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Abstract. We introduce a notion of total acyclicity associated to a subcat-

egory of an abelian category and consider the Gorenstein objects they define.
These Gorenstein objects form a Frobenius category, whose induced stable

category is equivalent to the homotopy category of totally acyclic complexes.
Applied to the flat–cotorsion theory over a coherent ring, this provides a new

description of the category of cotorsion Gorenstein flat modules; one that puts

it on equal footing with the category of Gorenstein projective modules.

Introduction

Let A be an associative ring. It is classic that the stable category of Gorenstein
projective A-modules is triangulated equivalent to the homotopy category of totally
acyclic complexes of projective A-modules. Under extra assumptions on A this
equivalence can be found already in Buchweitz’s 1986 manuscript [6]. In this paper
we focus on a corresponding equivalence for Gorenstein flat modules. It could be
pieced together from results in the literature, but we develop a framework that
provides a direct proof while also exposing how closely the homotopical behavior of
cotorsion Gorenstein flat modules parallels that of Gorenstein projective modules.

The category of Gorenstein flat A-modules is rarely Frobenius, indeed we prove in
Theorem 4.5 that it only happens when every module is cotorsion. This is evidence
that one should restrict attention to the category of cotorsion Gorenstein flat A-
modules; in fact, it is already known from work of Gillespie [15] that this category
is Frobenius if A is coherent. The associated stable category is equivalent to the
homotopy category of F-totally acyclic complexes of flat-cotorsion A-modules; this
follows from a theorem by Estrada and Gillespie [12] combined with recent work
of Bazzoni, Cortés Izurdiaga, and Estrada [3]. The proof in [12] involves model
structures on categories of complexes of projective modules, and one goal of this
paper—with a view towards extending the result to non-affine schemes [7]—is to
give a proof that avoids projective modules; we achieve this with Corollary 5.3.
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The pure derived category of flat A-modules is the Verdier quotient of the ho-
motopy category of complexes of flat A-modules by the subcategory of pure-acyclic
complexes; its subcategory of F-totally acyclic complexes was studied by Murfet
and Salarian [21]. We show in Theorem 5.6 that this subcategory is equivalent to
the homotopy category of F-totally acyclic complexes of flat-cotorsion A-modules,
and thus to the stable category of cotorsion Gorenstein flat modules. Combining
this with results of Christensen and Kato [8] and Estrada and Gillespie [12], one can
derive that under extra assumptions on A, made explicit in Corollary 5.9, the stable
category of Gorenstein projective A-modules is equivalent to the stable category of
cotorsion Gorenstein flat A-modules.

Underpinning the results we have highlighted above are a framework, developed
in Sections 1–3, and two results, Theorems 4.4 and 5.2, that show—as the seman-
tics might suggest—that the cotorsion Gorenstein flat modules are, indeed, the
Gorenstein modules naturally attached to the flat–cotorsion theory.

∗ ∗ ∗

Let A be an abelian category and U a subcategory of A. In 1.1 we define a right U-
totally acyclic complex to be an acyclic homA(−,U∩U⊥)-exact complex of objects
from U with cycle objects in U⊥. Left U-total acyclicity is defined dually, and in the
case of a self-orthogonal subcategory, left and right total acyclicity is the same; see
Proposition 1.5. These definitions recover the standard notions of totally acyclic
complexes of projective or injective objects; see Example 1.7. In the context of a
cotorsion pair (U,V) the natural complexes to consider are right U-totally acyclic
complexes, left V-totally acyclic complexes, and (U ∩ V)-totally acyclic complexes
for the self-orthogonal category U ∩ V.

In Section 2 we define left and right U-Gorenstein objects to be cycles in left
and right U-totally acyclic complexes. In the context of a cotorsion pair (U,V),
we show that the categories of right U-Gorenstein objects and left V-Gorenstein
objects are Frobenius categories whose projective-injective objects are those in U∩V;
see Theorems 2.11 and 2.12. In Section 3 the stable categories induced by these
Frobenius categories are shown to be equivalent to the corresponding homotopy
categories of totally acyclic complexes. In particular, Corollary 3.9 recovers the
classic results for Gorenstein projective objects and Gorenstein injective objects.

The literature contains a variety of generalized notions of totally acyclic com-
plexes and Gorenstein objects; see for example Sather-Wagstaff, Sharif, and White
[23]. We make detailed comparisons in Remark 2.3; at this point it suffices to
say that our notion of Gorensteinness differs from the existing generalizations
by exhibiting periodicity: For a self-orthogonal category W, the category of (W-
Gorenstein)-Gorenstein objects is simply W; see Proposition 2.8.

1. Total acyclicity and other terminology

Throughout this paper, A denotes an abelian category; we write homA for the hom-
sets and the induced functor from A to abelian groups. Tacitly, subcategories of A
are assumed to be full and closed under isomorphisms. A subcategory of A is called
additively closed if it is additive and closed under direct summands.

A complex of objects from A is referred to as an A-complex. We use homological
notation for complexes, so for a complex T the object in degree i is denoted Ti and
Zi(T ) denotes the cycle subobject in degree i.
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Let U and V be subcategories of A. The right orthogonal of U is the subcategory

U⊥ = {N ∈ A | Ext1A(U,N) = 0 for all U ∈ U} ;

the left orthogonal of V is the subcategory

⊥V = {M ∈ A | Ext1A(M,V ) = 0 for all V ∈ V} .

In case U⊥ = V and ⊥V = U hold, the pair (U,V) is referred to as a cotorsion pair.
In this section and the next, we develop notions of total acyclicity, and corre-

sponding notions of Gorenstein objects, associated to any subcategory of A. Our
primary applications are in the context of a cotorsion pair.

1.1 Definition. Let U and V be subcategories of A.

(r) An A-complex T is called right U-totally acyclic if the following hold:

(1) T is acyclic.

(2) For each i ∈ Z the object Ti belongs to U.

(3) For each i ∈ Z the object Zi(T ) belongs to U⊥.

(4) For each W ∈ U ∩ U⊥ the complex homA(T,W ) is acyclic.

(l) An A-complex T is called left V-totally acyclic if the following hold:

(1) T is acyclic.

(2) For each i ∈ Z the object Ti belongs to V.

(3) For each i ∈ Z the object Zi(T ) belongs to ⊥V.

(4) For each W ∈ ⊥V ∩ V the complex homA(W,T ) is acyclic.

1.2 Example. Let U and V be subcategories of A. For every W ∈ U ∩ U⊥ a
complex of the form 0 −→ W

=−−→ W −→ 0 is right U-totally acyclic; similarly, for
every W ∈ ⊥V ∩ V such a complex is left V-totally acyclic.

1.3 Proposition. Let U and V be subcategories of A.

(r) An A-complex T is right U-totally acyclic if and only if the following hold:

(1) T is acyclic.

(2) For each i ∈ Z the object Ti belongs to U ∩ U⊥.

(3) For each U ∈ U the complex homA(U, T ) is acyclic.

(4) For each W ∈ U ∩ U⊥ the complex homA(T,W ) is acyclic.

(l) An A-complex T is left V-totally acyclic if and only if the following hold:

(1) T is acyclic.

(2) For each i ∈ Z the object Ti belongs to ⊥V ∩ V.

