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ABSTRACT Analytical modeling of electrical machines has the advantage of remarkable computational
efficiency when compared with finite element analysis (FEA). This is especially important for slotless
topologies, as they are well suited for 2-D analytical field solutions. Nevertheless, the analytical techniques
are doubtlessly non-trivial; besides, the ill-conditioned nature of the problem comes along with the mathe-
matical complexity. The numerical issues are shown to be loosely assessed or even ignored in some parts
of the literature, which causes a lack of replicability and low practical usability of analytical approaches.
Although researchers often adopt a numerically optimized formulation in their works, the mathematical
manipulations that make the solutions to be well-posed and efficiently exploitable are often hidden from
the reader since the focus is rather on the theoretical derivation and the exact solutions. This paper shows
how the direct field solution of the magnetic field problem, named the raw field formulation (RFF), can
lead to significant errors throughout the domain of slotless SPM machines, which vary significantly with
the machine geometry. Then, an approach to reach the numerically optimal form of the field solution,
named optimized field formulation (OFF), is proposed, comprehensibly described, and discussed. Finally,
the closed-form expression and the optimal pre-conditioner underneath are explicitly presented and shown
to outperform the accuracy of other pre-conditioned formulations used in the literature (including RFF). The
OFF’s performance is significant, especially at higher harmonic orders.

INDEX TERMS Analytical solutions, numerical precision, permanent magnet machines, slotless machines.

NOMENCLATURE
The nomenclature of this paper is adopted from well-known
terminology, where the variables are described in the
following.

αm Mid-magnet span angle [rad]
αp Mid-magnet to pole angle ratio
B Magnetic flux density vector [T]
H Magnetic field strength [A/m]
M Magnetization vector [A/m]
µ0 Free-space permeability [A/m]
µr PM recoil (relative) permeability
ω electrical angular frequency [rad/s]
b parallel ways per phase
Brem PM remanent flux density [T]
I phase current peak value [A]
m space harmonics order from armature field
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n space harmonics order from PMs field
Nt number of conductors per coil
nmax PMs field harmonic order at truncation
p Number of pole pairs
q coils per pole and per phase
la Machine active length [mm]
Rs Iron boundary contiguous to winding [mm]
Rg Mid-airgap radius [mm]
Ri Iron boundary contiguous to magnets [mm]
Rm Magnets boundary facing the winding [mm]
Rr Magnets boundary contiguous to iron

boundary [mm]
Rwi Winding boundary contiguous to iron

boundary [mm]
Rw Winding boundary facing the magnets [mm]

Superscripts

J armature reaction contribution
PM PM contribution
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Subscripts

ϑ Circumferential component (mechanical angle)
[rad]

r Radial component
z Axial or z component

I. INTRODUCTION
Slotless permanent magnet (PM) machines have been shown
to provide interesting features and performances in several
application areas. It allows for lightweight designs [1], high-
specific-power machines [2], high-speed performance [3],
and reduced iron losses [4]. The machine typology can be
studied analytically, which makes very efficient design opti-
mizations feasible.

The advanced design of rotating electrical machines will
often involve multi-objective optimizations, with goals that
may differ between machine topologies. Regardless of topol-
ogy, the design tool usually has to generate a reliable and
accurate solution, along with appropriate computational per-
formance. Any lack of precision will impose errors when
characterizing the machine with respect to the machine rat-
ing, i.e., inductance, torque, as well as internal forces, and
stresses. The latter necessity has brought attention towards
analytical modeling, as it ensures comparable accuracy to the
finite element analysis (FEA), in those cases where magnetic
saturation does not have a significant impact, such as in ultra-
high-speed machines where magnetic loading is maintained
very low to limit magnetic losses. Most of the FE-based
commercial software or custom-made reluctance network
implementations [5] ensure built-in flexibility. The FE also
provides a strongly coupled multiphysics functionality, but
in a black box numerical environment where parametric
relationships are not directly seen. Nevertheless, analytical
models’ use becomes certainly preferable as it contains all
the required information expressed in direct mathematical
relationships, which may lead to important advantages for
sensitivity analyses and optimization procedures. In some
instances, the same analytical model can be extended to
account for low iron permeability [6] or even to include iron
core saturation through iterative methods [7]–[9]. Addition-
ally, the problem’s mathematical structure allows the anal-
ysis to be extended to rotor eccentricity through conformal
mapping [10]–[12] while preserving the high numerical per-
formance inherent in analytical models. However, there will
always be a risk of poorly formulated analytical expressions
that creates significant numerical errors [13]–[15].

With a particular focus on the analytical field solution’s
numerical performance, the paper aims to highlight an issue
that tends to be overlooked in the current literature. This may
lead to a lack of reproducibility of analytical frameworks
proposed by the authors, although they are theoretically exact.
The definition of the classical problem through the so-called
subdomain model allows extending the same methodol-
ogy, used for slotless machine geometries, to the slotted
topology [16]–[22]. Despite the paper’s focus on slotless

topologies, the way to tackle the problem is similar when
modeling slotted topologies as well.

A. CONTRIBUTION OF THE PAPER
In this article, different case studies for the slotless machine
topology are used to address the described numerical issue.
The broadly adopted two-dimensional (2-D) Fourier-based
method for solving Maxwell’s equations [14], [23], [24],
is developed with regard to its numerical performance.
In order to define a generally exploitable slotless topology,
the basis for the field problem definition is the one depicted
in Fig. 1. It is an extension of what is reported in [25], where
only the PM field solution was studied. The different case
studies, that can be modeled according to the definition of
Fig. 1, are summarized in Table 1. The distinction between
the in-runner and the out-runner topology is needed for the
implementation of the OFF for the two cases. The paper’s
rationale is built upon the current literature contributions,
with a particular focus on the structure of the presented
formulations. By first classifying the different formulations
being presented, the link between them is outlined by defin-
ing the formulations from scratch. The aim is to prevent
other researchers from stumbling upon this numerical issue
when trying to develop, replicate, and reproduce similar prob-
lems exhibiting the same issue. The final goal is defining
a rationally-constructed methodology to tackle the problem
and to outline the criterion to extend it to similar problems,
i.e., slotted topologies. It is worth to stressing that the scope of
the paper is to address the numerical issue deriving from the
development of these analytical models rather than presenting
the analytical models per se.

FIGURE 1. Reference subdomain/layers subdivision of a slotless PM
machine, for field formulation.
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TABLE 1. Parameter definition of the different case study.

B. OUTLINE
The remaining part of the paper is structured as follows. A lit-
erature review is conducted in Section II to guide the reader
through the proposed classification. Then, in Section III,
the magnetic field problem is briefly defined. The magnetic
field contribution from PMs is expressed in Section IV. The
problem is then solved, and the RFF is presented. More-
over, the link between the RFF and the OFF is highlighted.
The assessment of the different achieved accuracy levels is
analyzed in Section V, with particular regard to machine
parameters’ dependency. In Section VI, the magnetic field
contribution from the armature current is added. Finally,
the numerical sensitivity analysis and the problem impact on
the results are presented in Sections VII and VIII, respec-
tively. Different examples are considered as a case study to
address the numerical issue. SectionVIII concludes the paper.

