role. The envelope length
is long compared to the carrier wavelength and, thus, the narrow-banded wavepacket
approximation is valid. The cases that were repeated 3 times are marked with a ‘*’ in
table 2. Estimates of measurement errors are presented for in appendix B, including an
examination of repeatability in appendix B.2.

4. Results and discussion

This section discusses the experimental results, comparing to theoretical predictions
using the model and solutions presented in the companion paper (Li et al. 2020). The
new physical mechanism, as evident in the measured data, is presented in § 4.1 and its
consequences for skewness in § 4.2. The role of the two most relevant non-dimensional
parameters, the carrier wavelength relative to the water depth k0hd and the depth ratio
hs/hd, is examined in § 4.3 in a quantitative comparison to theory focusing on maximum
surface elevation. Results for the two slopes are compared to results for the step in § 4.4.

4.1. Generation of free waves and local behaviour

In order to examine the sub- and super-harmonic content of the time-domain mea-
surements of the surface elevation at different locations, we separate the signals using
frequency-domain filtering, which is described in detail in appendix A. Effectively, this
leads to the separation of the wave harmonics that arise at different orders in ε and
include the (first-order) first harmonics ζ(1), the (second-order) sub-harmonics ζ(20,1)

and super-harmonics ζ(22,0).
To illustrate the new physical mechanism, we examine in detail case A5 in figures 3,
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Figure 3. Energy spectra of surface elevation as a function of frequency at different gauge
positions for cases A5, A2, B1 and B2. The left column shows measured data at gauges 1
(x = −1.99 m), 9 (x = 1.10 m) and 14 (x = 14.0 m); the right column the theoretical results
versus the measured data at gauge 9. In the figure , f0 is the carrier wave frequency.

4, 5 and 6. Three additional cases, which illustrate qualitatively similar behaviour, are
presented in appendix C. The results from both the theoretical model in Li et al. (2020)
and the experiments are shown. The surface elevations in figures 4 and 13 are scaled by
the measured linear peak amplitude As = |T0|A0 at gauge 9 on the shallower side. We
note that, in the experiments, the linear wavepackets did not focus exactly at any of the
gauges. As was thus calculated from the spectra of linear waves at gauge 9 where linear
packets were close to focus.

The energy spectra for four cases are shown in figure 3, in which (a) shows the
experimental data at three gauges and (b) the comparisons of the wave energy between
experiments and theory at gauge 9. It can be clearly observed in figure 3(a) that energy
near 3 × f0 is three to four orders of magnitude smaller than the energy near 1 × f0,
as expected for the small ε in the experiments. This indicates the third-order effects are
small and thus negligible for the four cases selected. Hence, the theory in Li et al. (2020),
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Figure 4. Measured and theoretically predicted surface elevation separated out by harmonic
and compared to theory for case A5. In the figure, all surface elevations are scaled by the linear
peak amplitude As = |T0|A0 measured at gauge 9; panel (a) shows the position before the step;
panel (b) near the step on the shallower side; panel (c) far downstream of the step.

which is correct to second order in ε, is valid for these experiments. This is confirmed
by figure 3(b), where generally good agreement between experiment and theory for the
second-order sub-harmonic (ζ(20,1)) and super-harmonic terms (ζ(22,0)) is demonstrated,
with better agreement for the latter than for the former.

The top panels of figure 4 present the total surface elevation (ζ(1) + ζ(2)) for case
A5 at the three gauges before, just after and far downstream of the step. Generally
good agreement between the theory and experiments is shown for the total surface
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elevation. The differences at x = 14 m shown in figure 4(c) are mainly due to the effects
of linear dispersion. The theory is based on the narrow-bandwidth assumption causing
wavepackets to travel without change in form and ignoring dispersion; over long distances
this assumption is violated. The total surface elevation at gauge 1 (just before the step)
shows close-to-linear properties as the trough and crest of the wavepacket differ by only
∼ 5%. In contrast, the nonlinear behaviour at gauge 9 (after the step where the linear
packet is close to focus) is obvious as the wave crest is larger than the trough by ∼ 20%.
The nonlinear behaviour at gauge 9 leads to the total surface elevation being vertically
skewed in the region near the top of the step. We will now examine in detail super- and
sub-harmonics.

