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We present in detail a set of algorithms for a dynamic pore-network model of immiscible
two-phase flow in porous media to carry out fluid displacements in pores. The algorithms
are universal for regular and irregular pore networks in two or three dimensions and can be
applied to simulate both drainage displacements and steady-state flow. They execute the
mixing of incoming fluids at the network nodes, then distribute them to the outgoing links
and perform the coalescence of bubbles. Implementing these algorithms in a dynamic
pore-network model, we reproduce some of the fundamental results of transient and
steady-state two-phase flow in porous media. For drainage displacements, we show that
the model can reproduce the flow patterns corresponding to viscous fingering, capillary
fingering and stable displacement by varying the capillary number and viscosity ratio. For
steady-state flow, we verify non-linear rheological properties and transition to linear Darcy
behavior while increasing the flow rate. Finally we verify the relations between seepage
velocities of two-phase flow in porous media considering both disordered regular
networks and irregular networks reconstructed from real samples.
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1 INTRODUCTION

Flow of multiple immiscible fluids inside a porous medium shows a range of complex characteristics
during transient as well as in steady state [1, 2]. A number of factors, such as the capillary forces at the
fluid menisci, viscosity contrast, wettability and geometry of the system, make the properties of
multiphase flow very different compared to single phase flow. When a non-wetting fluid displaces a
wetting fluid the flow is called drainage whereas the opposite is called imbibition. During drainage, a
less-viscous fluid displacing a more-viscous fluid in a porous medium creates a variety of fingering
patterns, whereas a more viscous fluid displacing a less-viscous one shows a stable displacement front
[3, 4]. The fingering patterns show different properties depending on whether the flow is dominated
by capillary or viscous forces and correspondingly they are named as the capillary and viscous
fingerings respectively [5, 6]. The capillary fingering patterns appear during slow displacement
process and are well described by invasion percolation [7, 8], whereas the viscous fingering patterns
appear during fast displacement and can be modeled by diffusion limited aggregation (DLA) model
[9, 10]. If both the fluids are continuously fed into the porous medium, the initial transients will
eventually die out and the system enters to a steady state when the macroscopic properties fluctuate
around a steady average. It has been discovered that under steady-state conditions the two-phase
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flow rate does not obey the Darcy type linear relation between the
total flow rate and pressure drop in the capillary dominated
regime. Rather, it was found to have a power law dependence on
the total pressure drop [11–16].

Two-phase flow in porous media has extensively been studied
using laboratory experiments [3–6, 17, 18], statistical models [7,
9, 19] and numerical simulations [4, 20, 21]. There is also
significant theoretical developments to describe the steady-
state properties [22–25]. In recent years, due to the vast
advancements in computer power and in high resolution
scanning techniques for pore-space reconstruction, the
computational methods became the leading tools for studying
the two-phase flow. There are different modeling approaches. The
direct numerical simulations, such as the volume-of-fluid method
[26] and the level-set method [27, 28], perform discretization of
the pore space into smaller cells and solve the Navier-Stokes
equation. A popular voxel-based simulation technique is the
lattice Boltzmann method (LBM) which solves the Boltzmann
transport equations for different species of lattice gases at the
discretized pore space [29–31]. These techniques all provide
detailed information on the flow propagation at pore scale and
are useful where the actual shape of the pores matter. However,
due to the discretization of the pores, these models become
computationally expensive with increasing system size when
studying up-scaling problems.

In this regard, a computationally efficient method that can treat
much larger systems is the pore-network modeling [32, 33]. In this
modeling technique, a porous matrix is modeled by a network of
links (pore throats) that are connected at nodes (pore bodies). The
actual shapes of the pore space are replaced with simplified
geometries and the average flow properties for each pore is
considered to model the flow of the system. Unlike the voxel-
based methods that discretize the pore space in smaller grids, in
pore-network simulations one pore is the smallest computational
unit. This simplification looses detailed description of fluid
arrangements inside a pore, however it allows the pore-network
models to apply for large systems and thereby studying their
statistical properties. There are two main ingredients in a pore-
network model: 1) solving the local pressure drops at pores and 2)
displacing fluids accordingly. Based on these two ingredients, there
are two major groups of pore-network models, quasi-static models
and dynamic models. The quasi-static models are intended for the
flow that is dominated by capillary forces, so that the viscous forces
can be neglected. The displacement of fluids in the quasi-static
models are performed by filling a whole pore at a time with invasion
percolation-type algorithms [5, 7, 34, 35] where the filling of pores
are decided by capillary entry pressures or by determining the
stability of ameniscus for a given contact angle [36, 37]. Quasi-static
models can successfully describe the equilibrium properties of two-
phase flow at capillary dominated regime [38–40], however they are
unable to capture the dynamic effects from the interaction between
viscous and capillary forces at higher flow rates. This interaction
between the viscous and capillary forces at the pore scale are taken
into account in the dynamic pore-network models where the fluids
inside pores are displaced under both the viscous and capillary
pressure drops [41–43]. The viscous pressure drops are calculated
by solving flow equations for fully developed viscous flow inside the

pores and the capillary pressure drops are obtained from local fluid
configurations inside a pore. There are many factors that make the
dynamic models computationally more complex to implement
compared to the quasi-static models and efficient algorithms are
therefore necessary. One such factor is the mixing of fluids at the
nodes and distributing them to the neighboring links while
conserving the volumes of each fluid.

In this article, we present in detail a set of algorithms to model
the displacements of two fluids in the links of a pore network and
to distribute them to the neighboring links after they pass through
nodes. The configuration of two fluids inside the pores in these
algorithms at any instant are marked explicitly by the positions of
all the menisci between the fluids. These menisci are displaced in
small steps under the instantaneous viscous and capillary
pressure drops at the pores. We call the algorithms as
meniscus-dynamics algorithms which execute the transport of
the fluids in the network. This is different from other pore-
networkmodels, such as in [41], where the meniscus positions are
only available implicitly from the volumetric saturation of the
fluid elements inside a pore, or from the model in [42] where a
meniscus is moved through a whole volume element at each time
step. Explicit positions of all themenisci in this meniscus-tracking
model provide more detailed fluid configuration at any time. This
not only provides straightforward calculation of capillary
pressures from the meniscus positions but also resolves
different dynamical events such as the retraction of invasion
fronts after a Haines jump [44–47].

This meniscus-tracking approach to model the fluid transport
in pore-network model was first introduced by Aker et. al. in the
late nineties [43] to study transient two-phase flow – i.e. drainage
– in a pore network. Those algorithms were restricted to regular
networks with open boundary conditions and could only simulate
drainage displacements, that is, when a non-wetting fluid invades
a porous medium filled with a wetting fluid. Volumes of these two
fluids as they pass through the nodes were not conserved in that
model. Since then, the model and the algorithms were in
continuous development to apply for different flow types and
for different pore-networks. By implementing bi-periodic
boundary conditions, steady-state flow was simulated by
Knudsen et al. [48], however, the rules to transport the
menisci were based on certain events at the nodes and can
only be applied to a regular square network in two
dimensions. Different driving conditions used in experiments,
such as the injection of two fluids through alternating inlets at
constant fractional flow [11] were also not implemented there.
Alternate injection of fluids for steady-state flow was
implemented in [50] and recently steady-state flow in irregular
pore networks was simulated in [15, 49]. However, all the
previous studies were performed for specific flow types or
boundary conditions, and description of any universal set of
meniscus algorithms were lacking in those works. This is the first
time we present a complete model with a general set of meniscus
algorithms which can be applied to simulate both the drainage
displacements and the steady-state flow in different network
geometries and driving conditions. Moreover, we present them
here with all technical details so that the reader may reproduce
the model.
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The meniscus algorithms we present here do not need any
further modifications when altering the network connectivity or
topology and can be applied to regular or irregular networks.
Both the transient and steady-state two-phase flow under
different driving conditions, such as constant external
pressure drop or constant flow rate, can be simulated.
Furthermore, the algorithms also do not depend on different
boundary conditions, such the injection of fluids in a network
with open boundary or the flow in a network with periodic
boundary. As we will see, these algorithms are simple and
straight-forward to implement, however they are capable to
capture the essential statistical properties of immiscible two-
phase flow. This we will show by implementing these algorithms
in a dynamic pore network model and reproducing a few
fundamental results of transient and steady-state flow. When
the statistical properties are concerned, fine details of dynamics
are generally dropped out. This makes it possible to model the
fluid displacements with simplified meniscus dynamics rules,
while still preserving the fundamental statistical properties.
Moreover, a set of universal algorithms that do not depend
on the network geometry or the flow conditions are highly
significant for the development of any commercial tool for
multiphase flow simulations.