II. REVIEW OF THE NUMERICAL ISSUE
We will first give an introduction to the occurrence of the
numerical issue. The procedure for obtaining the resolution of
the field problem (as will be detailed in the following section)
leads to an inherent lack of accuracy in the final formulation
when numerically implemented. In any case, the final field
formulations are expressed as a Fourier series accounting
for all the space harmonics introduced by the sources in the
given domain. The harmonic amplitudes are what have to
be found by means of the boundary conditions. As noted
in reference [13], the resulting system of equations appears
to become ill-conditioned with the increase of the harmonic
order. It is physically reasonable to observe the decay of
the amplitude for high order harmonics. This is because the
magnets/winding distribution is configured in such a way that
the fundamental components dominate high order harmonics.
However, it can be shown that the mere implementation of the
RFF exhibits a lack of accuracy when compared to FEA. This
suggests that the problem is an intrinsic consequence of the
ill-condition nature of the mathematical model; thus, it goes
beyond the physical meaning mentioned beforehand.

This limitation was mentioned in [14], [15], both referring
to the work presented in [13]. A potentially misleading com-
parison between analytical-based and FE-based field solu-
tions for a radial flux rotatingmachine (Fig. 14 and 15 in [13])
suggests the latter to be more accurate than the former one.
The effect of the ill-conditioned nature of the system is clearly
visible in themagnet’s region. In the samework, a solution for
mitigating the problem is proposed. The suggestion is to use

some scaling factors to reduce the condition number of the
resulting system of equations. However, as it will be noted,
relying on these scaling factors without first knowing where
the inaccuracy is generating from may lead to sub-optimal
formulations like those adopted in [26]. It is worth men-
tioning that, in [13], different analytical formulations based
on different coordinate systems are investigated without
emphasizing the possibility to overcome the mentioned issue.
In reference [27], a proper scaling methodology is adopted to
solve the problem in Cartesian coordinates.

As shown, there is a need to assess and deal with this
issue in more detail, since the RFF and the OFF are presented
interchangeably in the current literature. It is worth mention-
ing that both of the formulations are an exact solution to the
field problem, and thus, they are mathematically equivalent.
The subtle difference between the two expressions lies only
in the algebraic representation, which results in different
numerical performances. The main reason why some authors
have decided to present the RFF instead of an OFF, may be
due to the former expressions’ compactness. In fact, the RFF
does not generally require to distinguish the in-runner from
the out-runner case.

Authors in [28]–[30] have presented a thorough field
problem definition, showing the RFF as the final formula-
tion. Nevertheless, the perfect correspondence between the
analytical solution and FEA clearly suggests that the OFF
was adopted in the simulations. In fact, as it will be noted,
the inaccuracy in the RFF increases with the increase in the
number of poles, and in the aforementioned contributions,
the pole-counts of the case studies was rather high. Simi-
larly, in reference [31], the explicit expressions shown in the
appendix suggest them to be RFFs. However, given that a
30-pole machine was taken as a case study (whereby the final
inaccuracy would be remarkable), it is likely that the OFFwas
adopted. A comparison with FE is missing to prove the latter
statement.

Admittedly, there are several publications in which
the OFF is adopted and shown for the final formula-
tions. However, these mathematical expressions are not
the natural outcome of the solution to Maxwell’s equa-
tions. Thus, it becomes difficult to replicate their analyt-
ical modeling based on the provided information. Only a
few contributions specify that the presented expressions are
the result of some algebraic manipulations. Nevertheless,
the idea behind the rearrangement of these expressions is
hidden.
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It is of paramount concern to address the inaccuracy high-
lighted in [13] as a fictitious and avoidable issue. Consider-
ing, for example, the PM demagnetization analysis by means
of analytical modeling presented in [32], the numerical inac-
curacy might lead to the impossibility of carrying out the
analysis through analytical modeling.

One could argue that dealing with ill-conditioned system
is a rather common practice in several scientific fields. Nev-
ertheless, the optimal solution to overcome this problem and
conveniently condition the original mathematical system lies
in the understanding of the problem’s origins.

In Table 2, some contributions from the literature are gath-
ered and classified. They are arranged according to those
using the RFF from those expressing the OFF, and those
which do not show any expression. With regard to the latter
category, it is worth mentioning that in [6], the expressions
of the explicit formulations are not shown. However, given
that a perfectly sinusoidal field distribution from the magnets
was assumed, the use of the RFF or the OFF would make no
difference. In fact, in such a case, any inaccuracy from the
RFF is hidden by the absence of any harmonic component.
The latter remark holds for the work presented in [33] as well,
where the same case study was considered.

TABLE 2. Numerical issue assessment in the literature.

III. PROBLEM FORMULATION
The two-dimensional analytical field solution for rotating
electrical machines holds under specific assumptions that
help to simplify the differential equations governing the field
problem itself. As it will be noted, these assumptions may get
representative of some real practical examples when specific
design requirements are met (e.g., low saturation level). The
starting assumptions are listed below, along with their effect
on the problem definition.

1) The problem is described in polar coordinates (r, ϑ, z).
2) The field map lies on the (r, ϑ) plane, with no variation

assumed along the rotational axis (z-direction) leading
to a 2-D field map. The flux conservation law (∇ ·B =
0) allows to define the magnetic vector potential (A) as:
B = ∇ × A; which entails the vector potential to have
the only z-component. Another direct consequence is
that end-effects are neglected; thus, the current density
vector (J) is described by its only z-component

3) The iron has infinite permeability, and the magnetic
saturation is neglected (linear material property).The
on-load field solution can be found through superpo-
sition principle, by summing PMs field and armature
reaction field.

4) The PMs are uniformly magnetized.
5) The stator coils are arranged as a three-phase wind-

ing (following the model described in [28]) over
a single layer, with each phase belt covering

60 electrical degrees. In the winding region, a uniform
current density distribution is assumed.

6) The three-phase current is assumed to be sinusoidal and
expressed as it follows.

ia(t) = I cosωt (1)
ib(t) = I cosωt − 2π/3 (2)
ic(t) = I cosωt + 2π/3 (3)

The problem can be fully described by the Ampère’s law,
which is defined for each region as it follows.

∇ ×H = J →
{
J = 0 Air & PM
J 6= 0 Winding

H =
B

µ0µr
−
M
µr
→

{
M = 0 Air & Winding
M 6= 0 PM

(4)

By using the above equation, along with the definition of
the magnetic vector potential, under the given assumptions,
one can end up reframing the problem as in eq. (5).

∇
2Az =


0 Air-regions
−µ0Jz Winding-region
−µ0∇ ×M PM-region

(5)

The obtained Laplace’s equation (for the air region) and
Poisson’s equations (where PMs magnetization or winding
currents are acting), can be solved by means of the method of
separation of variables. The contributions from the PMs field
and current field are considered separately by applying the
superposition principle. This means that when considering
the contribution from the PM field, in the winding region,
the governing equation is the Laplace’s one (i.e., Jz = 0);
vice versa, for the current field contribution, in the PM region
the Laplace’s equation holds (i.e., M = 0). For this latter
case, another assumption is made, which simplifies the model
definition as follows.
• The PM’s relative permeability (µr ) is assumed to be
unitary for the definition of the stator current field con-
tribution.

