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a b s t r a c t

We study the competition between thermal fluctuations and stress enhancement in the
failure process of a disordered system by using a local load sharing fiber bundle model.
The thermal noise is introduced by defining a failure probability that constitutes the
temperature and elastic energy of the fibers. We observe that at a finite temperature
and low disorder strength, the failure process, which nucleates in the absence of
any thermal fluctuation, becomes spatially uncorrelated when the applied stress is
sufficiently low. The dynamics of the model in this limit lies closely to the universality
class of ordinary percolation. When applied stress is increased beyond a threshold
value, localized fractures appear in the system which grow with time. We identify the
boundary between the localized and random failure process in the space of temperature
and applied stress, and find that the threshold of stress corresponding to the onset of
localized crack growth increases with the increase of temperature.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

One of us (AH) did a postdoc in Professor Dietrich Stauffer’s group in 1987–1988. Before arriving from a postdoc at the ENS
in Paris, he sent me a photo from Canada (via snail mail) where he was visiting with the following note on the back: ‘‘Dietrich
Stauffer, trying to find Boulevard Saint Michel on the frozen seashore near St. Francis Xavier University, Nova Scotia, Canada.
At least it is good training for future visits in Norway. D. S’’. For me, this sums up the Stauffer that we all knew and appreciated
so much.

1. Introduction

Growth of fractures under external stress in heterogeneous materials, such as concrete or fiber-reinforced composites,
depends on the interplay between material disorder and local stress concentration throughout the failure process. The
heterogeneities compete with the local stress enhancement preventing the growth of a single unstable crack until the
stress exceeds a critical value, beyond which it undergoes a catastrophic failure [1]. In addition to material heterogeneities,
external time-dependent disturbances such as thermal fluctuations can also induce disorder in the system. These
combined with an applied stress or strain can cause failure over time even if the applied stress is below the critical
value [2]. This phenomenon is known as creep failure. The study of creep failure is an essential but notoriously difficult
subject that has important engineering applications. Of special importance is the statistics connected to the time elapsed
until creep failure occurs, the creep lifetime [3,4].

The underlying physical mechanisms behind the creep are the accumulation of plastic strain and damage in the system
over time. In order to model the creep failure in disordered systems, mechanisms for such aging processes are needed
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o be taken into account in addition to the structural heterogeneities. However, fracture in heterogeneous solids is yet
ifficult to handle with elasticity theory and therefore alternative approaches have been proposed. The Voight model [5]
or precursory strain has been explored by Main [6] in order to understand the sub-critical crack growth dynamics. The
odel can reproduce the time-dependent strain rate observed in experiments [7]. A rather simple and intuitive model

or disordered solids that has high numerical efficiency and analytical tractability is the fiber bundle model [8–14]. In
his model, a set of fibers carry an external load which, upon the break of a fiber, is distributed to the surviving fibers
lobally (equal load sharing, ELS) or locally (local load sharing, LLS). Introducing thermal fluctuations by probabilistic noise,
hermally activated failures have been investigated widely with this model for the global load sharing case [15–20]. These
tudies have explained the time-dependent strain rate and showed how the temperature plays a crucial role in the creep
ifetime. Danku and Kun considered a damage accumulation process in each fiber by introducing a damage variable and
time evolution equation in ELS [21]. Thermally driven failure for the localized load sharing process was studied by
oshioka et al. [22,23] with Gaussian distributed thermal fluctuations where they showed that, unlike the ELS, the failure
ime in LLS exhibits anomalous scaling with the system size. Phase boundaries between different regimes of failures were
lso explored depending on the temperature and applied load. However, those studies were performed for homogeneous
ystems in the absence of any quenched disorder in the fiber strengths. Hidalgo et al. [24,25] studied creep in a viscoelastic
iber bundle model by introducing a time evolution equation for the strain that is based on the Kelvin–Voigt rheology and
ighlighted the different behaviors in ELS and LLS. Recently, Roy and Hatano have showed that the fiber bundle model can
lso exhibit creep-like behavior in the absence of any thermal fluctuations, damage variables or rheological constitutive
aws where time-dependent strain rate can be obtained [26,27].

In this work, we explore the creep failure due to thermal fluctuations in a fiber bundle model with localized load
istributions. The bundle here contains quenched disorder in the failure thresholds whereas the thermal noise introduces
ime-dependent annealed disorder. We introduce the thermal noise in the model by a probabilistic algorithm that is based
n the elastic energy and the breaking energy of a fiber. These two disorders compete with the inhomogeneous stress
istributions that is caused by the local load sharing process and create non-trivial failure dynamics. More specifically, we
how that the introduction of thermal noise makes the failure process non-localized at the low system disorder, which
therwise would be localized in the absence of thermal fluctuations. We characterize the non-localized growth regime
y measuring the geometrical properties of the cracks and show that they belong to the percolation universality class.
he failure becomes localized at high external stress. We identify the boundary between the localized and non-localized
egimes in the temperature vs applied stress plane. In the following, we present the model in Section 2 and the numerical
esults in Section 3 where we also discuss the results. We conclude in Section 4.

