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Abstract   13 

Accurate knowledge of the diffusivity coefficient of CO2 in brine has a significant effect on 14 

the design success and monitoring of CO2 storage in saline aquifers, which is a part of carbon 15 

capture and sequestration (CCS). Frequently applied experimental approaches for determining 16 

this parameter are expensive and time-consuming, and empirical models cannot ensure 17 

accurate predictions. Therefore, there is a need to establish cutting-edge correlations for 18 

prediction of the diffusivity coefficient of CO2 in brine under various operating conditions. In 19 

this work, two white-box machine learning techniques, namely group method of data handling 20 

(GMDH) and gene expression programming (GEP) were implemented for correlating the 21 

diffusivity coefficient of CO2 in brine with pressure, temperature and the viscosity of the 22 

solvent. The obtained results demonstrated the accuracy of the proposed correlations. In 23 

addition, statistical and graphical analysis of the performances revealed that GEP correlation 24 

outperforms the GMDH correlation, decision trees (DTs), random forest (RF) and all the 25 

previous predictive models. GEP correlation exhibited an overall average absolute relative 26 

deviation (AARD) of 4.3014% and coefficient of determination (R2) of 0.9979. Finally, by 27 

performing the outliers detection, the validity of the GEP correlation was confirmed and only 28 

two experimental data points were identified as outliers.  29 

 30 

  31 

Keywords – CO2-brine; diffusivity coefficient; empirical correlations; GEP; GMDH. 32 

 33 

*Corresponding author:  ashkan.jahanbani@ntnu.no  34 

 35 

 36 

 37 

 38 

 39 

 40 



2 

 

1. Introduction  41 

The increased amount of CO2 in the atmosphere is considered the most important 42 

concern of the 21st century around the globe (Boot-Handford et al., 2014). This issue results 43 

mainly from fossil fuels being used continuously in different sectors of industry (Azzolina et 44 

al., 2015; Boot-Handford et al., 2014; Nait Amar et al., 2019a; Venkatraman and Alsberg, 45 

2017). Therefore, some new approaches have emerged as promising means for reducing the 46 

CO2 levels in the atmosphere, among which, carbon capture and sequestration (CCS) in 47 

geological formations is still the most attractive one (Amini et al., 2012; Grude et al., 2014; 48 

Shahkarami et al., 2014).  49 

CCS has gained much interest within many fields of engineering, environment and 50 

energy (Bhakta et al., 2015; Davarazar et al., 2019; Gibbins and Chalmers, 2008; Lee et al., 51 

2010; Mohagheghian et al., 2019; Riahi et al., 2004). The sequestration of the captured CO2 in 52 

saline aquifers is the most frequently applied strategy while implementing CCS (Gershenzon 53 

et al., 2015, 2014).  In addition, some other applications of CO2 such as enhanced oil recovery 54 

methods based on CO2 injection, have served as useful and vital means in reduction of CO2 55 

levels in the atmosphere (Bachu et al., 2004; Ettehadtavakkol et al., 2014; Gozalpour et al., 56 

2005; Holtz et al., 2001; Nait Amar and Zeraibi, 2019). 57 

The process of CO2 injection in saline aquifers is subjected to some mechanisms, 58 

namely the contact of CO2 with the in-situ water and its dissolution in brine through 59 

molecular diffusion. Therefore, accurate knowledge and determination of the parameters that 60 

play important role while monitoring CCS are of vital interest. Diffusivity coefficient which 61 

characterizes the diffusivity of fluid is one of these parameters (Cadogan et al., 2014a; 62 

Guzmán and Garrido, 2012). Indeed, this parameter has a noticeable effect on the chemical 63 

reactions and the interfacial mass transfer occurring deep underground, in addition to 64 

impacting the flow path, transport behavior and the quantitative description of diffusion 65 
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during CO2 injection (Farajzadeh et al., 2009; Guzmán and Garrido, 2012; Mutoru et al., 66 

2011; Trevisan et al., 2014). 67 

Determination of diffusivity coefficient of the CO2 in brine can be done by two 68 

distinguished approaches. The first one consists of performing experimental measurements 69 

and the second approach is by means of the empirical models. The lab measurements are 70 

divided into direct and indirect tests (Lu et al., 2013). The direct procedures are based on the 71 

accurate knowledge of the gas concentration in the solvent (Cadogan et al., 2014b; Frank et 72 

al., 1996), while the indirect tests exploit the gained information related to the diffusivity of 73 

gas such as interfacial tension, volumes of gas and liquids, and the operational conditions 74 

(Jang et al., 2018; Li et al., 2016). The experimental approaches are known to deliver accurate 75 

results. However, their implementation is time-consuming and demands sophisticated 76 

equipment. As a result, several researchers have developed empirical models for estimating 77 

the diffusivity coefficient of CO2 in brine. Wilke and Chang (1955) established a predictive 78 

correlation for estimating the diffusivity coefficient in numerous dilute solutions. The model 79 

employs viscosity and temperature as input parameters.  Lu et al. (2013) developed a model 80 

for estimating the diffusivity coefficient of CO2 in water without considering the pressure 81 

effect. There model is applicable to cases with temperatures between 268K and 473K. An 82 

extended version of  Lu et al. (2013) model at high pressure and temperature conditions, was 83 

proposed by Moultos et al. (2016) by applying the concept of molecular dynamics 84 

simulations. Although the correlations developed by Lu et al. (2013) and Moultos et al. (2016) 85 

are accurate for the CO2-pure water system, they cannot be applied to cases where brine is the 86 

solvent. Cadogan et al. (2014a) utilized experimental results for CO2 diffusivity coefficients 87 

against brine viscosity at temperature of 298K for establishing a modified Stokes-Einstein 88 

relation. Table 1 reports the mathematical formulations of the above models for predicting the 89 

diffusivity coefficient of CO2 in water and brine.  90 
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 91 

