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This paper presents a study of the dynamic behavior of a coupled train-slab track system considering 29 
discrete rail pads. The slab track is modelled as a three-layer Timoshenko beam. The study is carried 30 
out using the moving element method (MEM). By introducing a convected coordinate system 31 
moving at the same speed as the vehicle, the governing equations of motion of the slab track are 32 
formulated in a moving frame-of-reference. By adopting the Galerkin's method, the element stiffness, 33 
mass and damping matrices of a truncated slab track in the moving coordinate system are derived. 34 
The vehicle is modelled as a multi-body with 10 degrees of freedom. The nonlinear Hertz contact 35 
model is used to account for the wheel-rail interaction. The Newmark integration method, in 36 
conjunction with a global Newton-Raphson iteration algorithm, is employed to solve the nonlinear 37 
dynamic equations of motion of the vehicle-track coupled system. The proposed MEM model of the 38 
system is validated through comparison with available results in the literature. Further study is then 39 
made to investigate the vehicle-track system accounting for track irregularities modelled as short 40 
harmonic wave forms. Results showed that irregularities with short wavelengths have a significant 41 
effect on wheel-rail contact force and rail acceleration, and the dynamic response of the track 42 
structure does not increase monotonously with the increase of the vehicle speed. 43 
 44 
 45 
Keywords: Slab track; Timoshenko beam; moving element method; discrete rail pads; dynamics. 46 
 47 
 48 

https://www.ntnu.edu/


 

2 

1. Introduction 49 
Since China's first high-speed rail line (Beijing-Tianjin intercity railway) was completed 50 
in 2008, China's high-speed rail mileage had reached 29,000 kilometers in the past 10 51 
years by 2018 and ranked the first in the world. In terms of the form of track designs, the 52 
slab (ballastless) track has become the most used design for the construction of 53 
high-speed rails in China. Compared to the traditional ballasted track, the slab track is a 54 
modern design that was developed and employed in the Japanese Shinkansen high-speed 55 
railway in the 1960s. The rapid development and wide adoption of the slab track can be 56 
attributed to its higher running stability, better stiffness uniformity and lower 57 
maintenance cost than the ballasted track.1,2 To continuously improve the safety and 58 
comfort of high-speed trains and extend their service life, the dynamic behavior of a 59 
railway track has been a focus for research and study globally. 60 
   Historically, early models of the train-track system treated vehicles as moving loads 61 
and tracks as infinitely long beams on elastic foundations. Based on these models, many 62 
analytical approaches including the Laplace transform method,3 Fourier transform,4 Fast 63 
Fourier transform,5 mode superposition,6 and spectral element method7 have been used to 64 
solve the governing equations of motion of the system. However, these analytical 65 
solutions are often limited to linear elastic assumptions and greatly simplified 66 
applications. These approaches are inadequate in dealing with today's complex railway 67 
problems. 68 
   The finite element method (FEM) is a powerful numerical approach for structural 69 
analysis and has been widely used to solve various train-track problems. Filho8 presented 70 
a review on the use of the FEM in solving the problem of a uniform beam subject to a 71 
moving load. Esmaeili et al.9 modelled the slab track as a double Euler-Bernoulli beam, 72 
developed a vehicle-slab track interaction algorithm for the dynamic simulation of the 73 
coupled vehicle-track system and analyzed the effects of the slab thickness, foundation 74 
stiffness and axle load on dynamic responses of the system. Lei and Zhang10 proposed a 75 
slab track element model with a three-layer Euler-Bernoulli beam and a vehicle element 76 
model with 26 degrees of freedom. A direct integration scheme was employed to 77 
calculate the dynamic response of the coupled vehicle-track system. Zhai et al.11 further 78 
improved the slab track model by considering two parallel continuous beams supported 79 
by a series of elastic plates on a viscoelastic foundation. The vehicle and track 80 
subsystems were coupled through a wheel-rail model that accounts for the 81 
three-dimensional vibrations of the rails. Moreover, a fast explicit integration method was 82 
applied to solve the nonlinear equations of motion of the system in the time domain. Xu 83 
et al.12 established a three-dimensional coupled vehicle-slab track-subgrade finite element 84 
model. The dynamic characteristics and the corresponding dynamic coefficient of slab 85 
track system were studied considering different types of track irregularity.  86 
   From the existing literature, it may be concluded that there are mainly three types of 87 
finite element models, namely the multi-layer beam model, beam-slab model and 88 
beam-solid element model, that can be used for the dynamic analysis of the coupled train 89 
and slab track system. However, since the track degradation mainly occurs in the vertical 90 



 

