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Nobody ever figures out what life is all about, and it doesn 't matter.
Explore the world. Nearly everything is really interesting if you go into it
deeply enough.

— Richard P. Feynman






Abstract

Injection molding is a process that is widely used for production of plastic parts of
different shapes, sizes and applications. Some of its advantages are high production rates
and efficiency. However, to be able to produce parts of high quality and avoid in-process
variations, high controllability and repeatability of the process are necessary. To achieve
this, definition of critical process parameters that influence the final part quality and their
proper values is necessary. Nowadays when starting production of a new part, these
values are selected based on the injection molding machine operator’s experience using
trial and error. Such method might be highly inefficient, requires a lot of time and results
in production of scrap. To avoid this, a new approach to monitoring and control of the
injection molding process is necessary.

In this PhD dissertation a framework for development of an intelligent control system for
thermoplastics injection molding is created using systems engineering approach and
prototypes of the system’s modules are developed. Such system would allow to turn the
injection molding process data into manufacturing intelligence and allow to avoid trial
and error method for selection of the proper process settings.

The dissertation aims to investigate the questions of (1) which injection molding process
parameters are the most influential on different aspects of the injection molded parts’
quality (dimensions and physical properties); (2) how to create prediction models of
dimensional (width and thickness) and physical properties (Young’s modulus (tensile
modulus), tensile strength and tensile strain at break) of injection molded parts using
Machine Learning methods; and (3) how to develop an intelligent control system for
thermoplastics injection molding.

To answer the questions four experiments are conducted on “ENGEL insert 130”
injection molding machine and 798 standard dogbone specimens are produced (72 of the
specimens are with 15 mm thickness, while 726 are with 4 mm thickness). The specimens
with 15 mm thickness are produced only during experiment 2. Virgin HDPE material is
used in the first two experiments, while recycled material from two different suppliers is
used in experiments 3 and 4. The experiments are conducted using designs of experiment
(DOE). 8 parameters are included in the first experiment’s DOE, 7 in the second one and
6 in the DOE used for both experiments 3 and 4. Machine and process parameters data is
logged during the dogbone specimens’ production: 41 parameters during experiment 1,
65 parameters during experiment 2 and 52 during experiments 3 and 4. To collect the
data, a systematic data acquisition approach is proposed in the dissertation. It includes
guidelines for collection of the data during and after the production process.

After the data collection is completed, data cleaning, integration, normalization and
feature selection are performed in order to obtain high-quality datasets and as the main
data preprocessing steps. The datasets are then used to develop machine learning models
for prediction of dimensions and physical properties of the dogbone focus parts. The
resulting prediction models are:

1. A Random Forest predictive model with R? = 0.95, RMSE = 0.05 and correlation
coefficient = 0.94 for dimensional properties (width and thickness).
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2. A Random Forest predictive model with R? = 0.92, RMSE = 28.32 and correlation
coefficient = 0.97 for mechanical properties (tensile modulus, tensile strength,
tensile strain at break).

3. A model for prediction of dimensional deviations developed using the Random
Forest machine learning method with R? = 0.92, RMSE = 0.06 and correlation
coefficient of 0.94.

The framework for development of an intelligent control system for thermoplastics
injection molding is proposed based on the results obtained during the experimental work
and analysis of the gathered data, as well as using the model-based systems engineering
approach. The modules used for data acquisition, data preprocessing and the machine
learning models creation are prototypes of the intelligent system’s modules. Such system
allows to gather the injection molding process data of interest, select the most influential
process parameters using feature selection machine learning methods, as well as develop
the quality prediction models. The models can be then used to select the proper process
parameter values without use of the resource consuming trial and error method.
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Chapter 1
Introduction

Study hard what interests you the most in the most
undisciplined, irreverent and original manner possible.

— Richard P. Feynman

This chapter gives an introduction to the dissertation. Section 1.1 describes motivation
and objectives for the work. Section 1.2 gives a short description of the MegaMould
project that this research is a part of. Next, Section 1.3 provides research questions that
this thesis is aimed at answering, while Section 1.4 is dedicated to the explanation of
scope and boundaries of the PhD project. Section 1.5 outlines the main contributions of
this work. Finally, the outline of the dissertation is presented in Section 1.6.

1.1 Motivation and objectives

Nowadays, about 30% of polymeric products are manufactured using injection molding
(IM) [1]. 1t is highly possible that you are surrounded by several injection molded
products right now: body of a pen you write with, plastic shell of a computer mouse you
used to scroll through a webpage, your lunch box, etc. Injection molding is widely used
for mass production of plastic parts of different sizes, geometries, materials and
applications. High controllability and repeatability of the process become critically
important in this case, as they allow to produce quality products, decrease the scrap rate
and energy consumption.

Injection molding includes the following stages: plasticization, injection, packing,
cooling and ejection. It might sound simple, but it is a sophisticated process, during which
molten polymers undergo significant thermo-mechanical changes that influence quality
of the obtained part [1]. During the process, plastic pellets are fed into a heated barrel
through the hopper, mixed using a reciprocating screw and then injected into a mold
cavity, where the molten material cools and hardens into a shape based on the cavity
configuration [2]. To get an injection molded product of a desired quality, it is important
to consider several aspects: properties of the chosen material, mold geometry, condition
of the injection molding machine and the mold in use, as well as values of the relevant
process parameters’ [3, 4]. While all the mentioned aspects are equally important for
manufacturing of a part free from defects, this PhD dissertation focuses on the latter.

Due to the high complexity of the process, it is often hard to choose optimal parameter
values when starting production of a thermoplastic part. The process parameters’
selection is often based on the experience of the injection molding machine operators,
who use trial-and-error method to define the parameter values [4, 5]. Inability to choose
proper settings of process parameters will result in various defects in the obtained product
and manufacturing of scrap rather than high quality products [6, 7]. Moreover, it might
not always be clear which specifically process parameters need to be tuned, as a different
subset of parameters is responsible for producing specific type of a defect and different



scholars argue different process parameters to be the most influential [8]. Therefore,
understanding which of the set parameter values are responsible for getting an
unsatisfactory output, as well as control of in-process variations are important tasks
within the field of thermoplastics injection molding (TIM).

Necessity to have a repeatable and controllable process, definition of the most important
process parameters and use of trial-and-error method are challenges relevant not only for
the injection molding area. Such industrial processes as machining, additive
manufacturing, extrusion, forming also strive to achieve the highest quality of the
products and control the production process to the highest extent possible. A significant
number of studies stress importance of collection and analysis of data from different
manufacturing processes [9] to achieve implementation of self-optimizing machines that
would not require use of trial-and-error method to improve the process performance.
Industry 4.0, cyber-physical systems (CPS), intelligent control, data-driven methods for
prediction and classification are some of the concepts assisting and pushing forward this
development. Increasing demands on production quality, system performance and
economic feasibility lead to demand of development within such topics as prediction and
optimization of production system behavior in real time [10]. However, despite all the
ongoing research, Industry 4.0 is still regarded by many as an immature concept [11, 12],
while self-optimizing machines remain far from industrial implementation passively
listening to commands from operators even when provided parameter settings that are far
from optimal [13]. As a result, further research on cutting-edge digital technologies and
their application for manufacturing is of high importance [14].

At the same time, the amount of data collected in manufacturing is growing and if its
quality is high, it can be further converted into manufacturing intelligence to impose
positive effects on all aspects of manufacturing [15, 16]. However, there are several
challenges that arise while collecting the manufacturing process data such as: inability to
synchronize logging of data from machine built-in and third-party sensors, limitations of
manufacturing execution systems (MES) in terms of access to certain parameters data,
infrequent sampling rate, lack of suitable communication protocols, etc. [17]. In addition,
even when the meaningful data is acquired, a significant number of companies continue
using conventional non-data-driven techniques to monitor and control the production
processes, thus, devaluing both the data collection efforts and the data itself.

Taking into consideration all the above-mentioned, it is possible to identify some of the
important challenges within the field of thermoplastics injection molding:

e Necessity to have controllable and repeatable process to avoid unnecessary in-
process and quality variations;

e Application of trial-and-error method when starting production of a new part or
tuning the process;

o Definition of the critical process parameters that influence the final part quality;

e Acquisition of the process data and turning this data into the manufacturing
intelligence through the corresponding data analysis.

Most of these challenges can be solved by implementation of proper monitoring and
control routines and systems. However, when it comes to monitoring and control for the



injection molding, commonly used methods are usually rather simple and are not learning
from the data they are processing [9, 13, 18]. One of the most conventional methods for
control of the injection molded parts quality is statistical process control (SPC) [19].
However, it is not guaranteed that the locally established SPC routine for an injection
molding machine is able to distinguish good and bad parts with high enough success rate
[20]. This is due to a reason that SPC, as well as control routines and models created using
other conventional algorithms are not being updated based on the real time data but use
pre-defined procedures instead. In addition, it might be difficult to know which
parameters need to be adjusted to ensure production of the parts with high quality.

Models created with help of data-driven methods, such as Machine Learning (ML), on
the other hand, can provide necessary flexibility and robustness for different production
scenarios [21]. ML methods have been successfully applied to intrusion detection [22],
classification of cardiovascular diseases [23], robotics [24], supply chain demand
forecasting [25], manufacturing industry [26] and many more fields. There are also
examples of application of the ML techniques to the injection molding, for example, to
construct a model of the injection molding process using artificial neural network (ANN)
[27], to improve repeatability and product quality through utilization of a model
predictive controller combined with an ANN [28] and to investigate the cavity filling
process [29].These methods are proven to work well, when there is a large number of
parameters that need to be taken into account, have higher precision and shorter model
training time in comparison to conventional optimization techniques [30]. At the same
time, ML methods are able to give a better performance in comparison to conventional
statistical methods and are capable of coping with high level of complexity of the
mathematical models [31]. Regular regression models require certain physical and
mathematical knowledge about the process to be able to construct a model, while data-
driven methods can extract process information from historical data, as well as from
online process data [32, 33]. This will allow to increase controllability and repeatability
of the overall process, leading to lowering probability of unnecessary in-process
variations.

It is important to mention that before applying the ML methods, necessary amount of data
needs to be acquired. As suggested by scikit-learn’s “Machine Learning Map” [34]
(scikit-learn is one of the biggest open source Python programming language libraries for
ML methods), it is not recommended to use any of the machine learning methods, if the
amount of data points (samples) used to train the model is less than 50. However, some
studies attempt to apply ML methods to smaller datasets, as for example, in [35]. This is
due to a fact that it is not always easy to get the necessary amount of data.

To solve the above-mentioned challenges an intelligent control system for thermoplastics
injection molding needs to be developed. Such system would allow to increase
controllability and repeatability of the overall process, decrease need in use of trial and
error method and predict quality of the produced parts based on the set of current process
parameters. ML methods are the meaningful candidates for application within such
system in order to train the regression models for prediction of quality features such as
dimensions and physical properties of the produced parts.



The work presented in this thesis describes a framework for development of an intelligent
control system for thermoplastics injection molding. The system includes data acquisition
and transformation of this data into manufacturing intelligence to minimize variations in
produced parts. An important goal of this work is determining which machine learning
techniques are best suited for development and training of models for prediction of quality
of the injection molding products.

1.2 The MegaMould project

This PhD thesis describes research conducted as part of the Norwegian innovation project
MegaMould supported by the Norwegian Research Council (project number: 256819).
The MegaMould project is focusing on development of innovative processes, tools and
methods for injection molding of extra-large thermoplastic components. The goal of the
project is to achieve controllable and repeatable process for manufacturing of high-quality
products. When talking about quality, the main attention is payed to mechanical
properties and dimensions of parts within the strict tolerance specifications. Materials in
focus of the MegaMould are virgin and recycled thermoplastics and thermoplastic
composites. This PhD work shows how machine learning methods can be applied to the
injection molding process data in order to build quality prediction models and achieve
repeatable and controllable production process.

The MegaMould project participants are Plasto AS, PipeLife Norge AS and AKVA
Group ASA, as well as SINTEF Manufactruing AS and NTNU research institutions. The
industrial partners have contributed to the MegaMould project with industrial competence
and particular cases drawn from their manufacturing sites. SINTEF Manufacturing AS
and NTNU, as R&D partners, were contributing with theoretical and scientific
knowledge.

Production of parts used as focus parts within the PhD project and collection of the
injection molding process data was conducted at the laboratory at SINTEF Manufacturing
AS. A great deal of practical undertakings underlying this work were performed with
significant support from members of the Materials Technology and Production
Technology departments at SINTEF Manufacturing AS. Collection of the parts quality
data was done at NTNU’s laboratory facilities.

1.3 Research questions
This dissertation focuses on answering the following research questions:

RQ1. How to select parameters that influence the injection molded part quality using the
ML methods?

This research question aims at explaining how machine learning techniques can assist in
selecting the most important process parameters influencing quality of the final injection
molded part. Injection molding machines (IMMs) operate using a significant number of
machine and process parameters that play an important role in the quality of the
manufactured product, such as: holding pressure, holding pressure time, barrel
temperature, screw speed, etc. However, not all of them are equally important. Therefore,



only some of them need to be included in the models for prediction of the parts quality.
Feature selection methods are a subset of the ML methods that can assist in selecting the
process parameters that need to be payed special attention to.

RQ2. How can machine learning methods be used for prediction of dimensions of the
injection molded parts?

The second research question is focused on addressing the desire of achieving a repeatable
process that produces parts with high accuracy within the tolerance specifications of
dimensions (width and thickness). It is aimed at providing prediction models trained by
the ML methods and based on the collected historical data. Such models provide
possibility of finding hidden patterns in the data obtained from production of parts within
a particular production system. Unlike traditional mathematical models that focus on
generalized description of the process that might not always correspond to a particular
case, the prediction models created with help of the ML techniques are based on data
collected from a certain production facility and are better describing peculiarities of the
process in question.

RQ3. How can machine learning methods be used for prediction of physical properties
of the injection molded parts?

Similarly to the RQ2, this research question is related to achieving controllable process
that results in production of parts with desired physical properties, namely tensile
modulus (Young’s modulus), tensile strength and tensile strain at break. The ML methods
are applied to train models capable of predicting the physical properties based on the
chosen process parameter values.

RQ4. How to create an intelligent control system for thermoplastics injection molding?

The last research question aims at describing how an intelligent control system for
thermoplastics injection molding can be created and what is its core functionality. A
framework for development of the corresponding system is presented and its boundaries
are outlined. A detailed description of different modules of the system is provided. The
question also includes explanation of how selection of significant process parameters
(RQ1), prediction of models for dimensions and physical properties of final parts (RQ2
and RQ3) contribute to development of such system.

1.4 Scope of the dissertation

Due to the limited timeframe of this research, there is a need to set boundaries of the PhD
project.

This study is limited to the injection molding of thermoplastics with the high-density
polyethylene (HDPE) as material in focus, namely virgin BorSafe™ HDPE and recycled
HDPE from RePro and ContainerService suppliers. All the experiments were conducted
on “ENGEL insert 130” vertical injection molding machine with CC300 control unit
available at SINTEF Manufacturing AS. Use of other materials and machines is out of
scope of this PhD project.



The focus parts used in the project are dogbone specimens of type 1A based on the ISO
527-2:2012 Tensile Properties of Plastics [36] with 4 mm and 15 mm thicknesses. Even
though injection molding can be used for production of parts of various geometries, the
specimens were chosen due to the molds available in the laboratory. The reason for
choosing two different thicknesses is to collect data for parts with regular wall thickness
(4 mm) and parts with thick walls (15 mm). Another reason for choosing the specimens
as the focus parts is that they fit well for determination of both dimensions and physical
properties.

The predictive models developed within the study will include data of only those
parameters that can be accessed on the IMM used in the experiments and sensors (if any)
installed in the corresponding molds. When producing specimens with the 15 mm
thickness, pressure and temperature data will be also logged from multi-sensors installed
in the mold. Mold for manufacturing of the 4 mm thick specimens does not include any
sensors, therefore no mold data can be acquired.

The developed models cannot be directly used in manufacturing. These models are
considered as prototypes used for demonstration and establishment of the necessary
routines, such as data collection, preprocessing and analysis. In addition, they play a
significant role in understanding which ML techniques can be efficiently used to benefit
the controllability of the injection molding process.

This PhD project mentions but does not include development of a database prototype or
solution for storing the acquired data and models, as this is out of scope of this
dissertation.

1.5 Contributions of the thesis
This dissertation describes the following contributions:

e Data from 435 IMM runs and corresponding 798 dogbone specimens produced
has been collected through the experimental work. No similar data has been
publicly available before. The produced dataset can be used by other researchers
as a starting point for development of predictive models for thermoplastics
injection molding.

e A data acquisition, preprocessing and analysis approach has been proposed for
collection of data during and after the injection molding of thermoplastic parts
(process data and quality data).

e A prototype of a data acquisition system for logging of injection molding machine
and mold process data has been developed. Such system can be used by
researchers, IMM producers and injection molding companies for collection of
the production process near-real-time data.

e Design of a framework and functional requirements for development of an
intelligent control system for thermoplastics injection molding is proposed.



e A nprototype of the intelligent control system module for determination of the most
influential injection molding process parameters has been proposed using the
feature selection methods as a subset of ML techniques.

e Machine learning models are developed for prediction of dimensions (width and
thickness) of injection molded dogbone specimens with 4 mm and 15 mm
thickness produced during four different experiments using virgin or recycled
HDPE depending on the experiment number. A prototype of the corresponding
intelligent control system module has been developed based on these models.

e Machine learning models are proposed for prediction of physical properties
(tensile modulus (Young’s modulus), tensile strength and tensile strain at break).
A prototype of the intelligent control system has been developed based on these
models.

1.6 Thesis outline
The outline of the dissertation is given below:

Chapter 1 presents motivation, challenges and research questions identified within this
research work. A short description of the MegaMould project, which this PhD project is
a part of, is provided, along with the scope and contributions of the dissertation.

Chapter 2 includes theoretical background on the topics of thermoplastics injection
molding, main defects occurring during the production process and state-of-the-art on the
topic of monitoring and control for the IM.

Chapter 3 describes foundations of data science and ML for their successful
implementation within the area of thermoplastics injection molding.

Chapter 4 describes research philosophy, design of the presented study and methods used
to conduct the relevant experiments, data collection and analysis.

Chapter 5 shows how the systems engineering approach was used for designing an
intelligent control system for thermoplastics injection molding.

Chapter 6 describes the procedure followed for development of predictive models for
width and thickness dimensional variables using general datasets, as well as presents the
quality characteristics of the obtained models.

Chapter 7 presents the procedure for development of predictive models for Young’s
modulus (tensile modulus), tensile strength and tensile strain at break using the general
datasets. Quality characteristics (R?, RMSE, correlation coefficient) of the models are
also described.

Chapter 8 describes the development procedure and presents quality scores of predictive
models trained on data series datasets for dimensional quality variables.

Chapter 9 shows how predictive models for mechanical properties trained on the
corresponding data series datasets were created. The models’ quality characteristics are
also presented.



Chapter 10 presents models for prediction of dimensional properties deviations and their
quality scores.

Chapter 11 discusses the results presented in the PhD thesis and the research questions
that were raised in its beginning.