. Model description

The fiber bundle model consists of N Hookean springs or fibers placed in between two clamps under an external force F
arried by the fibers. The extension xi of a fiber i under a force fi follows the relation fi = κxi. All the fibers have the same
lastic constant κ but different maximum extension ϵi. If this value is exceeded, that particular fiber fails. The distribution
f the thresholds ϵi among the fibers models the heterogeneity of the material. When a fiber fails, the load it was carrying is
istributed among the surviving fibers according to a load-sharing scheme that models the way the forces are distributed
mong the surviving fibers. If the load carried by the failed fibers is distributed uniformly over all the surviving fibers,
e have the Equal Load Sharing (ELS) scheme. With this scheme, there is no local stress enhancement in the model.
n the other hand, if the load carried by the failed fiber is distributed evenly among the fibers bordering the cluster of
roken fibers to which the failed fiber belong, we are dealing with the Local Load Sharing (LLS) scheme. Here local stress
nhancement competes with the local heterogeneity. The ELS fiber bundle model was initially introduced by Peirce [8]
o model the strength of yarn and since Daniels’ paper [9], the model caught on in the mechanics community. Sornette
ntroduced the ELS fiber bundle model to the statistical physics community in 1992 [28] which lead the community to
xplore the rich avalanche statistics [29–32] and analytical tractability of the ELS model. The local load-sharing (LLS)
iber bundle model was introduced by Harlow and Phoenix [33,34] as a one-dimensional array of fibers. There are also
ntermediate models between ELS and LLS models, e.g. the model by Hidalgo et al. [35], where the load of the failing fiber
s distributed according to a power law in the distance from the failed fiber. Another is the soft clamp model [36–39],
here the infinitely stiff clamps are replaced by clamps with finite elastic constant causing the load of the failing fiber to
e distributed among the surviving in accordance with the elastic response of the soft clamps.
Here we consider an LLS fiber bundle model that is based on a history independent redistribution scheme [40] so

hat the complete stress field at any instance can be calculated from the present arrangement of intact and broken fibers
ithout knowing any information about the order in which the fibers failed. For this, we define a crack, which is a cluster
f s failed fibers defined as in percolation theory [41,42]. The perimeter of the crack is the set of h intact fibers that are
earest neighbors to the failed fibers in that crack. These nearest neighbors define the hull of the cluster [43]. The force
n an intact fiber i at any instance is then calculated by

fi = f

⎛⎝1 +

∑ sJ(i)
hJ(i)

⎞⎠ , (1)

J(i)
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here f = F/N , the force per fiber. The summation runs over all the cracks J(i) that are neighbors to the fiber i.
We will study the fiber bundle at a temperature T subjected to a constant external stress F that is less than the critical

reaking stress for the bundle. For this, we introduce thermal fluctuation in the failure criteria of the LLS model. Due to
hermal noise, a fiber i may fail even if the force on it fulfills fi < κϵi. The elastic energy of a fiber at extension xi is κx2i /2
nd the elastic energy at failure is κϵ2

i /2. This energy is dissipated, i.e., lost as elastic energy at failure. We introduce a
iscrete time variable t to be defined below. We define a failure probability

Pi(t, T ) = exp
[
−

κ(ϵ2
i − f 2i )
2kBT

]
, (2)

here kB is the Boltzmann constant. In the following we set κ/kB = 1 for simplicity. The simulation starts at t = 0 with
ll fibers intact and each carrying a finite load fi = f . The failure probability Pi is then calculated for each fiber i. We then
enerate a random number ri uniformly distributed between 0 and 1 for each fiber i, which we compare to Pi. All the
ibers for which ri < Pi fails at that time step. The forces are then redistributed according to Eq. (1) and time t is increased
by 1. With this dynamics, multiple fibers can therefore break at the same time step. This procedure is repeated until all
fibers have failed. Note that the failure probability Pi is an increasing function of the temperature T as well as of the local
tress fi which also increases with time due to the failures. The number of fibers that break at the same time step therefore
ncreases with the increase in temperature. When fi > ϵi, Pi is always greater than one for any temperature T and the fiber
lways breaks. Furthermore, as the temperature is changed towards zero (T → 0), the failure probability Pi is approached

towards a step function from 0 to 1 at fi = ϵi. This means, at T = 0, there is no contribution from the thermal noise to the
breaking probability and a fiber only breaks due to the local stress. This leads the model to approach the conventional LLS
model at T = 0 [44]. With increasing temperature, Pi increases throughout the range of fi and becomes less dependent
on how fi is close to the threshold ϵi. Recently, a similar probabilistic failure process was adopted to explore the creep
failure in ELS fiber bundle model [45].