3 
 

direction13 and for the sake of computational efficiency, the multi-layer beam model is 91 
still one of the most widely used models. In a conventional FEM model, a global fixed 92 
coordinate system is used to formulate the structural matrices. As the vehicle moves from 93 
one track element to the next, the loads vector must be updated at each time step for 94 
tracking the position of moving wheels. A refined mesh is usually needed to ensure a 95 
satisfactory degree of accuracy of the results. In addition, a large domain size is often 96 
required for the simulations, especially when the speed of the vehicle is high. These 97 
disadvantages make the FEM computationally inefficient for analyzing coupled 98 
high-speed train-track systems. 99 
   To overcome the abovementioned complications faced by the FEM, Krenk et al.14 100 
proposed the use of FEM involving a moving coordinate to study the wave propagation 101 
problem of an elastic half space subject to a moving load. By using a Galilean coordinate 102 
transformation, Andersen et al.15 derived the FEM formulation of an infinite Euler beam 103 
resting on a linear viscoelastic Kelvin foundation subject to a harmonic moving load. In 104 
their study, the equations of motion of the beam under the moving load were formulated 105 
in a convected coordinate system that travels with the moving load. Subsequently, Koh et 106 
al.16 studied dynamic responses of a coupled train-track system in a moving coordinate 107 
system and termed the approach the moving element method (MEM). By discretizing the 108 
truncated track model into elements that 'flow' with the same speed as the moving vehicle, 109 
the vehicle load is always 'stationary' in the moving frame-of-reference. This method not 110 
only eliminates the need to track and update wheel positions but also ensures that the 111 
vehicle in question would never move out of the finite model. Since then, many 112 
researchers have applied this technique to study various moving load problems.17-28 For 113 
example, Ang and Dai17 employed the MEM to investigate the dynamic response of a 114 
high-speed rail system accounting for an abrupt change of the foundation stiffness. The 115 
railway beam was treated as a viscously damped Euler-Bernoulli beam resting on a 116 
Winkler foundation. By employing a two-parameter Pasternak foundation model, Tran et 117 
al.18 studied the dynamic response of a high-speed train subject to abrupt braking. More 118 
recently, the liquid sloshing behavior and its effect on the braking of a partially filled 119 
freight train were examined.19 A computational scheme was proposed by Dai et al.20 in 120 
conjunction with the MEM to study the dynamic responses of a coupled high-speed 121 
train-train system accounting for the effect of periodically placed discrete supports 122 
beneath the rail beam. Subsequently, Dai et al.21 modelled the ballasted track in a moving 123 
coordinate system by using a three-layer model consisting of a continuous rail, discrete 124 
sleepers and ballast, and studied the dynamic response of a high-speed train-track system 125 
considering unsupported sleepers. Lei and Wang22 developed a slab track element model 126 
with a three-layer Euler-Bernoulli beam system to investigate the dynamic behavior of 127 
the coupled train-slab track system. In their study, the effect of discrete rail pads and the 128 
nonlinear relationship of wheel-rail contact were neglected. It should be noted that in real 129 
situations, the rail may not resemble a slender beam due to the short spacing (usually 130 
600-650 mm) between adjacent supports. Studies have shown that the shear-deformable 131 
Timoshenko beam model is superior to the classic Euler-Bernoulli model in describing 132 
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the rail vibrations especially in the high frequency range.29-31 Therefore, it is important 133 
that the slab tracks are properly modelled to ensure a realistic analysis of the high-speed 134 
train-track system. 135 
   In this paper, a computational model in conjunction with the MEM is proposed to 136 
study the dynamic response of a coupled high-speed train-slab track system. A new slab 137 
track model comprising a three-layer Timoshenko beam supported by discrete rail pads 138 
and sustaining substructures is presented. The accuracy of the proposed computational 139 
model is evaluated by comparison with available results in the literature. The effects of 140 
track irregularities and vehicle speeds on the dynamic response of the coupled train-track 141 
system are examined and discussed. 142 
 143 
2. Fundamental Assumptions 144 
The following assumptions are made as a basis for establishing the mathematical model 145 
of the vehicle-slab track system: 146 
(1) Only the vertical dynamic responses are of concern in this study. 147 
(2) Half of the vehicle-slab track system is modelled in view that the system is 148 

symmetrical about the centerline in the longitudinal direction. 149 
(3) The vehicle model is based on the CHR332 locomotive unit with primary and 150 

secondary suspension systems, in which the vertical and pitch motions of the coach 151 
body and bogies are considered. 152 

(4) The track system is based on the CRTSII32 slab track consisting of the rail beam, rail 153 
pads, track slab, cement asphalt (CA) mortar layer, concrete base and subgrade. 154 

(5) The rail is treated as an infinitely long elastic beam supported by discrete pads with 155 
elastic stiffness and damping properties. 156 

(6) The track slab and concrete base are idealized as elastic beams supported by 157 
continuous CA mortar and subgrade, respectively. Only the elastic stiffness and 158 
damping properties of the CA mortar and subgrade are considered. 159 
 160 

3. Mathematical Formulation 161 
The vehicle-slab track system comprises two parts. The first corresponds to the vehicle 162 
which includes the coach body, bogies and wheel-sets. The second is composed of the rail 163 
and supporting structures. The schematic drawing of the coupled system is shown in Fig. 164 
1, in which the vehicle is modelled as a multi-body system with 10 degrees of freedom 165 
(DOFs), and the slab track is represented by a three-layer Timoshenko beam model. The 166 
vehicle is assumed to move at a constant speed V in the positive x-direction. Note that in 167 
the employed coordinate system, the vertical displacement and force are positive in the 168 
upward direction and the rotation and moment are positive in the counterclockwise 169 
direction. 170 

http://dict.youdao.com/w/subgrade/#keyfrom=E2Ctranslation
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 171 

Fig. 1. Vehicle-slab track system. 172 

3.1. Slab track model 173 
The slab track model comprises three Timoshenko beams representing the rail, track slab 174 
and concrete base, respectively. These are interconnected by spring-dashpot units (refer to 175 
Fig. 1). The densities of the rail, track slab and concrete base are labelled as 

a ,
b  and 176 

c  respectively. Likewise, their cross-sectional areas are denoted as 
aA ,

bA  and 
cA ; 177 

the second moments of area are 
aI ,

bI  and 
cI ; the Young's moduli are 

aE ,
bE  and 

cE ; 178 

the shear moduli are 
aG ,

bG  and 
cG ; and the Timoshenko shear correction coefficients 179 

are 
ak ,

bk  and 
ck , respectively. 180 

   The rail is supported by a layer of evenly spaced rail pads with stiffness coefficient 181 

1k  and damping coefficient 
1c . Using the same method employed by Dai et al21 and Lei 182 

and Wang22 , the vertical force and moment dynamic equilibrium of an infinitesimal part 183 
of the rail of length dx  can be established using d'Alembert's principle. The two coupled 184 

second-order differential equations of the coupled rail-track slab can be written as  185 
 186 

( ) ( )

2 2

12 2
1

1

1 1

( , ) ( , ) ( , ) ( , ) ( , )

( ) ( , ) ( , ) ( ) ( ) ,

n
a a a a b

a a a a a a a a

i

n m

s a b s j j

i j

y x t y x t x t y x t y x t
A k A G k A G c

t x x t t

x iL k y x t y x t x iL F x X t




  

=

= =

     
− + + − 

     

 − + −  − = − −



 