(3) For each V ∈ V the complex homA(T, V ) is acyclic.

(4) For each W ∈ ⊥V ∩ V the complex homA(W,T ) is acyclic.

Proof. (r): A complex T that satisfies Definition 1.1(r) trivially satisfies condi-
tions (1), (3), and (4), while (2) follows from 1.1(r.2) and 1.1(r.3) as U⊥ is closed
under extensions. Conversely, a complex T that satisfies conditions (1)–(4) in the
statement trivially satisfies conditions (1), (2), and (4) in Definition 1.1(r). More-
over it follows from (2) and (3) that also condition 1.1(r.3) is satisfied.

The proof of (l) is similar. �
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1.4 Example. A right A-totally acyclic complex is a contractible complex of in-
jective objects, and a left A-totally acyclic complex is a contractible complex of
projective objects.

In this paper we call a subcategory W of A self-orthogonal if Ext1A(W,W ′) = 0
holds for all W and W ′ in W.

1.5 Proposition. Let W be a subcategory of A. The following conditions are
equivalent

(i) W is self-orthogonal.

(ii) Every object in W belongs to W⊥.

(iii) Every object in W belongs to ⊥W.

(iv) One has W ∩W⊥ = W = ⊥W ∩W.

Moreover, if W satisfies these conditions, then an A-complex is right W-totally
acyclic if and only if it is left W-totally acyclic.

Proof. Evidently, (i) implies (iv), and (iv) implies both (ii) and (iii). Conditions
(ii) and (iii) each precisely mean that Ext1A(W,W ′) = 0 holds for all W and W ′ in
W, so either implies (i).

Now assume that W satisfies (i)–(iv). Parts (1) are the same in Proposi-
tion 1.3(r) and 1.3(l), and so are parts (2) per the assumption W∩W⊥ = ⊥W∩W.
Part (3) in 1.3(r) coincides with part (4) in 1.3(l) by the assumption W = ⊥W∩W,
and 1.3(r.4) coincides with 1.3(l.3) per the assumption W ∩W⊥ = W. �

1.6 Definition. For a self-orthogonal subcategory W of A, a right, equivalently
left, W-totally acyclic complex is simply called a W-totally acyclic complex.

1.7 Example. The subcategory Prj(A) of projective objects in A is self-orthogonal,
and a Prj(A)-totally acyclic complex is called a totally acyclic complex of projective
objects. In the special case where A is the category Mod(A) of modules over a
ring A these were introduced by Auslander and Bridger [1]; see also Enochs and
Jenda [10]. The terminology is due to Avramov and Martsinkovsky [2].

Dually, Inj(A) is the subcategory of injective objects in A, and an Inj(A)-totally
acyclic complex is called a totally acyclic complex of injective objects; see Krause
[19]. The case A = Mod(A) was first considered in [10].

1.8 Remark. For a cotorsion pair (U,V) in A, the subcategory U ∩ V is self-
orthogonal. It follows from Proposition 1.3 that every right U-totally acyclic com-
plex and every left V-totally acyclic complex is (U ∩ V)-totally acyclic.

2. Gorenstein objects

In line with standard terminology, cycles in totally acyclic complexes are called
Gorenstein objects.

2.1 Definition. Let U and V be subcategories of A.

(r) An object M in A is called right U-Gorenstein if there is a right U-totally
acyclic complex T with Z0(T ) = M . Denote by RGorU(A) the full subcategory
of right U-Gorenstein objects in A.
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(l) An object M in A is called left V-Gorenstein if there is a left V-totally acyclic
complex T with Z0(T ) = M . Denote by LGorV(A) the full subcategory of left
V-Gorenstein objects in A.

For a self-orthogonal subcategory W one has RGorW(A) = LGorW(A), see Proposi-
tion 1.5; this category is denoted GorW(A), and its objects are called W-Gorenstein.

Notice that if U is an additive subcategory, then so is RGorU(A); similarly for V
and LGorV(A).

2.2 Example. Let U and V be subcategories of A. Objects in U ∩ U⊥ are right
U-Gorenstein and objects in ⊥V ∩ V are left V-Gorenstein; see Example 1.2.

2.3 Remark. We compare our definitions of total acyclicity and Gorenstein objects
with others that already appear in the literature.

(1) For an additive category W, Iyengar and Krause [17] define a “totally acyclic
complex over W.” For additive subcategories U and V of an abelian cate-
gory, a right U-totally acyclic complex is totally acyclic over U∩U⊥ in the
sense of [17, def. 5.2], and a left V-totally acyclic complex is totally acyclic
over ⊥V∩V. In particular, for a self-orthogonal additive subcategory W of
an abelian category, a W-totally acyclic complex is the same as an acyclic
complex that is totally acyclic over W in the sense of [17, def. 5.2].

(2) For an additive subcategory W of an abelian category, Sather-Wagstaff,
Sharif, and White [23] define a “totally W-acyclic” complex. A right or left
W-totally acyclic complex is totally W-acyclic in the sense of [23, def. 4.1];
the converse holds if W is self-orthogonal. For a self-orthogonal additively
closed subcategory W of a module category, Geng and Ding [13] study the
associated Gorenstein objects.

(3) For subcategories U and V of Mod(A) with Prj(A) ⊆ U and Inj(A) ⊆ V,
Pan and Cai [22] define “(U,V)-Gorenstein projective/injective” modules.
In this setting, a right U-Gorenstein module is (U,U∩U⊥)-Gorenstein pro-
jective in the sense of [22, def. 2.1], and a left V-Gorenstein module is
(⊥V ∩ V,V)-Gorenstein injective in the sense of [22, def. 2.2].

(4) For a complete hereditary cotorsion pair (U,V) in an abelian category,
Yang and Chen [26] define a “complete U-resolution.” Every right U-totally
acyclic complex is a complete U-resolution in the sense of [26, def. 3.1].

(5) For a pair of subcategories (U,V) in an abelian category, Becerril, Mendoza,
and Santiago [4] define a “left complete (U,V)-resolution.” If (U,V) is a
cotorsion pair, then a right U-totally acyclic complex is a left complete
(U,U ∩ V)-resolution in the sense of [4, def. 3.2].

The key difference between Definition 1.1 and those cited above is that 1.1—
motivated by 4.1—places restrictions on the cycle objects in a totally acyclic com-
plex; the significance of this becomes apparent in Proposition 2.8.

2.4 Remark. Given a cotorsion pair (U,V) in A, it follows from Remark 1.8 that
there are containments

RGorU(A) ⊆ GorU∩V(A) ⊇ LGorV(A) .

2.5 Example. A right A-Gorenstein object is injective, and a left A-Gorenstein
object is projective; see Example 1.4.
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The subcategory Prj(A) is self-orthogonal, and a Prj(A)-Gorenstein object is
called Gorenstein projective; see [1, 10] for the special case A = Mod(A). Similarly,
an Inj(A)-Gorenstein object is called Gorenstein injective; see [19] and see [10] for
the case A = Mod(A).

The next three results, especially Proposition 2.8, are motivated in part by [23,
Theorem A]. We consider what happens when one iterates the process of con-
structing Gorenstein objects. Starting from a self-orthogonal additively closed sub-
category, our construction iterated twice returns the original subcategory. The
construction in [23] is, in contrast, “idempotent.”