IV. MAGNETIC FIELD CONTRIBUTION FROM PMs
This section presents the field contribution of the PMs. The
vast majority of the authors have adopted the direct definition
of the magnetization distribution, as it is most intuitive. As an
alternative, some authors have modeled the magnetization
with a suitable equivalent surface current density acting on
eachmagnet boundary ( [28], [29]). In themost common case,
once the topology of the magnets array is set, the resulting
magnetization is defined mathematically as a Fourier series
for both radial and circumferential components ( [19], [36],
[39]–[42]), as it follows:

Mr =

∞∑
n=p,3p,5p,...

Mrn cos (nϑ) (6)

Mϑ =

∞∑
n=p,3p,5p,...

Mϑn sin (nϑ) (7)
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FIGURE 2. Illustration of 2-segments Halbach array with mid-magnet (a) and side-magnets (b) magnetization
distribution (typical waveforms of a 2-poles inrunner machine).

The right hand side term of eq. (5), i.e., the Poisson’s
equation, can be rewritten, yielding to:

µ0∇ ×M =
1
r

(
∂(rMϑ )
∂r

−
∂Mr

∂ϑ

)
=

1
r

(
Mϑ −

∂Mr

∂ϑ

)
=
µ0

r

∞∑
n=p,3p,5p,...

[Mϑn + nMrn] sin (nϑ). (8)

The left hand side term is explicitly written and conve-
niently rearranged in order to apply the method of separa-
tion of variables. The resulting Poisson’s equation is then
expressed as:

r
∂APMz,IV
∂r
+ r2

∂2APMz,IV
∂r2

+
∂2APMz,IV
∂ϑ2

= −rµ0

∞∑
n=p,3p,5p,...

[Mϑn + nMrn] sin (nϑ), (9)

which is the governing differential equation in the magnets
region for any type of magnets arrangement.

Given the several attractive features that Halbach
arrays exhibit [43], the considered case study involves a
two-segmented Halbach array (as classified in [39]). The
parallel magnetization in each magnet segment is considered
for the implementation, as the cylindrical magnetization is
rather uncommon to be manufactured. A single section of
a two segments Halbach array is depicted in Fig. 2 to help

defining the resulting magnetization distribution as described
in Appendix A. The same procedure can be adopted for other
magnets arrangement, and the only thing changing is the
coefficients inMrn andMϑm.

The field solution for regions I, II, and III can be studied
as a single domain solution, as no variation in the magnetic
properties is expected between the three regions. Therefore,
in the following, a single airgap region (named III) is con-
sidered for the sake of simplicity. According to eq. (5) in
region III and V, the governing differential equation is the
following.

r
∂APMz
∂r
+ r2

∂2APMz
∂r2

+
∂2APMz
∂ϑ2 = 0 (10)

The Laplace equation, as written in eq. (10), can be solved
by means of the method of separation of variables, which
yields

APMz (r, ϑ)=
∞∑

n=p,3p,5p,...

[A+z,nr
n
+ A−z,nr

−n] sin (nϑ), (11)

while the solution to eq. (9) requires to add a particular
solution to the homogeneous solution in eq. (11), yielding

APMz,IV(r, ϑ)=
∞∑
n

[Am+z,IVr
n
+Am−z,IVr

−n
+APM(r)] sin (nϑ).

(12)
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In eq. (12), APM(r) is defined for any n according to

APM(r) =


µ0(Mϑn + nMrn)

(n2 − 1)
· r if n 6= 1

−
µ0

2
(Mr1 +Mϑ1) · r ln (r) if n = 1.

(13)

The distinction of cases is necessary as the case n = 1,
namely the fundamental component of a 2-pole machine,
would otherwise exhibit a singularity.

The field solutions in the three regions are related and
bounded by the following boundary conditions.

HPM
ϑ,III

∣∣∣
r=Rs
= 0 (14)(

BPMr,III = BPMr,IV
)∣∣∣
r=Rm

,
(
HPM
ϑ,III = HPM

ϑ,IV

)∣∣∣
r=Rm

(15)(
BPMr,IV = BPMr,V

)∣∣∣
r=Rr

,
(
HPM
ϑ,IV = HPM

ϑ,V

)∣∣∣
r=Rr

(16)

HPM
ϑ,V

∣∣∣
r=Ri
= 0 (17)

Eqs. (14) and (17) are ensured by the assumed infinite iron
permeability, while eqs. (15) and (16) set the continuity of
the field solution in the whole domain, and they are ensured
by the interface conditions for electromagnetic fields. The
different expressions to be used in the above-written bound-
ary conditions are reported in Appendix B. Consequently,
a system of six equations in the six unknowns: A+z,III, A

−

z,III,
A+z,IV, A

−

z,IV, A
+

z,V, and A
−

z,V, is defined for each and every one
of the harmonic components (n = p, 3p, 5p, . . .), yielding:

A+z,IIIR
n−1
s − A−z,IIIR

−n−1
s = 0

A+z,IIIR
n−1
m +A

−

z,IIIR
−n−1
m = . . .

. . . = A+z,IVR
n−1
m + A−z,IVR

−n−1
m + APM,r (Rm)

µrn(A
+

z,IIIR
n−1
m − A−z,IIIR

−n−1
m ) = . . .

. . .=nA+z,IVR
n−1
m −nA

−

z,IVR
−n−1
m +APM,ϑ (Rm)+µ0Mϑn

A+z,VR
n−1
r +A

−

z,VR
−n−1
r = . . .

. . . = A+z,IVR
n−1
r +A

−

z,IVR
−n−1
r +APM,r (Rr )

µrn(A
+

z,VR
n−1
r − A−z,VR

−n−1
r ) = . . .

. . .=nA+z,IVR
n−1
r −nA

−

z,IVR
−n−1
r +APM,ϑ (Rr )+µ0Mϑn

A+z,VR
n−1
i − A−z,VR

−n−1
i = 0.

(18)

The system is typically written in matrix form (as in (21))
and solved for a certain number of harmonics. In this case,
to develop the closed form field expressions (as in [25], [29]),
the symbolic notation is kept, and the system was solved in
theWolframCloud as it performs improved simplifications of
the expressions with built-in commands. This approach can
be advantageous when the solution is adopted in a design
procedure where the field solution is needed only in spe-
cific regions. Thus, there would be no need to solve the
whole domain’s problem for different geometrical parame-
ters. Moreover, the development of closed-form expressions
will help to better frame the origins of the numerical problem
and give a rigorous meaning to the proposed solution in this
paper. Nevertheless, the matrix form will also be shown to
meet the rationale of other researchers.

In the following, the only radial flux density solution in
the winding/airgap region (III) will be considered for the
closed-form expressions. This choice is driven by the fact
that the airgap field allows assessing machine performances
like torque and back-emf exhaustively ( [41], [44]) and in
a compact way. Moreover, the numerical inaccuracy can be
observed in any derived field quantity interchangeably since
they all relate to the solution of the linear system in (18).
Thus, the radial component was chosen as a test func-
tion. The resulting coefficients in the winding/airgap region
(A+z,III, A

−

z,III) when n 6= 1 are reported in (19). By plugging
the two coefficients into (59)-(62) of Appendix B, one would
get the so defined RFF which describes the magnets field
solution of the general geometry shown in Fig. 1 and there-
fore, all the cases summarized in Table 1. The particular case
with n = 1 requires a different system of equations to be
solved, as the field expressions for the particular case have
to be considered. However, the resulting system of equations
does not suffer the same numerical issue, as the coefficient n
is set to the lowest value (n = 1). For this reason, and for the
sake of compactness, the solution for the particular case will
not be included.

