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Abstract
In this paper we review the study of the distribution of the zeros of certain approxima-
tions for the Ramanujan �-function given by Ki (Ramanujan J 17(1):123–143, 2008),
and we provide new proofs of his results. Our approach is motivated by the ideas of
Velásquez (J Anal Math 110:67–127, 2010) in the study of the zeros of certain sums
of entire functions with some condition of stability related to the Hermite–Biehler
theorem.
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A. Chirre, O. V. Castañón

1 Introduction

1.1 Background

Let τ(n) be the Ramanujan’s tau-function, defined by

�(z) =
∞∑

n=1

τ(n)qn = z
∞∏

n=1

(1 − qn)24,

where q = e2π i z , and Im z > 0. It is well known that �(z) spans the space of
cusp forms of dimension −12 associated with the unimodular group. The associated
Dirichlet series and Euler product for �(z) are given by

L(s) =
∞∑

n=1

τ(n)

ns
=

∏

p

(
1 − τ(p)p−s + p11−2s)−1

,

where the series and the product are absolutely convergent for Re s > 13/2.
Let us define the Ramanujan �-function, denoted by �R(s), as follows:

�R(s) = (2π)is−6L(−is + 6)�(−is + 6),

where �(s) is the Gamma function. Another representation for �R(s) is given by

�R(s) =
∫ ∞

−∞
φ(t)eist dt,

where

φ(t) = e−2π cosh(t)
∞∏

k=1

[(
1 − e−2πket )(1 − e−2πke−t )]12

. (1.1)

In [1], Hardy highlighted the importance of the location of the zeros of �R(s) in the
strip |Im (s)| ≤ 1

2 . The Riemann hypothesis for the Ramanujan zeta function states
that all zeros of �R(s) are real.

1.2 Zeros of the approximations4F(s)

The purpose of this paper is to study the distribution of the zeros of certain approx-
imations for the Ramanujan �-function. Inspired in the representation (1.1), Ki [2]
defined these approximations as follows: Let F be a finite sequence of complex num-
bers a0, a1, . . . , an such that at least one of them is different from zero. We define the
function

�F (s) =
∫ ∞

−∞
φF (t)eist dt,
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where

φF (t) = e−2π cosh t
( n∑

m=0

ame
−2πmet

)( n∑

m=0

ame
−2πme−t

)
.

We recall that �F (s) = �F (s), and one can see that for some sequences Fk , the
function �Fk (s) converges uniformly to �R(s) on all compact subsets of C.

Throughout this paper, we will study the distribution of the zeros of the function
CF (s) := �F (−is). Note that the zeros of CF (s) are symmetric respect to the line
Re s = 0. Using the argument principle, Ki [2, Theorem 1] established for T ≥ 2
that1

N (T ,CF ) = T

π
log

T

eπ
+ O(log T ),

where N (T ,CF ) stands for the number of zeros of CF (s) such that 1 ≤ Im s < T ,
counting multiplicity. In the lower half-plane a similar result holds. Moreover, using
the method developed by Levinson [3], he stated that

N (T ,CF ) − N1(T ,CF ) = O(T ), (1.2)

where N (T ,CF ) stands for the number of zeros of CF (s) such that |Im s| < T ,
counting multiplicity and N1(T ,CF ) denotes the number of simple zeros such that
|Im s| < T and Re s = 0. In a sense, it means that almost all zeros of CF (s) lie on the
line Re s = 0 and are simple. Our first goal is to establish a refinement of (1.2).

Theorem 1 For T ≥ 2 we have

0 ≤ N (T ,CF ) − N1(T ,CF ) ≤
(
32n + 32 ln(2n + 1)

π

)
T + O(1).

