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ABSTRACT 
The Rate of Penetration (ROP) is one of the key parameters 

related to the efficiency of the drilling process. Within the 

confines of operational limits, the drilling parameters affecting 

the ROP should be optimized to drill more efficiently and safely, 

to reduce the overall cost of constructing the well. In this study, 

a data-driven optimization method called Extremum Seeking is 

employed to automatically find and maintain the optimal Weight 

on Bit (WOB) which maximizes the ROP. To avoid violation of 

constraints, the algorithm is adjusted with a combination of a 

predictive and a reactive approach. This method of constraint 

handling is demonstrated for a maximal limit imposed on the 

surface torque, but the method is generic and can be applied on 

various drilling parameters. The proposed optimization scheme 

has been tested on a high-fidelity drilling simulator. The 

simulated scenarios show the method’s ability to steer the system 

to the optimum and to handle constraints and noisy data.    

Keywords: Data-Driven, ROP, Drilling Optimization, 

Micro-Testing, Constraint Handling, Extremum Seeking 

INTRODUCTION 
A substantial part of offshore field development costs 

originates from drilling, with most of these costs being related to 

time. There is a great potential for cost reduction by drilling 

safer, faster and with less non-productive time, which is why 

drilling optimization has been the subject of research for more 

than six decades, a process which has been traced by Eren and 

Ozbayoglu [1]. Methods used for real-time drilling optimization 

often focus on tuning physics-based models of the drilling 

process to fit available data from current or offset operations. 

The tuned models are used to predict how the drilling process 

will react to different values of the controllable parameters such 

as WOB, drill string rotational speed (RPM) and flow rate. Based 
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on this prediction, the models can be used to provide estimates 

of the optimal drilling parameters, which can be supplied to the 

driller as suggestions or directly fed to the control system on the 

rig in a closed loop [1-5]. Field tests of an ROP optimization 

algorithm using physics-based models have shown good results, 

with the largest increases in ROP obtained when the algorithm 

was run in closed loop [2,3] and a reduction in downhole tool 

failures when applying the optimization algorithm [3].  

A potential drawback to real-time optimization with the 

physics-based models is that the analysis is based on a 

mathematical description of the drilling process, and the existing 

models might not be very accurate in predicting the ROP [5,6]. 

A possible remedy for model inaccuracies could be the use of 

data-driven modelling techniques, or a hybrid between data-

driven and physics-based modelling methods. The latter 

approach was applied by Spencer et al. [7] in a study on how to 

automatically minimize Mechanical Specific Energy (MSE) 

when drilling through layered materials with a lab-scale rig. A 

physics-based drilling model was used to find an initial estimate 

of the optimal WOB. A data-driven algorithm was subsequently 

utilized while drilling to search the neighborhood of the initial 

estimate for WOB values which could further reduce the MSE. 

Hegde et al. [8] found that a data-driven model gave better ROP 

predictions compared to physics-based models when both 

approaches were using the same input parameters. The selection 

of which type of data-driven model that can be used for real-time 

optimization is a tradeoff between runtime and performance 

where more advanced models will give more accurate ROP 

predictions but suffer from longer computational time and vice 

versa [9]. A recent study investigated the application of a data-

driven optimization strategy with low computational cost called 

Extremum Seeking (ES) to maximize the ROP [10]. Using 

simulated data, it was shown that ES can identify the WOB 
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which maximizes the ROP and automatically steer the WOB to 

this optimal value in an unconstrained environment. 

The drilling process is subject to a multitude of operational 

constraints which affect the safe operational space of the input 

parameters. Chapman et al. [3] gives a detailed list of factors that 

could directly limit the application of the controllable parameters 

such as a maximal WOB and RPM dictated by the drilling 

equipment, as well as listing more indirect factors related to 

torque, vibrations and hole cleaning which will limit certain 

combinations of input parameters. Dunlop et al. [2] further 

describe the implementation of these constraints for real-time 

drilling optimization. Factors limiting the amount of energy that 

can be applied to the drilling process through the controllable 

input parameters and factors which diminish the efficiency of the 

energy transferal between input parameters and ROP have also 

been investigated [11,12]. A solution for constraint handling in 

data-driven modelling is to limit the data used as the training set 

to values that do not violate constraints and not allowing the 

model to extrapolate results outside of this region [9]. 

The data used to tune or train the models used for real-time 

optimization, both physics-based and data-driven, needs to be 

representative of the current drilling conditions (e.g. from the 

same formation) to yield more accurate predictions [1,8]. A 

changepoint algorithm which determines what historical data is 

relevant for the task of ROP modelling and optimization has been 

implemented [2]. Using a sliding window of data containing a 

fixed amount of the most recent measurements to tune a physics-

based drilling model has also been suggested [4,5]. In addition 

to using representative data, the models need a varied sample of 

input (e.g. WOB and RPM) and output parameters (e.g. ROP) 

within this dataset to generate a representative data-driven model 

[9] or to tune the parameters in a physics-based model. A drilling 

advisory system which suggests changes in input parameters to 

the driller for the purpose of exploring the parameter space and 

identifying the operational point which minimizes the MSE has 

been field tested with good results [13]. 