The article is structured as follows. In Section 2, we will
present the governing equations that describe the two-phase
flow at the pore level. We will then describe how we solve the
equations to find the local pressures at the nodes at any time step.
In Section 3, we present in detail the meniscus-dynamics
algorithms which transport the fluids inside the links and
distribute them to the next connected links after they pass a
node. The algorithms are divided into three functions, which will
be presented in the subsections. In Section 4, we will describe how
different boundary conditions can be implemented in this model.
As the exact computational code for a complete simulation will
vary according to the system setup and boundary conditions, we
will present the model in an algorithmic way. If necessary, the
reader may contact the corresponding author to obtain a
simplified code for a specific simulation. In order to provide
the validation of the model, we will present a few examples in
Section 5 where we will reproduce a number of fundamental
results of two-phase flow using the model. Both the transient and
steady-state flow will be simulated and the corresponding results
will be presented in Subsections 5.1 and 5.2 respectively. Finally,
we will draw our conclusions in Section 6.

2 FLOW EQUATIONS

We consider immiscible flow of two incompressible Newtonian
fluids through a network of pores, where one of the fluids is more
wetting than the other with respect to the pore walls. We denote
the less and more wetting fluids as the non-wetting (n) and
wetting (w), respectively. For a given network, two dimensionless
macroscopic parameters that characterize the dynamics of two-
phase flow are the capillary number (Ca) and the viscosity ratio
(M). The capillary number is a measure of the ratio of viscous to
capillary forces in the system. These parameters are defined as,

Ca � μeQ
cA

and M � μn
μw

(1)

where Q is the total flow rate, γ is the interfacial tension between
two fluids andA is the cross-sectional pore area of the network. μn
and μw are the viscosities of the two phases. In case of transient
studies μe is the viscosity of the more viscous phase, whereas for
steady-state flow μe is considered as the saturation-weighted
effective viscosity of the two phases. Hydraulic properties of a
pore-network depend on the geometrical shape of the individual
pores, as well as on the network topology, that is, the connectivity
and spatial organization of the nodes and links of the network
[52]. With our model, we can consider pore networks in two (2D)
or three (3D) dimensions with different topologies as illustrated
in Figure 1. In A, we show a crop of a Hele-Shaw cell filled with a
monolayer of glass beads [50] that is widely used as a two-
dimensional porous medium in laboratory experiments. Such a
porous medium may be modeled by a two-dimensional network
of pores as shown in B with disorder in the link radii. A porous
medium in 3D, a sample of sand-pack [49, 51], is shown in C and
the reconstructed network from the sample is shown in D.
Different techniques for reconstructing the pore-network from
the scanned images of a sample can be found in a wide range of
literature [53–57].

In network representation, a pore is typically consists of two
wider pore bodies that are connected by a narrower pore throat as
shown in Figure 2A. In our modeling approach, we assign the
total pore space to a composite link and the nodes do not contain
any volume. The centers of the pore bodies correspond to the
positions of nodes. This introduces a variation in the cross-
sectional area along the length of the link which is modeled
by a simplified hourglass shape as shown in Figure 2B. The
interfacial pressure (pc) therefore depends on the position of the
meniscus as it moves along the link. The functional dependence
of pc on the position, obtained from Young-Laplace equation,
takes the form [58],

∣∣∣∣pc(xk)∣∣∣∣ � 2c cos θ
rj

[1 − cos(2πxk
lj

)] (2)

where rj is the average radius of a link j and xk ∈ [0, lj] is the
position of the kth meniscus inside the link. Here γ is the surface
tension and θ is the contact angle between the meniscus and the
pore wall. If pa and pb are the local pressures at the two nodes a
and b across the link, the instantaneous local flow rate qj inside
the link from node a to b is proportional to the difference between
the viscous pressure drop Δp (� pb − pa) across the link and the
total capillary pressure drop due to all the menisci inside the link.
This can be calculated by [59],

qj � − gj
ljμj

⎡⎣Δpj −∑
k

pc(xk)⎤⎦ (3)

where the sum is over all the menisci inside the link j, taking into
account the direction of the capillary forces. μj is the saturation-
weighted viscosity of the fluids present inside the link at that instant,
given by μj � sj,nμn + sj,wμw. Here sj,n � lj,n/lj and sj,w � lj,w/lj are
the fractions of the link length occupied by the non-wetting
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and wetting fluids respectively, so that sj,n + sj,w � 1. The term gj is
the mobility of the link that depends on the cross section. We
model piston-like creep flow at low Reynolds number without
any film flow and different cross-sectional shapes can therefore be
taken into account by this mobility term gj. For the regular
network in 2D we chose the links to be cylindrical with
circular cross section for which gj � ajr2j /8 for Hagen-
Poiseuille flow [1], where aj � πr2j is the cross-sectional area.
In the reconstructed 3D network, the pores are triangular in
shape that is characterized by a shape factor (G) defined as the
ratio between the effective cross-sectional area of the pore and the
square of its circumference. The effective cross-sectional areas of
each of the three pore parts, the two wider pore bodies at the ends
and the narrow throat in the middle, are calculated from the
relation α � ρ2/(4G), where ρ is the radius of the inscribed circle
in that pore part [60]. The mobility contribution from each part
of the pore is then obtained from the relation g � 3ρ2α/20 [61, 62]
and the mobility term gj for the total link is then calculated from

the harmonic average of the contribution from the three
individual terms given by,

lj
gj
� λ1
g1

+ λ2
g2

+ λ3
g3

(4)

where λ1,2,3 and g1,2,3 are the lengths and mobilities of the pore
parts respectively as shown in Figure 2A.

In order to move the fluids through the pores, the local
pressures at nodes are needed to be solved at each time step.
With the Kirchhoff equations, the net volume flux (fi) through
every node at each time step will be zero, that is, any node i,

fi � ∑
h

qh � 0, (5)

where the subscript h runs over the links connected to the node i.
This sum, along with Eqs. 2, 3, constructs a set of linear equations.
We solve these equations with conjugate gradient solver [63] or
the Cholesky factorization method [64] and the solutions of

FIGURE 1 | An overview of the network representation of two and three dimensional porous media. Figure (A) shows a 10mm × 10mm crop of a 42 cm × 85 cm
Hele-Shaw cell, filled randomly with a monolayer of 1mm-diameter glass beads, indicated by the white circles [50]. The black and gray colors in the image show the
wetting and non-wetting fluids. Such a system can be modeled by a two-dimensional network of hour-glass shaped links as shown in (B), where the distribution in link
radii and node positions can be tuned according to the system properties. In (B), the dark gray circles represent the beads andwhite represents the pores. The links
are separated by dotted lines and the intersection of two such lines defines the position of a node. One link is colored by light gray. We like to point out that, (B) is not an
exact reconstruction of the image shown in (A), rather it is a simplified illustration. In (C), we show a three dimensional Micro CT image of sand-pack (sample F42A in [51])
and the corresponding reconstructed pore network is shown in (D).

FIGURE 2 | (A) Schematics of one pore in a reconstructed network which consists of three pore parts, two wider pore bodies at the ends and a narrow pore throat
in the middle. λ1,2,3 and g1,2,3 are the lengths and mobility contributions from these three parts. The total length of the link is given by lj � λ1 + λ2 + λ3 and the total mobility
of the link is obtained from Eq. 4. This total pore space is modeled by an hour-glass shaped link as shown in (B)where the wetting and non-wetting fluids are colored by
white and gray respectively. The variation in the interfacial pressure (pc ) due to this shape is modeled by Eq. 2 as shown above. Here pc is modeled by a cosine
function, however one may consider some other functional form with a maximum in the middle that corresponds to the minimum of the pore radii at the narrow pore
throat.
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which at any time step provides the local node pressures pi at that
step. The system can be driven by a constant global pressure drop
ΔP or a total flow rate Q with open or periodic boundary
conditions. More details about implementing different
boundary conditions will be presented in Section 4.