A. LINK BETWEEN RFF AND OFF
As mentioned in the introduction, the lack of accuracy in the
RFF occurs as a numerical phenomenon once the expression
is coded. The problem occurs within the expressions shown
in eq. (19), as shown at the bottom of the next page. The
numerical resolution requires the math coprocessor (in a
computer) to perform multiplications and divisions between
radii, which are raised to an exponent (n), which increases
with the harmonic order and the number of pole pairs. In such
a scenario, modeling machines with radii below or above one
meter may cause underflow or overflow of the result, respec-
tively, already at low harmonic order. In a similar instance,
if the system is solved directly in its matrix form, the number
of harmonics needs to be limited to a value such that the
system is still well-conditioned.

The sensitivity to the size of the machine will be further
addressed in the following. The idea behind the resolution of
such a problem is to rearrange the entire field formulations
in order to make the numerical performance of the OFF to be
independent of the machine size; thus, meeting the uttermost
level of generality. The different algebraic steps to obtain the
OFF are summarized in Table 3, referring to the harmonics’
amplitudes of the radial flux density component of eq. (59)
in Appendix B.

From eq. (20), as shown at the bottom of the next page, it is
clear how the amplitude of each harmonic is now dependent
on ratios between radii rather than just radii (as in (19)); this
helps both preventing elemental operations from exhibiting
a quick underflow/overflow for high harmonic orders, and
the model being size-independent. One can also notice that
all the ratios between radii in eq. (20) are lower than one.
It implies that once a ratio (as an elemental operation) causes
underflow (i.e., is rounded to zero), there will always be a
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TABLE 3. Link between RFF and OFF (radial flux density component).

finite term preventing the expression from collapsing to zero.
For this reason, the out-runner case and the in-runner
case must be treated separately. For the out-runner case,
the in-runner expression would make all the ratios

to become greater than one. Thus, high order har-
monics would exhibit a quick overflow, which can-
not be overwritten by other finite terms within the
expression.

A+z,III =

Rnm{R
2n+1
m [R2nr (µr + 1)− R2ni (µr − 1)](nAmz,n − µ0Mϑn − Amz,n)

+RmR2nr [R2nr (µr − 1)− R2ni (µr + 1)](nAmz,n + µ0Mϑn + Amz,n)
+2RnmR

1+n
r [R2nr (Amz,n − µrnA

m
z,n + µ0Mϑn)+ R2ni (Amz,n + µrnA

m
z,n + µ0Mϑn)]}

n{−R4nm (µr − 1)[R2nr (µr + 1)− R2ni (µr − 1)]+ R2nm R
2n
r (µr + 1)[R2nr (µr − 1)− R2ni (µr + 1)]

+R2ns R
2n
m (µr + 1)[R2nr (µr + 1)− R2ni (µr − 1)]− R2nr R

2n
s (µr − 1)[R2nr (µr − 1)− R2ni (µr + 1)]}

A+z,III = R2ns A
+

z,III (19)

KB(n) =

(nAmz,n − A
m
z,n − µ0Mϑn)

[
(µr + 1)−

(
Ri
Rr

)2n
(µr − 1)

]
+(nAmz,n + A

m
z,n + µ0Mϑn)

[(
Rr
Rm

)2n
(µr − 1)−

(
Ri
Rm

)2n
(µr + 1)

]
+2

(
Rr
Rm

)n+1 [
(Amz,n + µ0Mϑn − µrnAmz,n)+

(
Ri
Rr

)n
(Amz,n + µ0Mϑn + µrnAmz,n)

]
(µ2

r − 1)
[(

Ri
Rm

)2n
−

(
Rm
Rs

)2n
+

(
Rr
Rs

)2n
−

(
Ri
Rr

)2n]
+(µr + 1)2

[
1−

(
Ri
Rs

)2n]
+ (µr − 1)2

[(
Rm
Rs

)2n ( Ri
Rr

)2n
−

(
Rr
Rm

)2n]

KB,out (n) =

(nAmz,n − A
m
z,n − µ0Mϑn)

[(
Rm
Ri

)2n
(µr + 1)−

(
Rm
Rr

)2n
(µr − 1)

]
+(nAmz,n + A

m
z,n + µ0Mϑn)

[(
Rr
Ri

)2n
(µr − 1)− (µr + 1)

]
+2

(
Rm
Rr

)n−1 [
(Amz,n + µ0Mϑn + µrnAmz,n)+

(
Rr
Ri

)n
(Amz,n + µ0Mϑn − µrnAmz,n)

]
(µ2

r − 1)
[(

Rs
Rm

)2n
−

(
Rm
Ri

)2n
+

(
Rr
Ri

)2n
−

(
Rs
Rr

)2n]
+(µr + 1)2

[(
Rs
Ri

)2n
− 1

]
+ (µr − 1)2

[(
Rm
Rr

)2n
−

(
Rr
Ri

)2n ( Rs
Rm

)2n]
fr,PM(r, n) =

(
r
Rs

)n−1 (Rm
Rs

)n+1
+

(
Rm
r

)n+1
fr,out,PM(r, n) =

(
r
Rm

)n−1
+

(
Rs
Rm

)n−1 (Rs
r

)n+1
(20)
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The steps reported in Table 3 are equivalent to
pre-conditioning the original system, yeilding

Ax = b → AP−1Px = b, (21)

where the different matrix/vectors are expressed as it follows,
with the different pre-conditioner being used for the inrunner
and the outrunner case (22)–(26), as shown at the bottom of
the page.

In this way, x is the solution leading to the RFF while
Px leads to the OFF. This said, it is worth pointing out that
other pre-conditioning solutions can be found in the literature.
They are mostly based on normalizing the radius (r) in the
RFF with a higher radius of the enclosing boundaries of the
considered region (e.g., Rs in the airgap region of the inrun-
ner topology) as mentioned in [13] and suggested in [26].
According to this rule, the pre-conditioners can bewritten as:

P−1IN , [26]= diag
(
R−n+1s , Rn+1s , R−n+1m , Rn+1m ,

R−n+1r , Rn+1r

)
(27)

P−1OUT , [26]= diag
(
R−n+1m , Rn+1m , R−n+1r , Rn+1r ,

R−n+1i , Rn+1i

)
(28)

The two resulting pre-conditioned systems are bench-
marked against each other to assess the effectiveness of the
pre-conditioners. This was done by computing the condi-
tion number of both the resulting conditioned matrices with
respect to the outrunner case, as a function of the harmonic
order (n). However, it was needed to set Ri = Rr to avoid
the existence of singularities in the pre-conditioned system
obtained through [26]. Such a correction is not needed for the
system from the OFF, which can handle the cases Ri = Inf
and Ri = 0. The condition number is computed as the product
between the 2-norm of the matrix and its inverse. The result
is reported in Fig. 3. The logarithm of the condition number
is shown as it represents an indication of the loss of accuracy

FIGURE 3. Logarithm of the condition number for the two
pre-conditioned systems (21) referring to the no-load field solution for
the outrunner case in Table 4: OFF in blue (preconditioner in (26)),
normalized expressions according to [26] in red (preconditioner in (28))
and RFF in grey.

in decimal places by solving the system. However, the value
resulting from an ill-conditioned matrix should be mistrusted
as the inverse computation is inherently inaccurate.

