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ABSTRACT Non-technical loss (NTL) detection is a persistent challenge for Distribution SystemOperators.
Data-driven solutions have been widely used nowadays to analyze customers’ energy consumption and to
identify suspicious fraud patterns for a posterior on-field inspection. However, the usage of such techniques,
in particular the current deep learning methods, is not trivial and requires special attention to tackle
imbalanced-class and overfitting issues. In this paper, we propose a new non-technical loss detection
framework, which combines the effectiveness of convolutional neural network feature extractors with the
efficiency of the Information Retrieval paradigm. In our solution, state-of-the-art pre-trained convolution
neural networks (CNNs) extract deep features from electricity consumption time series represented as
images. Next, these deep features are encoded into textual signatures and indexed using off-the-shelf
solutions for posterior fraud searching. With this framework, the user can search for a specific fraud
pattern in the utility database without having to train any classifier. The experiments performed in a real
dataset provided by CPFL Energia, one of the largest electric utilities in Brazil, presented promising results
both in terms of effectiveness and efficiency for the detection of fraudulent customers. In the conducted
comparative study, we evaluate different time series image representations and CNN feature extraction
approaches with regard to NTL detection results. Experimental results demonstrate that the combination
of the Recurrence Plot image representation with the VGG16 CNN presented the best performance in terms
of both effectiveness and efficiency.

INDEX TERMS Content-based retrieval, deep learning, feature extraction, information retrieval, machine
learning, non-technical loss detection, pattern analysis, power grids, and time series retrieval.

I. INTRODUCTION
The reduction of electrical energy losses represents a specific
issue for eachDistribution SystemOperator (DSO) [1]. These
losses result from technical and non-technical sources. Tech-
nical losses are the energy dissipation that occurs naturally in
the electric grid mostly in consequence of Joule’s effect [2].
Non-technical losses (NTLs) refer to the amount of energy
that is delivered but not accounted for [1], which usually
occurs due to non-legitimate behavior of DSO’s customers
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that perform some kind of illegal interference in the net-
work (theft) or in the meters (fraud).

On-site inspection of the customer’s meters is the major
action taken by DSOs for the detection and mitigation of
NTLs. However, it is economically unfeasible to inspect all
consumers. A typical strategy relies on shortlisting candidates
for field inspection. In order to improve the assertiveness
in the definition of candidates, data-driven solutions, such
as machine learning techniques, have been widely used by
DSOs. In the literature, fraud detection methods based on
Artificial Neural Networks, Decision Tree, Support Vector
Machines, Random Forest, and Optimum Path Forest, for
example, are very popular (the reader may refer to [2], [3]
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to have access to comprehensive descriptions of existing
initiatives).

Despite of good results achieved by machine learning
approaches in some studies, the practical usage of such tech-
niques in the NTL domain is not trivial and presents some
drawbacks. First, there is no single solution capable of solv-
ing all cases of energy theft and fraud [2]. Second, most of the
current proposed techniques were designed to smart meters,
which are not a reality in many countries yet [4]. And third,
the good performance of these methods is directly related to
the quality of the features provided as input. These features
are extracted from raw data in a pre-processing step that takes
into account the DSO operators’ expertise to define which
information is most relevant to be used. However, there is
no consensus in the literature about which features should be
chosen [5].

Since there is no trivial way to characterize relevant pat-
terns contained in the raw data, a potential solution is to
explore ways to easily accommodate different (and eventually
new) kinds of frauds by taking advantage of data-driven
strategies. Current Deep Learning (DL) architectures [6] have
been demonstrated to be a promising alternative to realize this
task, given their remarkable success in several applications,
such as medical image analysis [7], financial forecasting [8],
salient object detection [9], and even for NTL detection
[10]–[14]. A DLmethod is basically a multi-layered artificial
neural network that learns hierarchically ways to represent
the input data during its training step. The simplest repre-
sentations are learned in the first layers and passed to the
subsequent layers, which gradually generate more abstract
features. In this way, the network itself discovers the most
relevant information in the raw data with the goal of increas-
ing the effectiveness performance in the target task. Then,
the need of performing complex feature engineering is elim-
inated. However, the use of DL for the NTL detection is not
trivial as well. Deep Learning methods often require huge
labeled and balanced training sets to achieve high accuracy,
which makes its practical use challenging for DSOs, since
they commonly deal with imbalanced datasets due to the
fraud sample scarcity.

How to explore the power description capability of deep
learning solutions in an efficient and effective way, without
dealing with the challenge of training models based on imbal-
anced class samples? This is the key challenge addressed in
our work.

The aim of this paper is to introduce a novel NTL detec-
tion framework that takes advantages of the deep learning
feature extraction power without facing the need of han-
dling the associated heavy computational burden related to
training it from scratch. Unlike other solutions, our frame-
work models the problem of identifying fraudulent customers
as an Information Retrieval (IR) task. Rather than training
a classifier, we use pre-trained state-of-the-art Convolution
Neural Networks (CNNs) to extract relevant features from
customer electricity consumption data and then we encode
this deep features as textual signatures. In this way, it is

possible to index and search such signatures by using any
available full-text search engine. With this framework, a user
can search for a specific fraud type by using as query a time
series of a known fraudulent consumer. In our method, there
is no need to train any classifier, which makes it robust to the
imbalanced data problem. Recall that time series associated
with uncommon frauds could be used as query input in our
system, which would return other collection time series with
a similar pattern, i.e., time series associated with candidate
frauds.

