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Abstract

Accurate knowledge of the diffusivity coefficient GO, in brine has a significant effect on
the design success and monitoring of;@@rage in saline aquifers, which is a part oboar
capture and sequestration (CCS). Frequently apphedrimental approaches for determining
this parameter are expensive and time-consuming, empirical models cannot ensure
accurate predictions. Therefore, there is a needstablish cutting-edge correlations for
prediction of the diffusivity coefficient of Cn brine under various operating conditions. In
this work, two white-box machine learning technisjueamely group method of data handling
(GMDH) and gene expression programming (GEP) werglemented for correlating the
diffusivity coefficient of CQ in brine with pressure, temperature and the viscad the
solvent. The obtained results demonstrated theracguof the proposed correlations. In
addition, statistical and graphical analysis of pleeformances revealed that GEP correlation
outperforms the GMDH correlation, decision treed¢) random forest (RF) and all the
previous predictive models. GEP correlation exbkitbibn overall average absolute relative
deviation (AARD) of 4.3014% and coefficient of detgnation () of 0.9979. Finally, by
performing the outliers detection, the validitytbé GEP correlation was confirmed and only
two experimental data points were identified adienst

Keywords — CQ-brine; diffusivity coefficient; empirical correlans; GEP; GMDH.
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1. Introduction

The increased amount of GGn the atmosphere is considered the most important
concern of the Zlcentury around the globe (Boot-Handford et al14)0 This issue results
mainly from fossil fuels being used continuouslydifferent sectors of industry (Azzolina et
al., 2015; Boot-Handford et al., 2014; Nait Amaragt 2019a; Venkatraman and Alsberg,
2017). Therefore, some new approaches have emagyptomising means for reducing the
CQO, levels in the atmosphere, among which, carbonucapand sequestration (CCS) in
geological formations is still the most attractmee (Amini et al., 2012; Grude et al., 2014;
Shahkarami et al., 2014).

CCS has gained much interest within many fieldsfineering, environment and
energy (Bhakta et al., 2015; Davarazar et al., 2@iBbins and Chalmers, 2008; Lee et al.,
2010; Mohagheghian et al., 2019; Riahi et al., 2004e sequestration of the captured, @O
saline aquifers is the most frequently appliedtsty while implementing CCS (Gershenzon
et al., 2015, 2014). In addition, some other aaplons of CQ such as enhanced oil recovery
methods based on G@njection, have served as useful and vital mean®duction of CQ
levels in the atmosphere (Bachu et al., 2004; Bttvakkol et al., 2014; Gozalpour et al.,
2005; Holtz et al., 2001; Nait Amar and Zeraibi12p

The process of CQinjection in saline aquifers is subjected to somechanisms,
namely the contact of GOwith the in-situ water and its dissolution in tirthrough
molecular diffusion. Therefore, accurate knowledgd determination of the parameters that
play important role while monitoring CCS are ofabitnterest. Diffusivity coefficient which
characterizes the diffusivity of fluid is one ofee parameter@adogan et al., 2014a;
Guzman and Garrido, 2012). Indeed, this parametsrahnoticeable effect on the chemical
reactions and the interfacial mass transfer oaograeep underground, in addition to

impacting the flow path, transport behavior and thmntitative description of diffusion
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during CQ injection (Farajzadeh et al., 2009; Guzman and Garrido, 2012; Mutoru et al.,
2011; Trevisan et al., 2014).

Determination of diffusivity coefficient of the GOn brine can be done by two
distinguished approaches. The first one consistpeoforming experimental measurements
and the second approach is by means of the empmodels. The lab measurements are
divided into direct and indirect tests (Lu et @013). The direct procedures are based on the
accurate knowledge of the gas concentration irstiteent (Cadogan et al., 2014b; Frank et
al., 1996), while the indirect tests exploit thengal information related to the diffusivity of
gas such as interfacial tension, volumes of gasligibtls, and the operational conditions
(Jang et al., 2018; Li et al., 2016). The experitakeapproaches are known to deliver accurate
results. However, their implementation is time-aongyg and demands sophisticated
equipment. As a result, several researchers hawvelaped empirical models for estimating
the diffusivity coefficient of CO2 in brine. Wilkand Chang (1955) established a predictive
correlation for estimating the diffusivity coeffesit in numerous dilute solutions. The model
employs viscosity and temperature as input parasieteu et al. (2013) developed a model
for estimating the diffusivity coefficient of GQOn water without considering the pressure
effect. There model is applicable to cases withpematures between 268K and 473K. An
extended version of Lu et al. (2013) model at tpgkssure and temperature conditions, was
proposed by Moultos et al. (2016) by applying thenaept of molecular dynamics
simulations. Although the correlations developed.byet al. (2013) and Moultos et al. (2016)
are accurate for the G@ure water system, they cannot be applied to cakese brine is the
solvent. Cadogan et al. (2014a) utilized experimlergsults for CQ diffusivity coefficients
against brine viscosity at temperature of 298K detablishing a modified Stokes-Einstein
relation. Table 1 reports the mathematical formareg of the above models for predicting the

diffusivity coefficient of CQ in water and brine.
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An in-depth review of the available correlations fioedicting the diffusivity coefficient
of CO, in brine reveals the limitations of these techegfrom the applicability and accuracy
perspectives (Feng et al., 2019).