4.1.1. Free and bound super-harmonics ζ(22,0)

On the deeper side, at gauge 1 (x = −1.88 m) in figure 4, the bound super-harmonic
wavepacket has a magnitude of approximately 5% of the linear packet. This is in
agreement with the theoretical prediction. A careful reader may also observe, a long
time after the main packet, a packet of spurious super-harmonic error waves associated
with linear generation at the paddle (cf. Schäffer (1996)).

The super-harmonics are significantly different after the step, i.e. at gauges 9 and
gauge 14. Two distinct aspects can be identified if comparison is made between before
and after the step. First, there is significant amplification of wave amplitudes: by a
factor of 10 at gauge 9 and a factor of 5 at gauge 14. Second, in addition to the super-
harmonic packet bound to the linear, a free super-harmonic packet has separated from
the linear packet at gauge 14, as predicted in the theoretical model in Li et al. (2020).
This packet can be identified as free because it propagates at a speed that is different
from the main packet and satisfies the linear dispersion relationship, as examined below.
The large amplification of the super-harmonic at gauge 9 relative to gauge 14 is a result
of the bound and free super-harmonic packets overlapping. Due to their different speeds
of propagation, they separate after a distance with the free packet lagging behind. The
energy spectrum associated with case A5 in figure 3 further confirms the amplification
of the super-harmonic components at gauges 9 and 14 compared to gauge 1.

Figure 5 shows the spatio-temporal evolution of the super-harmonic components. The
bound super-harmonic packet propagates at the group velocity of the linear packet cg0s,
and the free super-harmonic packet at the group velocity of the free carrier-wave at 2×f0,
cg,20s:

cg0s =
1

2

ω0

k0s

(
1 +

2k0shs
sinh 2k0shs

)
, cg,20s =

ω0

k20s

(
1 +

2k20shs
sinh 2k20shs

)
, (4.1a,b)

in which cg0s (k0s) and cg,20s (k20s) are the group velocities (wavenumbers) of the
linear carrier wave and the super-harmonic free carrier wave on the shallower side,
respectively. In particular, the wavenumbers k0s and k20s satisfy the dispersion relations
ω2
0 = gk0s tanh k0shs and (2ω0)2 = gk20s tanh k20shs, respectively.
The separation of the bound and free packets can be clearly seen as they propagate

away from the step at x = 0 m. The separation becomes obvious for gauge positions
x > 5 m. The propagation speeds and directions of various packets are illustrated by the
straight lines with arrows. Evidently, cg,20s < cg0s, so that the bound packet arrives first
followed by the free super-harmonic packet (cf. gauge 13 at x = 10 m).

4.1.2. Free and bound sub-harmonics ζ(20,1)

Compared to the super-harmonic waves, the sub-harmonic waves have a smaller
magnitude for case A5 shown in figure 4 (and likewise for the other three cases shown in
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Figure 5. Spatio-temporal evolution of super-harmonic wavepackets associated with case A5.

appendix C). When the sub-harmonic bound packet, which takes the form of a set-down,
experiences a depth transition, its magnitude increases, and a free ‘set-up’ is generated
on the shallower side. Their combined effect has three aspects, as illustrated in figures
4 and 6. First, the free set-up propagates at (approximately) the shallow water speed√
ghs, which is larger than the bound set-down that propagates at the group speed of the

main carrier wave on the shallower side cg0s (cg0s <
√
ghs). This leads to the free set-up

separating from the main packet and its set-down after a certain distance away from the
step. Second, the magnitude of the effective set-down near the step on the shallower side
becomes larger as we move away from the step and the free set-up propagates ahead
faster. Third, the magnitude of the set-down becomes steady when the free and bound
packets no longer overlap, as shown in figure 6.

For completeness, we note that agreement with theory in figure 4 ahead of the step is
less good due to spurious sub-harmonic error waves associated with linear generation at
the paddle (cf. Schäffer (1996) and the experiments by Calvert et al. (2019)). The rapidly
travelling free set-up is poorly absorbed by the beach at the end of the flume, is reflected
and travels back, as shown by the rightmost arrow in figure 6.

4.2. Increased skewness near the depth transition

As we have noted in § 4.1, the maximum surface elevation can be significantly enhanced
near the top of a depth transition due to second-order effects. As discussed in Li et al.
(2020), there exists a peak location xp that corresponds to the location where the second-
order super-harmonic bound and free waves are in phase and the crest elevation thus
reaches a maximum. One direct consequence of this is that the surface elevations at
this location are strongly vertically skewed. We illustrate this in figure 7, where the
total surface elevation at the location maximum crest elevation is observed is shown for
three representative cases: A1, A2, and B2. Because the positions of the wave gauges are
fixed, the maximum surface elevation measured in experiments may be different from
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Figure 6. Spatio-temporal evolution of sub-harmonic wavepackets associated with case A5.

the overall maximum. This is demonstrated in figure 7, where the surface elevations at
the theoretically predicted peak locations are shown in the bottom row. We do not have
measurements at these theoretically predicted peak locations.