Our framework addresses both effectiveness (quality of
fraud detection) and efficiency (short time for fraud search)
aspects at the same time. In our formulation, consumption
time series patterns are encoded into bi-dimensional rep-
resentations (e.g., images). CNN-based features are then
extracted from these images and transformed into textual
signatures, which are then indexed using off-the-shelf IR
technologies. Our solution is scalable to handle constantly
evolving collections, and flexible to support the fraud detec-
tion problem even in scenarios where new fraud types are
developed over time.

In summary, this paper has three main contributions:
1) We introduce a new formulation for the NTL detection

problem based on the Information Retrieval paradigm;
2) We introduce a new framework that integrates effec-

tive image-based feature extractors with efficient and
widely consolidated text-based search engines;

3) We perform a comparative study involving state-of-
the-art deep learning based feature extractors and time
series image-based representations.

We designed an evaluation protocol that considers real
consumption data and fraud information associated with
two collections associated with two different Brazilian
cities. We then perform a comparative study with the goal
of investigating which time series image representations
(e.g., recurrence plot, spectogram, markov transition field,
and Grammian angular field) and CNN feature extraction
approaches (e.g., DenseNet121, InceptionResNewV2, Incep-
tionV3, MobileNet, ResNet50, VGG16, and VGG19) would
lead to effective NTL detection results. Experimental results
demonstrate that the combination of the Recurrence Plot
image representation with the VGG16 CNN presents the best
performance in terms of both effectiveness and efficiency.

The remainder of this paper is organized as fol-
lows. In Section II, we discuss related work. Section III
presents a brief overview of the information retrieval
approach. We introduce our proposed framework in
Section IV. Section V presents the protocol used in the
experiments, and discusses the experimental results. Finally,
our conclusions and directions for future work are discussed
in Section VI.

II. RELATED WORK
Motivated by the fact that deep learning can learn new fea-
tures from raw data, the use of deep learning for NTLs detec-
tion has been successfully explored in the literature recently.

40636 VOLUME 9, 2021



A. A. Esmael et al.: Non-Technical Loss Detection in Power Grid Using Information Retrieval approaches

TABLE 1. Comparison of the proposed approach with previous works.

For example, a study comparing the performance of differ-
ent deep learning architectures, includingConvolutional Neu-
ral Networks (CNN), Long Short-Term Memory (LSTM),
and Stacked Autoencoder, was done in [10]. Experiments
were carried out on a synthetic dataset and showed that
the CNN outperformed other classifiers. In another path,
Zheng et al. [11] introduced a Wide and Deep Convolutional
Neural Networks (CNN) framework to identify electricity
thieves on secure smart grids. The Wide component is a fully
connected layer of neural networks that is responsible for
learning the global features from the 1D time series of elec-
tricity consumption data. The Deep CNN component reveals
if there is periodicity or not on the electricity consumption
of the customers. According to the authors, non-periodic
fluctuations are hints of fraud. In order to properly use the
CNN architecture, they designed a 2D manner of data repre-
sentation by splitting the time series of consumption in sets
of seven days (weekly) and stacking them to form a sort
of image. This framework was tested on a real dataset that
was made available by the State Grid Corporation of China
(SGCC). The results obtained are significantly superior to
traditional methods, such as Random Forest, Support Vector
Machine (SVM), and Linear Regression.

Bazau et al. [12], in turn, proposed a novel Deep
Learning approach, which combines both sequential and
non-sequential data, to detect frauds in smart meters. Sequen-
tial data, which correspond to raw daily energy consumption
of customers, are analysed through a long short-termmemory
network (LSTM). Non-sequential data are auxiliary infor-
mation, i.e., geographical, contractual, and economic data,
and they are passed through a multi layer perceptron (MLP)
module. A hybrid module combines LSTM andMLP outputs
to predict fraud cases. The experimental results showed that
the incorporation of auxiliary data significantly improves
the performance. Moreover, the model outperformed pre-
vious two deep learning methods used as baselines. In a
similar approach, Hasan et al. [13] developed a CNN-based
LSTM (CNN-LSTM) model for smart grid data classifica-
tion. Recently, Finardi et al. [14] proposed a hybrid multi-
head self-attention dilated convolution method to address the
issues of the training in imbalanced data. The method takes
advantage of both attention mechanisms and convolutional
layers that are concatenated and unified through a convo-
lution of kernel size 1. Besides it achieved higher accuracy
score than the CNN baseline in performed experiments, their
method presented a fast convergence time (just 20 epochs of
training to converge against the 100 of baseline).

Table 1 summarizes the main features of related work that
explores machine learning solutions based on convolutional
neural networks. Similarly to the above initiatives, we also
explore the power of CNNs in the characterization of times
series consumption patterns. Different from those initiatives,
however, we do not formulate the NTL detection as a clas-
sification problem. Instead, we utilize such CNNs as fea-
ture extractors that lead to textual signature representations
that can be efficiently indexed by off-the-shelf Information
Retrieval (IR) approaches. The formulation of the NTL detec-
tion problem as a search problem opens up new possibilities
for handling a new variety of scenarios, such as:
• The proposed method can be employed to handle imbal-
anced distributions of fraud types.

• The proposed method can be used both with traditional
and smart meters.

