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This paper develops second-order theory for narrow-banded surface gravity wavepackets
experiencing a sudden depth transition based on a Stokes and multiple-scales expansion.
As a wavepacket travels over a sudden depth transition, additional wavepackets are
generated that propagate freely obeying the linear dispersion relation and arise both
at first and second order in wave steepness in a Stokes expansion. In the region near
the top of the depth transition, the resulting transient processes play a crucial role.
At second order in wave steepness, free and bound waves coexist with different phases.
Their different speeds of travel result in a local peak a certain distance after the depth
transition. This distance depends on the water depth hs relative to the carrier wavelength
on the shallower side λ0s. We validate our theory through comparison with fully nonlinear
numerical simulations. Experimental validation is provided in a companion paper (Li
et al. 2020). We conjecture that the combination of the local transient peak at second
order and the magnitude of the linear free waves provides the explanation for the rogue
waves observed after a sudden depth transition reported in a significant number of papers
and reviewed in Trulsen et al. (J. Fluid Mech., vol. 882, R2, 2020).

1. Introduction

There is considerable engineering and scientific interest in the probability of large
waves occurring in the ocean. Large waves which occur more frequently than predicted by
standard linear theories are sometimes termed ‘rogue’ or ‘freak’ waves. Various physical
mechanism are known to generate abnormal wave statistics as reviewed by Dysthe et al.
(2008); Onorato et al. (2013); Adcock & Taylor (2014). A convenient, and commonly
used, proxy for the number of rogue waves is the kurtosis (or excess kurtosis) of the free
surface (Mori & Janssen 2006).

In the last decade, a number of studies have suggested that a transition of water depth
could play an important role in an enhanced occurrence probability of extreme waves
(Sergeeva et al. 2011; Onorato & Suret 2016; Trulsen 2018; Majda et al. 2019). This
phenomenon has been demonstrated both numerically (Sergeeva et al. 2011; Gramstad
et al. 2013; Viotti & Dias 2014; Ducrozet & Gouin 2017; Zhang et al. 2019) and
experimentally (Trulsen et al. 2012; Zhang et al. 2019; Bolles et al. 2019; Trulsen et al.
2020). To date, a number of accidents have been reported that were seemingly caused by
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rogue waves in finite and shallow water depth (Chien et al. 2002; Nikolkina & Didenkulova
2011). This also suggests the role of a varying bathymetry in causing extreme wave events
in the real world.

The mechanism causing the enhanced kurtosis at the top of slopes remains an open
question, although a number of authors have pointed to the role of second-order com-
ponents in wave steepness (Gramstad et al. 2013; Zhang et al. 2019; Zheng et al. 2020).
Waves will interact with slopes in various ways (see reviews and books such as Dingemans
(1997); Madsen et al. (1997); Booij et al. (1999); Madsen & Schäffer (1999); Holthuijsen
(2010)). Of particular relevance for the present study are the investigations of the
interplay of bound and free waves (Foda & Mei 1981; Mei & Benmoussa 1984; Battjes
et al. 2004).

A useful limiting case for wave-bathymetry interaction is that of waves passing over
a step, where the depth changes from one limiting (non-zero) value to a second limiting
(non-zero) value, as defined in Newman (1965) and shown in figure 1. Most relevant
studies have only considered linear waves and proposed various methods to deal with the
presence of a step in a potential flow, as challenges exist due to the discontinuity caused
by the step. Some example methods are the Green’s function method proposed in Rhee
(1997), wavemaker theory (Newman 1965; Havelock 1929), the long-wave approximation
(Mei et al. 1989), the Galerkin-eigenfunction method (e.g. Fletcher (1984); Massel (1983,
1993); Belibassakis & Athanassoulis (2002, 2011)), and direct numerical computations
(Mei & Black 1969; Kirby & Dalrymple 1983). These investigations of the leading-order
physics show that when the wave ‘feels’ a step in the seabed, then the wave will be
partially reflected and partially transmitted. Moreover, the transmitted wave amplitude
can be as large as double the incident wave and as small as zero in the limit in which a
step becomes a wall throughout the water column (Kreisel 1949).

For steeper waves passing over steps, second-order effects in wave steepness become
significant. Massel (1983) derived second-order results for monochromatic waves. Specif-
ically, he found that second-order super-harmonic free waves are released as a result of
weakly nonlinear waves interacting with a step, and the interplay of the super-harmonic
free and the super-harmonic bound wave may result in beating near the top of the depth
transition. The beating length is 2π/(k20 − 2k0), in which k0 is the wavenumber of the
linear monochromatic wave and k20 of the free second-order super-harmonic component,
and this beating leads to a maximum of the super-harmonic wave crest up to twice as
large as the super-harmonic bound wave. This beating phenomenon has been confirmed
experimentally (Monsalve Gutiérrez 2017).

The present paper and its companion paper (Li et al. 2020) extend the work of Massel
(1983) with the objective of explaining the mechanism behind increases in excess kurtosis
observed at the top of slopes. In order to do so, this paper develops analytical solutions
for narrow-banded wavepackets experiencing a sudden depth transition in the form of
a step using a Stokes expansion up to second order in wave steepness. These solutions,
which extend the results by Massel (1983) for monochromatic waves to wavepackets,
capture the release of both sub- and super-harmonic second-order free waves at the step.
We validate these solutions by comparing to a fully nonlinear potential-flow model in the
present paper and to experiments in a companion paper Li et al. (2020).
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2. Theoretical model

2.1. Problem definition

We consider a unidirectional surface gravity wavepacket propagating in a region with an
abrupt change of water depth in the framework of two-dimensional potential-flow theory,
neglecting the effects of viscosity and surface tension. The bathymetry is illustrated in
figure 1. The water depth h(x) changes abruptly from a constant hd to hs at x = 0,
with x the horizontal coordinate. We assume hd > hs, and the water depths can be
deep (kh� 1, with k the wavenumber), intermediate (kh = O(1)), or shallow (kh� 1)
compared to the characteristic wavelength. The undisturbed water surface is located at
z = 0. The system can be described as a boundary value problem governed by the Laplace
equation:

∇2Φ = 0 for − h(x) 6 z 6 ζ(x, t), (2.1)

where Φ(x, z, t) is the velocity potential, and ζ(x, t) is the free surface elevation. Equation
(2.1) should be solved subject to nonlinear kinematic and dynamic boundary conditions
at the free surface,

D

Dt
(z − ζ) = 0 and gζ +

∂Φ

∂t
+

1

2
(∇Φ)

2
= 0 for z = ζ(x, t), (2.2a,b)

where g is the gravitational acceleration; a bottom boundary condition,

∂Φ

∂z
= 0 for z = −h(x); (2.3)

continuity of the potential and its horizontal derivative in the fluid exactly above the
step,

[Φ]x→0− = [Φ]x→0+ and

[
∂Φ

∂x

]
x→0−

=

[
∂Φ

∂x

]
x→0+

for − hs 6 z 6 ζ(x, t); (2.4a,b)

and a no-flow boundary condition on the step wall,[
∂Φ

∂x

]
x→0−

= 0 for − hd 6 z < −hs. (2.5)

2.2. Stokes and multiple-scales expansions

In order to solve the boundary value problem (2.1)-(2.5), the unknown Φ and ζ are
expressed as series solutions in the wave steepness ε = k0A (a so-called Stokes expansion),
with k0 and A denoting the characteristic wavenumber and wave amplitude, respectively,

Φ = εΦ(1) + ε2Φ(2) +O(ε3) and ζ = εζ(1) + ε2ζ(2) +O(ε3), (2.6a,b)

where we consider up to the first two orders. Substituting (2.6) into the the boundary
value problem (2.1)-(2.5) leads to a collection of terms at the first two orders in ε, which
can be solved successively, as presented in §2.5 and §2.6, respectively.