Extremum seeking has previously been implemented 

successfully in a variety of engineering systems ranging from 

yield optimization in bioprocesses to jet engine stability control 

and many others [14], as well as in the petroleum industry for 

gas lift [15,16] and has been investigated for the purpose of 

drilling optimization [10]. The ES algorithm is a gradient ascent 

(or descent) method which requires a process with well-defined 

steady-state characteristics, so that for a given constant input, the 

system settles to a constant output within a reasonable time. It 

also needs the existence of a unique extremum in the output 

which corresponds to some value in the input variable(s) within 

the operational envelope. A more thorough review of these 

conditions and convergence criteria can be found in Tan et al. 

[14] or Ariur and Krstić [17]. When the system conditions are 

satisfied, the ES algorithm will automatically seek and maintain 

the value of the optimal input variable(s), without knowing the 

details of the relationship between the system’s input and output.  

The method we employ in this study is an ES algorithm that 

searches for the WOB which optimizes the ROP by use of real-

time drilling data.  While drilling ahead, the ES algorithm 

prescribes a continuous series of micro-tests by sending 

commands for variations in the WOB to the autodriller. The 

micro-tests are performed by periodically varying the input 

WOB around some base value to gather information about the 

current drilling conditions, and the data generated from this 

procedure is the training data used by the ES algorithm. The 

magnitude and frequency of the WOB variations are determined 

before the start of drilling and should be designed to induce a 

measurable change in the ROP, without interfering much with 

the overall drilling process. The algorithm relates the changes in 

the output ROP to the corresponding variations in the input WOB 

and uses this information to estimate the gradient of the output 

in the local region which has been investigated by the micro-test 

procedure. A sliding window of recent data is used to estimate 

the current gradient by means of linear least-squares regression. 

The gradient is automatically used to determine the direction and 

magnitude in which the WOB base value should be changed to 

increase the ROP by providing the autodriller with updated 

setpoints for the WOB. By continuously repeating this 

procedure, the ES algorithm can navigate the system to its 

optimal point and keep the process at its optimum by continuing 

to probe for changes in the system conditions.  

Hegde, Wallace and Gray [18] found that regression 

modelling methods gave acceptable ROP prediction, but the 

accuracy of the prediction suffers from the nonlinearity between 

the ROP and the regressors, among others the WOB. The 

gradient estimated by the ES algorithm is based on a relatively 

small region defined by the extent of the most recent variations 

in the WOB. In this local region the accuracy of a linear 

approximation of the nonlinear relationship between the ROP 

and the WOB will suffer less than when one considers a wider 

range of ROP and WOB values.    

We focus in this study on the practical aspects related to 

using ES for drilling optimization. The ES algorithm is 

automatically making changes to the applied WOB to maximize 

the ROP. To ensure that the algorithm does not steer the WOB 

to values which will result in e.g. the torque exceeding its 

maximal limit, a combination of a predictive and a reactive 

constraint handling technique is proposed. The constraint 

handling is based on real-time measurements while drilling and 

is demonstrated for a maximal limit imposed on the surface 

torque, but the method is generic and can be applied on various 

drilling parameters. The proposed optimization scheme is able to 

handle the process and measurement noise inherent to the 

drilling process, which can have a strong effect on the algorithm 

performance. Compared to the classical filter-based ES scheme 

(see e.g. Aarsnes, Aamo and Krstić [10]), the proposed method 

is also adjusted to ensure easier tuning of the system by using a 

least-squares method to estimate the gradient, which reduces the 

number of tuning parameters in the algorithm. 

The paper is organized in the following way: first, the 

background of the problem is given, before the ES algorithm is 

described. Then, a control strategy for handling drilling 

constraints is detailed, followed by a section containing details 

on instantaneous ROP estimation. The last two sections contain 

simulation results and conclusions. 
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BACKGROUND 
Drilling is a complicated process with a multitude of factors 

affecting the ROP, such as personnel and rig efficiency, 

formation characteristics, mechanical and hydraulic factors, and 

drilling fluid properties [4]. These many and often 

interconnected effects make accurate modelling of the process in 

real-time a complex task, because many of the parameters 

needed to correctly model the situation are not measured directly 

and will change over time. However, the general mechanics of 

the interaction between the bit and formation are well understood 

[19]. The instantaneous ROP can be described by  

 

𝑅𝑂𝑃 = 𝑓(𝑊𝑂𝐵, 𝒓), (1) 

 

where r is a vector containing all parameters other than the WOB 

which affect the ROP, such as RPM, flow rate, bit condition, 

bottomhole pressure and formation properties. The nonlinear 

function f which governs the relationship between the WOB, r 

and the ROP is not known explicitly, but for any set of values for 

the parameters contained in r it is assumed that f as a function of 

WOB inhibits several characteristic drilling regimes. Figure 1 

shows a nominal relationship between the ROP and the applied 

WOB, where it is assumed that the values of the parameters in r 

are constant. The ROP-WOB relationship is characterized by 

three distinct phases: 1) Inefficient drilling caused by low WOB, 

where the depth of cut is inadequate, 2) efficient drilling where 

all added WOB is transferred to cutting action at the bit in a 

straight-line fashion, and 3) inefficient drilling caused by 

founder [11,19]. The locations of the different phases in the 

ROP-WOB relationship are subject to change as parameters in 

the vector r vary, but the general shape of the three regions is 

expected to remain. A change in formation properties or an 

increase in RPM could alter the WOB at which foundering 

occurs, but WOB lower than the foundering value would still 

correspond to efficient drilling and values above founder would 

constitute inefficient drilling. The shape of the third region 

depends on what type of inefficiency is causing it, which could 

be excessive vibrations or inadequate cleaning at the bit. 