Chapter 12 concludes the dissertation and presents the necessary future steps.



Chapter 2
Theoretical background and literature review

Though alone, he was not lost.

— Jack London, “Love of Life”

This chapter is divided into two parts. Section 2.1 provides theoretical background on the
topic of thermoplastics injection molding, main defects that occur during the process and
their causes, as well as introduction to material’s mechanical properties. Section 2.2
includes a brief literature review on the topic of monitoring and control of the injection
molding process. Methodology used for conducting the literature review is described in
Chapter 4, Subsection 4.2.1.

2.1 Injection molding process foundations

Injection molding is a cyclic manufacturing process for production of identical parts
through injection of molten material into a mold of a chosen shape [37]. The main
advantage of this process is its ability to produce high volumes of repetitively fabricated
parts of complex geometries and various sizes, from the smallest components to entire
body panels of cars [37]. In general, injection molding can be performed with different
types of materials including metals (the process is then called die-casting), glasses,
elastomers, confections and most commonly thermoplastic or thermosetting polymers.
This thesis, in its turn, focuses on thermoplastics injection molding. Thermoplastics are
highly suitable for injection molding due to their characteristics, such as ease of recycling
and versatility for the wide application range [38].

2.1.1 Thermoplastics injection molding

The history of the injection molding goes back to the “packing machine” invented by the
Hyatt brothers, who received a patent in 1872 for the invention of a machine that was able
to mold camphor-plasticized cellulose nitrate [39]. The machine used a plunger to inject
material into a mold through a heated cylinder. The industry kept on developing over the
years, while producing buttons and hair combs. In 1919 Arthur Eichengriin developed the
first injection molding press and in 1939 he patented the injection molding of plasticized
cellulose acetate [40]. The industry expanded in the 1940s because of the World War Il
and its demand for inexpensive, mass-produced items. In 1946 James Watson Hendry
built the first screw injection molding machine, where the plunger device was substituted
by a screw. This machine provided more precise control over the speed of injection and
quality of the final parts [41]. The screw injection machine allowed to mix material before
injection, leading to possibility of adding colored or recycled material to virgin material
and mixing them. Later, several improvements led to development of a reciprocating
screw injection molding machine that is widely used nowadays [37] and to significant
evolution of the injection molding industry that went all the way from producing combs



and buttons to production of a vast variety of items for multiple industries including
automotive, aerospace, construction and packaging [42].

A reciprocating screw injection molding machine includes the following essential
components: a hopper, a rotating screw, a heated barrel and a clamping unit containing
the mold typically made of two halves. A mold is usually produced by a mold-maker
commonly from steel or aluminum and is further machined to precisely fit characteristics
of a part to be produced. Molds might have one or multiple cavities of the same or
different geometries. Figure 2.1 depicts a sketch of an injection molding machine with a
reciprocating screw.

During the injection molding cycle, the following main stages are usually distinguished:
plasticization, injection, packing, cooling and ejection [2, 37]. During the plasticization
stage, plastic pallets are fed into a heated barrel through the hopper. When the pallets
have entered the barrel, a reciprocating screw rotates forcing the granules against the
walls of the barrel melting, mixing and homogenizing them. The plastic pallets melt due
to both conduction from the heating units along the barrel and friction heat created by the
screw rotation. The molten material is then moved towards the tip of the screw, while the
pressure is being formed against the “closed-off” nozzle. The screw then moves backward
to accumulate enough melt at the front of the barrel into a volume known as a shot. A
shot is the material volume enough to fill the mold cavity, compensate for shrinkage and
provide a cushion (usually about 10% of the shot volume, which remains in the barrel
and prevents the screw from bottoming out). When enough molten material is
accumulated, the screw rotation stops, and the plasticization stage is over.

Hopper

K

L] 7 \
\/ Heated barrel

Mold Rotating screw

Figure 2.1. A sketch of a reciprocating screw injection molding machine

The next stage is called injection or filling stage. Here the clamp unit keeps the mold
closed, while the screw moves forward and forces the molten material into the mold cavity
at high pressure and velocity. When the polymer melt is injected from the nozzle of the
IMM, it flows through the sprue, runner, gate and only then enters the mold cavity. The
feed system is a term used for the sprue, runner and gate together. An example of a feed
system is shown on Figure 2.2. Runners can be of two types: cold and hot ones. The mold
temperature for the cold runner is similar to that in the mold cavity, while the hot runner
maintains polymer at the melt temperature.
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To prevent pressure spikes during the material injection, the process usually uses a
switchover point (cavity is 95-98% full) to switch from the constant velocity to the
constant pressure control. Once the screw switchover position is reached, the packing or
holding pressure is applied and the packing or holding stage begins. When the mold is
filled, the screw stays in the forward position or keeps moving with a small displacement
to maintain the necessary holding pressure to complete the mold filling and compensate
for the material’s thermal shrinkage. The material cools down and shrinks allowing a little
more material to enter the cavity. The holding pressure is applied until the gate (cavity
entrance) solidifies and no more material can enter the cavity.

When the gate has completely frozen, the cavity pressure is being reduced to zero or a
low value. The part continues to cool down and solidify, while the screw starts rotating
again and moves backwards to start the new plasticization stage. This stage is called
cooling. After keeping the part in the mold for a sufficient time allowing it to solidify, the
mold is opened, and the part is ejected (ejection stage). After ejecting the part, the mold
closes again, and the new injection molding cycle begins.

lGate

<——Runner

Gate T

2.1.2 Injection molding defects and their possible causes

Figure 2.2. A feed system

Any manufacturing process has production of high-quality items as its focus. However,
Reeves and Bednar [43] state that it is hard to find a universal definition to the term quality
and different interpretations of this concept are appropriate depending on the application
field. Quality is defined depending on user’s needs and neither large nor small variations
are good. According to Zheng, Tanner [37], two key problems of the injection molding
processing are production of parts with desired (1) dimensional tolerances and surface
and (2) mechanical, thermal, optical and other important properties. Therefore, in case of
the injection molding process, high-quality part can be defined as a part that has values
of the above-mentioned properties that comply with the corresponding tolerance
specifications. However, depending on the product’s application field, the main focus
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might be dedicated to a different property, for example, to visual characteristics, rather
than mechanical properties or the other way around. As mentioned above, this PhD
dissertation is focusing on dimensions and physical properties of the injection molded
parts.

According to a study by Texas Plastic Technologies that was carried out during a 30-
years period (from 1963 to 1993), the most common general causes of the defects are
machine, mold, material and operator [44]. Figure 2.3 shows distribution of the main
defect causes. As it is easy to see, 60% of the defects are caused by improper setting of
the machine and process parameters.

Operator
10%
Material
10% Machine and
process
parameters
Moold settings
20% 60%
-

Figure 2.3. Distributions of the main defect causes

Due to the thermo-mechanical changes applied to the material during the process and a
significant number of process parameters that influence quality characteristics of the
obtained parts, there are several defects that may occur during the injection molding cycle.
Table 4.1 shows the list of the possible injection molding defects and their causes in terms
of process parameters setting and chosen material. The table does not cover defect causes
related to product or mold design flaws, utilization of an unsuitable IMM or operator
errors. Table 4.1 is based on the information available on the web-pages of several
injection molding companies Toray Plastics [45], Polyplastics [46], GPTmold [47],
Ecomolding [48], Bryce [44] and [49].

Some of the defect causes not mentioned in the table might be erratic cycling due to
operator’s error, poor mold ventilation, not optimal size and positioning of gates, use of
machine that is too big or too small for production of a particular product, improper
ejection of molded part and a simple need for cleaning of a mold or machine nozzle. In
addition, the product itself might not be designed in an optimal way causing defects in
the final part. All of these possible causes need to be considered, as well as selection of
proper machine and process parameters when troubleshooting the injection molding
process.
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2.1.3 Introduction to mechanical properties

High-density polyethylene is a thermoplastic material used in all the experiments
underlying this PhD thesis. As mentioned in the previous section, material is one of the
important factors influencing quality of an injection molded product. Even though this
work does not directly include material in the list of investigated parameters, it is
important to give a short overview related to the material and its quality characteristics.

Thermoplastic is a plastic polymer material that becomes moldable at a certain elevation
temperature and solidifies after cooling down [50]. Polymer, in its turn, can be defined as
“a substance composed of molecules characterized by the multiple repetitions of one or
more species of atoms or groups of atoms (constitutional repeating units)” [51]. HDPE
is a major polyethylene compound manufactured at low temperatures and pressures [52].
It consists of n constitutional repeating units shown in Figure 2.4, where n is a number of
the units. The absence of branches in the HDPEs structure allows to create a dense
material of high strength and moderate stiffness [52].

‘ECHZ—CH}
n

Figure 2.4. The HDPE constitutional repeating unit

Some of HDPE’s important attributes are moldability, resistance to corrosion, strength to
density ratio and recyclability. Due to the wide use of HDPE in different sectors, a lot of
research focuses on meticulous investigation of the material’s behavior. These studies
include analysis of viscoelastic and viscoplastic behaviors, as well as mechanical
behavior under different loading conditions [53]. A high interest for researchers and
practitioners is understanding of the effects of injection molding parameters on the final
part quality, including the mechanical properties, in order to reveal any underlying
relationships.

Mechanical properties can be described in different ways depending on the chosen testing
techniques. In this PhD work, tensile stress testing is conducted to investigate the strength
and stiffness of focus parts (dogbone specimens described in more details in Chapter 4).
Tensile stress testing is used to determine relation between stress and strain of a chosen
material. In this thesis, mechanical properties of the virgin BorSafe™ HDPE and recycled
HDPE from RePro and ContainerService suppliers will be evaluated with respect to
Young’s modulus, tensile strength and elongation at break.

Young’s modulus, also known as tensile modulus or modulus of elasticity, shows
resistance of a material to elastic deformation under the applied load. According to 1ISO
527-1:2019 standard [54], it is defined as “slope of the stress/strain curve a(¢) in the
interval between the two strains ; = 0,05% and &, = 0,25%”, and is expressed in
megapascals (MPa).
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Tensile strength, also known as maximum stress, is referred to as strength in ISO 527-
1:2019 standard [54] and defined as “stress at the first local maximum observed during a
tensile test”. Tensile strength is also expressed in megapascals (MPa).

Elongation at break, also known as strain at break, is the maximum relative deformation
before break. In 1SO 527-1:2019 standard [54] it is interpreted as “strain at the last
recorded data point before the stress is reduced to less than or equal to 10% of the
strength if the break occurs prior to yielding”. It is the ratio between the changed gauge
length (AL) and the initial gauge length (L), calculated according to equation 2.1.
Elongation at break is expressed as a dimensionless ratio or a percentage (%).

&y = =+ 100% (2.1)

More details on the tensile testing conducted within this project are provided in Chapter
4,

2.2 A brief literature review

Injection molding is one of the most commonly used manufacturing processes for mass
production of plastic parts. This is due to several reasons: the increased demand on plastic
products in daily life, IM’s short cycle times, and ability of the IM to manufacture parts
of various complex shapes, from different plastic materials and with desirable visual and
mechanical properties that meet tight tolerance specifications [55, 56]. “Quality is a
determining factor that affects the productivity and economy of production, especially in
the case of mass production” [57]. However, to achieve high quality of the injection
molded parts, it is important to pay attention to the part and mold design, chosen material
and process parameters [3, 56, 58].

When the part and the mold have already been designed and the material to be used has
been chosen, the only way to improve the product’s quality is selection of suitable process
parameters’ values. It is an important and a rather complicated task, failing which leads
to decreased process efficiency and increased production of scrap [7]. Zhang, Mao [59]
divide parameters that influence the part’s quality into three categories: machine inputs,
control trajectories and state variables. Machine inputs are the process parameters that are
manually set, control trajectories represent the pressure, speed and temperature curves
that the IMM performs, while state variables are related to the conditions of the polymer
melt or solidified polymer. In [60] and [61], on the other hand, the values of the injection
molding process are divided into machine values, process values and quality values.

The machine and process settings are often obtained based on the experience and
knowledge of the IMM operators and a significant amount of trial-and-error is involved
in this process [62, 63]. Such approach, however, is extremely inefficient, costly and does
not increase competitiveness on the global market, where standards for the injection
molded components are very high [28].

As it has already been mentioned, the quality of the injection molded parts can be
characterized in terms of dimensional stability, mechanical properties and different
features related to the product’s appearance [55]. Selection of the faulty process
parameters might result in occurrence of various defects, some of the most frequent once
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being flash, short shot, sink mark, warpage, shrinkage and flow line [64]. For example,
“low injection pressure, short injection time, and low mold temperature will easily lead
to short shot, and low packing pressure and short cooling time will cause warpage” [65].
Therefore, it becomes crucial to provide high reproducibility of the IM process with the
optimal parameter settings.

Industry 4.0, or the fourth industrial revolution, is being accelerated by such factors as
the lack of skilled workers, knowledge leakage and population aging [66]. It pushes
development of such concepts as cyber-physical systems or CPS that can be defined as
“systems of collaborating computational entities which are in intensive connection with
the surrounding physical world and its on-going processes, providing and using, at the
same time, data-accessing and data-processing services available on the Internet” [67].
Implementation of CPS can assist the decision-making process to become more self-
centered through application of data-driven and machine learning methods [68, 69].
Therefore implementation of these methods within the traditional manufacturing
industries, such as injection molding, is expected to revive them and provide them with
the additional competitive advantage [68, 69]. The following subsections provide
examples of application of more traditional methods, such as finite element method
(FEM), statistical process control (SPC), pressure-volume-temperature (P-V-T) curves,
etc., as well as ML methods for monitoring and control of dimensional deviations and
mechanical properties of the injection molded parts.

2.2.1 Monitoring and control of dimensional deviations in injection molding

Dimensional consistency is an extremely important quality feature of the injection
molded parts, however, due to the nature of polymer materials, all of them shrink after
the IM [5]. Amorphous polymers shrink due to the thermal contraction, while semi-
crystalline ones due to the volume change during their crystallization [70, 71].
Unfortunately, the shrinkage values for most of the plastic materials are high in relation
to the dimensional tolerances, in addition, the shrinkage is not always isotropic in nature
and anisotropic shrinkage often leads to warpage. The part’s shrinkage varies depending
on the geometry and the process settings, and is commonly assumed to be known at the
part and mold design stages [58]. However, if errors in the calculation of shrinkage were
made, it can limit achievable tolerances, increase the necessary cycle time and lower the
overall process efficiency. Therefore, it is important to monitor and control the
corresponding machine and process parameters, to avoid excessive shrinkage, warpage
and other defects resulting in the dimensional deviations of the molded parts.

Monitoring and control methods can be categorized based on different criteria. One of the
ways is to divide them into destructive (those that require installation of additional sensors
or other kind of equipment into the mold or the IMM, and involves drilling holes, etc.)
and non-destructive (those that do not require such measures). Most of the research
focused on the IM process monitoring and control uses destructive methods [7, 72].
However, modern IMMs include a significant number of installed by the IMM’s producer
sensors and contain a lot of information about the actual process conditions without need
to apply the destructive methods [7, 73].

Non-destructive methods
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Interactions between the quality characteristics and process parameters are complex and
need further investigation for tuning the injection molding process. There are several
different methods applied in order to achieve this. One of such methods is finite element
method or FEM. It is a deterministic method that allows simulation of the optimal design
of the molds and determination of a suitable parameter combination for the production
start [74]. However, due to the stochastic nature of the injection molding process, the real
production conditions, variations in the material or mold geometry lead to inconsistencies
and deviations from the nominal process setting obtained from the FEM. A significant
advantage of this method, though, is that it can be used before the real production begins.

In [63] a mathematical model for prediction of warpage is proposed. At first, five of the
most influential on occurrence of this defect parameters (melt temperature, coolant
temperature, injection time, switchover time and mold temperature) were screened using
fractional factorial design of experiments. Next a prediction model was created using
central composite design of experiments and FEM. Finally, the model was tested, and the
corresponding statistical analysis was carried out using the MoldFlow™ simulation
package. “MoldFlow™ software is a commercial software based on hybrid finite
element/finite difference techniques in order to solve pressure, flow, and temperature of
the molding process” [56].

Fu and Ma [75] propose a method for simulation of the early part ejection and possible
deformations through integration of MoldFlow™ and Ansys™ simulation software.
Similarly to MoldFlow™, Ansys™ is a mechanical FEM software used for simulation of
models of structures, electronics or machine components for analysis of strength,
toughness, elasticity, temperature distribution, etc. [76]. This method is better at
predicting part’s dimensions if compared to stand-alone molding simulations. Such
simulation can be helpful at the mold design stage to facilitate the part’s ejection.

At the same time, in [74] the authors propose a virtual prototyping environment for
performing a robust optimization of the injection molding process and prediction of the
produced component dimensions. The environment is based on the combination of
numerical simulations, response surface methodology (RSM) and stochastic simulations.
Combining all of these methods allows to consider stochastic fluctuations of the process
and remove some of their time-consuming aspects. RSM is a collection of mathematical
and statistical techniques that can be applied when a response of interest is influenced by
several parameters. The goal of this methodology is to optimize the response and establish
a model that quantifies the relationship between the response and the input variables [74].
This method, however, requires experience for selection of the relevant process variables
and selection of the corresponding ranges. In addition, application of this experimentation
methodology might be rather time consuming [74]. However, the same way as FEM,
RSM can be used before the production start.

Zhao, Zhou [7] propose a non-destructive online method for monitoring of the injection
molding process and parameters that influence dimensional deviations that does not
involve application of the simulation methods. The technique proposed by the authors,
includes collection of signals from electrical sensors installed in the injection molding
machine by the machine manufacturer, while ultrasonic monitoring technology [77] is
implemented to measure the cavity pressure without drilling any holes in the mold. The
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authors also present an algorithm for the injection molding process stage identification
using the obtained data. This methodology can assist in optimization of switch-over time
and holding time parameters.

Johnston, McCready [78], on the other hand, have designed an auxiliary process
controller for online multivariate optimization of the injection molding process. From the
control point of view, IM is regarded as a batch process “such that the resulting dynamics
of the polymer melt throughout the mold cavity proceed in an open loop fashion” [78]. At
first, a multivariate model is created using principal component analysis (PCA). The
model is able to show relationships between process settings and different part quality
characteristics, such as product’s dimensions. Second, PCA enables the online modeling
of the process through consideration of the streams of the process data. In the end,
modeling of the process states dynamics is enabled, allowing a more rapid process
convergence.

Destructive methods

The methods used for non-destructive process monitoring and control are also applied
within the destructive techniques, however, they are often combined with acquisition of
data from additionally installed machine and/ or mold sensors. In [58] the authors propose
a button cell type in-mold shrinkage sensor. The sensor’s performance was validated and
compared to traditional shrinkage prediction methods. Design of experiments (DOE) was
used to validate the sensor’s performance as a function of holding pressure, melt
temperature, cooling time and coolant temperature.

