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Abstract

This paper uses non-linear methodologies to follow the synchronously

reported relationship between the Nordic/Baltic electric daily spot auction

prices and geographical relevant wind forecasts in MWh from early 2013 to

2020. It is a well-known market (auctions) microstructure fact that the daily

wind forecasts are information available to the market before the daily auction

bid deadline at 11 a.m. The main objective is therefore to establish conditional

and marginal step ahead spot price density forecast using a stochastic repre-

sentation of the lagged, synchronously reported and stationary spot price and

wind forecast movements. Using an upward expansion path applying the

Schwarz (Bayesian information criterion [BIC]) criterion and a battery of resid-

ual test statistics, an optimal maximum likelihood process density is suggested.

The optimal specification reports a significant negative covariance between the

daily price and wind forecast movements. Conditional on bivariate lags from

the SNP information and using the known market information for wind fore-

cast movements at t1, the paper establishes one-step-ahead bivariate and

marginal day-ahead spot price movement densities. The result shows that wind

forecasts significantly influence the synchronously reported spot price densi-

ties (means and volatilities). The paper reports day-ahead bivariate and

marginal densities for spot price movements conditional on several very plau-

sible price and wind forecast movements. The paper suggests day-ahead spot

price predictions from conditional and synchronously reported wind forecasts

movements. The information should increase market participants spot market

insight and consequently make spot price predictions more accurate and the

confidence interval considerably narrower.
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1 | INTRODUCTION

This paper studies the characteristics of the synchro-
nously reported bivariate daily spot price and wind fore-
cast movements for the Nordic/Baltic spot electric power
market.1 Spot prices are settled daily based on auction
bids at 11 a.m. where all market participants can partici-
pate. From these auctions, supply and demand are aggre-
gated, and 24 hourly spot prices are reported at 12.45 p.m.
Wind prognosis in MW are reported synchronously with
auction prices. However, wind prognosis is available
before the auction deadline for spot price and volume
bids at 11 a.m. The main question in this article is
therefore to analyse how the synchronously reported but
known wind forecasts for the auction bid at 11 a.m.
influences daily auction spot prices at 00.45 p.m. Can
the available synchronously reported wind forecasts be
used for spot expected price plots and price predictions
with confidence intervals improving the information
basis for good strategic auction biddings from market
participants?

At the forefront of the renewable revolution is wind
power. Record volumes of wind power (onshore and off-
shore) are being commissioned for the coming years.
Increased production and deployment of wind turbines
have led to a significant reduction in their capital cost
inducing substantial production at a low marginal cost
impacting wind power electricity prices. Several electric-
ity markets have seen negative electricity prices during
periods of high wind power electricity production.
Germany and Australia, for instance, have experienced
negative electricity prices during moments in which wind
and solar power combined represented a very large share
of the instantaneous electricity generation mix. The
Nordic/Baltic market prices are fixed based on all partici-
pants' collected daily purchase and sale requests. The sys-
tem price is the balance price for the aggregated supply
and demand graphs; that is, the price is fixed at market
equilibrium. Wind forecasts2 are available the same
morning before 11 a.m. and available to all market partic-
ipants for the implicit auction market. The daily auction
arena is therefore led by the wind forecast information.
Hence, the bivariate synchronously reported spot prices
and wind forecasts series potentially contain information
giving systematic price behaviour from the leading wind
forecasts. The stochastic nature of wind and wind fore-
casts makes the marginal production cost structures sto-
chastic, impacting spot prices and spot price volatility.
These factors will influence competitiveness and inter-
mittent technologies. Spot prices and wind forecasts are
hourly information. The paper's use of daily data in this
analysis is as follows: firstly, stationarity is required of
the data, and secondly, the daily price is a reference price

for the physical market and the settlement price for all
derivative contracts (forward/futures including options)
in the financial market. That is, speculation and
hedging are not only available for physical market partic-
ipants but also for participants from the Nasdaq
Commodities financial electricity markets3 (Nasdaq
Commodities, 2020). Knowing that wind power is gener-
ated at nearly zero marginal costs and dispatched prior to
other technologies, it leaves conventional plants compet-
ing for residual demand. Hence, the overall market spot
prices are depressed when conventional plants with
higher marginal costs are removed from the production
profile for daily purchase and sale requests at 11 a.m.
Geographical dispersion of wind generation may cause
congestions in the transmission system and further lower
prices in congested market areas. For spot price volatility,
the stochastic wind suggests changing production profiles
and therefore stochastic changes to volatility.4 For the
Nordic/Baltic auction market, the spot price and wind
stochastics suggest speculation opportunities and will
greatly impact business investments and public
procurements. The transition to more sustainable pro-
duction and uptake of climate-friendly technologies will
add extra momentum to the stochastic nature of energy
modelling.5

The study is a step ahead conditional density estima-
tion of the synchronously reported bivariate dynamics of
the system spot prices and the wind forecasts series for
the Nordic/Baltic electricity auction market (one-
day-ahead market). The one-step-ahead conditional
density represents the stationary bivariate process. This
conditional density incorporates all information about
various characteristics including conditional hetero-
skedasticity, nonnormality, time irreversibility and other
forms of non-linearities. Hence, because the conditional
density completely characterizes the process, it is the
fundamental statistical object of interest. The imple-
mentation uses the nonparametric time series analysis
(semi-nonparametric [SNP]) model for the estimation of
the conditional density.6 The methodology employs an
expansion in hermite functions to approximate the multi-
dimensional conditional density. An appealing feature of
this expansion is that it is a non-linear nonparametric
model that directly nests the Gaussian VAR model,
the semiparametric VAR model, the Gaussian ARCH
model, the semiparametric ARCH model, the Gaussian
generalized autoregressive conditional heteroscedasticity
(GARCH) model and the semiparametric GARCH
model. The unrestricted SNP expansion models are more
general than any of these specific models. The leading
term of the series expansion is therefore an established
parametric model already known to give a reasonable
approximation of the process; higher order terms
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(hermite functions) capture departures from this initial
model (Robinson, 1983). Switches can generate simulated
sample paths that can be used to compute non-linear
functionals of the density by Monte Carlo integration,
notably the non-linear analogues of the impulse–response
mean and volatility profiles used in traditional VAR,
ARCH and GARCH analysis. The SNP model is fitted
using conventional maximum likelihood (ML) together
with a model selection strategy that determines the
appropriate order of model expansion (Schwarz, 1978).
The analysis reports an extensive battery of test statistics
for model misspecifications. From the optimal and bivari-
ate spot price and wind forecast model densities, this
paper investigates spot price movements conditional on
synchronously reported wind forecast movements. The
analysis mainly comprises three steps. First, the paper
addresses seasonality and trends for mean and volatility
for both spot price and wind forecast series, achieving
ergodic stationarity. Second, the nonparametric SNP
model specification establishes consistent bivariate mean
and volatility specifications that can be continuously
updated. Specifically, from the bivariate spot price and
wind forecast densities, the model describes intercept
and serial correlation for the mean, and intercept, error
shocks, serial correlation, leverage and level effects for
the latent volatility. The remainder of this paper therefore
consists of four further sections. Section 2 gives a litera-
ture overview for electricity prices, wind forecasts and
the nonparametric specification model (SNP). Section 3
defines the empirical data and describes a general adjust-
ment procedure for systematic location, scale and trend
effects to obtain stationary bivariate series to then esti-
mate a strictly stationary BIC-optimal bivariate density
model. Section 4 reports findings with bivariate step-
ahead densities for the means, volatilities and covariance.
Marginal spot price densities are reported for price and
wind forecast lags (xt−1) and synchronous wind forecasts.
Finally, Section 5 provides a summary and conclusion.

2 | BACKGROUND AND
LITERATURE REVIEW

2.1 | The electricity spot price

Several international studies have explored the character-
istics and dynamics of Nordic/Baltic spot electricity price
series (auction market).7 Financial models use historical
price series, and when assuming stationarity, we can
extract reliable characteristics for both the mean and
volatility. Spot electricity prices exhibit high volatility,
strong mean reversion,8 frequent spikes and seasonal
patterns,9 and these prices differ from region to region

(Li & Flynn, 2004). Goto and Karolyi (2004) find mean-
reversion effect with seasonal changes in volatilities as
well as volatility clustering for electricity trading hubs in
the United States, Australia and the Nordic/Baltic
market. Chan and Gray (2006) find serial correlation in
both the mean and volatility for several electricity mar-
kets, whereas Theodorou and Kanyanpas (2008) studied
the less developed and illiquid Greek electricity market.
They find mean reversion and the presence of serial
correlation in both the mean and the volatility.