     (1) 187 

2 2

2 2

( , ) ( , ) ( , )
( , ) 0,a a a

a a a a a a a a a a a

x t x t y x t
I E I k A G k A G x t

t x x

 
 

  
− − + =

  
           (2) 188 
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 189 
where 

ay  and 
by  denote the vertical displacements of the rail beam and track slab, 190 

respectively, and 
a  the bending rotation of the rail. The contact force between the thj  191 

wheel-set and rail is denoted by 
jF ( 1,2,3,4j = ). Other notaions used are 

sL  the 192 

spacing between two adjacent pads along the track, 
jX  the travel distance of the thj  193 

wheel-set and ( )  the Dirac-delta function.  194 

   For the track slab supported by the CA mortar with stiffness 
2k  and damping 195 

coefficient 
2c , the equations of motion are given by 196 

 197 

( )

( )

2 2

12 2
1

1 2

1

2

( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , )
( ) ( , ) ( , ) ( )

( , ) ( , ) 0,

n
b b b b a

b b b b b b b b

i

n
b c

s b a s

i

b c

y x t y x t x t y x t y x t
A k A G k A G c

t x x t t

y x t y x t
x iL k y x t y x t x iL c

t t

k y x t y x t




 

=

=

     
− + + − 

     

  
 − + −  − + − 

  

+ − =




    (3) 198 

2 2

2 2

( , ) ( , ) ( , )
( , ) 0,b b b

b b b b b b b b b b b

x t x t y x t
I E I k A G k A G x t

t x x

 
 

  
− − + =

  
         (4) 199 

where 
cy  denotes the displacement of the concrete base, and 

b  the bending rotation 200 

of the track slab.  201 
   Similarly, for the concrete base supported by the subgrade with stiffness 

3k  and 202 

damping coefficient 
3c , the equations of motion are given by 203 

( )

2 2

22 2

2 3 3

( , ) ( , ) ( , ) ( , ) ( , )

( , )
( , ) ( , ) ( , ) 0,

c c c c b
c c c c c c c c

c
c b c

y x t y x t x t y x t y x t
A k A G k A G c

t x x t t

y x t
k y x t y x t c k y x t

t




     
− + + − 

     


+ − + + =



     (5) 204 

2 2

2 2

( , ) ( , ) ( , )
( , ) 0,c c c

c c c c c c c c c c c

x t x t y x t
I E I k A G k A G x t

t x x

 
 

  
− − + =

  
         (6) 205 

where 
c  denotes the bending rotation of the concrete base. 206 

 207 

3.2. Vehicle model 208 
The 10-DOF vehicle model is composed of a coach body with two bogies and four 209 
wheel-sets, as illustrated in Fig. 1. The coach body has a lumped mass 

vm  and moment 210 

of inertia 
vJ . The two bogies have an identical lumped mass 

bgm  and moment of inertia 211 

bJ . Each of the four wheel-sets has a lumped mass ( 1,2,3,4)wjm j = . According to 212 

Newton's second law of motion, the governing equations of the vehicle can be written as 213 
 214 

(2 ) (2 ) ,v v s v br bf s v br bf cm y c y y y k y y y m g+ − − + − − = −                (7) 215 

1 1 1 1( 2 ) ( 2 ) 0,v v s br v bf s br v bfJ c l y l y k l y l y  + + − + + − =                (8) 216 
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1 1 2 1

1 2

( ) (2 ) ( )

(2 ) ,

bg br s br v v p br w w s br v v

p br w w bg

m y c y l y c y y y k y l y

k y y y m g

 + + − + − − + + −

+ − − = −
     (9) 217 

2 1 2 2 2 1 2 2( 2 ) ( 2 ) 0,b br p w br w p w br wJ c l y l y k l y l y  + + − + + − =           (10) 218 

1 3 4 1

3 4

( ) (2 ) ( )

(2 ) ,

bg bf s bf v v p bf w w s bf v v

p bf w w bg

m y c y l y c y y y k y l y

k y y y m g

 + − − + − − + − −

+ − − = −
    (11) 219 

2 3 2 4 2 3 2 4( 2 ) ( 2 ) 0,b bf p w bf w p w bf wJ c l y l y k l y l y  + + − + + − =           (12) 220 

1 1 1 2 1 2 1 1( ) ( ) ,w w p w br br p w br br wm y c y l y k y l y F m g + + − + + − = −       (13)221 

 
2 2 2 2 2 2 2 2( ) ( ) ,w w p w br br p w br br wm y c y l y k y l y F m g + − − + − − = −      (14) 222 

3 3 3 2 3 2 3 3( ) ( ) ,w w p w bf bf p w bf bf wm y c y l y k y l y F m g + + − + + − = −    (15) 223 

4 4 4 2 4 2 4 4( ) ( ) ,w w p w bf bf p w bf bf wm y c y l y k y l y F m g + − − + − − = −    (16) 224 

 225 
where 

vy , 
bry , 

bfy , and 
wjy ( 1,2,3,4j = ) denote the vertical displacements at the 226 

centroids of the coach body, rear bogie, front bogie and wheel-sets, respectively. The 227 
pitching rotations at the centroids of the vehicle, rear bogie, and front bogie are denoted 228 
by 

v , 
br , and 

bf , respectively; 
pk  and 

pc  denote the stiffness and damping 229 

coefficients of the primary suspension system; 
sk  and 

sc  are the corresponding 230 

coefficients of the secondary suspension system; 2
1l  is the distance between two bogie 231 

centers; and 2
2l  is the distance between the centers of two adjacent wheel-sets under the 232 

same bogie. 233 
   From Eqs. (7)-(16), the equation of motion of the moving vehicle can be written as 234 

 ,U U U U U U U+ + =M Z C Z K Z F                    (17) 235 

where 
UM , 

UC and 
UK  are the total mass, damping and stiffness matrices of the 236 

vehicle, respectively; 
UZ  and 

UF  the displacement and force vectors of the vehicle, 237 

respectively. 238 
 239 
3.3. Wheel-rail contact model 240 
The nonlinear Hertz contact model is adopted here for the computation of the normal 241 
contact force between the wheel and railhead. The contact force is given by Zhai33 as 242 