On the other hand, Ki [2, Theorem 2] found a result about the vertical distribution
of the zeros of CF (s), based on the zeros of the function ψF (s), defined by

ψF (s) = π−s
n∑

m=0

am(2m + 1)−s . (1.3)

Let k ≥ 0 be an integer such that P(1) = P ′(1) = · · · = P(k−1)(1) = 0 and
P(k)(1) �= 0, where P(y) = ∑n

m=0 am y
m .

Theorem 2 Let �∗ < �∗∗ be positive real numbers. Suppose that ψF (s − k) has
finitely many zeros in −�∗∗ < Re s < �∗. Let δ be such that 0 < δ < �∗. Then all
but finitely many zeros of CF (s) which lie in |Re s| ≤ δ are on the line Re s = 0. In
particular, all but finitely many zeros of CF (s) are on the line Re s = 0, if ψF (s − k)
has finitely many zeros in Re s > −�∗∗.
1 Throughout the paper we use the Vinogradov’s notation f = O(g) (or f � g) to mean that | f (t)| ≤
C |g(t)| for a certain constant C > 0 and t sufficiently large.
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Ki included a second proof for the second part of Theorem 2. In particular, this
second proof gave information about the simplicity of the zeros ofCF (s). Anyway, Ki
conjectured that second case for ψF (s − k) is not possible. On the other hand, using
(2.7) it is clear that ψF (s − k) has the same set of zeros of a Dirichlet polynomial
in the framework of [4, Sect. 12.5]. The set of zeros of a Dirichlet polynomial is
quasi-periodic (see [5, Appendix 6, p. 449]). Then, if s0 = σ0 + iτ0 is a zero of the
Dirichlet polynomial, for any ε > 0 we can construct a sequence {sn = σn + iτn}n∈N
of zeros, such that σn ∈]σ0 −ε, σ0 +ε[ for all n ∈ N and τn → ±∞. This implies that
each open vertical strip has no zeros or has infinite zeros. Therefore, the hypothesis
in Theorem 2 is reduced to ψF (s − k) having no zeros in −�∗∗ < Re s < �∗. Our
second goal in this paper is to give a new proof of this result.

Theorem 3 Let �∗ < �∗∗ be positive real numbers. Suppose that ψF (s − k) has no
zeros in −�∗∗ < Re s < �∗. Let δ be such that 0 < δ < �∗. Then all but finitely
many zeros of CF (s) which lie in |Re s| ≤ δ are on the line Re s = 0 and are simple.

We highlight that our proof includes information about the simplicity of the zeros
for the first case. The key relation between the functions CF (s) and ψF (s − k) is due
to de Bruijn [6, p. 225], who showed that

CF (s) =
∞∑

m=k

bmψF (s − m)�(s − m) +
∞∑

m=k

bm ψF (−s − m)�(−s − m),

where bm are complex numbers and bk �= 0.

1.3 Strategy outline

Our approach is motivated by a result of Velásquez [7, Theorem 36], about the distri-
bution of the zeros of a function of the form f (s) = h(s) + h∗(2a − s), where h(s) is
a meromorphic function2, and a ∈ R. This result can be regarded as a generalization
of the necessary condition of stability for the function h(s), in the Hermite–Biehler
theorem [5, 21, Part III, Lecture 27]. In our case, using an auxiliary function WF (s),
we have the representation CF (s) = h(s) + h∗(−s), where h(s) = WF (−is − i/2).
Some estimates of h(s) due to Ki [2, Theorem 2.1] play an important role to establish
the necessary growth conditions in [7, Theorem 36]. On the other hand, the strong
relation between the zeros of h(s) and ψF (s) (see (2.5)) implies that one study the
distribution of zeros of ψF (s), as a set of zeros of a Dirichlet polynomial.