3 MENISCUS-DYNAMICS ALGORITHMS

After the fluid velocities inside all the links are known from the
solution of Eq. 3, the next step is to displace the two fluids inside
the links and to distribute them to the next links after they mix at
the nodes. These are done by updating the meniscus positions
between the two fluids at every time step. In our implementation,
the full algorithm for the meniscus displacements is sub-divided
into three intermediate functions, namely the (a)
meniscus_move, (b) meniscus_create and (c) meniscus_merge,
which are applied to each link and/or node at every time step. The
meniscus_move function makes lateral displacements of the
menisci in proportional to the fluid velocities in the respective
links and calculates the amount of fluids that exit from each link
to the connected node. The meniscus_create function then
distribute these fluids from each node to the connected links
with outward flow. The total pore space in our model is assigned
to the composite links of the network where the competition
between the viscous and capillary forces at any time step is taken
care by Eq. 3. The nodes in our system do not contain any
physical volume and this distribution of fluids from node to links
is only an intermediate step. We therefore considered this
distribution rule to be democratic, that is, it does not treat the
two fluids differently. The volumes of the two fluids distributed to
the links are therefore proportional to the ratio of the velocities in
the outward links and to the ratio of the incoming volumes. These
democratic rules are also possible to apply without any further
change for a mixed wet system where wettability varies from pore
to pore [65, 66], as all the changes in the contact angles can be
accounted by Eq. 3 and no change in the meniscus algorithms are
necessary. These two functions interpret the volume
conservations of the two fluids together with the Kirchhoff
laws. Finally, the third function meniscus_merge is used to
merge bubbles inside any link and it limits the maximum
number of menisci (Nmax). This function is necessary as when
fluids enter in the links from the nodes, new menisci are created at
the entrance of the links which can make the meniscus number to
increase indefinitely during the time stepping. In a real system,
coalescence of bubbles occur inside the pores which limits the
number of menisci. There are experimental studies to investigate
the formation of bubbles and to find their characteristic size during
flow through pore junctions [67], however, to our knowledge, there
is no clear information available on the functional dependency of
the maximum number of menisci or bubbles on the pore geometry
and aspect ratio as well as on other flow parameters such as the
fluid velocity, contact angle and surface tension. In order to get a
detailed arrangement of fluids inside a pore, one needs to solve the
flow equations at a much smaller scale, such as in Lattice
Boltzmann simulations. In pore-network modeling, we are
interested in the large-scale flow properties and not in the

detailed configurations of fluids inside a pore. We therefore
kept this number (Nmax) as a tuning parameter in our
algorithm which may be calibrated based on experimental
observations. We constructed a merging algorithm that keeps
the center of mass of the bubbles unchanged so that the overall
fluid displacement does not get affected by the merging. We have
performed a set of sensitivity test on the maximum meniscus
number which we will present in Section 3.3.

In the following we present with all the technical details how
these three functions can be implemented in any pore network.
They are illustrated in Figure 3. We will verify a few identities in
order to check whether they introduce any unphysical effect on
fundamental flow properties.

3.1 meniscus_move
The pore network consists of NL number of links that are
connected to each other by NN number of nodes. We will use
the subscript i for a node (i � 1, . . . ,NN) and the subscript j for a
link (j � 1, . . . ,NL). The meniscus number inside a link is
denoted by k. Inside the code, one also needs to mark the type
of the menisci, for example, whether it is a meniscus at the
beginning of a non-wetting bubble or at the end. This is necessary
in order to calculate the direction of the capillary forces and also
to measure the amount of two individual fluids that enter from a
link to a node. Whether it is a regular network with constant
coordination number for each node or an irregular network
where the nodes have different coordination numbers, such as
a reconstructed network from a real sample, it does not change
any of the rules described in the following. In Figure 3, we
illustrate them for an example of five links connected to a node i.
At a time step, when all the pressures (pi) at the nodes for an
existing fluid configuration are known from the solutions of
Kirchhoff equations, the flow rates qj inside the links are
obtained from Eq. 3. A time interval (Δt) is then decided in
such a way that a meniscus inside any link does not move more
than 10% of corresponding link length at that time step. In order
to do so, the link-velocities cj are calculated from local flow rates
qj by cj � qj/aj, where aj is the cross-sectional area of the link j.
The time step is then calculated as

Δt � 0.1lj
cj,max

, (6)

where cj,max is the largest fluid velocity among all the links and lj is
the length of that link. For the time evolution, we use an explicit
Euler-type procedure. This works well for a large range of
capillary numbers with only the time step criterion mentioned
in Eq. 6. In order to ensure numerical stability at low capillary
numbers, however, the sensitivity of interfacial pressure jumps to
perturbations in meniscus positions must also be taken into
account when choosing the time step, see [68]. This puts a
limit on the maximum time step size that is independent of
flow rate and thus becomes a severe criterion when flow rates are
low. In [68] computational efficiency was improved at low
capillary numbers by a semi-implicit method for a different
type of meniscus algorithms. Here, however, we consider only
capillary numbers that are large enough for Eq. 6 to be sufficient
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to ensure numerical stability. We will show some simulation
results in Section 5.1 for Ca � 10− 5 and in our tests, we could run
simulations at capillary numbers as low as Ca � 10− 6, though the

simulations were highly time consuming. Simulations with
capillary numbers lower than that are not doable within
reasonable computational time.

FIGURE 3 | The three intermediate steps for themeniscus dynamics, themeniscus_move, meniscus_create andmeniscus_merge, at every time step are illustrated
here. Here five links, numbered as j � 1, 2, 3, 4 and 5, are connected to the node i. However the above illustrations are also valid for any number of links. Wetting and non-
wetting fluids inside the links are colored by white and dark gray respectively. All of the pore space are distributed to the links in this model and the area around the node i,
colored by light gray, does not contain any real volume. (A) shows an example configuration of two fluids at a time step. Solution of the Kirchhoff equations as
described inSection 2 provides the local flow rates qj . Based on the directions of qj at this time step, say the links 1, 2 and 3 are identified as the incoming links whereas 4
and 5 are identified as the outgoing links here. Values of the displacements Δxj for each link, calculated from Δxj � qjΔt/aj (see text) are shown by dashed lines. Every
meniscus in a link j are moved toward (in the incoming links) or away from (in the outgoing links) the node by a distance Δxj which is shown in (B). This is performed by the
function meniscus_move. The total volume of the fluids (a1Δx1 + a2Δx2 + a3Δx3) which left the links 1, 2 and 3 into the node i is now to be placed at the beginning of the
links 4 and 5, which will fill the volume (a4Δx4 + a5Δx5) and will create newmenisci in the outgoing links as described in meniscus_create. There are two different ways of
creating the newmenisci, one is to place the wetting fluid first and the non-wetting next as shown in (C), and the other is to place the non-wetting fluid first and the wetting
next as shown in (D). We adopt (C) and (D) alternatively at each consecutive time steps. (E) shows the meniscus_merge function for the link 5 when there are four
allowed menisci. There link 5 has total six menisci before merging and the two bubbles around the two nearest menisci marked by the arrows are merged. The merging
process are illustrated in more detail in Figure 4.