( )
3

21
0

,

0 0

aj t wj aj t wj
j

aj t wj

y y y y y y
F G

y y y


   + − + −  =   
 

+ −   

                (18) 243 

where 
jF  denotes the Hertz normal contact force between the thj  wheel-set and rail at 244 

the contact point; G  is the wheel-rail contact coefficient (unit: 2/3m/N ) for the wheel 245 
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with cone tread or worn tread. G can be chosen as 0.149 84.57 10R− −  or 246 
0.115 83.86 10R− − , respectively, where R  is the radius of the wheel, unit: m); 

ajy  is 247 

the displacement of the track at the contact point; 
ty  is the magnitude of track surface 248 

irregularity; and 
wjy  is the displacement of the thj  wheel in contact with the rail.  249 

 250 
4. Moving Element Method 251 
The moving element method (MEM) involves the use of a moving coordinate r-axis 252 
(refer to Fig. 1) , whose relationship with the fixed x-axis is given by 253 

     ,r x Vt= −                              (19) 254 

where the origin of the x -axis is located at the midpoint of the truncated track of length 255 

L and V is the velocity of the vehicle. The position of the track is within the interval 256 
 / 2, / 2L L−  at time 0t =  in the x -axis, which changes to  / 2, / 2Vt L Vt L− +  at 257 

time t. When using a moving r-coordinate as defined in Eq. (19), the position of the track 258 
is always the interval  / 2, / 2L L−  in the r -coordinate. 259 

   With the simple transformation,16 the governing equations of the rail beam expressed 260 
in Eqs. (1) and (2) can be rewritten in the moving r-axis as 261 

( ) ( )

2 2 2
2

2 2 2

1

1

1

1 1

2

( )

( ) ,

a a a a a
a a a a a a a a

n
a a b b

s

i

n m

a b s j j

i j

y y y y
A V V k A G k A G

r r t t r r

y y y y
c V V r Vt iL

t r t r

k y y r Vt iL F r R






 

=

= =

     
− + − + 

      

    
+ − − +  + − 

    

+ −  + − = − −



 

        (20) 262 

2 2 2
2

2 2 2
2 0,a a a a a

a a a a a a a a a a a

y
I V V E I k A G k A G

r r t t r r

   
 

     
− + − − + = 

      

    (21) 263 

Similarly, Eqs. (3) - (6) can be rewritten as 264 

( )

( )

2 2 2 2
2

2 2 2

1

1

1 2

1

2

2

( )

( )

0,

b b b b b
b b b b b b b b

n
b b a a

s

i

n
b b c c

b a s

i

b c

y y y y
A V V k A G k A G

r r t t r r

y y y y
c V V r Vt iL

t r t r

y y y y
k y y r Vt iL c V V

t r t r

k y y








=

=

     
− + − + 

      

    
+ − − +  + − 

    

    
+ −  + − + − − + 

    

+ − =





      (22) 265 

2 2 2 2
2

2 2 2
2 0,b b b b b

b b b b b b b b b b b

y
I V V E I k A G k A G

r r t t r r

   
 

     
− + − − + = 

      

   (23) 266 
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( )

2 2 2 2
2

2 2 2

2 2 3 3

2

0,

c c c c c
c c c c c c c c

c c b b c c
c b c

y y y y
A V V k A G k A G

r r t t r r

y y y y y y
c V V k y y c V k y

t r t r t r




     
− + − + 

      

        
+ − − + + − + − + =   

        

  (24) 267 

2 2 2 2
2

2 2 2
2 0.c c c c c

c c c c c c c c c c c

y
I V V E I k A G k A G

r r t t r r

   
 

     
− + − − + = 

      

   (25) 268 

   To derive the moving element matrices of the track, a 6-node track element consisting 269 
of a three-layer beam element in the moving coordinate is established, as shown in Fig. 2. 270 
Note that i

ay  , i

a  and j

ay  , j

a  are the vertical displacements and bending rotations 271 

of the rail element at node 1 and node 4, respectively. Likewise, i

by  , i

b  , j

by  and 272 
j

b  correspond to nodes 2 and 5 of the track slab element; and i

cy  , i

c  , j

cy  and j

c  273 

are for nodes 3 and 6 of the concrete base element. In this model, the rail pads are treated 274 
as discrete viscoelastic supports,20 but the elastic stiffness and damping properties of the 275 
CA mortar and subgrade are modelled by using continuous viscoelastic spring-dashpot 276 
units. It is worth noting that when discrete rail pads are accounted for, the support 277 
stiffness of the rail always varies periodically with time in the moving coordinate and 278 
therefore needs to be constantly updated. So this moving element is different from the 279 
case of a continuously supported moving element employed by Lei and Wang.22 280 

 281 
Fig. 2. Sketch of moving track element. 282 

   The nodal displacement vector of one typical moving track element can be written as 283 

 
T

.e i i i i i i j j j j j j

a a b b c c a a b b c cy y y y y y     =y    (26) 284 

   By introducing the interpolation functions, the displacements and bending rotations of 285 
the rail, track slab and concrete base within the moving element can be expressed as 286 

, , ,e e e

a ay b by c cyy y y= = =N y N y N y                    (27) 287 

, , ,e e e

a a b b c c    = = =N y N y N y                   (28) 288 

1 2 3 40 0 0 0 0 0 0 0 ,ay y y y yN N N N =  N       (29) 289 
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1 2 3 40 0 0 0 0 0 0 0 ,a N N N N    
 =  N       (30) 290 