An in-depth review of the available correlations for predicting the diffusivity coefficient 92 

of CO2 in brine reveals the limitations of these techniques from the applicability and accuracy 93 

perspectives (Feng et al., 2019).   94 

In recent years, researchers have shown an increased interest in the application of 95 

machine learning techniques for modeling complex systems (Jeong et al., 2018; Nait Amar et 96 

al., 2019b; Nait Amar and Zeraibi, 2019; Nomeli and Riaz, 2017; Piotrowski and 97 

Napiorkowski, 2012). Machine learning techniques can be divided into computer-aided 98 

methods such as support vector regression (SVR) and decision tree, and explicit methods such 99 

as gene expression programming (GEP) and group method of data handling (GMDH). The 100 

first category is known as black-box approaches, and this means that their paradigms are 101 

dependent on a computer-aided technique, while the second category is recognized as white-102 

box methods which means that they deliver explicit expressions (Nait Amar et al., 2019c). 103 

Recently, Feng et al. (2019) developed a predictive model for estimating the diffusivity 104 

coefficient of CO2 in brine by coupling genetic algorithm with mixed kernel SVR and they 105 

obtained satisfactory performances. However, the application and accuracy of their 106 

established model depend on calculability efforts, and this presents an issue in terms of 107 

flexibility for further utilization. 108 

The main contribution and novelty of this study consist of establishing two distinct 109 

explicit and simple-to-use correlations for accurate prediction of diffusivity coefficient of CO2 110 

in brine under various operational conditions. To do so, group method of data handling 111 

(GMDH) and gene expression programming (GEP) were implemented with three input 112 

parameters, namely pressure, temperature and viscosity of the solvent, using a representative 113 

experimental database. Besides, decision trees (DTs) and random forest (RF) were considered 114 

for comparison with the best-result explicit correlation. Statistical and graphical assessment 115 

criteria were applied for evaluating the newly proposed correlations and compared their 116 
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performances with prior paradigms. Lastly, Leverage approach was performed to verify the 117 

quality of the employed experimental data points and define the realm of application for the 118 

best fit established correlation. 119 

The rest of the paper includes 4 sections. Section 2 describes the database which was 120 

utilized for developing the correlations. Section 3 briefs the two applied white-box machine 121 

learning techniques, namely GMDH and GEP, and the procedure of their implementation in 122 

our study. Results are given and discussed in Section 4. The paper ends with Section 5 which 123 

summarizes the main findings.  124 

2. Data collection and preparation  125 

In the present work, a representative experimental database was collected from the 126 

published literature (Cadogan et al., 2015; Cadogan et al., 2014b; Choudhari and 127 

Doraiswamy, 1972; Frank, Marco J W and Swaaij, 1996; Lu et al., 2013; Maharajh, 1975; 128 

Maharajh and Walkley, 1972; Nijsing et al., 1959; Reddy and Doraiswamy, 1967; Tamimi et 129 

al., 1994; Tan and Thorpe, 1992; Thomas and Adams, 1965; Versteeg and van Swaal, 1988; 130 

Vivian and Peaceman, 1956; Yang et al., 2006) to develop accurate explicit correlations for 131 

estimating the diffusivity coefficient of CO2 in brine at different operating conditions. The 132 

database englobes 92 experimental data points with different operating conditions, namely 133 

pressure, temperature and viscosity of the solvent. In the context of the affecting variables, 134 

salinity affects the solubility, interfacial tension and phase equilibria, thus influencing the 135 

diffusivity. In addition, salinity of the solvents affects brine’s viscosities (Cadogan, 2015; 136 

Feng et al., 2019); therefore, the salinity effect on diffusivity of CO2 in brine is emulated by 137 

considering the brine’s viscosities as an input parameter while establishing the correlations 138 

and the paradigms. The data points collected from previous experimental studies were 139 

obtained using various techniques and equipments such as Taylor dispersion, a modified 140 

version of Ringborm’s apparatus, laminar jet apparatus, laminar falling film, laser-induced 141 
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fluorescence (LIF), 13C pulsed-field gradient NMR, physical absorption experiments in a 142 

stirred vessel operated with a horizontal gas-liquid interface, optical capillary cell via time-143 

dependent Raman spectroscopy, wetted sphere apparatus, Taylor−Aris dispersion method and 144 

see-through windowed high-pressure cell. Table 2 reports a detailed statistical insight about 145 

the collected data points. In addition, to provide an insightful description of the database, Fig. 146 

1 illustrates frequency histograms of the collected dataset and Fig. 2 demonstrates the 147 

correlation between diffusivity coefficient and the considered independent variables through 148 

cross plots. According to the histograms shown in Fig. 1, it can be seen that the pressure and 149 

temperature are mainly distributed in the medium and low ranges, while viscosity shows a 150 

symmetric distribution near its mean. According to Fig. 2 (a), pressure exhibits moderate 151 

direct relation with diffusivity coefficient. This analogy is more significant for temperature as 152 

can be seen from Fig. 2 (b). From Fig. 2 (c), it can be noted that viscosity of solvent has a 153 

negative direct relation with diffusivity coefficient. 154 

3. Methodology 155 

3.1.  Group Method of Data Handling (GMDH) 156 

Group Method of Data Handling (GMDH) is one of the artificial neural network (ANN) 157 

types, which is known to generate explicit correlation between input and output parameters of 158 

a given system.  The resulting correlation by applying a GMDH model takes the form of a 159 

polynomial (Dargahi-Zarandi et al., 2017). As an ANN type, GMDH structure involves nodes 160 

as basic elements for processing the information. These nodes are arranged in different layers 161 

from the input layer to the output layer, with or without intermediate layers (Nait Amar et al., 162 

2019c). The GMDH hybrid version (HGMDH) allowed the improvement of the predictability 163 

which was somehow insufficient in the first version developed by (Ivakhnenko, 1971). In 164 