Depending on the cause of founder, its onset could be delayed 

by manipulation of combinations of drilling parameters or 

reengineering of the system [11,12], but these approaches are 

beyond the scope of this paper. 

The transition between the last two regions in Figure 1 is 

referred to as the founder point, and it is drilling at WOB which 

corresponds to this point or slightly below that is mainly desired. 

In this way, the possibly detrimental effects causing the founder 

as well as the bit wear resulting from a large increase in WOB 

for a small increase in ROP can be avoided. A convenient way 

of approaching this situation is to try and maximize not the ROP 

itself, but a performance function on the form 

 

𝐽 = 𝑅𝑂𝑃 − 𝜇𝑊𝑂𝐵, (2) 

 

where μ is a tuning parameter which penalizes the use of 

excessive WOB [10]. As the ES optimization scheme outlined in  

the next section is driven by an estimated gradient of J with 

respect to the WOB, the algorithm seeks the optimum given by 

 
𝜕𝐽

𝜕𝑊𝑂𝐵
=

𝜕𝑅𝑂𝑃

𝜕𝑊𝑂𝐵
− 𝜇 = 0. (3) 

 

From equation (3), the physical meaning of μ can be interpreted 

as a limiting value at which the ROP gradient is deemed too low 

to want to further change the WOB, even though the maximal 

ROP is not yet achieved. A larger value for μ will therefore 

correspond to a more conservative estimate of what the optimal 

operating point is. 

In practice, the drilling process is subject to constraints 

which might limit how much WOB can be applied, so that 

drilling at the founder point may not be feasible. A multitude of 

constraints like this have been identified by Dupriest and 

Koederitz [11] and Chapman et al. [3], such as available BHA 

weight, solids handling capacity and top drive torque rating. A 

method of avoiding violation of limitations while searching for 

the founder point is outlined in the constraints handling section.  

 

 

 
FIGURE 1: NOMINAL RELATIONSHIP BETWEEN ROP AND 

WOB, MODIFIED FROM DUPRIEST AND KOEDERITZ [11]. 
 

EXTREMUM SEEKING FOR ROP OPTIMIZATION 
The variables that the driller or an algorithm can readily 

control from the rig floor to affect the ROP are the WOB, the 

RPM and the flow rate. In this paper, we consider the case of 

optimizing the ROP by means of controlling the WOB in a 

constrained ES approach, with constant RPM and flow rate. The 

method is illustrated in Figure 2, where a continuous excitation 

signal is applied to the WOB to investigate the steady-state 

characteristics of an output performance function defined by 

equation (2). Under the assumption that the ROP-WOB 

relationship is subject to the different drilling regimes outlined 

in the Background section, the drilling process has a unique 

optimal WOB at which foundering starts to occur and is well 

suited for optimization with ES. 
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Although drilling is a continuous process, the sampled 

measurements and the commands given to the control system on 

the rig are performed in discrete time. This motivates the 

notation used here: t is the current time, Δt is the time interval 

between both measurements of drilling parameters and updated 

setpoints provided to the autodriller (here assumed to be the 

same), so that t + Δt signifies a value for the coming timestep.  

The ES algorithm can be divided into three main 

components: 1) The excitation signal, which introduces a 

variation in the input of the system, 2) the gradient estimator, 

used to quantify how the system reacts to the excitation, and 3) 

the optimizer, which changes the input WOB based on the 

estimated gradient. These components are described in detail in 

the following sections. 

 

 
FIGURE 2: CONCEPT ILLUSTRATUION OF EXTREMUM 

SEEKING APPLIED TO DRILLING. 
 

The Excitation Signal 

Some best estimate of the optimal input value, WOB0, is 

initially applied to the system. This estimate could be based on 

calculations from an available drilling model or experience from 

a similar offset well. While drilling ahead, the ES algorithm 

continuously explores the neighborhood of WOB0 and how the 

system responds to small variations in the WOB by conducting 

a series of micro-tests. This is done by automatically varying the 

WOB-setpoint provided to the autodriller according to  

 

𝑊𝑂𝐵(𝑡) = 𝑊𝑂𝐵0(𝑡) + 𝑑(𝑡, 𝐴, 𝑃). (4) 

 

The last term in equation (4) is the excitation signal, which for 

any integer, n, is given by 

 

𝑑(𝑡, 𝐴, 𝑃) =  {
𝐴. . …  𝑡 ϵ [𝑛𝑃, (𝑛 + 

1

2
) 𝑃⟩… . .

    −𝐴        𝑡 ϵ [ (𝑛 + 
1

2
)𝑃, (𝑛 + 1)𝑃⟩

 . (5) 

This signal is a square wave with an amplitude of A kg and a 

period of P seconds, which oscillates symmetrically about 

WOB0. For each period, the magnitude of A approximately 

determines the extent of the WOB-interval which is being 

investigated by the algorithm. A should be small enough to not 

detrimentally affect the overall drilling process, but at the same 

time be large enough to elicit a measurable change in the ROP 

which can be used for gradient estimation. The period of the 

excitation signal determines the amount of historical data used 

to estimate the gradient of the performance function and needs 

to be tuned accordingly. The parameter P should be designed 

large enough to generate a dataset that contains enough 

information so that it can be used for gradient estimation, while 

at the same time considering that a very large value for P will 

result in a lot of previous drilling data (which might no longer be 

representative of the current drilling conditions) being used for 

gradient estimation. 