We consider a narrow-bandwidth or quasi-monochromatic wavepacket that, at least
in the absence of the step, can be considered as a carrier wave whose amplitude varies
slowly in both space and time (e.g. Mei et al. (1989)). Both slow and fast scales are
introduced in a multiple-scales expansion. Let ψ0 = k0x0−ω0t0 +µ0 be the phase of the
carrier wave, where ω0 is the angular wave frequency, µ0 is an arbitrary phase shift, and
x0 and t0 are the fast scales. We allow for slow variation of the carrier wave amplitude
packet in the form of A(X,T ), in which X = δx0 and T = δt0 are the slow scales, and
δ is the scale separation parameter of the problem and a measure of the bandwidth of
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Figure 1. Diagram of the bathymetry and coordinate system adopted. In
the diagram, we have used a narrow-banded wavepacket with surface elevation
ζ(x) = A exp[−(x− x0)2/(2σ2)] cos(k0x), where 4σ denotes the characteristic length of a
Gaussian packet, x0 = 2σ, A is the amplitude, and k0 denotes the carrier wavenumber
(λ0 = 2π/k0 the carrier wavelength); hd and hs denote the water depth on the deeper and
shallower sides, respectively.

the wavepacket. In previous work, notably in Mei et al. (1989); Yuen & Lake (1975);
Dysthe (1979), the two small parameters are commonly set to be of the same order (i.e.
O(δ) = O(ε)), resulting in the derivation of a third-order packet equation of the nonlinear
Schrödinger type. Herein, we do not make this assumption and focus only on the first
two orders in the steepness ε. Consequently, all the components will evolve according to
the linear dispersion relationship or, for second-order bound waves, that of their linear
parent waves. Derivative operators can be written in terms of a combination of fast and
slow derivatives,

∂x = ∂x0 + δ∂X +O(δ2) and ∂t = ∂t0 + δ∂T +O(δ2). (2.7a,b)

Our assumption of a narrow-banded or quasi-monochromatic wavepacket that evolves
slowly in time applies to the incoming and, consequently, to the transmitted and reflected
wavepackets. Although the incoming, transmitted and reflected wavepackets are slowly
varying in space away from the step, they are discontinuous at this location and need to
be matched according to (2.4)-(2.5) to ensure continuity, resulting in the generation of
evanescent waves. We will examine this further below.

2.3. Description of the incoming wavepacket

Following Mei et al. (1989) and Massel (1983), we express the incoming wavepacket to
leading order as

ΦI = ε
(
Φ
(11,0)
I + δΦ

(11,1)
I +O(εδ2)

)
︸ ︷︷ ︸

εΦ(1)

+ ε2
(
Φ
(22,0)
I + δΦ

(20,1)
I +O(ε2δ2)

)
︸ ︷︷ ︸

ε2Φ(2)

+O(ε3), (2.8)

which is valid for x 6 0, i.e. over the flat seabed to the left of the step. The superscript
(mn, j) denotes the term of O(εmδj) that is proportional to the harmonic exp(inψ0),
with n = 0 corresponding to the bound sub-harmonic or ‘mean flow’, and n = 2 to the
bound super-harmonic (only the real part of exp(inψ0) is understood). An analogous
equation to (2.8) describes the free surface elevation of the incoming wavepacket ζI , and
we proceed to express all the solutions in terms of the packet of its lowest-order term.



Surface wavepackets subject to an abrupt depth change. 5

Specifically, we assume:

εζ
(11,0)
I = AI(X − cg0T ) cosψ0, (2.9)

where the amplitude packet AI is real, cg0 is the group velocity, and the dependence of
AI on X−cg0T is based on the solvability condition (13.2.29) in Mei et al. (1989). Hence,
the potentials of the incoming wavepacket at different orders are expressed as (Mei et al.
1989; Massel 1983; Calvert et al. 2019)

Φ(11,0) =
gAI(X − cg0T )

ω0

cosh k0(z + hd)

cosh k0hd
sinψ0, (2.10a)

Φ
(11,1)
I = − g∂XAI(X − cg0T )

ω0

(z + hd) sinh k0(z + hd)

cosh k0hd
cosψ0, (2.10b)

Φ
(22,0)
I =

3ω0A
2
I(X − cg0T )

8

cosh 2k0(z + hd)

sinh4 k0hd
sin 2ψ0, (2.10c)

Φ
(20,1)
I =

κm∫
−κm

igω0κÊ(κ)B(k0)

gκ tanh δκhd − δc2g0κ2
cosh δκ(z + hd)

cosh δκhd
eiκ(X−cg0T )dκ, (2.10d)

Ê(κ) =
1

4π

∫ ∞
−∞

A2
I(X − cg0T )e−iκXdX, (2.10e)

B(k0) =
1

tanh k0hd

[
cg0
2c0

(1− tanh2 k0hd) + 1

]
, (2.10f )

where κm (0 < κm � k0) is the maximum wavenumber of the packet resulting from the
assumption of narrow bandwidth, c0 is the phase velocity and cg0 the group velocity of
the wavepacket on the deeper side.

2.4. Overall structure of the solutions and underlying physics

Before constructing explicit solutions to the problem of interest, we first explain the
key components of these solutions and the underlying physics. The solutions can be
described as functions of the parameters of an incident wavepacket, as detailed in §2.5
and §2.6. Taking the velocity potential as an example, a flow diagram of the solution
associated with an incoming wavepacket is shown in figure 2, and a summary of the
expressions for the velocity potential is presented in table 1 in appendix D. In figure 2,
the velocity potential is organised according to the order of product of wave steepness
and bandwidth, as explained below. Naturally, we limit the discussion to those cases in
which the incident wavepacket propagating over a step ‘feels’ the abrupt depth change.
That is, the water depth compared to the carrier wavelength of an incoming wavepacket
is O(1) on at least one side of the step if not both.

At first order in wave steepness, specifically O(εδ0), an incident wavepacket responds

to an abrupt depth change by being reflected (Φ
(11,0)
R ) and transmitted (Φ

(11,0)
T ), com-

plemented by the generation of evanescent waves (Φ
(11,0)
Ed on the deeper side and Φ

(11,0)
Es

on the shallower side) near the step (cf. Massel (1983)).
The mechanism that gives rise to waves at second order, namely O(ε2), can be divided

into two parts. The first is the forcing of bound waves by combinations of linear waves
that also arises in the absence of a step (cf. (2.10f)) and is well established (Mei et al.
1989; Massel 1983; Calvert et al. 2019). The second comprises the release of bound waves
into free waves owing to the presence of the step. Forcing by combinations of linear waves
leads to bound waves (denoted with the subscript b in figure 2) that can only propagate
together with the linear wavepacket. In contrast, free waves satisfy the linear dispersion
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Figure 2. Flow diagram of the perturbation theory solutions for the velocity potential of a
narrow-banded wavepacket propagating over a step. The terms are organised according to the
order of the product of wave steepness and bandwidth. From the top to the bottom row, the figure
shows the incident, first-order, second-order super-harmonic, and the second-order sub-harmonic
or mean wavepackets. The subscripts I, T , and E denote the incoming, transmitted, and
evanescent wavepackets, with d and s used to label the evanescent wavepackets on the deeper
and shallower sides, respectively. The subscripts b and f denote bound and free waves at second
order in wave steepness, respectively. A summary of the expressions for the velocity potential is
given in appendix D.

.

relation and, hence, propagate independently. The bound waves include super-harmonic
bound waves (O(ε2δ0)), which are proportional to exp(2iψ), and sub-harmonic bound
waves (O(ε2δ1)), which are independent of the rapidly varying phase ψ0. Upon travelling
over the step, these bound waves may be transmitted or reflected, staying bound, or be
released into freely propagating wavepacket. In addition, new evanescent waves will be
generated. The freely propagating wavepackets overlap with the linear wavepackets near
the step, but will separate after a certain length of propagation owing to their different
speeds. The distance over which separation occurs depends on the difference in group
speeds and packet length.