In addition to use of data related to machine and process parameters, cavity pressure is
considered an extremely important parameter for achieving a high part quality, since it
determines the evolution of the polymer conditions inside the mold [7, 55, 56]. Due to
this, Kurt, Kamber [55] have conducted a study of how cavity pressure and temperature
influence shrinkage and cyclicity of the focus part. They used three Kistler 615BA
piezoelectric pressure transducers in the cavity and one 6190BAG temperature/pressure
combined transducer. A Kistler CoMo 2869A injection type aparatus was used to log and
analyze the obtained sensor signals. Later, Kurt, Kaynak [56] have investigated relation
and influence of molding conditions such as holding pressure, melt temperature, cooling
time, as well as cavity pressure, mold temperature and melt temperature on shrinkage and
roundness of injection molded parts. They have used three Kistler 6157BA piezoelectric
pressure transducers and a 6190BAG temperature-pressure combined transducer in the
cavity.

Zhang, Dubay [79] have also analyzed cavity pressure and temperature data. They
combined the use of PCA, independent component analysis and model-based predictive
control to propose methodology for online control of injection molding process
parameters. PCA and independent component analysis were applied to extract and
transform cavity pressure and temperature data. The method allows to automatically
adjust and vary key process parameters, such as coolant temperature and coolant flow rate
to avoid warpage of the produced parts.

Gao, Tang [57] emphasize that even though the initial pressure and temperature of the
polymer melt are controlled by the IMM, the actual melt states vary in the mold cavity.
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They demonstrate an online product quality monitoring system with the focus on the parts
dimensions. Piezoelectric pressure sensors, an in-mold thermocouple, infrared melt
pyrometer, a custom-designed multivariate sensor are used to measure melt pressure,
temperature, velocity and viscosity within the injection mold. Later, a model based on
support vector regression algorithm and the obtained data is developed to monitor and
predict the produced parts dimensions.

Another important parameter often used in numerical simulations of the injection molding
is Pressure-Volume-Temperature (P-V-T) relationships of polymers or P-VV-T curves.
They are important in both engineering and polymer physics [80], as they describe
relationships between the pressure, density and temperature for a given polymer material
[7]. It is constant for different materials, but might not always be accurate enough. Wang,
Xie [80] present a novel online testing equipment for measurement of the P-V-T
relationships of polymers to predict shrinkage and warpage of produced parts. The
equipment is based on the IMM and can be used to obtain the P-\VV-T data directly using
a special testing mold. The authors also propose to create a P-V-T database of polymers
to aid further development of software packages for monitoring and control of 1M.

At the same time, traditional process parameter optimization procedures for control of the
aesthetic defects in the IM often suffer from convergence and stability problems [4].
Therefore, Gao, Zhang [4] propose an injection process parameters optimization model-
based procedure, “utilizing the fact that the feasible parameter domain is usually
sandwiched between two opposite defects when a parameter increases from a low level
to a high level”. The procedure applies fuzzy reasoning method and is targeting various
IM aesthetic defects.

In [81] the authors applied a digital image processing technique to detect shrinkage and
flash on the produced injection molded parts and then used the simplex model free
optimization algorithm to optimize mold temperature, injection pressure, holding
pressure, holding time and cooling time to avoid the above mentioned defects. Park and
Nguyen [82], in their turn, use RSM and non-dominated sorting genetic algorithm Il to
solve a multi-optimization problem for minimization of clamping force and warpage of a
plastic car fender. Mold temperature, melt temperature, holding time, holding pressure
and cooling time are chosen as the main control parameters of the optimization problem.

Unlike virgin plastic materials, the recycled ones may have properties, such as fluidity
and viscosity, that significantly differ from the primary properties of the virgin material
[83]. Therefore, Zhang [83] presented a pokayoke system for prediction of flash defect in
injection molding targeting the recycled materials use. The system employs
accelerometer to measure the injection molding vibration signals, which are then analyzed
and used as an input to the logistic regression modeling algorithm.

Monitoring and control of dimensional deviations for the IM, as well as the impact of
various process parameters is well presented in the literature. Many scholars use mold
temperature and pressure, melt characteristics, holding pressure and time, cooling time
and coolant characteristics as parameters included into the control models. However,
there are other potentially useful parameter values that can be obtained from the IMM
sensors, that are rarely or never used within the developed models. Examples of such
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parameters are screw speed, barrel temperature, injection speed and cushion. In addition,
some of the simulation methodologies and techniques applied for the monitoring and
control of geometrical deviations have significant disadvantages (employed
simplifications, big computational efforts, need for highly experienced operators, etc.).
Therefore, more efforts need to be put in order to develop a generalized approach to
efficient monitoring and control of shrinkage, warpage and other defects influencing the
potential dimensional inconsistencies.

2.2.2 Monitoring and control of mechanical properties in injection molding

Monitoring and control of mechanical properties of the manufactured parts is by no means
less important than that of their dimensional deviations or aesthetics. “The structural
safety and stability of the products depend on the mechanical performance of the
products” [84]. Shrinkage, warpage, residual stresses and other defects influence the
mechanical performance of the parts, and the need for control and optimization of the IM
process is extremely high [84]. The residual stresses caused by warpage cause a
remarkable influence on the mechanical performance of the produced parts. Therefore, it
is essential to consider influence of the molding conditions on the description of the
mechanical behavior of the final product [84]. Some of the methods applied for
monitoring and control of the mechanical properties are the same as those for optimization
of the dimensional consistency (FEM, use of simulation software, RSM, etc.).

Any change in the IM parameters or material might affect the process stability and quality
of the serviced products. “The properties of the plastic materials are directly dependent
on the temperature, time and environment” [8]. Consistent material supply is crucial for
production of high quality items and its absence might result in significant problems in
the obtained products [8]. Therefore, in [8] the authors demonstrate how near infrared
spectroscopy can be used for in-line process monitoring and quality control improvement
during the injection molding process. The nozzle of an injection molding machine that
was used within the experiments was modified to accommodate two optical fiber probes
for monitoring of the injected polymer. The data related to material and color
identification, as well as humidity identification was obtained and analyzed both online
and off-line for several different materials (polypropylene (PP), polyethylene-
terephthalate (PET) and polyamide (PA)).

Kim, Gang [29], in their turn, investigated the behavior of the polymer melt in the mold
microchannel cavities during the filling process. It has been described with an analytical
model and the cavity pressure-time profiles data. The model shows the relationships
between the injection flow rate, peak cavity pressure, mold temperature, melt temperature
and the filling length.

In [85] the authors have used DOE and range analysis method to select the best values of
injection molding parameters to obtain expected tensile strength of the product. DOE in
this case is applied to obtain the necessary parameters data and facilitate the optimization
process. It is highlighted that injection pressure, melt temperature, cooling time, holding
time, holding pressure, mold temperature and injection speed are some of the most
influential parameters affecting the parts tensile strength.
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Xu, Zhang [84] concentrated on optimization of process parameters to obtain the desired
mechanical properties (von Mises stress) of the vehicle window made of polycarbonate.
At first, the FEM is applied. Next a back-propagation neural network (BPNN) is trained
to map the nonlinear relationship between the process parameters (mold temperature, melt
temperature, injection speed, compression distance, compression force, compression
speed, compression waiting time) and mechanical properties. The last step is application
of particle swarm optimization (PSO) to the neural network model for obtaining the
optimal values of the above-mentioned parameters.

Ozcelik [86] applied Taguchi method to create an experimental plan to identify process
parameters (melt temperature, holding pressure, injection pressure) that have a significant
influence on mechanical properties (maximum tensile load, extension at break, charpy
impact strength (notched)) of the polypropylene specimens with weld line. ANOVA was
used to identify the most important parameters, linear models to describe the
corresponding dependencies were then created applying the regression analysis. “The
most important parameter affecting the maximum tensile load and the extension at break
(for specimen without/with weld line) was injection pressure and melt temperature, and
for charpy impact strength (notched) (without/with weld line) was melt temperature and
injection pressure, respectively” [86].

Taguchi method is a design of experiment methodology that aims to use a smaller number
of experiments to allow a greater understanding of in-process variation. This is done
through conducting experiments from an orthogonal array that should simulate the
random environment in which the product is manufactured. The method is capable of
converting the quality characteristics into signal-to-noise ratio (SN ratio), providing a
corresponding response table showing the optimal production conditions [87]. Using
ANOVA, itis also possible to assess importance of each of the factors involved. The main
disadvantage of this method though is that Taguchi methodology can find a local
optimum, rather than a global one, since its search space is limited to the parameter levels
chosen to create the experimental design.

The authors in [88] have conducted a study for minimization and analysis of shrinkage,
warpage and von Mises stress for the bone screw parts. A FEM was used to determine
the force values and concentration points causing yielding of the screws. An RSM based
on the central composite design was carried out to determine effects of the process
parameters (coolant temperature, mold temperature, melt temperature, holding time,
injection time, and holding pressure) on the focus parts.

In addition to the need for the IM process control, extended use of plastic products in the
everyday life and the corresponding environmental concerns create new challenges in the
plastics industry, such as reuse, recycle and application of the lightweight materials [89].
As a result, use of recycled plastic materials becomes essential. Fernandez, Muniesa [89]
describe a methodology for the rheological testing of polymers during the injection
molding process and further optimization of the production process. The method is
especially beneficial for defining non-conventional features of the plasticization phase of
recycled thermoplastic materials. To achieve this a nozzle of the injection molding
machine is equipped with electric band heaters with thermocouples to obtain the molten
material temperature data and Kistler 4083A sensors to measure pressure and temperature
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of the plastic melt. In addition, the machine plasticization unit is equipped with a wire
potentiometer for measurement of the linear displacement of the reciprocating screw and
hydraulic pressure sensor. After obtaining the sensors data, the calculation of the material
viscosity is performed, and rheological model constants are obtained.

Mehat and Kamaruddin [90], at the same time, investigated the effects of injection
molding process parameters on the mechanical properties (stress at yield, flexural
modulus) of recycled materials. They have used MoldFlow™ simulation software,
Taguchi methodology and variation analysis (ANOVA) to conduct their experiments. The
results of the experiments have shown that injection time significantly influences the
material flexural modulus, while melt temperature is the most important parameter for
obtaining the expected stress at yield. The other investigated parameters include mold
temperature, melt temperature, injection time, holding pressure, holding time and cooling
time.

The number of studies directly focusing on the monitoring and control of the mechanical
properties of the IM products is smaller than of those related to the geometric deviations
control. Simultaneously, research concerning the IM parameters that effect different
aspects of the part quality is still an ongoing field of research [79]. Nevertheless, there is
a number of studies well describing these challenges and their possible solutions. Still,
more effort needs to be employed to map relations between various machine and process
parameters and their influence on the mechanical properties of the final IM parts.

2.2.3 Machine learning approaches for injection molding

The previous subsections have shown examples of various methodologies applied for
monitoring, control, optimization and investigation of different parameters influencing
the IM process. However, many of the above-mentioned methods have significant
disadvantages that make their application non-feasible. For example, FEM often involves
huge computational efforts [91], numerical modeling methods apply simplifications that
might not be able to adequately reflect on the non-linear material behavior [5], Taguchi
methodology can find only the best set of the specified process parameter level
combinations, and not the global optimum, etc. [92]. ML methods, on the other hand,
require smaller computational time, are capable of modeling non-linear relationships and
give better results when it comes to process modelling and forecasting [31].

In the recent years, collection and analysis of big amounts of production processes data
become more common and enable application of the ML methods, as they are able to
provide adequate results only if enough statistical data is used to train the models for
process control and optimization [79, 93]. At the same time, it is extremely important to
choose a proper ML method depending on the application purpose [72]. ANNs are often
applied for quality prediction due to their ability of nonlinear mapping between the noisy
sets of input and output data [92]. Their utilization is often coupled with self-organizing
maps (SOM), genetic algorithms or fuzzy logic [92]. For example, in [92] the authors
have trained two different models, the first one used combination of SOM and a back-
propagation neural network (BPNN) and the second one only on the BPNN. The models
were developed to create a dynamic quality predictor for the injection molding process.
The predicted quality characteristics is part weight. Nine parameters (injection stroke
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curve, injection velocity curve, pressure curve, injection time, packing pressure, injection
velocity, packing time, injection stroke, VP switch position) were included into the first
model and six into the second one. Taguchi’s parameter design was utilized to optimize
the parameters of the neural network. The datasets included 120 and 40 samples of the
experimental data correspondingly.

Manjunath and Krishna [94] developed an ANN model for forward and reverse mapping
prediction. In the forward mapping process parameters (holding pressure, injection speed,
mold temperature, melt temperature) were used as input variables for prediction of
dimensional shrinkage of the injection molded parts. In the reverse mapping, it was
attempted to predict an appropriate set of process parameters needed to reach certain
quality of the part. The model was trained using 1000 data samples randomly generated
through previously reported injection molding regression equations.

Kuo, Su [87] have used combination of Taguchi quality method, analysis of variance
(ANOVA) and a BPNN to reduce the dimensional deviations of injection molding. The
Taguchi quality method was applied to establish the design of experiment, which
consisted of 18 combinations of nine process parameters. Next ANOVA was used to
assess influence of each individual factor and choose the most influential ones. Finally,
five parameters (pre-plasticity amount, injection pressure, injection speed, screw rotation
speed, cooling time) were chosen to train a BPNN for prediction of the injection molded
parts dimensions. The model was created using 180 data samples. Similarly to [87], in
[95] a DOE is established using the Taguchi method, and ANOVA is carried out to define
the most important process parameters. 81 data samples were collected and used to train
multioutput support vector machine for regression and a BPNN. Afterwards, the multi-
objective optimization was performed through the application of the nondominated
sorting genetic algorithm. The main quality objectives were haze ratio and peak-to-valley
20 of the plastic optical lens focus part.

In [96] the authors compared performance of ANN and response surface methodology for
establishment of the process window for a plastic lens production. The models were
created for mold temperature, cooling time and holding time process parameters. The
models were able to predict the accuracy of the lens’s form. The optimal lens form
obtained after using the parameter values proposed by the ANN was better than that
received as a result of the response surface methodology model application. However, the
form accuracies obtained from both models were quite consistent.

Lotti, Ueki [5] used DOE to define the experiments and ANNSs to create models for
prediction of shrinkage of the focus parts. The models included four processing
parameters, namely: melt and mold temperatures, holding pressure and flow rate. The
models were trained using 30 data samples. The ANN has shown better results in
comparison to those achieved with the help of the MoldFlow ™ software package and the
corresponding finite element analysis. Yin, Mao [97] also compared performance of an
ANN with the FEM conducted in the MoldFlow™. They applied BPNN for prediction of
warpage of an automobile glove compartment cap and optimization of mold temperature,
melt temperature, holding pressure, holding time and cooling time. The results obtained
from the BPNN model were compared with those from FEM conducted in the
MoldFlow™ simulation software. The BPNN is able to successfully predict the possible
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warpage occurrence, as well as optimize the desired parameter values, simulation time
used by the BPNN is significantly shorter than that required for the FEM.

Nagorny, Pillet [98], on the other hand, collected process data and thermal images of 204
rectangular specimens and extracted 97 scalar statistical features from the obtained data.
The features were then used to train geometric dimensions prediction models using
support vector regression, random forest, k-nearest neighbors, stochastic gradient
descent, bagging decision tree, Ada Boosting, as well as convolutional neural network
and long-short term memory network. Neural networks models show the best results
among the tested algorithms and corresponding models.

Zhu and Chen [99] describe development of a fuzzy neural network-based in-process
prediction system for prediction of flash defect occurrence during injection molding
process. The main goal is to create a fuzzy neural network capable of predicting flash
when using recycled mixed plastics. Such important process parameters as injection
speed, melt temperature and holding pressure are varied within the experiment. The
model was trained using 180 data samples collected during a 3x2x2 factorial experimental
design.

The authors of [100] propose a reinforcement learning control system for the injection
molding process. At first, the relevant process data that includes quality characteristics
(warpage measured in three different points) and corresponding parameters settings
(holding pressure, holding time, melt temperature, mold temperature) is obtained through
the established DOE and a MoldFlow™ simulation software analysis. Secondly, a self-
prediction quality model (ANN regression model) is trained using the obtained data.
Finally, the reinforcement learning decision model (Markov decision process model) for
adjustment of learning process parameters is trained.

Kozjek, Kralj [101] proposed a data mining approach to the identification of complex
faults, such as unplanned machine stops during the injection molding production process.
Such methods as J48 decision trees, random forest, JRip rules, naive Bayes and k-nearest
neighbors are applied to the industrial data (about 2.2 million cycles on five observed
IMMS).

In [91] an ANN is trained using process parameters data for mold temperature, melt
temperature, injection time, holding time, holding pressure and cooling time, a target
variable is expressed with a quality index that includes warpage deformation, thickness
uniformity, etc. The quality index is evaluated using MoldFlow™ Plastic Insight and
optimization procedure is performed through the parametric sampling evaluation
function. The models are built for three different products (scanner, TV frame, plastic
lens), a small-sized DOE consisting 20 data samples is obtained using Latin hypercube
sampling method (LHS) for each of the products. This approach is focused on avoiding
necessity for the use of FE and computational efforts related to its application.

In [102] two different BPNNSs were trained for prediction of part weight and part length.
The first BPNN used discrete data from a Box-Behnken DOE for such parameters as
injection pressure, holding pressure, injection time and cushion. In total 150 data samples
were collected. The second experiment used continuous variable data (complete cycle
cavity pressure sensor data). The models’ performance was compared to that of SPC,
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BPNN has shown better result, falsely accepted and rejected parts rate was decreased with
50% with use of the BPNN approach.

The main idea of SPC is building a stochastic model that allows to control the process
based on the measurements of the manufactured parts and avoid over-controlling it. A
good fit to the model and a clear connection between the out-of-control signal and actions
that help to bring the process in control are essential. At first, historical data of a stable
process behavior is collected and the control limits for the expected measurements are
calculated. Secondly, the process data is collected, the measurements should fall between
the control limits for the process to be under control. The measurements that fall out of
the control limits are examined to see if they belong to the same population as the initial
data or if not, in that case the control limits need to be recalculated [103]. The
corresponding examination and calculation of the new control limits needs to be
conducted by the skilled personnel.

Chen, Nguyen [104] apply combination of Taguchi method, response surface
methodology and hybrid genetic algorithm and particle swarm optimization (GA-PSO)
for optimization of warpage and length quality characteristics. The control parameters are
melt temperature, injection speed, holding pressure, holding time and cooling time.

However, according to [105] the above-mentioned application of the ML methods
includes some deficiencies, as it is focused on optimization of a single criterion, such as
shrinkage or warpage, while a multi-objective optimization needs to be conducted to
optimize several criteria at once. Therefore, in [105] a framework for tackling the Pareto
optimum of the injection molding process parameters for multi-objective optimization of
the final part quality is presented. The studied processing parameters are injection time,
melt temperature, holding pressure, holding time, cooling temperature and cooling time.
The optimization systems proposed in the study includes two levels. The first level
utilizes an improved efficient global optimization algorithm to approximate the nonlinear
relations between the process parameters and the quality measures (volumetric
shrinkage). In the second stage non-dominated sorting-based genetic algorithm 11 is used
to find a better spread of design solutions.