In recent years, researchers have shown an incraaterest in the application of
machine learning techniques for modeling complestesys (Jeong et al., 2018; Nait Amar et
al., 2019b; Nait Amar and Zeraibi, 2019; Nomeli aRdaz, 2017; Piotrowski and
Napiorkowski, 2012). Machine learning techniques d#e divided into computer-aided
methods such as support vector regression (SVRilacidion tree, and explicit methods such
as gene expression programming (GEP) and groupochethdata handling (GMDH). The
first category is known as black-box approachesl #uis means that their paradigms are
dependent on a computer-aided technique, whilesd¢lsend category is recognized as white-
box methods which means that they deliver expégpressions (Nait Amar et al., 2019c).
Recently, Feng et al. (2019) developed a predicthael for estimating the diffusivity
coefficient of CQ in brine by coupling genetic algorithm with mix&drnel SVR and they
obtained satisfactory performances. However, th@liggiion and accuracy of their
established model depend on calculability effoasd this presents an issue in terms of
flexibility for further utilization.

The main contribution and novelty of this study sish of establishing two distinct
explicit and simple-to-use correlations for acceatediction of diffusivity coefficient of CO
in brine under various operational conditions. T@ b, group method of data handling
(GMDH) and gene expression programming (GEP) wenplemented with three input
parameters, namely pressure, temperature and ijsobshe solvent, using a representative
experimental database. Besides, decision trees)@israndom forest (RF) were considered
for comparison with the best-result explicit coatedn. Statistical and graphical assessment

criteria were applied for evaluating the newly meed correlations and compared their
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performances with prior paradigms. Lastly, Leverageroach was performed to verify the
quality of the employed experimental data pointd dafine the realm of application for the
best fit established correlation.

The rest of the paper includes 4 sections. Se@idescribes the database which was
utilized for developing the correlations. Sectiobrgfs the two applied white-box machine
learning techniques, namely GMDH and GEP, and tbeegulure of their implementation in
our study. Results are given and discussed in @edti The paper ends with Section 5 which

summarizes the main findings.
2. Data collection and preparation

In the present work, a representative experimetiddhbase was collected from the
published literature (Cadogan et al., 2015; Cadoganal., 2014b; Choudhari and
Doraiswamy, 1972; Frank, Marco J W and Swaaij, 1996et al., 2013; Maharajh, 1975;
Maharajh and Walkley, 1972; Nijsing et al., 195@®ddy and Doraiswamy, 1967; Tamimi et
al., 1994; Tan and Thorpe, 1992; Thomas and Ada8B5; Versteeg and van Swaal, 1988;
Vivian and Peaceman, 1956; Yang et al., 2006) t@ldp accurate explicit correlations for
estimating the diffusivity coefficient of GOn brine at different operating conditions. The
database englobes 92 experimental data points diffirent operating conditions, namely
pressure, temperature and viscosity of the solManthe context of the affecting variables,
salinity affects the solubility, interfacial tensi@and phase equilibria, thus influencing the
diffusivity. In addition, salinity of the solventsffects brine’s viscosities (Cadogan, 2015;
Feng et al., 2019); therefore, the salinity eff@ctdiffusivity of CQ in brine is emulated by
considering the brine’s viscosities as an inputapeater while establishing the correlations
and the paradigms. The data points collected fromvipus experimental studies were
obtained using various techniques and equipmernth ag Taylor dispersion, a modified

version of Ringborm’s apparatus, laminar jet appasalaminar falling film, laser-induced
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fluorescence (LIF), 13C pulsed-field gradient NMghysical absorption experiments in a
stirred vessel operated with a horizontal gas-tiquierface, optical capillary cell via time-
dependent Raman spectroscopy, wetted sphere apgarat/lor—Aris dispersion method and
see-through windowed high-pressure cell. Tablepdnts a detailed statistical insight about
the collected data points. In addition, to provasheinsightful description of the database, Fig.
1 illustrates frequency histograms of the collectlataset and Fig. 2 demonstrates the
correlation between diffusivity coefficient and tbensidered independent variables through
cross plots. According to the histograms shownig E, it can be seen that the pressure and
temperature are mainly distributed in the mediurd kEmw ranges, while viscosity shows a
symmetric distribution near its mean. AccordingRig. 2 (a), pressure exhibits moderate
direct relation with diffusivity coefficient. Thignalogy is more significant for temperature as
can be seen from Fig. 2 (b). From Fig. 2 (c), it & noted that viscosity of solvent has a