2.5. First-order solutions (up to O(εδ1))

In this section, we extend the monochromatic-wave solutions presented in Massel
(1983) to allow for a wavepacket that varies slowly in both space and time. Following
Massel (1983), Φ(1) is expressed as

Φ(1) = Φ
(11,0)
I + Φ

(11,0)
R +

∞∑
n=1

Φ
(11,0)
Ed,n + δΦ(11,1) +O(εδ2) for x < 0, (2.11a)

Φ(1) = Φ
(11,0)
T +

∞∑
m=1

Φ
(11,0)
Es,m + Φ

(11,1)
T + δΦ(11,1) +O(εδ2) for x > 0, (2.11b)

in which the subscripts I, R, and T denote the (propagating) incoming, reflected,
and transmitted wavepackets, respectively. The subscripts Ed, n and Es,m denote the
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evanescent waves on the deeper and shallower sides, respectively. As for the case without
a step, one can easily show that Φ(11,1) does not contribute to the second-order solutions
at O(ε2δ), but only to those at higher orders in bandwidth (see §2.6). The details of the
derivation of Φ(11,1) are nevertheless included in appendix A for completeness.

The linearised boundary value problem (2.1)-(2.5) yields

Φ
(11,0)
R =

g

ω0

cosh k0(z + hd)

cosh k0hd
|R0|AR(X,T ) sin (−k0x0 − ω0t+ µ0 + µR), (2.12a)

Φ
(11,0)
T =

g

ω0

cosh k0s(z + hs)

cosh k0shs
|T0|AT (X,T ) sin (k0sx0 − ω0t+ µ0 + µT ), (2.12b)

Φ
(11,0)
Ed,n = I

(
g

ω0

cosh kn(z + hd)

cosh knhd
RnAEd,n(X,T )e−iknx0−iω0t+µ0

)
, (2.12c)

Φ
(11,0)
Es,m = I

(
g

ω0

cosh km(z + hs)

cosh kmhs
TmAEs,m(X,T )eikmx0−iω0t+µ0

)
, (2.12d)

where the reflection coefficient, R0 = |R0| exp(iµR), and the transmission coefficient,
T0 = |T0| exp(iµT ), as well as the evanescent wave coefficients Rn and Tm are complex,
and I denotes the imaginary component. The coefficients R0, Rn, T0, and Tm of the free
waves at O(εδ0) are solved for numerically based on the boundary conditions at the step
described by (2.4)-(2.5),

cosh k0(z + hd)

cosh k0hd
+

N∑
n=0

Rn
cosh kn(z + hd)

cosh knhd
=

M∑
m=0

Tm
cosh km(z + hs)

cosh kmhs

for − hs < z < 0, (2.13a)

ik0
cosh k0(z + hd)

cosh k0hd
− ikn

N∑
n=0

Rn
cosh kn(z + hd)

cosh knhd
= ikm

M∑
j=0

Tm
cosh km(z + hs)

cosh kmhs

for − hs < z < 0, (2.13b)

ik0
cosh k0(z + hd)

cosh k0hd
− ikn

N∑
n=0

Rn
cosh kn(z + hd)

cosh knhd
= 0 for − hd < z < −hs, (2.13c)

where N and M denote the finite number of evanescent modes used on the deeper
and shallower sides, respectively. We show in appendix B how Rn and Tm are numeri-
cally solved for using the orthogonality properties of the functions cosh ki(z + hd) and
cosh ki(z + hs).

Departing from the analysis of Massel (1983), the packets are now allowed to vary
slowly in time and space. Detailed derivations are presented in appendix C. After taking
into account the boundary conditions at the step, their dependence on time and space
can be expressed as

AR(X,T ) = AI(−X − cg0T ), AEd,n(X,T ) =AI(cg0X/cgn − cg0T ), (2.14a)

AT (X,T ) = AI(cg0X/cg0s − cg0T ), AEs,m(X,T ) =AI(cg0X/cgm − cg0T ), (2.14b)

where we note these packets are continuous at x = 0, the packets of the reflected and
transmitted packets travel at the group speed determined by the local depth, and we have
used analytic continuation for the spatial dependence of the evanescent wavepackets. The
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following relations hold for the wavenumbers and group velocities, respectively,

ω2
0 = gki tanh kihd = gkj tanh kjhs, (2.15)

cgi =
dω

dk

∣∣∣∣
k=ki

, cgj =
dω

dk

∣∣∣∣
k=kj

, (2.16)

where i = 0 or n, j = 0s or m, k0 and k0s are real wavenumbers, and the rest
of the wavenumbers and corresponding group speeds are imaginary. The imaginary
wavenumbers correspond to evanescent waves that vanish with horizontal distance away
from the step, as exp(−|iknx|) or exp(−|ikmx|).

2.6. Second-order solutions (O(ε2))

The free surface boundary conditions can be combined into one, which gives at O(ε2)
(e.g. Longuet-Higgins & Stewart (1964); McAllister et al. (2018)):

∂2Φ(2)

∂t2
+ g

∂Φ(2)

∂z
= − ∂

∂t

[
1

2

(
∂Φ(1)

∂x

)2

+
1

2

(
∂Φ(1)

∂z

)2

+ ζ(1)
∂2Φ(1)

∂z∂t

]

+ g
∂

∂x

(
∂Φ(1)

∂x
ζ(1)

)
at z = 0, (2.17)

with a corresponding diagnostic equation for the surface elevation at O(ε2)

ζ(2) = − 1

g

(
∂Φ(2)

∂t
+

1

2

(
∇Φ(1)

)2
+
∂2Φ(1)

∂t∂z
ζ(1)

)
, (2.18)

in which the second term on the right-hand side becomes zero in deep water.

Substituting the linear solutions (2.11) into (2.17) and collecting terms at O(ε2) yields

∂2Φ(2)

∂t2
+ g

∂Φ(2)

∂z
= δ0Fε2δ0 + δFε2δ1 +O(ε2δ2) with (2.19)

Fε2δ0 = − ∂

∂t0

[
1

2

(
∂Φ(11,0)

∂x0

)2

+
1

2

(
∂Φ(11,0)

∂z

)2

+ ζ(11,0)
∂2Φ(11,0)

∂z∂t0

]

+ g
∂

∂x0

(
∂Φ(11,0)

∂x0
ζ(11,0)

)
, (2.20)

Fε2δ1 = − ∂

∂T

[
1

2

(
∂Φ(11,0)

∂x0

)2

+
1

2

(
∂Φ(11,0)

∂z

)2

+ ζ(11,0)
∂2Φ(11,0)

∂z∂t0

]

− ∂

∂t0

[
∂Φ(11,0)

∂x0

(
∂Φ(11,0)

∂X
+
∂Φ(11,1)

∂x0

)
+
∂Φ(11,0)

∂z

∂Φ(11,1)

∂z

]
+

∂

∂t0

(
ζ(11,1)

∂2Φ(11,0)

∂z∂t0
+ ζ(11,0)

∂2Φ(11,1)

∂z∂t0

)
(2.21)

+ g
∂

∂X

(
∂Φ(11,0)

∂x0
ζ(11,0)

)
+ g

∂

∂x0

(
ζ(11,1)

∂Φ(11,0)

∂x0
+ ζ(11,0)

∂Φ(11,1)

∂x0

)
,

in which Fε2δ0 and Fε2δ1 can be further decomposed based on wave harmonics. A similar
equation can be obtained for ζ(2) (not shown).

After identifying the harmonics of the forcing terms Fε2δ0 and Fε2δ1 , the second-order
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solutions of Φ(2) and ζ(2) can be separated into two parts with different harmonics

Φ(2) = Φ(22,0) + δΦ(20,1), (2.22a)

ζ(2) = ζ(22,0) + δζ(20,1), (2.22b)

in which Φ(22,0) and ζ(22,0) are the super-harmonic terms proportional to exp (−2iω0t0)
and Φ(20,1) and ζ(20,1) are the sub-harmonic (or mean) terms that are independent of
fast time t0.