HGMDH, the interactions among nodes from different layers are allowed. This procedure 165 
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brings more robustness when modeling complex cases (Rostami et al., 2019). The 166 

mathematical form of HGMDH is expressed as shown below:  167 

              �� = � + ∑ ∑ …∑ ��	…
����	� …�
�

��
	�� 				� = 1,2, … , 2�
���                  (1) 168 

where � and �	stand for the input and the output parameters, respectively; ��	…
 correspond to 169 

the polynomial coefficients; � is the number of layers and � is the number of variables. 170 

The following points summarize the calculation procedure in HGMDH with a second order: 171 

- The following equation defines the expression of a node Ni covering two inputs:  172 

                              ������ = �� + ���� + ���	 + � ���	 + �!��� + �"�	�                (2)  173 

- Calculation of polynomial coefficients: least square method is applied to calculate the 174 

resulting coefficients in the expressions of the different nodes. The following formula 175 

is adapted:   176 

                 ∆	�= ∑ $������ − ��&�'���                ( = 1,2, … , )�2*                            (3) 177 

where	�	and � are the number of variables and data points, respectively.  178 

- Matrix transformation: in order to achieve the final expression, the above equation is 179 

transformed to a matrix form (Dargahi-Zarandi et al., 2017; Hemmati-Sarapardeh and 180 

Mohagheghian, 2017): 181 

+ = ,-.            (4) 182 

- The final solution is obtained as follows: 183 

,- = �.-/..-01�                                                                              (5) 184 

where	� = 2��, ��, … , �
3	�4�	, = 2��, ��, ��, � , �!, �"3. 185 

3.2. Gene Expression Programming (GEP) 186 
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Gene expression programming (GEP) is a prevalent evolutionary technique which aims 187 

at modeling the systems with accurate explicit expressions. GEP, introduced by Ferreira 188 

(Ferreira, 2001), can be regarded as the improved version of genetic programming (GP) which 189 

was proposed by Koza (Koza, 1992). GEP employs the standard genetic operators, namely 190 

selection, crossover, elitism and mutation, in addition to new implemented actions such as 191 

insertion and transposition to search for the reliable correlations. Besides, the codification of 192 

the individuals in GEP is performed in the form of chromosomes. In addition, Expression 193 

Tree (ET) is introduced for transforming the individuals to real expressions. It is worth 194 

mentioning that the genes have a fixed length with terminals which show the variables, such 195 

as 2��, ��, � 3, and operators such as 2+,/,×,−, √. , 943 (Teodorescu and Sherwood, 2008). 196 

The main steps of GEP are briefed below:  197 

- Initial population: an initial population of correlations codified in the form of 198 

chromosomes is generated randomly. The prediction quality of the correlations differs 199 

according to a fitness function. 200 

- Standard operators: the well-known genetic operator including elitism, selection, 201 

crossover and mutation are applied. Elitism consists of safeguarding the best 202 

correlations for the next generations. Selection allows identification of the correlations 203 

to be subjected to reproduction for giving new correlations. Crossover is summarized in 204 

the process of exchanging parts between two or more correlations, while mutation is 205 

done by means of modifying parts of correlations.   206 

- Transposition and insertion: it consists of jumping and activating parts of the genome in 207 

the chromosome (Ferreira, 2001). 208 

The resulting population is assessed and the operators are reiterated until satisfying a 209 

stopping condition. 210 

 211 
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3.3. Implementation procedure 212 

As previously highlighted, the aim behind applying GMDH and GEP as white-box 213 

machine learning method is to develop an explicit correlation for accurate prediction of CO2 214 

diffusivity in brine under various conditions including pressure, temperature and viscosity. 215 

Therefore, the following form is admitted for the two correlations: 216 

:; = </=, >, ?0                                     (6)  217 

In the above equation, :; points out the CO2 diffusivity coefficient in brine expressed in m2/s, 218 

and =, >	and ? represent the input parameters of the correlations, viz. pressure, temperature 219 

and viscosity, respectively. The input parameters are expressed in MPa, K and mPa.s, 220 

respectively. 221 

 The collected experimental data points that describe these conditions and the obtained 222 

diffusivity coefficient of CO2 in brine were prepared for the development of these 223 

correlations. The database was divided randomly into a training set with 80% of the whole 224 

experimental data points and a testing set which covers the remaining 20%. This dataset 225 

partitioning exhibits usually very satisfactory results (Aminu et al., 2019; Benamara et al., 226 

2019; Dargahi-Zarandi et al., 2017; Hemmati-Sarapardeh et al., 2018; Mirjalili, 2015; Yan et 227 

al., 2006). Besides, in order to substantiate the better performance and robustness of applied 228 

techniques, sensitive analysis of the latter on database were performed. 229 

During the development of the GEP correlation, mean square error (MSE) was the 230 

considered fitness function for assessing the chromosomes. MSE is expressed as:  231 

    @AB = ∑ /CD1ED0FGDHI
J                                   (7) 232 

where K� and L� stand for the measured and the predicted diffusivity coefficient of the CO2 in 233 

brine, respectively, and 4 represents the number of data points.  234 
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While developing the GMDH-based correlation, the number of inputs that can be 235 

introduced in the hidden and output nodes was specified to three, while the best highest order 236 

of the model was investigated by performing a sensitivity analysis. 237 

As indicated, the control parameters of GEP affect the prediction capability. During the 238 

establishment of the GEP-based correlation for the prediction of the diffusivity coefficient of 239 

CO2 in brine, it was noticed that an increase in the number of chromosomes in the population, 240 

the numbers of genes as well as the maximum depth of ET, influence the run-time, the 241 

accuracy and the complexity of the generated correlations. Accordingly, these control 242 

parameters were tuned. Table 3 reports the final setting of GEP. Consequently, we applied 243 

tree encoding, 100 chromosomes, 12 genes, MSE as fitness functions, a function set including 244 