FIGURE 4 | Illustration of the meniscus_merge function for maximummeniscus countNmax � 4. The top row shows themeniscus positions before merging and the
bottom row shows after merging. White and gray represent the two fluids inside the links. The nearest two menisci are indicated by red arrows. In (A) we show the
simplest possible try, namely the merge_back scheme. The link had six menisci before merging among which the menisci 2 and 3 are the nearest. We merge them by
moving only one bubble toward the other, so the meniscus 1 does not change its position, only the meniscus 4 is moved toward 1 by a distance that is equal to the
distance between 2 and 3. In (B)we show the next possible try, namely the merge_cm. Here instead of moving the meniscus 4 toward 1, we move both 1 and 4 toward
each other by such distances so that the center of mass of the two bubbles do not change after merging. The third and final meniscus merging scheme is merge_cmnn,
which is same as (B) with an additional criteria as illustrated in (C). In the situation when one of the two nearest bubbles is connected to a node, such as the non-wetting
bubble connected to the meniscus 5 in (C), it will get disconnected from the node according to the merging scheme (B). We avoid this disconnection of any bubble from
a node by moving only the other bubble in such a situation as shown in (C). So to merge the nearest menisci 4 and 5, we only move the meniscus 3 toward the node. The
merge_cmnn scheme is therefore a combination of (B) and (C) which we adopt here.
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After deciding the time step, menisci inside each link j are to be
moved in the direction of qj by a distance,

Δxj � cjΔt (7)

as shown in Figures 3A,B. Here, the links have uniform cross-
sectional area in terms of themobility, so all themenisci inside the
same link move by the same distance. The positions of all the
menisci inside any link (xj,k) are then updated, xj,k � xj,k + Δxj. By
doing this, if any of the menisci moves outside any link (xj,k > lj), it
is deleted from the list of menisci. The set of pis at the nodes
decide which links, among all the links connected to a node, have
fluids that flow toward the node and have fluids that flow away
from the node at that time step. We name these links respectively
as the incoming links and the outgoing links for that node. In the
example shown in Figure 3 the links 1, 2 and 3 are the incoming
links and the links 4 and 5 are the outgoing links for the node i at
that time step. Due to the displacement of the menisci by an
amount Δxj, a node i receives a certain volume (ϕi,j) of wetting
and/or non-wetting fluids from an incoming link j, given by ϕi,j �
ajΔxj � qjΔt that leaves from the end of an incoming link j. The
total volume of fluids (Vi) received by a node i from all of its
incoming links is therefore,

Vi � ∑
j∈ I
ϕi,j � Vw

i + Vn
i , (8)

where Vw
i and Vn

i respectively are the total volume of wetting and
non-wetting fluids arrived from all the incoming links to the node
i. Here j ∈ I denotes the set of all the incoming links connected to
i. We point out that, in order to apply this meniscus_move
function for the whole network, one can loop through all links
j, move the menisci by the distance Δxj and add up the amount of
fluids that exit from the link to the connected node in the
direction of the link-flow. This will produce the arrays of Vw

i
and Vn

i at the end of the loop which will contain the incoming
volume flux at each of the nodes at that time step. The marking of
the meniscus types, as mentioned before, will allow here to
calculate the individual terms Vw

i and Vn
i . This is illustrated in

Figure 3.

3.2 meniscus_create
After the function meniscus_move is performed over all the links,
the list of the volumes Vw

i and Vn
i of incoming fluids for all the

nodes are generated for that time step. As all of the pore space in
this model is assigned to the links of the network and the nodes do
not contain any physical volume, the total volume of incoming
fluids (Vi) to a node are to be injected at the beginning of the
outgoing links at the same time step. This will create new bubbles
and menisci at the beginning of the outgoing links. The total
volume of fluids that will enter from a node i to an outgoing link j
is given by, ϕi,j � qjΔt, and due to the balancing of the Kirchhoff
equations it ensures that∑j ∈ Iϕi,j � ∑j ∈ Oϕi,j where j ∈ I and j ∈ O
respectively denote the set of all incoming and outgoing links for
the node i. However, we still need to find out the volumes of each
individual fluid for any outgoing link, that is, how much of the
wetting (ϕwi,j) and the non-wetting (ϕni,j) volumes will enter into j.
As illustrated in Section 3, we adopt a “democratic” rule to
calculate this, that means both the wetting and non-wetting
fluids get the same preference and the volumes depend on the
flow rates qj of the respective outgoing links. For any outgoing
link j, ϕwi,j and ϕni,j are therefore calculated as,

ϕw
i,j � qjV

w
i Δt/Vi and ϕn

i,j � qjV
n
i Δt/Vi (9)

which imply that the ratio of the volumes of a fluid among all the
outgoing links are the same as the ratio between flow rates among
those links. Distributing the fluids in this way also preserves the
volume conservation of each individual fluid, that is,

∑
j∈O

ϕw
i,j � Vw

i and ∑
j∈O

ϕn
i,j � Vn

i . (10)

In each link, the wetting and non-wetting bubbles can be
placed in two different ways, the non-wetting fluid at the
beginning and the wetting fluid at the next, as shown in
Figure 3C or in the other way as shown in Figure 3D. Here
we adoptC orD alternatively at every consecutive time steps. One
can also chose C or D randomly at every time step. This is
equivalent of assuming that at some time step the wetting fluid
coming from the incoming nodes pass the node before the non-

FIGURE 5 | Plot of steady-state non-wetting fractional flow Fn as a function of non-wetting saturation Sn for zero capillary pressure at the menisci. The three plots
correspond to the three merging schemes (A)merge_back, (B)merge_cm and (C)merge_cmnn as described in Section 3.3. A small but systematic deviation from the
diagonal Fn � Sn line can be observed for A.
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wetting fluid enters the node, and the situation is the opposite in
the other case.

As we mentioned before, the competition between the viscous
and capillary forces only appear in Eq. 3 in our model. The
meniscus displacement algorithms are therefore democratic and
do not treat the wetting and the non-wetting fluids differently.
This means, when the surface tension is set to zero, the capillary
forces disappear and one will obtain [69],

Qw(Sw ,M) � Qn(1 − Sw, 1/M) (11)

where Qn and Sn are the total non-wetting flow rate and the non-
wetting saturation. If we further set μw � μn when the surface
tension is zero, the two fluids essentially become identical which
will flow with equal velocity. This leads to,

Fn � Sn (12)

where, Fn � Qn/Q, the non-wetting fractional flow in the steady
state. These conditions can be used as preliminary tests for the
meniscus functions whether they are implemented properly in
the code. The precise way tomeasure the fractional flow and other
measurable quantities will be presented in Section 5.

3.3 meniscus_merge
After the two functions meniscus_move and meniscus_create are
executed for each link, we look for any link in which the number
of menisci exceeds the maximum number Nmax. Notice that,
restricting the number of menisci inside a link does not
necessarily impose any restriction on the minimum or
maximum size of a bubble. In order to find out the best
possible algorithm and to test its sensitivity, we performed
numerical simulations with a network of 64 × 64 links forming
a diamond lattice in 2D with disorder in the link radii. We start
with a simple merging rule A (merge_back), where we identified
two nearest non-wetting bubbles inside a link. Among these two
non-wetting bubbles, only one, say the one in the front toward the
flow direction, is moved back toward the other bubble and then
merged. The length of this merged non-wetting bubble is the sum
of the two bubbles before merging which maintains the volume
conservation. This reduces the meniscus count by two inside the
link and the meniscus positions are updated accordingly. This is
illustrated in Figure 4A. However, when we measure the non-
wetting fractional flow for zero surface tension with equal
viscosities of the fluids, that is for two identical fluids, we find
a deviation from Eq. 12. This is shown in Figure 5Awhere a small
but systematic deviation from the diagonal Fn � Sn line can be
observed which is unphysical. This effect is a consequence of
displacing the non-wetting bubble opposite to the flow which
introduces a decrease in the non-wetting fractional flow. We then
tried the next rule B (merge_cm), where instead of merging two
nearest non-wetting bubbles, we identified any two nearest
menisci and merge the two bubbles across them. With this
process, both the non-wetting or wetting bubbles can be
merged whichever are the nearest. Moreover, instead of
moving only one bubble toward the other, here we moved
both the bubbles toward each other by such a distance so that
the center of mass of these two bubbles does not change after