For the disorder in the failure thresholds ϵi, we consider a distribution that has only one control parameter. The
thresholds in this distribution are generated by calling a random number (ri) over the unit interval and raising it to a
power D, therefore ϵi = rDi . This corresponds to the cumulative distribution [46,47],

P(ϵ) =

{
ϵ1/|D| , ϵ ∈ [0, 1] when D > 0 ,

1 − ϵ−1/|D| , ϵ ∈ [1, ∞) when D < 0 .
(3)

The strength of disorder in this distribution is controlled by the value of |D|. Moreover, D > 0 and D < 0 respectively
orrespond to the distributions with power law tails towards weaker and stronger fibers and D = 1 returns a uniform
istribution. With this distribution, the interplay between system disorder and local stress enhancement in LLS fiber
undle model in the absence of any thermal noise was explored recently [44]. There, phase transitions from a localized
racture regime to random fractures were observed while increasing the disorder. Interestingly, the transition for D < 0
as of first order and for D > 0 was of second order. In the present work, we investigate the effect of thermal noise
n the failure dynamics and study its effect on crack localization, and we limit our simulations in the low disorder limit
t D = 0.02, where the failure was localized in the absence of temperature. As we will see in the next section, that the
resence of temperature makes the fracture growth non-localized in this regime when the stress is low. We present our
umerical results in the following.

. Results

We consider a bundle of N = 256× 256 fibers in two dimensions (2D) with periodic boundary conditions. The results
are averaged over 1000 realizations of samples. Simulations are performed for different values of temperature (T ) and
external stress (f = F/N) which are kept constant throughout a simulation. The thermal noise initiates a creep failure
process to break the system over time even if the applied stress is less than the critical value. Depending on the thermal
noise and local stress enhancements, many or few fibers may fail simultaneously. The growth of damage in this process
is illustrated in Fig. 1 where we plot the damage d — defined as the number of failed fibers divided by N — as a function
f t for a stress f = 0.08, which is lower than the critical stress in the absence of thermal fluctuations. The plot shows
hree stages of failure process, a primary stage where the rate of damage decreases with time, a secondary stage where
he damage rate is almost constant, and a tertiary stage where the damage increases rapidly until the whole bundle fails.
his is a qualitative characteristics that is generally observed during a creep failure [13]. The red dot at the end of the
urve indicates the failure time tf which depends on the temperature as well as on the applied stress. This is shown in
the inset, where tf decreases with increase of both T and f , as a higher stress or temperature generates higher probability
of failure at each time step, making the model to approach the global failure faster. When varying the temperature, the
damage curve shows the similar shape within the range of temperature considered here. This is shown in Fig. 1(b) for
f = 0.10 where all the three stages of creep can be observed. However, the shape of plot changes drastically when the
applied stress is increased, which is shown in Fig. 1(c). We will see in the following that the increase in the applied stress
initiates a localized failure regime. We see in this regime that the damage increases almost constantly with time since the
beginning of the failure process indicating the absence of the primary creep. The deformation rate during the secondary
3
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Fig. 1. The variation of damage d with time t is shown in (a) for T = 0.06 and f = 0.08 corresponding to the non-localized failure regime. The plot
hows three regimes of creep like failure, the primary, secondary and tertiary regimes. The red dot shows the final failure point. The x-coordinate of
his point corresponds to the failure time tf . The inset of the figure shows how tf decreases with the increase of temperature and applied stress. In
b), we show how the plot changes with the temperature in this non-localized regime. When increasing the applied stress, localized failures starts
o appear, which changes the shape of the curve as shown in (c).

Fig. 2. Growth of cracks for two different applied stresses (a) f = 0.1 and (b) f = 0.4 in a bundle of 256 × 256 fibers at temperature T = 0.06.
he thresholds are generated according to Eq. (3) at low disorder D = 0.02. The snapshots correspond to t = 0.40tf , 0.60tf , 0.64tf and 0.68tf for
= 0.1, and t = 0.48tf , 0.70tf , 0.79tf and 0.87tf for f = 0.4. The intact fibers are colored by black and the other colors represent different clusters
f broken fibers. At low applied stress, cracks appear randomly in the system whereas at high applied stress localized cracks are observed to grow
ithin the system.

Fig. 3. (a) Variation of cluster density ρ with damage d for T = 0.06 while varying the applied stress f . Two distinct behaviors are observed for
he non-localized and localized regimes corresponding to f < fc and f > fc respectively where fc = 0.30. These two behaviors are highlighted in the
nset for f = 0.20 and 0.32. (b) Variation of the maximum crack size smax normalized by the system size N , with damage d. The inset highlights the
two different behaviors below and above fc . (c) Variation of the normalized maximum hull size hmax/N with damage d. Notice that, the maxima of
hmax for non-localized regime have much higher values compared to the localized regime indicating a fractal structure of the clusters at f < fc .

creep is directly related to the failure time tf [13]. In the absence of system disorder, tf scales as a power law of the system
size for local load sharing where the power-law exponent is a function of the temperature and the applied stress [22].
The presence of the system disorder here can have a different effect on the power law and may be reported in a different
study.

3.1. Localized vs non-localized fracture growth

The growth of cracks with time in the presence of temperature at two different external stress f = 0.1 and f = 0.4 are
shown in Fig. 2. The intact clusters are colored by black and the individual clusters of failed fibers are marked with different
colors. The pictures show two distinct regimes of crack growth. At low applied stress the subsequent failure events appear
randomly in space, similar to the growth of percolation clusters. The clusters merge with time and a spanning cluster
appears in the system similar to a percolating cluster that contains clusters of intact fibers of different sizes inside it. On
the other hand, at high stress, localized clusters of failed fibers appear and they eventually merge together. The localized
clusters in this case are compact.