A considerable number of models that attempt to
capture the dynamics of the electricity prices have been
proposed in the literature. A class of models includes sto-
chastic models, regime switching models, cointegration
analysis, mean-reverting models and other empirical
models.10 These models fail to capture the full volatility
dynamics of electricity prices as well as the interrelation-
ship of price and volatility. Another class of models intro-
duces univariate GARCH conditional volatility models,
as well as other variations of GARCH modelling, such as
EGARCH and TGARCH.11 These models capture the
price and volatility dynamics of electricity prices, as well
as price shock transmissions. However, univariate models
fail to capture the full dynamics that exist in the electric-
ity market. Modelling mean and volatility interrelation-
ships between different time series require the extension
of econometric modelling to the multivariate level. The
use of VAR models and multivariate GARCH
(MGARCH) models extends modelling capturing inter-
dynamics between series. That is, the dependence was
developed between synchronous mean and volatility with
respect to the past mean, volatility and shocks, of other
time series. Finally, Knittel and Roberts (2001) find an
inverse leverage effect for electricity prices in the
United States. Other studies have found similar results.12

For the purpose of this study, we build and extend the
work of Solibakke (2002) and follow the methodology of
Gallant, Rossi, and Tauchen (1993) and Gallant and
Tauchen (2014). For bivariate prices and wind forecast,
both the seasonality and trends are extracted, and the
strictly stationary time series SNP model is estimated
(Gallant & Tauchen, 2010).

2.2 | Spot prices and wind forecasts
movements and bivariate volatility (and
covariance)

The share of wind power in electricity generation
(in MWh) has been rapidly increasing in the
Nordic/Baltic market. In April 2013, wind power genera-
tion was approximately 32 k MWh, and in April 2019,
approximately 80 k MWh13; over a 4-year period, the
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monthly average production has tripled. Wind power has
nearly zero marginal production costs and is often subsi-
dized (Morthorst, 2003; Skytte, 1999). Wind power
generation is therefore dispatched prior to other genera-
tors, leaving residual demand to other technologies
(merit order effect).14 In summary therefore, a high level
of wind generation is expected to decrease electricity spot
prices, suggesting a natural negative correlation between
wind generation and spot price movements. As shown by
Giabardo, Zugno, Pinson, and Madsen (2009), estimated
future wind power generation appears as a stochastic
threshold in the supply function.

Considerably less attention has been given to wind
generation and price volatility. Because wind generation
originates from meteorological conditions, the supply of
wind power is easily classified as exogenous impulses.
For periods with shifting wind power generation, the
volatility of spot electricity prices will most likely
increase, dependent on the flexibility of other generators.
The Nordic/Baltic market with abundant hydro resources
has a natural tool to cope with undirected variations in
wind output, reducing spot price volatility. The impact of
wind generation on electricity prices and volatility will
create speculation opportunities and of course impact
investment decisions. As wind power has tripled and
become more competitive, it has raised more challenges
for market operators. Hence, more effort has been made
in modelling the displacement of technologies brought by
merit order effect and the incentives to invest in different
technologies under the envisaged growth of RES15 use.
For electricity mean prices, Forrest and MacGill (2013)
showed that wind penetrations in the Australian electric-
ity market were negatively correlated with the wholesale
price and had greater effects at high levels of demand.
This point of view is shared by Ciarreta, Espinosa, and
Pizarro-Irizar (2014) for the case of Spain, as well as by
Traber and Kemfert (2011) for the case of Germany.

In the case of price volatility, Green and
Vasilakos (2010), Steggals, Gross, and Heptonstall (2011),
Woo, Horowitz, Moore, and Pacheco (2011), Jacobsen
and Zvingilaite (2010), and Twomey and Neuhoff (2010)
found that the impact on spot price stability caused by
wind deployment increased price variations when elec-
tricity markets relied on a large share of intermittent
generation. These research studies support the notion
that fluctuations in wind output threaten overall electric-
ity supply. In the case of Denmark West bidding area,
Jònsson, Pinson, and Madsen (2010) and Jónsson,
Pinson, Nielsen, Madsen, and Nielsen (2013) used non-
parametric regression to show, not only a discontinuous
effect on price reduction but also diminishing intraday
price variations caused by wind penetration. For the
Nordic/Baltic region, some additional work has focused

on the implementation and integration of wind power,
from the perspectives of macroeconomics (Sperling et al.,
2010), geographical aggregation (Østergaard, 2008) and
end-user demand responsiveness (Grohnheit, Andersen,
& Larsen, 2011). Munkgaard and Morthorst (2008) recog-
nized that risk-averse investors would be reluctant to
invest in wind installation in Denmark after a high feed-
in tariff scheme was replaced by a new tariff scheme
aiming to smooth transition from the guaranteed price to
the market price for wind producers. However, none of
these studies have explicitly quantified the impacts of
synchronous wind penetration on the day-ahead spot
price or examined the variations in markets' signals fac-
ing wind intermittency. To the best of my knowledge,
establishing a bivariate spot price and wind forecast
model, despite its importance, has not been undertaken
for the Nordic/Baltic region. Therefore, the current paper
is to fill the gap in the literature—to conduct an econo-
metric analysis on the day-ahead spot price performance
in relation to wind deployment.

2.3 | The SNP methodology

Non-linear stochastic models will in our study imply
conditional models and so-called ARMA-GARCH
methodology. Autoregressive and moving average (ARMA)
is a term applied to the structure of the conditional
mean, whereas GARCH is a term applied to the
structure of the conditional volatility. ARMA models can
be studied in detail, for example, in Mills (1990), whereas
ARCH specifications were first studied by Engle (1982)
and extended by Bollerslev (1986). who specified the
Generalized ARCH or GARCH. The development to
GARCH from ARCH occurred mainly owing to the num-
ber of lags in the ARCH specification.16 ARCH/GARCH
specifies the volatility as a function of historic price
changes and volatility. In the international finance
literature, a number of studies show how results from
these pioneering works have been used. See, for example,
Baillie and Bollerslev (1989), Bollerslev et al. (1987, 1992),
Engle et al. (1986), Engle and Ng (1993), Nelson (1991).
and de Lima (1995a, 1995b)). For a comprehensive
introduction to ARCH models and applications in
finance, see Gouriéroux (1997). Ding, Engle, and
Granger (1993) extend the symmetric GARCH model into
asymmetric GARCH and the truncated GARCH (Glosten,
Jagannathan, and Runkle [GJR]) is described by Glosten,
Jagannathan, and Runkle (1993). ML estimates of the
GARCH-in-mean model can be obtained by maximizing
the likelihood function. Note, however, that the informa-
tion matrix is no longer block diagonal, so that all the
parameters must be estimated simultaneously. This
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requires an iterative solution technique,17 also known as
non-linear optimisation.