merging. We illustrate this in Figure 4B. This rule shows
satisfactory Fn � Sn behavior at the zero capillary pressure as
shown in Figure 5B. We then measured Fn at finite capillary
numbers Ca � 0.1 and 0.01, and check the sensitivity and the
qualitative behavior of the results. They are shown in the top row
of Figure 6 for maximum bubble counts Nmax � 2 and 3. The Fn
vs. Sn plot generally shows an S-shaped behavior for finite Ca in
experiments and simulations [70, 71]. There are capillary barriers
associated with the narrow pore throats which the fluids need to
overcome. Consequently, the fluids flow with different velocities
and the phase with larger volume fraction wins. The non-wetting
fractional flow curve therefore stays under the diagonal for lower
non-wetting saturation and above the diagonal for higher non-
wetting saturation. Due to the direction of capillary forces
between the wetting and non-wetting phases, the curves do
not cross the diagonal at the middle. This makes fractional
flow curve S-shaped when plotted against the saturation.
When the saturation of a fluid is very high, it percolates
through the system by trapping the other fluid in small
clusters and the fractional flow of the percolating fluid become
close to 1. However, for the merging scheme merge_cm (B), we
see that the curve deviates from a typical S-shape and approaches
to the diagonal line at higher saturation values (Sn > 0.8). This
seems an artificial effect introduced by the merging scheme B. It
seems that, as we moved both the bubbles toward each other
while merging, small bubbles connected to different links at the
nodes got disconnected and started flowing. Moreover, the results
also seem to be sensitive on the meniscus count. We therefore
updated themerging scheme further on. In the third and final rule
C (merge_cmnn), we added one additional criteria compared to
B. There we made sure that any fluid bubble that is in contact to a
node, does not get disconnected from the node during the
merging process. In order to do so, if one of the two nearest
bubbles are connected to a node, we did not move that bubble
during the merging process and only moved the other one.
Everything else in this rule C are the same as rule B. With
this merging scheme, we found exact match of fractional flow
with Eq. 12 at zero surface tension and also obtained the expected
qualitative behavior for non-zero capillary pressure. These are
shown in Figure 5C and in the bottom row of Figure 6
respectively. Moreover, while changing the maximum bubble
count with this merging scheme, we find no noticeable
difference in the qualitative behavior of Fn with the change in
Nmax. This is shown in Figure 7 for Nmax � 2, 3, 4 and 5. We
therefore finally adopt the merge_cmnn as the merging scheme.

4 BOUNDARY CONDITIONS

Simulations of different types of flow need proper boundary
conditions to be implemented. The drainage displacement
simulations can be performed with open boundary conditions
(OB) where two opposite edges can be used as the inlets and
outlets and the other edges are kept closed. Depending on the
setup, all or some of the nodes and links at the inlet edge can be
considered to inject a fluid. Depending on whether the system is
driven under constant pressure drop or constant flow rate, either

Frontiers in Physics | www.frontiersin.org March 2021 | Volume 8 | Article 5484978

Sinha et al. Meniscus Algorithms for Pore-Network Modeling

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


FIGURE 6 | Steady-state fractional flow at finite capillary numbers Ca � 0.1 and 0.01 with the merging rules B: merge_cm (top row) and C: merge_cmnn (bottom
row). The left and right plots for each capillary number correspond to Nmax � 2 and 3 respectively. With B, Fn approaches toward the diagonal line at higher saturation
Sn >0.8 for the first three plots.

FIGURE 7 |We show the effect of changing the maximum number of menisci (Nmax) with the merging scheme C, the merge_cmnn. The steady-state non-wetting
fractional flow is plotted as a function of non-wetting saturation forNmax= 2, 3, 4 and 5.With such a change in the meniscus count, no noticeable difference is observed in
the qualitative behavior in Fn.

FIGURE 8 | Implementation of periodic boundary conditions for 2D and 3D networks. A 2D regular network is shown in (A)where periodic boundary conditions are
applied in both the directions. Here the overall flow is in the upward direction and the gray links at the top row represent the ghost links. The links are drawn as cylindrical
tubes for the simplicity of drawing, but they are hourglass shaped in terms of the capillary pressure. The nodes are marked by small dots where the red dots at the left and
right edges represent identical nodes. This makes the flow essentially on the surface of a torus as shown in (B) where the arrow represents the effective flow
direction. For 3D, a network reconstructed from Beria sandstone is shown in (C)where the overall flow is from left to right. Periodic boundary conditions are applied in the
direction of flow by adding a mirror copy of the the network as shown in (D). The ghost links at the right are colored by gray.
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the node pressures (pi) or the link flow rates (qj) at the inlets are to
be set externally. We also need to set the node fluxes (Vw

i and Vn
i )

at the inlets depending upon the type of fluid injected. For the
injection of non-wetting fluid, all theVn

i s are set to be one and the
Vw
i s are set to be zero for all the inlet nodes. With these, we solve

the equations for pressures and flow rates for all the other nodes
and links inside the network.

The open boundary conditions can also be used for steady-
state flow for the setup that is generally used in laboratory
experiments [12]. There, instead of injecting one fluid, two
fluids are injected simultaneously through alternate inlets. For
this setup, all we need to do is to set the inlet node fluxes
accordingly, all the Vn

i s are set to one for the non-wetting inlets
and all theVw

i s are set to one for the wetting inlets. The inlet flow
rates define the total flow rate (Q) and the fractional flow
Fn � Qn/(Qn + Qw). Here, Qn � ∑′

nqj and Qw � ∑′
wqj where

Σ′
n and Σ′

w indicate the sum over all non-wetting and wetting
inlets respectively. The fractional flow Fn is an external
parameter in this setup and the saturation Sn is decided by
the system.

Another way to simulate the steady-state flow is by
implementing periodic boundary (PB) conditions in the
direction of overall flow, which is generally not possible in the
experiments. In the open boundary setup, the injection of two
fluids via alternate inlets in the experiments creates boundary
effects and makes spatially homogeneous steady-state regime
smaller. With the periodic boundaries, such boundary effects
can be avoided and relatively smaller systems may be used for
similar statistics. For this, the inlet and outlet edges are connected
so that the fluids leaving at the outlets, enter the system again
through the inlets. The links that connect the inlets and outlets are
called as the ghost links. The network therefore becomes a closed

FIGURE 9 |Development of transient flow patterns during the drainage simulations in a disordered square network of 64 × 64 links. The network is initially filled with
wetting fluid (gray) and the non-wetting fluid (blue) is injected through four inlet nodes at the bottom edge of the network, shown by the arrow, with a constant flow rate.
The top edge of the network is kept open which works as the outlet. Periodic boundary conditions are applied in the horizontal direction, therefore the left and right edges
are connected together. Only the capillary number Ca and the viscosity ratio M are altered during these simulations and all other flow parameters and the algorithms
for meniscus dynamics are exactly the same. The flow patterns show the different regimes of transient two-phase flow, namely (A) the viscous fingering (B) the stable
displacement and (C) the capillary fingering. We like to point out that, though we adopted “democratic” rules for meniscus algorithms, it is the solution of the flow
equations that lead the fluids to generate these different flow patterns.
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system and the two fluids keep flowing through the system. The
saturation Sn therefore is a control parameter here and the
fractional flow is decided by the system. This is illustrated in
Figure 8 for 2D and 3D networks. In case of 2D, periodic
boundary conditions are applied in both directions which
makes the flow equivalent to the flow on the surface of a torus
as shown in B. For the reconstructed network in 3D, the opposite
inlet and outlet edges are not identical. Therefore, to apply to
periodic boundary conditions to this network we double the
system by a mirror copy of the network in the direction of the
flow, as shown by the two cuboids inD. This makes the inlets and
outlets at the opposite edges identical, which we then connect
with the ghost links to make the system periodic. With the
periodic boundary, the inlets are seen as the neighbors of the
outlets for the meniscus-dynamics algorithms. Here, the global
pressure drop ΔP to drive the flow needs to be added with the
node pressure drops across the ghost links while solving Eqs. 3, 5.

The structure of the complete simulation with all the meniscus
dynamics functions is the following:

(1)Network: construct or read
(2)Define: boundary conditions
(3) Initialize: random or sequential fluid distribution
(4) for t � 1 to timesteps do
(5) Solve the pressure field
(6) for j � 1 to totallinks do
(7) meniscus_move(j)
(8) end for
(9) for j � 1 to totallinks do
(10) meniscus_create(j)
(11) meniscus_merge(j)
(12) end for
(13) Calculate measurable quantities at t
(14) end for

During initialization, the initial positions of all the menisci in
each link need to be defined depending on the saturation and how
we want to start the simulation. Then after solving the pressure
field, the meniscus_move function is to be performed on all the
links which will generate the array of the node fluxes Vw

i and Vn
i

for each node i. These arrays will then be used as the input to the
meniscus_create function which will create the new menisci in
the links. The code for the first three steps in the above method
will vary according to different requirements of the simulation.