Even though the solution proposed in [26] exhibits a better
numerical behaviour than the RFF, which has a condition
number diverging to infinite at low harmonic orders, it clearly
represents a sub-optimal solution if compared to the OFF.

V. NUMERICAL SENSITIVITY ANALYSIS
The numerical analysis is performed in this section with
respect to the magnets field solution. The RFF and the OFF
are compared to address the different accuracy and the sen-
sitivity to machine size. Two different cases are then taken
and compared in terms of numerical accuracy of the different

x =
[
A+z,III , A

−

z,III , A
+

z,IV , A
−

z,IV , A
+

z,V , A
−

z,V

]t
(22)

b =
[
0 , APM ,r (Rm) ,

APM ,ϑ (Rm)+ µ0 Mϑn

n
,

APM ,r (Rr ) ,
APM ,ϑ (Rr )+ µ0 Mϑn

n
, 0
]t

(23)

A =



Rn−1s −R−n−1s 0 0 0 0
Rn−1m R−n−1m −Rn−1m −R−n−1m 0 0
µrRn−1m −µrR−n−1m −Rn−1m R−n−1m 0 0

0 0 −Rn−1r −R−n−1r Rn−1r R−n−1r
0 0 −Rn−1r R−n−1r µrRn−1r −µrR−n−1r
0 0 0 0 Rn−1i −R−n−1i

 (24)

P−1IN = diag
(
R−n+1s , Rn+1m , R−n+1m , Rn+1r , R−n+1r , Rn+1i

)
(25)

P−1OUT = diag
(
R−n+1m , Rn+1s , R−n+1r , Rn+1m , R−n+1i , Rn+1r

)
(26)
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formulations. Since the numerical inaccuracy are affecting
both radial and tangential components, the results will mostly
refer to the radial component, without loss of generality.

A. MACHINE-SIZE SENSITIVITY
The sensitivity analysis is studied with respect to the machine
size. It is mainly driven by the intuitive fact that one would
expect the expressions shown in eq. (19) to be less prone
to underflow/overflow when the radii values are around one
meter. This analysis is performed on the two cases, whose
parameters are listed in Table 4. The analysis is carried out
by scaling the radii with the same coefficient, which is set
to scale the two geometries from their original size up to
a scaling factor giving an air gap radius of about 3.5m for
both the cases. The flux density in the middle of the airgap is
processed for all the resulting geometries, and the percentage
difference in the total harmonic distortion (THD) of the radial
flux density component is computed for the OFF against the
RFF. It is clear from eq. (20) that the use of the same scaling
factor for all the radii maintains all the harmonics at the
same value. Thus the OFF of the original geometries (i.e.,
unitary scaling factor) is considered as a reference for the
error function defined as it follows.

errTHD% =
THD

[
BPMr,III,opt

]
− THD

[
BPMr,III,raw

]
THD

[
BPMr,III,opt

] 100 (29)

The results are shown in Fig. 3. The step variations of
the error functions in the first part are due to the sudden
numerical contribution of high-harmonic terms that were not
represented. They were exhibiting underflow at smaller radii;
vice versa, above one meter, the sudden variation is due to the
gradual overflow of some high-harmonic terms in the RFF,
causing an increase in the error. As expected, the error around
one meter in size is negligible. It is worth noting that the
RFF expressed in eq. (19) cannot be directly implemented
for the out-runner case, since, according to Table 1, Ri must
be set to infinity. For the sake of completeness, the coef-
ficients of the RFF for the out-runner case are reported in
Appendix C. Being the two RFFs numerically different from
each other, the number of step variations in the error, with
the size increase, is different (Fig. 4). Besides, the higher
number of poles of the out-runner topology makes the error
occurrencemore remarkable, as the higher exponents amplify
the underflow/overflow occurrence.

B. CASE-STUDY COMPARISON
The results from the two field formulations are now
bench-marked against each other by considering the two
case-studies presented in Table 4.With regard to the in-runner
case in Table 4, the flux density waveform and its harmonic
content are shown in Fig. 5 as a comparison between the
two formulations. The FEA validation is also shown for
the flux density waveform, ensuring the correctness of the
solution. The mesh of the FE model was not optimized in
detail as an objective in itself, but it was built to obtain a

TABLE 4. SPM machines data (courtesy of Alva industries).

FIGURE 4. Percentage THD error of airgap radial no-load flux density of
RFF, in the middle of the airgap (r = Rg), with the increase of the machine
size. Original machine specifications in Table 4. The radii are scaled with
the same factor.

fine discretization in the airgap region to ensure the required
accuracy for validation purposes. For both the inrunner and
the outrunner case, the mid-airgap arc was discretized with
450 elements. In the final discretization, the airgap region
over the simulated one-pole section counts 40752 elements
with approximately 20 radial layers over the 1.4 mm airgap of
the inrunner and 35926 elements with approximately 32 lay-
ers over the 1.5 mm airgap of the outrunner case. In addition,
cubic elements were employed for both models.

Intuitively, the difference between the two formulations
will show lower difference where higher-order harmonics
are less significant, i.e., farther from the source of the field.
In order to prove this, the field map obtained with the two
formulations is shown in Fig. 6, along with the percentage
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FIGURE 5. Radial no-load flux density comparison in the middle of the
airgap (r = Rg in-runner case in Table 4).

error between the two, which clearly highlights the latter
statement.

The same analyses of airgap flux density waveform and
maps are carried out for the out-runner case. Since the number
of poles is much higher, the numerical inaccuracy of the RFF
affects the solution already at low harmonic orders, thus,
making it impossible to represent any harmonic but only
the fundamental one. This is shown in Fig. 7, along with
the FEA validation of the waveform. The field maps for the
two formulations in the airgap/winding regions are shown
in Fig. 8, and the error map shows the inaccuracy propagation
of the RFF in the same region.

VI. MAGNETIC FIELD CONTRIBUTION FROM ARMATURE
CURRENT
The two formulations for the stator winding field solution are
here derived according to the hypotheses listed in Section III.
The procedure for the field problem definition follows the
one described in [28], [29], which is based on modeling
the three-phase current density distribution as the source of

FIGURE 6. Comparison of the no-load flux density norm over the air gap
and winding region for the RFF and the OFF, of the only PMs field (one
pole section of the 6-pole in-runner case in Table 4)). Percentage error
contour map on top; on the vicinity of the magnets boundary the
maximum error is as high as 54%.

the field.

J (ϑ, t) =
∞∑

h=p,7p,13p,...

Jh cos (hϑ − ωt)

+

∞∑
k=5p,11p,17p,...

Jk cos (kϑ + ωt) (30)

Similarly to what has been done when considering the field
contribution from the PMs (Section IV), to model the field
solution from the stator winding, three different subdomains
are considered again (as the magnets recoil permeability is
assumed to be unitary). Now region III includes regions IV
and V in Fig. 1. In region I and III the governing Laplace
equation leads to the following solution:

AJz(r, ϑ, t) =
∞∑

h=p,7p,13p,...