SNP stands for SemiNonParametric, to suggest that it
lies halfway between parametric and nonparametric pro-
cedures. The leading term of the series expansion is an
established parametric model known to give a reasonable
approximation to the process; higher order terms capture
departures from that model. With this structure, the SNP
approach does not suffer from the curse of dimensional-
ity to the same extent as kernels and splines. In regions
where data are sparse, the leading term helps to smooth
gaps between data points. Where data are plentiful, the
higher order terms accommodate deviations from the
leading term, and fits are comparable with the kernel
estimates proposed by Robinson (1983). The theoretical
foundation of the method is the hermite series expansion,
which for time series data is particularly attractive based
on both modelling and computational considerations. In
terms of modelling, the Gaussian component of the
hermite expansion makes it easy to subsume into the
leading term familiar time series models, including
VAR, ARCH and GARCH models (Bollerslev, 1986;
Engle, 1982). These models are generally considered to
give excellent first approximations in a wide variety of
applications. In terms of computation, a hermite density
is easy to evaluate and differentiate. Also, its moments
are easy to evaluate because they correspond to higher
moments of the normal, which can be computed using
standard recursions. Finally, a hermite density turns out
to be very practical for sampling from, which facilitates
simulations.18

3 | EMPIRICAL DATA,
DETERMINISTIC ADJUSTMENTS
AND SNP PROJECTIONS

3.1 | Empirical data and deterministic
adjustments19

The study uses daily prices of the so-called system price
and daily wind forecasts for the Nordic/Baltic spot
market for electric power spanning the period from
January 2013 to June 2019 (approximately 2,340 bivariate
price/wind observations). The daily prices are the average
prices for 24-h auction (system) prices. Wind forecasts
are reported daily in MWh for 24 h/day and in this study,
aggregated into daily forecasts.20 When changing to
winter (summer) time, the spot price and wind forecasts
for 1 h (2–3 a.m.) are lost (doubled) and are carefully
handled in the two series. The raw continuous prices and
wind forecasts are transformed to logarithmic forms and
differenced once to obtain stationarity series. However,

both the spot prices and the wind forecasts show seasonal
dependencies as well as the wind forecasts being
influenced by renewables, showing 2.5 times increase in
wind power generation from 2013 to 2019. Only the
growth in wind production makes the series for our pur-
pose most likely nonstationary.21 Hence, prices and wind
forecasts are adjusted for systematic/deterministic effects
as well as linear and squared trends in both the mean
and variance to obtain ergodic stationarity. The mean
and variance of the time series are kept unchanged for
ease of interpretation. The two series are adjusted for sys-
tematic location and scale/trend effects (Gallant, Rossi, &
Tauchen, 1992) in both returns and volatility. Let ϖ
denote the variable to be adjusted. Initially, the regres-
sion to the mean equation ϖ = x � β + u is fitted, where
x consists of calendar variables, which are most conve-
nient for these time series, and contains parameters for
(non)linear trends, day of week, week number dummies,
calendar day separation variables and relevant subpe-
riods (eastern, summer holidays etc.). The least square
residuals û are taken from the mean equation to
construct the variance equation ln û2

� �
= x�γ+ ε . The

x is unchanged from the mean to the variance
equation. Finally, a linear transformation is used to
calculate ϖadj = a+ b� ûffiffiffiffiffi

ex�γ̂
p

� �
as the adjusted series,22

where a and b are chosen so that 1
T

PT
i=1

ϖi = 1
T

PT
i=1

ϖi and

1
T−1 �

PT
i=1

ϖ̂i− �ϖð Þ2 = 1
T−1 �

PT
i=1

ûi−�uð Þ2 . The term ûffiffiffiffi
exγ̂

p is used to

adjust for the use of ln û2
� �

in the volatility equation and
a and b is used for the final location and scale transfor-
mation to aid interpretation. The unit of measurement of
the adjusted series is the same as that of the original
series. Table 1 reports the deterministic seasonal, scale
and trend effects for the two series. The spot price con-
tains seasonal as for example day of the weeks, calendar
weeks and trends, and scale effects for the mean and vol-
atility. However, more interestingly included adjustment
variables such as summer holidays, Easter and Christmas
etc. do not enter the adjustment procedure (insignifi-
cant). Wind forecasts are not adjusted for the mean, but
to achieve ergodic stationarity, the wind forecast volatil-
ity is adjusted for 2weeks (marginally significant and
may change/disappear during continuous updating) as
well as linear and squared trends.23 The adjustment
procedures turn the two series to functions that we can
estimate.24 Figure 1 reports a bivariate scatterplot of the
adjusted spot price and wind forecast movements series.
A linear trend function in Figure 1 reads y=
− 1.05475x + 0.00796 with t= − 29.5 and R2 = 27.2%. The
large negative t statistic and an R2 of 27.4% suggest a
significant negative correlation between spot prices and
wind forecasts of approximately −0.522 (that is,
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approximately √27.2% ≈52.2%). The strong unconditional
mean correlation between the adjusted stationary spot
price and wind forecast movements indicates an influen-
tial and systematic negative relationship, which is impor-
tant for the conditional step-ahead changes.

The characteristics of the adjusted system prices and
wind forecast series are reported in Table 2. For the sys-
tem price movements, the mean is close to zero. The

standard deviation seems high relative to other commod-
ity markets and must be attributed to the close to non-
storable features of an electricity market dominated by
hydro power production. The Cramer-von-Mises test sta-
tistic25 confirms nonnormal series densities. Both series
show serial correlation in the mean (Q)26 and volatility
(Q2) and ARCH (Engle, 1982). The series is confirmed
stationary with both the Kwiatkowski, Phillips, Schmidt
and Shin (KPSS) (Kwiatkowski, Phillips, Schmidt, &

TABLE 1 Seasonal characteristics of the mean and volatility (2013–2020) for the raw system Price and wind forecast daily movements.

Returns dy = (ln(St/St−1) Volatility σy = ln(res2)

Var Coeff t stat Var Coeff t stat

INTR −0.6853 2.3049 INTR 1.5447 10.5513

MON 13.677 23.2822 MAN 1.3287 9.7120

TUE 1.6146 2.7523 SAT 0.6071 4.4378

SAT −7.4561 12.6954 Week_4 1.0372 3.0057

SUN −2.2127 3.7655 Week_13 −0.7850 2.2757

Others −5.3531 3.7891 Week_30 −1.1619 3.3686

Week_1 3.4110 1.9666 Week_31 −1.2540 3.6355

Week_32 −0.8563 2.4824

Week_34 −0.8643 2.5056

Wind forecast dW = (ln(Wt/Wt−1) Volatility σy = ln(res2)

Var Coeff t stat Var Coeff t stat

INTR — — INTR 2.7750 21.4158

Week_24 0.7404 2.3544

TRD −2.4912 4.1687

TRD2 1.5291 2.6438

Note. Exogenous variables (only close to significant coefficients (10%) are reported: INTR = Constant; MON = Monday; FRI = Friday, SAT = Saturday;
SUN = Sunday; Eastern H = Eastern Holidays; Other H = Other Holidays; General H = General Holidays; Weeks 1–52; Trend = linear trend; Trend
SQ = Squared trend;

FIGURE 1 Scatterplot of adjusted spot price and wind forecast movements (2.59 k)
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Shin, 1992) and the augmented Dickey and Fuller (DF)
test statistics (Dickey & Fuller, 1979). The BDS Z statistic
(Brock & Deckert, 1988; Scheinkman, 1996) (ε = 1) sug-
gests significant data dependence. For the wind forecasts
movements, the mean is also close to zero. The wind
forecasts report a high standard deviation and are highly
volatile confirmed by the maximum and minimum num-
bers of the series. The series show nonnormal features
and contain serial correlation. The KPSS and augmented
DF test statistics confirm ergodic stationarity for the
adjusted series. Volatility clustering and general data
dependence exist but are clearly lower than for the raw
and unadjusted series. Finally, for both series, the RESET
(12;6) (Ramsey, 1969) suggests general specification
errors.27 Paths and distributions for the seasonal adjusted
system price and wind forecast movements are reported
in Figures 2 and 3.

The paths seem to be ergodic and stationary (moving
randomly around zero). The kernel distributions and
QQ-plots for the wind forecast movements seem close to
normal and more normal than the spot price movements.
From the kernel distribution and the QQ-plots, the spot
price movements seem not to be normal and perhaps
closer to student's t or logistics than normal. For the
adjusted spot price, the movements are lower, and the
distribution clearly shows a more normal distribution.
However, the year 2015 was a volatile period for the spot
price. The wind forecast distribution shows a decreasing

volatility over time, probably due to the number of wind
production sites, which have greatly increased over the
period. For the adjusted wind series, the volatility is
stable over the 2013–2018 period. Moreover, due to the
normal density of the wind forecasts, wind derivatives for
risk management in the energy market are clearly
accessible.