 

Gradient Estimation 

The applied WOB and the resulting values of J calculated 

from equation (2) are stored in a buffer containing P seconds of 

history for these two parameters, denoted by WOBB and JB. At 

each update of measurements, the past values of J(t) and WOB(t) 

stored in the buffer are used to solve the 1st-order least-squares 

problem given by 

 

min
𝑎,𝑏

∑(𝐽𝐵(𝑡 − 𝑖𝛥𝑡) − (𝑎𝑊𝑂𝐵𝐵(𝑡 − 𝑖𝛥𝑡) + 𝑏))
2

𝑃−1

𝑖=0

,  (6) 

 

where a and b are the slope and intercept of the least-squares fit, 

respectively. These two parameters represent a linear 

approximation to how J has changed with the varying WOB for 

the past P seconds. The slope parameter a is used as an estimate 

of the gradient of the performance function at the current 

timestep, 

 
𝜕𝐽

𝜕𝑊𝑂𝐵
(t) ≈ 𝑎(𝑡). (7) 

 

In this way, a sliding window of data corresponding to one full 

period of the excitation signal is used to estimate the current 

gradient of J. On average, this estimate corresponds to the 

formation which was drilled P/2 seconds earlier, as this is the 

center of the sliding window. The excitation signal is symmetric 

about the slowly varying WOB0, so that equation (7) represents 

a gradient evaluated approximately at WOB0.  

 This technique of gradient estimation is a variant of the 

method proposed by Hunnekens et al. [20], where least-squares 

estimation was used in an ES algorithm without an excitation 

signal. This way of calculating the gradient is robust with respect 

to noise and sensor bias, since much of the noise is filtered out 

over the least-squares window, and any sensor bias is captured 

by the b-parameter, which is not used by the algorithm. In 

addition to this, the method is easier to apply than the classical 

filter-based ES approach. This is because the least-squares 
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gradient estimation does not require any tuning apart from 

determining the amplitude and period of the excitation signal, 

while the classical ES approach needs to tune both the excitation 

signal parameters and the filters to obtain an estimated gradient. 

 

Optimizer 

From Figure 2 it can be seen that the performance function 

has a positive slope when drilling with a WOB to the left of the 

maximal value of J, and a negative slope for WOB values beyond 

this point. The gradient obtained from equations (6) and (7) can 

thus be used to determine how the WOB should be altered to 

increase the performance function, J. This is done by calculating 

an updated WOB0 value for the coming timestep from 

 

𝑊𝑂𝐵0(𝑡 + 𝛥𝑡) = 𝑊𝑂𝐵0(𝑡) + 𝛾
𝜕𝐽

𝜕𝑊𝑂𝐵
(𝑡)𝛥𝑡, (8) 

 

which will move the drilling system to a slightly higher value of 

J. The parameter γ is a gain which determines the learning 

dynamics of the algorithm. That is, how fast the ES scheme 

should vary WOB0 as a response to the estimated gradient of J. 

The new WOB0 value calculated from equation (8) is used to 

update the WOB which will be sent to the autodriller in the next 

timestep, as dictated by equation (4) evaluated at t + Δt. The 

algorithm will subsequently repeat the process of estimating a 

new gradient based on new measurements and adapting to the 

newest information. It is worth noting that this update takes place 

at each timestep, with γ tuned so that WOB0 varies slowly 

compared to the variations in WOB caused by the excitation 

signal. In the constrained case, the WOB0 value requested by the 

algorithm is calculated from equation (14). 

A block diagram of the described optimization structure is 

shown in Figure 3. Each timestep constitutes a loop through this 

diagram, where the algorithm will vary the WOB according to 

equation (4), record and quantify the system response with 

equations (6) and (7) and use this information in equation (8) to 

update the WOB which should be applied to initiate a new 

iteration of the algorithm. 

 

 
FIGURE 3: ES SCHEME FOR UNCONSTRAINED 

DRILLING OPTIMIZATION. 

ROP OPTIMIZATION WITH CONSTRAINT HANDLING 
The optimization algorithm proposed in the previous section 

will be able to steer the drilling system to the optimum dictated 

by the performance function. In practice, operating at this point 

might not be feasible. Some reasons for this could be that the 

required WOB might exceed the available BHA weight or 

allowable WOB, there could be a maximal ROP limit related to 

cuttings transport or handling of cuttings at the surface, or the 

torque generated at the bit or at the surface could exceed the 

allowable values. Two methods for making the ES algorithm 

avoid violation of this type of constraints while searching for the 

optimum is presented below. The methods are illustrated for a 

maximal limit imposed on the surface torque, but the techniques 

are generic and could also be used on other limiting parameters. 