5 APPLICATIONS AND VALIDATION

As stated earlier, the meniscus algorithms in this pore-network
model has the flexibility to be applied for different network
topologies and boundary conditions. Moreover, we can study
both the transient and the steady-state properties. In our
simulations, we consider a network of links forming a tilted
square lattice at an angle 45+ with the direction of applied
pressure drop in 2D. The length of each link (lj) is 1mm and
their radii (rj) are taken from a uniform distribution of random
numbers in the range from 0.1mm to 0.4mm. In 3D, we consider

a network that is reconstructed from a real sample of Berea
sandstone by using micro-CT scanning [49, 51]. The
reconstructed network contains 2,274 links that are connected
via 1,163 nodes and has a physical dimension of 1.83 mm3. We
doubled this network by adding a mirror image of itself in the
direction of the applied pressure drop in order to apply periodic
boundary conditions. In the following, we present some of the
fundamental results of transient and steady-state of two-phase
flow in porous media by using this pore-network model. All the
following results are obtained only by changing the parameter
values and the boundary conditions as necessary, while using the
exactly same algorithms for meniscus displacements.

5.1 Drainage Displacements
As described in the introduction, when a non-wetting fluid is
invaded into a porous medium filled with a wetting fluid, it
generates different types of invading flow patterns depending on
the capillary number and viscosity ratio. A less viscous fluid
displacing a high viscous fluid creates viscous fingering patterns
at a high Ca [6, 17] and capillary fingering patterns at low Ca [8].
The capillary and viscous fingering patterns resemble with the
invasion percolation [7] and diffusion limited aggregation (DLA)
models [9] respectively. Alternatively, when a high viscous fluid
displaces a low viscous fluid, a stable displacement front is
observed. In order to verify whether our pore-network model
can reproduce these different flow patterns during the drainage,
we run different simulations for different values of the capillary
number Ca and viscosity ratio M. In our simulations, we set
c cos θ � 0.03 N/m. The results are highlighted in Figure 9. Here
M � μn/μw where μn and μw are the viscosities of the invading
blue non-wetting fluid and the defending gray wetting fluid. In
the top row the low viscous non-wetting fluid displaces the more
viscous fluid where one can observe the development of the
viscous fingering pattern. In the second rowM � 102, and a more
viscous blue fluid is displacing the less viscous gray fluid and a
compact and stable displacement front is observed [5]. Flow
patterns in the third row correspond to capillary fingering which
are generated with the simulations at a very low capillary number
Ca � 10− 5. These fingering patterns are more fractal than the
viscous fingering and depend strongly on the system disorder. For
a more quantitative measurement of the different regimes, one
can measure the fractal dimensions of the fingering patterns. We
like to point out that, these three different transient regimes are
generated only by altering the values of the flow rate Q and the
viscosities of the two fluids to set the values of Ca and M, and no
modification in the meniscus dynamics algorithms were made
between different simulations.

5.2 Steady State
Steady-state flow can be simulated by implementing either open
or periodic boundary conditions as shown in Figure 10. In the
open boundary simulation shown in the first row, the wetting
and non-wetting fluids are injected through alternate injection
points at the bottom edge of the network. The top edge is kept
open through which fluids leave the system. The two edges on
the sides are connected through periodic boundary which can
also be kept closed if necessary. The simulations are performed
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at constant fractional flow by setting the flow rates at the inlet
links. Due to the traces of the injections near the inlet edge, a
long enough system is necessary for the open boundary
simulations to obtain a region of spatially homogeneous
steady-state flow away from the inlets. The second row of
Figure 10 shows simulation with periodic boundary
conditions in both directions. Here the system is closed and
the control parameter is the fluid saturation. In the third row, we
show the simulation with a three dimensional reconstructed
Berea network where the periodic boundary condition is applied
in the direction of the overall flow. The total flow rate is
controlled in these simulations and we measure the global
pressure drop (ΔP). By plotting ΔP as a function of the
injected pore-volumes as shown in the right of each row, we
identify the steady states, that is when ΔP fluctuates around an
average value.

In the following, we present two sets of simulation results with this
dynamic pore networkmodel to show the agreement with the steady-
state properties of two-phase flow. First, we will present the effective
rheological properties where the total flow rate shows non-linear

dependence on the pressure drop in the capillary dominated regime
[12–15]. Next, we will measure seepage velocities and will verify the
relations between them [25]. We will also describe in detail how to
measure the different quantities from the simulation, such as the flow
rates and the seepage velocities of different fluid components.

Effective Rheology and Crossover from Linear to Non-
linear Flow Regime
When two Newtonian fluids flow through a porous media, it was
found experimentally [11–13, 15], numerically [14, 15] and with
mean field calculations [14] that, in the regime when capillary
forces compete with the viscous forces, that is, in the low capillary
number regime, the total flow rate Q in the steady state does not
follow the linear Darcy relation and varies quadratically with the
excess pressure drop. This can be written as,

Q � 0, P ≤ Pt

∼ (ΔP − Pt)2, P > Pt
(13)

where (Pt) is a global yield threshold pressure (Pt) below which
there is no flow through the system. Study also shows that the

FIGURE 10 | Steady-state simulations at Ca � 0.001 and M � 1 with different boundary conditions. The wetting and non-wetting fluids are colored by gray and
blue. The top row shows simulation with open boundary at Fw � 0.5 with a 2D diamond network of 64 × 100 links. The next two rows respectively show simulations with
periodic boundary for Sw � 0.5 with a 2D network of 64 × 64 links and with a 3D reconstructed network of Berea sandstone. The directions of the overall flow is from the
bottom to top for 2D simulations and from the left to right for 3D simulations. For each system, the measured global pressure drops (ΔP) as a function of the pore
volumes (Vp) of fluids passed are shown at the right where the red and black curves for the first system show the pressure drops at the middle and at the inlet of the
system with respect to the outlet row.
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non-linear behavior depends on the distribution of the threshold
pressures as well as on the system geometry [72]. This is related to
the capillary pressures at the menisci that create threshold
barriers at the pore throats. These pores start opening while
increasing the pressure drop, which leads the total flow rate Q to
increase faster than the increase in ΔP. At sufficiently high
pressure drop, all the pores start flowing and there is a
crossover to a linear regime.

In order to verify this non-linear rheological behavior with
our model, we performed steady-state simulations with the 2D
square network and the 3D Berea network. The details of the
networks were described in Section 5. Simulations are
performed at constant total flow rate Q and the average
global pressure drop ΔP is measured in the steady state. Here
the steady-state was achieved by using periodic boundary
conditions. For 2D, the data is averaged over 20 different
samples. The results are presented in Figure 11 where we
plot the overall flow rate Q as a function of (ΔP − Pt). The
threshold pressures Pt are calculated by plotting ΔP vs.

��
Q

√
as

shown in the insets. When the results follow Eq. 13, it will
produce straight lines for the lower values of ΔP, where the
intercepts of the straight lines at y-axis correspond to the values
of Pt . The results show two distinct regimes, a quadratic regime
with slope ≈ 2 satisfying Eq. 13 at the low pressure drops and a
linear regime with slope ≈ 1 at high pressure drops. More
simulation results on this non-linear rheological properties
for different flow parameters and network geometries can be
found in [15], where the meniscus algorithms were used for
steady-state flow and the results were compared with
experiments.