To study how the applied stress and temperature alter the failure dynamics from random fractures to localized crack
growth, we measure three different geometrical quantities, the number density of clusters, the largest cluster size and the
4
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Fig. 4. (a) The response function χ , i.e., the rate of change of largest cluster size smax as a function of the damage d. This is obtained by taking
the derivative of smax with respect to d with central difference technique. From the position of the peaks, we find the values of critical damage dc .
In (b), we plot smax/N with (d − dc ) where the slopes correspond to the exponent β defined in Eq. (4). We observe β around 0.2, which however
fluctuates with the applied stress. The full list of the values of β for different applied stress will be given in Table 1.

largest perimeter size as a function of damage d for different values of T and f . They are plotted in Fig. 3(a), (b) and (c)
respectively. In 3 (a), we plot the cluster number density ρ as a function of d for different applied stress (f ) at temperature
T = 0.06. Here ρ is defined as the number of clusters of failed fibers divided by the total number of fibers N , which shows
a non-monotonic behavior with d. We observe ρ = 0 at d = 0 and ρ = 1 as d → 1, because all the fibers are then broken
creating a single crack. In between, ρ reaches a maximum value where the system contains maximum number of clusters.
This maximum decreases with increase in f , and interestingly, the dependence of ρ on d shows a characteristic difference
beyond an applied stress f > fc indicating a difference in the failure dynamics. These two different characteristics are
highlighted in the inset for f = 0.20 and 0.32.

Next we measure the largest cluster size (smax) and the largest perimeter size (hmax) as a function of d. In Fig. 3(b)
and (c), we plot smax and hmax respectively, scaled by the number of fibers N . As we vary the applied stress f , both the
quantities show a characteristic difference in the behavior below and above fc . In the beginning of the process, small
fractures appear in the system leading to small values of smax, which will eventually grow and merge with each other.
For f > fc , the increase in smax starts at a much earlier point than that of f < fc . This reflects the appearance of compact
localized cracks early in the system for f > fc , which grow more uniformly with time. Whereas for f < fc , spatially
uncorrelated failures occur at random in space preventing the appearance of a large cluster for a longer duration. At
some point of time, these small clusters start to coalesce causing a sharp increase in smax as seen in the figure. When
the coalescence is over after creating a large crack in the system, smax grows in a linear manner. Behavior of smax shows
imilarity with that of percolation model for f < fc whereas above fc it deviates from such characteristic shape indicating
he initiation of localization. These two behaviors for f < fc and f > fc are highlighted in the inset. The behavior of hmax
hows a more interesting picture. It shows two different behavior for f < fc and f > fc , however, the values of hmax are
uch smaller for f > fc , that is in the localized regime. This indicates fractal type perimeter structure for f < fc compared

o the perimeters of the localized cracks for f > fc . Later in Section 3.3, we will use hmax to calculate the values of fc and
ill show how the boundary between the non-localized and localized fracture regimes vary with the temperature T . For
< fc , both smax and hmax indicate percolation type dynamics during the failure process which we will explore in detail

n the following.

.2. Characterization of non-localized cluster growth for f < fc

To characterize the growth of fractures in the non-localized regime we will now study the clusters geometries by
sing the percolation framework [41,42]. We performed simulations at T = 0.06 at different values of f < fc . We found
c ≈ 0.3 for T = 0.06 and therefore considered f = 0.10, 0.12, 0.14, 0.16 and 0.18 for these simulations. To find a
ercolation threshold or a critical damage dc , one can calculate the order parameter P∞ defined as the probability that a
ite belongs to an infinite cluster. P∞ can be measured from the number of sites (smax) that belong to the largest cluster
nd then by estimating P∞ = limN→∞ PN where PN = smax/N averaged over all configurations. Ideally, P∞ approaches to 0
rom 1 continuously as d → dc from above. In our case, we have a finite system of 2562 fibers and therefore PN = smax/N
oes not meet to 0 sharply at a particular value of d (Fig. 3(b)). We therefore measure the percolation threshold dc from
he maximum of the response function χ of PN , that is when the rate of change of smax with d is maximum. This is plotted
n Fig. 4(a) where the peaks of the plots determine the values of dc for different f . As d → dc from above, P∞ approaches
o zero with a critical exponent β defined as,

P∞ ∼ (d − dc)β . (4)

n Fig. 4, we plot smax/N as a function of (d − dc) for different values of f and from the slopes we find β in the range of
.18 to 0.23 with error bars ranging between 0.04 to 0.07 (see Table 1). For site percolation, β = 5/36.
5
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Fig. 5. (a) Plot of cluster size distribution ns(d) at d = 0.5 for T = 0.06 and f = 0.10. The circles represent simulation data and the solid line
represents least square fitting of the data with Eq. (8), where τ is 2.06. The value of τ is obtained from the distribution ns(dc ) using Eq. (6) as
shown in the upper inset of (a). We obtain the values of s0 from the least-square fitting for different values of d. The variation of s0 with |d − dc |
is shown the inset, the slope of which corresponds to 1/σ (Eq. (9)). In (b), we plot the scaled cluster size distribution ns(d)/ns(dc ) as a function of
the scaled variable sσ |d − dc | for T = 0.06 and f = 0.10 where we have used σ = 1/2.50 = 0.40 obtained from the previous plot. Here dc is 0.543.
In the inset, we show the unscaled behavior of ns(d) vs s for different values of d.