Throughout the paper, we fix a sequence F . For a function f (s) and the parameters
σ1 < σ2, and T1 < T2, we denote the counting function

N (σ0, σ1, T1, T2, f ) = #{s ∈ C : f (s) = 0, σ0 < σ < σ1, T1 < τ < T2},
N̂ (σ0, σ1, T1, T2, f ) = #{s ∈ C : f (s) = 0, σ0 ≤ σ ≤ σ1, T1 < τ < T2},

2 For a meromorphic function h(s), we define the function h∗(s) = h(s).
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where, in both cases, the counts are with multiplicity, and

N
′
0(T , g) = #{s ∈ C : g(s) = 0, Re s = 0, |Im s| < T },

where the count is without multiplicity.

2 Preliminary results

In this section we collect several results for our proof. We highlight that in [2, Propo-
sition 2.3], Ki showed that there is a constant β0 > 0 such that CF (s) �= 0, for
|Re s| ≥ β0. This implies that for β ≥ β0,

N (T ,CF ) = N (−β, β,−T , T ,CF ). (2.1)

Therefore, we can restrict our analysis of the zeros in vertical strips. Now, let us start
to find a new representation for CF (s). We define the entire function

WF (s) =
∫ ∞

−∞
φ̃F (t)eist dt,

where

φ̃F (t) = e−2π cosh t

et/2 + e−t/2

( n∑

m=0

ame
−2πmet

)( n∑

m=0

ame
−2πme−t

)
.

Then, we obtain the following relation:

CF (s) = WF

(
− is − i

2

)
+ WF

(
− is + i

2

)
. (2.2)

If we denote by

h(s) = WF

(
− is − i

2

)
, (2.3)

we rewrite (2.2) as
CF (s) = h(s) + h∗(−s).

This representation allows us to use the following result (see [7, Theorem 36]).

Theorem 4 Let σ0 > 0 be a parameter and h(s) be an entire function such that
h(s) �= 0 for Re s = σ0. We define the entire function

f (s) = h(s) + h∗(−s).
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Suppose that the function

F(s) = h∗(−s)

h(s)

satisfies the following conditions.

(i) F(s) �= ±1 on the line Re s = σ0, and for some τ0 > 0 we have |F(s)| < 1 for
s = σ0 + iτ with |τ | ≥ τ0.

(ii) There exist an increasing function ϕ : R → R, a constant K > 0 and sequences
{Tm}m∈N, {T ∗

m}m∈N such that lim
m→∞ Tm = lim

m→∞ T ∗
m = ∞,

Tm ≤ Tm+1 ≤ ϕ(Tm), T ∗
m ≤ T ∗

m+1 ≤ ϕ(T ∗
m) for m ∈ N,

and |F(s)| < eK |s|, for s = σ + iτ with 0 ≤ σ ≤ σ0 and τ = Tm, τ = −T ∗
m, for

m ∈ N.

Then, for T ≥ 2, we have that

N (−σ0, σ0,−T , T , f )−N
′
0(T , f ) ≤ 4N̂ (0, σ0,−ϕ(2T ), ϕ(2T ), h)+O(1), (2.4)

To prove that the function h(s) defined in (2.3) satisfies the conditions of the previ-
ous theorem, we will use the estimates used by Ki. By [2, Eq. (2.1)], using the change
of variable s �→ −is − i/2, we have that

h(s) = �(s − k)
(
bkψF,k(s) + O

(|s|−1/2)) (2.5)

holds uniformly on the half-plane Re s ≥ −1/4 and |s| sufficiently large. On the other
hand, by [2, Theorem 2.1] it follows using the change of variable s �→ −is + i/2: for
� > 0 sufficiently large,

h∗(−s)

�(s − k − 1)|τ |μ(σ)
= O(1), (2.6)

for s = σ + iτ with 0 ≤ σ ≤ � and |τ | ≥ 1, and the function μ(σ) is given by

μ(σ) =
{
1 − σ, si 0 ≤ σ ≤ 1,
0, si σ > 1.