Relation between Seepage Velocities
We will now measure the seepage velocities of the fluids in the
steady state with this model and will verify the relations between
them. When the system is driven under a constant pressure drop

ΔP, a set of equations relating the wetting and non-wetting
seepage velocities (vw, vn) to the total seepage velocity v and
the fluid saturations can be derived using the Euler homogeneity
property of the total flow rate Q in the steady state [25]. These
relations necessitate a new velocity function, namely the co-
moving velocity (vm), which is a characteristic of the porous
medium. The seepage velocities for the wetting and non-wetting
fluids are defined as

vw � Qw

Aw
and vn � Qn

An
(14)

respectively, where Qw and Qn are the volumetric flow rates of
the two fluids in the direction of the applied pressure drop.
Quantitatively, Qw and Qn are defined as the volume of the
wetting and non-wetting fluids that pass through any cross
section of the system, perpendicular to the overall flow
direction, per unit time. Aw and An are the wetting and non-
wetting pore areas defined as the areas occupied by the wetting
and non-wetting fluids along any orthogonal cross section
through the system. This is illustrated in Figure 12 where
ΔP is applied in the positive x direction. The length of the
systems in this direction is L. A cross section normal to the x
direction is shown by an orange straight line for the 2D network
and by an orange grid plane for the 3D network. Orthogonal
views of these cross sections are shown underneath where the
gray and blue patches show the pore areas occupied by the
wetting and non-wetting fluids respectively. The sum of the
areas of individual colors correspond to the wetting and non-
wetting pore areas Aw and An along this cross section. For a
homogeneous porous medium the average values of Aw and An

remain same for any orthogonal cross section of the system in
the steady state. Here we measure Aw and An by averaging the
pore areas over all possible cross sections along x. The total
pore area A related to all the fluids is therefore given by A �

FIGURE 11 | Variation of the total volumetric flow rate Q (mm3/s) with the overall pressure drop ΔP (kPa) in the steady state for square and Berea networks. In the
inset, ΔP is plotted against

��
Q

√
for the low Ca regime where the intercepts at the y-axis correspond to the values of threshold pressures (Pt ). For 2D, we find Pt � 3.65kPa

and 4.09 kPa for Sn � 0.3 and 0.4 respectively. For the Berea network in 3D, we find Pt � 3.54kPa and 0.32kPa for Sn � 0.3 and 0.4 respectively. Using these values, we
plot log10Q vs. log10(ΔP − Pt) which shows two distinct regimes at low and high pressures. For the linear regime, the slopes are obtained as 0.99 ± 0.01 and
1.00 ± 0.01 for 2D and 1.03 ± 0.01 and 1.04 ± 0.01 for 3D for the two saturations respectively. For the quadratic regime, the slopes are obtained as 1.96 ± 0.02 and
1.98 ± 0.03 for 2D and 1.98 ± 0.03 and 1.99 ± 0.04 for 3D.
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Aw + An � ϕAs where ϕ is the porosity and As is the average
cross-sectional area of the total system including the pore space
and the solid. With this, we can express the fluid saturations Sw
and Sn in terms of the pore areas by
Sw,n � Vw,n/Vp � (Aw,nL)/(AL) � Aw,n/A. The total flow rate
Q of the two fluids is the sum of the wetting and non-
wetting flow rates given by Q � Qw + Qn � Awvw + Anvn.
Correspondingly, the total seepage velocity v associated with
the total flow rate Q is defined by,

v � Q
A

(15)

and we can find,

v � Swvw + Snvn (16)

by using the relations mentioned above.
In our network simulations, we have the information about the

local flow rates qi and the meniscus positions for each link i at any
time step. When the system is driven under constant pressure
drop (ΔP), calculating the average flow rates and the pore areas
along any orthogonal cross section of the network from the local
flow rates are not straight forward, specially in case of an irregular
network. For a regular network in 2D, all the links are of the same
length lj � 1mm and they are oriented along the same angle (45+)
with respect to the overall flow direction. The sum of the local
flow rates through each row of links normal to the flow direction
is therefore the same for any row and the flow rates can therefore

be measured by summing over all the links of the network and
then dividing by the number of rows. This given by,

Q � 1
NL

∑
j

qj, Qw � 1
NL

∑
j

sw,jqj and Qn � 1
NL

∑
j

(1 − sw,j)qj (17)

whereNL is the number of rows along L, i. e. 64 here. Similarly, we
can calculate the cross-sectional areas as,

A � 1
NL

∑
j

aj, Aw � 1
NL

∑
j

sw,jaj and An � 1
NL

∑
j

(1 − sw,j)aj (18)

where aj is the cross-sectional area of the link j, projected into the
plane normal to the flow direction. The wetting saturations of the
links sw,j are provided by the meniscus positions. Here the
individual terms corresponding to the wetting and non-
wetting phases are multiplied with the corresponding link
saturations as the probability that a cross section through a
link will pass through the wetting or non-wetting phase is
proportional to the link saturation of that phase.

For an irregular network that is considered here in 3D, the
links are of different lengths and oriented in different directions.
In that case, measurement of the flow rates and the areas by
summing over all the links and dividing by the number of rows
using Eqs. 17, 18 will lead to wrong results. In this case, we
measure these quantities in the following way. Let us consider an
orthogonal cross-sectional plane at a random position through
which we like to measure the flow rates (see Figure 12). The

FIGURE 12 | Description of the system to measure the flow rates (Q, Qw, Qn), the pore areas (A, Aw, An) and the seepage velocities (v, vw, vn) for the 2D and 3D
networks. The global pressure drop ΔP is applied in the x direction which is the direction of overall flow. A random cross section of the system normal to the direction of
overall flow is shown by the orange line for 2D and by the orange grid plane for 3D. The normal view of the cross sections are shown underneath where the gray and blue
patches show the occupation by wetting and non-wetting fluids in the cross section. The total gray and blue areas correspond to the wetting and non-wetting pore
areas respectively and the sum of them correspond to the total pore area along this cross section. The averages of these areas over all the possible cross sections lead to
the measurement of A, Aw and An. In this figure, the gray and blue patches shown in the normal view of the cross sections do not reflect the actual occupations of the
fluids in the above networks and are given as illustration purpose only.
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probability that any link j will pass through this plane will be
proportional to lx,j/L where lx,j is the length of the link j in the x
direction, the direction of the overall flow. After the link is
selected, the probability that the plane will pass through the
wetting fluid inside the link will be proportional to the local
wetting saturation sw,j of the link. Considering these probabilistic
terms, the total flow rates Q, Qw and Qn through a random
orthogonal cross section can therefore be calculated from the sum
of the local flow rates over the links which pass through this cross
section,

Q � 1
L
∑
j

lx,jqj, Qw � 1
L
∑
j

lx,jsw,jqj and Qn � 1
L
∑
j

lx,j(1 − sw,j)qj
(19)

where L is the length of the network in the x direction. The areas
can be measured in the similar way given by,

A � 1
L
∑
j

lx,jaj, Aw � 1
L
∑
j

lx,jsw,jaj and An � 1
L
∑
j

lx,j(1 − sw,j)aj
(20)

For the regular 2D network, lx,j are the same for all the links (� l)
and we recover Eqs 17, 18 by using NL � L/l. After measuring the

flow rates and the pore areas, the seepage velocities v, vw and vn
are calculated using Eqs. 14, 15. Results are averaged over time in
the steady state.

The calculation of v, vw and vn from the measurements of the
flow rates and the pore areas should satisfy Eq. 16. In Figure 13
(top row), we plot Swvw + Snvn against the total seepage velocity
v where we used Eqs. 17, 18 for 2D and Eqs. 19, 20 for 3D. The
plots show exact match of Eq. 16 for the whole range of
parameters.