2.6 Lemma. Let U and V be additively closed subcategories of A. One has
⊥RGorU(A) ∩ RGorU(A) = U ∩ U⊥ = RGorU(A) ∩ RGorU(A)⊥ and

⊥LGorV(A) ∩ LGorV(A) = ⊥V ∩ V = LGorV(A) ∩ LGorV(A)⊥ .

In particular, RGorU(A) is self-orthogonal if and only if RGorU(A) = U ∩ U⊥ holds,
and LGorV(A) is self-orthogonal if and only if LGorV(A) = ⊥V ∩ V holds.

For a self-orthogonal category W one has

(2.6.1) ⊥GorW(A) ∩ GorW(A) = W = GorW(A) ∩ GorW(A)⊥ .

Proof. Set W = U∩U⊥ and notice that W is self-orthogonal and additively closed.
By Example 2.2 objects in W are right U-Gorenstein, and by Proposition 1.3 the
subcategory W is contained in both ⊥RGorU(A) and RGorU(A)⊥. Let G be a right
U-Gorenstein object. By Proposition 1.3 there are exact sequences

η′ = 0→ G′ → T ′ → G→ 0 and η′′ = 0→ G→ T ′′ → G′′ → 0

where G′ and G′′ are right U-Gorenstein, while T ′ and T ′′ belong to W. If G belongs
to ⊥RGorU(A), then η′ splits, so G is a summand of T ′ and hence in W. Similarly,
if G is in RGorU(A)⊥, then η′′ splits, and it follows that G is in W. This proves the
first set of equalities, and the ones pertaining to LGorV(A) are proved similarly.

The remaining assertions are immediate in view of Proposition 1.5. �

2.7 Remark. Let U be an additively closed subcategory of A. It follows from
Example 2.2 and Lemma 2.6 that objects in U ∩ U⊥ are both right U-Gorenstein
and right RGorU(A)-Gorenstein. On the other hand, a right RGorU(A)-Gorenstein
object belongs by Definition 1.1(r.3) to RGorU(A)⊥, so any object that is both right
U- and right RGorU(A)-Gorenstein belongs to U ∩ U⊥. In symbols,

RGorU(A) ∩ RGorRGorU(A)(A) = U ∩ U⊥ .

For an additively closed subcategory V, a similar argument yields

LGorV(A) ∩ LGorLGorV(A)(A) = ⊥V ∩ V .

2.8 Proposition. Let W be a self-orthogonal additively closed subcategory of A.
A right or left GorW(A)-totally acyclic complex is a contractible complex of objects
from W. In particular, one has

(2.8.1) LGorGorW(A)(A) = W = RGorGorW(A)(A) .

Moreover, the following hold

• If (GorW(A),GorW(A)⊥) is a cotorsion pair, then one has

(2.8.2) LGorGorW(A)⊥(A) = GorW(A) .
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• If (⊥GorW(A),GorW(A)) is a cotorsion pair, then one has

(2.8.3) RGor⊥GorW(A)(A) = GorW(A) .

Proof. A right GorW(A)-totally acyclic complex T is by Proposition 1.3 and (2.6.1)
an acyclic complex of objects from W, and by Definition 1.1 the cycles Zi(T ) belong
to GorW(A)⊥. As W is contained in GorW(A), it follows from Proposition 1.3(r.3)
that the cycles Zi(T ) are contained in W⊥. It now follows from Definition 1.1 that
T is W-totally acyclic, whence the cycles Zi(T ) belong to GorW(A) and hence to W,
see (2.6.1). Thus T is an acyclic complex of objects from W with cycles in W ⊂W⊥

and, therefore, contractible. A parallel argument shows that a left GorW(A)-totally
acyclic complex is contractible.

Assume that (GorW(A),GorW(A)⊥) is a cotorsion pair; by (2.6.1) and Remark 2.4
one has LGorGorW(A)⊥(A) ⊆ GorW(A). To prove the opposite containment, let T be
a W-totally acyclic complex. By Definition 1.1 it is an acyclic complex of objects
from W ⊆ GorW(A)⊥, see (2.6.1), and homA(W,T ) is acyclic for every object W
in GorW(A) ∩ GorW(A)⊥. Moreover, the cycle objects Zi(T ) belong to GorW(A) by
Definition 2.1, so T is per Definition 1.1 a left GorW(A)⊥-totally acyclic complex.

A parallel argument proves the last assertion. �

2.9 Example. Let A be a ring. Šaroch and Štov́ıček [24, thm. 4.6] show that the
subcategory GorInj(A) of Gorenstein injective A-modules is the right half of a cotor-
sion pair, so by Proposition 2.8 one has LGorGorInj(A)(A) = Inj(A) = RGorGorInj(A)(A)
and RGor⊥GorInj(A)(A) = GorInj(A).

2.10 Lemma. Let U and V be additive subcategories of A.

(r) The subcategory RGorU(A) is closed under extensions.

(l) The subcategory LGorV(A) is closed under extensions.

Proof. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence where M ′ and M ′′

are right U-Gorenstein objects. Let T ′ and T ′′ be right U-totally acyclic complexes
with Z0(T ′) = M ′ and Z0(T ′′) = M ′′. Per Remark 2.3(1) it follows from [23,
prop. 4.4] that there exists an A-complex T that satisfies conditions (1), (2), and
(4) in Definition 1.1(r), has Z0(T ) = M , and fits in an exact sequence

0 −→ T ′ −→ T −→ T ′′ −→ 0 .

The functor Z(−) is left exact, and since T ′ is acyclic a standard application of the
Snake Lemma yields an exact sequence

0 −→ Zi(T
′) −→ Zi(T ) −→ Zi(T

′′) −→ 0

for every i ∈ Z. As U⊥ is closed under extensions, it follows that Zi(T ) belongs to
U⊥ for each i and thus T is right U-totally acyclic by Definition 1.1. This proves
(r) and a similar argument proves (l). �

2.11 Theorem. Let U be an additively closed subcategory of A. The category
RGorU(A) is Frobenius and U∩U⊥ is the subcategory of projective-injective objects.

Proof. Set W = U ∩ U⊥ and notice that W is additively closed. It follows from
Lemma 2.10 that RGorU(A) is an exact category. It is immediate from Example 2.2
and Proposition 1.3 that objects in W are both projective and injective in RGorU(A).
It is now immediate from Definition 2.1 that RGorU(A) has enough projectives and
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injectives. It remains to show that every projective and every injective object in
RGorU(A) belongs to W.

Let P be a projective object in RGorU(A). By Definition 2.1 and Proposition 1.3
there is an exact sequence 0 → P ′ → W → P → 0 in A with P ′ ∈ RGorU(A) and
W ∈ W. As all three objects belong to RGorU(A) it follows by projectivity of P
that the sequence splits, so P is a summand of W , and thus in W. A dual argument
shows that every injective object in RGorU(A) belongs to W. Thus RGorU(A) is a
Frobenius category and W is the subcategory of projective-injective objects. �

2.12 Theorem. Let V be an additively closed subcategory of A. The category
LGorV(A) is Frobenius and ⊥V∩V is the subcategory of projective-injective objects.