• The proposed approach is not only effective, but also is
straightforward scalable to work efficiently with mas-
sive amount of data.

• Fraudsters are always looking for ways to bypass DSO’s
control mechanisms, so it takes some time to have
enough samples of these new frauds to train models to
identify them. With our framework, as soon as a new
type of fraud is identified, it can be used as a query
sample to search for similar misconducts based on time
series patterns.

The integration of time series representations and image
description approaches have been explored before [15]–[17].
Menini et al. [15], for example, investigated the use of texture
descriptors based on LBP to characterize patterns of recur-
rence plot images constructed based of time series associated
with vegetation indices. Dias et al. [16], [17] approached the
same problem, now exploiting different CNN-based feature
extractors. All those formulations, however, were validated
in the context of classification problems involving remote
sensing images. The studies of Santos et al. [18] and dos
Santos et al. [19], [20] explored the possibility of extract-
ing textual signatures from images, a strategy also used in
our framework. None of those initiatives, however, explored
CNNs in the feature extraction process. This literature gap
was addressed by Amato et al. [21], which investigated state-
of-the-art CNN-based image feature extractors for computing
textual signatures. We adopt their formulation in the imple-
mentation of our IR-based NTL detection framework. Differ-
ent from them, however, we integrate this textual signature
extraction pipeline with image-based time series representa-
tions. In summary, to the best our knowledge, our work is
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the first one to explore textual terms defined in terms of deep
features associated with image representations of time series.

III. INFORMATION RETRIEVAL MODEL
Information retrieval aims at finding objects (e.g., textual
documents) of an unstructured nature that satisfies an infor-
mation need from within large collections stored on com-
puters [22]. Due to advances in technologies of digital data
acquisition and storage, huge and growing amount of data
collections, ranging from financial to multimedia content, are
available currently. In this context, it is essential to develop
and use appropriate information systems to properly man-
age these massive collections [23]. The basic aspects of IR
paradigm are briefly introduced as following.

A. FORMALIZATION
Let C = {o1, o2, . . . , om} be a collection of m elements,
where each element oi of C is a digital object. Let D be a
descriptor, which is defined [23] as a pair (ε, ρ), where:

• ε : o → Rn is a function to assign an feature vector vo
to object o.

• ρ : Rn
× Rn

→ R+ is a function that computes the
distance between two features vectors.

The similarity of two objects oi and oj is obtained by
using the descriptor D to compute the distance between
them, which is given by ρ(voi , voj ). The shorter the distance,
the greater their similarity.

A query q is one sample of the digital objects that one
wants to access from a collection and that is used as input
in the retrieval systems. A rank list τq = {o1, o2, . . . , ol} is
generated in response to query q, such that τq ⊂ C has size l,
with l � m, and its elements are sorted in decreasing order
of similarity [24].

The rank (position) of an object oi in the ranked list τq is
denoted by τq(i). Therefore, if oi is ranked before oj in the
ranked list, i.e. τq(i) < τq(j), then ρ(vq, voi ) ≤ ρ(vq, voj ),
indicating that oi is more similar to q than oj [25].

IV. PROPOSED METHOD
This section introduces the proposed framework for
non-technical loss detection based on information retrieval
approaches.

A. FRAUD RETRIEVAL SYSTEM
Fig. 1 illustrates the main components of the proposed frame-
work. The non-technical loss detection framework proposed
is based on the typical information retrieval paradigm. The
idea is to use the energy consumption data of a known fraud-
ulent customer as a query, with the goal of selecting other
suspicious cases of irregularity.

Basically, the proposed framework encompasses two
stages, one off-line and another on-line. The off-line stage
involves extracting features from the clients’ energy con-
sumption time series and encoding these features into textual

FIGURE 1. Overview of the proposed framework: A new non-technical
loss detection system modeled according to an information retrieval
paradigm.

documents, and then indexing them using state-of-the-art
information retrieval approaches.

In the on-line part, the user provides a time series that
has a known fraud pattern as a query sample, the framework
extracts features from this sample, generates its representa-
tion using textual terms, and uses a text search engine to
retrieve from the time series collection the series that are
similar to the query sample. The result is ranked in decreasing
order of similarity before being displayed to the user. It is
expected that other fraud cases are identified and presented
at the initial positions (top ranks) of the resulting ranked list.

The steps of indexing, storing, and searching are expected
to benefit from standard text search engines available nowa-
days, such as Lucine1 or ElasticSearch.2 These search
engines have been successfully explored to efficiently man-
age large amounts of data in several applications. We then
believe that their use in the domain considered in this study
is feasible even considering that Distribution System Oper-
ators typically handle millions of customers, whose time
series consumption patterns need to be analyzed regularly
(e.g., monthly).

In the following, the main components of the proposed
framework are described.

B. ON THE EXTRACTION OF TEXTUAL SIGNATURES
FROM TIME SERIES
The generation of textual signatures is a key step of the
proposed framework since their descriptive quality has a
high impact on the effectiveness of the method in identifying
consumption patterns that suggest the practice of fraud.

As pointed out before, very promising results have been
obtained through the combination of bi-dimensional repre-
sentations of times series (e.g., images) with state-of-the-art

1https://lucene.apache.org/core/ (As of Dec. 2020).
2https://www.elastic.co/ (As of Dec. 2020).
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FIGURE 2. Steps for generating textual signatures from time series.

machine-learning-based image feature extractors. We follow
this path in the construction of our feature extractor.