2.6.1. Super-harmonic packets at O(ε2δ0)

Similar to Massel (1983), we seek solutions for the super-harmonic packets at O(ε2δ0)
of the form

Φ(22,0) = Φ
(22,0)
I + Φ

(22,0)
R,b + Φ

(22,0)
R,f + I

(∑
n=1

Φ
(22,0)
Ed,n

)
for x < 0, (2.23)

Φ(22,0) = Φ
(22,0)
T,b + Φ

(22,0)
T,f + I

(∑
m=1

Φ
(22,0)
Es,m

)
for x > 0, (2.24)

in which subscripts b and f denote super-harmonic bound and free waves, respectively.
In order to obtain tractable solutions, we ignore forcing by products linear evanescent
waves, which are typically small. We justify this assumption ex post by comparing to
fully nonlinear numerical simulations. We note that inclusion of forcing by evanescent
terms can lead to convergence problems of second-order solutions (Monsalve Gutiérrez
2017). After considerable manipulation, we obtain:

Φ
(22,0)
R,b =

3ω0

8
|R0|2A2

R

cosh 2k0(z + hd)

sinh4 k0hd
sin(−2k0x− 2ω0t+ 2µ0 + 2µR), (2.25a)

Φ
(22,0)
R,f = ω0|R20|A2

I

(
− cg0
cg20

X − cg0T
)

cosh k20(z + hd)

cosh k20hd
sin(−k20x− 2ω0t+ 2µ0 + µ20)

(2.25b)

Φ
(22,0)
Ed,n = ω0R2nA

2
I

(
− cg0
cg2n

X − cg0T
)

cosh k2n(z + hd)

cosh k2nhd
exp(−i(k20x+ 2ω0t) + 2µ0),

(2.25c)

Φ
(22,0)
T,b =

3ω0

8
|T0|2A2

I

(
cg0
cg0s

X − cg0T
)

cosh 2k0s(z + hs)

sinh4 k0shs
sin(2k0sx− 2ω0st+ 2µ0 + 2µT ),

(2.25d)

Φ
(22,0)
T,f = ω0|T20|A2

I

(
cg0
cg20s

X − cg0T
)

cosh k20s(z + hs)

cosh k20shs
sin(k20sx− 2ω0t+ 2µ0 + µ20s)

(2.25e)

Φ
(22,0)
Es,m = ω0T2mA

2
I

(
cg0
cg2m

X − cg0T
)

cosh k2m(z + hs)

cosh k2mhs
exp(−i(k2mx− 2ω0t+ 2µ0)),

(2.25f )

4ω2
0 = gk2i tanh(k2ihd) for i = 0, 1, 2, 3, ..., (2.25g)

4ω2
0 = gk2j tanh(k2jhs) for j = 0s, 1, 2, 3, ..., (2.25h)

where the last two equations denote the dispersion relationships associated with the
frequency 2ω0 for two different depths hd and hs. The wavenumbers k20 and k20s are real,
and the other super-harmonic wavenumbers are imaginary and correspond to evanescent
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waves. The reflection (R2n) and transmission coefficients (T2m) are solved for numerically
from the boundary conditions at the step (2.4)-(2.5) at this particular order. The group
velocities and the phases are defined as

cg2i =
ω0

k2i

(
1 +

2k2ihj
sinh(2k2ihj)

)
, (2.26a)

ψ20 = arg(R20), ψ20s = arg(T20). (2.26b)

in which k2ihj = k2ihd (i = 0, 1, 2, ...) or k2ihj = k2ihs (i = 0s, 1, 2, ...).

2.6.2. Sub-harmonic packets at O(ε2δ1)

In this section, we present second-order sub-harmonic solutions, which were not in-
cluded by Massel (1983). Averaging in time over the fast scales, we find that Fε2δ0 = 0.
The solutions at O(εδ) do no contribute to leading order, and we obtain for the sub-
harmonic forcing at second order:

Fε2δ0 + δFε2δ1 = − δ g
2

ω2
0

∂

∂T

[
k20
4

(1− tanh2 k0hd)(A
2
I +A2

R)

]
+ δ

g2

2ω0

∂

∂X

[
k0(A2

I −A2
R)
]

for X < 0, (2.27a)

Fε2δ0 + δFε2δ1 = − δ gω0

2cg0s tanh k0shs

[
cg0s
2c0s

(1− tanh2 k0shs) + 1

]
∂T (A2

T ) for X > 0,

(2.27b)

where c0s = ω0/k0s denotes the phase velocity of the linear carrier wave on the shallower
side. In order to maintain tractable solutions, we ignore forcing by linear evanescent
waves. As for the second-order super-harmonic solutions, we justify this assumption ex
post by comparing to fully nonlinear numerical simulations.

The forcing in (2.27), together with the Laplace equation (2.1) and the bottom
boundary condition (2.3), leads to the following sub-harmonic bound waves

Φ
(20,1)
b (X,T, z) = Φ

(20,1)
I +BR

Ωm∫
−Ωm

iκgω0ÊR(Ω)

gκ0 tanh δκ0hd − δΩ2

cosh δκ0(z + hd)

cosh δκ0hd
e−iΩTdΩ

for X < 0, (2.28a)

Φ
(20,1)
b (X,T, z) = BT

Ωm∫
−Ωm

iκ0sgω0ÊT (Ω)

gκ0s tanh δκ0shs − δΩ2

cosh δκ0s(z + hs)

cosh δκ0shs
e−iΩTdΩ

for X > 0, (2.28b)

where κ0 = −Ω/cg0, κ0s = −Ω/cg0s, Ωm (0 < δΩm � ω0) is the maximum frequency of
the packet resulting from the assumption of narrow bandwidth, and

ÊR(Ω) =
1

4π

∞∫
−∞

R2
0A

2
ReiΩTdT, ÊT (Ω) =

1

4π

∞∫
−∞

T 2
0A

2
T eiΩTdT, (2.29a)

BR = − 1

tanh k0hd

[
cg0
2c0

(1− tanh2 k0hd)− 1

]
, (2.29b)

BT =
1

tanh k0shs

[
cg0s
2c0s

(1− tanh2 k0shs) + 1

]
. (2.29c)
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The bound sub-harmonic waves in (2.28) correspond to those of the incoming, reflected
and transmitted separately. Together, these bound waves do not satisfy the boundary
conditions at the step, where additional free waves are generated. To avoid prohibitively
cumbersome solutions, we make the additional assumption that the sub-harmonic packet
is long relative to the water depth, so that the mean flow is shallow (see Calvert et al.
(2019)). This assumption covers most practical applications in coastal waters.

2.6.3. The long-wave approximation for sub-harmonic packets (1/(khδ)� 1)

In the limit 1/(khδ)� 1 for both hd and hs, but for k0hd = O(1) and k0shs = O(1),
the bound sub-harmonic behaviour can be described in terms of horizontal velocities

u
(20,1)
I =

gk0Bd
cg0

A2
I , u

(20,1)
R,b = −gk0|R0|2Bd

cg0
A2
R, u

(20,1)
T,b =

gk0s|T0|2Bs
cg0s

A2
T ,

(2.30a,b,c)
and mean set-downs of the surface elevation

ζ
(20,1)
I = k0BdA

2
I , ζ

(20,1)
R,b = k0Bd|R0|2A2

R, ζ
(20,1)
T,b = k0sBs|T0|2A2

T , (2.31a,b,c)

where the non-dimensional coefficients Bd and Bs are given by

Bd = − 1

4(ghd − c2g0)

(
2ghd − c2g0
2 sinh 2k0hd

+
2gcg0
ω0

)
, (2.32a)

Bs = − 1

4(ghs − c2g0s)

(
2ghs − c2g0s
2 sinh 2k0shs

+
2gcg0s
ω0

)
. (2.32b)

When the carrier waves are additionally assumed to travel in deep water (i.e. k0hd � 1
and k0shs � 1) then the first term in the brackets of both (2.32a) and (2.32b) vanishes.
For completeness, we note that, owing to limit h/σ → 0, the order of the solutions in δ
has increased by one, although we do not update our notation to reflect this.