1 2 3 40 0 0 0 0 0 0 0 ,by y y y yN N N N =  N       (31) 291 

1 2 3 40 0 0 0 0 0 0 0 ,b N N N N    
 =  N       (32) 292 

1 2 3 40 0 0 0 0 0 0 0 ,cy y y y yN N N N =  N       (33) 293 

1 2 3 40 0 0 0 0 0 0 0 ,c N N N N    
 =  N       (34) 294 

where, 
ayN  , 

byN , 
cyN  and 

aN  , 
bN , 

cN  denote the vectors of shape function 295 

for the vertical nodal displacements and bending rotations, respectively. The super 296 
convergent locking-free interdependent interpolation elements with cubic polynomial 297 
shape functions 

yjN  and 
jN
 (j = 1,2,3,4) proposed by Reddy34 are employed. 298 

   Eqs. (20) and (21) are multiplied by a weighting function W and then integrated over 299 
a typical element length l, leading to the following weak form 300 

( ) ( )

2 2 2
2

2 2 2

0

1

1

1

1 1

( ) 2

( )

( ) 0,

l

a a a a a
a a a a a a a a

n
a a b b

s

i

n m

a b s j j

i j

y y y y
W r A V V k A G k A G

r r t t r r

y y y y
c V V r Vt iL

t r t r

k y y r Vt iL F r R dr






 

=

= =

      
− + − +  

       

    
+ − − +  + − 

    


+ −  + − + − =







 

  (35) 301 

2 2 2
2

2 2 2

0

2

( ) 0.

a a a a
l a a a a

a
a a a a a a a

I V V E I
r r t t r

W r dr
y

k A G k A G
r

   




     
− + −  

       = 
 

− +  


              (36) 302 

   Next, by adopting the Galerkin's method, the element mass, damping, and stiffness 303 
matrices of the moving rail beam element can be expressed as 304 

T T

0 0

,

l l

e

a a a ay ay a a a aA dr I dr  = + M N N N N               (37) 305 

( ) ( )

T T

, ,

0 0

T T

1 1

2 2

,

l l

e

a a a ay ay r a a a a r

ay ay j ay by j

A V dr I V dr

c S c S

  

 

= − −

+ −

 C N N N N

N N N N

          (38) 306 
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( ) ( )

( )

2 T 2 T T

, , ,

0 0 0

T T T

, , ,

0 0 0

T T T

1 , 1 ,

0

T

1 1

l l l

e

a a a ay ay rr a a a a rr a a a a rr

l l l

a a a ay ay rr a a a ay a r a a a a ay r

l

a a a a a ay ay r j ay by r j

ay ay j a

A V dr I V dr E I dr

k A G dr k A G dr k A G dr

k A G dr cV S cV S

k S k

   

 

 

 

 



= + −

− + −

+ − +

+ −

  

  



K N N N N N N

N N N N N N

N N N N N N

N N N ( )T ,y by jSN

      (39) 307 

where ( )
,r

 and ( )
,rr

denote the first and second partial derivatives with respect to r, 308 

respectively; the terms containing the Dirac-delta function ( )jS  are used to describe 309 

the effects of the motion of discrete rail pads.  310 
   For Eqs. (22) and (23), the corresponding moving track slab element matrices can be 311 

written as 312 

T T

0 0

,

l l

e

b b b by by b b b bA dr I dr  = + M N N N N                (40) 313 

( )

( )

T T T

, , 1

0 0

T T T

1 2 2

0 0

2 2

,

l l

e

b b b by by r b b b b r by by j

l l

by ay j by by by cy

A V dr I V dr c S

c S c dr c dr

   



= − − +

− + −

 

 

C N N N N N N

N N N N N N

     (41) 314 

( ) ( )

( )

2 T 2 T T

, , ,

0 0 0

T T T

, , ,

0 0 0

T T T

1 , 1 ,

0

T

1 1

l l l

e

b b b by by rr b b b b rr b b b b rr

l l l

b b b by by rr b b b by b r b b b b by r

l

b b b b b by ay r j by by r j

by by j b

A V dr I V dr E I dr

k A G dr k A G dr k A G dr

k A G dr c V S c V S

k S k

   

 

 

 

 



= + −

− + −

+ + −

+ −

  

  



K N N N N N N

N N N N N N

N N N N N N

N N N ( )T T

2 ,

0

T T T

2 , 2 2

0 0 0

,

l

y ay j by by r

l l l

by cy r by by by cy

S c V dr

c V dr k dr k dr

 −

+ + −



  

N N N

N N N N N N

      (42) 315 

   Similarly, the moving concrete base element matrices are given by 316 
 317 

T T

0 0

,

l l

e

c c c cy cy c c c cA dr I dr  = + M N N N N               (43) 318 
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T T T

, , 2

0 0 0

T T

2 3

0 0

2 2

,

l l l

e

c c c cy cy r c c c c r cy cy

l l

cy by cy cy

A V dr I V dr c dr

c dr c dr

  = − − +

− +

  

 

C N N N N N N

N N N N

     (44) 319 

2 T 2 T T

, , ,

0 0 0

T T T

, , ,

0 0 0

T T T

2 , 2 ,

0 0 0

T

2

0

l l l

e

c c c cy cy rr c c c c rr c c c c rr

l l l

c c c cy cy rr c c c cy c r c c c c cy r

l l l

c c c c c cy cy r cy by r

l

cy cy

A V dr I V dr E I dr

k A G dr k A G dr k A G dr

k A G dr c V dr c V dr

k d

   

 

 

 = + −

− + −

+ − +

+

  

  

  



K N N N N N N

N N N N N N

N N N N N N

N N T T T

2 3 , 3

0 0 0

.

l l l

cy by cy cy r cy cyr k dr c V dr k dr− − +  N N N N N N

       (45) 320 

   Upon assemblage of element matrices, the mass, damping and stiffness matrices of a 321 

typical moving track element can be written as 322 

,e e e e

a b c= + +M M M M                          (46) 323 

,e e e e

a b c= + +C C C C                            (47) 324 

,e e e e

a b c= + +K K K K                           (48) 325 

   Finally, by using the 'set-in-right-position' rule, the global mass matrix 
LM , damping 326 

matrix 
LC  and stiffness matrix 

LK  of the entire truncated slab track model can be 327 

obtained. The dynamic equations of motion of the slab track model can thus be written as 328 