negative direct relation with diffusivity coefficie
3. Methodology

3.1. Group Method of Data Handling (GMDH)

Group Method of Data Handling (GMDH) is one of #@réificial neural network (ANN)
types, which is known to generate explicit corielatetween input and output parameters of
a given system. The resulting correlation by aimgjya GMDH model takes the form of a
polynomial (Dargahi-Zarandi et al., 2017). As anMpe, GMDH structure involves nodes
as basic elements for processing the informatitves@& nodes are arranged in different layers
from the input layer to the output layer, with oithut intermediate layers (Nait Amar et al.,
2019c). The GMDH hybrid version (HGMDH) allowed timeprovement of the predictability
which was somehow insufficient in the first versidaveloped by (lvakhnenko, 1971). In

HGMDH, the interactions among nodes from differémters are allowed. This procedure
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brings more robustness when modeling complex cd&stami et al.,, 2019). The

mathematical form of HGMDH is expressed as showovize
yi=a-+ Z?zlzj-i:l ...Zﬁzlﬁijmkxlmx}n WX om=12,..,2P Q)

wherex andy stand for the input and the output parameterseasely; 9;; , correspond to

the polynomial coefficients is the number of layers amdis the number of variables.
The following points summarize the calculation maere in HGMDH with a second order:

- The following equation defines the expression nbde N covering two inputs:

NEMPH = g + ayx; + apx; + asxixj + agx? + asx} (2)

- Calculation of polynomial coefficients: least squanethod is applied to calculate the
resulting coefficients in the expressions of thiéedent nodes. The following formula

is adapted:

p2= 3 (NGHPH 3 j=12,.(%) 3)

whered andN are the number of variables and data points, otispéy.

- Matrix transformation: in order to achieve the fieapression, the above equation is
transformed to a matrix form (Dargahi-Zarandi et 2017; Hemmati-Sarapardeh and
Mohagheghian, 2017):

Y =ATX (4)

- The final solution is obtained as follows:
AT = yxT(xX™)~! (5)

wherey = {y;1,¥2, ..., Va} and A = {ay, a1, @3, @3, Ay, a5}

3.2.Gene Expression Programming (GEP)
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Gene expression programming (GEP) is a prevalariiBonary technique which aims

at modeling the systems with accurate explicit egpions. GEP, introduced by Ferreira

(Ferreira, 2001), can be regarded as the improgeslon of genetic programming (GP) which

was proposed by Koza (Koza, 1992). GEP employssthedard genetic operators, namely

selection, crossover, elitism and mutation, in addito new implemented actions such as

insertion and transposition to search for the bédiaorrelations. Besides, the codification of

the individuals in GEP is performed in the formatfromosomes. In addition, Expression

Tree (ET) is introduced for transforming the indivals to real expressions. It is worth

mentioning that the genes have a fixed length vatminals which show the variables, such

as{x,, x,, x3}, and operators such &s,/,x, —, V., In} (Teodorescu and Sherwood, 2008).

The main steps of GEP are briefed below:

Initial population: an initial population of coreglons codified in the form of
chromosomes is generated randomly. The predictiaiity of the correlations differs
according to a fitness function.

Standard operators: the well-known genetic operatatuding elitism, selection,
crossover and mutation are applied. Elitism cossisf safeguarding the best
correlations for the next generations. Selectidoma identification of the correlations
to be subjected to reproduction for giving new efations. Crossover is summarized in
the process of exchanging parts between two or monelations, while mutation is
done by means of modifying parts of correlations.

Transposition and insertion: it consists of jumpamgl activating parts of the genome in
the chromosome (Ferreira, 2001).

The resulting population is assessed and the apsrate reiterated until satisfying a

stopping condition.
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3.3.Implementation procedure

As previously highlighted, the aim behind applyi@DH and GEP as white-box
machine learning method is to develop an explioitadation for accurate prediction of GO
diffusivity in brine under various conditions indimg pressure, temperature and viscosity.

Therefore, the following form is admitted for thvect correlations:

D, = f(P,T,p) (6)

In the above equatiol),. points out the C@diffusivity coefficient in brine expressed irffs,
andP,T and u represent the input parameters of the correlatioias pressure, temperature
and viscosity, respectively. The input parameters expressed in MPa, K and mPa.s,

respectively.

The collected experimental data points that desdtese conditions and the obtained
diffusivity coefficient of CQ in brine were prepared for the development of dhes
correlations. The database was divided randomly antraining set with 80% of the whole
experimental data points and a testing set whickersothe remaining 20%. This dataset
partitioning exhibits usually very satisfactory utis (Aminu et al., 2019; Benamara et al.,
2019; Dargahi-Zarandi et al., 2017; Hemmati-Samgaret al., 2018; Mirjalili, 2015; Yan et
al., 2006). Besides, in order to substantiate #téeb performance and robustness of applied
techniques, sensitive analysis of the latter onluke were performed.