In accordance with the long-wave approximation for the sub-harmonic packets, freely
travelling sub-harmonic packets generated at the step propagate at the shallow-water
velocity, i.e.

√
ghd on the deeper side and

√
ghs on the shallower side. Assuming such

free sub-harmonic packets can propagate in both directions, we seek solutions of the
form:

ζ
(20,1)
R,f =BfRk0A

2
I(−

cg0√
ghd

X − cg0T ), ζ
(20,1)
T,f =BfT k0sA

2
I(

cg0√
ghs

X − cg0T ),

(2.33a)

u
(20,1)
R,f =−

√
g

hd
BfRk0A

2
I(−

cg0√
ghd

X − cg0T ), u
(20,1)
T,f =

√
g

hs
BfT k0sA

2
I(

cg0√
ghs

X − cg0T ).

(2.33b)

The relationship between u and ζ is set by ∂tu = −g∂xζ (cf. (4.1.3) in Mei et al. (1989)).

The coefficients BfR and BfT must be found from the matching conditions at the step.
For a shallow flow (see e.g. Mei et al. (1989)) for details), these become (i) continuity of
the volume flux across the step and (ii) continuity of the free surface across the step:

lim
X→0−

u(20,1)hd = lim
X→0+

u(20,1)hs, lim
X→0−

ζ(20,1) = lim
X→0+

ζ(20,1), (2.34a,b)

where we note that u(1)(z = 0)η(1) from depth integration of the linear velocity truncated
at second order is not included (2.34a), as this is already continuous across the step.
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Hence, we obtain

BfT =
gk0shsBs|T0|2/cg0s + gk0hdBd(1− |R0|2)/cg0 +

√
ghd(k0sBs|T0|2 − k0Bd(|R0|2 + 1))

(
√
ghd +

√
ghs)k0s

,

(2.35a)

BfR =
gk0shsBs|T0|2/cg0s − gk0hdBd(1− |R0|2)/cg0 −

√
ghs(k0sBs|T0|2 − k0Bd(|R0|2 + 1))

(−
√
ghd −

√
ghs)k0

.

(2.35b)

We note that the relations sign(BfT ) = −sign(Bs) and sign(BfR) = −sign(Bs) hold, and
both free waves are thus positive, taking the form of set-ups, as the sign of the bound set-
down is always negative. The coefficients BfT and BfT only depend on two non-dimensional
parameters: k0hd and k0hs. We further explore these solutions and the underlying physics
in the next section.

3. Results

In order to examine the predictions of the theoretical model in §2, we consider an
incoming Gaussian wavepacket on the deeper side defined as follows

ζ
(11,0)
I = A0 exp

(
− (x− xf − cg0(t− tf))2

2σ2
x

)
cos(k0x− ω0t), (3.1)

in which k0 and ω0 are the carrier wavenumber and angular frequency, respectively,
cg0 = ω0/(2k0)(1 + 2k0hd/ sinh(2k0hd)) is the group velocity on the deeper side, σx is
the characteristic length of the packet, and xf and denotes the location where the linear
irregular waves focus at time tf. We set the wave steepness ε = k0A0 = 0.03 and the
bandwidth parameter δ = 1/(k0σx) = 0.06, so that both remain much smaller than 1 in
accordance with the assumptions presented in § 2.

We will examine three distinct stages of evolution: stage I when the packet is sufficiently
far ahead of the step on the deeper side, stage II when the packet ‘feels’ the step and
transient process in the vicinity of the step take place, and stage III when the packet has
left the step behind.

3.1. Generation of free packets: stage I vs. stage III

Figure 3 shows the theoretically predicted free surface elevation before (stage I) and
after (stage III) passing the step. Before the step (left panels), the main (linear) packet
is associated with an in-phase super-harmonic bound wavepacket and a sub-harmonic
bound set-down (cf. (2.10f)), as is well known (e.g. Mei et al. (1989); Calvert et al.
(2019)). After the step (right panels), both the super-harmonic bound wavepacket and
the sub-harmonic bound set-down have increased in magnitude. Also present are two
additional super-harmonic wavepackets and two additional sub-harmonic components,
only one of which is visible in figure 3.

The response to the step is most clearly illustrated in figure 4. Focus on panel (a) first,
the bound super-harmonic wavepacket on the deeper side is split into 3 wavepackets after
experiencing the depth transition, one of which stays bound and travels with the main
packet at cg0s. A first additional super-harmonic free wavepacket propagates in the same
direction as the main packet, but slower at cg20 (cg20s < cg0s). A second additional super-
harmonic free wavepacket propagates is reflected and travels in the opposite direction at
an absolute speed of cg20 (cg20 < cg0).

Analogous behaviour is observed in figure 4(b), except that the sub-harmonic free
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Figure 3. Theoretically predicted interaction with a step decomposed by order and phase,
showing stage I before the step (left) and stage III after the step (right). In the figure, ε = 0.03,
δ = 0.06, k0hd = 1.1, k0shs = 0.70, hd = 0.75 m, hs/hd = 0.53, Tp = 1.9 s is the carrier wave
period, and λ0 = 4.4 m. The step is located at x = 0. Panels a-d correspond to t = 30 Tp before
the main wavepacket reaches the step and e-f to t = 70 Tp after it has passed the step.

components are shallow-water waves and travel at higher speeds than the main (linear)
packet. The sub-harmonic bound wave, manifest as a set-down of the free surface,
becomes deeper on the shallower side. A free sub-harmonic set-up is released that
propagates at the shallow-water speed

√
ghs in the direction of the main packet but

faster. A free sub-harmonic set-down is reflected and travels in the opposite direction to
the main packet at an absolute speed

√
ghd on the deeper side.
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Figure 4. Theoretically predicted spatio-temporal evolution of super- (top) and sub-harmonic
(bottom) wavepackets following interaction with a step at x = 0. The parameters are the same
as in figure 3. The straight red lines with arrowheads indicate the different group speeds and
their propagation directions.

3.2. Amplitudes change and phase shift due to an abrupt depth transition

In the previous section, we have examined a single combination of parameters. Al-
though the four additional free second-order components will be generated for any
combination of parameters, their amplitudes and phases depend on two dimensionless
parameters, the relative depth on the deeper side k0hd and the depth ratio hd/hs, in
addition to the steepness squared. The linear reflection and transmission coefficients
R0 and T0 are computed based on (2.13). The reflection and transmission coefficients
for the super-harmonic free wavepackets R20 and T20 are computed from the boundary
conditions at the step in a similar fashion to (2.13). The reflection and transmission

coefficients for the sub-harmonic free components BfR and BfT are given explicitly in
(2.35). The magnitudes and phases of all these coefficients are shown as functions of the
two non-dimensional parameters in figure 5.

Examining first the coefficients for the first harmonic shown in figure 5(a-d) (see also
Massel (1983)), the transmitted waves are amplified for k0hd . 2.0. The coefficient of
reflection can reach a maximum of ∼ 30% when the depth ratio decreases to 0.3. Figures
5(b,d) show that, relative to the incoming wavepacket, the transmitted linear waves
generally have small phase shifts (. 0.05π) and the reflected waves have a phase shift
. 0.2π when their amplitudes are ∼ 10-30% of the incoming wavepacket (comparing
panels (a) and (b).