Next, we study the distribution of clusters of failed fibers near the critical damage dc and investigate the scaling
behavior of its moments. The cluster size distribution function ns(d) is defined as the number of s-sized finite clusters
per lattice site at a damage d ≤ dc . According to scaling hypothesis [41,42], the functional form of the distribution can be
assumed as,

ns(d)
ns(dc)

∼ Φ [sσ |d − dc |] , (5)

where ns(dc) is the cluster size distribution at the critical damage dc and σ is a critical exponent. This ns(dc) at the critical
amage shows a power-law decay,

ns(dc) ∼ s−τ , (6)

here τ is the cluster size distribution exponent. Using this in Eq. (5), we have the functional form for ns(dc),

ns(d) ∼ s−τΦ [sσ |d − dc |] (7)

s d → dc . Away from the critical damage, ns(dc) falls with an exponential cut off with the following form,

ns(d) ∼ s−τ exp
(

−
s
s0

)
, (8)

here s0 is the exponential cut off. As d → dc , s0 generally shows the power law dependency,

s0 ∼ |d − dc |−1/σ . (9)

To verify the scaling functional form for the cluster size distribution, we first measure the distribution of clusters at the
critical point dc . We then estimate the exponent τ by using Eq. (6) as shown in the upper inset of Fig. 5(a). Using this
value of τ , we plot in Fig. 5(a) ns(d) as a function of s for d = 0.5. There we used least square fitting of the data points with
the functional form given in Eq. (8) and estimated s0 for different values of d. We then plot s0 as a function of |d − dc | as
shown in the lower inset of Fig. 5(a) and determine the exponent σ = 0.40 from the slope (Eq. (9)). With this value of σ ,
we verify the scaling function form given in Eq. (5). In Fig. 5 (b), we plot the scaled cluster size distribution ns(d)/ns(dc)
as a function of the scaled variable sσ |d − dc | for T = 0.06 and f = 0.10 where σ is taken as 0.40. We observe a data
ollapse for different values of |d − dc | and s showing the validity of Eq. (5). In the inset, we plot the unscaled values of
s(d) which show the approach of the power law behavior given in Eq. (7) as d → dc .
The kth moment of the cluster-size distribution, Mk =

∑
′

s s
kns(d) shows the singularity,

Mk ∼ |d − dc |(τ−1−k)/σ (10)

s d → dc . The primed summation for Mk indicates the summation over finite clusters. The first moment, k = 1 represents
he percolation probability P∞. We measure the next three moments for k = 2, 3 and 4, where k = 2 corresponds to the
verage cluster size [48,49]. As d → dc , the moments M2, M3 and M4 diverge with their respective critical exponents γ ,
and η defined as,

M ∼ |d − d |
−γ , M ∼ |d − d |

−δ and M ∼ |d − d |
−η . (11)
2 c 3 c 4 c

6
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Fig. 6. Plot of the second, third and fourth moments M2 , M3 and M4 of cluster size distribution function as a function of |d − dc | for T = 0.06 and
= 0.10. From the slopes, we obtain the exponents, γ = 2.43 ± 0.03, δ = 4.87 ± 0.05 and η = 7.20 ± 0.07.

Table 1
List of the threshold damage and critical exponents obtained for different applied stress in the non-localized regime.
Exponents are close to those observed in 2D percolation model where β = 5/36, γ = 43/18, τ = 187/91 and
σ = 36/91. We also show in the bottom three rows the calculation of η, δ and σ by using the scaling relations in
Eqs. (12) and (13) which can be compared with the measured values of the exponents.
Applied stress (f ) 0.10 0.12 0.14 0.16 0.18

dc 0.543 ± 0.001 0.537 ± 0.001 0.522 ± 0.001 0.503 ± 0.001 0.485 ± 0.001

β 0.20 ± 0.05 0.19 ± 0.06 0.21 ± 0.04 0.23 ± 0.07 0.18 ± 0.05

γ 2.43 ± 0.03 2.40 ± 0.04 2.39 ± 0.03 2.45 ± 0.02 2.44 ± 0.02

δ 4.87 ± 0.05 4.83 ± 0.04 4.89 ± 0.03 4.88 ± 0.02 4.92 ± 0.02

η 7.20 ± 0.07 7.23 ± 0.09 7.15 ± 0.08 7.20 ± 0.09 7.19 ± 0.07

τ 2.06 ± 0.05 2.03 ± 0.04 2.07 ± 0.04 2.06 ± 0.02 2.10 ± 0.03

σ 0.40 ± 0.02 0.39 ± 0.04 0.43 ± 0.03 0.41 ± 0.02 0.38 ± 0.03

δ (Eq. (13)) 5.06 ± 0.11 4.99 ± 0.14 4.99 ± 0.10 5.13 ± 0.11 5.06 ± 0.09

η (Eq. (13)) 7.31 ± 0.13 7.26 ± 0.12 7.39 ± 0.09 7.31 ± 0.06 7.40 ± 0.06

σ (Eq. (12)) 0.37 ± 0.12 0.34 ± 0.16 0.38 ± 0.12 0.36 ± 0.14 0.43 ± 0.15

Using Eq. (10), we have the scaling relations connecting the moment exponents with τ and σ ,