Proof. Parallel to the proof of Theorem 2.11. �

3. An equivalence of triangulated categories

Generalizing the classic result, we prove here that the stable category of right/left
Gorenstein objects is equivalent to the homotopy category of right/left totally
acyclic complexes.

3.1 Lemma. Let U be a subcategory of A; let T and T ′ be right U-totally acyclic
complexes. Every morphism ϕ : Z0(T )→ Z0(T ′) in A lifts to a morphism φ : T → T ′

of A-complexes.

Proof. Let a morphism ϕ : Z0(T )→ Z0(T ′) be given; to see that it lifts to a mor-
phism φ : T → T ′ of complexes it is sufficient to show that ϕ lifts to morphisms
φ1 : T1 → T ′1 and φ0 : T0 → T ′0. As T1 is in U and T ′ is right U-totally acyclic, one
obtains per Proposition 1.3(r.3) an exact sequence

0 −→ homA(T1,Z1(T ′)) −→ homA(T1, T
′
1) −→ homA(T1,Z0(T ′)) −→ 0 .

In particular, there is a φ1 ∈ homA(T1, T
′
1) with ∂T

′

1 φ1 = ϕ∂T1 . As T ′0 is in U ∩ U⊥

and T is right U-totally acyclic, it follows that the sequence

0 −→ homA(Z−1(T ), T ′0) −→ homA(T0, T
′
0) −→ homA(Z0(T ), T ′0) −→ 0

is exact, whence there exists a φ0 ∈ homA(T0, T
′
0) that lifts ϕ. �

3.2 Lemma. Let U be a subcategory of A and φ : T → T ′ be a morphism of right
U-totally acyclic complexes. If the cycle subobject Z0(T ) has a decomposition

Z0(T ) = Z ⊕ Z̃ with Z ⊆ kerφ0 and Z̃ ∈ U, then φ is null-homotopic.

Proof. The goal is to construct a family of morphisms σi : Ti → T ′i+1 such that

φi = ∂T
′

i+1σi + σi−1∂
T
i holds for all i ∈ Z. Set ϕ̃ = φ0|Z̃ . By Definition 1.1 each

object Zi(T
′) is in U⊥. It follows that there is an exact sequence,

0 −→ homA(Z̃,Z1(T ′)) −→ homA(Z̃, T ′1) −→ homA(Z̃,Z0(T ′)) −→ 0 .

In particular, there is a σ̃ ∈ homA(Z̃, T ′1) with ∂T
′

1 σ̃ = ϕ̃. Set σ̃0 = 0 ⊕ σ̃; by
exactness of the sequence

0 −→ homA(Z−1(T ), T ′1) −→ homA(T0, T
′
1) −→ homA(Z0(T ), T ′1) −→ 0 ,

σ̃0 lifts to a morphism σ0 : T0 → T ′1.
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We proceed by induction to construct the morphisms σi for i ≥ 1. The image of
the morphism φ1 − σ0∂T1 is in Z1(T ′) as one has

∂T
′

1 (φ1 − σ0∂T1 ) = φ0∂
T
1 − ∂T

′

1 σ0∂
T
1

= (0⊕ ϕ̃)∂T1 − ∂T
′

1 (0⊕ σ̃)∂T1

= (0⊕ (ϕ̃− ∂T
′

1 σ̃))∂T1

= 0 .

As T1 is in U and Z2(T ′) is in U⊥ per Definition 1.1, there is an exact sequence

0 −→ homA(T1,Z2(T ′)) −→ homA(T1, T
′
2) −→ homA(T1,Z1(T ′)) −→ 0 .

In particular, there is a σ1 ∈ homA(T1, T
′
2) with ∂T

′

2 σ1 = φ1 − σ0∂T1 . Now let i ≥ 1
and assume that σj has been constructed for 0 ≤ j ≤ i. The standard computation

∂T
′

i+1(φi+1 − σi∂Ti+1) = (φi − ∂T
′

i+1σi)∂
T
i+1

= (σi−1∂
T
i )∂Ti+1

= 0

shows that the image of φi+1 − σi∂Ti+1 is in Zi+1(T ′). As Ti+1 is in U and Zi+2(T ′)

is in U⊥, the existence of the desired σi+1 follows as for i = 0.
Finally, we prove the existence of the morphisms σi for i ≤ −1 by descending

induction. The morphism φ0 − ∂T
′

1 σ0 : T0 → T ′0 restricts to 0 on Z0(T ); indeed one
has

(φ0 − ∂T
′

1 σ0)|Z0(T ) = 0⊕ ϕ̃− ∂T
′

1 (0⊕ σ̃) = 0⊕ (ϕ̃− ∂T
′

1 σ̃) = 0 .

Thus it induces a morphism ζ−1 from T0/Z0(T ) ∼= Z−1(T ) to T ′0 with ζ−1∂
T
0 =

φ0 − ∂T
′

1 σ0. As T ′0 is in U ∩ U⊥ it follows that the sequence

0 −→ homA(Z−2(T ), T ′0) −→ homA(T−1, T
′
0) −→ homA(Z−1(T ), T ′0) −→ 0

is exact. In particular, there is a σ−1 ∈ homA(T−1, T
′
0) with σ−1|Z−1(T ) = ζ−1 and,

therefore, σ−1∂
T
0 = φ0 − ∂T

′

1 σ0. Now let i ≤ −1 and assume that σj has been
constructed for 0 ≥ j ≥ i. The standard computation

(φi − ∂T
′

i+1σi)∂
T
i+1 = ∂T

′

i+1(φi+1 − σi∂Ti+1) = ∂T
′

i+1(∂T
′

i+2σi+1) = 0

shows that the morphism φi − ∂T
′

i+1σi restricts to 0 on Zi(T ). It follows that it

induces a morphism ζi−1 on Ti/Zi(T ) ∼= Zi−1(T ) with ζi−1∂
T
i = φi− ∂T

′

i+1σi. Since

T ′i is in U ∩ U⊥, it follows as for i = 0 that the desired σi−1 exists. �

3.3 Proposition. Let U be a subcategory of A. Let T and T ′ be right U-totally
acyclic complexes and ϕ : Z0(T )→ Z0(T ′) be a morphism in A.

(a) If φ : T → T ′ and ψ : T → T ′ are morphisms that lift ϕ, then φ − ψ is null-
homotopic.

(b) If ϕ is an isomorphism and φ : T → T ′ is a morphism that lifts ϕ, then φ is a
homotopy equivalence.

Proof. (a): Immediate from Lemma 3.2 as (φ− ψ)|Z0(T ) = ϕ− ϕ = 0.

(b): Let φ′ : T ′ → T be a lift of ϕ−1; see Lemma 3.1. The restriction of 1T −φ′φ
to Z0(T ) is 0, so it follows from part (a) that 1T −φ′φ is null-homotopic. Similarly,

1T
′ − φφ′ is null-homotopic; that is, φ is a homotopy equivalence. �
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3.4 Definition. Let U and V be subcategories of A. Denote by KR
U-tac(U∩U⊥) and

KL
V-tac(

⊥V ∩ V) the homotopy categories of right U-totally acyclic complexes and
left V-totally acyclic complexes.