During the development of the GEP correlation, mequare error (MSE) was the

considered fitness function for assessing the chemmes. MSE is expressed as:

n ._0:)2
MSE = Li=1(ti—0)” (7)
n

wheret; ando; stand for the measured and the predicted difftyscoefficient of the CQin

brine, respectively, ana represents the number of data points.
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While developing the GMDH-based correlation, thember of inputs that can be
introduced in the hidden and output nodes was Bpedb three, while the best highest order
of the model was investigated by performing a gafityi analysis.

As indicated, the control parameters of GEP affleetprediction capability. During the
establishment of the GEP-based correlation fomptieeiction of the diffusivity coefficient of
CO; in brine, it was noticed that an increase in thmber of chromosomes in the population,
the numbers of genes as well as the maximum dejpTop influence the run-time, the
accuracy and the complexity of the generated arogis. Accordingly, these control
parameters were tuned. Table 3 reports the findhgeof GEP. Consequently, we applied
tree encoding, 100 chromosomes, 12 genes, MSEhasdifunctions, a function set including
+,—%,/,exp.,v ,INV,In, and two point mutation, while the stopping ciiter was the

maximum number of generations (420).
4. Results and discussion

4.1.Development and evaluation of the correlations

Several statistical indexes including average altsotelative deviation (AARD),
coefficient of determination @ and root mean square error (RMSE), were congidfme
assessing the quality of the predictions of thelypgwoposed correlations. These statistical

criteria are defined as follows:

ti—o;

AARD% =~ | 1] x 100 (8)
2 _ 4 _ Ziza(ti—0p)?
RE=1 Yiz,(0i-0)? ®)
RMSE = \/% Y (t; — 0;)? (10)

10
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The graphical representations of the outcomes ettirelations were illustrated for a
visual evaluation and a comparison of the perfomeanThe graphical assessment of the
performances was done by means of cross plotstiveelarror distribution, cumulative
frequency distribution of the absolute relativeoerand bar plots. Cross plots give an insight
about the reliability of the correlations by re@etng their predictions against the real values
of the output, and then comparing the obtainedridigion against the lin@ = X which
shows the perfect paradigm. The diagram of relativer distribution details the repartition
of the relative error through the output valuedisEactory distribution of the relative error
around the zero-error line indicates the reliapilaf the correlations. The cumulative
frequency diagram of the absolute relative errtowad the identification of portions of the
data points which are predicted with some pre-$igelcvalues of the absolute relative error.
Predicting a great portion of the data points veittow absolute relative error value ensures
the high reliability of the correlations. Bar plossimmarize the statistical criteria of the

correlations in visual comparative schemes.

As stated in the previous section, sensitivity geed were conducted to find the best
highest order for GMDH and to investigate GEP amdiDB robustness according to samples
considered for training and testing phases. To ¢md, ten realizations were run at each
different GMDH highest order, namely two, three dondr. The performance comparison
through final overall AARD values is depicted irethox plot of Fig. 3. In this figure, the box
exhibits specific interquartile range. The red hontal line denotes the median value, while
the lower and higher black horizontal lines repnéslee best and worst overall AARD values.
As can be seen from this figure, considering ttag¢he highest GMDH order results in the
best performance with lowest overall AARD valuegefiéfore, the highest order of the model
was set to three. Fig. 4 shows a bar plot compakiilBD values of GEP and GMDH during

training and testing phases in the considered teis {with different training and testing

11



281  samples). According to this figure, the best penfance of GEP was achieved in the fourth
282  run while GMDH showed its best reliability in thieird run. Accordingly, these two best-

283  result models were kept for further comparison.

284 Fig. 5 schematizes the best resulted GMDH model pi@dicting the diffusivity

285  coefficient of CQ in brine.

286 According to this figure, no middle nodes were hegliin the model. In the same

287  context, the following equation defines the expl@ipression of the GMDH model:

288 D, =109X[Co+Cy X +Co XT+C3XP+Cy XTXpu+CsXPXpu+CsXxPXT+CyX
289  pPH4CgXT? 4+ CoXP? +CiogXPXTXU +Ciy XTXU?+C13 XT?Xu + Cy3 X P X pu? + Cpy X

290 P XT? +Cis XPEXp 4 Cig XP2XT 4 Cypp X 3 + Cyg X T3 + Cyo X P3] (11)

291  whereC, = —207.739284; C, = —201.432367; C, = 1.1500875; C; = 0.678161; C, =
292 1.834310; Cs = —1.309668; Cs = —0.002251; C, = —25.879322; Cg = —0.00201; Cy =
293 —0.011747; C;, = 0.004118; C;; = 0.038415; C;, = —0.003692; C;5 = 0.082021; C;, =
294  —2.664159 X 1077 ; Cy5 = 0.001794 ; C;¢ = 3.978117 X 1075 ; C,, = 3.600267; C;g =