The authors in [65, 106, 107] also focus on the multi-objective optimization problems. In
[106] an intelligent methodology that combines variable complexity methods, non-
dominated sorted genetic algorithm (NSGA), BPNN and MoldFlowTM analysis are
applied to solve the multi-objective optimization problem of the injection molding
parameters, where the optimization objective function is focused on minimization of
volumetric shrinkage, cycle time and total volume in the runner system. The sample data
is collected using the MoldFlowTM analysis software. In [65] and [107] the authors adopt
a multi-objective optimization approach for minimization of warpage and cycle time, and
volume shrinkage and clamping force correspondingly. A sequential approximate
optimization using radial basis function network (a feed-forward network) is applied to
define the pareto-frontier between the cycle time and warpage objective functions in [65]
and volume shrinkage and clamping force in [107]. In [65] holding pressure profile, melt
temperature, injection time, coolant temperature and cooling time parameter values are
optimized, while in [107] injection pressure, holding time, holding pressure, melt
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temperature, injection time and mold temperature. The initial sampling points are
generated using the LHS in both cases.

Most of the above-mentioned research studies use either simulated or real process data ,
however, in [108] it is suggested that the transfer learning can assist in overcoming the
gap between the real and simulation data. The authors have trained two ANN models for
prediction of the parts quality and the results have shown that the model which was
created using both simulation and real data had better performance in comparison to the
one using only experimental data.

In addition to application of the ML methods to concrete case studies, some of the
researchers propose frameworks for development of artificial intelligence or smart
manufacturing control systems for the injection molding process [68, 93, 109]. According
to the authors, such systems will decrease the need for human interference in the future
production systems. However, at the moment “real time process parameter optimization
and control without any human interference is still a distant approach due to complexity
of injection molding process and related input and output parameters” [93].

In [93] the authors propose an artificial intelligence (Al) based control system for
consistent product quality in injection molding process. The system includes two pressure
and two temperature cavity sensors, which collect process data during the production
cycles. The sensor data is then analyzed using ML techniques and under sampling
method. If the product failure occurs, the machine operator is notified, and parameter
adaptation is performed. The control system is tested with a car door injection molded
part. Lee, Ryu [68], on the other hand, propose a systematical framework for a smart
injection molding system capable of self-learning know-how and knowledge on
characteristics related to product quality and search of the optimal parameter settings. The
framework includes detailed description of the systems functions, data flow, procedures
for data analysis, decision-making and control of the process based on the real-time data.

In [109], at the same time, an intelligent system based on fuzzy logics is proposed. The
system employs adaptive membership functions, which are defined based on the different
quality defect behavior curves. The system can be tuned by an operator by means of a set
of adaptive regression membership functions. The systems assists in correlation of quality
inspection of the manufactured parts with the set of appropriate process parameters. Liau,
Lee [110], in their turn describe a framework for implementation of a digital twin for the
injection molding process that would allow to combine digital and physical environments
for the production process improvement.

Hopmann, Ressmann [28] suggest that application of ANNs provides good control
results, however, has several disadvantages: it requires a complex controller setup, large
amount of training data and low amount of process knowledge incorporated into the
obtained ANN models. Therefore, in their work Hopmann, Ressmann [28] developed a
model-based controller that uses online optimization to determine the control inputs.
Unlike other types of controllers that apply a well-tuned, but relatively simple algorithms,
this controller is based on a physical-based process model, which is able to reproduce the
general behavior of the injection molding system. Later, Hopmann, Abel [60] also
proposed a control strategy based on the iterative learning control that allows controlling

28



in-mold cavity pressure with respect to the reference generated by the P-V-T
optimization tailored for a specific material.

Even though most of the above-described research studies report good results after
application of the various numerical and stochastic modeling techniques, as well as
machine learning, fuzzy logics or reinforcement learning, more work needs to be
conducted to develop an overall framework for their implementation. Some of the applied
methods, such as FEM, RSM, SPC and Taguchi method have disadvantages that make
their application non-feasible, due to either significant simplification involved, high
computational costs, inability of finding a global optimal solution or a need for constant
involvement of skilled personnel. In this case, application of the ML methods for the IM
process monitoring and control is a promising area, as these methods are capable of
“learning” from the statistical data and mapping complex non-linear relationships.
Nevertheless, some of the studies that employ ML methods use very small data sets to
train the models, as, for example, in [5] an [91], meaning that more experimental data
needs to be obtained. At the same time, it is important to control quality of this data to
ensure high quality of the obtained models. Moreover, most of the scholars, except [98,
101], apply the same ML methods, mostly ANN and GA, without attempts to use other
machine learning methods that might show better performance depending on the problem
that needs to be solved. Some of the scholars use ANOVA [86, 87, 90, 95] to define the
most influential parameters based on the collected data, but none of them use feature
selection methods (a subset of ML methods) for this purpose. Therefore, development of
a general framework and guidelines for implementation of the ML methods for
monitoring and control of the IM process is essential to achieve creation of an intelligent
system that could be used not for a limited number of case studies, but production of parts
with various geometries and materials.
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Chapter 3

Machine Learning methods as means for monitoring and
control of thermoplastics IM

Nothing in life is to be feared, it is only to be understood.
Now is the time to understand more, so that we may fear
less.

— Marie Curie

This chapter provides theoretical foundations of ML methods used at different stages of
this work to conduct the necessary data analysis. Section 3.1 provides a general overview
of the ML approach, while Sections 3.2 — 3.5 include description of different categories
of the ML methods used within this work. Section 3.6 sums up advantages and
disadvantages of the ML methods application.

3.1 A general overview of the ML approach

Machine Learning (ML) is a sub-field of Computer Science that describes ability of a
computer program or a machine to learn from previously collected data (experience) E to
solve the class of problems (tasks) T with performance characteristics P with condition
of P improving over time [111]. According to Fayyad, Piatetsky-Shapiro [112] there are
several fundamental tasks that the ML can solve:

e Classification — division of data into the known groups based on their previously
defined properties.

e Clustering — division of data into groups based on their common characteristics
with no prior knowledge about these groups.

e Regression/ Forecasting — prediction of future or an event based on the available
historical data.

e Rules learning/ Associated rules — extraction of common characteristics of the
available data and representation of these characteristics in a suitable form.

e Optimization — selection of an optimal solution based on predefined criteria and
constraints.

These tasks can also be divided into the groups of supervised and unsupervised learning.
Supervised learning includes classification, regression, rules learning and optimization.
The main feature of the supervised learning algorithms is that training input and output
data samples are provided [113]. At the same time, unsupervised learning is a self-
learning technique, where the system has to discover the features of the input population
without prior knowledge of groups this data belongs to. One of the tasks of the
unsupervised learning is clustering. In this dissertation the regression and optimization
tasks are addressed. In general, to solve a task from the above-described classes, ML
algorithms follow a routine similar to that shown on Figure 3.1, also described in [114].

As depicted in Figure 3.1 the ML scheme starts with the problem understanding and
formulation and further proceeds to the relevant data acquisition. The next step includes
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data preprocessing — transformation of raw data (sensor signals, log data) into a format
suitable for further processing and analysis. This step might include normalization,
interpolation, padding, etc. Further on, the process is divided into two stages:

Training — a process of fitting the model to the available training data (training dataset)
in accordance to the specified performance measures that are capable of showing the
model’s ability to fit the data. It includes two main stages:

e Feature construction and selection — a set of methods for construction and
selection of relevant and non-redundant features/ parameters to be used for further
model construction. Depending on the problem, sometimes only feature
construction or selection is needed. In this dissertation the feature construction
step is omitted, as it is not relevant for the task.

e Model selection and training — selection of a suitable ML algorithm and
corresponding hyper-parameters depending on the task that needs to be solved and
training of a model based on the selected ML method.

Testing — is a second stage of the ML approach. It is a process of model evaluation using
new data samples (testing dataset) to predict unknown parameters or classify which group
does the sample belong to.

e Feature evaluation — evaluation of the new data sample based on the set of the
constructed and selected features.

e Performance of the chosen task and its evaluation — the model trained based on
the training data performs classification, regression, etc., and its performance is
evaluated using the relevant performance measures.

Problem
understanding and
formulation

Data collection

Training dataset Testing dataset

Data preprocessing

Training | Testing

Feature construction
and selection

Feature evaluation

Performance of the
chosen task and its
evaluation

Model selection and
training

Figure 3.1. A ML algorithm routine
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The described above scheme often needs to be supported by the relevant expert
knowledge related to selection of a suitable modeling method and tuning of the
corresponding hyper-parameters, as well as collection of relevant data that contains
potentially interesting information and can result in generation of a useful model.
Therefore, it is important to understand that: (i) the problem to be solved needs to be well
understood and formulated, (ii) enough of high quality data needs to be acquired prior to
application of the ML methods, and (iii) the corresponding ML algorithms capable of
solving the formulated task need to be carefully selected and their hyperparameters tuned.
Taking into account these three points is a key factor to successful solution of a relevant
data analysis task. When one or more of these points are ignored, overfitting or
underfitting might occur. Overfitting happens when a model learns details and noise in
the training data to such extent that it negatively influences its ability to generalize and
perform on the new data. Underfitting, on the other hand, is related to a model that is
neither able to model the training data, nor generalize on the new data.

3.2 Data preprocessing

Data preprocessing includes a number of procedures performed on the raw data prior to
its further utilization. According to [113] there are three main types of preprocessing
operations: outlier removal, data normalization and dealing with missing data.

Outlier removal

An outlier can be defined as a data point whose value lies very far from the mean of the
random variable under consideration [113]. For a normally distributed normal variable,
95 % of the points lie within the distance of two standard deviations from the mean, while
99 % are within the three standard deviations distance. Points that are significantly
different from the mean result in large errors during the model training. This might cause
serious effects on the quality and performance of the final model. If the number of outliers
is small, they might appear due to erroneous measurements, in such case they are usually
discarded. At the same time, if there are many outliers, they might be result of a
distribution with long tails. In this case, cost functions that are not very sensitive to the
presence of outliers need to be adopted during the model construction. More information
on such cost functions can be found in [115].

Missing data

Unfortunately, it often occurs that some of the feature vectors have missing values. This
might happen due to several reasons some of which are partial response in surveys or
application of the remote sensing technologies, when certain regions are covered by a
different number of sensors. Some of the most popular techniques for dealing with
missing data are interpolation and completing the missing values with (a) zeros (called
padding); (b) the unconditional mean computed using the available values of the
corresponding feature; (c) the conditional mean, in case one has an estimate of the
probability distribution of the missing values [113]. In addition, when having the large
amounts of data, it is sometimes decided to discard samples that have missing values,
however, most of the time such measure is considered as an unnecessary luxury.
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At the same time, more sophisticated methods for dealing with the missing values are
available. An example of such method is imputing from a conditional distribution. The
main idea of this method is to substitute the missing values with values with respect to
their statistical nature. In this case, a missing value is replaced by a random draw from a
corresponding distribution. Another more advanced variation of this method is multiple
imputation described in [116]. In this case, for each missing value, m > 1 samples are
generated that are later combined to fulfil certain statistical properties. More information
on the methods for dealing with missing data can be found in [117].

Data normalization

In many cases features or parameters that are to be further used to create a model lie
within different ranges. As a result, features with larger values might have a bigger
influence in the cost function in comparison to those with smaller values. However, this
does not necessarily reflect their significance in the model’s design [113]. This issue is
solved through the application of data normalization. There are different normalization
techniques that are to be applied depending on the dataset and problem at hand, here are
examples of some of them:

e Scaling at range is a technique that limits the feature values to the range of [0, 1]
applying the equation 3.1 for N available data points. It is best used when the
approximate minimum and maximum values of the feature are known, and data
distribution is close to uniform.

X, = —min_ i =12 .,N (3.1)
Xmax~Xmin

o Feature clipping is a useful technique in case of presence of extreme outliers. In
this case, all the feature values above or below a certain value are set to a selected
fixed value.

e Z-score is used to receive the normalized feature values with zero mean and unit
variance using equation 3.2 for N available data points, where y is a mean and o
is variance of the original feature. This technique is quite useful in case of small
number of outliers that are not as extreme as when the clipping is needed.

%="Fi=12.,N (3.2)

e Logarithmic scaling is example of a nonlinear normalization method, which helps
to deal with feature vectors, where the data is not evenly distributed around its
mean with help of the equation 3.3.

x; =log(x),i=1,2,..,N (3.3)
3.3 Feature selection

In data science and ML, a feature is one of the parameters used to predict the output of
interest. Theoretically, the more features are used to construct a model, the better
performance it will show. However, practical experience with the ML methods shows
that this is not always the case [118]. One of the reasons for this is that presence of big
amounts of noisy and redundant data decreases performance of the created model.
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Therefore, feature selection needs to be performed to choose the features containing the
most information about the predicted response.

Feature selection (FS) can be, therefore, defined as a process of identifying and
eliminating as much irrelevant and unnecessary data as possible [118]. This reduces
dimensionality of the data at hand and in many cases allows the learning algorithm to
perform faster and in a more efficient way. Feature selection takes places for various
reasons, but the most popular ones are: (1) reducing the number of features, (2) gaining a
better understanding of the features and their relationship to the response variable, (3)
enhancing the generalization of the model by reducing overfitting, (4) models
simplification for better interpretation by users [119, 120]. In this work feature selection
methods are mainly used before application of the ANN MLP and k-Nearest Neighbors
methods, since the other ML modeling methods include the feature selection step in their
algorithms.

A feature selection method needs to be selected depending on the main aim for its
application, as some of them might be good for gaining better understanding of the
features-response relationships, but not as good for the dimensionality reduction and vice
versa. In general, the feature selection methods are divided into the three main groups:
filter, wrapper and embedded.

o Filter methods select the important features regardless of the model using a useful
descriptive measure to rank them. The main benefits of these methods are their
low computation time and ability to avoid overfitting [120]. However, not all these
methods take into consideration interactions or correlation between the features.
Filter methods used in this work are Pearson correlation test, Spearman’s Rho
correlation test, RReliefF, and Correlation-based feature selection (CFS).

Pearson correlation and Spearman’s Rho correlation are univariate feature selection
methods. Such methods examine each feature individually to measure the strength of the
relationship between this feature and the response variable. Such methods are usually
simple to use and understand and good for getting a better understanding of the dataset.

Pearson correlation determines the level of linear correlation between two variables (a
feature and a response variable). This method requires the variables’ distributions to be
close to normal distribution [121]. The resulting value lies in the range of [-1;1]. Pearson
correlation value equal to -1 means perfect negative correlation (as one variable
decreases, the other one increases), +1 means perfect positive correlation (as one variable
increases, the other increases as well), while 0 indicates no correlation.

Spearman’s Rho correlation, on the other hand, is a nonparametric measure of the
relationship between two variables, which do not necessarily need to be normally
distributed [122]. Spearman’s correlation is often referred to as a non-linear correlation
test, whose value also lies in the range of [-1;1] and has the same meaning as Pearson
correlation.

RReliefF or regressional ReliefF is a feature selection method from the Relief
algorithms family. The main idea of the initial RELIEF method [123] is to assess features
based on their ability to distinguish between the dataset instances whose values are close
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to each other. RELIEF method can be used only for the two-class problems. It searches
for two nearest neighbors of a randomly selected instance, one of them from the same
class (nearest hit H) and another one from the opposite class (nearest miss M). Later it
updates the quality estimates for all the features depending on the values of the randomly
selected instance, M and H. The RELIEF algorithm is capable of dealing with both
discrete and continuous features. ReliefF method, on the other hand is a modification of
the RELIEF for multi-class problems that is also more robust and can work with noisy
and incomplete data [120, 124]. RReliefF, at the same time, is the original algorithm’s
modification that can be applied for regression tasks, when the predicted value is
continuous. For this purpose, the algorithm assesses the features ability to conclude that
the predicted values of two instances are different [124]. The Relief family algorithms
have low bias and can capture the local dependencies that other filter methods miss.

Correlation-based feature selection (CFS) is another filter feature selection algorithm
that ranks features depending on a value of a correlation-based heuristic evaluation
function [118]. The correlation function is used to determine the feature subsets that have
high correlation with the predicted variable and no or low correlation with each other, it
is calculated using equation 3.4. The acceptance of a feature depends on its ability to
predict the correct response variable value in the areas of the instance space not yet
covered by the other features.

My = —2 (3.4)

/k+k(k—1)ml

where M; is the heuristic evaluation function of a feature subset S containing k features,
T¢r is the main feature-response correlation (f € S), 777 is the average feature-feature
correlation.

e Wrapper methods evaluate the feature subsets, which allows to consider possible
interactions between the variables. Main disadvantages of such methods are an
increased overfitting risk and significant computation capacity and time needed.
Examples of the wrapper methods are forward selection, backward selection,
stepwise selection and Recursive feature elimination (RFE). In this dissertation
the RFE algorithm is tested and compared to application of the filter methods.

Recursive feature elimination (RFE) method works by recursively removing the
features and building a model including the remaining variables [125]. At first, the
estimator is trained on the full set of features and their initial importance characteristic is
obtained. Later, the least important features are eliminated, and the procedure recursively
repeats until the desired number of features is selected.

e Embedded methods try to combine the advantages of both filter and wrapper
methods. They perform feature selection as part of the model creation during the
algorithm’s execution. This allows to avoid some disadvantages of the previous
methods, as the selection is done with connection to the model tuning. Examples
of such methods are Lasso and Ridge regression, as well as decision tree
algorithms.
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3.4 Machine learning techniques

As it has been mentioned before, the ML approach includes training and testing stages.
During these stages training and testing sets are used correspondingly. They are obtained
through splitting the initial dataset used for the model development. Then, the training set
is used to train the model and the testing set to test its performance and generalization
abilities on the previously unseen data. The size of the training and testing datasets
depends on the size of the original dataset. In this work, 70% training and 30% testing
ratio is used, while 5-folds cross-validation is performed on the train set.

3.4.1 Artificial Neural Networks

Artificial Neural Networks (ANNSs) is a class of machine learning models used for
mapping complicated non-linear relationships between the inputs and outputs that can be
used to solve various tasks, including classification and regression. The main idea behind
the ANNSs is construction of a model, which is a network of simple processing units
(neurons) connected between each other (presence or absence of a connection between
the particular neurons depends on the chosen architecture of the ANN), capable of
calculating a weighted sum of their inputs and using an activation function to calculate
its output [114]. The ANNs might use different activation functions, such as a binary step
function, sigmoid function, rectified linear units function (ReLu), etc. The network is then
used to adjust its weights in order to maximize the model’s performance and minimize
the appropriate cost function of its output. One of the ways to perform this adjustment is
application of backpropagation, which is a method for computation of gradients of the
cost function and propagating the corresponding error back through the network. This
allows to adjust the model’s weights depending on the values of the backpropagated error.
While ANN is a powerful tool for modeling of various phenomena, its main disadvantage
is low interpretability of the obtained model for a human expert. In this dissertation a
feed-forward multilayer perceptron with backpropagation is used.

Multilayer Perceptron (MLP) with backpropagation

Multilayer Perceptron (MLP) is one of the classical ANN architectures. Perceptron is a
feed-forward neural network with only input and output layers. MLP, on the other hand,
includes one or more additional layers that are called hidden layers. These layers are fully
connected, and layer-to-layer mapping is activated using a non-linear function. Multilayer
perceptron can be used to model any nonlinear function, when other conventional
mathematical modeling is difficult or inappropriate [114]. To do this a suitable number
of layers and neurons in them need to be selected.