The subcategory U∩U⊥ is self-orthogonal, so the categories KR
(U∩U⊥)-tac(U∩U⊥)

and KL
(U∩U⊥)-tac(U∩U⊥) coincide, see Proposition 1.5, and are denoted Ktac(U∩U⊥).

The self-orthogonal subcategory ⊥V ∩ V similarly gives a category Ktac(
⊥V ∩ V).

For a cotorsion pair (U,V) all of these homotopy categories are Ktac(U ∩ V).

If U is an additive subcategory, then the homotopy category KR
U-tac(U ∩ U⊥) is

triangulated; similarly for V and KL
V-tac(

⊥V ∩ V).

3.5 Lemma. Let U be an additively closed subcategory of A. Let T be a right U-
totally acyclic complex; if Zi(T ) belongs to U for some i ∈ Z, then T is contractible.

Proof. Set W = U ∩ U⊥ and notice that W is additively closed. To prove that T
is contractible it is enough to show that Zi := Zi(T ) belongs to W for every i ∈ Z.
There are exact sequences

(∗) 0 −→ Zj+1 −→ Tj+1 −→ Zj −→ 0

with Tj+1 in W and Zj+1, Zj ∈ U⊥; see Definition 1.1 and Proposition 1.3. Without
loss of generality, assume that Z0 is in U and hence in W.

Let j ≥ 0 and assume that Zj is W. The sequence (∗) splits as Zj is in U and
Zj+1 is in U⊥. It follows that Zj+1 is in W, so by induction Zi is in W for all i ≥ 0.

Now let j < 0 and assume that Zj+1 is in W. The sequence (∗) splits as
homA(T,Zj+1) is acyclic by Definition 1.1. It follows that Zj belongs to W, so
by descending induction Zi is in W for all i ≤ 0. �

3.6 Proposition. Let U be an additively closed subcategory of A.

• For every right U-Gorenstein object M fix a right U-totally acyclic complex
T with Z0(T ) = M and set ṪR(M) = T .

• For every morphism ϕ : M →M ′ of right U-Gorenstein objects fix by 3.1 a
lift φ : ṪR(M)→ ṪR(M ′) of ϕ and set ṪR(ϕ) = [φ].

This defines a functor

ṪR : RGorU(A) −→ KR
U-tac(U ∩ U⊥) .

For every morphism ϕ in RGorU(A) that factors through an object in U ∩ U⊥ one

has ṪR(ϕ) = [0]. In particular, ṪR(M) is contractible for every M in U ∩ U⊥.

Proof. Let M be a right U-Gorenstein object. Denote by ιM : ṪR(M)→ ṪR(M)

the fixed lift of 1M ; that is, [ιM ] = ṪR(1M ). As the morphisms 1ṪR(M) and ιM agree

on Z0(ṪR(M)) = M , it follows from Lemma 3.2 that the difference 1ṪR(M) − ιM

is null-homotopic. That is, one has ṪR(1M ) = [1ṪR(M)], which is the identity on

ṪR(M) in KR
U-tac(U ∩ U⊥).

Let M ′
ϕ′−−→ M

ϕ−−→ M ′′ be morphisms of right U-Gorenstein objects. The
restrictions of ṪR(ϕϕ′) and ṪR(ϕ) ṪR(ϕ′) to Z0(ṪR(M ′)) are both ϕϕ′. It now

follows from Lemma 3.2 that the homotopy classes ṪR(ϕϕ′) and ṪR(ϕ) ṪR(ϕ′) are

equal. Thus ṪR is a functor.
For an object M in the additively closed subcategory U ∩ U⊥ it follows from

Lemma 3.5 that ṪR(M) is contractible. Finally, if a morphism ϕ : M ′ →M ′′ in
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RGorU(A) factors as

M ′
ψ′−−→M

ψ−−→M ′′

where M is in U ∩ U⊥, then ṪR(ϕ) = ṪR(ψψ′) = ṪR(ψ) ṪR(ψ′) factors through

the contractible complex ṪR(M), so one has ṪR(ϕ) = [0][0] = [0]. �

3.7 Remark. Let U be an additively closed subcategory of A.
LetM be a right U-Gorenstein object in A and T a right U-totally acyclic complex

with Z0(T ) ∼= M . It follows from Proposition 3.3 that T and ṪR(M) are isomorphic
in KR

U-tac(U ∩ U⊥).
Let ϕ : M →M ′ be a morphism of right U-Gorenstein objects in A. For every

morphism φ : ṪR(M)→ ṪR(M ′) that lifts ϕ, Proposition 3.3 yields [φ] = ṪR(ϕ).

Let U be an additively closed subcategory of A. Recall from Theorem 2.11 that
RGorU(A) is a Frobenius category with U∩U⊥ the subcategory of projective-injective
objects. Denote by StRGorU(A) the associated stable category. It is a triangulated
category, see for example Krause [20, 7.4], and it is immediate from Proposition 3.6

that ṪR induces a triangulated functor TR : StRGorU(A) −→ KR
U-tac(U ∩ U⊥).

3.8 Theorem. Let U be an additively closed subcategory of A. There is a biadjoint
triangulated equivalence

StRGorU(A)
TR

//
KR
U-tac(U ∩ U⊥) .

Z0

oo

Proof. Set W = U ∩ U⊥ and notice that W is additively closed. The functors
TR and Z0 are triangulated. We prove that (TR,Z0) is an adjoint pair; a parallel
argument shows that (Z0,TR) is an adjoint pair. Let M be a right U-Gorenstein
object and T be a right U-totally acyclic complex. The assignment [φ] 7−→ [Z0(φ)]
defines a map

ΦM,T : homKR
U-tac(W)(TR(M), T ) −→ homStRGorU(A)(M,Z0(T )) .

By Lemma 3.1 there is a morphism of A-complexes εT : TR(Z0(T ))→ T . The
assignment [ϕ] 7−→ [εT ] TR(ϕ) defines a map ΨM,T in the opposite direction.

Let [φ] ∈ homKR
U-tac(W)(TR(M), T ) be given. Let φM,T : TR(M)→ TR(Z0(T )) be

a representative of the homotopy class TR(Z0(φ)), cf. Remark 3.7. The composite
εTφM,T agrees with φ on M = Z0(TR(M)), so Lemma 3.2 yields

[φ] = [εTφM,T ] = [εT ] TR(Z0(φ)) = ΨM,TΦM,T ([φ]) .

Now let [ϕ] ∈ homStRGorU(A)(M,Z0(T )) be given. Let ϕM,T : TR(M)→ TR(Z0(T ))
be a lift of ϕ; that is, a representative of the homotopy class TR(ϕ). One now has

ΦM,TΨM,T ([ϕ]) = ΦM,T ([εT ] TR(ϕ))

= ΦM,T ([εTϕM,T ])

= [Z0(εTϕM,T )]

= [Z0(εT ) Z0(ϕM,T )]

= [1Z0(T )ϕ]

= [ϕ] .