3.2 | The density projections:
Conditioning the SNP model

The estimation method is termed SNP, which stands for
SNP, to suggest that it lies halfway between parametric
and nonparametric procedures. To capture departures
from the parametric model, higher order terms (hermite
functions) are used for estimation of the conditional
density. Because the conditional density completely char-
acterizes a process, it is naturally viewed as the funda-
mental statistical object of interest. The leading term for
the bivariate system of the spot price and the wind fore-
cast movements series expansion is an established para-
metric model known to give a reasonable approximation
to the process (VAR-GARCH); hermite functions28 are
higher order terms to capture departures. The SNP model
is fitted using conventional ML together with the BIC
(Schwarz, 1978) model selection strategy. The Schwarz
Bayes information criterion (Schwarz, 1978) is computed

TABLE 2 Statistics for Nord Pool spot-system electricity price and logarithmic wind prognosis movements

Mean
(all/
M
-(drop))

Median
SD

Maximum/
minimum

Moment
kurt/
skew

Quantile
kurt/
skew

Quantile
normal

Cramer-
von Mises

Serial dependence

Q(12) Q2(12)

Spot/day-
ahead
auction
Price

−0.00343 0.40552 90.0232 19.33093 0.16975 5.5048 11.41300 70.3650 219.19

−0.00860 11.39196 −128.1367 −1.09252 −0.07558 {0.0638} {0.0000} {0.0000} {0.0000}

BDS Z statistics (e = 1) KPSS P–P Augmented ARCH RESET

m = 2 m = 3 m = 4 m = 5 I and
trend

I and
trend

DF-test (12) (12, 6)

9.0586 12.0101 13.3772 13.9937 0.07441 −66.01099 −36.92826 146.98888 13.38060

{0.0000} {0.0000} {0.0000} {0.0000} {0.2218} {0.0000} {0.0000} {0.0000} {0.0374}

Mean (all/
M
-(drop))

Median
SD

Maximum/
minimum

Moment
kurt/
skew

Quantile
kurt/
skew

Quantile
normal

Cramer-
von Mises

Serial dependence

Q(12) Q2(12)

Wind day-
ahead
prognosis

0.00760 −0.09680 20.9627 0.25767 0.12156 2.4945 0.24684 119.036 52.11661

0.00829 5.52783 −19.5296 0.12551 0.04647 {0.2873} {0.0014} {0.0000} {0.0000}

BDS Z statistics (e = 1) KPSS P–P Augmented ARCH RESET

m = 2 m = 3 m = 4 m = 5 I and
trend

I and
trend

DF test (12) (12, 6)

1.2702 3.9674 5.3578 5.7620 0.03365 −180.650 −21.81397 42.85096 35.43575

{0.2040} {0.0001} {0.0000} {0.0000} {0.3864} {0.0001} {0.0000} {0.0000} {0.0000}
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as29 BIC= sn θ̂
� �

+ 1
2

� � pp
n

� �
log nð Þ with small values of the

criterion preferred. The optimal estimated SNP model is
f̂ K ~yt; ~ωt xt−1, ϕ̂

�� ��
. The optimal parameter values are (Lu,

Lg, Qtype, Lr, Ptype, Lv, Vtype, Lw, Wtype, Lp, Kz, max Kz,
Iz, max Iz, Kx, Ix) = (7, 1, f, 1, f, 1, f, 1, f, 1, 4, 4, 4, 0, 0, 0)
meaning one intercept, seven mean lags, full ARCH,
GARCH, asymmetry and level parameterization using a
one lag specification, one constant term for P(y, x) and
four hermite polynoms with four interactions between
the bivariate series.

The ML estimates30 of the parameters for the
SNP model specification on the adjusted bivariate
time series are reported in Table 3.31 Firstly, for the
mean, the intercepts are only significant for the wind
forecasts, and the serial correlations (B[1, x]) for
almost all bivariate lags (L = 7) are significant. The
positive drift for wind is clearly from the tremendous
increase in production. The serial correlation is quite
strong, up to seven lags (mostly negative depen-
dence). Hence, the serial correlation seems to follow

a weekly pattern. The negative coefficients for serial
correlation suggest reversions as well as a tendency
for spot prices and wind forecasts to move in oppo-
site directions (negative comovements). That is, first
positive (negative) movements 1 day suggest negative
(positive) movements the next day, and second, when
prices go down (up), the wind forecasts move up
(down). The significant hermite polynomials suggest
departure from normal distributions. The hermite
functions coefficients (a0[1] − a0[8] and A(1,1) to A
(7,1)) capture departures from the classical normally
distributed model as well as coefficients for bivariate
interactions (I−), all BIC preferred. Table 3 reports
the fully specified conditional variance coefficients for
spot prices and wind forecasts. The bivariate variance
coefficients show an influential correlation structure,
signalling conditional heteroscedasticity as well as
asymmetry (V) and level (W) effects. The largest
eigenvalue of the conditional variance function P and
Q companion matrix is 0.9472 suggesting a rather

FIGURE 2 Unadjusted and adjusted spot price movements, densities and QQ-plots
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low persistence in the bivariate variance–covariance
processes. The log-likelihood for the bivariate model
is −1003.59.

The SNP projection model gives access to estimates of
the conditional expectations E ~ytj~yt−1,…,~yt−Lð Þ and the
conditional variances Var ~ytj~yt−1,…,~yt−Lð Þ (and

conditional covariances32). Figure 4 (top) shows a two-
dimensional (bivariate) plot of the conditional mean
expectations, E ~ytj~yt−1,…,~yt−L

� �
, for spot prices and wind

forecast movements. Figure 4 (bottom) shows a condi-
tional scatterplot with the conditional spot changes (y) on
the horizontal axes and conditional wind forecast

FIGURE 4 The conditional spot price and wind forecast movements (2.1 k)

FIGURE 3 Unadjusted and adjusted wind forecast movements. Densities and QQ-plots for adjusted
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changes (ω) on the vertical axes. An ordinary regression
shows a relatively strong negative relationship
represented by y= − 0.7902ω + 0.2407; tω= − 34.2; and
R2 = 31.5%. Relative to the unconditional movements plot
in Figure 1, the wind forecast conditional movements
report stronger influence on spot price movements than
the unconditional.

Figure 5 reports the conditional variances
Var ~ytj~yt−1,…,~yt−L

� �
for spot prices and wind forecast

movements (top) and a two-dimensional (bivariate) plot
of the conditional variances for the bivariate movements
(bottom). By looking at the axis values, the conditional
variances for the conditional wind forecast movements
are lower than for the spot price. However, an interesting
feature is the collection of observation pairs along the

wind forecasts variance axis (horizontal axis). It seems
that wind forecasts in some periods can vary a lot without
any changes in spot price variances (most likely for
periods where the level of wind forecasts are relatively
low). In fact, a medium level of wind forecast variances
between 20% and 40% seems to produce the highest
influence on spot price variances. However, it seems that
high spikes in spot price and wind forecast variances
coexist (in Figure 5, see the Dates 201508, 201810 and
201906).

Figure 6 reports the conditional volatility together
with a calculation of moving averages with lags of 4 and
15 (m) for spot price (top) and wind forecast movements
(bottom), respectively. From the plots, we observe that
the moving average model seems more suitable for spot

FIGURE 5 The conditional spot price and wind forecast volatility (2.5 k)

FIGURE 6 Conditional spot price and wind forecast volatility with associated moving averages (m = 4 and m = 15)

SOLIBAKKE 11



price than wind forecast movements. The plots clearly
indicate that the moving average series follows the spot
prices more closely than they do for the wind forecasts.
Furthermore, for the spot price movements, the volatile
2015 period mentioned above is clearly visible and seems
partly extended into the year 2016. In contrast, the wind
forecast movements show a much lower and, as expected,
a more stable volatility. However, the plots suggest that

the yearly spring periods may seem more turbulent.
Moreover, the bivariate time series also gives access to
the conditional covariances. Figure 7 reports the condi-
tional correlation structure between spot prices and wind
forecast movements. The correlation average mean is
about −0.54, and it moves mainly between a daily corre-
lation (ρ) of −0.25 and −0.75 for the whole 7-year period.
Finally, Figure 8 reports leverage functions for spot price

FIGURE 7 Conditional spot price and wind forecast correlations

FIGURE 8 Leverage plots for spot price and wind forecast variances and covariances
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and wind forecast variances. This analysis suggests that
volatility from spot prices is symmetric whereas the vola-
tility from wind forecasts shows a higher wind forecast
volatility for positive wind forecast movements. There is
no sign of asymmetry for the covariances. However,
asymmetry is clearly visible for the spot price and wind
forecast correlation. A negative correlation between
spot price and wind forecast movements clearly suggests
a correlation closer to a perfectly negative correlation
(ρ = −1).