+,−,×,/	, exp. , √ , P�Q, 94, and two point mutation, while the stopping criterion was the 245 

maximum number of generations (420). 246 

4. Results and discussion 247 

4.1. Development and evaluation of the correlations 248 

Several statistical indexes including average absolute relative deviation (AARD), 249 

coefficient of determination (R2) and root mean square error (RMSE), were considered for 250 

assessing the quality of the predictions of the newly proposed correlations. These statistical 251 

criteria are defined as follows: 252 

                                     ,,R:% = �
J∑ TCD1EDCD TJ��� × 100                                 (8) 253 

                                            R� = 1 − ∑ /CD1ED0FGDHI
∑ /ED1C̅0FGDHI

                                           (9) 254 

                                       R@AB =	W�
J∑ /K� − L�0�J���                               (10) 255 
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The graphical representations of the outcomes of the correlations were illustrated for a 256 

visual evaluation and a comparison of the performances. The graphical assessment of the 257 

performances was done by means of cross plots, relative error distribution, cumulative 258 

frequency distribution of the absolute relative error and bar plots. Cross plots give an insight 259 

about the reliability of the correlations by representing their predictions against the real values 260 

of the output, and then comparing the obtained distribution against the line + = .	which 261 

shows the perfect paradigm. The diagram of relative error distribution details the repartition 262 

of the relative error through the output values. Satisfactory distribution of the relative error 263 

around the zero-error line indicates the reliability of the correlations. The cumulative 264 

frequency diagram of the absolute relative error allows the identification of portions of the 265 

data points which are predicted with some pre-specified values of the absolute relative error. 266 

Predicting a great portion of the data points with a low absolute relative error value ensures 267 

the high reliability of the correlations. Bar plots summarize the statistical criteria of the 268 

correlations in visual comparative schemes. 269 

As stated in the previous section, sensitivity analyses were conducted to find the best 270 

highest order for GMDH and to investigate GEP and GMDH robustness according to samples 271 

considered for training and testing phases. To this end, ten realizations were run at each 272 

different GMDH highest order, namely two, three and four. The performance comparison 273 

through final overall AARD values is depicted in the box plot of Fig. 3. In this figure, the box 274 

exhibits specific interquartile range. The red horizontal line denotes the median value, while 275 

the lower and higher black horizontal lines represent the best and worst overall AARD values. 276 

As can be seen from this figure, considering three as the highest GMDH order results in the 277 

best performance with lowest overall AARD value. Therefore, the highest order of the model 278 

was set to three. Fig. 4 shows a bar plot comparing AARD values of GEP and GMDH during 279 

training and testing phases in the considered ten runs (with different training and testing 280 
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samples). According to this figure, the best performance of GEP was achieved in the fourth 281 

run while GMDH showed its best reliability in the third run. Accordingly, these two best-282 

result models were kept for further comparison.  283 

Fig. 5 schematizes the best resulted GMDH model for predicting the diffusivity 284 

coefficient of CO2 in brine.  285 

According to this figure, no middle nodes were resulted in the model. In the same 286 

context, the following equation defines the explicit expression of the GMDH model: 287 

:; 	= 101X × YZ� + Z� × ?	 + Z� × > + Z × = + Z! × > × ? + Z" × = × ? + Z[ × = × > + Z\ ×288 

?� + Z] × >� + ZX × =� 	+ Z�� × = × > × ?	 + Z�� × > × ?� + Z�� × >� × ?	 + Z� × = × ?� + Z�! ×289 

= × >� 	+ Z�" × =� × ?	 + Z�[ × =� × >	 + Z�\ × ? 	+ Z�] × > + Z�X × = ^   (11) 290 

where C� 	= −207.739284;	Z� = −201.432367	;	Z� = 1.1500875; Z = 0.678161;	Z! =291 

1.834310	;	Z" = −1.309668	;	Z[ = −0.002251	;	Z\ = −25.879322	;	Z] = −0.00201;	ZX =292 

−0.011747	;	Z�� = 0.004118	;	Z�� = 0.038415;	Z�� =	−0.003692	;	Z� = 0.082021;	Z�! =293 

−2.664159 × 101\	; 	Z�" = 0.001794	;	Z�[ = 3.978117 × 101"	; 	Z�\ = 3.600267;	Z�] =294 

1.477156 × 101[	; and	Z�X = −2.412235 × 101" 295 

 After rearrangement, the best resulting correlation based on GEP is expressed as 296 

follows: 297 

:; = 101X × klIm + lF
√m + , × √> + ,! × = + ,"n                  (12) 298 

The terms ,�, ,�, , , ,!, and ," are defined as shown below: 299 

,� = −0.0001564 × = + 0.01113 × =� + 0.02935 × = − 2.83 × √= + 8.362 

,� = 0.02426 × /= + >0 − 2.466 × √= 

, = 0.4583 + 0.123 × = 
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,! = 6.832 × 101" × =� + 0.003955 × = + 19.34 × 1
√= − 3.801 

," = 30.95 × ln/=0
5.629 × /= − ?0 −

0.0006024 × > × √?
= − 4.259 × ln/=� × >0 − 7.945 

Fig. 6 illustrates the cross plots of the proposed correlations. The two cross plots 300 

demonstrate a promising consistency between predictions of the correlations and the real data, 301 

as very satisfactory alignments nearby the unit slope line are noticed for both GMDH and 302 

GEP predictions. The fit is surprisingly trustworthy for the two correlations for both training 303 

and testing data.  304 

Furthermore, Fig. 7 shows the distribution of the percentage relative error between the 305 

real values of the diffusivity coefficient of the CO2 in brine and the values predicted by 306 