 

Predictive Constraint Handling 

The changes in the drilling process caused by varying the 

WOB can be a good source of information about the current 

system conditions and how other drilling parameters are affected 

by the WOB. The same methodology as was used to extract an 

estimate of the gradient of J in equations (6) and (7) is also able 

to estimate gradients of other drilling parameters and how they 

vary with the changing WOB. By storing measured values of the 

surface torque in an additional buffer, TB, containing P seconds 

of data, the gradient of the surface torque can be calculated from 

 

min
𝛼,𝛽

∑(𝑇𝐵(𝑡 − 𝑖𝛥𝑡) − (𝛼𝑊𝑂𝐵𝐵(𝑡 − 𝑖𝛥𝑡) + 𝛽))
2

𝑃−1

𝑖=0

,  (9) 

 
𝜕𝑇

𝜕𝑊𝑂𝐵
(t) ≈ 𝛼(𝑡). (10) 

 

The parameters α and β are the slope and intercept of the least-

squares fit, respectively. The gradient estimate given by 

equations (9) and (10) can be used to predict how the surface 

torque will react to further changes in the WOB, and how to 

avoid violation of constraints based on this information. 

The recorded surface torque is often plagued by noise, both 

from inaccurate measurements and process noise in the form of 

drillstring vibrations. Because of this, there is some uncertainty 

as to what the value of the surface torque is. To remedy this issue, 

the average value of the torque buffer, TB,avg, is taken as the 

surface torque, which approximates the torque experienced by 

the system when drilling with a weight on bit of WOB0. This 

averaging will reduce the amount of noise in the torque value 

used by the algorithm, but it will also introduce a time delay in 

the averaged torque value corresponding to half of the averaged 

period, the same delay that is inherently present in the gradient 

calculated in equations (9) and (10).  

To avoid the WOB being steered to values which cause a 

violation of the allowable torque, Tlimit, the gain parameter γ in 

equation (8) is calculated as  
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𝛾 =  {
   𝛾 ,   (𝑇𝐵,𝑎𝑣𝑔 + 𝐴

𝜕𝑇

𝜕𝑊𝑂𝐵
(𝑡)𝑆𝐹) < 𝑇𝑙𝑖𝑚𝑖𝑡

     0 ,    (𝑇𝐵,𝑎𝑣𝑔 + 𝐴
𝜕𝑇

𝜕𝑊𝑂𝐵
(𝑡)𝑆𝐹) ≥ 𝑇𝑙𝑖𝑚𝑖𝑡   

, (11) 

 

where SF is a safety factor greater than 1. Because the algorithm 

varies the weight on bit about WOB0 with a magnitude of A kg, 

equation (11) will stop the optimizer from exceeding the torque 

limit with a margin dictated by the SF parameter. This method 

also allows the excitation signal to continue the micro-testing for 

changes in the drilling conditions, even when the torque is close 

to the highest allowable value. The value for Tlimit used in 

equation (11) should be lower than the maximal limit the drilling 

system can handle, as an added safety measure.  

 

Reactive Constraint Handling 

In some instances, the predictive constraint handling 

detailed in equation (11) might not be enough to ensure that the 

torque stays within the allowable boundaries. This could be 

caused by either very noisy measurements which makes the 

calculated torque gradient inaccurate, or abrupt changes in 

drilling conditions, such as a formation change, which alters the 

torque in a short span of time. To ensure safe operations, a 

reactive constraint handling technique is implemented using a 

variable which is equal to zero if the constraint is not violated 

and proportional to the violation if the torque limit is exceeded, 

 

𝑒(𝑡) =  {
               0 ,                    𝑇𝑎𝑣𝑔 < 𝑇𝑙𝑖𝑚𝑖𝑡

  𝑇𝑎𝑣𝑔(𝑡) − 𝑇𝑙𝑖𝑚𝑖𝑡  ,      𝑇𝑎𝑣𝑔 ≥ 𝑇𝑙𝑖𝑚𝑖𝑡
 .  (12) 

 

Tavg is an average value spanning a few seconds of the most 

recent torque measurements, e.g. 5 seconds, to remove some of 

the measurement noise while still being representative of the 

current torque. This average parameter is introduced so that the 

constraint handling routine will not react to very short-term 

spikes in the measured surface torque. The value for Tlimit should 

be lower than the actual system limit, because the reactive 

constraint handling will only start to affect the system when Tavg 

is larger than Tlimit. The variable e from equation (12) is used to 

calculate a penalty variable, λ, by use of a discrete PI controller, 

 

𝜆(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∑𝑒(𝑖)𝛥𝑡.

𝑡

𝑖=0

 (13) 

 

KP and KI are the proportional and integral gains, respectively, 

which are the tuning parameters that determine how aggressively 

the controller should penalize torque values above the limit. The 

penalty term calculated from equation (13) is used to reduce the 

weight on bit demanded by the ES algorithm according to  

 
𝑊𝑂𝐵0,𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑(𝑡 + 𝛥𝑡) = 𝑊𝑂𝐵0(𝑡 + 𝛥𝑡) − 𝜆(𝑡). (14) 

 

The parameter WOB0,constrained is used in equation (4) to calculate 

the constrained WOB setpoint which is sent to the autodriller.  

The first term on the right-hand side of equation (14) is the 

unconstrained WOB0 value found by the optimizer, equation (8), 

which is calculated independently of the reactive constraint 

handling. If the torque limit has not been violated, λ will be equal 

to zero and the constrained WOB0 value will be equal to the 

WOB0 found by the optimizer. If the torque limit is exceeded, 

the WOB demanded by the ES algorithm will be reduced until 

the torque is again below its limiting value, at which point λ will 

retain a value determined by the summation term in equation 

(13).  How fast the reduction in WOB takes place once the 

constraint is violated is controlled by the gain parameters KP and 

KI in equation (13). They should be large enough to ensure that 

the penalty variable, λ, reduces the requested WOB faster than 

the adaptation gain, γ, is able to demand increases in the WOB. 