It is possible to explain how an MLP works using example of a perceptron. The
perceptron takes a set of features as an input vector x € R™, where n is the number of
features, and provides an output y € R, as a result. This way it maps the input values to
the output, as a function f: R™ —» R. The corresponding f function is calculated based
on the sum of weighted inputs and bias factors.

One of the most common MLP architectures is a three-layered network, it includes an
input layer, a hidden layer and an output layer. Schematic representation of a three-
layered MLP is shown on Figure 3.2, for simplification purposes the bias terms are not
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depicted. Each hidden unit approximates the input to the output layer using an activation
function g () using the equation 3.5:

Hy = g(Xitq Xiwy; + by), (3.5)

where Hy, is an output of the kth hidden unit, n is a number of outputs, w;; — weight for
the ith neuron, and by, is bias.

Figure 3.2. Schematic representation of a three-layer multi-layered perceptron

The output of the MLP is calculated using the equation 3.6, where J,, is an approximated
value of the mth output unit, N is a number of neurons in a hidden layer, while b,,, is bias:

9p = f(Z§V=1 Hijj + bp) (36)

To minimize the difference (e) between the observed and predicted values of the output
equation 3.7 is used:

e = arg min(; X Ym — Im)?), (37)

where y,, is the observed value of the response variable, 9, is the predicted value, and
M is the number of samples.

3.4.2 k-Nearest Neighbors

k-nearest neighbors (KNN) is a simple ML algorithm that uses samples similarity to
predict values of previously unseen data points [114], it can be used both for classification
and regression. When a new example is presented to the algorithm, it searches for k most
similar to the new one samples. To assess which samples are closest to the new one,
different distance measures are used. The most popular for the continuous target variables
is Euclidean distance. To find the value of the variable of interest for the new sample, the
mean value of target variables from the set of the nearest neighbors is taken. kNN is
sensitive to the chosen distance measure and k — the chosen number of the nearest
neighbors. On the one hand, if the noise is present, increasing the number k might average
the results and reduce probability of an erroneous prediction. On the other hand, it might
increase probability of considering far nearest neighbors, which will decrease the
algorithm’s prediction quality. The main disadvantages of this method is its high
computational complexity for large datasets.
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3.4.3 Decision Trees for Regression

Decision trees are another class of the ML modeling techniques that can be used for both
classification and regression tasks. Unlike ANNS, decision tree models are easy to
interpret and understand. The decision tree “asks” a series of questions to the data,
narrowing the possible values until the model is confident enough to make a single
prediction. The obtained model has a flowchart-like structure and includes three main
components: nodes, branches and leaves [114]. Nodes in this case correspond to the
features, branches to the feature values (conjunctively combined), while leaves or
termination nodes represent the decision value (predicted value of a target variable in case
of regression and predicted class for classification). Decision trees can be useful for
gaining more understanding of the investigated production process and influence of the
process parameters on the response of interest [114].

For a given input vector of features x € R™ and an output training vector y € R, the
regression tree algorithm recursively splits the data into subsets that contain instances
with similar values. It is important to choose the relevant features using which the data is
split. In case of a regression problem, the following metrics can be used: standard
deviation, mean squared error (MSE), mean absolute error (MAE), etc. In this dissertation
an implementation of scikit-learn decision tree regressor [126] is used, therefore MSE or
MAE can be regression criteria for impurity function H () minimization and determination
of data splits [127]. Equation 3.8 can be applied for the utilization of MSE and equation
3.9 for MAE:

HX) = =S50 = In)? (38)
H(Xm) = 5= S05 1y = Il (39)

where X,, is training data in node m, ¥,, is a mean of all response variable values in the
node m.

At the same time, when it comes to application of the decision trees algorithms to big
amounts of data, there might occur issues related to scalability, complexity, stability and
robustness of this method [128]. This might be partially avoided through tuning of the
corresponding hyper-parameters, such as: tree depth, total number of instances in a leaf,
total number of nodes or leaves.

3.4.4 Gradient Boosting Regression

To avoid disadvantages of the regular decision tree algorithms, Gradient Boosting (GBR)
method can be applied. It is a machine learning technique available both for classification
and regression that is based on “general problem of producing a very accurate prediction
rule by combining rough and moderately inaccurate rules-of-thumb” [129]. Instead of
building one decision tree, this technique creates many trees, where each of them is
capable of predicting certain set of the training samples well. It is an ensemble algorithm
that creates an additive model, where simple models (weak learners) are added one at a
time, while the existing decision tree learners remain the same.
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Gradient Boosting regression calculates pseudo-residuals (remaining error or the
difference between the known target variable value and the predicted value). As a next
step it fits a weak learner to these pseudo-residuals and performs a gradient descent
procedure to minimize the loss when adding a new learner to the overall model. During
this procedure the new decision tree is parametrized, and its parameters are modified.
This allows to push the overall model to the desirable target through optimization of a
chosen differentiable loss function. In case of regression tasks, it can be an MSE or MAE.
Repeating this step over and over again helps to increase the model’s prediction quality.

3.4.5 Adaptive Boost Regression

Adaptive Boost regression or AdaBoost (AB) is also an ensemble method partially similar
to the Gradient Boosting learning method. It also creates weak learners to enhance the
model’s predictive abilities. However, unlike Gradient Boosting, it changes the sample
distribution by modifying the weights attached to each of the instances [129]. It increases
weights of the samples that were wrongly predicted and decreases them for those
predicted correctly. As a result, the weak learner added on each new iteration focuses on
the “problematic” samples.

3.4.6 Random Forest

Random forest is another ensemble algorithm that uses decision trees as separate learners
[130], in this case a collection of multiple learners is called a forest. However, unlike
GBR and AdaBoost, it does not add new decision trees based on the results obtained from
the previous ones. The random forest is not sensitive to the number of trees in the forest
or a number of features in each node, at the same time it is robust to overfitting [131].
The main steps of the algorithm are as follows:

1. Generate n bootstrapped® samples from a training dataset. These samples are
drawn randomly and some of the samples might repeat.

2. Generate a forest by fitting the decision tree regressors to each of the n
bootstrapped samples for a randomly chosen number of features for the node
splitting.

3. Theaverage value of all the decision tree predictions is used as the model’s output.

4. Evaluate the overall random forest model performance using part of the training
data that has not been used (out-of-bag dataset) and one of the metrics for the
performance valuation (MSE, MAE, etc.).

3.5 Model optimization and evaluation
3.5.1 Model optimization using Grid Search

To tune hyper-parameters of the models obtained using the different ML methods,
different search methods can be utilized, for example, Grid Search or Random Search.
Grid Search is a method that exhaustively looks through each combination of the hyper-
parameters. At the same time, Random Search uses random combinations of the hyper-

! Bootstrapping is a resampling technique that creates smaller data samples from the larger dataset with
replacement.

39



parameter values. As a result, not all the hyper-parameter values are tried, but a number
of combinations limited with an iterations number. In case of a large hyperparameter
space, Random Search is able to explore a wider range of the searched space.

3.5.2 Model evaluation

Due to development of exclusively regression models in this work, to evaluate the
obtained models’ performance 5-folds cross-validation, correlation coefficient, root mean
squared error (RMSE) and R? are used. Cross validation is a statistical method used to
estimate skill of various machine learning models [114]. To perform k-folds cross-
validation the next steps can be followed:

1. The dataset is randomly shuffled.
2. The dataset is split into k groups. In our case, k = 5.
3. For each of the k obtained groups:
- Remove group from the rest of the data and leave it as a test dataset.
- Use the remaining groups as a training set.
- Train the model using the obtained training dataset and evaluate the model
using the training set.
- Obtain the model’s evaluation scores.
4. Summarize the evaluation scores of the obtained model.

3.6 Advantages and disadvantages of ML methods

Machine learning is an extremely powerful tool that can be used to solve various problems
and often outperform the classic mathematical modeling methods. Some of its main
advantages are:

1. Ability to map complex non-linear relationships. As it has been discussed, ML
is capable of processing large amounts of data and find previously unseen patterns
and relationships.

2. Handling of multi-dimensional data and data of different types. ML can deal
with highly multi-dimensional datasets that include data of different types using
features pre-processing and feature selection methods to filter out the irrelevant
features and leave only those that have a high impact on the variable of interest.

3. Process automation. Proper implementation of the machine learning methods
allows to create models capable of learning from the data, making predictions and
improving the algorithms and processes on their own.

4. Continuous improvement. As more data is obtained and the model is updated
based on this data, its prediction capabilities are improving.

5. Wide application range. ML methods are applied to solve tasks in various fields,
such as: information security [19], medicine [20], robotics [21], manufacturing
industry [23], etc.

At the same time, any approach has its disadvantages, and ML is not an exception:

1. Data acquisition. ML approach requires significant amounts of high-quality data
to be available. This means that corresponding procedures to gather and ensure
quality of the data need to be available and implemented for the task in focus.

40



2. Time and computation demand. To create high quality models, enough
computation power and time resources need to be allocated.

3. Models interpretability. Some of the ML methods create models that are hard to
interpret for a human expert (ANN, Random forest, AdaBoost, etc.). Due to this
such models can not contribute with explicit process understanding [28].
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Chapter 4
Methodology

Although I do not suppose that either of us knows
anything really beautiful and good, |1 am better off than he
is — for he knows nothing, and thinks that he knows. |
neither know nor think that | know.

— Socrates

This chapter presents the research philosophy used within this study and describes
methods that were applied to conduct the relevant experiments, data collection and
analysis, so that those interested in this research topic can repeat the experimental work
when needed.

4.1 Research philosophy

Research design depends on several factors, such as the field of research, academic
environment, as well as the researcher’s background [132, 133]. Creswell [132] highlights
four classical research paradigms that take part in shaping the research design: positivism,
pragmatism, realism and interpretivism. These paradigms can be described as an
intellectual context to conduct the research, beliefs that guide corresponding actions and
a source of assumptions and ideas [132, 133].

e Positivism is a philosophy that regards reality as that consisting of discrete events
that can be precisely observed, described and further used to produce general rules
to forecast events or behaviors with a minimum uncertainty.

e Pragmatism “is concerned with action and change and the interplay between
knowledge and action” [134]. It is an action-oriented paradigm that includes
intervention into the world and not just its observation. For a pragmatist, research
starts with a practical problem that needs a practical solution for future practice
[135]. Within this paradigm, the best research methods are those that help to solve
the research question in the most effective way.

e Interpretivism is completely opposite to the positivism. Here, the reality is
considered as a socially constructed one, meaning that it is affected by the beliefs,
opinions and values of those looking at it.

e Realism, at the same time, is rather close to positivism, however, takes into
account the subjective nature of research and the corresponding conclusions
drawn by it. Here, fewer claims are made regarding the knowledge that perfectly
describes the object of study.

Interpretivism and realism are paradigms mostly used in qualitative studies, while the one
described in this dissertation is a quantitative work based on experiments and the obtained
results. Therefore, combination of positivism and pragmatism are used here. More
discussion on this is presented in Chapter 11.
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Injection molding is a net-shape manufacturing process that usually provides significant
time and cost advantages, where, however, quality of the final product is highly dependent
on the initial process parameter settings [57]. Therefore, many research studies in this
field, as shown in Chapter 2, collect certain amount of data and observe influence of the
investigated parameters on different quality aspects of the produced parts to establish
relationships between the parameters and the observed variables. Such studies correspond
to the positivistic paradigm.

Following this way of thinking and the positivism research paradigm, the first experiment
was planned to evaluate a hypothesis related to the influence of various process
parameters on the quality features of the focus part. Correspondingly, the RQL1 is related
to selection of the most influential process parameters.

RQ2 and RQ3, at the same time, are focused not only on evaluation of the relationships
between the quality and the process parameters, but also on the application of the ML
methods that have some advantages over the conventional modeling techniques. This
point of view is highly correlated with that of the pragmatism, as a more effective method
and its application to the question of interest are investigated.

To answer the RQ4 the first three research questions need to be answered and
incorporated so that a framework for an intelligent control system for thermoplastics
injection molding is proposed. As a result, combination of positivism and pragmatism are
used. Synergy of these two philosophical research paradigms allows greater flexibility in
the research design of the study. It provides certain freedom for planning of the research
path depending on the results obtained on different stages of the presented work.

4.2 Research methods

As mentioned above, the research study described in this dissertation is a quantitative
one. It is based on experimental work and the knowledge is derived through analysis of
the obtained experimental data. Research methods are chosen according to the research
questions of interest and the relevant philosophical research paradigms. Design of
experiments, injection molding of the focus parts (experimental work), data collection
and analysis are the essential research activities conducted in this work. The performed
data collection, in its turn, can be divided into three stages: collection of the IM process
data, collection of dimensional data and collection of physical properties data of the
obtained parts. The dimensional and mechanical properties data together form quality
data. Table 4.1 shows hardware and software solutions used at the different stages of the
research study. In addition, literature review, application of model-based systems
engineering (MBSE), validation and verification were also performed. A Gant chart
depicting the timeline of the main research activities is shown on Figure 4.1.

Table 4.1. Hardware and software used in the research activities

Hardware Software
Design of Experiments Computer modeFrontier [136]
Injection Molding “ENGEL insert 130 with CC300 Linux OS
control unit
IM process data collection Computer, RevPi Core3 [137], Python 3 programming language,
Kistler 4021B10H1P1 temperature PyCharm, Atom
and pressure multi-sensor

43



Hardware Software

Dimensional data collection Zeiss DuraMax [138] Zeiss Calypso

Physical properties data collection Instron 5960 Bluehill Universal

Data analysis Computer Windows OS, Python 3 programming
language, PyCharm, Jupyter notebook

4.2.1 Literature review

Literature review has been an important part of this study. As shown on Figure 4.1, it has
been conducted all the way along the PhD work in parallel to the other activities. This
was necessary to be up to date on the state-of-the-art in the relevant study field. Scopus,
Science Direct and Google Scholar databases were used to perform the literature search.
The articles were filtered based on the relevance to the topic of interest and publication
year. Papers published before the year 2000 were not included in the literature review
presented in Chapter 2.

Literature review

Design of experiments
Experiments

Systems engineering

Data collection

Data analysis

Validation and verification

Figure 4.1. PhD research project Gant chart

The first stage of the literature review was conducted in the very beginning of the project
in order to get familiar with the current developments in the field of monitoring and
control of thermoplastics injection molding. As a result, it became clear that the field of
IM still does not utilize process data in full capacity to extract relevant patterns for
monitoring and control, and a lot of scholars use such methods as Taguchi method, FEM,
RSM and ANOVA to obtain the optimal process parameter settings, while SPC is used
to monitor the process. Since those methods have several disadvantages, there was a
number of papers where the ML methods were applied and argued to be a better
alternative, due to their ability of learning from the data and effectively mapping non-
linear relationships. Most of those papers, however, lack a universal approach and were
often focused on rather specific cases. Therefore, it became apparent that a general
framework for application of ML methods for intelligent control of thermoplastics
injection molding process is needed. However, to propose a good framework (RQ4),
responses to the RQ1, RQ2 and RQ3 also need to be given.

Later, literature review was conducted again and again to be able to keep up with the
current developments in the relevant field. During the literature review different search
words were used that can be divided into three groups “process in general”, “modeling,
monitoring and control methods” and “other”. Examples of the search words used within
each category are presented in Table 4.2. The “process in general” keywords were mostly
used to find the relevant research works about the overall description of the injection
molding process, important process parameters that influence quality of the produced
parts, the most common IM defects, etc. “Modeling, monitoring and control” search
words included different queries related to the more conventional (FEM, RCM, Taguchi
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method), as well as ML modeling, monitoring and control techniques. The group “other”
consists of the key words related to different accompanying concepts necessary for the
in-depth understanding of topics, such as data acquisition process, mechanical testing of

parts or coordinate measurement.

Table 4.2. Examples of keywords used in the literature review

“process in general”

“modeling, monitoring and control
methods”

“other”

Injection molding, thermoplastics
injection molding, injection molding of
plastic parts, injection molded parts,
injection molding parameters, the most
important injection molding parameters,
plastic injection molding important
parameters, common injection molding
defects, prediction of injection molding

Taguchi method, SPC, statistical
process control, FEA, finite element
analysis, FEM, finite element method,
RCM, response surface methodology,
ANOVA, analysis of variance, DOE,
design of experiments, Latin
Hypercube, ML methods, machine
learning methods, classification,

CAD model, coordinate measuring,
tensile stress testing, tensile testing,
mechanical testing, Young’s modulus,
tensile modulus, tensile strength, tensile
strain at break, data acquisition, data
acquisition system, MES, manufacturing
execution system

parts quality, optimization of the
injection molding process parameters

regression, ANN, artificial neural
networks, decision trees, random forest,
feature selection methods, correlation-
based feature selection

4.2.2 Design of experiments

Based on the first stage of the literature review, the RQ1, RQ2 and RQ4 were formulated
and the first experiment was designed. To design the first and the following experiments,
Latin hypercube sampling (LHS) [139] was used. Unlike simple random sampling, the
LHS stratifies simultaneously on all input dimensions, therefore, leading to a better
coverage of the corresponding parameters hyperspace. Since DOE for the experiments in
this work included from 6 to 8 different parameters and value range for some of them was
quite wide, LHS was chosen as a sampling method capable of covering as much of the
hyperspace of the parameter values of interest as possible.

4.2.3 Experimental work

Experimental work was performed during the years 2018 and 2019, as shown on Figure
4.1, and included four experiments. Experiment 1 was planned and conducted during the
year 2018, after the first stage of the literature review and formulation of the RQ1, RQ2
and RQ4. In 2019 the experiments 2-4 were performed and the RQ3 was formulated.
After completing the injection molding of the focus parts and collection of the
corresponding process parameters data within the experiments, dimensional
measurements and tensile testing were performed to obtain the quality data.

Originally, the first experiment was planned to answer the RQ1, RQ2 and then RQ4. The
RQ3 was added later due to the importance of the parts mechanical properties when
defining the final product quality. This, however, did not prevent using data obtained
from the first experiment to assist answering the RQ3. More details about the
experimental work are given in Section 4.3.

4.2.4 Model-based systems engineering

Systems engineering is an interdisciplinary approach that includes techniques for
successful realization of complex systems [140]. A system, in this case, can be defined as
“any organized assembly of resources and procedures united and regulated by
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interaction or interdependence to accomplish a set of specific functions” [141]. In this
work the answer to the RQ4 is meant to propose a framework that can assist development
of an intelligent control system for thermoplastics injection molding. Such system
consists of multiple components and connections between them, where the relevant data
is collected and analyzed. Model-based systems engineering is, therefore, applied to
improve the data collection and analysis process, present the obtained results in a
systematic way and propose a framework for the intelligent system of interest and
application of the ML methods within it. More details on the model-based systems
engineering application are presented in Chapter 5.