The total flow rate Q in the steady state is a homogeneous
function of order one of the pore areas Aw an An, that is, if we
scale the three areas by A→ λAw, An → λAn and As → λAs by
keeping the porosity ϕ constant, the volumetric flow rate Q
scales as, Q(λAw , λAn) � λQ(Aw,An). This property of Q leads
to a new set of equations between the seepage velocities.
Complete derivations of the equations can be found in Ref.
[25] and here we will present them in brief and will use them
to validate our model. Taking the derivative of the
homogeneity equation of Q with respect to λ and then
setting λ � 1 we get,

v � Sw( zQ
zAw

)
An

+ Sn( zQ
zAn

)
Aw

. (21)

FIGURE 13 |Plots of Swvw + Snvn against the total seepage velocity v for 2D and 3D are shown in the top. The flow rates and pore areas to calculate vw, vn and v are
measured using Eqs. 17, 18 for 2D and using 19 and 20 for 3D. The velocities are in the unit of mm/s. The colors represent the capillary numbers which are in the range of
0.0007 − 0.2985 for 2D and 0.001 − 0.271 for 3D. The measurements show the exact match of Eq. 16 for both 2D and 3D. In the bottom, we plot the co-moving velocity
vm calculated using Eq. 26, vm � Sw(dvw/dSw) + Sn(dvn/dSn) vs. the same using Eq. 25, vm � (dv/dSw) − vw + vn for the square and Berea networks. The data
shows good a agreement with Eqs. 26, 25 for the whole range of capillary numbers.
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These two partial derivatives in the above equation have the units
of velocity and correspondingly they define two thermodynamic
velocities v̂w and v̂n given by,

v̂w � ( zQ
zAw

)
An

and v̂n � ( zQ
zAn

)
Aw

. (22)

With these definitions Eq. 21 becomes,

v � Swv̂w + Snv̂n, (23)

which has the similar form of Eq. 16. However, this does not
imply that the thermodynamic velocities v̂w and v̂n are the same
as the seepage velocities vw and vn that we measure. These two
types of velocities can be related by a new velocity function is vm
given by,

v̂w � vw + Snvm and v̂n � vn − Swvm (24)

which fulfill both Eqs. 16, 23. This velocity function vm is a
function of the saturation Sw and called as the co-moving velocity,
which is a property of the pore-network. With this definition of
vm, we can derive two equations that are related to the variation of
saturation,

dv
dSw

� vw − vn + vm (25)

and

Sw
dvw
dSw

+ (1 − Sw) dvndSn
� vm. (26)

In order to verify whether our pore-network model with the set
of meniscus algorithms described here do satisfy these
equations, we perform a large number of simulations with a
wide range of parameters for the 2D square network and the 3D
Berea network. Five viscosity ratios, M � 0.5, 1, 2, 5 and 10 are
considered where the wetting viscosity is chosen as
μw � 0.1 Pa.s. The non-wetting viscosity μn is then chosen
accordingly in order to set the value of M. For each value of
M, three different values of the surface tension, c � 0.02, 0.03
and 0.04N/m, are considered. For each set of M and γ, we
considered a set of pressure drops |ΔP/L| � 0.16, 0.20, 0.40, 0.80,
1.0 and 2.0MPa/m for 2D and 10, 20, 40, 80 and 160MPa/m for
3D. These values of pressure drops are chosen in order to get
capillary numbers Ca in a range around 10− 3 to 10− 1.
Specifically, we find Ca in the range of 0.0007 − 0.2985 for
2D and 0.001 − 0.271 for 3D. For any set of parameters,
saturations are varied in the range of 0–1 in the steps of 0.05
which correspond to 21 saturation values. This led to a total of
1890 independent simulations for 2D and 1575 simulations for
3D in steady state.

The seepage velocities are measured for all the simulations
and the derivatives with respect to the saturations are measured
with central difference technique. We calculate the values of
vm � (dv/dSw) − vw + vn (Eq. 25) and vm � Sw(dvw/dSw) +
Sn(dvn/dSn) (Eq. 26) and plot in Figure 13 (bottom row).
The results show good agreement with Eqs. 25, 26 for both
square and Berea networks for the whole range of the capillary
numbers as indicated by the color scale. The few data points that

are outside the straight line mostly correspond to the
simulations near Sw � 0 or 1 where the system undergoes
from two-phase to single phase regime that creates a jump in
the derivatives.

Eqs. 16, 26 transform the wetting and non-wetting velocities
(vw, vn) to (v, vm) while varying the saturation. By inverting the
velocity transformation, it is possible to find equations to
transform the total velocity and the co-moving velocity (v, vm)
to (vw, vn), which are given by,

vw � v + Sn( dv
dSw

− vm) and vn � v − Sw( dv
dSw

− vm). (27)

With these equations we can verify the measured values of
wetting and non-wetting seepage velocities vw and vn against
the ones calculated from these equation. In Figure 14, we plot
v + Sn(dv/dSw − vm) and v − Sw(dv/dSw − vm) against the
measured value of vw and vn respectively. While calculating vw
and vm using above equations, we used the values of vm that are
obtained from Eq. 26. For the whole range of the capillary
numbers, good match with Eq. 27 can be observed for both
the square and the Berea networks.

Finally, we plot the co-moving velocity vm as a function of both
Sw and dv/dSw in Figure 15. Here vm was calculated using Eq. 25
in Figure 15. The data for vm roughly shows a planer form given
by,

vm � aSw + b
dv
dSw

+ c. (28)

By fitting all the data points for the whole set of simulations,
we find a � −6.36 ± 0.25, b � 0.94 ± 0.01 and c � 5.00 ± 0.13
for the square network and a � −12.94 ± 0.62, b � 0.88 ± 0.01
and c � 10.10 ± 0.32 for the Berea network. The planes using
these parameters are shown in the respective figures with grid
lines. The co-moving velocity is a property of the porous
material and a function of the saturation Sw, total seepage
velocity v and the variation of v while changing the saturation.
Therefore it is not enough to specify only the Sw and v to
determine vm, as dv/dSw depends on how the external
parameters are controlled while varying Sw. The
parameters a, b and c characterize this functional
dependency. However, we have considered only a few
samples in our simulations to explore the whole parameter
space which lead to higher statistical errors and therefore
more sample averages may be necessary to improve the
statistics.

6 SUMMARY

We presented a detailed description of a set of algorithms for
transporting fluids in a dynamic pore-network model of two-
phase flow in porous media. The displacements of the fluids in
this model are monitored by updating the positions of all the
menisci with time. The fundamental concept of the algorithms
is simple, at every time step all the menisci are displaced
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according to the velocity in the corresponding link and then all
the fluids arriving at a node from the incoming links are
distributed to the outgoing links. There, the distributed
volumes are proportional to the ratio between the velocities
in the outgoing links and the ratio between the incoming fluid
volumes. We presented these algorithms with all the technical
details so that it is possible for the reader to reproduce this
model. We have illustrated that this pore-network model and
the meniscus algorithms are applicable to both the regular and

irregular network topologies in two and three dimensions. By
reproducing some of the fundamental results of two-phase
flow, we have shown that the model can be used to simulate
both the transient and steady-state flow. The model is able to
generate different drainage displacement patterns by altering
the capillary number and viscosity ratios. In steady state, the
model successfully reproduces the linear to non-linear
transition in the effective rheological properties as well as
the relations between the seepage velocities. For all the results

FIGURE 14 | Plot of the wetting and non-wetting seepage velocities (mm/sec) calculated using Eq. 27 against the measured values of vw and vn for the square (top
row) and Berea (bottom row) network. The derivatives are calculated using the central difference techniques. The color scale shows the capillary numbers.

FIGURE 15 | Plot of the co-moving velocity vm as a function of Sw and dv/dSw for the square (2D) and Berea (3D) networks. The data shows a rough planner
behavior.
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presented here, we used the same meniscus dynamics
algorithms without any modification.

Apart from the standard applications of two-phase flow,
this model can also be very useful to study the effect of the
pore-scale dynamics at low capillary numbers, such as the
retractions of menisci after a Haines jump and the long-range
capillary effects, which are not possible to capture with the
quasi-static or percolation-based models as observed
experimentally in [46]. There is also a number of
possibilities for further developments. In a recent paper by
Zhao et al. [4] ten different groups with different approaches to
model two-phase flow in porous media were invited to
reproduce fluid injection in a circular Hele-Shaw cell at
different capillary numbers and wetting properties, ranging
from drainage to strong imbibition, i.e., imbibition where film
flow dominates the process. The conclusion of that work was,
whereas all the different approaches were able to reproduce the
drainage processes well, none succeeded in reproducing strong
imbibition. An important mechanism during imbibition is
wetting film flow along pore walls. Our presented work
accounts the Darcy-like creep flow and modeling the film
flow mechanisms within the same framework can also be
done as demonstrated in the first attempt in [73]. Another
possible development can be replacing the time integration
with a Monte Carlo algorithm as proposed by Savani et al. [74]
that can further improve the computational efficiency of this
model. However, that method needs to be tested at low
capillary numbers and was only been implemented for
regular lattices. Other important phenomena such as
wetting angle hysteresis is straight-forward to implement.
Further applications such as the wettability alteration due to
changes in the composition of the immiscible fluids can also be
investigated with this model as demonstrated in [65, 66].
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