To the best of our knowledge, this is the first work that inte-
grates time series representations with image feature extrac-
tors in a fraud detection setting.

Figure 1 provides an overview of the adopted pipeline for
time series feature extraction. The textual signature extraction
comprises four steps. In the first step, a time series T , con-
sisting of the monthly electricity consumption (1D signal),
is encoded as an image (2D data). This encoding can be done
by different ways, Section IV-B1 presents more details. Later,
a textual signature extraction procedure is employed to create
a textual representation that is expected to encode different
patterns of the input time series.

1) TIME SERIES: IMAGE REPRESENTATION
Time series can be represented as images. Fig. 3 shows four
different visual representations of time series that are used in
this work. Bellow, we present details of each one of them.

FIGURE 3. Four visual representations of time series.

a: RECURRENCE PLOT
In many applications, the analysis of recurrent behaviors
is an important way to obtain an intuitive idea of the
underlying dynamics of the complex systems [26]. How-
ever, these behaviors are usually difficult to be visualized
in the time domain. Eckmann et al. [27] proposed a new
tool, named Recurrence Plot (RP), that allows visualizing

high-dimensional time series of complex systems as a square
matrix, in which the matrix elements correspond to those
times at which a state of a dynamical system roughly recurs.
The visual patterns formed in a RP representation provide rel-
evant information about the system, including its determinism
and periodicity.

Mathematically, RP is defined according to Equation 1:

Ri,j(x(t)) =

{
1, if d(x(i)), x(j)) < r,
0, otherwise.

(1)

where Ri,j is the value of the position (i, j) in the RP matrix,
which is 1 if the distance between the elements x(i) and x(j)
of the time series x(t) is smaller than a threshold r , or 0
otherwise.

From this definition, RP consists visually in a binary image
in which only pixels whose intensities are bellow threshold r
are encoded. However, is not intuitive to find an appropriate
threshold value. Then, a variation of original RP, called dis-
tance plot (or unthresholded recurrence plot), is commonly
used to eliminate the need of threshold setting. In this varia-
tion, all distances d(x(i)), x(j)) are plotted and RP looks like
a gray-scale image.

b: SPECTROGRAM
A spectrogram is a visual representation of how the spectrum
of frequencies of a signal is varying over time. The vertical
axis of a spectrogram, in general, represents time, while the
horizontal axis represents the discrete frequency steps. The
amplitude of a particular frequency at a particular time is
represented by the intensity or color of each point in the
image [28]. Spectrograms have been widely used in the fields
of music [29], speech processing [30], electroencephalogra-
phy (EEG) analysis [31], and others.

For the generation of the spectrogram images (SI ), the sig-
nal time series is segmented into fixed windows, which
usually overlap, and then the Discrete Fourier Transform is
applied to calculate the magnitude of the frequency spectrum

VOLUME 9, 2021 40639



A. A. Esmael et al.: Non-Technical Loss Detection in Power Grid Using Information Retrieval Approaches

for each window. The transformed signal is defined as:

Xt (k) =
N−1∑
n=0

x(n)ω(n)e−
2π i
N kn, k = 0, . . . ,N − 1 (2)

where N is the length of window, ω(n) is Hamming window
function, and k corresponds to the frequency f (k) = kfs/N ,
where fs is the sampling frequency in Hertz. The spectrogram
of transformed signal Xt (k) is defined by (3).

S(k, t) = |Xt (k)|2 (3)

The time-frequency matrix is then normalised into a
grey-scale intensity image, with the range scaled between
[0, 1], using (4).

SI (k, t) =
S(k, t)− min(S)
max(S)− min(S)

(4)

c: GRAMIAN SUMMATION ANGULAR FIELD
Gramian Summation Angular Field (GASF) is a framework
that encodes time series as an image based on polar coor-
dinates [32]. First, the original time series is rescaled and
smoothed, then it is transformed into a polar coordinate sys-
tem by (5).φ = arccos(xi), −1 ≤ xi ≤ 1, xi ∈ X̃ ,

r =
ti
N
, ti ∈ N.

(5)

where ti is the time stamp, N is a constant factor to regularize
the span of the polar coordinate system, and X̃ is the rescaled
time series [32].

Finally, the trigonometric sum between each point of the
transformed time series is calculated to identify the temporal
correlation within different time intervals, which is obtained
with (6)-(7).

GASF =

cos(φ1 + φ1) · · · cos(φ1 + φn)
...

. . .
...

cos(φn + φ1) · · · cos(φn + φn)

 (6)

GASF = X̃ ′.X̃ −
√
I − X̃2

′

.

√
I − X̃2 (7)

I is the unit row vector [1, 1, . . . , 1].

d: MARKOV TRANSITION FIELD
A Markov Transition Field (MTF) is an image obtained
from a process that computes dynamical transition statis-
tics [32]. Given a time series X = {x1, . . . , xn}, this the
representation extraction approach identifies the Q quantile
bins ofX , assigns each xi to the corresponding bins, calculates
its Markov Transition Matrix W [33], and, finally, builds its
MTF by (8).

MTF =

wij|x1∈qi,x1∈qj · · · wij|x1∈qi,xn∈qj...
. . .