4.3 Experimental work

As mentioned before, the experimental work within this study consisted of four
experiments. All of them were conducted on the “ENGEL insert 130” vertical IMM with
CC300 control unit. During the experiments dogbone specimens with 4 mm and 15 mm
thickness, as depicted in Figure 4.2, were produced. The experiments were performed
following different DOEs designed in advance using the Latin hypercube sampling
method. The used DOEs are presented in Appendix A of the dissertation. Table 4.3
provides more information on the difference between the experiments. When it comes to
the difference in the DOEs, in experiment 1 eight parameters were included (holding
pressure, holding time, backpressure, cooling time, injection speed, screw speed, barrel
temperature, mold temperature) and 32 parameter combinations, in experiment 2 — six
parameters (barrel temperature and mold temperature were excluded) and 24
combinations. In experiments 3 and 4 the same DOE was used that included seven
parameters (mold temperature excluded) and 32 parameter combinations.

Gage width 10 mm

Overall width . _
20 mm P

™~

A
A 4

Overall length
170 mm

Figure 4.2. Injection molded dogbone specimen

In the first experiment, each combination was launched five times, while in the
experiments 2-4 — three times. However, during the experiments 3-4 some combinations
were used more times to finish the material in the IMM machine. In the experiment 3:
combination number 10 was launched ten times and number 32 — seven times, while in
the experiment 4 combination 32 — nine times.

As it is shown in the Table 4.3 there are several parameters that distinguish the
experiments. During the experiments 1, 3-4 dogbone specimens with 4 mm thickness
were produced, while during the experiment 2 15 mm thick specimens were
manufactured. In the experiments 1-2 the virgin HDPE material was utilized, while in the
experiments 3-4 recycled HDPE from two different suppliers was used.
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Due to a large number of IMM runs within the same experiment and some of the
parameter adjustments taking a long time to be applied, not all of the specimens in the
experiments 1 and 2 were produced during the same day. In the experiment 1 specimens
for the DOE combinations 1-10 were produced on 22.03.2018, 11-21 on 23.03.2018 and
22-32 0n 10.04.2018. In the experiment 2, batches 1-2 were produced on the 28.01.2019,
3-10 on the 31.01.2019 and 11-24 on the 08.02.2019. However, within each experiment
all the specimens were produced using the same material batch.

Table 4.3. Description of experiments 1-4

Total Total | Num. of
Ex DOE Num. of Focus Num. of s'Zlnoslgr num. num. runs
#p‘ arameters combin. arts specimens Material data of of per
P in DOE P in one run - param. | IMM DOE
collection -
logged runs | combin.
4 mm ™ i
1 8 32 | dogbone 2 B°'SﬁEPE""9'“ No a 160 5
specimen
15 mm ™ i
2 6 24 | dogbone 1 B°'SﬂEPE""g'“ Yes 65 72 3
specimen
Recycled HDPE
4 mm from
3 7 32 dogbone 2 h . No 52 101 3
N ContainerService
specimen N
supplier
4 mm Recycled HDPE
4 7 32 dogbone 2 from RePro No 52 102 3
specimen supplier

Table 4.3 depicts that during the experiments different number of the corresponding
process parameters were logged. In the experiments 1, 3-4 only the parameters data
available from the IMM was obtained, while in the experiment 2 corresponding mold
pressure and temperature data was also logged from the mold cavity multi-sensors. This
data was not obtained in the other experiments due to the sensor availability only in the
mold for production of the 15 mm thick dogbone specimens.

After each of the experiments, the produced specimens were measured on the coordinate
measuring machine to obtain the dimensional data (width and thickness) and then tensile
tested to get the mechanical properties data. Figure 4.3 shows a general flow of the
experiments conducted in this work. On the figure large blue arrows indicate the
experiment’s inputs (DOE and material), gray rectangles are different stages of the
experimental work, blue rectangles are outputs of the different stages of the experiment
(data and injection molded specimens). Green arrows indicate collected data, while blue
arrows connect different stages of the experimental process.

4.3.1 System used as a case

All the experiments were performed using “ENGEL insert 130” vertical IMM with
CC300 control unit. Process parameter settings were varied according to the
corresponding design of experiments shown in Appendix A. Prior to the start of the
injection molding, the used material was dried, and the IMM was warmed up. In addition,
several cycles not included into the collected data were performed before the beginning
of the experiment and when the process parameter combination was changed. This was
done to stabilize the production process with the new parameter values.
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To log the injection molding process parameters data an application programing interface
(API) developed at SINTEF Manufacturing AS in Python 3 programming language was
used. The data was collected each 0.5 s from the closing until the opening of the mold
throughout each production cycle. As mentioned before, during the experiment 2 mold
pressure and temperature data was also obtained using Kistler 4021B10H1P1 temperature
and pressure multi-sensor. More information about the sensor is provided in Table 4.4.
The mold for production of 15 mm dogbone specimens has two of the sensors installed,
as shown on Figure 4.5 (a), however, data from only one of them was logged as during
this experiment one dogbone specimen was produced per cycle. Examples of mold
pressure and temperature curves data obtained from the sensors is shown in Figure 4.4.

Figure 4.3. A general experimental flow

Table 4.4. Pressure and temperature multi-sensor characteristics

Specifications Kistler type 4021B10H1P1
Model Measuring chain
Calibration Calibrated by Kistler
Measuring Range pressure (Bar) 0..1000

Measuring Range temperature (°C) 0..350

Temperature accuracy (°C) +5

Diameter (mm) 21

Height (mm) 91.5

Natural Frequency (kHz) >165
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Examples of mold pressure curves Examples of mold temperature curves
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Figure 4.4 (a) Examples of mold pressure curves obtained from the in-mold sensors; (b)
Examples of mold temperature curves

To acquire data from the sensors the industrial Raspberry Pi RevPi Core3 and RevPi
Analog Input Output (AlO) modules for the digital sampling of the signals were used,
shown on Figure 4.5 (b). The modules are connected through PiBridge. Unlike
commercial DAQs from manufacturers like NI and HBM, RevPi is an open, modular
industrial PC which provides flexibility of the software alternatives [137]. The sampling
rate is about 125 Hz due to the load on the PiBridge. This leads to about 5 ms update time
on the PiBridge for each AIO module connected, which is, however, sufficient for logging
of data each 0.5 s.

(b)

Figure 4.5 (a) Mold for production of the 15 mm dogbone specimens with sensors
installed; (b) RevPi used for the mold sensors data acquisition

Due to an error during the data acquisition during the experiment 4, data for the first run
of the 8™, 9™ 10" and 13" DOE combinations was not logged and, therefore, these
specimens were excluded from further analysis.
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4.3.2 Dimensions data collection

To obtain the dimensions measurements (width and thickness) of the specimens
coordinate measurement was performed. Zeiss DuraMax coordinate measurement
machine (CMM) was used for this purpose. The CMM has accuracy of +(2,7 +
L/250) um, where L is the measured value [138]. A stylus with three pins with 1,5 mm
diameter was assembled based on the expert’s recommendation from Zeiss. Due to the
low weight of the specimens, a special fixture, depicted in Figure 4.6, was designed to
assist in the measurement process and provide a stable fixation of the measured parts.

Figure 4.6. Fixture for coordinate measuring of the specimens

Width and thickness were measured in three points according to 1SO 16012:2015: Plastics
— Determination of linear dimensions of test specimens [142], as shown on Figure 4.7.
The specimens were measured in three points within the narrow section. The final values
of the dimensional features were calculated as a mean of the three corresponding
measurements. The specimens were always situated with the same side facing up. It is
easy to determine as the other side of the specimen includes injection molded marks for
understanding of whether it is the first or the second specimen produced during the same
run. In addition, the side that was connected to the runner was always on the right hand-
side, when facing the measured specimen, as on Figure 4.6.

4.3.3 Mechanical properties data collection

To collect the mechanical properties of the focus parts, tensile testing was performed
according to the 1SO 527-1 [54]. Instron 5960 universal system with 10 kN load cell and
a video extensometer were used to complete the tests. As it can be seen on Figure 4.6 the
specimen has two white dots on its narrow section. The dots were added manually using
an Instron stencil prior to the testing to assist the video extensometer’s work. The testing
speed was set to 1 mm/min until 0,25% strain and 15 mm/min after that according to the
expert’s from Instron recommendations. Due to an error on the extensometer, mechanical
properties data for specimens 4.3.2, 28.1.1, 29.3.1 (the first number indicates the batch
number, the second number the run number and the third number — the specimen number)
from experiment 3 was not obtained. Therefore, these samples are not included into the
dataset used for prediction of the mechanical properties of the produced parts.
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Point B

Figure 4.7. Points for measurement of width and thickness of the focus part

4.4 Data preprocessing and analysis

To conduct the necessary data analysis, prototyping and models development, Python 3
programming language and WEKA — WAIKATO Environment for Knowledge Analysis
[143] were used. WEKA was often applied to test different feature selection and ML
methods to see their relevance for solution of the tasks within the study. If the methods
appeared to be useful, they were then reapplied using Python and the necessary libraries
for execution of the algorithms of interest. Both WEKA and Python were chosen due to
being open-source, easy to use and supporting execution of various complex algorithms
through either a user-friendly interface (WEKA) or a “one-line” code manner (Python).
This allowed to concentrate on the tasks at hand and the necessary models development
rather than on programming the ML methods from scratch. Figure 4.8 shows the list of
the main Python libraries used within the study.

PySimpleGUI traceback SciPy
python-weka-wrapper ‘ matplotlib
pandas l numpy l csv l scikit-learn

Python 3

Figure 4.8. Python libraries used within the PhD study
The work with the collected data included the following main steps:

o Data preprocessing step is dedicated to collection of the obtained data of
different types into the .csv files that are convenient for further analysis, removal
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of outliers, erroneous (NaN, null) and redundant data and normalization. For these
operations pandas, numpy, csv, scikit-learn Python libraries were used. As a
results of this step general dataset files were created, as well as data series dataset
files. Table 4.5 shows the number of samples in different datasets. The sizes of
datasets used for creation of models for prediction of dimensional properties and
those of physical properties differ, as the physical properties ones have outliers
related to the target variable values removed. More details on these datasets will
be provided in Sections 4.4.1 and 4.4.2.

e Feature selection step was necessary to gain a better understanding of the
relationships between the process parameters and the target variables, as well as
to define which parameters contain more information about the quality variables
and are therefore to be included in the prediction models. Pearson correlation,
Spearman’s Rho correlation, Regressional ReliefF (RReliefF), CFS and RFE
methods were applied with help of the scikit-learn, python-weka-wrapper
Python libraries and WEKA.. The above-mentioned methods were selected since
some of them are better for analyzing the relations between the parameters and
others for understanding which parameters are more important to be included in
the prediction model.

e Data visualization is performed to achieve a better data understanding, illustrate
different data distributions and assist in detection of the outliers. Matplotlib,
PySimpleGUI, traceback libraries were used to create the relevant data graphs
and visualizations and display them in a convenient way (through a simple user
interface).

e Data analysis (processing) focused on application of the chosen ML methods to
create the models for prediction of the dimensions and mechanical properties of
the dogbone parts and optimize the process parameters. Scikit-learn, SciPy
libraries and WEKA were utilized to apply MLP, Decision Trees for regression,
AdaBoost Regressor, Gradient Boosting Regressor and Random Forrest. The
main reasons for choosing these methods were their suitability for solving the
regression tasks and ability to filter out the less important features (the last point
is valid for all the methods except for the MLP).

Table 4.5. Sizes of the obtained datasets

Dataset name Dataset size
Dimensions dataset Physical properties dataset

Experiment 1 general parallel dataset 160 142

Experiment 1 general sequential dataset 320 296

Experiment 2 general dataset 72 65

Experiment 3 general parallel dataset 101 84

Experiment 3 general sequential dataset 202 176

Experiment 4 general parallel dataset 98 83

Experiment 4 general sequential dataset 196 177

Parallel joined dataset 359 309

Sequential joined dataset 790 714

Experiment 1 cushion data series parallel 160 142
dataset

Experiment 2 cushion data series dataset 72 65

Experiment 2 mold pressure data series 72 65
dataset

Experiment 2 mold temperature data series 72 65

dataset
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Dataset name Dataset size
Experiment 2 screw position data series
72 65
dataset
Experiment 3 screw position data series
parallel dataset 101 84
Experiment 4 screw position data series
98 83
parallel dataset

4.4.1 General datasets preprocessing

To obtain high quality general datasets, the data needed to be cleaned and preprocessed
before its further use. At first, the process parameter data was transformed. During the
data collection process, data related to each production run was stored in a separate file
in form of a data series (the data was logged each 0.5 s during the cycle). However, it was
of interest to transform this data so that each parameter had one corresponding value per
cycle and to store it in one file per experiment. Since different injection molding
parameters logged from the IMM have different update frequencies and some of them
change often during the cycle, while the others do not change at all, various parameters
were treated differently. Some of them were averaged and the parameter name was then
changed to “Parameter name average”, while for those that did not change throughout
the whole cycle (but vary from cycle to cycle) the first value logged was taken. For the
parameters that change after the switchover point (change from the constant velocity to
the constant pressure control), the value after the switchover was taken. More details on
how different parameters were treated can be found in Appendix B.

Secondly, since there were three different data collection stages (parameter data
collection, dimensions data collection and mechanical properties data collection) the data
from the coordinate measurement and tensile testing was added to the IM process data.
The list of the quality parameters that are the models’ outputs can be seen in Table 4.6.
The parameters columns in the .csv files were given meaningful names and it was checked
that the names of the columns are the same in all the files corresponding to the different
experiments.

As a third step of the data preprocessing, samples with missing data were removed. The
samples that had NaN or null values were eliminated from the datasets. As mentioned
before, such samples were samples of the first run of the 8™ (8.1.1, 8.1.2), 9" (9.1.1,
9.1.2), 10" (10.1.1 and 10.1.2) and 13" (13.1.1 and 13.1.2) DOE combinations in the
experiment 4 (due to a data acquisition error). In addition, redundant features were
removed. Their redundancy was based on opinion of a human expert that looked through
the list of the logged process parameters.

Table 4.6. Model outputs (quality characteristics of interest)

Model outputs/ quality characteristics
Width
Thickness
Young’s modulus
Tensile strength
Tensile strain at Break
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The fourth step was dedicated to the elimination of the outliers. The fifth step included
feature selection, while during the last step, data normalization was performed. The data
in the datasets were transformed using z-score method to obtain data with zero mean and
unit variance. This part of the data preprocessing is depicted in Figure 4.9 (a). As a result
of this preprocessing seven datasets and corresponding to them .csv files were obtained
and made ready for further analysis.

Since in the experiments 1, 3-4 two specimens were produced at the same time, while one
was manufactured during the experiment 2, two datasets were created for the experiments
1, 3-4 and one for the experiment 2. Two datasets for the experiments 1, 3-4 differ in the
way the quality characteristics data is added. In one of the files the number of the samples
is doubled, and each sample is presented as such that has the target values for only one of
the produced specimens. Excerpt of such dataset is shown in Table 4.7, where in the
“Code” column the first number indicates the used DOE combination, the second number
shows for which time was the combination launched, and the third number the number of
specimen produced during the same run. In the second file, however, each sample
includes data for quality characteristics of both specimens.

Table 4.7. Example of the dataset for experiment 1

Code Screw_speed_ma | Spec_pres_switcho | Modulus Tensile Tensile strain Thickness | Width
X v Young’s strength at Break
111 239.18 1058.69 944.00 26.10 22.73 3.77 9.84
112 239.18 1058.69 982.27 26.43 25.38 3.78 9.88
121 239.40 1059.35 1091.88 26.49 23.37 3.76 9.80
1.2.2 239.40 1059.35 1020.72 26.80 26.06 3.76 9.82
131 239.52 1059.62 1045.96 26.79 25.82 3.77 9.82
132 239.52 1059.62 1038.91 26.26 22.82 3.76 9.86
141 239.16 1059.09 1006.58 26.89 25.26 3.77 9.79
142 239.16 1059.09 938.96 26.57 20.67 3.76 9.81

4.4.2 Data series datasets preprocessing

In addition to the general datasets, data series datasets were also created. This was done
to analyze complete sensor data profiles for material cushion in experiment 1, screw
position, material cushion, mold pressure and mold temperature in experiment 2, screw
position in experiments 3 and 4 (depending on the available parameters logged during the
experiments). Information on which parameters were logged during each experiment is
provided in Appendix B. The obtained datasets include transposed value vectors for the
parameter of interest and the corresponding quality characteristics. This way the sensor
measurements each 0.5 s become the model’s input features or parameters, while the
quality characteristics are the models’ outputs or targets. Only parallel data series datasets
were created. As a result, the datasets for experiments 1, 3-4 include quality data for both
specimens produced during one cycle in the same data sample.
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Figure 4.9. The process of the datasets creation: (a) general dataset, (b) data series
dataset

To obtain these files, at first, the data series of the parameter of interest for each
production cycle within the experiment were collected in one file. Due to the different
cycle times for production of parts with the various DOE combinations, those data series
were of different length. As a second step, to be able to work with this data, the data series
that were shorter than the longest one were extended with zeros (padding technique), so
that all the parameter vectors had the same length. Next, the obtained vectors were
transposed, so that a value of the parameter each 0.5 s becomes a separate model input
parameter. As a last step, the quality characteristics data was added to complete the data
series dataset files. Figure 4.9 (b) shows a graphical representation of this process.

4.4.3 Data integration

In addition to the above-described datasets, a dataset that included data from 1, 3 and 4
experiments (parallel joined dataset) and a dataset that included data from all the
experiments (sequential joined dataset) were also created. The parallel joined dataset
includes data only from the machine runs where two dogbones were produced
simultaneously. Since the previous datasets do not have any information on the material
used in the experiment, a new column with the material type was added in this dataset.
As it was mentioned, not all the specimens within the same experiment were produced in
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one day. As a result, different codes were used to indicate that, even though the material
type and batch were the same within one experiment, some of the material properties
might have been influenced by the temperature and humidity in the storage room. For the
experiment 1 M1.1, M1.2 and M1.3 were used to indicate that the samples were produced
in three different days. For the experiment 2 M1.4, M1.5 and M1.6 was used following
the same logics (since in both experiments 1 and 2 virgin HDPE from the same supplier
was used), for the experiment 3 M2 was used, while for the experiment 4 — M3. Table 4.8
shows which material codes correspond to which experiments.

In addition, a column indicating the part type (dogbone specimen with 4 mm and 15 mm
thickness) was also added. Number 1 corresponds to the 4 mm thick specimen, and 2 to
the 15 mm thick specimen. All the above described datasets were then used for creation
of the quality characteristics prediction models using the following ML methods: MLP,
Decision Trees for regression, AdaBoost Regressor, Gradient Boosting Regressor,
Random Forrest.

Table 4.8. Material codes for different experiments

Experiment number Material code
1 M1.1, M1.2, M1.3
2 M1.4, M1.5, M1.6
3 M2
4 M3

4.5 Validation and verification of the results

The results of this work include predictive models, prototypes of the modules of the
intelligent system for thermoplastics injection molding and a framework for development
of this system. Therefore, validation and verification are needed. Validation is directed
towards the obtained predictive models, while verification is considered the process of
designing the framework for the intelligent system and its modules. The predictive
models, at the same time, are parts of those modules.

The models’ validation process consists of two main stages. The first stage is dedicated
to application of five folds cross-validation during the models training. This helps to
prevent overfitting and to create a model that is capable of generalizing on the data, rather
than remembering the training set data samples. At the same time, the generalization
abilities of the proposed models remain questionable, as more data from injection
molding of parts with various shapes and materials is needed to create a model with
greater generalization abilities.