Table 4 reports a battery of misspecification statistics
for the bivariate residuals. All statistics are insignificant
at the 5% level except the Cramer von Mises test for
normality. However, for both series, the quantile nor-
mal test is insignificant. Therefore, from Table 2, the
SNP optimal model seems able to capture the main

attributes from the bivariate adjusted series also giving
us i.i.d residuals in Table 4. For both series, the mean
for the standardised residuals is close to zero and the
standard deviation is close to one (N(0,1)). The 12th
order Ljung and Box (1978) statistic for the
standardised residuals (Q), squared standardised resid-
uals (Q2), the ARCH (12), the RESET (12;6), the joint
bias test statistic (Engle & Ng, 1993) and the BDS test
are all insignificant. The specification tests therefore
suggest an appropriate bivariate model specification
for the adjusted spot prices and wind forecasts move-
ments. Figure 9 shows histogram, density kernels com-
pared with theoretical densities, for the standardized
SNP model residuals. Figure 9 suggests that the
standardised residuals are i.i.d. and not far from nor-
mally distributed.

FIGURE 9 Kernel standardized residual densities for spot price and wind forecast movements from the optimal semi-nonparametric

(SNP) model

FIGURE 10 Full-sample (100 k) and subsample (2.56 k) from an optimal semi-nonparametric (SNP) model simulation (spot price and

wind forecast movement)
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4 | STEP-AHEAD SPOT PRICE
PROJECTIONS FROM
SYNCHRONOUS WIND FORECAST
MOVEMENTS

Simulations in the original units of the data
~yt; ~ωt ϕ̂K

�� �n

t=1

n
are available for any length (n). Changing

the seed makes bootstrapping available for building con-
fidence intervals and hypotheses testing. Figure 10 shows
a one path simulation of length n=100 k steps (top) and
sublength n=2.5 k steps (bottom). The simulation shows
similar characteristics to the original 2.5 k adjusted data
set (see Figure 2). However, the data set is a bit wider
than the original series, but all moments match the origi-
nal series. The heterogeneous characteristics of spot
prices and wind forecasts movements are clearly present
in the two series. The extreme behaviour of the spot price
series is also clearly visible in the plot (the blue line var-
ies from −300% to 200%). The wind forecasts show lower
variance, varying between −50% and 50%. The 100-k step
simulation shows an ~yt; ~ωt ϕ̂K

�� ��
unconditional correla-

tion of ρ=−0.4995, a little lower than the average corre-
lation in Figure 4 (ρ=−0.5092).

The observed data set ~yt, ~ωtð Þ and the estimated SNP
model f̂ K ~yt; ~ωt xt−1, ϕ̂

�� ��
provide the one-step-ahead

density, conditional on the values xt−1 =~yt−1,~yt−2,…,~yt−L

(L=7). Figure 11 shows a 3D plot of the bivariate one-
step-ahead density with spot price changes on the x-axis,
wind forecast changes on the y-axis and the density on
the z-axis. The conditional xt− 1values are all set to the
unconditional means (−0.00342; 0.0076, respectively).
Therefore, the bivariate step-ahead density plot reports
mainly the density for synchronous conditional spot
prices and wind forecasts movements. The density indi-
cates clearly higher and narrower densities for negative
comovement corners of the spot price and wind forecast
movements. Hence, there is more mass towards the
corners where the two variables move in opposite direc-
tions (the negative comovement corners). For more posi-
tive bivariate comovements, the density mass is
considerably lower and wider. Market expectations are
therefore the more (less) wind the lower (higher) spot
prices. These comovement findings between price and
wind movements are clearly already known facts for elec-
tricity market participants. However, using the step-
ahead densities and condition on various plausible price
and wind forecast combinations may bring new informa-
tion to market participants on both the spot price move-
ments and volatility. In other words, if we know the
market microstructure (i.e., knowing that the daily wind

FIGURE 11 Step ahead bivariate spot price and wind forecast movement plots conditional on the unconditional means
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forecast movements are available before auction bid time
at 11 a.m.), would it be possible to use this information to
predict the day-ahead auction price reported daily at
00.45 p.m.? Hence, a marginal step-ahead spot price den-
sity conditional on the synchronously reported wind fore-
cast movements is of interest to all market participants.

Using the optimal SNP bivariate density model and
setting all lags (L = 7 lags) to the unconditional means
(or zero), we calculate the one-step-ahead spot price (y1)
densities conditional on the synchronously reported
values for wind forecast movements (ω1), that is, condi-
tional marginal spot price densities. The analysis is condi-
tional on y0 = −10%, …, 10% with a lag vector (0, 0, 0, 0, 0,
0, −10%) for y0 = −10% and for ω0 = −6%, … 6% with a
lag vector (0, 0, 0, 0, 0, 0, −6%) for ω0 = −6%. Hence, we
have access to a 15 × 13 matrix of marginal densities
with associated densities, means, standard deviations,
maximum probability spot prices and skewness (and
kurtosis [not reported]). We report densities for y1 and
ω1 equal to 0 and the highly plausible combinations of
y0 = −10% (10%) and ω0 = −6% and 6% (−6% and 6%).
The reports show the densities, probabilities, expec-
tations and variances for spot price movements (y1)
conditional on the synchronously reported but known to
market participants, wind forecasts (ω1). Conditional on
y0,ω0ð Þ= μy0 ;μω0

, Figure 11 reports the marginal spot
price movement densities, probabilities, expectations and
variances. Table 5 reports the mean, standard deviation,
skewness and kurtosis for a set of the conditional syn-
chronously reported wind forecasts (ω1). For lags of spot
prices (y0) and wind forecasts (ω0) close to zero, a syn-
chronously reported wind forecast movement of zero
(ω1 = 0), the expected spot price movements (y1) are
marginally negative −0.06, the standard deviation is
σy1 = 4:38 , the maximum probability is found at y1 of
−3.96, and the skewness is −0.13 (kurtosis not reported).
For negative (positive) synchronously reported wind fore-
cast movements (ω1), the analysis reports positive (nega-
tive) expected spot prices. Interestingly, in this situation
where the price and wind movement lags are close to
zero, the highest absolute value with lowest standard
deviation for the mean spot price is found for positive
wind forecast movements. Figure 11 confirms this situa-
tion showing that when wind forecast movements report
an increase, the density is almost exclusively on the left,
expecting negative spot prices. However, note the density
increase on the right side for positive spot prices, indicat-
ing that the positions are not without risks. Note also that
the skewness follows the signs of wind forecast increases
indicating larger probabilities for lower profits for
recommended spot price positions.33 Furthermore,
Table 5 reports expected daily spot prices movements (y1)
for spot price lags of −10% and +10% and synchronouslyT
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reported wind forecast lags of −6% and +6%, where the
condition is the known wind forecasts (ω1) −12% and
+12%. As for lags close to zero, the negative correlation
between prices and wind is clearly visible. The expected
absolute expected price movements seem higher for posi-
tive wind movements. Conditional on positive lagged
spot prices, positive wind forecasts seem to increase the
negative price effect from increased wind forecasts
without changing standard deviation significantly. This
effect is also clearly visible from maximum probability
spot price values. The skewness seems to follow the gen-
eral development found for price and wind lags close to
zero. Moreover, regardless of the wind forecast at ω1, the
standard deviation for spot prices at y1 is clearly lower
when the lags are negatively correlated. Moreover, when
prices and wind forecasts are negatively correlated, posi-
tive wind forecast movements suggest higher negative
movements in spot prices. However, this last asymmetry
observation may be related to the lagged positive changes
in both spot prices and wind forecasts. For example, from
Table 5 (line 1) and Figures 13 and 14, where the analysis
is conditional on values for y0 and ω0 being close to zero,
a wind forecast movement of ω1 =−6 (ω1 = 6), the spot
price expectation moves up with y1 = 5.12 (y1 = − 5.73),
with associated standard deviation of σ1 = 4.19 (σ1 = 4.2),
maximum probability at y1 = 6.84 (y1 = − 7.54), and
skewness of −0.45 (−0.07). Furthermore, when the known
wind forecast movements show a strong reduction ω1 =
− 12 (increase ω1 = 12) and continued condition close to
zero y0,ω0ð Þ= μy0 ;μω0

, the expected spot prices are
expected to increase (decrease) by y1 = 8.53 (y1 =
− 11.03), with associated standard deviation of σy1 = 4:30
σy1 = 3:71
� �

, maximum probability at y1 = 10.08 (y1 =

− 11.88), and skewness of −0.94 (0.812). Note that wind
forecast movements (ω1) at t1 of −12% and 12% are quite
rare relative to movements of −6% and 6%.