 

PRACTICAL CONSIDERATIONS 
Instantaneous ROP Estimation 

The proposed optimization algorithm relies heavily on 

causing a change in the ROP by varying the WOB and being able 

to quantify this change. The ROP is not a directly measured 

parameter, but rather calculated as a derivative of the position of 

the travelling block or other surface equipment, possibly with a 

model to account for the elasticity of the drill string. This 

differentiation procedure will amplify any inaccuracies in the 

measured block position, making the calculated ROP imprecise. 

These inaccuracies could be caused by measurement noise, rig 

heave or unaccounted for elongation and shortening of the 

drilling line when the hook position is estimated from the 

drawworks. A common way of dealing with this issue is to use 

ROP values averaged over a certain time or depth increment, 

which will reduce the inaccuracy but cause a time-delay in the 

estimated ROP. 

In this paper, the instantaneous ROP is approximated as the 

velocity of the travelling block. This is done by means of a 

Kalman Filter (KF), which is designed to account for process and 

measurement noise to yield a better ROP estimate. The KF is 

based on a linear state-space model which describes the 

relationship between the block position, hblock, and its derivative, 

the ROP, in consistent units as 

 

[
ℎ𝑏𝑙𝑜𝑐𝑘

𝑅𝑂𝑃
] (𝑡 + 𝛥𝑡) = [

1 −𝛥𝑡
0 1

] [
ℎ𝑏𝑙𝑜𝑐𝑘

𝑅𝑂𝑃
] (𝑡) + 𝑤(𝑡). (15) 

 

The last term in equation (15) is the process noise, which 

represents any forces which affects the ROP and makes it non-

constant, which in turn will affect the hook position. This could 

be a change in drilling conditions or variations in the input WOB, 

RPM or flow rate. The measurement of the block position is 

described by  

 

𝑦(𝑡) = [1 0] [
ℎ𝑏𝑙𝑜𝑐𝑘

𝑅𝑂𝑃
] (𝑡) + 𝑣(𝑡). (16) 

 

In equation (16), y represents the measured block position, which 

is made inaccurate by the measurement noise, v.  

The KF uses a combination of the hblock and ROP predicted 

by equation (15) and the measured y from equation (16) to yield 
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an estimate of what the true ROP is. This combination is done 

based on how much noise is affecting equations (15) and (16), 

where the KF will trust the ROP from equation (15) more if there 

is a lot of measurement noise compared to process noise, and 

vice versa. The values of v and w at any given time are not known 

by the filter, but some assumptions are made about them. The KF 

assumes that the disturbances are normally distributed variables 

which continuously affect the system, and that their distribution 

is described by 

 

𝑤~𝑁(0, 𝑄), , … . …  𝑄 =

[
 
 
 
(𝛥𝑡)4

4

(𝛥𝑡)3

2
(𝛥𝑡)3

2
(𝛥𝑡)2

]
 
 
 

𝜎𝑝
2, (17) 

 

𝑣~𝑁(0, 𝑅), …… …  𝑅 =  𝜎𝑚
2 . … . ….                 (18) 

 

In equations (17) and (18), Q and R are the covariance matrices 

of the process and measurement noise, respectively. The 

parameter σm is the standard deviation of the measurement noise 

and is presumed known from the specifications of the applied 

sensor or measurement technique. The standard deviation of the 

process noise, σm, is then the only unknown factor in equations 

(15) - (18) and is used as a tuning parameter for the KF. It should 

be noted that equations (15) and (17) can be derived from the 1st 

and 2nd equations of motion, where w captures the effect of a 

normally distributed acceleration affecting the system. 

In practice, it is not expected that the process noise affecting 

the drilling rate and hook position is normally distributed and 

continuously affecting the system, as is assumed in equation 

(17). It is more likely that this noise is displayed as more discrete 

variations in the system caused by changing drilling conditions 

and the fluctuating WOB. Despite this, the Kalman filter will still 

be able to provide good estimates of the instantaneous ROP when 

properly tuned. A block diagram of the complete ES scheme with 

constraint handling and ROP estimation is shown in Figure 4. 

 
FIGURE 4: ES SCHEME FOR CONSTRAINED DRILLING 

OPTIMIZATION.  

 

SIMULATION RESULTS 
Drilling Simulator 

The simulator used to study the proposed optimization 

technique is OpenLab, a high-fidelity drilling simulator 

developed by the Norwegian Research Centre (NORCE) in 

collaboration with the University of Stavanger. The simulator 

consists of a set of integrated numerical models covering 

different aspects of the drilling process, including torque and 

drag effects, cuttings transport, multi-phase flow and heat 

transfer [21]. The models on the OpenLab platform are run by 

supplying the simulator with setpoints for input variables, which 

the simulator translates to actions on the drill-floor with built-in 

functions which limits the allowable rate of changes according 

to equipment specifications [22].  

To simulate the effects of measurement noise, an option to 

add white gaussian noise to the surface torque and block position 

was included in the system. These sources of noise are denoted 

by vT and vh, respectively, and can be seen in Figure 4. The noise 

parameters used in the simulations have been taken to match the 

noise from logged drilling operations. 