The second step includes use of a testing dataset for testing the models’ quality on
previously unseen data. These datasets include samples that have not been used during
the model training and are therefore new for the models. The resulting models’ quality
measures values (R?, square root mean error or RMSE and correlation coefficient for the
actual and predicted target variable values) are used to make decisions on the usefulness
of the models and decide which of them should be used in the future work and developed
further.

56



Chapter 5

Systems engineering for designing an intelligent control system
for thermoplastics injection molding

Your best and wisest refuge from all troubles is in your science.
— Ada Lovelace

This chapter describes application of the model-based systems engineering for
development of the intelligent control system for thermoplastics injection molding and
can be used as a framework for creation of similar systems, it also partially answers the
RQ4. In order to develop the system, it is necessary to have a good understanding of what
are the functions of the system, the context in which it will be used, which modules should
the system consist of and how they are connected to each other.

MBSE includes four main stages shown on Figure 5.1. The following sections cover
requirements analysis stage in more details, while the rest of the stages are briefly
covered. Before the requirements analysis, identification of the system’s stakeholders and
their needs is also presented.

Input from
previous layer

L.-w mp»

Figure 5.1. Model-based systems engineering process adopted from [141]

5.1 Identification of the system’s stakeholders and their needs

According to a systems engineering framework called SPADE [144], the first stage of
any system development process is identification of the system’s stakeholders and their
needs. Different types of stakeholders can be distinguished based on their attributes such
as power, urgency and legitimacy [145]. In this study stakeholders are differentiated
according to their needs and the level of their project involvement: primary — those that
are directly involved, can influence the decision-making process and will be influenced
by the project outcomes in the first place, secondary — those that might be influenced by
the project outcomes later or by implication. Table 5.1 depicts primary and secondary
stakeholders and lists their needs.

Table 5.1. Stakeholders and their needs

Stakeholders Involvement Needs

NTNU Primary . New knowledge

Increased process understanding
Systematic research

Publication and dissemination
Successful project completion
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Stakeholders Involvement Needs

. New funding

PhD candidate evaluation

New knowledge

Increased process understanding

Systematic research

Publication and dissemination

Successful project completion

New funding

Increased process understanding

Adoption of ML methods

High quality products

Cost minimization

Reduction of the negative environmental impact
Guidelines

Increased competitiveness due to use of recycled
materials and closed loop manufacturing implementation

SINTEF Primary

Manufacturing  companies involved | Primary
(Plasto AS, PipeLife Norge AS and
AKVA Group ASA) and not involved in
the project

The Norwegian Research Council Secondary . International recognition of Norwegian research
. Stimulation of international research and cooperation
between private companies and academia
. Benefits obtained by the project participants
. Successful completion of the project
Standards/Regulations Secondary . Systematic research
Environment, community, society Secondary . Reduction of the negative environmental impact

This PhD is part of the MegaMould project, therefore, all the project participants are
stakeholders of the system under development. Their main interests differ due to NTNU
and SINTEF having more research-oriented focus, while Plasto AS, PipeLife Norge AS
and AKVA Group ASA being interested in business perspectives and increased efficiency
of their production process.

The Norwegian Research Council is also a stakeholder due to providing the funding for
this project. At the same time, other injection molding companies, as well as companies
that produce IMMs not involved in the MegaMould are stakeholders that can gain
additional process knowledge and guidelines on how the IM process can become more
intelligent and efficient. Organizations working on the standards and regulations related
to the injection molding process can also benefit from the systematic research conducted
during the project. In addition, implementation of similar systems can benefit
environment, community and society by reducing the negative environmental impact
through increasing the production process efficiency and decreasing the amount of
produced scrap.

Figure 5.2 depicts a context model for the intelligent control system for thermoplastics
injection molding. Here suppliers provide materials to the manufacturing companies that
use the system and the companies provide ready products to their customers. The
intelligent control system is used by NTNU, SINTEF, as well as the manufacturing
companies. NTNU, SINTEF and the companies provide the system with the necessary
data and requirements for development and improvement. The system, in its turn, creates
internal reports for NTNU, SINTEF and the manufacturing companies, as well as the
relevant information and knowledge that helps to improve the research and production
process. In addition, the system is also capable of providing external reports that might
be useful for development of the new standards, utilized within other governmental
institutions and by competitors.
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Figure 5.2. Context diagram for the intelligent control system for thermoplastics
injection molding

5.2 Requirements analysis

In addition to identifying the stakeholders’ needs, it is also necessary to conduct the
requirements analysis, which is the first stage of the model-based systems engineering. It
will allow to identify different aspects of the future system and give a better understanding
of how the system should be created and which elements it needs to include. Setting clear
requirements for a system, might also help to reach compromise between the system’s
stakeholders.

To conduct the requirements analysis the stakeholders need to be involved. Since this
PhD work is part of the MegaMould project, the project description was analyzed, and
the requirements of different stakeholders were identified. This way it is possible to
consider the interests of the stakeholders and define what they expect to obtain in the end.
To further understand how the various requirements can be incorporated into the
intelligent control system for thermoplastics injection molding, the top-down MBSE
principle is applied. This way the system is planned in layers, starting from a more general
one and descending to the ones describing the system in more details.

5.2.1 Layer 1. General understanding of the system

On the first layer, three main components are included: the system users (customers,
machine operators, scientists, etc.), the system itself and the production floor (injection
molding machine(s)). Figure 5.3 depicts these connections. The users should be able to
interact with the system and the system should be able to respond them through the
interface and generated reports. The system should also be capable of doing the necessary
analysis based on the user’s request and the data obtained from the production floor. So,
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communication between the system and the production floor is also essential, as the
system obtains the necessary data from the IMMs, while the IMMs receive the solution
produced by the intelligent system. As a result, the following functional requirements to
the system can be identified:

e Accept the user input (IMM parameter values, quality data, report request, etc.);

e Analyze the user input;

e Obtain the data from the IMM(s) and additionally installed sensors (e.g. mold
Sensors);

¢ React to the user input (conduct prediction of the part quality, optimize the IMM
parameter values, generate a report, etc.);

e Save the results;

e Send the results to the IMM(S) (e.g. optimized parameter values);

e Provide the result of the user input to the user (generate a report, display through
the interface, etc.);

e Accept the user feedback.

Intelligent Control
systemifor Production
Thermoplastics

floor (IMMs)
m Injection Molding Solution

Desired quality injection molded parts

Feedback Data

Users

Figure 5.3. The intelligent control system for thermoplastics injection molding

5.2.2 Layer 2. Description of the main components of the system

After gaining the general understanding of the system’s functionality, it is necessary to
explain which components it needs to include to be able to meet the functional
requirements. In this case, interface, database, application programming interface or API
for communication with the IMMs and the calculation core are the most important
components. The interface is needed to communicate between the user and the system:
accept the user inputs, display and obtain the system’s outputs. APl is used to establish
communication between the system and the IMMs, obtain the IM process parameter
values and store them in the database. The database should be capable of storing the data
that is entered by a user, uploaded as a file by a user, logged through the API from the
injection molding machine, as well as save the data and models received as a result of the
calculation core work. The calculation core needs to have access to the data stored in the
database and to be able to process and analyze this data to create and update the quality
prediction models, conduct optimization, as well as to make predictions using the models.
Schematic representation of the system components and their connections is presented on
Figure 5.4.
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Figure 5.4. The main system components

Functional requirements to the system’s interface are listed below:

Should have an option of process or quality data file upload,;

Should have an option of manual parameter values input;

Should have fields for entering the type of the IMM, material in use and a task to
be solved (prediction of quality features, creation of a model, optimization, etc.);
Should be able to output the task solutions in a meaningful way through the
interface or as a downloadable report.

5.2.3 Layer 3. Description of the API and the database system components

In order to be able to analyze the injection molding process data, an API for connection
with the IMM needs to be created. In this work, an API developed in collaboration with
SINTEF Manufacturing AS was used and more details about it can be found in [17]. The
API is the main component responsible for connection with the injection molding
machines, obtaining IMM and additional sensors data and setting new parameter values
based on the computation results, when needed. The API has the following functional
requirements that are partly reflected on Figure 5.4:

Establish connection with IMM(s);

Obtain and process the IMM/ additional sensors data request;

Send a request and obtain the requested data from the IMM(s)/ mold sensors;
Send the requested data to the database;

Obtain the calculation results (e.g. optimized parameter values) from the
computation core;

Set the parameter values on the IMM based on the calculation results.

To guarantee the correct and efficient work of the intelligent system, a proper database
solution needs to be created and integrated into the system. The database should be
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flexible so that the necessary changes can be easily incorporated into it, as well as fast to
return the requested data in feasible time. Unfortunately, due to the project’s time
restrictions, the database development is out of scope for this study. However, a brief
description of the data types that are to be stored in the database are provided in Figure
5.5. The functional requirements to the database are as follows:

e Receive and store data from various sources (user input data, files uploaded by a
user, IMM process data);

e Store data in a structured way;
e Retrieve and provide data upon request from the other parts of the system.

Quality
requirements
Intelligent System for Thermoplastics IM
User input
Computation
i API| Database |:> Core Calculation result
sensor data
Dimensional

data

Mechanical
properties

Figure 5.5. The main data types stored in the system’s database
5.2.4 Layer 4. Description of the system’s computation core

Development of the computation core is the main focus of this PhD work. This module
is the one conducting all the necessary calculations to predict the quality of the produced
injection molded parts, as well as performing the optimization of the relevant process
parameters. The prediction module should be capable of predicting the dimensional
properties of manufactured parts, their mechanical properties, as well as their
combination using different datasets. The optimization module, on the other hand, should
provide optimization of the IM process parameters to obtain the required quality of the
parts. As a result, the following functional requirements can be identified for this module:

e CC1-Predict dimensions of the produced parts based on the general datasets with
the process parameter values;

e (CC2 — Predict mechanical properties of the produced parts based on the general
datasets with the process parameter values;

e CC3 - Conduct the model’s backpropagation to identify the necessary process
parameters based on the part quality requirements;
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e CC4 — Predict dimensions of the produced parts based on the data series data of
the process parameter values;

e CC5-Predict mechanical properties of the produced parts based on the data series
data of the process parameter values;

e CC6 — Predict dimensional deviations of the produced parts based on the general
datasets with the process parameter values;

e CC7 — Conduct optimization of the process parameters to obtain the target parts
quality.

Due to the time restrictions of the project, the prototypes of modules CC1, CC2, CC4 —
CC6 were developed. To do this, procedures schematically visualized on Figures 5.6 and
5.7 were performed. The main stages of the procedures are described in more details in
Chapter 4 and include data collection, data preprocessing and data processing. The
procedure shown on Figure 5.6 was used for creation and processing of the general
datasets, described in Section 4.4.1 and 4.4.3, while procedure on Figure 5.7 for dealing
with data series datasets, presented in detail in Section 4.4.2. The results obtained during
the modules prototyping are presented in Chapters 6-10.

Data collection and corresponding file formats

IMM, mold
Sensors

l Coordinate measurement machine 1 l Tensile testing 1
pﬂ A

Data preprocessing and feature selection Mzseeery ok
transformations

Train/test data Feature Data il ! Elimination of
set split selection normalization s missing data

‘ ML methods for data processing ‘

\ ——————
Gradient Decision Random Grid Search
Boost Trees Forest

Data processing, models creation, optimization

‘ MLP ANN ‘ ‘ kNN ‘ ‘ AdaBoost

Figure 5.6. Procedure/ data pipeline used for data processing and models creation of the
general datasets
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5.3 Functional behavior analysis

The second stage of the model-based systems engineering process is necessary to describe
the system’s behavior based on the requirements defined in the previous step. System
requirements form a basis for one or more behaviors, and one behavior corresponds to
one or more requirements. In other words, this stage helps to understand and plan the
logics of the system under development.

Within the proposed intelligent control system, the user is able to choose from two main
options “work with data” (download, view, modify, upload, etc.) or “conduct the
necessary calculations” (feature selection, model training, prediction, optimization, etc.).
After selecting the option of interest, the user needs to confirm it and move to the next
step.

On the next step the system either interacts with the data available in the database or
acquired from the IMM(s) and mold sensors (selects the necessary data, uploads new data,
contacts IMM to acquire requested by the user data, etc.) or makes chosen by user
calculation (prediction of quality characteristics, optimization of the IM process
parameters, model training, etc.). After this, the system shows result of its work to the
user. If user wants to continue working in the system, he/ she confirms it and is then
returned to the first page to make a new request. All the steps are repeated as many times
as the user needs.

5.4 Architectural synthesis

After defining requirements to the system and understanding its logics, the third stage is
carried out to plan and develop its physical structure. Here it is necessary to analyze if the
proposed system is manufacturable, maintainable and supportable, as well as how to
develop it so that it is such. It is important to remember that even though architecture
might show elements of a system as separate entities, all of them need to be considered
as a whole through adding connections between them.

Due to the time constraints of the presented PhD work, architectural synthesis has not
been fully carried out. However, the Figures 5.2 — 5.7 are to be used as guidelines and a
starting point for this step.
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Data collection and corresponding file formats
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Figure 5.7. Procedure/ data pipeline used for data processing and models creation of the
data series datasets

5.5 Validation and verification

Verification and validation are the last step of the MBSE approach. It is very important
for successful project completion and needs to be considered on each step of design and
development process. Verification is a process that ensures that the proposed system is
correctly developed and complies with the necessary regulations and conditions.
Validation, on the other hand, is used to define if the system satisfies the needs that have
initiated the project [141].

In this work, visualization of the system’s components and their connections helped to
verify that all the necessary functional requirements are described for each part of the
system. At the same time, validation was carried out through analysis of the MegaMould
project description and the corresponding stakeholders’ needs covered there.
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Chapter 6

Module CC1 - Prediction of dimensions of the produced parts
based on the general datasets

All models are wrong, but some are useful.
— George E. P. Box

This chapter describes development of the predictive models for dimensions of the
produced parts using the general datasets described in Section 4.4.1. At first, the quality
data used as the models’ target value is presented. Secondly, data preprocessing and
feature selection of the most important parameters to be included in the models are
described. Finally, the predictive models obtained using different ML methods are
presented and compared.

6.1 Data exploration

To be able to create predictive models of high quality, the data used for their training also
needs to be of the corresponding quality. Therefore, different data preprocessing
techniques are applied. However, before this step data exploration can be conducted in
order to gain an increased understanding of the data at hand. Designs of experiments used
in this work were created in a way that would cover as much of the parameters’ values
hyperspace as possible and result in production of parts with various quality
characteristics.

At the same time, when manufacturing parts in the real industrial environment, the
products need to have the best quality possible and comply with certain tolerance
specifications. Therefore, the quality data obtained during the experiments is divided into
different groups depending on the measured deviations of width and thickness of the
dogbones. However, due to the chosen design of experiments the quality characteristics
values might significantly vary. The groups are based on DIN 16742:2013 Plastic
mouldings: tolerances and acceptance conditions standard [146] and are presented in
Table 6.1.

Table 6.1. Measured deviation groups based on DIN 16742:2013 [146]

Measured deviation groups 3-6 mm 6-30 mm 30-120 mm
fine +0.05 +0.1 +0.15
medium +0.1 +0.2 +0.3
coarse +0.2 +0.5 +0.6
very coarse +0.5 +1 +15

6.1.1 Width measurements

The nominal size of the width in the narrow section for the specimens produced in all
four experiments (798 specimens in total) is 10 mm. The produced specimens were
measured in three different points in the narrow section and the measured values were
averaged to obtain the specimen’s width. The used designs of experiments resulted in the
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width values distribution shown on Figure 6.1 (a)-(d) for experiments 1-4
correspondingly. Table 6.2 shows the number of specimens from each of the experiments
that belong to different measured deviation groups based on DIN 16742:2013 standard.
In case of experiments 1, 3 and 4 more than half of the specimens belong to fine and
medium groups despite variation of the parameters in the DOE. However, a significant
number of the specimens do not meet requirements for the fine group. All the specimens
in experiment 2, on the other hand, belong to very coarse group. One of the main reasons
for this is the part’s thickness of 15 mm in comparison to 4 mm thickness in experiments
1, 3-4. According to some studies the specimen’s walls thickness and width significantly
affect the parts shrinkage, the thicker is a part’s wall — the bigger is shrinkage [147]. In
addition, for semi-crystalline materials, such as HDPE, the anisotropy effects are larger and
vary along the flow path [148].

Table 6.3 contains the maximum, minimum, average and standard deviation values of the
width dimension measurements obtained during the experiments. The specimens
produced in experiments 1, 3-4 have a significantly higher maximum value in comparison
to the dogbones from the experiment 2, one of the reasons for this is the parts’ thickness
of 4 and 15 mm in the different experiments. Experiment 4 also has the highest minimum
value, this might be due to the difference in the used material, as the virgin HDPE was
used in the first two experiments, while two different types of recycled HDPE were used
in experiments 3 and 4. The highest average is obtained in experiment 4, while the lowest
one in experiment 2. Experiment 2, on the other hand, has the lowest variation, while the
highest one is in experiment 3.

Table 6.2. Number of specimens in measured deviation groups based on the width
measurements

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Fine 49 0 63 114
Medium 129 0 57 48
Coarse 89 0 31 12
Very coarse 53 72 51 30

Table 6.3. Maximum and minimum values of width dimension, experiments 1-4

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Minimum width, mm 8.84 8.74 8.9 9.14
Maximum width, mm 9.96 9.22 9.95 9.98
Average, mm 9.71 9.12 9.68 9.81
Standard deviation, mm 0.25 0.11 0.3 0.22
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Figure 6.1. Distribution of measured width values for experiments 1-4

To further visualize the data shown in Table 6.3, Figure 6.2 depicts the kernel density
estimation distributions for all four experiments and the corresponding measurements,
where width’s nominal value, average and standard deviation are also presented.

Figure 6.3 depicts distributions based on kernel density estimation (KDE) for each
experiment in general and for different measured deviation groups. As it can be seen from
Figure 6.3 (e), the width values within the very coarse group for experiment 2 have a
smaller range than those from experiments 1, 3-4 within the same group. Figure 6.4
demonstrates KDE for specimens 1 and 2 separately for experiments 1, 3 and 4 only, as
just one specimen was produced per run in the experiment 2.

