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Abstract. The article is devoted to developing methods of dynamic correction 

of signals registered at the output of a non-linear measuring transducer for the 

purpose to recover its input signal. Dynamic correction leads to decreased iner-

tia/time response of the measuring transducer and smoothes its non-linearity. 

Signal recovery problem is resolved based on the non-linear model of measur-

ing transducer as a first kind, second degree polynomial Volterra integral equa-

tion. As the problem is ill-posed, the model regularization method is used. The 

article offers a differential regularization operator transforming the input poly-

nomial integral equation into a polynomial integro-differential equation. For 

numerical realization of the given models’ type an algorithm based on the dif-

ference and quadrature methods is offered. The key problem of limited model-

ling time when using the kernel, given by the tabular method, is resolved by ap-

plying a procedure of restarting of the calculation process with offset of the 

time interval the integral equation kernel defined on. To resolve the issue of 

significant short-period errors in calculations after the restart of the calculation 

process, we offer a method for obtaining solution from two parallel computing 

processes with tabular kernels offset in time at a half of the time interval they 

are defined on. A feature of integral models is their resistance to high-frequency 

interference, which are present in real engineering systems. The obtained results 

can be used in dynamic correction devices of measuring transducers of automat-

ic control and measurement systems. 

Keywords: dynamic correction of non-linear measuring transducer, polynomial 

integral models, tabular kernel, signal recovery. 
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1 Introduction 

Intensive development of modern controlled engineering systems demands constant 

improvement of measuring devices as the basic components of such systems. Com-

puterized measuring transducers play a special role in the development of controlled 

engineering systems. They are usually composed of a sensor, AD transducer and dy-

namic correction device [4, 8]. A dynamic correction device is designed based on 

mathematic models of the researched processes. To a great extent it depends on the 

difficulty of algorithmic signal processing relying upon these models. The difficulty 

also arises due to the fact that digital signals shall be processed in real time with lim-

ited hardware as such measuring systems are usually represented as mounted units 

[5]. 

The key issue arising in measurement process is recovering the input signals, 

which is classified as an inverse ill-posed problem [9, 10]. Models of different types 

can be used to describe the dynamic features of measuring transducers [8, 10]. To 

provide for the necessary level of adequacy of multiple practical problems, measuring 

transducer mathematic models shall account for different features, specifically, non-

linearity of processes and space distribution of parameters. As such features are con-

sidered, models grow increasingly more complicated together with the dynamic cor-

rection device software. Using operator models in integral form with a range of posi-

tive features (multipurposeness, smoothing measuring data, efficient macromodels, 

etc. [2, 10]) appears promising. What concerns recovery, these models acquire the 

form of the first kind Volterra integral equation. Hence, the basis integral form of 

signal recovery model is 

 ( ) ( )
0

, , , , ( , )

t

K t s x s ds y t   = , (1) 

where ( ), , ,K t s   is the kernel of integral operator, ( ),y t  is the set input signal in 

point  , and ( ),x t  is the sought input signal in point  ,  0,t T . Such models 

can be used only to describe linear processes; in its turn, to consider the non-linear 

features, the basic model may acquire a form of first kind polynomial Volterra inte-

gral equation [1, 6, 9] 
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where ( )1, , , ,...,m mK t s s   are multidimensional kernels, ( ),x t , ( ),y t  are, corre-

spondingly, the input and output signals applied at points   and   of the distributed 

object, n  is a certain integer, and T  is the transition process time. 

Many publications [2, 10] dwell upon solving inverse problems based on the (1), 

with regularization methods being the most efficient. Researches [1, 9] are devoted to 

developing methods for solving the equations (2), which usually based upon direct or 
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iterative methods. A range of factors complicate the use of the current methods to 

develop mathematical means and software for dynamic correction devices of measur-

ing transducers, particularly, accumulation of calculations during numerical imple-

mentation of multidimensional integral models and ill-posedness of the problem, 

which does not allow to sufficiently recover the signals in the case of input data noise 

interference. 

Thus, the task of developing methods for solving polynomial integral equations, 

which will serve as a foundation for software of computerized dynamic correction 

devices for measuring transducers, becomes topical. 

2 Methods for solving polynomial integral equations 

Let us consider a partial case (2) as a model of non-linear sensor – first kind, second 

degree polynomial Volterra integral equation 

 1 2 1 2 1 2 1 2

0 0 0

( , , , ) ( , ) ( , , , , ) ( , ) ( , ) ( , ),

t t t

K t s x s ds K t s s x s x s ds ds y t       + =    (3) 

where ( ),y t  is the value obtained from the sensor, ( ),x t  is the measuring value 

sought, ( )1 , , ,K t s   is the first order kernel, and ( )2 1 2, , , ,K t s s   is the second 

order kernel. Integral equation kernels (3) depending on the used method may have 

different representation: analytical representation when using analytical methods for 

transformation of other models’ types; tabular representation when using the identifi-

cation methods [3, 7]. In our case, kernel ( )1 , , ,K t s   is presented as a table (vector) 

and kernel ( )2 1 2, , , ,K t s s   is presented as a matrix. 

Let us consider a method for solving the (3) based on model regularization. 

2.1 Model regularization 

As the signal recovery problem is ill-posed, and the use of known methods and algo-

rithms does not provide a solution of necessary accuracy in case of interference of 

input data in limited time, it is proposed to create regularization algorithms using the 

differential regularization operator 

 ( )
( ) ( )

( )
2
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2 1 02
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d x t dx t
Dx t x t

dtdt

 
       = + + , (4) 

where   is regularization parameter and 
i  are regularization coefficients defining 

the operator order; they can equal 0 or 1. 