GMDH and GEP correlations. According to this figure, the distributions of the relative error 307 

around the zero-error line for both correlations at the training and testing phases are deemed 308 

satisfactory. However, the reported results in this figure reveal that GEP correlation seems to 309 

have a better predictive capability compared to GMDH correlation. For a detailed 310 

quantification of the performances, Table 4 states the statistical criteria, namely AARD, R2 311 

and RMSE, for the proposed correlations. Moreover, a graphical comparison between the 312 

global performances of the two correlations is reported in Fig. 8. It is clear from the 313 

evaluation reported in Table 4 that the newly proposed correlations exhibit promising 314 

predictive capabilities with overall values of AARD of 8.0404% and 4.3015% for GMDH and 315 

GEP, respectively. Besides, the overall determination coefficient of the models indicates the 316 

trustworthiness of the correlations fit. The analyses shown in Figs. 6−8 and Table 4 claim the 317 

superiority of the GEP-based correlation in the prediction of the diffusivity coefficient of CO2 318 

in brine by considering the whole employed data points. Therefore, GEP correlation is used 319 

for the rest of this paper. 320 
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The impact of the employed independent variables, namely pressure, temperature and 321 

viscosity on the group error of the GEP-based correlation for prediction of the diffusivity 322 

coefficient is investigated in Fig. 9 for the whole database. In Fig. 9(a), the GEP correlation 323 

shows its worst predictions with an AARD of 5.31% where pressure is in the range of 20–40 324 

MPa, while other intervals of pressure are predicted with an AARD value of less than 4.6%. 325 

In Fig. 9(b), the maximum AARD value of the GEP correlation is obtained when temperature 326 

is in the range of 298-323 K, while the rest of the intervals are estimated with an AARD value 327 

that does not exceed 4.6%.  In Fig. 9(c), the values of the diffusivity coefficient for viscosity 328 

of less than 0.3 mPa.s are predicted with an AARD value of about 1%, while the AARD 329 

values of other viscosities are between 4.5 and 5.5%. Consequently, the performance of the 330 

proposed GEP is deemed again very sufficient in predicting the diffusivity coefficient.  331 

4.2. Comparison of the developed GEP correlation with decision trees (DTs), random 332 

forest (RF) and the prior models 333 

It would be of interest from the reliability perspective to compare the results of the 334 

proposed GEP correlation with other soft computing techniques, namely decision trees (DTs) 335 

and random forest (RF) as well as the prior paradigms reported for the prediction of the 336 

diffusivity coefficient of CO2 in brine. To keep the work concise, more details about DTs and 337 

RF can be found in published literature (Breiman, 2017; Guo et al., 2011; Peters et al., 2007; 338 

Wilkinson, 2004). The final tuned control parameters of RF and DTs models are reported as 339 

follows: 340 

• RF: number of grown trees: 20; min leaf size: 5; min parent size: 2 × min leaf size; 341 

predictor selection: interaction-curvature; splitting criterion: MSE. 342 

• DTs: min leaf size: 1; min parent size: 5; quadratic error tolerance: 1E-6; predictor 343 

selection: all-splits; prune criterion: MSE. 344 
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While developing DTs and RF models, 80% of the database was used for their training 345 

and 20% of testing. The performance evaluation of the best-result DTs and RF paradigms 346 

after various runs is reported in Table 5. By comparing the stated results in Tables 4 and 5, it 347 

can be deduced that GEP based correlation outperforms both DTs and RF models. 348 

The comparison includes the empirical models, namely those of Othmer and Thakar 349 

(1953), Wilke and Chang (1955) and Cadogan et al. (2014a). In addition to the empirical 350 

models, the implemented GEP correlation was compared with one of the most recent 351 

intelligent paradigms proposed by Feng et al. (2019) based on hybrid genetic algorithm and 352 

mixed Kernels-based support vector machine. It is worth mentioning that when performing 353 

the comparison with the pre-existing approaches, we included only the points that satisfy the 354 

applicability conditions in each correlation. Table 6 and Fig. 10 report the comparison of the 355 

proposed GEP correlation and the models based on previously described statistical criteria. 356 

According to these statistical analyses, among the existing models, the hybrid model proposed 357 

by Feng et al. (2019) outperforms the available empirical models for predicting the diffusivity 358 

coefficient with a global predictive AARD of 7.91%. Despite the exhibited accuracy of Feng 359 

et al. (2019) model, it is worth mentioning that this model (based on mixed kernel SVR 360 

coupled with GA) is resulted through performing some calculability efforts such as the 361 

included quadratic programming involved in the establishment of the final solution. Besides, 362 

as this paradigm is of the black box type, it is difficult to apply it to other related tasks. 363 

The reported statistical quality measures in Table 6 and Fig. 10 demonstrate the 364 

superiority of the newly proposed GEP correlation, as it outperforms both the prior intelligent 365 

model and the empirical paradigms.   366 

Being explicit based approaches, the performances of the empirical models and the 367 

white-box GEP correlation were compared through the plot of the absolute relative error 368 

distribution as shown in Fig. 11. As seen in this figure, 90% of the data points were predicted 369 
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by GEP correlation with an AARD value of less than 8.5%. The equivalent percentage of the 370 

datapoints predicted with this AARD cutoff value by the empirical models are 50%, 25% and 371 

24% for Cadogan et al. (2014a), Othmer and Thakar (1953), and Wilke and Chang (1955), 372 

respectively. 373 

As demonstrated in these comparative analyses, the newly implemented GEP 374 

correlation was able to predict more reasonable values of the diffusivity coefficient of CO2 in 375 

brine. In addition, the GEP-based correlation has an explicit and simple form which can 376 

predict the diffusivity coefficient of CO2 in brine more directly than the other intelligent 377 

schemes, and hence, it can be applied to other related tasks or implemented in different 378 

softwares. The improvement brought by GEP based correlation in the prediction of the 379 

coefficient of CO2 diffusivity in brine can be explained by the followed learning strategy 380 

during GEP steps which is based on the use of chromosomes, genes, functions, variables, and 381 

the traditional and the new genetic operators, which result in more flexibility for capturing the 382 

complexity of the modeled phenomenon.  383 

4.3. Trend Analysis 384 

To assess the efficiency of the implemented GEP correlation for accurate prediction of 385 

diffusivity coefficient as a function of the input parameters, three different sets of 386 

experimental measurements included in our study and the values predicted by GEP 387 

correlation are depicted as function of the input parameters in Fig. 12. In Fig. 12(a), the 388 

comparison is performed with respect to viscosity variation where pressure and temperature 389 

are constant. In Fig. 12(b), the comparison is illustrated for different pressures and constant 390 

temperature and viscosity. In Fig. 12(c), the comparison is shown for the case where pressure 391 

is constant, and temperature and viscosity vary. Furthermore, additional comparison is 392 

depicted in Fig. 13 by presenting the real measurements and the predictions of GEP as 393 