Finally, we will need to establish bounds for the right-hand side of (2.4) to estimate the
number of zeros of h(s). The relation (2.5) tells us that we must study the behavior of
the zeros of ψF (s). We define ψF,k(s) := ψF (s − k). Thus, using (1.3) this function
can be written as

ψF,k(s) =
n∑

m=0

ame
− ln ((2m+1)π)(s−k) = e− ln((2n+1)π)(s−k)

[ n∑

m=0

pme
βms

]
, (2.7)
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where pm = (an−m)e−βmk and βm = ln((2n + 1)/(2(n − m) + 1)), for 0 ≤ m ≤ n.
The sum on the right-hand side of (2.7) is a Dirichlet polynomial in the framework
[4, Sect. 12.5].

Proposition 5 Let Z(ψF,k) denote the set of zeros of ψF,k(s).

(1) There is a positive real number c0 such that Z(ψF,k) ⊂ {s ∈ C : |Re s| < c0}.
(2) For T1 < T2 and c ≥ c0, we have that

N (−c, c, T1, T2, ψF,k) ≤ n + ln(2n + 1)

2π
(T2 − T1).

(3) Let K ⊂ C such that |Re s| ≤ M for s ∈ K, and some M > 0. Suppose that K is
uniformly bounded from the zeros of ψF,k(s), i.e.,

inf{|s − z| : s ∈ K, z ∈ Z(ψF,k)} > 0.

Then, inf{|ψF,k(s)| : s ∈ K} > 0.

Proof See [4, Theorems 12.4, 12.5 and 12.6]. 
�

3 Proofs of Theorems 1 and 3

3.1 Proof of Theorem 1

Let us define the function

F(s) = h∗(−s)

h(s)
. (3.1)

Since that h(s) and h∗(−s) are entire functions, we can choose σ0 > 0 sufficiently
large such that F(s) �= ±1 and h(s) �= 0 on the line Re s = σ0. Using (2.5) and (2.6)
we get for s = σ + iτ with 0 ≤ σ ≤ σ0 and |τ | sufficiently large,

F(s)

= O(1)�(s − k − 1)|τ |μ(σ)

�(s − k)
(
bkψF,k(s) + O

(|s|−1/2
))

= O(1)|τ |μ(σ)

(s − k − 1)
(
bkψF,k(s) + O

(|s|−1/2
)) . (3.2)

Now, we analyze the behavior of F(s) on the line Re s = σ0. Note that μ(σ0) = 0.
On another hand, the line Re s = σ0 is uniformly bounded from the zeros of ψF,k(s).
Then, recalling that bk �= 0, by Proposition 5 and the triangle inequality we get

∣∣bkψF,k(s) + O
(|s|−1/2)∣∣ � 1, (3.3)
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for s = σ0 + iτ , with |τ | sufficiently large. Inserting this in (3.2), it follows

|F(s)| � 1

|s − k − 1| .

Therefore, for s = σ0 + iτ with |τ | sufficiently large we conclude that |F(s)| < 1.
This implies (i) of Theorem 4. Let us prove (ii) of Theorem 4. For each m ∈ Z we
consider the rectangle

Rm = {s ∈ C : −σ0 < Re s < σ0, m < Im s < m + 1}.

We divide this rectangle into 2n + 1 subrectangles Rm, j defined by

Rm, j =
{
s ∈ C : −σ0 < Re s < σ0, m + j − 1

2n + 1
< Im s < m + j

2n + 1

}
,

for j ∈ {1, 2, . . . , 2n + 1}. By Proposition 5 we have that N (−σ0, σ0,m,m +
1, ψF,k) ≤ 2n. So, there exists j0 such that ψF,k(s) does not vanish in Rm, j0 . Let
us write

Tm = m + j0 − 1
2

2n + 1
.

Note that m < Tm < m + 1. Then, if we define ϕ(x) = x + 2, we have that

m < Tm < m + 1 < Tm+1 < m + 2 < Tm + 2 = ϕ(Tm).