Figures 5(e,f,i,j) show the reflection and transmission coefficients of the free super-
harmonic waves. These are generally largest in magnitude for small k0hd and small
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Figure 5. Contours of amplitudes and phases of the theoretically predicted reflection and
transmission coefficients as functions of k0hd and the depth ratio hs/hd.

depth ratios hs/hd with the transmitted component considerably larger than the reflected
component. Relative to the incoming wavepacket, the reflected super-harmonic waves
show small phase shifts, whereas the transmitted waves have a phase shift of between
−0.9π and −π. The latter is the cause of local transient maxima in crest elevation
occurring in the vicinity of the step, as we will examine in § 3.3.

The coefficients for the reflected and transmitted free and bound sub-harmonic com-
ponents are calculated based on the long-wave approximation for these components
presented in §2.6.3 and shown in figure 5(g,h,k,l). The reflected free sub-harmonic
components travel backwards on the deeper side in the form of a set-down, whereas
the transmitted free sub-harmonic components travel forwards on the shallower side in
the form of a set-up. We emphasise that the coefficients presented in figure 5 need to
be used with care for small k0hs, as a Stokes expansion is likely no longer valid for very
shallow depths

3.3. Behaviour near the abrupt depth transition: stage II

As was noted in § 3.2, the transmitted super-harmonic free wavepacket has a phase shift
of approximately π relative to the transmitted main wavepacket (and its in-phase bound
super-harmonics). As a result of its smaller group velocity, the super-harmonic and the
transmitted main packet temporarily overlap just after the step before separating. These
processes can be associated with two characteristic length scales: a beating length Lb
and an overlapping length Lo. Beating occurs when the free and bound super-harmonic
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Figure 6. The beating length (Lb(n) for n = 1, the left panel) and the overlapping and
beating length (Lo and Lb(n) for n > 1, the right panel) as a function of k0shs. In the figure,
λ0,s = 2π/k0s is the carrier wavelength of the main packet on the shallower side; δs = 1/(k0sσx,s)
denotes the non-dimensional bandwidth on the shallower side.

waves are in phase, namely at x = Lb and

Lb(n) =
− arg(T20) + 2 arg(T0) + 2π(n− 1)

k20s − 2k0s
. (3.2)

for any positive integer n with the first beat corresponding to n = 1, noting that arg(T0) ≈
0 and arg(T2) ≈ −π. Taking 4σx,s with σx,s = σxcg0s/cg0 as an estimate of the length of
the group, the two groups will no longer overlap at x = Lo and

Lo =
4σx,s

1− cg20s/cg0s
, (3.3)

which denotes the distance between the peak of the main wavepacket and the step when
the two groups just separate.

As the envelopes of the super-harmonic bound and the super-harmonic free waves
travel at different group speeds and the lengths of the packets are limited, observation
of n beats requires Lb(n) 6 Lo. Hence, only the first (few) beat(s) will be observed. The
length scales Lo and Lb(n) scaled by the carrier wavelength on the shallower side λ0,s
are shown in figure 6 as a function of the dimensionless depth k0shs. We can observe
from figure 6(a) that the length for the first beat increases rapidly as the shallower water
depth k0shs decreases for k0shs . 1.5. At least 1 beat can be expected for k0shs > 0.2
and δs = 1/(k0sσx,s) < 0.1, as shown in figure 6(b). As the group length increases (i.e.
δs decreases), more beats can be expected. When we eventually approach to the limit
δs → 0 (not shown here), denoting a uniform Stokes wave as studied and examined in
Massel (1983), there are an infinite number of beats.

4. Numerical validation

4.1. A fully-nonlinear potential-flow numerical solver (FNPS)

In order to validate our solutions and justify our assumption that evanescent waves
do not contribute meaningfully to behaviour at second-order in steepness when waves
travel over a step, we perform fully-nonlinear potential-flow simulations. We employ a
fully-nonlinear potential-flow numerical solver (FNPS) that uses the boundary element
method (BEM) for the boundary value problem described by (2.1)-(2.5). The resulting



Surface wavepackets subject to an abrupt depth change. 17

-0.03

-0.02

-0.01

0

0.01

0.02

0.03
(a) 

Num.

Theory

-0.03

-0.02

-0.01

0

0.01

0.02
(b) 

-1

-0.5

0

0.5

1
10-3

(c) 

-10 -5 0 5
-5

-4

-3

-2

-1

0

1
10

-4

(d) 

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(e) 

Num.

Theory

-0.03

-0.02

-0.01

0

0.01

0.02 (f) 

-3

-2

-1

0

1

2

3
10-3

(g) 

-5 0 5
-6

-4

-2

0

2
10

-4

(h) 

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

(i) 

Num.

Theory

-0.03

-0.02

-0.01

0

0.01

0.02 (j)

-4

-2

0

2

4
10-3

(k)

0 5 10
-8

-6

-4

-2

0

2

4
10

-4

(l)

Figure 7. Comparison of the theoretically and numerically predicted interaction with the step
decomposed by order. The wavepacket focuses linearly at t = 30Tp and x = −5λ0 with the step
at x = 0. The three different times (t = 30Tp, 35Tp, 40Tp) corresponding to the three columns
capture the passing of the step.

numerical wave tank was first developed by Koo & Kim (2004) and has recently been
used to examine a related problem by Zheng et al. (2020). Generation of waves in this
numerical wave tank is based on linear theory (Havelock 1929), consistent with our
experiments reported on in the companion paper Li et al. (2020).

4.2. Comparison between theory and numerical simulations

Although we have tested a number of different cases, we show a comparison here
between theory and numerical simulations for the same parameters as examined in the
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Figure 8. Comparison of the theoretically and numerically predicted free surface elevation in
Fourier wavenumber space (k) at different times (top row) and in frequency space (f) at different
locations (bottom row). The parameters are the same as figure 7.

previous section, namely ε = 0.03, δ = 0.06, k0hd = 1.1, k0shs = 0.70, hd = 0.75 m,
hs/hd = 0.53, Tp = 1.9 s and λ0 = 4.4 m, which denotes the carrier wavelength on the
deeper side. We choose a Gaussian wavepacket that focuses linearly at tf = 30Tp and
xf = −5λ0 with the step at x = 0. A computational domain of a length equal to 100λ0
was chosen in the numerical wave tank, where the distances between the wavemaker
and the step and between the damping zone (the beach) are equal to 20λ0 and 80λ0,
respectively. In order to compare the theoretical and numerical solutions explicitly for
each order and phase (sub- and super-harmonic), we filter the (narrow-banded) numerical
solutions in the frequency domain.

Figure 7, which shows a comparison of the theoretically and numerically predicted
surface elevations near the step decomposed by order and harmonic, reveals almost
perfect agreement for the first-order and the second-order super-harmonic and sub-
harmonic surface elevation. The agreement includes phase and amplitude in the vicinity
of the step. Figure 8 confirms this good agreement in Fourier space. The agreement
becomes less perfect in the long-time tail of the wavepackets in figure 7, reflecting the
non-dispersive approximation made in our theoretical solutions owing to truncation in
bandwidth and non-linearity (cf. Tayfun (1980, 1986); Mei et al. (1989); Trulsen & Dysthe
(1996)). The almost negligible difference between the theory and numerical simulations
shown in figure 7(I) is due to the long-packet approximation we made in §2.6.3.

5. Conclusions

This paper has examined the interaction of deterministic surface gravity wavepackets
with an abrupt depth transition in the form of a step in intermediate water depth. To do
so, we have developed second-order theory for narrow-banded wavepackets based on a
Stokes and multiple-scales expansion, thereby extending the work of Massel (1983), which
is only valid for monochromatic waves. To obtain tractable solutions from perturbation
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Figure 9. Comparison of the theoretically (red dashed lines) and numerically (black solid lines)
predicted spatio-temporal evolution of super- (top) and sub-harmonic (bottom) wavepackets
following interaction with a step at x = 0 (vertical dashed line). The parameters are the same
as figure 7. The straight blue lines with arrowheads indicate the different group speeds and their
propagation directions. The numerical results are solid black and theory dashed red lines.

theory, we additionally assume that forcing of second-order terms due to local first-order
evanescent waves, which are generated at first order owing to the presence of the step and
vanish rapidly with distance away from it, can be ignored. We justify this assumption
ex post by performing numerical simulations using fully nonlinear potential-flow solver.
Good agreement with our theoretical solutions is found.