The model experiments’ method revealed that the first order differential regulariza-

tion operator yields the best results. Thus, solving first kind Volterra integral equation 

is reduced to solving a polynomial integro-differential equation: 
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where   is a regularization parameter proposed to be found based on the model ex-

periments’ method [10]. 

2.2 Algorithms for solving polynomial integral equations 

It is proposed to solve the given task by replacing the integrals with quadrature sums, 

which provides several advantages, in particular simple implementation and high 

stability of computational algorithms due to regularization features of sampling inter-

val selection [10].  

By introducing fixed-rate sampling ( 1..i n= , 1i ih t t −= − ), applying the method of 

trapezoids and first order difference formula to the (5) and grouping the sought 

( ), ix t  by degrees, we obtain the following equation: 
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Let us introduce the following notation: 

 ( )2

2 ,

1
, , , ,

4
i i i iA h K t t t = , (7) 
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Hence, (6) considering the notation of (7), (8), (9) has the following form 

 ( ) ( )
2

, , 0i i i i iA x t B x t C + + = . (10) 

Quadratic equations of the system (10) are solved in sequence, and for selection of 

one of the routes, the following algorithms is used: if 

( ) ( ) ( ) ( )
1 21 1, , , ,i i i ix t x t x t x t   − −−  − , then 

2i ix x= , else 
1i ix x= . 

2.3 Solving polynomial integral equations with tabular-type kernels in an 

infinite period 

Model (5) is distinguished by integral kernels that set tabular (vector and matrix), 

which imposes time limits for the model. This issue is resolved by restart of the com-

putational process with offset of the time interval the integral model’s (5) kernels 

defined on. Kernel displacement operation is mathematically ill-posed as the restarted 

computational process does not account for the initial conditions while calculating the 

first discretion value of solution on the offset time interval. In this connection, at the 

beginning of the restart, there are significant tolerance in solution calculation. How-

ever, due to regularization feature the tolerance is rapidly reduced to the level of sys-

tematic error. To obtain a solution for infinite time interval with the acceptable toler-

ance not exceeding systematic error, it is proposed to use an additional computational 

process for the equation (5). The peculiarity of the additional computational process is 

time-offset of the kernels, that set tabular, by half time interval at which they are iden-

tified. Thus, one can obtain solutions with the acceptable accuracy on the intervals 

with significant tolerances at the restart of the main calculation process. The resulting 

solution is a combination of solutions obtained from two calculation processes in two 

threads; it also accounts for the fragments of the obtained results with stable conver-

gence of the solution. Fig. 1 provides for the diagrams of the obtained solutions for 

https://www.multitran.com/m.exe?s=in+this+connection&l1=1&l2=2
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the type (5) equations with restarts of the time-offset computational processes. Fig. 2, 

shows a solution diagram obtained from combining the solutions fragments of differ-

ent threads. 

 

Fig. 1. Diagrams of the solutions of type (5) equations with restarts of calculation processes. 

 

Fig. 2. Combined solutions’ fragments. 
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3 Results and practical application of the offered methods 

The research results were used in solving the problem of the temperature modes’ op-

erative control of computer network trunking and switching equipment chips. The 

experiment revealed that the “chip–thermosensor” measurement system is inertial and 

non-linear. Having applied the identification method [7], we obtained a model repre-

sented as a partial sum of the Volterra integro-power series: 

 0 1 2 1 2 1 2 1 2

0 0 0

( ) ( ) ( ) ( , ) ( ) ( )

t t t

R t k K s T t s ds K s s T t s T t s ds ds= + − + − −   , (11) 

where ( )R t  is thermistor resistance value, ( )T t  is chip temperature, 
0k  is dimension-

less factor, 1( )K s  is first order kernel given in tabular form (vector), 
2 1 2( , )K s s  is 

second order kernel given in tabular form (matrix). To recover the temperature offset 

signal inside the chip based on model (11), we conducted its regularization by intro-

ducing a differential regularization operator. It resulted in the model:  

 1 2 1 2 1 2 1 2 0

0 0 0

( ) ( ) ( , ) ( ) ( ) ( )

t t t
dT

K s T t s ds K s s T t s T t s ds ds R t k
dt

 + − + − − = −   , (12) 

where   is the regularization parameter. 

Model (12) is the basis of the software component of the computer subsystem for 

controlling the chips’ temperature modes, which allows to minimize the delay of 

thermal sensor reaction to chip temperature change. Temperature value is defined 

based on the thermal sensor resistance digital data sent by the computer network to 

the computerized dynamic correction and control system. Fig. 3 provides for diagrams 

of: a) the registered signal used as a basis for recovery of the signal of temperature 

change inside the chip; b) the result of signal recovery (recovered and actual).  

a)  b)  

Fig. 3. Diagrams of the signals: a) registered at the thermal sensor output; b) recovered by the 

dynamic correction system 
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4 Conclusions 

Thus, the developed method for solving first kind, second degree polynomial integral 

equations based on differential regularization operator and mechanism of restarting 

the computational process with offsetting the time interval the equation kernels are 

defined on, made it possible to solve the problem of recovery of the input signal of a 

non-linear measuring transducer in real time at high-frequency noise interference of 

input signal. A perspective direction for further research is to determine the optimal 

time interval the integral model kernels and regularization parameters are defined on, 

which provides the maximum rate of computational process convergence at restart. 
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