...

wij|xn∈qi,x1∈qj · · · wij|xn∈qi,xn∈qj

 (8)

where qi and qj(q ∈ [1,Q]) correspond to the quantile bins
that contain the data at time stamp i and j, and wij denotes the
transition probability of qi→ qj.

2) TEXTUAL SIGNATURE EXTRACTION
The textual signature extraction process explores success-
ful formulations recently employed for supporting image
searches [21] based on feature vectors computed by state-
of-the-art machine learning feature extractors. Deep fea-
tures are extracted from time series image representations
using a pretrained convolutional neural networks (CNN).
The reason for using pretrained CNN is to avoid the dif-
ficulties involved in the process of training a CNN from
scratch, such as need of a large labeled dataset, defin-
ing a neural network architecture, and then prevent over-
fitting. The output of this step is a tensor (3-dimension
data), also called ‘‘feature map’’ in the deep learning
paradigm.

In the third step, the regional maximum activations of con-
volutions (R-MAC) descriptor [34] is applied to the feature
map to reduce its dimensionality and preserve just the most
informative features. R-MAC, which may be included in the
top of pretrained convolutional layers of a CNN, computes
a global representation of images independently of their size
and without distorting their aspect ratio. This method extracts
local features from several regions that are obtained from
a rigid grid covering the image [35]. These local features
are then max-pooled across several multi-scale overlapping
regions. Next, these region-level features are independently
l2-normalized, whitened with PCA, and l2-normalized again.
Finally, the region descriptors are combined into a single
vector by summing them and l2-normalized in the end [34].
The obtained image representation is a compact vector
whose size ranged from 256 to 2k dimensions, depend-
ing on the CNN architecture [35]. Amato et al. [21] sug-
gested the use of R-MAC among other methods because
of its good effectiveness performance in image retrieval
tasks.

Finally, in the last step, the numeric feature vector is
transformed into a sequence of codewords resulting in a
textual signature of the time series. This textual signature is
obtained using the Scalar Quantization methodology recently
proposed in [21].

It is worth to mention that the textual signature extrac-
tion framework proposed by Amato et al. [21] has not
been explored before in the context of time series retrieval
problems.

V. EXPERIMENTS AND RESULTS
This section describes the evaluation protocol adopted,
as well as presents and discusses obtained results.

A. EXPERIMENTAL SETUP
The main steps of our experimental analysis were: identifica-
tion of suitable datasets, clustering the fraud samples to iden-
tify different fraud types; data separation; textual signatures
generation; dataset indexing; fraud searching; and perfor-
mance assessment and comparative analysis. These steps are
described next.
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1) DATASETS
We carried out experiments in two datasets provided by CPFL
Energia,3 one of the largest private companies in the Brazilian
electricity sector. These datasets consist of monthly con-
sumption readings in kilowatt-hour (kWh) collected between
Jan-2017 to Jun-2020 from 9512 residential customers of two
medium-size cities of Brazil, Sorocaba-SP and Canoas-RS.
All these customers were on-field inspected and labeled as
fraud or no-fraud case. Table 2 shows the details of each
dataset.

TABLE 2. Datasets considered in the evaluation protocol.

Since the date of on-the-field inspections also was avail-
ability, we constructed for each customer i the time series ti =
{x1, x2, . . . , xm} by selecting the last m-consecutive energy
consumption readings performed before the inspection (in
this work, m = 24). Next, the time series were normalized
by using the Z-Score method (9):

f (x) =
x − µ
σ

(9)

where x corresponds to the original data, µ, and σ , denote
the mean, and the standard deviation, respectively. Next,
the datasets were rescaled by appling the Logistic Sigmoid
function (10):

g(x ′) =
1

1+ e−x ′
(10)

where x ′ corresponds to the normalized data obtained
from (9). These preprocessing transformations are important
for two reasons: 1) the level of energy consumed by DSO’s
customers varies considerably from one to another, then it
is essential to transform the time series to the same scale so
they can be comparable; 2) CNN-based methods used in the
feature extraction step expect that all features are centered
around zero, have variance equal one, and are scaled to
range [0,1] previously. All these requirements are achieved
by employing (9) and (10), which are quite popular methods
for normalization and scaling, respectively, in the Machine
Learning literature.

2) CLUSTERING FOR IDENTIFYING FRAUD TYPES
Although our datasets were already labeled as fraud and
no-fraud cases, we used the k-means algorithm to separate
the fraud samples into groups of similar energy-consumption
variance. The goal is to verify if the proposed framework is
effective to identify fraudulent costumers that belong to the
same clusters. We are making the assumption that an adopted
procedure for committing a fraud will generate similar vari-
ances in the energy consumption time series of all customers

3https://www.cpfl.com.br (As of Dec. 2020).

TABLE 3. Samples per Clusters for each dataset.

FIGURE 4. Examples of clusters related to the Sorocaba-SP dataset.

who are committing a similar fraud. To define the number k of
clusters, required by the k-means algorithm, we tried different
values of k and evaluated the clustering performance with
the silhouette coefficient. The k > 2 that presents the higher
silhouette coefficient was chosen. Table 3 details the number
of clusters chosen for each dataset and the number of fraud
samples per cluster. Figures 4–5 depict examples of fraud
patterns into each cluster for Sorocaba-SP and Canoas-RS
datasets, respectively.