,L L L L L L L+ + =M Z C Z K Z F                  (49) 329 

where 
LZ  and 

LF  denote the displacement and force vectors of the slab track model, 330 

respectively. 331 
 332 
5. System Equations and Numerical Solution 333 
Eqs. (17) and (49) may be combined to obtain the coupled equations of motion of the 334 
vehicle-slab track system as follows 335 

,
U U U U UU U

L L L L LL L

            
+ + =            

            

M 0 C 0 K 0 Z FZ Z

0 M 0 C 0 K Z FZ Z
   (50) 336 

which may be solved in the time domain using Newmark’s constant acceleration scheme. 337 
To ensure the accuracy of the results, the time step is controlled within 0.0001s.16 In view 338 
of the fact that the force vector contains nonlinear terms describing the wheel-rail 339 
interaction, Newton-Raphson’s scheme is used to iteratively linearize the equations at 340 
each time step, and the convergence tolerance of rail displacement at wheel-rail contact 341 
points is controlled not to exceed 51.0 10− .32 342 
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 343 
6. Numerical Validation 344 
The numerical simulation based on the proposed model is conducted using MATLAB. 345 
The accuracy of the results is validated through comparison with available results in the 346 
open literature.22,35  347 
   The first validation study is made by comparing with the FEST results by Lei and 348 
Wang22, in which the dynamic response of the CRTSII slab track when a CRH3 vehicle 349 
passes by at a speed of 72 km/h was analyzed. The vehicle characteristics and slab track 350 
properties used in the study are given in Tables 1 and 2, respectively. Note that there is no 351 
track irregularity and the wheel-rail interaction is assumed linear.22 352 
   The computed vertical rail displacements and wheel-rail contact force are presented 353 
in Figs. 3 and 4, respectively. As illustrated in Fig. 3, a very good match of the 354 
steady-state rail displacement is observed between the proposed model and the results by 355 
Lei and Wang22 despite that some minor discrepancies are observed at the contact points 356 
between the rail and the front and rear wheel-sets. Fig. 4 shows the time history results of 357 
the wheel-rail contact force as the vehicle moves over a distance of 70 m. The results 358 
obtained using the proposed model generally agree well with those reported in the 359 
literature. The difference is that the wheel-rail contact force history curve obtained using 360 
the present model is not a smooth curve, but has small and dense oscillations. These 361 
oscillations may be attributed to the parameter excitation caused by the discrete rail pads, 362 
which is similar to the periodic vibration caused by the discrete sleepers of ballasted 363 
tracks.36 However, such oscillations are not observed in the results by Lei and Wang22, 364 
owing to the fact that the rail is assumed to be continuously supported by the substructure 365 
in their study. From the comparison displayed in Figs. 3 and 4, it is also obvious that the 366 
effect of discrete rail pads on rail displacement is less than that on the contact force. 367 
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  368 
Fig. 3. Rail displacement profile. 369 
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 370 
Fig. 4. Wheel-rail contact force history. 371 

 372 
Table 1. Parameters for Chinese high-speed train CRH332 373 

Parameters Value 

Mass of coach body 2 vm (kg) 40,000 

Mass of bogie 2
tm (kg) 3200 

Mass of wheel 
wm (kg) 1200 

Pitch inertia of vehicle body 2
vJ  (kg·m2) 5.47×105 

Pitch inertia of vehicle body 2
tJ (kg·m2) 6800 

Stiffness of primary suspension system 2
1sk (MN/m) 2.08 

Stiffness of secondary suspension system 2
2sk (MN/m) 0.8 

Damping of primary suspension system 2
1sc (kN·s /m) 100 

Damping of secondary suspension system 2
2sc ( kN·s /m) 120 

Wheelbase  2
1l
(m) 2.50 

Distance between centers of front and rear bogies 2
2l (m) 17.375 

Stiffness of wheel-rail contract 
ck (MN/m) 1.325×103 

Axle load  (kN) 140 

 374 
 375 
 376 
 377 
 378 
 379 
 380 
 381 
 382 
 383 
 384 
 385 
 386 
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Table 2. Parameters for CRTSII slab track32 387 

Parameters Value 

Rail pad 

Distance of ties (m) 0.625 

Stiffness of pad (MN·m-1) 60 

Damping of pad (kN·s·m-1) 50 

Track slab 

Length (m) 6.45 

Width (m) 2.55 

Height (m) 0.20 

Density (kg·m-3) 2500 

Young's modulus (MPa) 3.9×104 

Cement-asphalt layer 
Stiffness (MN·m-1) 0.9×103 

Damping (kN·s·m-1) 80 

Concrete base 

Upper bottom width (m) 2.95 

Lower bottom width (m) 3.25 

Height (m) 0.30 

Density (kg·m-3)  2500 

Young's modulus (MPa) 3.3×104 

Subgrade 
Stiffness (MN·m-1) 65 

Damping (kN·s·m-1) 90 

 388 
   To further examine the accuracy of the proposed model, the vertical vehicle-track 389 
dynamic interaction investigated by Aggestam et al.35 is considered. In their study, two 390 
slab track models, namely a two-layer Timoshenko beam model and a three-layer 391 
Timoshenko beam model, were employed in combination with an extended state-space 392 
vector and a complex-valued modal superposition. In both models, the rail pads were 393 
modelled as discrete elastic point supports spaced uniformly apart at 0.65 m. Based on 394 
the model presented in this paper, the static stiffness of the rail along the longitudinal 395 
direction is estimated based on the properties reported.35 Fig. 5 shows the static stiffness 396 
of the rail evaluated by the present model and that reported by Aggestam et al. As can be 397 
seen, both models agree well with each other, thereby validating the applicability of the 398 
proposed model. 399 
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 400 
Fig. 5. Rail static stiffness. 401 