Figure 7 illustrates that the crest elevation can be larger than the trough by 75%, 60%,
and 45% for cases A1, A2 and B2, respectively. The additional elevation significant pushes
the limits of the perturbation expansion, as evident from the locally non-monotonous
behaviour in the trough in figure 7(d-e). Nevertheless, the good agreement between theory
and experiments in figure 7(a-c) demonstrates that the theoretical model works well for
the cases presented here (ε = 0.04-0.08).

4.3. Quantitative comparison with theory and the role of depth

We now proceed to investigate the role of the most important non-dimensional pa-
rameters of the problem: the carrier wavelength relative to the deeper water depth k0hd
and the depth ratio hs/hd. The scaled maximum crest elevation as a function of k0hd is
shown in figure 8 for the two depth ratios we have examined (hs/hd = 0.36 and 0.53),
comparing experiments with theory. Several things can be noted from figure 8. First,
there is generally good agreement between the theory and experiments for all k0hd and
for both depth ratios. The increase in maximum crest elevation is predominantly due to
the super-harmonic terms, with the sub-harmonic terms being small. Second, both super-
harmonic bound and free waves increase in magnitude as k0hd decreases. The amplitude
of the free waves is larger than the bound waves for k0hd . 1.6 for hs/hd = 0.36,
but always smaller for hs/hd = 0.53. Third, the increase in maximum crest elevation is
generally larger for a smaller depth ratio hs/hd (figure 8(a) vs. 8(b)). Fourth, owing to
the fixed gauge positions, we are observing increases in maximum crest elevation of up
to ∼ 35%, but not the even larger increases of ∼ 75% predicted at the peak locations for
the smallest depth ratio and small k0hd.
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Figure 7. Vertically skewed waves for cases A1, A2 and B2 at the locations of maximum
amplitude in the experiments (top row) and in theory (bottom row). The amplitude is scaled
by the linear peak amplitude (As = |T0|A0) measured at gauge 9.

4.4. Steep slopes compared to a step

In this section, we extend our study from a step to a slope. Specifically, we examine
two steep slopes: a 1:1 slope and a 1:3 slope (see table 2, cases C5 and D5, which we
compare to A5) and consider time series and maximum surface elevation in turn.

4.4.1. Time series

A time-series comparison is presented in figure 9, where the different harmonics are
shown. The step and the two slopes demonstrate qualitatively the same physics with
minor quantitative differences in amplitude and phase. This is confirmed in the zoomed-
in time series in figure 9(d): all three experiments are in phase before the depth change
(i.e. at gauge 1, x = −1.88 m). Downstream of the depth change, at x =1.10 m shown in
figure 9(e), there is a clear phase difference for the 1:3 slope in the total, linear and super-
harmonic signals compared to the step and the 1:1 slope, which remain in phase. We note
that, at this location, the super-harmonic phase difference is a result of the combined
phase of the free and bound super-harmonics. Further downstream of the depth change,
at x=14.0 m shown in figure 9(f,g), there is an even greater phase difference observed for
the free super-harmonic packet (figure 9(g)) than for the bound super-harmonic packet
(figure 9(g)).

4.4.2. Maximum surface elevation amplitudes

Assessing the maximum crest elevation, figure 9 shows only small visual differences
for the two slopes and the step. For a clearer assessment of the variation in amplitudes,
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Figure 8. Maximum crest elevation at gauge 9 (x = 0.90 m) as a function of k0hd. In panel
(a), the circles show cases A1-A8 with hs/hd = 0.36 (b) cases B2-B5 with hs/hd = 0.53.

post processing was carried out to estimate the amplitude of the separated free and
bound super-harmonic packets for all of the cases with different slopes: cases A2–8 (1:0),
C2–8 (1:1) and D2–8 (1:3) in table 2. This was done using peak extraction applied to
the Hilbert transform of the filtered super-harmonic signal as described in appendix
A.2. This approach enables a consistent estimate of the amplitudes of the packets to
be obtained even when the free and bound harmonics are not fully separated. We note
that the amplitude obtained from this technique should differ from the true like-for-like
focused amplitude. However, this does not affect the validity of the comparisons.