 

Simulation Results 

A series of simulations have been performed in OpenLab to 

investigate the applicability of the proposed optimization 

scheme. The simulations detailed here are all carried out in the 

8.5” section of a vertical well, with drilling commencing at a 

depth of 2500 meters through a homogeneous formation. The 

system is set up to start the drilling of each new stand at an initial 

constant value of WOB for three minutes, followed by a full 

oscillation period of the excitation signal to estimate an initial 

gradient of J, before the ES algorithm starts the WOB-adaptation 

according to equation (14). Both RPM and flow rate are held 

constant throughout the runs, except when ramping up and down 

for connections every 27 meters. Parameters common for all the 

simulated scenarios are listed in Table 1. The value for μ used in 

the simulations signify that the optimum determined by J is 

reached when the ROP increases less than 5 m/hr for a 1000 kg 

increase in WOB. The simulations are all initiated at a 

conservative WOB value of 2000 kg, at which the ROP is 23 

m/hr. The optimum point sought by the ES algorithm is found at 

4700 kg of WOB and corresponds to a drilling speed of 43 m/hr, 

meaning that there is a potential increase in the ROP of 20 m/hr 

by drilling at the optimum WOB value.  
 

TABLE 1: PARAMETERS COMMON FOR ALL SIMULATIONS.  

Parameter Value Unit 

A 200 kg 

P 240 s 

μ 0.005 m/hr/kg 

Δt 1  s 

Kp 0.5 kg/Nm 

Ki 0.25 kg/Nm 

SF 3 - 

RPM 150 rpm 

Q 2000 lpm 

WOB0(t = 0) 2000 kg 
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Simulations Without Measurement Noise 

This section covers two simulated scenarios where three 

stands are drilled. The gain parameter γ in equation (8) is here 

set to a value of 400 kg2·hr/m/s. No noise is added to the 

measurements, and the ROP used is the actual drilling rate 

reported by the simulator. The two simulation conditions are 

identical, with the exception of a limiting value for the surface 

torque of 5000 Nm which is imposed on the system in the second 

run. Figure 5 shows the resulting ROP, J, WOB and surface 

torque from these two simulations. 

In simulation 1, the weight on bit is steered from 2000 kg to 

a WOB0 value of about 4300 kg during the drilling of the first 

stand, before a connection takes place at approximately 2850 

seconds. This adjustment in WOB results in an increase in ROP 

of 18 m/hr, which is 90% of the interval between the starting 

point and the optimum. The next two stands are spent drilling 

while the ES algorithm slowly makes the system converge to the 

optimal WOB value, at which the performance function is seen 

to flatten out and become constant. 

The second simulation is initially identical to the first, 

before the increasing WOB causes the surface torque to become 

too close to the limiting value after 1400 seconds. At this point, 

the predictive constraint handling part of the algorithm stops the 

WOB-adaptation before the constraint is exceeded.  Because the 

system is forced to drill with a WOB lower than the optimal 

value, the second simulation spends about 23 minutes more than 

the first to complete the three stands.   

 
FIGURE 5: SIMULATIONS 1 AND 2, WHERE A TORQUE LIMIT 

IS IMPOSED ON THE SYSTEM IN SIMULATION 2. 

 

 

 

Simulations with Measurement Noise 

The results from simulations 3 and 4 are presented in Figure 

6, where the latter run is limited by a maximal surface torque of 

5000 Nm. Other than this, the scenarios are identical and are both 

performed with the parameters given in Table 2. A lower value 

of the adaptation gain, γ, is used in these simulations compared 

to the first two. The noise levels, vh and vT, are designed so that 

the measurements are disturbed by normally distributed random 

variables that take on values in the intervals ± 0.03 m and ± 500 

Nm, respectively. The ROP used in the algorithm is estimated 

from noisy block measurements with the Kalman filter. The 

spikes seen in the estimated ROP at the start of each drilled stand 

in Figure 6 are caused by the KF, which overestimates the ROP 

initially, before it has more data to work with and is able to home 

in on the true ROP value. These ROP-spikes occur during the 

initiation of drilling where the weight on bit is held constant and 

are thus not used by the algorithm for adaptation of the WOB.  

 

TABLE 2: PARAMETERS USED IN SIMULATIONS 3 AND 4. 

 

 

 

 

 

 

 

 

 

  
FIGURE 6: SIMULATIONS 3 AND 4, WHERE A TORQUE LIMIT 

IS IMPOSED ON THE SYSTEM IN SIMULATION 4. 

 

Parameter Value Unit 

vh ~N(0, 0.01) m 

vT ~N(0, 167) Nm 

σp 3·10-5 m/s2 

σm 10-2 m 

γ 250 kg2·hr/m/s 

Tavg interval 5 s 
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Simulation 3 is from the second track in Figure 6 seen to be 

adapting towards the optimal WOB-value but is not able to reach 

it within the simulated interval. The fastest adaptation takes place 

during the drilling of the first stand, where he ROP is increased 

by about 12 m/hr from the initial value. This corresponds to 60% 

of the total ROP improvement sought by the algorithm in this 

scenario. 

The third track in Figure 6 displays the “raw” noisy torque. 