   Next, we compare the dynamic wheel-rail contact force of the coupled system. It 402 
should be noted that the 10-DOF vehicle model adopted in this study is reduced to a 403 
4-DOF model.35 Also note that a low-pass filter technique was applied to eliminate the 404 
oscillations in the wheel-rail contact force due to the finite element interpolation 405 
polynomials used for Timoshenko beam elements.31,35 Although the MEM model does 406 
not encounter the motion of load points, the motion of the discrete supports relative to the 407 
rail beam also introduces some spurious fluctuations in the results. Therefore, the 408 
Butterworth low-pass filter37 is employed to filter out these spurious fluctuations. Fig. 6 409 
shows the steady-state wheel-rail contact force when the vehicle speed is 100 km/h. It can 410 
be seen that although there are some differences between the current and reported results, 411 
the maximum difference in contact force amplitude is less than 1%. The dynamic 412 
wheel-rail contact force experiences periodic variations. This is due to the periodic 413 
excitation caused by the discrete rail pads which would not be observed for the case of 414 
continuously supported rails, as shown in the results by Lei and Wang22 in Fig. 4. 415 
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 416 
  Fig. 6. Wheel-rail contact force at steady state with low-pass filter. 417 

 418 
7. Dynamic Response of Train-Slab Track System 419 

In this section, a parametric study is carried out to find out the effects of vertical track 420 
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irregularity and train speed on the dynamic responses of the CRH3 vehicle traversing the 421 
CRTSII slab track system supported on discrete rail pads. The vehicle characteristics and 422 
slab track properties specified earlier in Tables 1 and 2 are employed. In the following 423 
analysis, the track segment between two adjacent rail pads is discretized into 4 elements, 424 
and the total length of the track model is set to 140 m. 425 
   As is well-known, the response of the coupled train-track system is significantly 426 
affected by the severity of the track irregularity. The cause of track irregularity may be 427 
due to track formation technology, wear, clearances, settlement, and other factors. The 428 
most common type of track irregularity is due to rail wear and weld defects, with 429 
wavelengths ranging from a few centimeters to about 3 meters.17 For track irregularities 430 
with larger wavelengths, its formation is often related to the track structure and its 431 
foundation.38-39 There are generally two approaches to describe track irregularity, namely 432 
deterministic functions and stochastic processes.16,22,40-42 Here, a sinusoidal function to 433 
represent the track irregularity in the vertical profile is adopted, which can be written as 434 

( )sin 2 / ,ty A x B=                        (51) 435 

where A and B  denote the amplitude and wavelength of the rail irregularity, 436 
respectively. 437 
   Figs. 7 and 8 show the time history of the rail displacement at the contact point under 438 
wheel 1. Two different track irregularity wavelengths of 0.5 m and 1.0 m and four 439 
amplitudes of 0 (smooth track), 0.1 mm, 0.3 mm and 0.5 mm are considered. The vehicle 440 
travels at a speed of 72 km/h. With the same irregularity wavelength, the rail 441 
displacement under the contact point increases significantly as the amplitude of 442 
irregularity increases. Comparatively speaking, with the same irregularity amplitude, 443 
when the wavelength changes from 0.5 m to 1.0 m, the periodic change of track 444 
displacement is obvious, but in terms of the dynamic rail displacement amplitude, the 445 
change is insignificant. In addition, one can also find that when the track irregularity is 446 
not considered (i.e., amplitude is 0), the rail displacement experiences small periodic 447 
variations due to the discrete rail pads. 448 
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 449 
Fig. 7. Rail displacement at contact point of wheel 1. 450 

(V=72 km/h, wavelength=0.5 m, amplitude=0, 0.1, 0.3, 0.5 mm) 451 
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 452 
Fig. 8. Rail displacement at contact point of wheel 1. 453 

 (V=72 km/h, wavelength=1.0 m, amplitude=0, 0.1, 0.3, 0.5 mm) 454 
 455 

   Figs. 9-10 show the time history of the wheel-rail contact force developed at wheel 1. 456 
Clearly, the amplitude of track irregularity is the key factor causing the amplification of 457 
the wheel-rail contact force. By comparing Fig. 9 with Fig. 10, it is observed that as the 458 
irregularity wavelength becomes shorter, the periodic change of the wheel-rail contact 459 
force is prominent, and its magnitude increases significantly. It may be concluded that 460 
the irregularity wavelength also has a significant effect on the wheel-rail contact force. It 461 
is interesting to note that with the aggravation of rail irregularity, i.e. shorter wavelength 462 
and/or larger amplitude, the periodic oscillation of wheel-rail contact force appears to 463 
vanish, which can be attributed to the relatively larger "roughness excitation".43-44  464 
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 465 
Fig. 9. Wheel-rail contact force at contact point of wheel 1.  466 

(V=72 km/h, wavelength=0.5 m, amplitude=0, 0.1, 0.3, 0.5 mm) 467 
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 468 
Fig. 10. Wheel-rail contact force at contact point of wheel 1. 469 

(V=72 km/h, wavelength=1.0 m, amplitude=0, 0.1, 0.3, 0.5 mm) 470 
 471 

   To study the effect of vehicle speed on the coupled system, the peak displacement 472 
and acceleration responses of the track are investigated. Five different speeds, namely 473 
160 km/h, 200 km/h, 250 km/h, 300 km/h and 350 km/h, are considered. In the 474 
following analysis, the wavelength of the track irregularity is kept at 1.0 m, but three 475 
different amplitudes of 0.0 mm, 0.1 mm and 0.3 mm are considered. 476 
   Fig.11 presents the effect of vehicle speed on the peak displacement and acceleration 477 
of the rail. When the vehicle speed increases from 160 km/h to 350 km/h, the changes in 478 
the rail displacement and acceleration are expectedly insignificant for the case of a 479 
smooth railhead. With the increase of the irregularity amplitude, the peak displacement 480 
and acceleration of the rail increase substantially. When the degree of track irregularity is 481 
large, the effect of vehicle speed on rail acceleration is stronger than that on displacement. 482 
Moreover, the increase is noted to be not monotonous with the increase in speed. For 483 
example, the peak acceleration of the rail reaches its maximum value of 1120 m/s2 at a 484 
speed of 250 km/h. This may be due to the fact that the excitation frequency is close to 485 
the natural frequency of the train-track system at a speed of 250 km/h, leading to a much 486 
amplified acceleration response. Figs.12 and 13 also present the peak displacement and 487 
peak acceleration of the track slab and concrete base, respectively. It can be seen from 488 
Fig. 13 that the displacement and acceleration of the concrete base also do not increase 489 
monotonously with the vehicle speed. The peak displacement and acceleration are only 490 
-0.63 mm and 37 m/s2, respectively. Compared to the rail beam, the displacement and 491 
acceleration responses of the track slab and concrete base are much smaller. This is 492 
expected in view of the damping effects of each sub-structure of the coupled system. 493 
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Fig. 11. Peak displacement and acceleration of rail beam. 498 
 (wavelength=1.0 m, amplitude=0, 0.1, 0.3 mm)  499 
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(b) Acceleration 505 