β = (τ − 2)/σ , γ = (3 − τ )/σ , δ = (4 − τ )/σ and η = (5 − τ )/σ . (12)

urthermore, we can eliminate τ and σ to find the scaling relations between the moment exponents,

δ = β + 2γ and η = 2δ − γ . (13)

n Fig. 6, we plot the moments for T = 0.06 and f = 0.10. From the slopes, we find the values of the exponents,
= 2.43 ± 0.03, δ = 4.87 ± 0.05 and η = 7.20 ± 0.07. The values are close to those of site percolation model in 2D.

he exponents satisfy the relationship given in Eqs. (12) and (13) within error bar. The full list of exponents for different
alues of the applied stress f is listed in Table 1 where the verification of the scaling relations in Eqs. (12) and (13) are
lso indicated.

.3. Boundary between the random and localized failure

We show in Fig. 7, the variation of the critical damage dc with the applied stress f for T = 0.06. The system undergoes
percolation transition at dc . The value of dc decreases with the increase in f for f < fc . Above fc , there is a crossover in
he failure process from a percolation type growth to a compact localized growth where the geometrical quantities show
ifferent behavior as observed in Fig. 3. To find the boundary between the random failure from the localized fracture
rowth as a function of temperature, we focus on the largest perimeter size hmax which shows abrupt decrease in the
eak value when the applied stress crosses fc . As mentioned before, this is due to the fractal structure of the percolation
lusters at dc which makes the hull highly rarefied and long compared to the perimeters of the compact clusters in the
ocalized growth [50]. Two such clusters are shown in Fig. 8(a) and (b) for the percolation type growth and the localized
rowth respectively where the largest clusters are colored by white. In Fig. 8(c), we plot hpeak, the maximum value of the
argest perimeter size hmax during a failure process, as a function of the applied stress f for three different temperatures
= 0.06, 0.08 and 0.10. The plots show two distinct regimes, regime (I) with fairly constant higher values and regime (II)
7
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Fig. 7. The two different regimes in the d vs f plane: the (I) random failure and (II) localization, depending on whether the applied stress is below
r above fc , the crossover point. For f > fc , compact clusters grow in the bundle. For f < fc , the failure process is random and the model undergoes
percolation transition around the critical damage dc indicated by the black dots. We kept T = 0.06 and D = 0.02 here.

Fig. 8. Snapshots of the system for (a) non-localized (f = 0.1) and (b) localized (f = 0.4) growths when a spanning cluster appears in the system.
he largest cluster is marked by white. In (c), we show the variation of hpeak with applied stress f where hpeak has a high value at low applied stress.
s f is increased beyond a threshold value fc , hpeak decreases rapidly and saturates at sufficiently low value. In (d) we show the boundary separating
wo different regimes, (I) the percolation type random failure and (II) the localized crack growth. As temperature increases, the localization takes
lace at a relatively higher applied stress as the stress concentration has to overcome a larger thermal randomness.

here hpeak falls rapidly to a relatively lower value as f crosses fc . By measuring the values of fc for different temperatures,
e find the boundary on the fc vs T plane that separates the random failure (I) from the localized failure (II). This is shown

n Fig. 8 (d). As the temperature is increased, a higher applied stress is required to establish localization in the model.
his is because the increase in temperature increases thermal fluctuations that lead to higher spatial randomness in the
ailure events. In this case, a large amount of stress localization is required to counteract the thermal fluctuation.

. Conclusions

We have included thermal noise in an LLS fiber bundle model and studied creep failure through the interplay between
hermal fluctuations and stress concentration due to externally applied stress. We observed that the presence of thermal
luctuations makes the failure events spatially uncorrelated and non-localized even if the strength of system disorder is
ow. This non-localized fracture growth shows a percolation type transition governed by critical exponents and scaling
elations. For homogeneous fiber bundles without any system disorder, a complex phase space was explored for thermally
ctivated failures in LLS with a different failure criteria [23]. There, in additions to a percolation type phase transition
imilar to the one observed here, an abrupt first-order phase transition was also observed depending on the stress and
emperature. Two types of phase transitions have also been observed recently in LLS fiber bundle in the absence of
emperature where the order of transition depends on how the system disorder is tuned [44]. There, a correlated fracture
rowth was observed in the low-disorder regime which is similar to invasion percolation. Such spatial correlation may
lso be obtained in the presence of temperature as well when the applied stress is sufficiently high so that the effect
f stress localization can outrun the effect of thermal fluctuations. Stormo et al. [37] observed localized failure in a soft
lamp model [36] when the elasticity of the clamps were decreased. In fiber bundle model the disorder strength and the
tress release range play crucial role in determining the correlations in space. One can also approach a random failure
rocess by increasing the stress release range instead of the disorder strength [51,52]. Our present study explores the
ffect of temperature on correlated fracture growth and shows that a larger stress has to be applied to overcome the
hermal fluctuations and to initiate localization.