295  1.477156 x 107%;and C;q = —2.412235 x 107>

296 After rearrangement, the best resulting corretatimsed on GEP is expressed as

297 follows:

=109 x |4 + 42
298 D, =10 x[#+ﬁ+A3x\/T+A4xP+A5] (12)
299 Thetermsd,, 4,, 45, A,, andAg are defined as shown below:

A; = —0.0001564 x P3 + 0.01113 x P? + 0.02935 x P — 2.83 x V/P + 8.362

Ay = 0.02426 X (P +T) — 2.466 X \/P

A3 = 04583 +0.123 x P

12
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A, =6.832%x107% X P2 4+ 0.003955 x P + 19.34 X ﬁ —3.801

_3095xIn(P)  0.0006024 X T X i
> 7 5.629 % (P —p) P

—4.259 x In(P? X T) — 7.945

Fig. 6 illustrates the cross plots of the proposedelations. The two cross plots
demonstrate a promising consistency between prexdscof the correlations and the real data,
as very satisfactory alignments nearby the unipesline are noticed for both GMDH and
GEP predictions. The fit is surprisingly trustwortfor the two correlations for both training

and testing data.

Furthermore, Fig. 7 shows the distribution of tleggentage relative error between the
real values of the diffusivity coefficient of theOg in brine and the values predicted by
GMDH and GEP correlations. According to this figuttee distributions of the relative error
around the zero-error line for both correlationghat training and testing phases are deemed
satisfactory. However, the reported results in tigigre reveal that GEP correlation seems to
have a better predictive capability compared to GMDRorrelation. For a detailed
quantification of the performances, Table 4 stalbesstatistical criteria, namely AARD,’R
and RMSE, for the proposed correlations. Moreogegraphical comparison between the
global performances of the two correlations is reggb in Fig. 8. It is clear from the
evaluation reported in Table 4 that the newly psegub correlations exhibit promising
predictive capabilities with overall values of AARID 8.0404% and 4.3015% for GMDH and
GEP, respectively. Besides, the overall determomatioefficient of the models indicates the
trustworthiness of the correlations fit. The anak/shown in Figs.-8 and Table 4 claim the
superiority of the GEP-based correlation in thedmteon of the diffusivity coefficient of C®
in brine by considering the whole employed datan{soiTherefore, GEP correlation is used

for the rest of this paper.
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The impact of the employed independent variablamely pressure, temperature and
viscosity on the group error of the GEP-based tatiom for prediction of the diffusivity
coefficient is investigated in Fig. 9 for the whalatabase. In Fig. 9(a), the GEP correlation
shows its worst predictions with an AARD of 5.31%exe pressure is in the range of 20-40
MPa, while other intervals of pressure are predietgh an AARD value of less than 4.6%.
In Fig. 9(b), the maximum AARD value of the GEPretattion is obtained when temperature
is in the range of 298-323 K, while the rest of ittervals are estimated with an AARD value
that does not exceed 4.6%. In Fig. 9(c), the \®hfehe diffusivity coefficient for viscosity
of less than 0.3 mPa.s are predicted with an AARIes of about 1%, while the AARD
values of other viscosities are between 4.5 an#o5Gonsequently, the performance of the

proposed GEP is deemed again very sufficient idiptiag the diffusivity coefficient.

4.2.Comparison of the developed GEP correlation with dasion trees (DTs), random
forest (RF) and the prior models

It would be of interest from the reliability pergpee to compare the results of the
proposed GEP correlation with other soft computaahniques, namely decision trees (DTS)
and random forest (RF) as well as the prior paradigeported for the prediction of the
diffusivity coefficient of CQ in brine. To keep the work concise, more detaisua DTs and
RF can be found in published literature (Breimadil 2 Guo et al., 2011; Peters et al., 2007;
Wilkinson, 2004). The final tuned control paramstef RF and DTs models are reported as
follows:

* RF: number of grown trees: 20; min leaf size: 5n parent size: % min leaf size;
predictor selection: interaction-curvature; spidticriterion: MSE.

* DTs: min leaf size: 1; min parent size: 5; quadratiror tolerance: 1E-6; predictor

selection: all-splits; prune criterion: MSE.
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While developing DTs and RF models, 80% of the loleda was used for their training
and 20% of testing. The performance evaluationhef liest-result DTs and RF paradigms
after various runs is reported in Table 5. By conmgathe stated results in Tables 4 and 5, it
can be deduced that GEP based correlation outpesfooth DTs and RF models.