3) BASELINES
As baseline, we used the method proposed by Santos et al.
in [18], which also extracts textual signature from time series
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FIGURE 5. Examples of clusters related to the Canoas-RS dataset.

images to execute indexing and searching operations. How-
ever, their work does not explore deep learning approaches to
extract features. Instead, the LBP texture descriptor [36] was
employed in their study.

4) EVALUATION MEASUREMENTS
To evaluate the effectiveness of the proposedmethod, we con-
sidered two performance metrics widely used in the informa-
tion retrieval domain: mean of precision at k (mP@k) and
mean of recall at k (mR@k), which are briefly introduced as
follows.
mP@k is the mean of the precision scores obtained after a

set of different queries has been performed, which is given as
follows:

mP@k =

∑q
i=1 P@k

q
(11)

where, q is number of queries, and P@k is the proportion of
recommended items in the top-k set that are relevant (# of
recommended items that are relevant divided by k).
mR@k computes howmany relevant objects were retrieved

from the time series collections at the top-k positions:

mR@k =

∑q
i=1 Recall@k

q
(12)

where, q is number of queries, and Recall@k is the
proportion of relevant items found in the top-k results
(# of recommended items that are relevant divided by the total
# of relevant items).

5) EVALUATION PROTOCOL
We split the data into two folds: training set (1/3) and testing
set (2/3). The training set is employed to fine tuning the
parameters of the Scalar Quantization method, which is used
in the last step of our pipeline. Textual signatures of the time
series were then generated, using the methodology described
in Section IV. Indexing and searching operations were carried
out with Elasticsearch software, a very efficient and free
search engine.

6) COMPARATIVE ANALYSIS
In the last step, we performed a comparative analysis to
assess which pair (time series visual representation, Deep
Neural Network feature extractor) is more suitable in terms
of effectiveness and efficiency to be used in our proposed
approach. There are different ways to represent a time series
as an image, as seen in the Section IV-B1. In this work,
we tested which of following four representation is the best
for the proposed method: Recurrence Plot (RP), Gramian
Summation Angular Field (GASF), Markov Transition Field
(MTF), and Spectrogram (Spec). Since our method does not
require the training of a deep learning model from scratch
in its deep-feature extraction step, we also tested a pool of
pre-trained models that were made available in Keras API4

(version 2.2.4): DenseNet121, InceptionResNetV2, Incep-
tionV3, MobileNet, VGG16, and VGG19. Recall that the
proposed approach does not depend on any specific itera-
tive procedure. Our solution benefits from transfer learning,
a widely successful procedure adopted in several applications
to explore pre-trained models [37]. Therefore, we do not
perform any network training; we just use pre-trained models
as feature extractor.

We adopted the effectiveness measurements described
in Section V-A4. We run the experiments in an Intel
Core i9-7900X CPU 3.30GHZ, 64 GB of RAM, and Ubuntu
OS workstation.

It is important to highlight that, specifically for this work,
we made a simplification in the pipeline shown in Fig. 1.
Due to the small size of the time series used in the experi-
ments, the R-MAC descriptor was not used. As explained in
Section IV-B, the visual representations of time series have
their dimensions determined by the size m of the time series.
As we are using m = 24, the images generated in step 2 of
our pipeline have a 24 × 24 dimension, which is below the
minimum size accepted as input by Keras library. We resized
our images to 48×48. As a result of these changes, the feature
map generated as output by CNN’s is already similar to a
vector (1D), so there was no need to use the R-MAC.

4https://keras.io/api/applications/ (As of Dec. 2020).
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B. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we present the experimental results. The
experiments were carried out in order to address the following
research questions:
RQ1 Which time series image representation is more effec-

tive when handling the fraud detection problem as a
information retrieval task?

RQ2 Which deep neural network is more effective to extract
features from time series images?

RQ3 Are the proposed methods promising to handle fraud
detection problems when compared with a baseline?

RQ4 Does the size of training set impact the effectiveness of
the proposed method?

Table 4 shows the results of effectiveness for the city
of Sorocaba-SP. As can be seen, the outcomes varied
considerably according to the combination Image Repre-
sentation+Network that is used in the proposed model.
In terms of mP@5 and mRecall@5, the best performance
scores were achieved with RP+VGG16, closely followed
by RP+VGG19. In terms of mP@10 and mRecall@10,
RP+VGG19 scored slightly higher than RP+VGG16. The
baseline method, Santos et al., presented the lowest scores
for all types of images, indicating that it is less effective to
properly characterize patterns from the time series visual rep-
resentations than deep learning methods. The value of 25.4%
achieved by our methodology significantly outperformed
random predictions (19%). ANOVA with post-hoc Tukey
test showed that there was no statistically significant dif-
ference between the RP+VGG16 and RP+VGG19, but this
pair were significantly superior to all other configurations
Image+Network.

Table 5 presents the results for the city of Canoas-RS.
The results obtained are consistent with the Sorocaba-SP

TABLE 4. Effectiveness Performance for pairs (image representation +

feature extractor) for the Sorocaba-SP Dataset.

TABLE 5. Effectiveness Performance for pairs (image representation +

feature extractor) for the Canoas-RS Dataset.

outcomes. RP+VGG16 and RP+VGG19 were the best, with
a slight advantage for VGG16. The statistical test did not find
any significant difference between these two combinations.
The use of the baseline method again led to effectiveness
scores of P@5, P@10, Recall@5, and Recall@10 that were
lower than most of other combinations, corroborating the
advantage that deep neural networks have over the classic
methods of extracting features from images.