Fig. 12. Peak displacement and acceleration of track slab. 506 
(wavelength=1.0 m, amplitude=0, 0.1, 0.3 mm) 507 
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Fig. 13. Peak displacement and acceleration of concrete base. 512 
(wavelength=1.0 m, amplitude=0, 0.1, 0.3 mm) 513 

   Fig.14 presents the variation of the peak wheel-rail contact force of wheel 1 with 514 
respect to the vehicle speed. When the track is perfectly smooth, the maximum wheel-rail 515 
contact force is almost unaffected by the vehicle speed. The severity of the track 516 
irregularity has a significant amplification effect on the contact force. As the vehicle 517 
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speed increases, this amplification effect does not increase monotonically with the 518 
vehicle speed. When the speed is 250 km/h, the wheel-rail contact force reaches the 519 
maximum value, which is about 1.7 times the half static axle weight. To explain this 520 
phenomenon, we further compared the contact forces of the four wheel-sets during a 521 
period of time under steady-state vibration, as shown in Fig. 15. Obviously, due to the 522 
presence of the track irregularity, two contact forces developed at the two wheel-sets 523 
under the same bogie, i.e. wheels 1 and 2, present an alternate oscillation. More 524 
specifically, when the contact force at wheel 1 is the largest, the contact force at wheel 2 525 
reaches its minimum value; on the contrary, when the contact force at wheel 1 is the 526 
smallest, the contact force at wheel 2 reaches its maximum value. The same applies to the 527 
contact forces developed at wheels 3 and 4. 528 
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Fig. 14. Peak contact force of wheel 1. 530 

(wavelength=1.0 m, amplitude=0, 0.1, 0.3 mm) 531 
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Fig. 15. Wheel-rail contact forces of wheels 1, 2, 3, 4 533 

(V=250 km/h, wavelength=1.0 m, amplitude= 0.3 mm) 534 
 535 

   Finally, the effect of the vehicle speed on the vertical acceleration of the coach is 536 
investigated for the case of track irregularity wavelength of 1.0 m. As can be seen from 537 
Fig.16, the amplitude of the irregularity has almost no effect on the peak vertical 538 
acceleration of the coach. In addition, as the speed of the vehicle increases, the vertical 539 
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acceleration response of the coach is very small, and the maximum acceleration is less 540 
than 0.09 m/s2. It may be concluded that the primary and secondary suspension systems 541 
of the CRH3 have a good damping effect on the vibration of the coach thus leading to a 542 
high comfort level for the passengers. 543 
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Fig. 16. Peak coach acceleration. 545 

(wavelength=1.0 m, amplitude=0, 0.1, 0.3 mm) 546 
 547 

8. Conclusion 548 
A new three-layer Timoshenko beam model with discrete rail pads is proposed for the 549 
railway slab track. A computational scheme based on the MEM is proposed for the study 550 
of an infinitely long slab track with viscously damped elastic supports. The dynamic 551 
response of the high-speed train-slab track system is investigated, in which the train is 552 
modelled as a moving 10-DOF multi-body and the coupling between the vehicle and 553 
track is established by considering the nonlinear contact between the wheel and the rail. 554 
The proposed method is shown to be an effective and accurate approach for the analysis 555 
of high-speed train-slab track systems. 556 
   A realistic modelling technique for discrete rail pads is presented. Studies considering 557 
the evenly spaced discrete rail pads are carried out to investigate the dynamic responses 558 
of the system. Results show that the periodic static stiffness variation arising from the 559 
discretely supported pads will generate an excitation on the moving vehicle at the pad 560 
passing frequency and thus cause dynamic vibrations even when the railhead is perfectly 561 
smooth. It is thus important to consider the effects of discrete rail pads in the slab track 562 
model. 563 
   The influence of short harmonic track irregularities on the dynamic response of the 564 
system is investigated. The results show that the irregularity amplitude has a significant 565 
effect on the dynamic wheel-rail contact force. For the effect of irregularity wavelength, 566 
the situation is more complicated, as it depends on the static stiffness changes caused by 567 
the discrete rail pads, the frequency of excitations by irregularity, the vehicle speed, and 568 
the natural frequencies of the coupled vehicle-track system. 569 
   The effect of different vehicle speeds on the peak displacement, acceleration, and 570 
wheel-rail contact force of the vehicle-track system is also examined. If the railhead is 571 
smooth, the vehicle speed has a negligible effect on the dynamic response of the system. 572 
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However, the vehicle speed substantially amplifies the dynamic response of the system, 573 
especially the wheel-rail contact force and rail acceleration, in cases of short harmonic 574 
track irregularities. Moreover, this effect does not increase monotonically with the 575 
vehicle speed. In addition, the maximum coach body acceleration is found to be small for 576 
all vehicle speeds considered in the study. 577 
   Although the MEM eliminates the need to track the wheel-rail contact points and 578 
assigns contact forces to element nodes that are superior to the conventional FEM, the 579 
motion of discrete rail pads however introduces some similar complications encountered 580 
by the FEM. To further improve the accuracy and reduce the spurious wheel-rail force 581 
oscillations in the numerical results, a refined mesh of the slab track may be needed. 582 
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