(A+h r
h
+ A−h r

−h) cos (hϑ − ωt)

+

∞∑
k=5p,11p,17p,...

(A+k r
k
+A−k r

−k ) cos (kϑ+ωt)

(31)

and from the governing Poisson’s equation (5) in the winding
region, a particular solution to the homogeneous one in (31)
has to be added, yielding to the following expression [29]:

AJz,II(r, ϑ, t) =
∞∑

h=p,7p,13p,...

wh(r) cos (hϑ − ωt) . . .

+

∞∑
k=5,11,17,...

wk (r) cos (kϑ+ωt) (32)
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FIGURE 7. Radial no-load flux density comparison in the middle of the
airgap (r = Rg out-runner case in Table 4).

where the terms wm(r) are reported in the Appendix D.
Through similar reasonings applied for the magnets field

contribution, the following boundary conditions are now to
be set for the armature field solution, between the three
pre-defined regions:

H J
ϑ,I

∣∣∣
r=Rs
= 0 (33)(

BJr,I = BJr,II
)∣∣∣
r=Rwi

,
(
H J
ϑ,I = H J

ϑ,II

)∣∣∣
r=Rwi

(34)(
BJr,II = BJr,III

)∣∣∣
r=Rw

,
(
H J
ϑ,II = H J

ϑ,III

)∣∣∣
r=Rw

(35)

H J
ϑ,III

∣∣∣
r=Ri
= 0 (36)

The boundary conditions must hold at any angular coor-
dinate ϑ , any time instant t and for any harmonic m =
{h, k}. The resulting system of equations is here reported
directly in matrix notation, both in its original form and the
pre-conditioned one. The explicit expressions to build the
system, can be deduced from eq. (58) and by using eqs. (31)

FIGURE 8. Comparison of the no-load flux density over the air gap and
winding region with the RFF and the OFF for one pole pitch (52-pole
out-runner case in Table 4)). Percentage error contour map to the right;
on the vicinity of the magnets boundary the maximum error is as high
as 68%.

and (32) arriving at the following (37)–(42), as shown at the
bottom of the next page.

Yet again, the original system and the pre-conditioned one
were solved in theWolfram Cloud to obtain both the RFF and
the OFF, respectively.

The lack of accuracy in the RFF follows the same exact
criterion explained for the PM’s field contribution. The
pre-conditioned system is ready to be solved directly for an
arbitrary number of harmonics, without falling into inaccu-
rate solutions. In the sameway, the closed-form solution itself
can be extended to an arbitrary number of harmonics. The
OFF’s explicit expressions are here omitted for the sake of
compactness but can be directly obtained from (37).

A. NUMERICAL PERFORMANCE COMPARISON
In so far as the airgap field solution is considered, the numeri-
cal inaccuracy of the OFF is less remarkable when compared
to the PM field comparison. For this reason, the only field
map from the OFF, and the deviation between the two formu-
lations are shown as a result of the out-runner case in Fig. 9
(the time instant was set to t = 0).
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FIGURE 9. Error map for the armature field solution, for the outrunner
case in Table 4, on the vicinity of the winding boundary (the maximum
error is around 16%).

The error produced by the RFF, shows a negligible impact
in the airgap region, despite the case with high number of
poles should represent the worst case when it comes to the
discrepancy between the results. However, it is worth pointing
out that by moving into the winding region, the physical
increase in the harmonic content, and more complicated
closed-form expressions for the RFFs, make the deviation to

become non-negligible. For instance, already in the vicinity
of the winding boundary, the maximum relative error is as
high as 16% (Fig. 9).

VII. IMPLICATION OF THE FINDINGS
In the previous sections, the deviation between the RFF and
the OFF has been assessed. The impact of such a discrepancy
may be more or less significant, depending on which applica-
tion the analytical model is assigned to. In [39], [42], the ana-
lytical modeling of PM machines was employed for optimiz-
ing Halbach arrays by considering the harmonic content of
the flux density as well. Moreover, in [32], the field solution
in the region of the magnet was used for demagnetization
analysis in Halbach arrays. For similar analyses, if carried
out over a wide range of machine sizes, the use of OFF is
paramount to prevent having flaw-full design procedures.

Other analyses that may be affected by inaccurate RFFs
are those where the armature field solution is post-processed
to perform some loss estimations. In [45], the winding field
was adopted for estimating induced eddy-currents loss in the
magnets for a slotted topology. To this aim, some real current
waveforms were considered, meaning that the current density
distribution of eq. (30) becomes a nested sum accounting
for both space and time harmonics. For inverter-fed slotless
machines, the typically high harmonic content of the current
waveform [46] may require an accurate field solution in a
wide space harmonic spectrum to achieve acceptable loss
estimates.

It is therefore clear that the use of aOFF for analytical mod-
eling is fundamental. The comparison between OFF and RFF
was here presented only within the airgap region. This was
needed to give a consistent explanation to the choice of the
optimal pre-conditioner by looking at the closed-form field
expressions as well. Nevertheless, the mathematical problem
as framed in (21) for the PMsfield and in (37) for the armature
reaction field, allows to accurately solve the field problem in
any region of the cases listed in Table 1.

Wy = c → WC−1Cy = c (37)

y =
[
A+z,I , A

−

z,I , A
+

z,II , A
−

z,II , A
+

z,III , A
−

z,III

]t
(38)

c =
[
0 , AJmRwi ,

2AJmRwi
m

, AJmRw ,
2AJmRw
m

, 0
]t

(39)

W =



Rm−1s − R−m−1s 0 0 0 0
Rm−1wi R−m−1wi − Rm−1wi − R−m−1wi 0 0
Rm−1wi − R−m−1wi − Rm−1wi R−m−1wi 0 0
0 0 − Rm−1w − R−m−1w Rm−1w R−m−1w
0 0 − Rm−1w R−m−1w Rm−1w − R−m−1w
0 0 0 0 Rm−1i − R−m−1i

 (40)

C−1IN = diag
(
R−m+1s , Rm+1wi , R−m+1wi , Rm+1w , R−m+1w , Rm+1i

)
(41)

C−1OUT = diag
(
R−m+1wi , Rm+1s , R−m+1w , Rm+1wi , R−m+1i , Rm+1w

)
(42)
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TABLE 5. Useful functions for the field expressions in the magnets region.

A. OFF IN REGIONS WITH ACTING SOURCES
As it was mentioned in the previous paragraph, it is desirable
to obtain the OFF where a field source is acting. The PMs
field contribution in the magnets region is considered in the
following. The coefficients for the OFF in the magnets region
can be obtained directly from the pre-conditioned system in
eq. (21). Let y = Px be the solution to the pre-conditioned
system; the two flux density components and the one compo-
nent magnetic vector potential can be expressed as it follows:

BPMr,IV(r, ϑ) =
∞∑
n

n[y(3)f +(r)+ y(4)f −(r)+ APM,r(r)]

× cos (nϑ)

(43)

BPMϑ,IV(r, ϑ) =
∞∑
n

[ny(3)f +(r)−ny(4)f −(r)+ APM,ϑ (r)]

× sin (nϑ)

(44)

APMz,IV(r, ϑ) =
∞∑
n

[y(3)f +z (r)+ y(4)f −z (r)+ APM(r)]

× sin (nϑ)

(45)

The coefficients y(3) and y(4) for the inrunner or outrun-
ner case, have the same structure as KB(n) or KB,out (n) and
are the natural outcome of the pre-conditioned system in
eq. (21); therefore the explicit expressions are omitted for
the sake of compactness. The homologous RFFs are reported
in eqs. (63), (65), (12).