Let K = {s ∈ C : −σ0 < Re s < σ0, Im s = Tm,m ∈ Z}. For any s ∈ K, we have
that |s − z| ≥ 1/2(2n + 1), for all z ∈ Z(ψF,k). Then K is uniformly bounded from
the zeros of ψF,k(s). Using Proposition 5 we see that (3.3) holds for s ∈ K with |m|
sufficiently large. Therefore, in (3.2) we obtain that for s = σ + iτ with 0 ≤ σ ≤ σ0
and τ = Tm (|m| sufficiently large) it follows

F(s) � |τ |μ(σ)

|s − k − 1| .

Using the fact that μ(σ) ≤ 1, we conclude that

|F(s)| � 1 < e|s|.

Now, we choose T ∗
m = −T−m , for all m ∈ N. Thus, we obtain (ii) of Theorem 4.

Therefore

N (−σ0, σ0,−T , T ,CF ) − N
′
0(T ,CF ) ≤ 4N̂ (0, σ0,−ϕ(2T ), ϕ(2T ), h) + O(1).

(3.4)
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To conclude we need to bound N̂ (0, σ0,−ϕ(2T ), ϕ(2T ), h). Firstly, we choose 0 <

ε < 1/4 such that h(s) and ψF,k(s) do not vanish on Re s = −ε0. The definition of
Tm implies that

1

2n + 1
≤ Tm+1 − Tm ≤ 2, (3.5)

and using Proposition 5 we obtain N (−ε, σ0, Tm, Tm+1, ψF,k) ≤ 2n. Let us divide
the rectangle {s ∈ C : −ε < Re s < 0 and Tm < Im s < Tm+1} into 2n + 1 vertical
subrectangles with horizontal length ε/(2n + 1). So, one of these rectangles, denoted
by Im , has no zeros of ψF,k(s) and h(s). Suppose that the right vertical side of Im
is contained on the line Re s = −εm that we can suppose without loss of generality
that does not contain a zero of ψF,k(s). Now, if we place a circle of radius δ > 0
sufficiently small (for instance δ < 1/(2n + 1)(16n)) we can enclosed the zeros of
the rectangle Jm = {s ∈ C : −εm < Re s < σ0 and Tm < Im s < Tm+1} in a
contour Cm such that the distance between Cm and Jm is at least 1/(2n + 1)(16n)

and Cm is distanced at least 1/(2n + 1)(32n) from the zeros of ψF,k(s). We set K =⋃
m ∂ Jm (∂ Jm = the boundaries of Jm). Then, applying (2.5) and Proposition 5,

we can find M > 0 such that

∣∣∣∣bkψF,k(s) − h(s)

�(s − k)

∣∣∣∣ < M < |bkψF,k(s)|

for s ∈ K , with |m| sufficiently large. If we denote w(s) = h(s)/�(s − k), applying
Rouché’s theorem we obtain that there is m0 ∈ N sufficiently large such that

N (−εm, σ0, Tm, Tm+1, w) = N (−εm, σ0, Tm, Tm+1, ψF,k), (3.6)

and

N (−ε−m−1, σ0, T−m−1, T−m, w) = N (−ε−m−1, σ0, T−m−1, T−m, ψF,k) (3.7)

for m ≥ m0.
Finally, let T be a positive real parameter. If T < Tm0 we obtain N (0, σ0, 0, T , h) =

O(1). If T ≥ Tm0 , we choose m1 ≥ m0 ≥ 1 such that m1 < Tm1 ≤ T < Tm1+1 <

m1 + 2. Since that the zeros of 1/�(s) are the non-positive integers, by (3.6) , Propo-
sition 5 and (3.5), we get

N̂ (0, σ0, 0, T , h) ≤
m1∑

j=m0

N (−ε j , σ0, Tj , Tj+1, h) + N̂ (0, σ0, 0, Tm0 + 1, h)

=
m1∑

j=m0

N (−ε j , σ0, Tj , Tj+1, w) + O(1)
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=
m1∑

j=m0

N (−ε0, σ0, Tj , Tj+1, ψF,k) + O(1)

≤
m1∑

j=m0

(
n + ln(2n + 1)

2π
(Tj+1 − Tj )

)
+ O(1)

≤
(
n + ln(2n + 1)

π

)
T + O(1).