The comparison includes the empirical models, narttedse of Othmer and Thakar
(1953), Wilke and Chang (1955) and Cadogan et28l14a). In addition to the empirical
models, the implemented GEP correlation was condpavigh one of the most recent
intelligent paradigms proposed by Feng et al. (20qE>ed on hybrid genetic algorithm and
mixed Kernels-based support vector machine. It estivmentioning that when performing
the comparison with the pre-existing approachesingieided only the points that satisfy the
applicability conditions in each correlation. Talblend Fig. 10 report the comparison of the
proposed GEP correlation and the models based enopisly described statistical criteria.
According to these statistical analyses, amongiising models, the hybrid model proposed
by Feng et al. (2019) outperforms the availableigogd models for predicting the diffusivity
coefficient with a global predictive AARD of 7.91%espite the exhibited accuracy of Feng
et al. (2019) model, it is worth mentioning thatstimodel (based on mixed kernel SVR
coupled with GA) is resulted through performing somalculability efforts such as the
included quadratic programming involved in the bstment of the final solution. Besides,
as this paradigm is of the black box type, it iiclilt to apply it to other related tasks.

The reported statistical quality measures in Tabland Fig. 10 demonstrate the
superiority of the newly proposed GEP correlat@sjt outperforms both the prior intelligent
model and the empirical paradigms.

Being explicit based approaches, the performanéekeo empirical models and the
white-box GEP correlation were compared through pileg¢ of the absolute relative error

distribution as shown in Fig. 11. As seen in thgsife, 90% of the data points were predicted
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by GEP correlation with an AARD value of less tlf&aB%. The equivalent percentage of the
datapoints predicted with this AARD cutoff value ttwe empirical models are 50%, 25% and
24% for Cadogan et al. (2014a), Othmer and Thakd53), and Wilke and Chang (1955),

respectively.

As demonstrated in these comparative analyses, néwely implemented GEP
correlation was able to predict more reasonableesabf the diffusivity coefficient of CQn
brine. In addition, the GEP-based correlation haseaplicit and simple form which can
predict the diffusivity coefficient of COin brine more directly than the other intelligent
schemes, and hence, it can be applied to othetedelasks or implemented in different
softwares. The improvement brought by GEP basedeletion in the prediction of the
coefficient of CQ diffusivity in brine can be explained by the falled learning strategy
during GEP steps which is based on the use of absomes, genes, functions, variables, and
the traditional and the new genetic operators, whesult in more flexibility for capturing the

complexity of the modeled phenomenon.

4.3.Trend Analysis

To assess the efficiency of the implemented GEReladion for accurate prediction of
diffusivity coefficient as a function of the inpuparameters, three different sets of
experimental measurements included in our study #omel values predicted by GEP
correlation are depicted as function of the inpatameters in Fig. 12. In Fig. 12(a), the
comparison is performed with respect to viscosayiation where pressure and temperature
are constant. In Fig. 12(b), the comparison issitlated for different pressures and constant
temperature and viscosity. In Fig. 12(c), the congpa is shown for the case where pressure
is constant, and temperature and viscosity varythBumore, additional comparison is

depicted in Fig. 13 by presenting the real measentésnand the predictions of GEP as
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function of pressure for the whole considered dagabAs shown in the plots of Figs. 12 and
13, the predicted and real diffusivity coefficievdlues of CQ in brine overlap properly

regardless of the operating conditions.

4.4. Relative importance of input parameters

A sensitivity analysis using the relevancy fadtoy (Chen et al., 2014; Hajirezaie et al.,
2015; Shateri et al., 2015), was performed to asHes relative importance of the input
variables on the diffusivity coefficient. The retacy factor is expressed as follows:

z:11'1=1(11',1'_1_1)(01'_5)

JEa1-0) 5 Cor00?

r(1,0) = (13)

where the subscripts i and j refer to the datanaled the variable, respectively;and I
represent the input parameter and its averagegctgely, while 0 and O refer to the
predicted output and its average, respectivelg. Worth noting that a high absolute) value
for an input parameter indicates its noteworthyantpon the output. Furthermore, achieving
positive/negative values for an input suggests a positive/negatifeeton the output.

The obtained results regarding the relevancy fdotothe diffusivity coefficient of CQ
in brine are exhibited in Fig. 14. According tosthiigure, temperature has the biggest impact
on the outputs. In addition, it can be deduced\lsasity has a negative effect on the output,
while pressure and temperature positively affeetdiffusivity coefficient.
4.5.Outliers detection

In the last part of this study, outliers detectigais conducted to assess the quality of the
employed experimental data points employed forasiablishment of the GEP correlation,
and also to define the applicability domain. Thdlakeown Leverage approach was applied
(Rousseeuw and Leroy, 2005). The results from #netage approach are converted to the
famous graphical representation known as Williaot (Nait Amar et al., 2019a, 2019b). This

plot scatters the standardized residual (R) ofptleelicted values versus the so-called hat (H)
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values which corresponds to the diagonal elemeintseohat matrix defined as (Gramatica,