The normalised separated amplitudes of the free, bound and total (sum of free and
bound) super-harmonic wavepackets are presented in figure 10 as a function of k0hd.
Also shown in figure 10 are the separated amplitude values obtained from three repeats
of the k0hd = 1.55 cases for each of the slopes (A5, C5, D5). The right subplot shows
a zoomed-in version of the separated harmonics corresponding to the black box on the
main (left) subplot. Assessing the second-order bound super-harmonics in figure 10, it
is evident that the amplitudes are not greatly affected by the gradient of the slope.
The free super-harmonic wavepackets, however, appear to reduce in amplitude as the
gradient reduces. This is observed consistently across k0hd except for the highest value
tested. The unchanged bound and smaller free harmonics result in a reduction in the
total super-harmonic amplitude with reduced slope gradient. Although relatively small
differences are observed, steeper slopes are therefore expected to result in larger crest
height values near the depth transition and are hence more likely to induce extreme
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Figure 9. Top row (a–c): time series of the different harmonics at three gauge positions for
three different slopes; bottom row (d–g): zoomed-in versions of the same time series. In the
figure, Tp = 1/f0 denotes the wave period of the carrier wave.
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Figure 10. Amplitudes of the free and bound super-harmonic packets extracted from the
experiments relative to the linear focused wave amplitude As = |T0|A0 as a function of
non-dimensional water depth k0hd for different slopes. The right subplot shows a zoomed-in
area for the cases for which repeated experiments have been carried out.

wave events. Assessing the values of the repeats (right subplot) demonstrates that the
extracted amplitude values are consistent.

Despite the differences shown in figure 9 and figure 10, the overall trend is that the
differences in both phase (. 3%) and amplitude (. 5%) are small between the different
depth transitions. This demonstrates that the theoretical model derived in Li et al. (2020)
can be an effective model for second-order waves experiencing a steep slope.

5. Conclusions

In this paper we have examined experimentally the effect of an abrupt depth transition
on the evolution of a surface gravity wavepacket that ‘feels’ the depth transition with a
focus on the effects arising at second order in steepness. Experimental results for a step
have been compared to the theoretical model derived in the companion paper (Li et al.
2020), examining two depth ratios. Additionally, the effect of replacing a step by (steep)
1:1 and 1:3 slopes has been examined. The following conclusions can be drawn.

First, we have experimentally validated the second-order narrow-banded wave theory
derived in Li et al. (2020) for surface wavepackets experiencing an abrupt depth transi-
tion. The following new physics identified in Li et al. (2020) is observed experimentally
here. As the main (linear) wavepacket propagates over the step, bound waves at second
order change magnitude, and freely propagating wavepackets are released. Specifically,
free super-harmonics and sub-harmonics at second-order are out of phase with their their
bound counterparts and propagate at different speeds from the group velocity of the main
(linear) packet. This leads to rich local behaviour near the top of a depth transition. The
different harmonics overlap locally, and the superposition of those harmonics leads to an
overall maximum crest amplitude at a location that we refer to as the ‘peak location’.
The free components separate from the main packet after a certain distance.

Second, for a step, a quantitative comparison can be made between the maximum
crest amplitude measured and predicted by theory. For the steepness considered here,
the second-order theory, which agrees with the experimental results, suggests that the
maximum wave amplitude can become as large as 175% of the incident linear focused
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wave amplitude at the peak location, mainly as a result of the superposition of different
wave harmonics at up to second order in wave steepness. This leads to a surface elevation
that is strikingly vertically skewed; the wave crest can be larger than the trough by 75%,
a much greater difference than would be expected from bound waves alone. The authors
conjecture that the vertically skewed surface elevation and the considerable amplification
of the wave amplitude explains the local change in wave statistics for random waves
observed near the top of the depth transition in a series of papers reviewed in Trulsen
(2018). Future work will explore this further.