As a wavepacket travels over a sudden depth transition, additional wavepackets are
generated that propagate freely obeying the linear dispersion relation and arise both at
first and second order in wave steepness in a Stokes expansion. As the super-harmonic
bound waves travel over the step, their magnitude changes, and two freely travelling
super-harmonic wavepackets are released. The two free packets consist of a generally in-
phase reflected packet that travels in the opposite direction, and a generally out-of-phase
transmitted packet propagating in the same direction as the main (linear) packet albeit at
a lower speed. The same happens for the sub-harmonic components. In the sub-harmonic
shallow-water limit, in which the packet is long relative to the water depth, we can find
solutions for the sub-harmonic components in closed form. At the sub-harmonic level, the
bound set-down generally increases in magnitude, and a free transmitted set-up travels
ahead of the main packet with a free set-down being reflected.

In the region near the top of a depth transition, the resulting transient processes play a
crucial role. In intermediate water depths, these processes are generally dominated by the
super-harmonic terms. Both the super-harmonic bound waves and the freely travelling
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super-harmonic waves appear immediately after the step on the shallower side. This
causes beating, which is modulated by the envelopes of both packets and only exists
near the step. Together, these effects cause a series of local peaks in surface elevation,
which decline in magnitude with distance away from the step, declining more strongly
for less narrow-banded and thus spatially shorter wavepackets. Such a decline is absent
in the spatially-periodic beating pattern predicted by Massel (1983) for mono-chromatic
waves. We conjecture that this combination of beating between the bound and free super-
harmonic and modulation by their respective envelopes with each travelling at a different
speed, is the cause of the local peak in skewness and kurtosis near a depth transition
reported in a series of previous papers reviewed in Trulsen et al. (2020).
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Appendix A. Linear solutions at O(εδ) in the presence of a step

The velocity potential at O(εδ), Φ(11,1), can be generally expressed as:

Φ(11,1) = Φ
(11,1)
I + Φ

(11,1)
R,b + Φ

(11,1)
R,f + <

∞∑
n=1

(
Φ
(11,1)
Ed,b,n + Φ

(11,1)
Ed,f,n

)
for x < 0, (A 1a)

Φ(11,1) = Φ
(11,1)
T + <

∞∑
m=1

(
Φ
(11,1)
Es,b,n + Φ

(11,1)
Es,f,m

)
for x > 0, (A 1b)

where the subscript b denotes the bound wavepacket forced by the linear waves at the
previous order (O(εδ0)), and the subscript f the free wavepacket generated due to the
step.

The velocity potential Φ(11,1) should be solved for following the same procedure as in
§ 13.2.1 in Mei et al. (1989). Thus, for the different packets Ai, a solvability condition
similar to (13.2.29) in Mei et al. (1989) applies, leading to the general requirement:

cgi∂XAi + ∂TAi = 0 with cgi =
Dω

Dk

∣∣∣∣
k=ki

, (A 2)

where i = 0 (for which Ai = AR), i = n (for which Ai = AEd,n), i = 0s (for which
Ai = AT ) or i = m (for which Ai = AEm). Equation (A 2) leads to the form of the
packets in (2.14). Analogously to the particular solution (13.2.30) in Mei et al. (1989),
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we arrive at

Φ
(11,1)
R,b =

g

ω0

(z + hd) sinh k0(z + hd)

cosh k0hd
R0∂XAR(X,T ) cos (−k0x0 − ω0t), (A 3a)

Φ
(11,1)
R,f =

ghd
ω0

cosh k0(z + hd)

cosh k0hd
R10∂XAR(X,T ) cos (−k0x0 − ω0t), (A 3b)

Φ
(11,1)
Ed,b,n =

g

ω0

(z + hd) sinh k0(z + hd)

cosh k0hd
Rn∂XAEd,n(X,T )e−iknx0−iω0t, (A 3c)

Φ
(11,1)
Ed,f,n =

ghd
ω0

cosh kn(z + hd)

cosh knhd
R1n∂XAEd,n(X,T )e−iknx0−iω0t, (A 3d)

Φ
(11,1)
T,b =

g

ω0

(z + hs) sinh k0s(z + hs)

cosh k0shs
T0∂XAT (X,T ) cos (k0sx0 − ω0t), (A 3e)

Φ
(11,1)
T,f =

ghs
ω0

cosh(z + hs)

cosh k0shs
T10∂XAT (X,T ) cos (k0sx0 − ω0t), (A 3f )

Φ
(11,1)
Es,b,m =

g

ω0

(z + hs) sinh km(z + hs)

cosh kmhs
Tm∂XAEs,m(X,T )e−ikmx0−iω0t, (A 3g)

Φ
(11,1)
Es,f,m =

ghs
ω0

cosh km(z + hs)

cosh kmhs
T1m∂XAEs,m(X,T )eikmx0−iω0t, (A 3h)

where R1i and T1j ((i, j) = 0, 1, 2...) are the unknown reflection and transmission
coefficients of the free waves at this order (in analogous fashion to those at O(εδ0)).
Finally, at O(εδ1), the step boundary conditions (2.4)-(2.5) should be satisfied, which
leads to simultaneous equations for the unknown coefficients R1i and T1j ((i, j) =
0, 1, 2...). These can be solved for in a manner similar to the numerical method presented
in appendix B. We note that the solutions derived in this section can be readily checked
by substituting the linear solutions up to O(δ) back into the linearised boundary value
problem (2.1)-(2.5).

Appendix B. Numerical approach to obtain Rn and Tm
As noted in section 2.5, the coefficients Rn and Tm are solved based on the step bound-

ary conditions described by (2.13). We note that the following orthogonal properties of
the hyperbolic (cosine) functions apply

0∫
−h

cosh ki(z + h) cosh kj(z + h)dz =

{
0, i 6= j,
h

2
, i = j,

(B 1)

in which h = hd (or hs) and ki = kn (or km). Therefore, integrating the boundary
conditions over the water column at x = 0 yields

N∑
n=0

Rn

0∫
−hs

cosh kn(z + hd)

cosh knhd

cosh km(z + hs)

cosh kmhs
dz +

0∫
−hs

cosh k0(z + hd)

cosh k0hd

cosh km(z + hs)

cosh kmhs
dz

=
Tmhs

2 cosh2 kmhs
for m = 0, 1, 2, ...,M, (B 2a)

M∑
m=0

Tm

0∫
−hs

km
cosh km(z + hs)

cosh kmhs

cosh kn(z + hd)

cosh knhd
dz =

k0hd

2 cosh2 k0hd
δ0,n −

knhdRn

2 cosh2 knhd

for n = 0, 1, 2, ..., N, (B 2b)



22 Li, et al.

in which δ0,0 = 1 and δ0,n = 0 for n 6= 0. Equation (B 2) consists of N + M + 2 linear
equations of N +M + 2 unknowns (i.e. Rn and Tm), which can be solved numerically as
a system of simultaneous equations.