Hence, for absolute wind forecast movements greater
than 3%, the movements exceed one standard deviation,
indicating a 68% change of profitable spot price positions.
Figure 12 indicates absolute spot price expectations
mainly higher than maximum probability. Hence, the
price expectations suggest large negative tails. That is,
mainly negative (positive) y1 expected spot prices have
large tails for positive (negative) expected spot prices.
Hence, there are large surprises in the spot electricity
market. Furthermore, the expectation densities in
Figure 12 show that all expectations cover both negative
as well as positive spot prices and therefore include zero
spot price movements. As indicated by the standard devi-
ation, the density shows a wide distribution showing
possible values for the expected spot price movements y1
between −18% and +18%. That is, any auction bid posi-
tion will involve considerable risk conditional on the
history y0,ω0ð Þ= μy0 ;μω0

close to zero.
The analysis now extends the historic information

(lags) and uses four very plausible historic values for the
synchronously reported spot price and wind forecast
movements. The lagged spot price movements are y0 =
−10% and 10% with associated conditional vectors (0, 0,
0, 0, 0, 0, −10%) and (0, 0, 0, 0, 0, 0, 10%), respectively,
and the lagged wind forecast movements ω0 = −6% and
6% with associated conditional vectors (0, 0, 0, 0, 0, 0, −6%)
and (0, 0, 0, 0, 0, 0, 6%), respectively. The analysis has
the plausible spot price and wind forecast cases: (1) y0 =
− 10 and ω0 = − 6, (2) y0 = − 10 and ω0 = +6, (3)
y0 = 10 and ω0 = − 6, and (4) y0 = 10 and ω0 = +6)

FIGURE 12 Marginal step ahead spot price densities for synchronous wind forecasts conditional on y0 = μy0 ≈ 0 and ω0 = μω0
≈ 0
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Figure 13 reports bivariate spot price and wind forecast
expectation plots. The four plots show similar character-
istics, but looking at the z-axes, the spot price movements
are higher and narrower for varying synchronously
reported wind forecast movements when lagged prices
and wind forecast movements show opposite signs (nega-
tive correlation). The plots report means and standard
deviations. When ω0 is negative (positive), the spot mean
(y1) is positive (negative). Moreover, when prices and
forecasts behave in the normal way (negative com-
ovements), the standard deviation is clearly lower. The
bivariate plots therefore show influence from wind fore-
cast at t0 and t1 for both the mean and standard devia-
tions (risk). Furthermore, to analyse the lag differences,
we apply 2D plots conditioning on the known wind fore-
cast movements at t1. Table 5 (Lines 2–5) reports the spot
price movements mean, standard deviation, maximum
spot price probability and skewness over a similar set of
wind forecast movements (ω1 = −12%, ..., +12%). Hence,
the analysis focuses on the known wind forecasts for the
day-ahead (ω1) before the auction bid deadline at 11 a.m.

Case 1. Figure 14 (Panel A): Lag vector is y0 = (0, 0, 0, 0,
0, 0, 0, −10%) and ω0 = (0, 0, 0, 0, 0, 0, 0, −6%).

Figure 14 (Panel A) reports the marginal spot price
distributions conditional on negative spot price and wind
forecast movement lags for a set of synchronously
reported and known wind forecasts (ω1 = −12%,
…, 12%).34 A wind forecast movement close to zero
(ω1 = 0) means that the density for spot price movements
is higher for positive than negative prices. Table 5 (Line 2)
confirms this, showing a positive expected spot price
movement of y1 = 2.73 with an associated standard devia-
tion of σy1 = 7:6. The spot price with maximum probabil-
ity is y1 = 8.79. However, as indicated by the standard
deviation, the density shows a wide distribution showing
possible values for the expected spot price movements y1
between −29% and +29%. The lags for Case 1 assume
that spot price and wind forecasts movements are both
negative (positive comovements), which contradicts the
normal negative comovements (ρ≈−0.5). However, the
synchronously reported and known wind forecast move-
ments clearly suggest that negative (positive) wind fore-
cast movements are followed with positive (negative)
expected spot price movements. However, the case
reports a higher associated standard deviation σy1 for spot
price movements indicating wider densities and higher
risks (see Cases 2–4 below). For example, when the

FIGURE 13 Bivariate expected spot price movement probabilities for synchronously reported spot prices and wind forecasts conditional

on y0 = ±10% and ω0 = ±6%
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FIGURE 14 Marginal step ahead spot price densities for synchronous wind forecasts conditional on y0 = ±10 and w0 = ±6
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known wind forecast movements are −6% (w1 =−6), the
expected spot price movements are 6.46% (y1 = 6.46) with
associated standard deviation of 7.6% σy1 = 7:6

� �
. The

spot price with maximum probability is 10.5%, and skew-
ness is 0.16. When known wind forecast movements are
6% (w1 = 6), the expected spot price movements are
−2.26% (y1 =−2.26) with associated standard deviation of
7.9% σy1 = 7:9

� �
. The spot price with maximum probabil-

ity is −8.2%, and skewness is −0.28. The main observa-
tion from Table 5 and the lags y1 =−10%; ω0 =−6%, is
the higher risk without a clear spot price movement com-
pensation. Moreover, the expected negative comovement
between wind and spot price movements are extended.
Finally, all the spot price densities at t1 are positive for
both negative as well as positive expected spot price
movements indicating that all market positions will risk
wrong market positions.

Case 2. Figure 14 (Panel B): Lag vector is y0 = (0, 0, 0, 0,
0, 0, 0, −10%) and ω0 = (0, 0, 0, 0, 0, 0, 0, +6%).

Figure 14 (Panel B) reports the marginal spot price
distributions conditional on negative spot price and posi-
tive wind forecast movement lags for a set of synchro-
nously reported and known wind forecasts (ω1 = −12%,
…, 12%). A wind forecast movement close to zero (ω1 = 0)
means the density for spot price movements is approxi-
mately equal for positive and negative spot price move-
ments. Table 5 (Line 3) confirms this showing an
expected spot price movement of y1 = −0.3 with an asso-
ciated standard deviation of 5.84. The spot price with
maximum probability is y1 = −5.44. However, as indi-
cated by the standard deviation the density shows a wide
distribution showing possible values for the expected spot
price movements y1 between −25% and +25%. The lags
for Case 2 assume that spot price and wind forecasts

movements show negative comovements (ρ ≈ −0.5). The
synchronously reported and known wind forecast move-
ments continue to show that negative (positive) wind
forecast movements are followed with positive (negative)
expected spot price movements. Moreover, the case
reports a lower associated standard deviation σy1 for spot
price movements indicating narrower densities and lower
risks (see Cases 1–4). For example, when the known
wind forecast movements are −6% (ω1 =−6), the
expected spot price movements are 6.5% (y1 = 6.5) with
associated standard deviation of 5.7% σy1 = 5:70

� �
. The

spot price with maximum probability is 9.4%, and skew-
ness is −0.002. When known wind forecast movements
are 6% (ω1 = 6), the expected spot price movements are
−7.9% (y1 =−7.9) with associated standard deviation of
5.97% σy1 = 5:97

� �
. The spot price with maximum

probability is −9.9%, and skewness is −0.35. The main
observation from Table 5 and the lags y1 =−10%; ω0 = 6%
is the lower risk. Moreover, the expected negative
comovement between wind and spot price movements
are extended. Finally, all the spot price densities at t1 are
positive for both negative as well as positive expected spot
price movements indicating that all market position will
risk wrong market positions.