Finally, we point out here that the percolation transition during the non-localized fracture growth can also be observed
or a bundle with uniform threshold distribution with a narrow width. We performed simulations with uniform threshold
8
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istribution spanning from 0.6 to 0.9 and measured the critical exponents. The exponents we found are the same as those
eported here within error bar. However, the crossover between the localized and non-localized regimes strongly depends
n the disorder as we have seen previously in the case of no temperature [44]. In the presence of temperature, how a
hange in the system disorder will affect the crossover is therefore an open question.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
ppeared to influence the work reported in this paper.

cknowledgments

This work was partly supported by the Research Council of Norway through its Centers of Excellence funding scheme,
roject number 262644 and by the National Natural Science Foundation of China under grant number 11750110430.

eferences

[1] H.J. Herrmann, S. Roux (Eds.), Statistical Models for the Fracture of Disordered Media, Elsevier, Amsterdam, 2014.
[2] B.R. Lawn, Fracture of Brittle Solids, Cambridge University Press, Cambridge, 1993.
[3] T. Wong, P. Baud, The brittle–ductile transition in porous rock: A review, J. Struct. Geol. 44 (2012) 25.
[4] H. Charan, A. Hansen, H.G.E. Hentschel, I. Procaccia, Fatigue and failure of a polymer chain under tension, 2020, https://arxiv.org/abs/2008.00970.
[5] B. Voight, A relation to describe rate-dependent material failure, Science 243 (1989) 200.
[6] I.G. Main, A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences, Geophys. J. Int. 142 (2000)

151.
[7] H. Nechad, A. Helmstetter, R. El. Guerjouma, D. Sornette, Andrade and critical time-to-failure laws in fiber-matrix composites: Experiments and

model, J. Mech. Phys. Solids 53 (2005) 1099.
[8] F.T. Peirce, Tensile tests for cotton yarns: Theorems on the strength of long and of composite specimens, J. Text. Ind. 17 (1926) 355.
[9] H.E. Daniels, The statistical theory of the strength of bundles of threads. I, Proc. R. Soc. London Ser. A 183 (1945) 405.

[10] H.J. Herrmann, S. Roux, Statistical Models for the Fracture of Disordered Media, North Holland, Amsterdam, 1990.
[11] B.K. Chakrabarti, L.G. Benguigui, Statistical Physics of Fracture and Breakdown in Disordered Systems, Oxford University Press, Oxford, 1997.
[12] S. Pradhan, A. Hansen, B.K. Chakrabarti, Failure processes in elastic fiber bundles, Rev. Modern Phys. 82 (2010) 499.
[13] A. Hansen, P.C. Hemmer, S. Pradhan, The Fiber Bundle Model: Modeling Failure in Materials, WILEY-VCH, 2015.
[14] S. Biswas, P. Ray, B.K. Chakrabarti, Statistical Physics of Fracture, Beakdown, and Earthquake: Effects of Disorder and Heterogeneity, WILEY-VCH,

2015.
[15] S. Ciliberto, A. Guarino, R. Scorretti, The effect of disorder on the fracture nucleation process, Physica D 158 (2001) 83.
[16] R. Scorretti, S. Ciliberto, A. Guarino, Disorder enhances the effects of thermal noise in the fiber bundle model, Europhys. Lett. 55 (2001) 626.
[17] A. Politi, S. Ciliberto, R. Scorretti, Failure time in the fiber-bundle model with thermal noise and disorder, Phys. Rev. E 66 (2002) 026107.
[18] A. Saichev, D. Sornette, Andrade, omori, and time-to-failure laws from thermal noise in material rupture, Phys. Rev. E 71 (2005) 016608.
[19] S. Pradhan, B.K. Chakrabarti, Failure due to fatigue in fiber bundles and solids, Phys. Rev. E 67 (2003) 046124.
[20] S. Pradhan, A.K. Chandra, B.K. Chakrabarti, Noise-induced rupture process: Phase boundary and scaling of waiting time distribution, Phys. Rev.

E 88 (2013) 012123.
[21] Z. Danku, F. Kun, Creep rupture as a non-homogeneous Poissonian process, Sci. Rep. 3 (2013) 2688.
[22] N. Yoshioka, F. Kun, N. Ito, Size scaling and bursting activity in thermally activated breakdown of fiber bundles, Phys. Rev. Lett. 101 (2008)

145502.
[23] N. Yoshioka, F. Kun, N. Ito, Kertész line of thermally activated breakdown phenomena, Phys. Rev. E 82 (2010) 055102(R).
[24] R.C. Hidalgo, F. Kun, H.J. Herrmann, Creep rupture of viscoelastic fiber bundles, Phys. Rev. E 65 (2002) 032502.
[25] F. Kun, Y. Moreno, R.C. Hidalgo, H.J. Herrmann, Creep rupture has two universality classes, Europhys. Lett. 63 (2003) 347.
[26] S. Roy, S. Biswas, P. Ray, Failure time in heterogeneous systems, Phys. Rev. Res. 1 (2019) 033047.
[27] S. Roy, T. Hatano, Creeplike behavior in athermal threshold dynamics: Effects of disorder and stress, Phys. Rev. E 97 (2018) 062149.
[28] D. Sornette, Mean-field solution of a block-spring model of earthquakes, J. Phys. I France 2 (1992) 2089.
[29] P.C. Hemmer, A. Hansen, The distribution of simultaneous fiber failures in fiber bundles, J. Appl. Mech. 59 (1992) 909.
[30] A. Hansen, P.C. Hemmer, Burst avalanches in bundles of fibers: Local versus global load-sharing, Phys. Lett. A 184 (1994) 394.
[31] S.D. Zhang, E.J. Ding, Burst-size distribution in fiber-bundles with local load-sharing, Phys. Lett. A 193 (1994) 425.
[32] M. Kloster, A. Hansen, P.C. Hemmer, Burst avalanches in solvable models of fibrous materials, Phys. Rev. E 56 (1997) 2615.
[33] D.G. Harlow, S.L. Phoenix, The chain-of-bundles probability model for the strength of fibrous materials II: A numerical study of convergence,