Similarly, for T < 0 we use (3.7) to obtain a similar bound. Thus, we obtain for T > 0
that

N̂ (0, σ0,−T , T , h) ≤
(
2n + 2 ln(2n + 1)

π

)
T + O(1).

We replace T by ϕ(2T ) in the above expression, and inserting in (3.4), and one can
see that

N (−σ0, σ0,−T , T ,CF ) − N
′
0(T ,CF ) ≤

(
16n + 16 ln(2n + 1)

π

)
T + O(1).

(3.8)

To obtain our desired result we will use an argument of Ki in [2, p. 131]. Following
his idea, for T > 0 we get that

N (−σ0, σ0,−T , T ,CF ) − N1(T ,CF )

≤ 2

(
N (−σ0, σ0, 0, T ,CF ) −

∞∑

k=1

Nk(T ,CF )

)
, (3.9)

where Nk(T ,CF ) denotes the number of zeros ofCF withmultiplicity k with |Im s| <

T and Re s = 0, counting with multiplicity. Note that

N
′
0(T ,CF ) ≤

∞∑

k=1

Nk(T ,CF ). (3.10)

We conclude combining (3.8), (3.9), (3.10), and recalling by (2.1) that N (T ,CF ) =
N (−σ0, σ0,−T , T ,CF ).

3.2 Proof of Theorem 3

The proof is similar to the previous case. Using the function defined in (3.1), without
loss of generality we can choose δ > 0 in such a way that F(s) �= ±1, h(s) �= 0 and
CF (s) �= 0 when σ = δ. By (2.5) and (2.6) it follows for s = σ + iτ with 0 ≤ σ ≤ δ

and |τ | sufficiently large
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F(s) = O(1)|τ |μ(σ)

(s − k − 1)
(
bkψF,k(s) + O

(|s|−1/2
)) .

Using the fact that the ψF,k(s) has no zeros in the strip −�∗∗ < Re s < �∗, by
Proposition 5 we get

∣∣∣bkψ(s − k) + O
(|s|−1/2)

∣∣∣ � 1, (3.11)

for s = σ + iτ , with 0 ≤ σ ≤ δ and |τ | sufficiently large. Therefore

|F(s)| � |τ |μ(σ)

|s − k − 1| . (3.12)

Using the fact that μ(δ) < 1, then

|F(s)| � |τ |μ(δ)

|s − k − 1| � 1

|τ |1−μ(δ)
< 1,

for s = δ + iτ , with |τ | sufficiently large. Further, we have that μ(σ) ≤ 1, which
implies in (3.12) that

|F(s)| � |τ |μ(σ)

|s − k − 1| � 1 < e|s|,

for s = σ + iτ with 0 ≤ σ ≤ δ and |τ | sufficiently large. Choosing ϕ(x) = x + 2 and
Tm = T ∗

m = m, for m sufficiently large, we get that the hypotheses in Theorem 4 are
satisfied. Then

N (−δ, δ,−T , T ,CF ) − N
′
0(T ,CF ) ≤ 4N̂ (0, δ,−ϕ(2T ), ϕ(2T ), h) + O(1).

(3.13)

Combining (2.5) and (3.11), we get a constant L > 0 such that |h(s)| ≥ L|�(s − k)|
for s = σ + iτ with 0 ≤ σ ≤ δ and |τ | sufficiently large. Then, h(s) only has finitely
many zeros on the strip 0 ≤ σ ≤ δ, because all possible zeros are contained in a
compact set. Therefore, the right-hand side in (3.13) is bounded and this implies our
desired result.
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