Case 3. Figure 14 (Panel C): Lag vector is y0 = (0, 0, 0, 0,
0, 0, 0, +10%) and ω0 = (0, 0, 0, 0, 0, 0, 0, −6%).

Figure 14 (Panel A) reports the marginal spot price
distributions conditional on positive spot price and nega-
tive wind forecast movement lags for a set of synchro-
nously reported and known wind forecasts (ω1 = −12%,
…, 12%). A wind forecast movement close to zero (ω1 = 0)
means the density for spot price movements is somewhat
higher for positive than negative prices. Table 5 (Line 4)
confirms this, showing a positive expected spot price

FIGURE 14 (Continued)
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movement of y1 = 0.53 with an associated standard devia-
tion of σy1 = 5:96. The spot price with maximum probabil-
ity is y1 = 5.94. Hence, considerable distribution mass is
also present for negative spot price movements, which is
confirmed in Figure 14 (Panel C). Furthermore, also indi-
cated by the standard deviation, the density shows a dis-
tribution showing possible values for the expected spot
price movements y1 between −25% and +25%. The lags
for Case 3 assume that spot price and wind forecasts
movements show negative comovements (ρ≈−0.5). The
synchronously reported and known wind forecast move-
ments clearly show that negative (positive) wind forecast
movements are followed with positive (negative)
expected spot price movements. Moreover, the case
reports an associated standard deviation σy1 for spot price
movements indicating narrower densities and lower risks
(see Cases 1–4). For example, when the known wind
forecast movements are −6% (w1 =−6), the expected spot
price movements are 6.19% (y1 = 6.19) with associated
standard deviation of 5.89% σy1 = 5:89

� �
. The spot price

with maximum probability is y1 = 8.91%, and skewness is
0.04. When known wind forecast movements are 6%
(ω1 = 6), the expected spot price movements are −6.19%
(y1 =−6.19) with associated standard deviation of 5.99%
σy1 = 5:99
� �

. The spot price with maximum probability is
y1 =−9.89%, and the skewness is −0.2. The main observa-
tion from Table 5 and the lags y1 = 10%; ω0 =−6% is the
lower risk from the normal negative comovements with-
out a clear spot price movement compensation. More-
over, there is an expected negative comovement
(ρ≈−0.5) between the lagged wind and spot price move-
ments. Finally, all the spot price densities at t1 are greater
than 0 for both negative as well as positive expected spot
price movements indicating that all market positions will
involve risks of wrong positions.

Case 4. Figure 14 (Panel D): Lag vector is y0 = (0, 0, 0, 0,
0, 0, 0, +10%) and ω0 = (0, 0, 0, 0, 0, 0, 0, +6%).

Figure 14 (Panel D) reports the marginal spot price
distributions conditional on positive spot price and wind
forecast movement lags for a set of synchronously
reported and known wind forecasts (ω1 = −12%, …, 12%).
A wind forecast movement close to zero (ω1 = 0) means
the density for spot price movements is higher for nega-
tive than positive prices. Table 5 (Line 5) confirms show-
ing a positive expected spot price movement of y1 =
−1.73 with an associated standard deviation of σy1 = 7:21.
The spot price with maximum probability is y1 =−7.56
indicating some distribution mass also for positive
expected spot price movements. Moreover, as indicated
by the standard deviation, the density shows a wide dis-
tribution suggesting possible values for the expected spot

price movements y1 between −30% and +30%. The lags
for Case 4 assume that spot price and wind forecasts
movements are both positive (positive comovements),
which contradicts the normal negative comovement story
(ρ≈−0.5). However, the synchronously reported and
known wind forecast movements ω1 clearly suggest that
negative (positive) wind forecast movements are followed
with positive (negative) expected spot price movements.
Moreover, the case reports a higher associated standard
deviation σy1 for spot price movements indicating wider
densities and higher risks (see Cases 1–4). For example,
when the known wind forecast movements are −6%
(ω1 =−6), the expected spot price movements are 4.52%
(y1 = 4.52) with associated standard deviation of 7.28%
σy1 = 7:28
� �

. The spot price with maximum probability is
9.31%, and the skewness is 0.22. When known wind fore-
cast movements are 6% (ω1 = 6), the expected spot price
movements are −9.35% (y1 = 9.35) with an associated
standard deviation of 7.84% σy1 = 7:84

� �
. The spot price

with maximum probability is y1 =−12.8%, and the skew-
ness is −0.25. The main observation from Table 5 and the
lags y1 = 10%; ω0 = 6% is a higher risk without a clear spot
price movement compensation. Moreover, the expected
negative comovement between wind and spot price
movements are extended and not strongly influenced by
positive comovement lags. However, note the strong neg-
ative expected spot price (y1 =−17.58%) when the wind
forecast movements strongly increase (ω1 = 12). Finally,
all the spot price densities at t1 are positive for both nega-
tive as well as positive expected spot price movements
indicating that all market positions risk wrong market
positions.

5 | SPOT PRICE PREDICTION
FROM SYNCHRONOUSLY
REPORTED AND KNOWN WIND
FORECAST MOVEMENTS

Do the spot price and wind forecast lags and cross lags
(L = 1 lags) from the SNP model with lagged information,
y0 = −60%, …, 60%; ω0 = −20%, …, 20%, and does using the
synchronously reported and known wind forecast move-
ments, ω1 = −12%, …, 12%, enable well-fitted spot price
predictions (y1) at t1? The prediction analysis will use all
available information from the structured model analysis
above for the mean as well as volatility, including correla-
tion. That is, using conditional information for lag one (t0)
for spot prices between −60% and 60% (0) and wind fore-
casts between −20% and 20% (ω0) together with synchro-
nous wind forecasts at t1 between −12% and 12% (ω1), an
expected spot price movement of mean, variance, skew-
ness and kurtosis is estimated from known historic model

SOLIBAKKE 21



information. For example, when y0 = −10%, ω0 = 6% and
ω1 = 10%, the spot price vector is (−12.74, 5.74, 0.08, 0.07
and −14.33). Moreover, the analysis shows that when spot
price and wind forecast movements move in opposite
directions (negative correlation), the densities are gener-
ally higher and narrower, indicating higher confidence for
the mean expectations and narrower densities (lower risk).
The one-step-ahead density predictions (static predictions)
for 1 April 2019 to 1 January 2020 are reported in
Figure 15 together with a Kalman filter prediction from a
100-k long SNP simulation, a 95% confidence interval and
the actual spot price movements for the period. The actual
movement observations are to a large extent inside the
95% (2 standard errors) confidence interval band of the
mean predictions. The graph does not show skewness,
kurtosis and the ML spot price.35 A simple calculation is a
count of the number of predictions within the confidence
intervals, 244, versus the total number of predictions,
276. Hence, 88.5% of the one-step-ahead predictions are
within the 95% confidence intervals. Extending the analy-
sis with L = 7 lags might improve findings from these
simple predictions. Moreover, a model extension from
bivariate to quadruple adding for example consumption
and production that are available and known prognoses
before bid time at 11 a.m. might improve spot price
movement predictions even further. It would be interest-
ing to build an artificial neural network or a machine
learning algorithm adding the information from lags of
spot prices, wind, consumption and production forecast
movements and extend the number of available lags
(− ∞ ≤ (y, ω)t − i ≤ ∞, L = 1, …, 7) suggesting a very

large number of alternative scenarios for the spot price
prediction analysis.

6 | SUMMARY AND
CONCLUSIONS

We have modelled and estimated a bivariate SNP time
series model36 for the conditional mean and variance
for the so-called system price and wind forecast changes
in the Nordic electric power market for the period
January 2013 to August 2019. The two series are
adjusted for systematic seasonal, trend and scale effects
for stationarity. The paper applies a bivariate SNP pro-
cedure employing expansions in hermite functions to
approximate the conditional density of the bivariate
spot price and wind forecast changes. The paper reports
direct computation of the functionals of the fitted bivar-
iate density. Moreover, computational accessible sample
paths, which can be used to compute non-linear func-
tionals of the density, can be obtained by Monte Carlo
integration.