The results of mP@10 per cluster when using RP to
encode the time series are shown in Fig. 6. As can be
seen, the use of the proposed framework was able to cor-
rectly identify cases of fraud in different clusters. In the
Sorocaba-SP dataset, Fig 6-A, the samples from clusters 2,
3, and 5 were the ones with the highest mP@10 scores in
each network. A possible explanation for this relies on the
fact that the time series of these clusters have better defined
consumption patterns (see Fig. 4). The superior performance
of VGG16 and VGG19 compared to other networks was also
evident in this figure. In the Canoas-RS dataset, Fig 6-B,
all methods showed more modest results, which might have
occurred due to the absence of consistent patterns in clusters
1 and 3 (see Fig. 5). Unlike what was seen in Sorocaba-SP
dataset, ResNet50 presented a good outcomes together with
VGG16 and VGG19.

In Fig. 7, we show a successful example of searching for a
non-trivial case of fraud using our framework in Canoas-RS
dataset. In general, fraud detection methods easily identify
irregularities when there is a structural break (abrupt change)
at a point of the time series. However, smart fraudsters take
care to gradually reduce energy consumption in a way to
make it difficult for utilities to detect their misconduct by sta-
tistical analysis. The query sample in this figure is an example
of a long period of low decreases in energy consumption. Our
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FIGURE 6. Cluster Analysis using Recurrence Plot images for different
deep neural network feature extractors.

method was able to identify another similar fraud case and
place it into the top-five positions of the ranked list. As can
be seen, the identified irregularity has a mean consumption
higher than the query sample, which shows the proposed
framework is also robust to scaling factors.

Figure 8 shows the results of four queries performed in our
experiments. Each query is defined according to the use of a
different image representation computed from the same time
series. The intention is to further analyze the effectiveness
of the proposed method by also taking into consideration
visual aspects of the generated ranked lists. As we can see,
all queries returned cases of fraud. In special, the use of the
Recurrence Plot representation (top row of the figure) pro-
duced a ranked list with five relevant cases at the 4th, 5th, 6th,
7th, and 10th positions. The use of the Spectrogram, Markov
Trasition Field, and Gramian Summation Angular Field rep-
resentations presented a bit worse performance; their respec-
tive ranked lists contain only three relevant cases. Except for
the Spectrogram, most of the retrieved images exhibit little
visual similarity with their respective query image. More-
over, there is a high variability in the visual patterns of the
intra-ranking images. Note that just one case appears in many
rankings (examples highlighted with a dashed red line). This
suggests that different time series features have been encoded
by each visualization method. Therefore, combining two or
more of them may lead to better outcomes. We plan to inves-
tigate the use of fusion approaches, such as rank aggregation
functions in future work. It is also worth to mention that,

FIGURE 7. Fraud search example for Canoas-RS dataset. Top: monthly
energy consumption time series of a actual fraudster consumer is used as
a query sample. Bottom: first four positions of the ranked list generated
by the retrieval system. A fraud case was detected in the fourth position.
The ranked list was defined based on the use of RP+VGG16.

in terms of visual properties, Recurrence Plot was the method
that better explored clear patterns for abrupt changes on the
data, as it can be seen in the 5th, 9th, and 10th positions of
the produced ranking. Since many frauds are associated with
high variations on energy consumption, this fact may explain
its better performance for the input time series. These findings
corroborate the results presented in Tables 4 and 5 that already
showed the superiority of the Recurrence Plot method for the
NTL detection problem.

Table 6 shows the total searching time per dataset. As can
be seen, the response time was low, showing the proposed
method is also efficient in the execution of queries, which
makes it a good choice for application in fraud detection
problems.

Fig. 9 presents the execution time as a function of the num-
ber of queries for the Sorocaba-SP and Canoas-RS datasets.
As the textual signatures used in the queries have different
lengths, we expected that there could be a negative impact on
the efficiency of the method. However, this did not happen.
As can be seen, the time complexity always remained linear
in both datasets for all CNNs tested, indicating the efficiency
of the method was robust to changes in signature length.

In order to better evaluate the effectiveness of the pro-
posed method regarding the size of the search space, we run
experiments by partitioning the available data into different
training/test sets proportions. Table 7 shows the results of the
RP+VGG16 for the following three splits of the Canoas-RS
dataset: 1) 1/3 training and 2/3 test, 2) 1/2 training and
1/2 test, 3) 2/3 training and 1/3 test. The percentage of
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FIGURE 8. Examples of top-10 ranked lists with fraud candidates. Left side: Images used as query samples for the same time series. Searches
are illustrated using different representations. From the top to the bottom, the Recurrence Plot, Spectrogram, Markov Trasition Field, and
Gramian Summation Angular Field representations, respectively, were employed to perform searches on the Canoas-RS dataset. The
corresponding raw time series plot is presented below each image. Right side: the first top-10 positions of the generated ranked lists. Green
and red marks indicate whether the image on the list is a relevant or non-relevant case, respectively. We highlight in red one time series that
was retrieved when three methods were used: Recurrence Plot, Spectogram, and Gramian Summation Angular Field. Given the query defined
by the input time series, the VGG16 network was used to extract the deep features from images.

fraud cases within each set is approximately the same as
the complete data. As the table shows, in all scenarios,
we observe higher evaluation metrics scores as the training
set size increases. We believe that such behavior happens in
response to consequent increase of the number of training
samples associated with fraud cases.