Thus ΦM,T is an isomorphism.
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The unit of the adjunction is the identity as one has Z0(TR(−)) = 1StRGorU(A),
and it is straightforward to check that εT defined above determines the counit

ε : TR(Z0(−))→ 1K
R
U-tac(W). To show that ε is an isomorphism, let T ∈ KR

U-tac(W)
be given and consider a lift of the identity Z0(T )→ Z0(TR(Z0(T ))) to a morphism
ιT : T → TR(Z0(T )); see Lemma 3.1. The composite εT ιT agrees with 1T on Z0(T ),
so εT ιT is a homotopy equivalence by Lemma 3.2. Similarly, ιT εT is a homotopy
equivalence. It follows that εT is a homotopy equivalence, i.e. [εT ] is an isomorphism
in KR

U-tac(W). �

3.9 Corollary. Let (U,V) be a cotorsion pair in A. There is a biadjoint triangu-
lated equivalence

StGorU∩V(A)
TR

//
Ktac(U ∩ V) .

Z0

oo

Proof. This is Theorem 3.8 applied to the self-orthogonal additively closed sub-
category U ∩ V and written in the notation from Definitions 2.1 and 3.4. �

3.10 Example. Applied to the cotorsion pair (A, Inj(A)), Corollary 3.9 recovers
the well-known equivalence of the stable category of Gorenstein injective objects
and the homotopy category of totally acyclic complexes of injective objects; see
[19, prop. 7.2]. Applied to the cotorsion pair (Prj(A),A), the corollary yields the
corresponding equivalence StGorPrj(A) ' Ktac(Prj(A)).

3.11 Remark. Let U and V be additively closed subcategories of A. In 3.1–3.8 we
have focused on right U-totally acyclic complexes and right U-Gorenstein objects.
There are, of course, parallel results about left V-totally acyclic complexes and left
V-Gorenstein objects. In particular, there is a biadjoint triangulated equivalence

StLGorV(A)
TL

//
KL
V-tac(

⊥V ∩ V) .
Z0

oo

Notice that applied to a cotorsion pair (U,V) this also yields Corollary 3.9.

4. Gorenstein flat-cotorsion modules

In this section and the next, A is an associative ring. We adopt the convention that
an A-module is a left A-module; right A-modules are considered to be modules over
the opposite ring A◦. The category of A-modules is denoted Mod(A).

Given a cotorsion pair (U,V) in Mod(A) the natural categories of Gorenstein
objects to consider are RGorU(A), LGorV(A), and Gor(U∩V)(A); see Remark 1.8. For
each of the absolute cotorsion pairs (Prj(A),Mod(A)) and (Mod(A), Inj(A)), two of
these categories of Gorenstein objects coincide and the third is trivial. We start this
section by recording the non-trivial fact that the cotorsion pair (Flat(A),Cot(A))
exhibits the same behavior. For brevity we denote the self-orthogonal subcategory
Flat(A) ∩ Cot(A) of flat-cotorsion modules by FlatCot(A).

Bazzoni, Cortés Izurdiaga, and Estrada [3, thm. 4.1] prove:

4.1 Fact. An acyclic complex of cotorsion A-modules has cotorsion cycle modules.

4.2 Proposition. A FlatCot(A)-totally acyclic complex is right Flat(A)-totally acyclic,
and a left Cot(A)-totally acyclic complex is contractible. In particular, one has

RGorFlat(A) = GorFlatCot(A) and LGorCot(A) = FlatCot(A) .
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Proof. In a FlatCot(A)-totally acyclic complex, the cycle modules are cotorsion
by 4.1, whence the complex is right Flat(A)-totally acyclic by Definition 1.1. By
Remark 1.8 every right Flat(A)-totally acyclic complex is FlatCot(A)-totally acyclic,
so the first equality of categories follows from Definition 2.1. In a left Cot(A)-totally
acyclic complex, the cycle modules are flat-cotorsion, again by Definition 1.1 and
4.1, so such a complex is contractible, and the second equality follows. �

We introduce a less symbol-heavy terminology.

4.3 Definition. A FlatCot(A)-totally acyclic complex is called a totally acyclic
complex of flat-cotorsion modules. A cycle module in such a complex, that is, a
FlatCot(A)-Gorenstein module, is called a Gorenstein flat-cotorsion module.

Recall that a complex T of flat A-modules is called F-totally acyclic if it is acyclic
and the complex I ⊗A T is acyclic for every injective A◦-module I.

4.4 Theorem. Let A be right coherent. For an A-complex T the following condi-
tions are equivalent

(i) T is a totally acyclic complex of flat-cotorsion modules.

(ii) T is a complex of flat-cotorsion modules and F-totally acyclic.

(iii) T is right Flat(A)-totally acyclic.

Proof. Per Remark 1.8 condition (iii) implies (i).
(i)=⇒(ii): If T is a totally acyclic complex of flat-cotorsion modules, then by

Proposition 1.3 it is an acyclic complex of flat-cotorsion modules. For every injective
A◦-module I the A-module HomZ(I,Q/Z) is flat-cotorsion, as A is right coherent.
Now it follows by the isomorphism

(∗) HomA(T,HomZ(I,Q/Z)) ∼= HomZ(I ⊗A T ,Q/Z)

and faithful injectivity of Q/Z that I ⊗A T is acyclic.
(ii)=⇒(iii): If T is a complex of flat-cotorsion A-modules and F-totally acyclic,

then T satisfies conditions (r.1) and (r.2) in Definition 1.1. By 4.1 the cycles
modules of T are cotorsion, so T also satisfies condition (r.3). Further, as A is
right coherent, every flat-cotorsion A-module is a direct summand of a module of
the form HomZ(I,Q/Z), for some injective A◦-module I; see e.g. Xu [25, lem. 3.2.3].
Now it follows from the isomorphism (∗) that HomA(T,W ) is acyclic for every
W ∈ FlatCot(A). That is, T also satisfies condition 1.1(r.4). �

Recall that an A-module M is called Gorenstein flat if there exists an F-totally
acyclic complex F of flat A-modules with Z0(F ) = M . The full subcategory of
Mod(A) whose objects are the Gorenstein flat modules is denoted GFlat(A).

Gillespie [15, cor. 3.4] proved that the category Cot(A) ∩ GFlat(A) is Frobenius
if A is right coherent. That it remains true without the coherence assumption is an
immediate consequence of [24, cor. 3.12] discussed ibid.; for convenience we include
the statement as part of the next result.

4.5 Theorem. The category Cot(A)∩GFlat(A) is Frobenius and FlatCot(A) is the
subcategory of projective-injective objects. Moreover, the following conditions are
equivalent.

(i) A is left perfect.

(ii) The category GFlat(A) is Frobenius.
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(iii) One has GFlat(A) = Cot(A) ∩ GFlat(A).

Furthermore, if A is right coherent then these conditions are equivalent to

(iv) An A-module is Gorenstein flat if and only if it is Gorenstein projective.