Finally, experiments with three different slopes (i.e. a step and 1:1 and 1:3 slopes)
have shown only minor changes in phase and amplitude of the second-order free super-
harmonic components. This suggests that the theoretical model derived in Li et al. (2020)
can be an effective model for steep slopes, at least those with gradients larger than 1:3.
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Appendix A. Post-processing using frequency filtering and the
separation of different wave harmonics

A.1. Filtering harmonics

To separate the linear, super-harmonic and sub-harmonic components of the surface
elevations, frequency domain filters were applied. These were implemented by taking a
single-sided Fast Fourier Transform (FFT) of the surface elevation, then an inverse FFT
(IFFT) of the frequency components allocated to the harmonics. The lower and upper
frequency bounds of these harmonics are taken, considering the bandwidth of the input
spectrum, as

flower,N = Nf0 − 2δ, fupper,N = Nf0 + 2δ, (A 1a,b)

where N = 0, 1, 2 for sub-harmonic, linear, and super-harmonic wave components
respectively. This process is depicted in figure 11 for case A5 at gauge 9. The total time-
series corresponding to the total spectrum is shown, along with the separated harmonics.
The corresponding frequency bounds used for the filtering process are indicated by the
colours and the dashed lines in the energy density spectrum, which correspond to the
colours of the presented filtered surface elevations.

A.2. Separation of free and bound super-harmonics

As the super-harmonic signal is made up of free and bound components, additional
analysis is required to separate these, in order to compare their relative amplitudes (see



Wavepackets subject to an abrupt depth change: experiments 17

Figure 11. Filtering approach for the extraction of wave harmonics demonstrated for case A5
at gauge 9.

Figure 12. Filtering approach used to extract amplitudes of free and bound super-harmonics
shown for case A3 at gauge 14.

figure 10). To achieve this, for each case a gauge is identified where the free and bound
super-harmonics are well separated. A Hilbert transform is then applied to the signal,
and the locations and amplitudes of the peaks of the absolute Hilbert transform are
identified. These peak values are taken as the representative amplitudes of the separated
free and bound super-harmonic wavepackets. This process is shown in figure 12 for case
A3, where gauge 14 is used. The second peak is identified as the magnitude of the free
super-harmonic wavepacket due to its lower group velocity.

Appendix B. Error analysis and repeatability

This section quantifies the experimental errors. The potential errors in the wave gauge
measurements are assessed in § B.1, with those from other sources (e.g. changes in
water depth from evaporation, wavemaker irrepeatability, noise etc.) assessed through
repetition of experiments (§ B.2).

B.1. Wave gauge error

During experiments, calibration was carried out each morning using a three-point
calibration. Gauges were positioned at known z positions of 0.05 m, -0.05 m & 0 m and
a linear fit applied between these positions and the measured voltages. The predicted
surface elevations from this fit were compared with the known positions to provide a
representative error, taken as the mean standard deviation (over all calibrations and
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Cases r̄2 (total) r̄2 (linear) r̄2 (super-harmonic) r̄2 (sub-harmonic)

A2 0.9993 0.9999 0.9884 0.9924
A5 0.9992 0.9996 0.9950 0.9933
B1 0.9986 0.9991 0.9907 0.9809
B2 0.9997 0.9999 0.9984 0.9957

Table 3. Mean coefficients of determination between three repeats over and all gauges for
cases A2, A5, B1 and B2 separated out by harmonics.

Cases σ̄ (total) [×10−4 m] σ̄ (linear) [×10−4 m] σ̄ (super) [×10−4 m] σ̄ (sub) [×10−4 m]

A2 0.7933 0.3334 0.4661 0.1636
A5 0.9450 0.6693 0.3296 0.2056
B1 3.394 3.012 1.402 1.186
B2 1.884 1.170 0.7808 0.6347

Table 4. Mean standard deviations between three repeats, and all gauges, for cases A2, A5,
B1 and B2 separated out by harmonics.

every gauge) between the measured and predicted values. The resulting mean error value
is 2.469×10−4 m with a standard deviation of 2.061×10−4 m (over all calibrations and
every gauge). Gauge drift over a day was analysed in detail and found to be negligible.

B.2. Repeatability

To assess the repeatability of the tests, three repeats were carried out for four of the
experiments defined in table 2: A2, A5, B1, B2. The mean coefficient of determination
between each repeat and every other repeat, averaged over all gauges is shown in table
3. This is shown for the total measured time series, along with the filtered linear, super
and sub-harmonic components. Very high repeatability is observed, despite some repeats
being carried out on different days. In general, slightly reduced repeatability is evident for
the (much smaller) sub-harmonic components. The equivalent mean standard deviations
are shown in table 4, noting that they roughly vary proportionally with the focused wave
amplitude.

Appendix C. Time histories for cases A2, B1 and B2

Three additional cases shown in figure 13 demonstrate qualitatively similar behaviour
to case A5, including the local processes near the top of a depth transition and the release
of free wavepackets as a result of waves interacting with the step.
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