In summary, the article shows that the correlation
between the synchronously reported spot price and wind
forecasts movements is a major player for step-ahead spot
price predictions. The methodology considers the rela-
tionships between the bivariate price and wind forecasts
series (experimental design) in both mean and volatility.
Our findings suggest that the synchronously reported but
known wind forecast movements motivate day-ahead
expected spot price regularities. From a BIC optimal

FIGURE 15 Spot price mean and 95% confidence interval predictions at t1. Actual observations at t1. One lag (L = 1) for spot price and

wind forecast) movements at t0 and synchronously reported but known wind forecast movements at t1
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model and a set of conditional wind forecast changes, the
bivariate SNP model and all bivariate densities report
negative correlation regularities suggesting potential
dynamic market strategic behaviour. Moreover, the SNP
model suggests that lagged price and wind movement
information seems to influence the market position risks.
That is, the expected spot price distributions are clearly
higher and narrower when lags report negative price and
wind forecast comovements. Hence, a normal com-
ovement (negative ρ = −0.5) between prices and wind
seems to calm down the market increasing the likelihood
for prices and narrowing the distribution so reducing
position risk. Moreover, the density plots in Figure 14
suggest that when lagged information shows positive
comovements indicating an increase in both spot price
and wind forecast movements, a further increase in wind
forecasts the next day at t1 seems to suggest an extraordi-
nary decrease in expected spot price movements, without
an associated increase in standard deviations. Hence, the
systematics from the bivariate SNP model, the lags and
the synchronously reported wind forecasts, in combina-
tions, all suggest information to market participants, pro-
ducing reliable spot price movement predictions. Because
wind together with other renewables will be an increas-
ing input factor for electricity and energy production in
the future, the dynamic spot price and wind forecast
comovements will contain important information for
daily market positions at the Nordic/Baltic Energy Mar-
ket. Building an artificial intelligence front end or a
machine learning algorithm to analyse the influence of
these information sets could be a very interesting future
exercise for the prediction of expected spot price move-
ments at t1.
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ENDNOTES
1 See Solibakke, 2002.
2 Wind forecasts are wind power prognosis in MWh for a 24-h
period.

3 The daily ‘El-spot System Price’ density forecasts are important
information for both the physical market and the financial mar-
ket. The financial market uses the daily ‘El-spot System Price’ as
contract base for clearing. The financial Nasdaq market has
around 250 members from more than 20 countries (energy pro-
ducers, energy intensive industries, large consumers, distributors,
funds, investment companies, banks, brokers, utility companies
and financial institutions).

4 The Nordic market is abundant in hydro production resources,
making the market capable of coping with undirected wind
variations.

5 From 2013 to 2019, the wind generation in the Nordic market
has grown approximately 2.5 times from 32 k MWh (April 2013)
to 80 k MWh (April 2019).

6 The estimator is consistent. See Gallant and Tauchen (1989).
7 See, for example, Kristiansen (2014), Goto and Karolyi (2004),
Bystrøm (2003) and Solibakke (2002).

8 See, for example, Lucia & Schwartz, 2002 and Geman &
Roncoroni, 2006.

9 See Higgs and Worthington (2008), Huisman and Mahieu (2003)
and Thomas, Ramiah, Mitchell, and Heaney (2011).

10 See de Vany and Wall (1999), Higgs and Worthington (2008),
Huisman and Mahieu (2003), Huisman and Kilic (2013),
Haldrup and Nilsen (2006), Knittel and Roberts (2005), Li and
Flynn (2004), Lindstrøm and Regland (2012), Mount, Ning and
Cai (2006), Robinson (2000), Robinson and Baniak (2002), Rubin
and Babcock (2011), Tashpulatov (2013) and Weron (2006, 2008).

11 See Chan and Gray (2006), Escribano, Pena, and
Villaplena (2011), Habell, Marathe, and Shawky (2004), Higgs
and Worthington (2005), Koopman, Ooms, and Carnero (2007)
and Solibakke (2002).

12 See, for example, Weron (2006, 2008), Harris (2006), Geman and
Roncoroni (2006), Koopman, Ooms, and Carnero (2007) and
Pilipovic (2007).

13 32 and 80 k mean 32.000 and 80.000 MWH, respectively.
14 An additional factor is congestion in transmission systems poten-

tially leading to area prices (EWEA, 2010).
15 Renewable Energy Sources (RES). The European Commission

(EC) aims at raising the share of RES in energy consumption to
20% by 2020 (EC, 2009) and at least 27% by 2030 (EC, 2014).

16 Gallant, Hsieh, and Tauchen (1997) find 18 (!) ARCH-lags for
time series retrieved from the US financial market.

17 The technique is available from version GAUSS 3.2.1.
18 The form is
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where R0 is an upper triangular matrix. The matrices Pi, Qi, Vi, and
Wi can be scalar, diagonal or full M by M matrices. The μxt−1− i

shows extraction of the time series unconditional mean for the cal-
culation of the parameters Pi and Vi. The notation x(1),t−i indicates
that only the first column of xt−i enters the computation. The max
(0, x) function is applied elementwise.
19 From Nordpoolspot Group (https://www.nordpoolgroup.com/

Market-data1/#/nordic/table).
20 Wind forecasts are wind power prognosis measured in MWh over

a 24-h interval. The wind forecast information is released imme-
diately before the spot price auction bid/ask announcement time
schedule (daily 11 a.m.). The spot system price is announced
approx. 00.45 p.m. same day (together with area prices for the
Nordic/Baltic market). The market wind forecasts in MWh have
tripled during the period 2013–2019. Some adjustment for the
series may therefore be needed.

21 In fact, the unadjusted wind forecast series report an ADF of −3
with associated t statistic of 0.12, suggesting a nonstationary
series.

22 The
ffiffiffiffiffiffiffiffiffi
e x�γ̂ð Þ

p
or e

x�γ̂=2ð Þ is formed to adjust û in the expression ϖadj

for the variance equation uses of ln û2
� �

.
23 It is important to note that the series represents wind forecasts.

The 2013–2019 forecasts will acknowledge the wind production
increase in this period and Weeks 24 and 28 (both with positive
parameters) is both in the spring/summer season. Furthermore,
the wind forecasts for the auction market are clearly adjusted for
a strong non-linear increase in wind production during the
2013–2019 period. This increase suggests a nonstationary wind
series.

24 It is not possible to estimate the unadjusted series using the SNP
methodology.

25 The Cramer-von-Mises test statistic is a procedure to test the null
that a sample comes from a population in which the variable is
distributed according to a normal distribution.

26 See Box and Jenkins (1976) and Ljung and Box (1978).
27 The RESET test statistics is a general test for (1) omitted vari-

ables, (2) incorrect functional forms or (3) correlation between
dependent variables (X) and the residuals (ε ).

28 In terms of computations, a hermite density is easy to evaluate
and differentiate. Also, its moments are easy to evaluate because
they correspond to higher moments of the normal (computed
using standard deviations), and finally, it turns out to be very
practical for sampling from simulations.

29 The criterion rewards good fits by small

sn θ̂
� �

= − 1
n

� � Pn
t=1

log f ytjxt−1,θð Þ½ � and uses the term 1
2

� � pp
n

� �
log nð Þ

to penalize good fits obtained by means of excessively rich
parameterization.

30 Based on likelihood ratio test (LRT) statistics, the student t log-
likelihood function is strongly preferred to a normal likelihood
function.

31 BIC optimal model: (SNP - 7, 1, 1, 1, 4, 0, 0, 4). That is, one inter-
cept and seven lags in the mean, GARCH(1, 1) for the volatility,
four hermite functions (Kz) to capture deviations and finally, four
interactions (Iz).

32 Note the effect of the spline transformation because the bias in
the values of the conditional mean and (co)variances can be sub-
stantial without it.

33 The camera angel for this bivariate plot is named isometric right
high. Other camera angels (left, right, behind, high) are available
from author upon request.

34 All the four panels in Figure 14 include a normal density condi-
tional on known wind forecast movements (ω1) of zero.

35 This information is available from author upon request.
36 The specification is a conditional bivariate ARMA-GARCH

model with full variance–covariance parametrization for the con-
ditional variance.
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