2007; Rousseeuw and Leroy, 2005):
H=X(XtX)"xt (14)

whereX is a matrix with(n X d) size, withn andd represents the number of samples and
the variables, respectively, aind is the transpose matrix &f. To delineate the applicability

in the Williams plot after presenting standardizesidual as function of hat values, a
Leverage limit value (H*) calculated asiéd:—l) is utilized. In addition, the data points are

selected in the range of £ 3 of standard devidtiom the mean, where the cut-off value of 3
covers 99% of the distributed data (Gramatica, 20RJusseeuw and Leroy, 2005). The
suspected data points known as outliers are defasethe points which are situated in the
range of R > 3 or R < — 3 regardless of their halu® in comparison with H*. Hence,
existence of great accumulation of the data pomthe ranges & H < H* and -3< R< 3
indicates the high reliability of the model.

Fig. 15 shows the obtained Williams plot for theviyeproposed correlation. This plot
reveals that 90 data points are in the interval®@ &f H < 0.1304 and—3 <R < 3, while
only two data points are found outside these margind hence, they are detected as doubtful
data. The Leverage approach confirms the statistiafdity of the implemented GEP
correlation for predicting the diffusivity coeffemt of CQ in brine.

5. Conclusions

In this paper, two new correlations were developgdg GMDH and GEP for accurate
prediction of the diffusivity coefficient of COin brine. For developing the correlations, a
representative experimental database was colldobed the published literature, based on
pressure, temperature and the viscosity of theesthas inputs. According to this study, the

following conclusions are drawn:
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442 1. Both GMDH and GEP correlations showed very clossligtion capabilities.

443 2. GEP correlation outperforms the GMDH correlationhsan overall AARD value of
444 4.3014%.

445 3. The newly implemented GEP correlation exhibitedyview AARD values with
446 respect to different intervals of input parameters.

447 4. The proposed GEP correlation can provide a fastraaslonably-priced estimation
448 of the coefficient of C@diffusivity in brine.

449 5. The developed GEP correlation was compared with, RFs mixed Kernels-based
450 support vector machine coupled with GA and othes-gxisting models. The
451 accuracy of the developed correlation was supéviatl these models.

452 6. The trends of the GEP outputs are logical in tenfrthe independent variables.

453 7. Temperature was found the most impacting parameatethe prediction of
454 diffusivity coefficient by GEP correlation.

455 8. The Leverage approach demonstrated the statistatiality of the model and only
456 two data points were detected as outliers.

457
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Table 1.Summary of the existing empirical models for prédigthe diffusivity coefficient ofCO,
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Brine

(Othmer and
Thakar,
1953)

_ 14 x 10~°
Co, — Hl'ang'G

* Molar volume of the
diffusing substance
(V,,, in cn/gmol).

* Viscosity of the
solvent & in mPa - s)

(Wilke and
Chang, 1955

VoM

0.6
Vin

DCOZ = 74 X 10_8

* TemperatureT( in
K).

* The association
parametetp.

* Molecular weight
of solvent (M).

(Cadogan et
al., 2014a)

kyT

co, =
2 nggmua

«  kp=1.38065%10"
JIK.

e ngg is the Stokes-
Einstein number.

* The hydrodynamic
radius of the solute
(ainpm).a =
168[1 + 2.0 x
1073(T — 298)]

Pure water

(Lu et al.,
2013)

T
Dqp. = 13.942 x 107° [— - 1]
€0, x 227

1.7094

* Temperature (T in
K).

(Moultos et
al., 2016)

T m(P)
Dco, = Dy (P) [E - 1]

*  Dy=ayn(P)+ay,
m=b1|n(P)+b2,
whereal=-
2.3097x10,
a2=2,1064x10,
b1=-0.17812 and
b2=2.59406P is
the pressure.
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693

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
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710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734

Table 2. Summary of the gathered data

Max Avg. Min SD
P (MPa) 49.30 9.64 0.1000 14.8030
T (K) 473.15 317.76 273 39.8
Viscosity (mPa.s) 1.9500 0.9003 0.1390 0.4720
Diffusivity
coeffici%nt (x10° 16.1000 3.3522 0.3100 3.0874
m-</s)
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735
736
737 Table 3. GEP setting parameters used in the study

Parameters Value/setting
Chromosome 100

Gene 12
Operators used +,—,%,/, exp.,\/_, INV,In
Generations 420
Mutation rate 0.45
Inversion rate 0.12

738

739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776 Table 4. Performance analysis of the implemented models.