Proof. By [24, cor. 3.12] the category GFlat(A) is closed under extensions, and
GFlat(A) ∩ GFlat(A)⊥ is the subcategory FlatCot(A) of flat-cotorsion modules. It
follows that Cot(A) ∩ GFlat(A) is closed under extensions, and that modules in
FlatCot(A) are both projective and injective in Cot(A) ∩ GFlat(A). Let P be a
projective object in Cot(A) ∩ GFlat(A); it fits in an exact sequence

(∗) 0 −→ C −→ F −→ P −→ 0

where F is flat and C is cotorsion; see Bican, El Bashir, and Enochs [5]. As
P is cotorsion it follows that F is flat-cotorsion. By [24, cor. 3.12] the category
GFlat(A) is resolving, so C is Gorenstein flat. Thus, (∗) is an exact sequence in
Cot(A) ∩ GFlat(A), whence it splits by the assumption on P . In particular, P is
flat-cotorsion. Now let I be an injective object in Cot(A)∩GFlat(A). It fits by [24,
cor. 3.12] in an exact sequence

(†) 0 −→ I −→ F −→ G −→ 0

where F belongs to GFlat(A)⊥ and G is Gorenstein flat. It follows that F is Goren-
stein flat and hence flat-cotorsion, still by [24, cor. 3.12]. Finally, G is cotorsion as
both I and F are cotorsion. Thus, (†) is an exact sequence in Cot(A) ∩ GFlat(A),
whence it splits by the assumption on I. In particular, I is flat-cotorsion.

(i)=⇒(iii): Assuming that A is left perfect, every flat A-module module is pro-
jective, whence every A-module is cotorsion.

(iii)=⇒(ii): Evident as Cot(A) ∩ GFlat(A) is Frobenius as shown above.
(ii)=⇒(i): Assume that GFlat(A) is Frobenius and denote by W its subcategory

of projective-injective objects. To prove that A is left perfect it suffices by a result of
Guil Asensio and Herzog [16, cor. 20] to show that the free module A(N) is cotorsion.
As A(N) is flat, in particular Gorenstein flat, and as GFlat(A) by assumption has
enough projectives, there is an exact sequence 0 → K → W → A(N) → 0 with
W ∈ W. The sequence splits because A(N) is projective, so it suffices to show that
modules in W are cotorsion. Fix W ∈ W, let F be a flat A-module, and consider
an extension

(‡) 0 −→W −→ E −→ F −→ 0 .

As GFlat(A) by [24, cor. 3.12] is closed under extensions, the module E is Gorenstein
flat. As W is injective in GFlat(A) it follows that the sequence (‡) splits, i.e. one
has Ext1A(F,W ) = 0. That it, W is cotorsion.

(iv)=⇒(ii): By Theorem 2.11 the category of Gorenstein projective A-modules
is Frobenius.

(i)=⇒(iv): If A is perfect and right coherent, then it follows from Theorem 4.4
that an A-module is Gorenstein flat if and only if it is Gorenstein projective. �

By Theorem 4.5 the category GFlat(A) is only Frobenius when every A-module
is cotorsion, and the take-away is that the appropriate Frobenius category to focus
on is Cot(A) ∩ GFlat(A). If A is right coherent ring, then this category contains
GorFlatCot(A), by Theorem 4.4 and 4.1, and one goal of the next section is to prove
the reverse inclusion; that is Theorem 5.2.
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5. The stable category of Gorenstein flat-cotorsion modules

Recall that an A-complex P is called pure-acyclic if the complex N ⊗A P is acyclic
for every A◦-module N . In particular, an acyclic complex P of flat A-modules is
pure-acyclic if and only if all cycle modules Zi(P ) are flat.

5.1 Fact. Let M be an A-complex. It follows1 from Gillespie [14, cor. 4.10] that
there exists an exact sequence of A-complexes

0 −→M −→ C −→ P −→ 0

where C is a complex of cotorsion modules and P is a pure-acyclic complex of flat
modules.

The first theorem of this section shows that if A is right coherent, then the co-
torsion modules in GFlat(A) are precisely the non-trivial Gorenstein modules asso-
ciated to the cotorsion pair (Flat(A),Cot(A)); namely the Gorenstein flat-cotorsion
modules or, equivalently, the right Flat(A)-Gorenstein modules.

5.2 Theorem. Let A be right coherent. There are equalities

Cot(A) ∩ GFlat(A) = GorFlatCot(A) = RGorFlat(A) .

Proof. The second equality is by Proposition 4.2, and the containment

Cot(A) ∩ GFlat(A) ⊇ GorFlatCot(A)

follows from 4.1 and Theorem 4.4. It remains to show the reverse containment.
Let M be a Gorenstein flat A-module that is also cotorsion. By definition, there

is an F-totally acyclic complex F of flat A-modules with Z0(F ) = M . Further, 5.1
yields an exact sequence of A-complexes

(1) 0 −→ F
ι′−−→ T

π′−−→ P −→ 0

where T is a complex of cotorsion modules and P is a pure-acyclic complex of
flat modules. It follows that T is a complex of flat modules; moreover, since P
is trivially F-totally acyclic, so is T . As A is right coherent, it now follows from
Theorem 4.4 that T is a totally acyclic complex of flat-cotorsion modules.

The functor Z(−) is left exact, and since F is acyclic a standard application of
the Snake Lemma yields the exact sequence

(2) 0 −→M
ι−→ Z0(T )

π−−→ Z0(P ) −→ 0

where ι and π are the restrictions of the morphisms from (1). As M is cotorsion and
Z0(P ) is flat, (2) splits. Set Z = Z0(P ) and denote by % the section with π% = 1Z .
By 4.1 the module Z0(T ) is cotorsion, so it follows that Z is a flat-cotorsion module.
Now, as Z−1(P ) is flat, the exact sequence

0 −→ Z
εP0−−→ P0 −→ Z−1(P ) −→ 0

1Although [14, cor. 4.10] is stated for commutative rings, it is standard that the result remains
valid without this assumption; see for example the discussion before [12, thm. 4.2].
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splits; denote by σ the section with σεP0 = 1Z . By commutativity of the diagram

Z0(T )
π
//

εT0
��

Z

εP0
��

T0
π′0
// P0

one has σπ′0ε
T
0 % = σεP0 π% = 1Z . It follows that σπ′0 : T0 → Z is a split surjection

with section εT0 %.
As Z is flat and Z1(T ) is cotorsion, there is an exact sequence

0 −→ HomA(Z,Z1(T )) −→ HomA(Z, T1) −→ HomA(Z,Z0(T )) −→ 0 .

It follows that there is a homomorphism ζ : Z → T1 with ∂T1 ζ = % and, therefore,
∂T1 ζ = εT0 % as homomorphisms from Z to T0. As ∂T0 ε

T
0 % = 0 trivially holds, the

homomorphisms ζ and εT0 % yield a morphism of complexes:

D

ρ

��

= · · · // 0 //

��

Z
=
//

ζ

��

Z //

εT0 %

��

0 //

��

· · ·

T = · · · // T2
∂T
2
// T1

∂T
1
// T0

∂T
0
// T−1 // · · ·

This is evidently a split embedding in the category of complexes whose section given
by the homomorphisms σπ′0∂

T
1 : T1 → Z and σπ′0 : T0 → Z. The restriction of the

split exact sequence of complexes

(3) 0 −→ D −→ T −→ T ′ −→ 0

to cycles is isomorphic to the split exact sequence 0 −→ Z
%−→ Z0(T ) −→M −→ 0,

see (2), so it follows that the complex T ′ has Z0(T ′) ∼= M .
In (3) both D and T are complexes of flat-cotorsion modules and F-totally

acyclic, so also T ′ is a complex of flat-cotorsion modules and F-totally acyclic. Now
it follows from Theorem 4.4 that T ′ is a totally acyclic complex of flat-cotorsion
modules, whence the module M ∼= Z0(T ′) is Gorenstein flat-cotorsion. �

5.3 Corollary. Let A be right coherent. There is a triangulated equivalence

StGorFlatCot(A) ' KF-tac(FlatCot(A)) .