The need to truncate the Fourier series leads to the occur-
rence of the Gibbs phenomenon where the solution exhibits
sudden variations in the magnetic quantities. This happens
in the vicinity, and within the magnet’s region, where the
magnetization’s sudden variation creates discontinuities that
cause such a phenomenon. One can overcome this problem,
as done in [27], where the σ − approximation is adopted for
representing the truncated series. This is done by multiplying
the above written expressions (43)-(45) by the following
factor (Lanczos σ factor):[

sin (πn/nmax)
πn/nmax

]3
The field map, including the field solution in the magnets

region, is shown in Fig. 10, along with the deviation between
the RFF and the OFF. It is interesting to notice how the

FIGURE 10. No-load field map comparison in airgap and magnets region
(54% maximum error in the airgap region 57% maximum error in the
magnets region). Inrunner machine parameters in Table 4.

error map is not continuous between magnets region and
airgap region. And this finds an explanation in the different
numerical structure of the RFF in the two regions.

B. ERROR PROPAGATION ON DERIVED QUANTITIES:
ELECTROMAGNETIC TORQUE
The electromagnetic torque for a balanced three-phase
machine can be computed as described in [41], [44] as the
sum of the product of induced back-emf and current in
each phase. This method is employed by convenience as the
back-emf is another quantity to be computed. This technique
is used here for both the topologies described in Table 4
regarding theOFF and the RFF. The computed torque through
RFF is expected to deviate from the correct solution com-
puted through OFF. This depends on as much as the error
in the field map propagates within the winding region. This
said, and considering Figs. 6 and 8, the deviation produced
by the RFF in the torque computation is expected to be much
more remarkable for the outrunner case. In order to prove this,
the mentioned results are compared in Fig. 11.

The torque computed through RFF produces a little error
already on the average value (0.75%). It cannot predict any
ripple harmonics for the outrunner topology as opposed to
the OFF. For the inrunner topology, the error on the average
value and on the ripple is negligible although existent. In any
case, the OFF produces consistently accurate results showing
the main sixth harmonic on the torque typical of three-phase
machines. As a further note, it was interesting to notice how
integral quantities’ evaluation shows a damping effect on the
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FIGURE 11. Normalized torque waveform over half electrical period revolution, computed through RFF
and OFF for the two motor topologies in Table 4. The average OFF torque is used for normalization as
follows: Outrunner with 11.00Nm at 6.80A/mm2 rms loading and inrunner with 3.20Nm at 2.95A/mm2

rms loading.

final error for as much as the integral is extended in parts of
the domain where the deviation between the two formulations
is less severe.

C. EXTENDING THE APPROACH TO SLOTTED TOPOLOGIES
A numerically optimized algebraic structure can always be
achieved. In [34], [35], [38], subdomain modeling is adopted
to model the saliency of surface inset PMs machines, and
in [19], [47], [48], the same modeling criterion is employed
for slotted topology. All these contributions share an opti-
mized structure for the final formulation, which leads to the
expected level of accuracy from the analytical field formula-
tions. Only an insight will be given into the following issue
of extending the proposed approach to slotted topologies,
as of the complication of the problem formulation and the
equations involved. In order to do this, [18] is taken as a
reference as it considers a rather general model accounting
for tooth tips as well. When treating a slotted topology,
slot openings and slots constitute additional regions wherein
the related governing equations are to be written. Slots and
slot openings introduce additional harmonics in the problem;
thus, sine and cosine harmonics coexist in the field formu-
lations. Furthermore, slots and slot openings have their own
harmonic orders when compared to the harmonics introduced
by the source. These considerations make it more tedious to
set up the boundary conditions between air-gap/slot-openings
and slot-openings/slots as the field solution in one region has
first to be expanded into Fourier series over the other region
and vice versa. Nevertheless, one will end up obtaining a
system of equations, which is ill-conditioned with respect
to both the source harmonics and the slots/slot-openings
ones. The optimal pre-conditioner implementation follows
the same criterion, and the pre-conditioner will hold terms
dependent on source space harmonics and slots/slot-openings

harmonics. As in [18] the ill-conditioned nature of the prob-
lem was well known to the authors, the formulations where
written in their well-conditioned form since the beginning.
Therefore, no need for preconditioning the final system was
needed. This, however, makes it hard to replicate or extend the
solution since the OFF presented is not the natural outcome of
the original problem. The closed-form expression for such a
topology would inevitably be more complicated, and this jus-
tifies the fact that closed-form solutions are typically avoided
for slotted topologies in the literature.

VIII. CONCLUSION
This paper investigates the geometrical sensitivity and accu-
racy level of the raw field formulation (RFF) for the ana-
lytical modeling of slotless PM machines. In this regard,
the geometrical regions where the RFF corresponds to the
optimized field formulation (OFF) has been identified. It is
observed that the error increases for different machine sizes
but depends on the number of poles as well. The general
rule of thumb is never to use the directly obtained RFF to
ensure the reproducibility of the analytical results. At the
same time, a general rule for modeling of electrical machines
is essential. Therefore, this paper developed a generalized
algebraic approach tomanipulate the field solution effectively
for slotless topologies. A pre-conditioner is shown to obtain
the OFF starting from the directly obtained RFF.

Consequently, the use of the right pre-conditioner allows
extending the OFF in any region. The reason for adopting
the optimal pre-conditioner was emphasized by comparing it
with other suggested solutions in the literature. The issue was
investigated by analyzing the system’s condition number and
highlighting the inaccuracy occurrence in the closed-form
expressions. Moreover, an explicit solution to the Gibbs phe-
nomenon is referred to as well. Thus, the accuracy level is
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maximized in every region using the approach advocated in
this paper.

For a future research item, the proposed methodology
ought to be extended to slotted typologies. This will enhance
the applicability of a unified optimal formulation. This,
in turn, will give a sound rationale to the adoption of the opti-
mal formulation in the literature, where the pre-conditioner
being used is not explicitly reported.
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APPENDIX A
MAGNETIZATION COMPONENTS OF THE
TWO-SEGMENTS HALBACH ARRAY
Once αp is defined as the mid-magnet to pole angle ratio:

αp =
αm

π/p

coefficients Mrn and Mϑn for the mid-magnet can be deter-
mined through Fourier analysis of Fig. 2:

Mmid
rn =

p
π

2π/p∫
0

Mr (ϑ) cos (nϑ)dϑ (46)

Mmid
ϑn =

p
π

2π/p∫
0

Mϑ (ϑ) sin (nϑ)dϑ (47)

which can be simplified, thanks to the periodicity, and solved
as it follows:

Mmid
rn =

4pBrem
πµ0

αp
π
2p∫

0

1
2
[cos (ϑ(1−n))+cos (ϑ(1+ n))]dϑ

=
Brem
µ0

αp(M1,n +M2,n) (48)

Mmid
ϑn =

4pBrem
πµ0

αp
π
2p∫

0

−
1
2
[cos (ϑ(1−n))−cos (ϑ(1+ n))]dϑ

= −
Brem
µ0

αp(M1,n −M2,n) (49)

and the two coefficients M1,n and M2,n are defined as it
follows:

M1,n =


sin
[
(n− 1)αp π2p

]
(n− 1)αp π2p

if n 6= 1

1 if n = 1

(50)

M2,n =
sin
[
(n+ 1)αp π2p

]
(n+ 1)αp π2p

(51)

The same procedure applies to the side-magnets compo-
nents as it follows:

M side
rn =

4pBrem
πµ0

π
2p∫

αpπ
2p

−
1
2

[
sin
(
ϑ(1− n)−

π

2p

)
+ . . .