GEP GMDH
Training data AARD (%) 3.8584 8.6269
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777 R 0.9980 0.9943
RMSE 10° n/s 0.1427 0.2479
778 AARD (%) 6.0035 5.6292
779 Test data R 0.9978 0.9874
RMSE 10° n/s 0.1245 0.2271
780 AARD (%) 4.3014 8.0404
All data R 0.9979 0.9937
781 RMSE &10° n?/s 0.1391 0.2440

782

783

784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821 Table 5. Performance analysis of the implemented decisest(DTs) and random
822 forest (RF) models.

DTs RF
Training data AARD (%) 4.2969 6.3627
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823

824

825

826

827

828

829

830

831
832
833
834
835
836
837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

R 0.9980 0.9973

RMSE 10° n/s 0.1598 0.1647

AARD (%) 8.8426 9.0015

Test data R’ 0.9924 0.9940
RMSE 10° n/s 0.2532 0.2764

AARD (%) 5.1862 6.8790

All data R 0.9969 0.9966
RMSE 10° n'/s 0.1785 0.1870

Table 6. Comparison of the performances with prior models

GEP | Fengetal. | Othmer | Wilke

| Cadogan |
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852

853

854

855

856

857
858
859
860
861
862
863
864
865
866
867
868
869
870
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872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
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890
891
892
893
894
895
896
897
898
899
900
901
902

O

and and etal.
Thakar Chang
AARD (%) 4.3014 7.91 12.75 12.60 13.84
R® 0.9979 0.9960 0.9661 0.9434 0.985
RMSE 0.1391 0.1954 0.5661 0.7311 0.366

=
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Table 1.Summary of the existing empirical models for prédigthe diffusivity coefficient ofCO,

Solvent

Model

Expression

Included parameters

Brine

(Othmer and
Thakar,
1953)

_ 14 x 10~°
€O, — H1.1Vn9.6

* Molar volume of the
diffusing substance
(V,, in crP/gmol).

* Viscosity of the
solvent ft inmPa - s)

(Wilke and
Chang, 1955

VoM
%

m

DCOZ = 74 X 10_8

TemperatureT( in
K).

The association
parametetp.
Molecular weight
of solvent (M).

(Cadogan et
al., 2014a)

kgT
€02 nggmUa

k5=1.38065%10"
JIK.

ngg is the Stokes-
Einstein number.
The hydrodynamic
radius of the solute
(ainpm).a =
168[1 + 2.0 x
1073(T — 298)]

Pure water

(Lu et al.,
2013)

1.7094

T
Dip. = 13.942 x 107° [— - 1]
co, x 227

Temperature (T in
K).

(Moultos et
al., 2016)

Deo, = Do(P) 7=~ 1|

Dy=ayIn(P)+ay,
m=b1|n(P)+b2,
whereal=-
2.3097x10,
a2=2,1064x16,
b1=-0.17812 and
b2=2.59406P is
the pressure.




Table 2. Summary of the gathered data

Max Avg. Min SD
P (MPa) 49.30 9.64 0.1000 14.8030
T (K) 473.15 317.76 273 39.8
Viscosity (mPa.s) 1.9500 0.9003 0.1390 0.4720
Diffusivity
coefficient (x10° 16.1000 3.3522 0.3100 3.0874

m?/s)




Table 3. GEP setting parameters used in the study

Parameters Value/setting
Chromosome 100
Gene 12
Operators used +,—x,/,exp.,.\[ ,INV,In
Generations 420
Mutation rate 0.45
Inversion rate 0.12




Table 4.Performance analysis of the implemented models.

GEP GMDH

AARD (%) 3.8584 8.6269

Training data R° 0.9980 0.9943
RMSE x10° m?/s 0.1427 0.2479

AARD (%) 6.0035 5.6292

Test data R 0.9978 0.9874
RMSE x10° m?/s 0.1245 0.2271

AARD (%) 4.3014 8.0404

All data R° 0.9979 0.9937
RMSE &10° n/s 0.1391 0.2440

Table 5. Performance analysis of the implemented deciseest(DTs) and random
forest (RF) models.

DTs RF

AARD (%) 4.2969 6.3627

Training data R 0.9980 0.9973
RMSE x10° m?/s 0.1598 0.1647

AARD (%) 8.8426 9.0015

Test data R° 0.9924 0.9940
RMSE 10° n/s 0.2532 0.2764

AARD (%) 5.1862 6.8790

All data R® 0.9969 0.9966
RMSE 10° n/s 0.1785 0.1870




Table 6. Comparison of the performances with prior models

|99

Othmer Wilke Cadogan
GEP Fengetal. | and and et al.
Thakar Chang
AARD (%) 4.3014 7.91 12.75 12.60 13.84
R’ 0.9979 0.9960 0.9661 0.9434 0.985
RMSE 0.1391 0.1954 0.5661 0.7311 0.366
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Highlights

» Two white-box machine learning techniques were implemented for predicting the
diffusivity of CO; in brine.

» GEPisthe best developed correlation.

* GEP correlation outperforms the prior paradigms.
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