17 

 

function of pressure for the whole considered database. As shown in the plots of Figs. 12 and 394 

13, the predicted and real diffusivity coefficient values of CO2 in brine overlap properly 395 

regardless of the operating conditions.  396 

4.4.  Relative importance of input parameters 397 

A sensitivity analysis using the relevancy factor /p0 (Chen et al., 2014; Hajirezaie et al., 398 

2015; Shateri et al., 2015), was performed to assess the relative importance of the input 399 

variables on the diffusivity coefficient. The relevancy factor is expressed as follows:  400 

                  p$P	 , q& = ∑ $rs,D1rtu&GDHI /ED1Ev0
W∑ $rs,D1rtu&F∑ /ED1Ev0FGDHIGDHI

                               (13)  401 

where the subscripts i and j refer to the data index and the variable, respectively; P and P ̅402 

represent the input parameter and its average, respectively, while q and qv refer to the 403 

predicted output and its average, respectively. It is worth noting that a high absolute /p0 value 404 

for an input parameter indicates its noteworthy impact on the output. Furthermore, achieving 405 

positive/negative p values for an input suggests a positive/negative effect on the output. 406 

The obtained results regarding the relevancy factor for the diffusivity coefficient of CO2 407 

in brine are exhibited in Fig. 14. According to this figure, temperature has the biggest impact 408 

on the outputs. In addition, it can be deduced that viscosity has a negative effect on the output, 409 

while pressure and temperature positively affect the diffusivity coefficient. 410 

4.5. Outliers detection 411 

In the last part of this study, outliers detection was conducted to assess the quality of the 412 

employed experimental data points employed for the establishment of the GEP correlation, 413 

and also to define the applicability domain. The well-known Leverage approach was applied 414 

(Rousseeuw and Leroy, 2005). The results from the Leverage approach are converted to the 415 

famous graphical representation known as William plot (Nait Amar et al., 2019a, 2019b). This 416 

plot scatters the standardized residual (R) of the predicted values versus the so-called hat (H) 417 
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values which corresponds to the diagonal elements of the hat matrix defined as (Gramatica, 418 

2007; Rousseeuw and Leroy, 2005): 419 

w = ./.C.01�.C                                                         (14) 420 

where . is a matrix with /4	 × 	�0 size, with 4 and � represents the number of samples and 421 

the variables, respectively, and .C is the transpose matrix of .. To delineate the applicability 422 

in the Williams plot after presenting standardized residual as function of hat values, a 423 

Leverage limit value (H*) calculated as 
 /
	x	�0

J  is utilized. In addition, the data points are 424 

selected in the range of ± 3 of standard deviation from the mean, where the cut-off value of 3 425 

covers 99% of the distributed data (Gramatica, 2007; Rousseeuw and Leroy, 2005). The 426 

suspected data points known as outliers are defined as the points which are situated in the 427 

range of R > 3 or R < − 3 regardless of their hat value in comparison with H*. Hence, 428 

existence of great accumulation of the data points in the ranges 0 ≤ H ≤ H* and -3 ≤ R ≤ 3 429 

indicates the high reliability of the model.   430 

Fig. 15 shows the obtained Williams plot for the newly proposed correlation. This plot 431 

reveals that 90 data points are in the intervals of 0	 ≤ w ≤ 0.1304 and −3	 ≤ R	 ≤ 3	, while 432 

only two data points are found outside these margins, and hence, they are detected as doubtful 433 

data. The Leverage approach confirms the statistical validity of the implemented GEP 434 

correlation for predicting the diffusivity coefficient of CO2 in brine. 435 

5. Conclusions 436 

In this paper, two new correlations were developed using GMDH and GEP for accurate 437 

prediction of the diffusivity coefficient of CO2 in brine. For developing the correlations, a 438 

representative experimental database was collected from the published literature, based on 439 

pressure, temperature and the viscosity of the solvent, as inputs. According to this study, the 440 

following conclusions are drawn: 441 
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1. Both GMDH and GEP correlations showed very close prediction capabilities. 442 

2. GEP correlation outperforms the GMDH correlation with an overall AARD value of 443 

4.3014%. 444 

3. The newly implemented GEP correlation exhibited very low AARD values with 445 

respect to different intervals of input parameters. 446 

4. The proposed GEP correlation can provide a fast and reasonably-priced estimation 447 

of the coefficient of CO2 diffusivity in brine. 448 

5. The developed GEP correlation was compared with DTs, RF, mixed Kernels-based 449 

support vector machine coupled with GA and other pre-existing models. The 450 

accuracy of the developed correlation was superior to all these models.  451 

6. The trends of the GEP outputs are logical in terms of the independent variables. 452 

7. Temperature was found the most impacting parameter in the prediction of 453 

diffusivity coefficient by GEP correlation.  454 

8. The Leverage approach demonstrated the statistical validity of the model and only 455 

two data points were detected as outliers. 456 

 457 
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Table 1. Summary of the existing empirical models for predicting the diffusivity coefficient of CO2 668 
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Solvent Model Expression Included parameters 
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Brine 

 (Othmer and 
Thakar, 
1953) 

:z{F =
14 × 101X
?�.�Q��.[  

• Molar volume of the 
diffusing substance 
(Q� in cm3/gmol). 