This value is frequently seen to surpass the limiting torque, as 

the algorithm interprets it as very short-term fluctuations which 

it does not react to. The bottom track in Figure 6 shows the 5 

second average torque value for simulation 4, which is used in 

equation (12) to determine when the torque is above the limit. 

After drilling for 2500 seconds and onwards, this Tavg value is 

seen to exceed the constraint for a short period of time on several 

occasions. Each time this occurs, a reduction in WOB takes place 

until the torque is again within its allowable values. As in 

simulation 2, the WOB in simulation 4 is not allowed to work its 

way further towards the optimum, which causes the drilling of 

the three stands to take more time.  

 

Discussion of Results 

Throughout the simulations, the ES algorithm is seen to 

adjust the WOB the fastest during the first drilled stand. This is 

caused by the adaptation being proportional to the gradient of the 

performance function. As the WOB closes in on its optimal 

value, this gradient will become smaller (see Figure 2). As can 

be observed in simulations 1 and 3, this property allows the ES 

algorithm to quickly modify the WOB to the neighborhood of 

the optimal value. After the initial fast adaptation, it slowly 

converges towards the optimum while continuously probing for 

any changes in drilling conditions. An important parameter 

which affects the adaptation rate of the algorithm is the gain 

parameter γ. On the one hand, it determines the rate of 

convergence of the WOB to the optimum. The larger it is, the 

faster is the convergence. On the other hand, higher values of γ 

will make the algorithm more sensitive to measurement and 

process noise, as the system makes larger adjustments even for 

small deviations caused by noise. Thus, finding a value for 

gamma which balances the convergence rate and sensitivity to 

noise is an important tuning task when using the ES algorithm. 

The constraining torque value which is used in simulations 

2 and 4 is only a fraction of what would be the allowable 

continuous torque of e.g. a top drive. The limitation is 

implemented to demonstrate the algorithm’s ability to stay 

within constrictions in a practical manner while it searches for 

the optimum WOB, as is seen in the simulated scenarios. 

Simulation 4 demonstrates that when the constrained parameter 

(the torque) is very noisy, it can exceed the limit for short periods 

of time. This observation together with general HSE 

considerations necessitates that the maximal torque value 

implemented in the algorithm is lower than the actual system 

limitation. 

The initial WOB0 used in all the simulations is quite far from 

the optimal value. Even though the adaptation of the algorithm 

is faster when further away from the optimum, a more efficient 

optimization method in this scenario could be a hybrid between 

the data-driven and physics-based approaches, conceptually 

similar to what was done by Spencer et al. [7]. The information 

gathered from the initial WOB excitations could be used to 

roughly tune a physics-based drilling model, and the suggested 

optimal parameters provided by this model would be the starting 

point for the ES algorithm which would further home in on the 

founder point. 

 

CONCLUSIONS 
We present a data-driven optimization strategy which 

automatically seeks and maintains the optimal WOB maximizing 

the ROP. The algorithm does not require any model of the 

drilling process and utilizes continuous micro-testing of the 

drilling conditions to identify and implement adjustments of the 

WOB leading to higher ROP. The micro-testing procedure does 

not cause any significant perturbation to the drilling process and 

is run continuously to adapt to the current drilling environment. 

The algorithm has been tested on a high-fidelity drilling 

simulator where it demonstrated the ability to steer the WOB to 

values resulting in higher ROP both with and without the 

presence of noise in the data. The simulated scenarios show that 

the proposed optimization strategy is able to automatically 

search for and implement improvements in the ROP while 

adhering to process constraints, where the constraint handling 

was demonstrated with the example of a maximal limit imposed 

on the surface torque. 

NOMENCLATURE 
Parameters 

a Least-squares slope (m/hr/kg) 

α Least-squares slope (Nm/kg) 

A Amplitude of excitation signal (kg) 

b Least-squares intercept (m/hr) 

β Least-squares intercept (Nm) 

d Excitation signal (kg) 

Δt Time increment (s) 

e Torque limitation variable (Nm) 

γ Adaptation gain (kg2·hr/m/s) 

hblock Height of travelling block (m) 

J Performance function (m/hr) 

JB Buffer with past J values (m/hr) 

λ Penalty variable (kg) 

μ Parameter in J (m/hr/kg) 

N Probability density function of the normal 

distribution 

P Period of excitation signal (s) 

Q Process noise covariance matrix  

r Vector of drilling parameters  

R Measurement noise covariance matrix 

σm Measurement noise std. dev. (m) 

σp Process noise standard deviation (m/s2) 

t Time (s) 

T Torque (Nm) 

Tavg 5 second average torque value (Nm) 

TB Buffer with past torque values (Nm) 
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TB,avg Average value of TB (Nm) 

Tlimit Limiting torque value (Nm) 

v Measurement noise  

vh Measurement noise in hblock (m) 

vT Torque measurement noise (Nm) 

w Process noise  

WOB0 Center WOB value in d (kg) 

WOB0,constrained   Constrained WOB0 value (kg) 

WOBB Buffer with past WOB values (kg) 

y Measurement of hblock (m) 
h  
Abbreviations 

ES Extremum Seeking  

KF Kalman Filter  

MSE Mechanical Specific Energy  

ROP Rate of Penetration (m/hr) 

RPM Revolutions per Minute (rpm) 

SF Safety Factor    

WOB Weight on Bit (kg) 
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