Based on the data above, we can answer the questions
raised at the beginning of the section.

RQ1 The use of recurrence plot as time series representations
is the best to encode time series patterns;

RQ2 Among the deep learning networks used, VGG16 and
VGG19 are the most suitable for the feature

extraction stage of the proposed framework. Thus,
RP+VGG16 or RP+VGG19 are the best choices for
the proposed framework.

RQ3 The proposed method clearly outperformed the base-
line and showed to be promising to handle fraud detec-
tion problems.

RQ4 The effectiveness of the proposed solution improves as
the size of the training set increases.

C. LIMITATIONS
Despite the effective outcomes achieved by our framework,
we identified some cases for which our method presented a
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TABLE 6. Cumulative search time (in seconds) for each dataset using RP
images.

FIGURE 9. Efficiency analysis for different data-driven feature extractors.
The figure presents the cumulative search time in seconds for different
number of queries for the Sorocaba-SP and Canoas-RS datasets.

TABLE 7. Effectiveness performance for RP+VGG16 method under
different training set / test set proportions.

poor performance. In summary, we identified three types of
failure that may occur, as follows:

• Type #1: The method correctly captures sudden and
abrupt variations on the average level of energy con-
sumption. However, it fails to recognize the direction
of this variation, i.e., if it is a reduction or increase of
consumption.

FIGURE 10. Examples of failure cases. Top: monthly energy consumption
time series of a actual fraudster consumer is used as a query sample.
Bottom: top-5 positions of the ranked list generated by the retrieval
system and their respective recurrence plot images. No fraud case was
detected for this query. Failure types #1 and #2 are highlighted. The
ranked list was defined based on the use of RP+VGG16 for the Canoas-RS
dataset.

• Type #2:Once the only information used by the method
is energy consumption time series, all clients that sig-
nificantly changed their consumption pattern during
the analysis period are viewed as a potential fraudster.
Nevertheless, many of these changes may be resulting
from fair reasons, such as reduction of dwellers in a
house, change of purpose concerning the use of the
property (e.g., a commercial property that is changed
to a residential one), renovation of the infrastructure of
an industry consumer (e.g., replacement of non-efficient
machinery).

• Type #3: The generated ranked list is never empty. This
means that the model always outputs a set of suspicious
clients even if there is no one real fraud case in the
collection.
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All the limitations presented above will produce false posi-
tives and, consequently, may lead to unnecessary on-the-field
inspections, increasing operational costs.

Figure 10 illustrates failure cases of our method and
sheds light on why these problems are occurring. This fig-
ure presents the top-5 positions of a ranked list that was
generated in response to a fraud case used as query example.
We show for each time series its visual representation based
on Recurrence Plots. As it can be seen, no time series listed
as fraud suspects is really a fraud and the failure types #1 and
#2 are present. Regarding failure type #1, all the recurrence
plots are visually very similar to the query one. This occurs
because the recurrence plot computes the module of the dif-
ference of all the time series points. Then, independently of
the fact that an increasing or decreasing of the consumption
may have happened, the recurrence plot image will look like
the same, which explains why our method is ‘‘blind’’ to the
direction of the variations. However, this issue can be easily
solved by computing, in a post-processing step, the linear
regression of the time series and using the linear coefficient
signal to filter false positives, i.e., cases in the ranked list,
for which the signal of its linear coefficient disagree with the
query one, must be ignored.

A post-processing step also can be used to address the
failure type # 2. One possibility here is to analyze some cus-
tomer profile information to refine the list, such as payment
information, residence region, previous fraud occurrence, and
so on. Failure type # 3 is more challenging. Maybe a direction
to address it could be to define a similarity threshold. Only
the cases that reached this threshold would be inserted into
the ranked list. We plan to investigate such research direction
in future work.

VI. CONCLUSION
In this paper, we proposed a novel framework to address the
non-technical loss detection problem by modeling the iden-
tification of suspicious fraud cases as Information Retrieval
tasks. The proposed approach relies on encoding the time
series ofmonthly energy consumption of the utility customers
into an image (2D data), whose content is characterized
using state-of-the-art Convolution Neural Networks, which
are powerful data-driven features extractor. Next, the content
properties are converted into textual signatures in order to
be later indexed and retrieved using full-text search engines.
In this pipeline, our framework takes advantage of the trans-
fer learning techniques to eliminate the need of training a
machine learning classifier, which is a typical challenge in the
NTL detection context because of the hard class imbalance in
this domain.

We carried out experiments in a real electricity consump-
tion dataset provided by CPFL Energia. Different time series
image encoders and pre-trained CNN were tested to inves-
tigate which is the best setting for the proposed frame-
work. Recurrence Plot image and VGG16 CNN presented
the best performance in terms of both effectiveness and
efficiency. The results obtained allowed us to conclude that

this framework is a promising alternative to detect frauds
in distribution grid especially in scenarios with very few
fraud samples are available for training classifiers. Also, this
solution is promising to deal with the evolution of fraud types
over time.

In future work, we plan to investigate the use of tech-
niques of re-ranking [38] and rank aggregation [24] to further
improve the effectiveness results.We also plan to fine-tune the
top layers of the VGG16 considering the target application.
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