• Viscosity of the 
solvent (? in �=� · }) 

 

(Wilke and 
Chang, 1955) :z{F = 7.4 × 101] >√∅@?Q��.[  

• Temperature (> in 
K). 

• The association 
parameter �. 

• Molecular weight 
of solvent (M). 

(Cadogan et 
al., 2014a) 

:z{F =
��>

4���?� 

• ��=1.38065×10-23 
J/K. 

• 4�� is the Stokes-
Einstein number. 

• The hydrodynamic 
radius of the solute 
(a in pm): � =
168Y1 + 2.0 ×
101 /> − 2980^ 
 

 Pure water 

(Lu et al., 
2013) :z{F = 13.942 × 10−9 � >

227 − 1�
1.7094

 
• Temperature (T in 

K). 

(Moultos et 
al., 2016) :z{F = :�/=0 � >>} − 1�

�/�0
 

• :�=a1ln(P)+a2, 
m=b1ln(P)+b2, 
where a1=-
2.3097×10-9, 
a2=2,1064×10-8, 
b1=-0.17812 and 
b2=2.59406; P is 
the pressure. 
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Table 2. Summary of the gathered data 692 

 Max Avg. Min SD 
P (MPa) 49.30 9.64 0.1000 14.8030 

T (K) 473.15 317.76 273 39.8 
Viscosity (mPa.s) 1.9500 0.9003 0.1390 0.4720 

Diffusivity 
coefficient (×10-9 

m2/s) 
16.1000 3.3522 0.3100 3.0874 
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Table 3. GEP setting parameters used in the study 737 

Parameters Value/setting 
Chromosome 100 

Gene 12 

Operators used +,−,×,/, exp. , � , P�Q, 94 
Generations 420 

Mutation rate 0.45 

Inversion rate 0.12 
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Table 4. Performance analysis of the implemented models. 776 

  GEP GMDH 
Training data AARD (%) 3.8584 8.6269 
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Table 5. Performance analysis of the implemented decision trees (DTs) and random 821 

forest (RF) models. 822 

R2 0.9980 0.9943 
RMSE (×10-9 m2/s) 0.1427 0.2479 

Test data 
AARD (%) 6.0035 5.6292 

R2 0.9978 0.9874 
RMSE (×10-9 m2/s) 0.1245 0.2271 

All data 
AARD (%) 4.3014 8.0404 

R2 0.9979 0.9937 
RMSE (×10-9 m2/s) 0.1391 0.2440 

  DTs RF 
Training data AARD (%) 4.2969 6.3627 
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Table 6. Comparison of the performances with prior models 851 

R2 0.9980 0.9973 
RMSE (×10-9 m2/s) 0.1598 0.1647 

Test data 
AARD (%) 8.8426 9.0015 

R2 0.9924 0.9940 
RMSE (×10-9 m2/s) 0.2532 0.2764 

All data 
AARD (%) 5.1862 6.8790 

R2 0.9969 0.9966 
RMSE (×10-9 m2/s) 0.1785 0.1870 

 GEP Feng et al. Othmer Wilke Cadogan 
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and 
Thakar 

and 
Chang 

et al. 

AARD (%) 4.3014 7.91 12.75 12.60 13.84 
R2 0.9979 0.9960 0.9661 0.9434 0.9858 

RMSE 0.1391 0.1954 0.5661 0.7311 0.3661 
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Fig. 1. Frequency histograms of the collected dataset 905 
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Fig. 2. Variation of diffusivity coefficient versus the independent variables 938 
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Fig. 3. Results obtained for ten realizations with different GMDH highest orders 954 
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Fig. 4. Results of the GEP and GMDH sensitivity analysis on training and test sets 977 
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Fig. 5. A schematic structure of the implemented GMDH for predicting diffusivity coefficient 999 
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Fig. 6. Cross plots of the established GEP and GMDH correlations for diffusivity coefficient 1023 

prediction 1024 
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Fig. 7. Error distribution for the developed correlations 1070 

 1071 

 1072 

 1073 

 1074 

 1075 

 1076 

 1077 

 1078 

 1079 

 1080 

 1081 

 1082 

 1083 

 1084 

 1085 

  

-20

-10

0

10

20

30

40

0 5 10 15 20

P
er

ce
n

t 
re

la
tiv

e 
er

ro
r,

 %

Measured diffusivity coefficient (×10-9 m2/s)

GEP

Training data
Test data

-90

-60

-30

0

30

0 5 10 15 20

P
er

ce
n

t 
re

la
tiv

e 
er

ro
r,

 %

Measured diffusivity coefficient (×10-9 m2/s)

GMDH

Training data
Test data



37 

 

 1086 

 1087 

 1088 

Fig. 8. Comparison between the performances of the correlations: (a) AARD and (b) R2 1089 
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Fig. 9. Comparison of the error distribution of the models with respect to input parameters 1103 
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Fig. 10. Comparison between the performances of GEP correlation and the prior models: (a) 1108 

AARD and (b) R2 1109 
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Fig. 11. Cumulative frequency vs. absolute percent relative deviation of GEP correlation and the prior 1126 

empirical models. 1127 
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Fig. 12. Comparison of the diffusivity coefficient obtained from measurements and generated by GEP 1158 

correlation, as function of the input parameters. 1159 
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Fig. 13. Comparison of the diffusivity coefficient obtained from measurements and generated by GEP 1162 

correlation, for the whole employed pressure values. 1163 
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Fig. 14. Relevancy factor 1187 
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Fig. 15. The Williams plot of GEP correlation. 1224 
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Table 1. Summary of the existing empirical models for predicting the diffusivity coefficient of CO2 

 
 
 
 

 
 
 
 
 

Solvent Model Expression Included parameters 

Brine 

 (Othmer and 
Thakar, 
1953) 

���� =
14 × 10
�
�
.
���.�  

• Molar volume of the 
diffusing substance 
(�� in cm3/gmol). 