J. Compos. Mater. 12 (1978) 314.
[34] D.G. Harlow, S.L. Phoenix, Approximations for the strength distribution and size effect in an idealized lattice model of material breakdown, J.

Mech. Phys. Solids 39 (1991) 173.
[35] R.C. Hidalgo, Y. Moreno, F. Kun, H.J. Herrmann, Fracture model with variable range of interaction, Phys. Rev. E 65 (2002) 046148.
[36] G.G. Batrouni, A. Hansen, J. Schmittbuhl, Heterogeneous interfacial failure between two elastic blocks, Phys. Rev. E 65 (2002) 036126.
[37] A. Stormo, K.S. Gjerden, A. Hansen, Onset of localization in heterogeneous interfacial failure, Phys. Rev. E 86 (2012) 025101(R).
[38] K.S. Gjerden, A. Stormo, A. Hansen, Universality classes in constrained crack growth, Phys. Rev. Lett. 111 (2013) 135502.
[39] K.S. Gjerden, A. Stormo, A. Hansen, Local dynamics of a randomly pinned crack front: A numerical study, Front. Phys. 2 (2014) 66.
[40] S. Sinha, J.T. Kjellstadli, A. Hansen, Local load-sharing fiber bundle model in higher dimensions, Phys. Rev. E 92 (2015) 020401.
[41] D. Stauffer, Scaling theory of percolation clusters, Phys. Rep. 54 (1979) 1.
[42] D. Stauffer, A. Aharony, Introduction to Percolation Theory, second ed., Taylor and Francis, London, 1995.
[43] T. Grossman, A. Aharony, Accessible external perimeters of percolation clusters, J. Phys. A: Math. Gen. 20 (1987) L1193.
[44] S. Sinha, S. Roy, A. Hansen, Phase transitions and correlations in fracture processes where disorder and stress compete, Phys. Rev. Res. 2 (2020)

043108.
[45] S. Roy, T. Hatano, Creep failure in a threshold-activated dynamics: Role of temperature during a subcritical loading, Phys. Rev. Res. 2 (2020)

023104.
[46] A. Hansen, E.L. Hinrichsen, S. Roux, Scale-invariant disorder in fracture and related breakdown phenomena, Phys. Rev. B 43 (1991) 665.
9

http://refhub.elsevier.com/S0378-4371(21)00054-6/sb1
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb2
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb3
https://arxiv.org/abs/2008.00970
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb5
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb6
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb6
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb6
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb7
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb7
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb7
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb8
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb9
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb10
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb11
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb12
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb13
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb14
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb14
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb14
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb15
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb16
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb17
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb18
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb19
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb20
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb20
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb20
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb21
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb22
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb22
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb22
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb23
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb24
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb25
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb26
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb27
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb28
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb29
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb30
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb31
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb32
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb33
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb33
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb33
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb34
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb34
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb34
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb35
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb36
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb37
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb38
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb39
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb40
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb41
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb42
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb43
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb44
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb44
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb44
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb45
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb45
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb45
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb46


S. Sinha, S. Roy and A. Hansen Physica A 569 (2021) 125782
[47] B. Skjetne, A. Hansen, Implications of realistic fracture criteria on crack morphology, Front. Phys. 7 (2019) 50.
[48] S.B. Santra, Directed spiral site percolation on the square lattice, Eur. Phys. J. B 33 (2003) 75.
[49] S. Sinha, S.B. Santra, Breakdown of universality in directed spiral percolation, Eur. Phys. J. B 39 (2004) 513.
[50] S. Sinha, S.B. Santra, Directed spiral percolation hull on the square and triangular lattice, Internat. J. Modern Phys. C 16 (2005) 1251.
[51] S. Biswas, S. Roy, P. Ray, Nucleation versus percolation: Scaling criterion for failure in disordered solids, Phys. Rev. E 91 (2015) 050105(R).
[52] S. Roy, S. Biswas, P. Ray, Modes of failure in disordered solids, Phys. Rev. E 96 (2017) 063003.
10

http://refhub.elsevier.com/S0378-4371(21)00054-6/sb47
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb48
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb49
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb50
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb51
http://refhub.elsevier.com/S0378-4371(21)00054-6/sb52

	Crack localization and the interplay between stress enhancement and thermal noise
	Introduction
	Model description
	Results
	Localized vs non-localized fracture growth
	Characterization of non-localized cluster growth for f < fc
	Boundary between the random and localized failure

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