Proof. Immediate from Theorems 3.8, 4.4, and 5.2; see also the diagram in 5.7. �

5.4 Corollary. Let A be right coherent. The category GorFlatCot(A) is closed under
direct summands.

Proof. Immediate from the theorem as both Cot(A) and GFlat(A) are closed under
direct summands; for the latter see [24, cor. 3.12]. �

Gorenstein flat A-modules are, within the framework of Sections 1–2, not born
out of a cotorsion pair, not even out of a self-orthogonal subcategory of Mod(A).
However, they form the left half of a cotorsion pair, and also out of that pair comes
the Gorenstein flat-cotorsion modules.
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5.5 Remark. Let A be right coherent. Enochs, Jenda, and Lopez-Ramos [11,
thm. 2.11] show that GFlat(A) is the left half of a cotorsion pair, and Gillespie [15,
prop. 3.2] shows that GFlat(A) ∩ GFlat(A)⊥ is FlatCot(A)2

A right GFlat(A)-totally acyclic complex as well as a left GFlat(A)⊥-totally
acyclic complex is by Remark 1.8 and Definition 4.3 a totally acyclic complex of
flat-cotorsion modules. For a right GFlat(A)-totally acyclic complex T , it follows
from Definition 1.1 that HomA(G,T ) is acyclic for every Gorenstein flat A-module
G, in particular for every Gorenstein flat-cotorsion module. That is, such a complex
is contractible and, therefore, a right GFlat(A)-Gorenstein module is flat-cotorsion.
On the other hand, the cycles in a left GFlat(A)⊥-totally acyclic complex are by
Definition 1.1 Gorenstein flat and by 4.1 cotorsion, so a left GFlat(A)⊥-Gorenstein
module is by Theorem 5.2 Gorenstein flat-cotorsion.

Let Kpac(Flat(A)) denote the full subcategory of K(Flat(A)) whose objects are
pure-acyclic; notice that it is contained in KF-tac(Flat(A)). Via 4.1 and the dual of
5.1 one could obtain the next theorem as a consequence of a standard result [18,
prop. 10.2.7]; we opt for a direct argument.

5.6 Theorem. The composite

I : KF-tac(FlatCot(A)) −→ KF-tac(Flat(A)) −→ KF-tac(Flat(A))

Kpac(Flat(A))

of canonical functors is a triangulated equivalence of categories.

Proof. Let I be the composite of the inclusion followed by Verdier localization;
notice that I is the identity on objects. We argue that the functor I is essentially
surjective, full, and faithful.

Let F be an F-totally acyclic complex of flat modules. By 5.1 there is an exact
sequence

(∗) 0 −→ F −→ CF −→ PF −→ 0

where CF is a complex of cotorsion modules and PF is in Kpac(Flat(A)). As F and
PF are F-totally acyclic complexes of flat A-modules so is CF ; that is, CF belongs
to KF-tac(FlatCot(A)). It follows from (∗) that F and CF are isomorphic in the

Verdier quotient KF-tac(Flat(A))
Kpac(Flat(A)) . Thus I is essentially surjective.

Let F and F ′ be F-totally acyclic complexes of flat-cotorsion modules. A mor-

phism F → F ′ in KF-tac(Flat(A))
Kpac(Flat(A)) is a diagram in KF-tac(Flat(A))

(∗) F
[α]−−−→ X

[ϕ]←−−−
'

F ′

such that the complex Coneϕ belongs to Kpac(Flat(A)). Let ι be the embedding
X → CX from 5.1. It is elementary to verify that the composite ιϕ : F ′ → CX

has a pure-acyclic mapping cone; see [9, lem. 2.7]. Since F ′ and CX are com-
plexes of flat-cotorsion modules, so is Cone ιϕ. It now follows by way of 4.1 that
Cone ιϕ is contractible; that is, ιϕ is a homotopy equivalence. Thus [ιϕ] has an

2 Šaroch and Štov́ıček [24, cor. 3.12] show that all of this is true without assumptions on A,
and we used that crucially in the proof of Theorem 4.5. The results from [11] and [15] suffice to

prove 4.5 for a right coherent ring.
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inverse in KF-tac(Flat(A)), i.e. [ιϕ]−1 = [ψ] for some morphism ψ : CX → F ′. The
commutative diagram

X

[ι]'

��

F
[ια]

//

[α]

>>

[ψια]

'

  

CX F ′
[ιϕ]

'
oo

[ϕ]

'

aa

[1F
′
]

'

}}

F ′

[ιϕ]'

OO

now shows that the morphism (∗) is equivalent to F
[ψια]−−−−→ F ′

[1F
′
]←−−−− F ′, which is

I(ψια). This shows that I is full.
Finally, let α : F → F ′ be a morphism of F-totally acyclic complexes of flat-

cotorsion modules, and assume that I([α]) is zero. It follows that there is a com-
mutative diagram in KF-tac(Flat(A)),

F ′

[ϕ]'

��

F
[ϕα]

//

[α]

>>

[0]

'

  

X F ′
[ϕ]

'
oo

[1F
′
]

'

``

[1F
′
]

'

~~

F ′

[ϕ]'

OO

where the mapping cone of ϕ is in Kpac(Flat(A)). The diagram yields [ϕα] = [0]
and, therefore, [ιϕ][α] = [ιϕα] = [0] where ι is the embedding X → CX from 5.1.
As above, [ιϕ] is invertible in KF-tac(Flat(A)), so one has [α] = [0] in KF-tac(Flat(A)).
That is, α is null-homotopic, and hence [α] = 0 in KF-tac(FlatCot(A)). �

5.7 Summary. Let A be right coherent. By Theorems 3.8 and 5.6 there are tri-
angulated equivalences

KF-tac(FlatCot(A))
I

'
//
KF-tac(Flat(A))

Kpac(Flat(A))

StRGorFlat(A)
TR

'
// KR

Flat-tac(FlatCot(A))

StGorFlatCot(A) Ktac(FlatCot(A))

where the equalities come from Proposition 4.2 and Theorems 4.4 and 5.2.

5.8 Corollary. Let A be right coherent. There is a triangulated equivalence

StGorFlatCot(A) ' KF-tac(Flat(A))

Kpac(Flat(A))
.

Proof. See the diagram in 5.7. �
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In the special case where A is commutative noetherian of finite Krull dimension,
the next result is immediate from [21, lem. 4.22] and Corollary 5.8.

5.9 Corollary. Let A be right coherent ring such that all flat A-modules have
finite projective dimension. There is a triangulated equivalence of categories

StGorPrj(A) ' StGorFlatCot(A) .

Proof. Under the assumptions on A, a complex of projective A-modules is totally
acyclic if and only if it F-totally acyclic; see [8, claims 2.4 and 2.5]. By [12, thm. 5.1]
there is now a triangulated equivalence of categories

Ktac(Prj(A)) ' KF-tac(Flat(A))

Kpac(Flat(A))
.

Now apply the equivalences from Example 3.10 and Corollary 5.8. �
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