• Viscosity of the 
solvent (� in ��� · �) 

 

(Wilke and 
Chang, 1955) ���� = 7.4 × 10
� �√∅�����.�  

• Temperature (� in 
K). 

• The association 
parameter �. 

• Molecular weight 
of solvent (M). 

(Cadogan et 
al., 2014a) 

���� =
� �

!"#$�� 

• � =1.38065×10-23 
J/K. 

• !"# is the Stokes-
Einstein number. 

• The hydrodynamic 
radius of the solute 
(a in pm): � =
168[1 + 2.0 ×
10
*(� − 298)] 
 

 Pure water 

(Lu et al., 
2013) ���� = 13.942 × 10−9 1 �227 − 12

1.7094
 

• Temperature (T in 
K). 

(Moultos et 
al., 2016) ���� = ��(�) 1 ��� − 12

�(3)
 

• ��=a1ln(P)+a2, 
m=b1ln(P)+b2, 
where a1=-
2.3097×10-9, 
a2=2,1064×10-8, 
b1=-0.17812 and 
b2=2.59406; P is 
the pressure. 



 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Summary of the gathered data 

 Max Avg. Min SD 
P (MPa) 49.30 9.64 0.1000 14.8030 

T (K) 473.15 317.76 273 39.8 
Viscosity (mPa.s) 1.9500 0.9003 0.1390 0.4720 

Diffusivity 
coefficient (×10-9 

m2/s) 
16.1000 3.3522 0.3100 3.0874 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. GEP setting parameters used in the study 

Parameters Value/setting 
Chromosome 100 

Gene 12 

Operators used +,−,×,/, exp. , 9 , :;�, <! 
Generations 420 

Mutation rate 0.45 

Inversion rate 0.12 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4. Performance analysis of the implemented models. 
 

 

 

 

 

 

 

 
 
 
 

Table 5. Performance analysis of the implemented decision trees (DTs) and random 
forest (RF) models. 

 

 

 

 

 

 

 

 

 
 
 
 
 

  GEP GMDH 

Training data 
AARD (%) 3.8584 8.6269 

R2 0.9980 0.9943 
RMSE (×10-9 m2/s) 0.1427 0.2479 

Test data 
AARD (%) 6.0035 5.6292 

R2 0.9978 0.9874 
RMSE (×10-9 m2/s) 0.1245 0.2271 

All data 
AARD (%) 4.3014 8.0404 

R2 0.9979 0.9937 
RMSE (×10-9 m2/s) 0.1391 0.2440 

  DTs RF 

Training data 
AARD (%) 4.2969 6.3627 

R2 0.9980 0.9973 
RMSE (×10-9 m2/s) 0.1598 0.1647 

Test data 
AARD (%) 8.8426 9.0015 

R2 0.9924 0.9940 
RMSE (×10-9 m2/s) 0.2532 0.2764 

All data 
AARD (%) 5.1862 6.8790 

R2 0.9969 0.9966 
RMSE (×10-9 m2/s) 0.1785 0.1870 



 
 

 

 

Table 6. Comparison of the performances with prior models 

 

 

 

 

 

 
 
 

 GEP Feng et al. 
Othmer 
and 
Thakar 

Wilke 
and 

Chang 

Cadogan 
et al. 

AARD (%) 4.3014 7.91 12.75 12.60 13.84 
R2 0.9979 0.9960 0.9661 0.9434 0.9858 

RMSE 0.1391 0.1954 0.5661 0.7311 0.3661 



 
 
 
 
 
 
 

 

 
 

 
Fig. 1. Frequency histograms of the collected dataset 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig. 2. Variation of diffusivity coefficient versus the independent variables 
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Fig. 3. Results obtained for ten realizations with different GMDH highest orders 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Results of the GEP and GMDH sensitivity analysis on training and test sets 
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Fig. 5. A schematic structure of the implemented GMDH for predicting diffusivity coefficient 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 

 

 

Fig. 6. Cross plots of the established GEP and GMDH correlations for diffusivity coefficient 
prediction 
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Fig. 7. Error distribution for the developed correlations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

-20

-10

0

10

20

30

40

0 5 10 15 20

Pe
rc

en
t r

el
at

iv
e 

er
ro

r,
 %

Measured diffusivity coefficient (×10-9 m2/s)

GEP

Training data
Test data

-90

-60

-30

0

30

0 5 10 15 20

Pe
rc

en
t r

el
at

iv
e 

er
ro

r,
 %

Measured diffusivity coefficient (×10-9 m2/s)

GMDH

Training data
Test data



 

 

 

Fig. 8. Comparison between the performances of the correlations: (a) AARD and (b) R2 
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Fig. 9. Comparison of the error distribution of the models with respect to input parameters 
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Fig. 10. Comparison between the performances of GEP correlation and the prior models: (a) 

AARD and (b) R2 
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Fig. 11. Cumulative frequency vs. absolute percent relative deviation of GEP correlation and the prior 
empirical models. 
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Fig. 12. Comparison of the diffusivity coefficient obtained from measurements and generated by GEP 
correlation, as function of the input parameters. 
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Fig. 13. Comparison of the diffusivity coefficient obtained from measurements and generated by GEP 
correlation, for the whole employed pressure values. 
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Fig. 14. Relevancy factor 
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Fig. 15. The Williams plot of GEP correlation. 

 
 

-4

-3

-2

-1

0

1

2

3

4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

S
ta

nd
ar

di
ze

d 
re

si
du

al
s

Hat

Leverage limit
Suspected limit
Valid data
Suspected data



Highlights 

• Two white-box machine learning techniques were implemented for predicting the 
diffusivity of CO2 in brine. 

• GEP is the best developed correlation. 
• GEP correlation outperforms the prior paradigms. 
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