Appendix C. Spatio-temporal dependence of the wavepackets

Because the boundary conditions associated with the step (2.4)-(2.5) require evaluation
of the solution at x = 0, information about the spatial dependence of the solution is lost
at this stage. Letting the coefficients R0, T0, Rn and Tm capture magnitude and phase,
the fact the boundary conditions at the step (2.4)-(2.5) have to be satisfied for all time
is captured by the time dependence of the packets at x = 0:

AR(0, T ) = AI(0, T ), AT (0, T ) = AI(0, T ), AEd,n = AI(0, T ), AEs,m = AI(0, T ). (C 1)

The spatial dependence of the packets can be obtained from the solvability condition
(A 2). Consequently, all (first-order) packets should vary as a function of X−cgiT , where
cgi denotes the group velocity of the relevant packet, which is imaginary for evanescent
waves. Inserting the linear potential at O(εδ0) into the boundary conditions at the step
yields

(AI +ARR0)
cosh k0(z + hd)

cosh k0hd
+

N∑
n=1

RnAEd,n cosh kn(z + hd)

cosh knhd
= (C 2a)

M∑
m=1

TmAEs,m cosh km(z + hs)

cosh kmhs
+ T0AT

cosh k0s(z + hs)

cosh k0shs
for − hs < z < 0,

i(AIk0 − k0ARR0)
cosh k0(z + hd)

cosh k0hd
−

N∑
n=1

iknRn
cosh kn(z + hd)

cosh knhd
= (C 2b)

M∑
m=1

ikmTm cosh kj(z + hs)

cosh kjhs
+ ik0sT0AT

cosh k0s(z + hs)

cosh k0shs
for − hs < z < 0,

i(AIk0 − k0ARR0)
cosh k0(z + hd)

cosh k0hd
−

N∑
n=1

iknRn
cosh kn(z + hd)

cosh knhd
= 0 for − hd < z < −hs.

(C 2c)

Applying orthogonality properties to (C 2) (see appendix B), the boundary conditions
at the step can be re-arranged in a matrix form as follows

CY = KAI for − hs < z < 0, (C 3)

where Y = [R0AR, R1AEd,1, R2AEd,2, ..., RNAEd,N , T0AT , T1AEs,1, ..., TMAEs,M ]T is
the vector of unknowns, the matrix of coefficients C is composed of elements

Cij =

0∫
−hs

cosh ki(z + hi) cosh kj(z + hj)

(cosh kihi cosh kjhj)
dz, for i 6 N + 1 (C 4a)

Cij =

0∫
−hs

iki,j cosh ki(z + hi) cosh kj(z + hj)

(cosh kihi cosh kjhj)
dz, for i > N + 1 (C 4b)
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and K is a vector composed of elements given by

Kj =

0∫
−hs

cosh k0(z + hd) cosh kj(z + hj)

cosh k0h0 cosh kjhj
dz for j 6 N + 1 (C 5a)

Kj =

0∫
−hs

ik0 cosh k0(z + hd) cosh kj(z + hj)

cosh k0h0 cosh kjhj
dz for j > N + 1 (C 5b)

The detailed expressions for kihi (kjhj) in (C 4) and (C 5) can be found in (B 2) in
appendix B. Thus, we obtain for the unknowns

Y = C−1KAI . (C 6)

The time dependence of Y and thus that of AR, AEd,n, AT and AEs,m originates from
the time dependence of AI . The coefficients are thus time independent and given by

[R0, R1, R2, ..., RN , T0, T1, ..., TM ]T = C−1K. (C 7)

which is the same as (B 2).

Appendix D. Summary of the solution for the velocity potential

Table 1 summarises the solution for the velocity potential, the components of which
are defined as

Φ
(ij,a)
b = Comp

(
A

(ij,a)
b φ

(ij,a)
b (z)χ

(ij,a)
b (x, t)

)
, (D 1)

Φ(20,1) =
1

2π

∫
Φ̂(20,1)(κ)eiκxdκ with Φ̂(20,1) = Comp

(
A

(20,1)
b φ

(20,1)
b (z)χ

(20,1)
b

)
,

(D 2)
where Comp can be either a real (<) or an imaginary (=) operator.
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Φ
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b φ
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b (z) χ
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AI
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AI
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Φ̂
(20,1)
T,b < T 2

0 ÊT (κ)
cosh(

cg0s
cg0
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cosh(cg0sδκhd/cg0)
e
[i

cg0s
cg0

κ(X−cg0T )]

Φ̂
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R,f < R00ÊI(κ)

cosh(δκ(z + hd))

cosh δκhd
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Table 1. Solutions for different velocity potentials at O(εiδj) according to the overall
structure presented in section 2.4.

Ducrozet, G. & Gouin, M. 2017 Influence of varying bathymetry in rogue wave occurrence
within unidirectional and directional sea-states. J. Ocean. Eng. Sci. 3 (4), 309–324.

Dysthe, K. B. 1979 Note on a modification to the nonlinear Schrödinger equation for
application to deep water waves. Proc. R. Soc. Lond. A 369 (1736), 105–114.

Dysthe, K. B., Krogstad, H. E. & Müller, P. 2008 Oceanic rogue waves. Annu. Rev. Fluid
Mech. 40, 287–310.

Fletcher, C A J 1984 Computational Galerkin methods. In Computational Galerkin methods,
pp. 72–85. Springer.

Foda, M. A. & Mei, C. C. 1981 Nonlinear excitation of long-trapped waves by a group of
short swells. J. Fluid Mech. 111, 319–345.

Gramstad, O., Zeng, H., Trulsen, K. & Pedersen, G. K. 2013 Freak waves in weakly



Surface wavepackets subject to an abrupt depth change. 25

nonlinear unidirectional wave trains over a sloping bottom in shallow water. Phys. Fluids
25 (12), 122103.

Havelock, T. H. 1929 Forced surface-waves on water. The Lond., Edin., & Dublin. Philos.
Magaz. & J. Sci. 8 (51), 569–576.

Holthuijsen, L. H. 2010 Waves in oceanic and coastal waters. Cambridge university press.
Kirby, J. T. & Dalrymple, R. A. 1983 Propagation of obliquely incident water waves over a

trench. J. Fluid Mech. 133, 47–63.
Koo, W. & Kim, M. H. 2004 Freely floating-body simulation by a 2D fully nonlinear numerical

wave tank. Ocean Engineering 31 (16), 2011–2046.
Kreisel, G. 1949 Surface waves. Quart. Appl. Math. 7 (1), 21–44.
Li, Y., Draycott, S., Adcock, T. A. A. & van den Bremer, T. S. 2020 Surface wavepackets

subject to an abrupt depth change. Part II: experimental analysis. (submitted) .
Longuet-Higgins, M. S. & Stewart, R. W. 1964 Radiation stresses in water waves; a physical

discussion, with applications. Deep Sea Res. 11 (4), 529–562.
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Madsen, P. A., Sørensen, O. R. & Schäffer, H. A. 1997 Surf zone dynamics simulated

by a Boussinesq type model. Part i. Model description and cross-shore motion of regular
waves. Coast. Eng. 32 (4), 255–287.

Majda, A. J., Moore, M. N. J. & Qi, D. 2019 Statistical dynamical model to predict extreme
events and anomalous features in shallow water waves with abrupt depth change. Proc.
Natl. Acad. Sci. U.S.A 116 (10), 3982–3987.

Massel, S. R. 1983 Harmonic generation by waves propagating over a submerged step. Coast.
Eng. 7 (4), 357–380.

Massel, S R 1993 Extended refraction-diffraction equation for surface waves. Coast. Eng. 19 (1-
2), 97–126.

McAllister, M. L., Adcock, T. A. A., Taylor, P. H. & van den Bremer, T. S. 2018
The set-down and set-up of directionally spread and crossing surface gravity wave groups.
J. Fluid Mech. 835, 131–169.

Mei, C. C. & Benmoussa, C. 1984 Long waves induced by short-wave groups over an uneven
bottom. J. Fluid Mech. 139, 219–235.

Mei, C. C. & Black, J. L. 1969 Scattering of surface waves by rectangular obstacles in waters
of finite depth. J. Fluid Mech. 38 (3), 499–511.

Mei, C. C., Stiassnie, M. & Yue, D. K. P. 1989 Theory and Applications of Ocean Surface
Waves: Part 1: Linear Aspects Part 2: Nonlinear Aspects. World Scientific.

Monsalve Gutiérrez, E. 2017 Experimental study of water waves: nonlinear effects and
absorption. PhD thesis, Université Pierre & Marie Curie-Paris 6.
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