. . .+ sin
(
ϑ(1+ n)−

π

2p

)]
dϑ

=
Brem
µ0

αp(M3,n −M4,n) (52)

M side
ϑn =

4pBrem
πµ0

−

π
2p∫

αp
π
2p

−
1
2

[
sin
(
ϑ(n− 1)+

π

2p

)
+ . . .

. . .+ sin
(
ϑ(1+ n)−

π

2p

)]
dϑ

= −
Br
µ0
αp(M3,n +M4,n) (53)

and the two coefficients M3,n and M4,n are defined as it
follows:

M3,n =


cos

(
αp

π
2p (n− 1)+ π

2p

)
(n− 1)αp π2p

if n 6= 1[
1
αp
− 1

]
if n = 1

(54)

M4,n =
cos

(
αp

π
2p (n+ 1)− π

2p

)
(n+ 1)αp π2p

(55)

The resulting radial and circumferential magnetization
components are therefore defined as:

Mrn = Mmid
rn +M

side
rn (56)

Mϑn = ±(Mmid
ϑn +M

side
ϑn ) (57)

where the ‘‘+’’ is for inrunner (field focused externally) and
the "-" for the outrunner (field focused internally).

APPENDIX B
FIELD EXPRESSIONS FROM PM CONTRIBUTION
From the definition of the flux density from the vector poten-
tial (B = ∇ × A), the two components Br and Bϑ can be
expressed as

Br (r, ϑ) =
1
r
∂Az
∂ϑ

, Bϑ (r, ϑ) = −
∂Az
∂r

(58)

and from (4) the following expressions for magnetic field and
flux density components can be deducted for each region of
interest:

BPMr,III =
1
r

∂APMz
∂ϑ

=

∞∑
n

n[A+z,IIIr
n−1
+ A−z,IIIr

−n−1] cos (nϑ) (59)

HPM
r,III =

1
µ0

1
r

∂APMz
∂ϑ
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=

∞∑
n

n
µ0

[A+z,IIIr
n−1
+ A−z,IIIr

−n−1] cos (nϑ) (60)

BPMϑ,III = −
∂APMz
∂r

= −

∞∑
n

n[A+z,IIIr
n−1
− A−z,IIIr

−n−1] sin (nϑ) (61)

HPM
ϑ,III = −

1
µ0

∂APMz
∂r

= −

∞∑
n

n
µ0

[A+z,IIIr
n−1
− A−z,IIIr

−n−1] sin (nϑ) (62)

BPMr,IV =
1
r

∂APMz,IV
∂ϑ

=

∞∑
n

n[A+z,IVr
n−1
+ A−z,IVr

−n−1
+ APM,r (r)]

× cos (nϑ) (63)

HPM
r,IV =

1
µ0µr

(
1
r

∂APMz,IV
∂ϑ

−Mrµ0

)

=

∞∑
n

n
µ0µr

[A+z,IVr
n−1
+ A−z,IVr

−n−1
+ . . .

. . .+ APM,r (r)− µ0Mrn] cos (nϑ) (64)

BPMϑ,IV = −
∂APMz,IV
∂r

= −

∞∑
n

[nAm+z,IVr
n−1
− nAm−z,IVr

−n−1
+ APM,ϑ (r)]

× sin (nϑ) (65)

HPM
ϑ,IV = −

1
µ0µr

(
∂APMz,IV
∂r
+ µ0Mϑ

)

= −

∞∑
n

1
µ0µr

[nA+z,IVr
n−1
− nA−z,IVr

−n−1
+ . . .

. . .+ APM,ϑ (r)+ µ0Mϑn] sin (nϑ) (66)

where APM,r (r) and APM,ϑ (r) are defined as:

APM,r (r) =


µ0(Mϑn + nMrn)

(n2 − 1)
if n 6= 1

−
µ0

2
(Mr1 +Mϑ1) · ln (r) if n = 1

(67)

APM,ϑ (r) =


µ0(Mϑn + nMrn)

(n2 − 1)
if n 6= 1

−
µ0

2
(Mr1 +Mϑ1)[ln (r)+ 1] if n = 1

(68)

BPMr,V =
1
r

∂APMz
∂ϑ

=

∞∑
n

n[A+z,Vr
n−1
+ A−z,Vr

−n−1] cos (nϑ) (69)

HPM
r,V =

1
µ0

1
r

∂APMz
∂ϑ

= −

∞∑
n

n
µ0

[A+z,Vr
n−1
+ A−z,Vr

−n−1] cos (nϑ)

(70)

BPMϑ,V = −
∂APMz
∂r

= −

∞∑
n

n[A+z,Vr
n−1
− A−z,Vr

−n−1] sin (nϑ) (71)

HPM
ϑ,V = −

1
µ0

∂APMz
∂r

= −

∞∑
n

n
µ0

[A+z,Vr
n−1
− A−z,Vr

−n−1] sin (nϑ)

(72)

APPENDIX C
RAW FORMULATION COEFFICIENTS FOR THE
OUT-RUNNER CASE

A+z,III =

Rnm{−R
2n+1
m (µr − 1)(nAmz,n − µ0Mϑn − Amz,n)

−RmR2nr (µr + 1)(nAmz,n + µ0Mϑn + Amz,n)
+2RnmR

1+n
r (Amz,n + µrnA

m
z,n + µ0Mϑn)}

n{R4nm (µr − 1)2 − R2nm R
2n
r (µr + 1)2

−R2ns R
2n
m (µr + 1)(µr − 1)

+R2nr R
2n
s (µr − 1)(µr + 1)}

A+z,III = R2ns A
+

z,III (73)

APPENDIX D
ARMATURE FIELD COEFFICIENTS
The expressions of wm(r) in (32) are obtained from the
method of separation of variables, by treating separately the
one case which would otherwise exhibit a singularity (i.e.
hp = 2 namely fundamental component of a four-pole
machine):

wm(r) =

{
A+m,IIr

m
+ A−m,IIr

−m
+ AJmr

2 if m 6= 2
A+2,IIr

2
+ A−2,IIr

−2
+ AJ2r

2 ln (r) if m = 2

(74)

with AJm,II defined as:

AJm =


µ0Jm
m2 − 4

if m 6= 2

−
µ0J2
4

if m = 2
(75)

and Jm representing the current density harmonics amplitudes
in (30) as in [28]:

Jm =
36
π2

p2NtqI

b|R2wi − R
2
w|

sin
(
mπ
6p

)
1
m

(76)
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