As it can be seen from Figure 6.3 (a) the width measurements follow left-skewed
distributions that have one “major” and one “minor” peaks for experiments 1, 3 and 4.
The experiment 2 distribution has two “minor” peaks and one “major”. The presence of
more than one peak signals about existence of two or more (in case of experiment 2)
groups of specimens with different modes. In addition, it shows that the presented
distribution might be a sum of several distributions or processes. The “minor” peaks for
all four experiments are, however, significantly smaller than the “major” ones.
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When we further observe Figure 6.3 (b)-(e) and Figure 6.4 the distribution for the width
measurements for experiment 3 for fine, medium and coarse groups is bimodal for
specimens 1 and 2. The values from experiment 4 for both specimens show bimodal
behavior for medium, coarse and very coarse groups, at the same time, distributions are
closer to normal for the fine measured deviation group. When it comes to experiment 1,
the values for medium group for both specimens and for very coarse group for the
specimen 2 are bimodal.
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Figure 6.2. Kernel Density Estimation for width measurements, experiments 1-4 with
mean and standard deviation

Some of these variations appear due to the used design of experiments that varied
different production parameters. For example, it has been reported that low mold
temperature reduces shrinkage and affects it in directions transversal and longitudinal to
flow [147, 149]. Higher injection pressure is stated to decrease shrinkage [150], higher
injection speed, at the same time increases it [151]. In addition, barrel temperature
controls the melt temperature and, therefore, influences the replication ability of the
process [152]. Based on the obtained experimental data, as shown on Figure 6.5 the higher
holding pressure results in the higher values of the produced specimen’s width. Figures
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that show relationships between the rest of the varied DOE parameters and the specimen’s
width can be found in Appendix C, however, they do not seem to provide information as
easy to interpret as in case of the holding pressure parameter.
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In addition, the properties of used materials play an important role, as virgin and two
types of recycled HDPE were used in different experiments. The produced part’s wall
thickness is also an important factor, as the thicker are the walls, the bigger shrinkage
occurs [147]. Therefore, the parts with 15 mm thickness produced in experiment 2 are
outside of fine and medium measured deviation groups. When it comes to the differences
between the specimens 1 and 2 produced during the same machine runs, the reasons for
their occurrence can be uneven temperature distribution of the mold surface and the semi-
crystalline nature of HDPE that leads to uneven shrinkage along and across the plastic
melt flow.
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Figure 6.5. Relationship between the specimen’s width and holding pressure DOE
parameter

6.1.2 Thickness measurements

The nominal thickness size of produced dogbone parts is 4 mm for experiments 1, 3-4
and 15 mm for experiment 2. Similarly to the width values, the thickness of the specimens
was measured in three different points spread along the narrow section of the produced
part and averaged to obtain the final thickness value. Table 6.4 shows the number of
specimens that belong to different measured deviation groups, while Table 6.5 includes
range for the obtained thickness measurements for each of the experiments, as well as
average and standard deviation values. As it is shown in Table 6.4, no specimens in all

72



four experiments fall into the fine and medium groups. For experiment 2 all the doghbones
belong to the coarse group, while for experiment 3 to very coarse. Experiment 4 has most
of the specimens in the very coarse measured deviation group with only 6 in the coarse
group. According to Amaranan and Manonukul [153] such behavior might be result of
significant difference between the thickness and width nominal values. Figure 6.6 depicts
distribution of the obtained thickness measurements for experiments 1-4.

Table 6.4. Number of specimens in measured deviation groups based on the thickness
measurements

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Fine 0 0 0 0
Medium 0 0 0 0
Coarse 84 72 0 6
Very coarse 236 0 202 198

Table 6.5. Maximum and minimum values of thickness dimension, experiments 1-4
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To increase understanding of the data presented in Table 6.5, Figure 6.7 depicts the kernel
density estimation distributions for all four experiments and the corresponding
measurements, where thickness’ nominal value, average and standard deviation are also
shown.
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Figure 6.7. Kernel Density Estimation for thickness measurements, experiments 1-4
with mean and standard deviation

Figure 6.8 shows the corresponding KDEs for coarse and very coarse groups for
specimens number 1 and 2 for experiments 1, 3-4. The experiment 2 data is not plotted
on this figure, as all the width measurements from this experiment belong to the same
group and their KDE can be seen on Figure 6.7 (b). Figures 6.8 (a)-(b) depict only
experiment 1 data, as there are no width measurements that belong to this group in
experiment 3, while experiment 4 has only 3 measurements per specimen 1 and 2 in this
group, which is not enough to create a meaningful KDE.

As it can be seen from Figure 6.8, the measurements for experiments 1 and 4 have 2
“minor” and one “major” peak. For experiment 2 only one “major’ peak is
distinguishable, while for experiment 3 one “minor” and one “major” peaks are visible.
Similarly to the width measurements this indicates possibility of having separate groups
of produced specimens with different modes and presence of several separate
distributions or processes. The differences between the specimens 1 and 2 for experiment
1, 3 and 4 are rather small for the very coarse measured deviation group, while for
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experiment 1 and the coarse group they differ more. The reasons for these observations
include material differences, crystallization features of the semi-crystalline materials, as
well as variations of the parameters included into the corresponding DOEs. Relationship
between the thickness and the holding pressure DOE parameter is shown on Figure 6.9,
behavior similar to the one on Figure 6.5 for the specimen’s width is visible: the higher
holding pressure is used, the higher thickness is obtained. Figures showing relationships
between the rest of the DOE parameters and the thickness can be seen in Appendix C.
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Figure 6.9. Relationship between the specimen’s thickness and holding pressure DOE
parameter

6.2 Data preprocessing

After conducting data exploration of the width and thickness measurements, the
experimental work continued with the data preprocessing step. This step included analysis
of the obtained process parameters and removal of missing data, parameters irrelevant for
the further steps or the ones that did not change their values throughout the experimental
runs.

The samples of the first run of DOE combinations number 8, 9, 10 and 13 from
experiment 4 were removed, as there was no parameter data logged during them due to a
data acquisition system error. Tables 6.6 and 6.7 include the names of “irrelevant” and
constant parameters that were removed from the datasets. Explanation of the meaning of
the parameters present in the tables can be found in Appendix B. The “irrelevant”
parameters are such for the predictive models of interest, however, could be potentially
useful when developing a model for the IMM maintenance schedule, for example,
machine date, machine time and shotcounter. The constant parameters could also have
been eliminated during the feature selection process, however, it was of interest to identify
which of the logged parameters had constant values to know that they did not vary due to
the DOE design or the general machine settings. The “x” symbol in each of the columns
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in Tables 6.6 and 6.7 indicates that the specified parameter values were logged during the
experiment, if the symbol is absent — this parameter is not present in the corresponding
experiment dataset.

Table 6.6. Irrelevant parameters that were removed from the data for experiments 1-4

Experiment 1 Experiment 2 Experiment 3 Experiment 4

Good parts X X X X
Machine_date X X X X
Machine_time X X X X
Machine_time_copy X

Bad parts X X X X
Shotcounter X X X X
Parts_count X X X X
timestamp_imm_machine_last X X

Table 6.7. Parameters with constant values throughout the experimental runs

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Injection_time_set_max X X
Injection_time_set_min X
Ejector_pos_set_max
Decomp_after_plast_vol
Waiting_del

Shot_vol
Cushion_smallest_set_max
Switchover_time
Ejector_pos_set_min
Plastic_time_set_max
Plastic_time_set_min
Cushion_ideal

Flow_n

Plastic_delay_time_set
Inject_pres_limit
Current_station

Heating_cyll z1 set
Max_injection_speed_from_graph
Clamp_force_relief_time
Flow_number_set
Flow_number_act
Hold_pressure_correction
Specific_pressure_switchover_set
Shot_volume_end_corrected
Heating_cyll z3 set
Fixed_plate_tooll_temp_z9
Fixed_plate_tool2_temp z10
Core_movement
Demoduling_time
Start_flow_number_meas_trigger
Stop_flow_number_meas_trigger
Purging_time

Decompres_end

Flush_time

x

XX [X [Xx
x
x

XXX XXX XXX [X[X XX [X | X

XXX XX [X[X[X [X[X|x

XX XX | X [X [Xx
XXX X [X [X [X

There were no outliers identified for the width and thickness data, therefore, no samples
were removed due to this during this step. Later feature selection was conducted
separately for width and thickness as target variables, it is described in more details in
Section 6.3. As the last data preprocessing step, the data was normalized using z-score
normalization technique.
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6.3 Feature selection

Research related to the parameters that influence the injection molded parts quality is
ongoing, as depending on the properties of material in use, part’s geometry and other
environmental factors, they might vary [79]. In addition, when developing machine
learning models such issues as dimensionality reduction, overfitting and long training
time need to be addressed. There are various approaches that can be used in order to do
this, and one of them is feature selection. Selection of the most influential parameters or
features can assist the injection molding practitioners to identify which process
parameters to pay attention to, as well as to create better predictive models with shorter
training time through elimination of irrelevant and redundant features.

This section presents how the different feature selection methods described in Chapter 3,
Section 3.3 were tested with the obtained experimental data in order to select features to
be included in the width and thickness prediction models.

6.3.1 Width target variable

Separate experiments datasets

To select parameters/ features that are the most relevant for predicting value of the width
target variable, five different feature selection methods are compared based on the data
from experiment 1. Pearson’s correlation shows the level of linear correlation, while
Spearman’s represents the non-linear correlation. RReliefF assesses how well a feature
can distinguish between the dataset instances whose values are close to each other.
Correlation-based feature selection or CFS looks for features subsets that have high
correlation with the predicted variable and no or low correlation with each other.
Recursive features elimination or RFE recursively removes the features and builds a
model including the remaining ones, the model used in this case is linear regression. The
methods are described in more details in Section 3.3.

The reason for trying different feature selection methods is that there is no “rule of thumb”
for choosing the most suitable feature selection method for a concrete problem. Therefore,
the only way of selecting a method that fits best is to try different methods and compare
the results. The selected methods use different measures to assess the features and can
result in giving high scores to features that significantly vary from method to method.
Tables 6.8, 6.9 and 6.10 show the scores, normalized between 0 and 1, that different
feature selection methods give to the evaluated features, the “Mean” column includes the
averaged methods’ scores, the target variable in Table 6.8 is widthl, in Table 6.9 —
width2, while in Table 6.10 — width from the sequential dataset that includes both widthl
and 2 in a sequence. Width1 target variable is the width of the first specimen produced
during experiments 1, 3-4, while width2 focus variable is the width of the second
specimen. Width target variable without a number includes widthl and width2 in a
sequence, where the parameter values are repeated if the specimens were produced during
the same run. The features are sorted from high to low based on the mean score value. To
assess the methods’ performance a multilayer perceptron model with the following
hyperparameters was trained using scikit-learn Python library:
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model = MLPRegressor(solver = 'lbfgs', activation = 'logistic',
alpha = 1le-5, learning_rate_init = 0.3, hidden_layer_sizes = 5,
random_state = 2, momentum = 0.2);

To train the MLP model, the experiment 1 dataset was divided into 70% training and 30%
testing subsets. The model was then trained on the training dataset using 5-folds cross-
validation and tested on the testing one. Random state for dataset partitioning was set to
1. The MLP models were not tuned in this case and only the above specified model
hyperparameter values were utilized.

For each of the different feature selection methods the features with scores higher than
0.2 were used to train the corresponding MLP models. The only exception is the
“Cooling_time” parameter, which has a relatively high score, but has not been included
in the models, as “Cooling_time” (set value) and “Cooling_time last” (actual value) are
correlated between each other. It was decided to include the actual value rather than the
set one. Tables 6.8, 6.9 and 6.10 include the coefficient of determination R? score, RMSE
for the trained models and correlation coefficient value for the real and predicted target
variable value. An MLP model trained on the full feature set for the parallel dataset and
widthl target variable (width of the first out of two specimens produced simultaneously)
has R? = 0.41, RMSE = 0.13 and correlation coefficient of 0.81.

Table 6.8 shows that the same parameters can have high and low scores, depending on
the feature selection method in use. The scoring makes sense from the injection molding
process point of view, as parameters related to the cushion value, holding pressure,
holding pressure time and cooling time receive high scores. Plasticizing time, closing
force, clamping force at switchover, maximum speed, screw speed, last ejector position
and switchover volume are some of the parameters with the lowest scores from all the FS
methods for widthl. It can be seen that application of all the feature selection methods
except for CFS increase the MLP model quality, in case of RRelifF from R? equal to 0.41
to 0.84, decrease the RMSE from 0.13 to 0.007 and increase the correlation coefficient
from 0.81 to 0.92.

Table 6.8. Feature selection for experiment 1 width1 target variable, parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS RReliefF | Mean
1. Cushion_after_hold_pres 1 0.17 0.98 1 0.67 0.76
2. Holding_pressure 1 0.67 1 0 0.49 0.63
3. Cushion_average 0.78 0.25 0.9 0 0.56 0.50
4. Cushion_smallest 0.84 0.21 0.92 0 0.48 0.49
5. Injection_work 0.24 0.71 0.38 1 0.06 0.48
6. Screw_speed_max 0.15 0.79 0.13 0 0.85 0.38
7. Spec_pres_switchov 0.13 0.96 0.22 0 0.58 0.38
8. Cooling_time_last 0.27 0.54 0.36 0 0.72 0.38
9. | Cooling_time 031 05 0.39 0 0.60 0.36
10. | Injection_Speed 0.22 0.92 0.22 0 0.42 0.36
11. | Holding_pres_time 0.04 0.88 0.08 0 0.73 0.35
12. | Tool_Temperature 0.33 0.75 0.13 0 0.35 0.31
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
13. | Flow_no_plast 0 0.42 0.09 0 1.00 0.30
14. | Backpressure 0.09 0.83 0 0 0.56 0.30
15. | Last_cycle_time 0.05 1 0.18 0 0.10 0.27
16. | Heating_cyll z1 set 0.18 0.33 0.14 0 0.65 0.26
17. | Nozzle_tempr_z2_average 0.18 0.29 0.12 0 0.65 0.25
18. | Injection_time 0.27 0.46 0.34 0 0.15 0.24
19. | Plast_time 0.01 0.37 0.17 0 0.50 0.21
20. | Closing_force 0.09 0.58 0.2 0 0.00 0.17
21. | Clamp_force_switchov 0.04 0.63 0.1 0 0.00 0.15
22. | Speed_max 0.14 0.04 0.13 0 0.33 0.13
23. | Screw_speed 0.18 0 0.18 0 0.27 0.13
24. | Ejector_pos_last 0.07 0.13 0.15 0 0.15 0.10
25. | Switchov_vol 0 0.08 0.02 0 0.00 0.02

MLP R?score 0.77 0.78 0.77 0.35 0.84

MLP RMSE 0.085 | 0.088 0.085 0.141 0.07

Correlation coef. 0.89 0.9 0.89 0.79 0.92

Table 6.9 confirms observations drawn from the Table 6.8. Here, the same parallel dataset
for experiment 1 has been used, however, width2 was set as a target variable (width of
the second out of two specimens produced simultaneously). A model with no feature
selection has R? = 0.8, RMSE = 0.102 and correlation coefficient of 0.92. Similar set of
features receives the highest and the lowest scores in this case, which aligns well with
having width of two specimens produced during the same IMM run as focus variables.
Here use of the feature selection increases the model’s R? from 0.8 with no feature
selection to 0.9 using the RReliefF and Spearman methods, as well as decreases the
RMSE value and increases the correlation between the real and predicted width2 values.

Table 6.9. Feature selection for experiment 1 width2 target variable, parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS RReliefF | Mean
1. Cushion_after_hold_pres 0.98 0.25 0.98 1 1.00 0.84
2. Holding_pressure 1 0.5 1 0 0.89 0.68
3. | Cushion_smallest 0.86 0.29 0.92 0 0.54 0.52
4. Cushion_average 0.81 0.33 0.9 0 0.48 0.50
5. Injection_work 0.26 0.46 0.29 1 0.06 0.41
6. | Cooling_time 0.27 0.83 0.38 0 0.21 0.34
7. Cooling_time_last 0.24 0.79 0.32 0 0.26 0.32
8. Tool_Temperature 0.27 0.88 0.11 0 0.29 0.31
9. | Injection_Speed 0.09 0.75 0.14 0 043 0.28
10. | Spec_pres_switchov 0.02 0.92 0.09 0 0.35 0.28
11. | Screw_speed_max 0.07 0.96 0.08 0 0.17 0.26
12. | Flow_no_plast 0.16 0.67 0.04 0 0.35 0.24
13. | Holding_pres_time 0.07 0.71 0.01 0 0.43 0.24
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
14. | Last _cycle_time 0.05 1 0.13 0 0.00 0.24
15. | Heating_cyll z1 set 0.3 0.17 0 0 0.53 0.20
16. | Backpressure 0.09 0.54 0.11 0 0.25 0.20
17. | Nozzle_tempr_z2_average 0.3 0.13 0 0 0.53 0.19
18. | Injection_time 0.19 0.37 0.35 0 0.00 0.18
19. | Plast_time 0.06 0.42 0.12 0 0.23 0.17
20. | Closing_force 0.05 0.58 0.1 0 0.00 0.15
21. | Clamp_force_switchov 0.01 0.63 0.05 0 0.00 0.14
22. | Ejector_pos_last 0.14 0.21 0.02 0 0.10 0.09
23. | Screw_speed 0 0.04 0.13 0 0.10 0.05
24. | Speed_max 0.03 0 0.1 0 0.08 0.04
25. | Switchov_vol 0.03 0.08 0.04 0 0.00 0.03

MLP R?score 0.85 0.82 0.9 0.57 0.9

MLP RMSE 0.078 | 0.094 0.058 0.149 0.067

Correlation coef. 0.94 0.93 0.95 0.83 0.96

Similarly to the parallel dataset, application of feature selection methods for the sequential
dataset with width target variable (widthl and width2 variables merged together
sequentially) shown in Table 6.10 allows to increase the MLP model performance by
increasing its R? from 0.77 with no feature selection to 0.84 with Spearman correlation
measure and decreasing the RMSE from 0.106 to 0.093, while increasing the initial
correlation coefficient from 0.91 to 0.93. The set of the features that get the scores higher
than 0.2 is similar to the one for width1 and width2 target variables even though some of
the features have higher scores in comparison to their scores for the parallel dataset and
some have lower.

Table 6.10. Feature selection for experiment 1 width target variable, sequential dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Holding_pressure 1 0.5 1 1 0.36 0.77
2. Cushion_after_hold_pres 0.99 0.13 0.98 1 051 0.72
3. Cushion_average 0.79 0.29 0.9 0 0.45 0.49
4. Cushion_smallest 0.85 0.17 0.92 0 0.38 0.46
5. Injection_work 0.24 0.46 0.31 1 0.01 0.40
6. Screw_speed_max 0.01 0.92 0.08 0 1.00 0.40
7. Cooling_time_last 0.24 0.79 0.32 0 0.65 0.40
8. Cooling_time 0.27 0.75 0.37 0 0.57 0.39
9. Spec_pres_switchov 0.03 0.96 0.13 0 0.54 0.33
10. | Ejector_pos_last 0.09 0.33 0.06 1 0.16 0.33
11. | Injection Speed 0.13 0.83 0.15 0 0.50 0.32
12. | Tool Temperature 0.29 0.88 0.09 0 0.32 0.32
13. | Flow_no_plast 0.08 0.42 0.04 0 0.83 0.27
14. | Injection_time 0.22 0.67 0.32 0 0.11 0.26
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
15. | Holding_pres_time 0.04 0.71 0.02 0 0.55 0.26
16. | Last cycle_time 0.03 1 0.13 0 0.00 0.23
17. | Backpressure 0.07 0.54 0.02 0 0.47 0.22
18. | Nozzle tempr_z2_average 0.23 0.25 0.02 0 0.48 0.20
19. | Heating_cyll _z1 set 0.23 0.21 0.04 0 0.48 0.19
20. | Plast_time 0.01 0.37 0.12 0 0.36 0.17
21. | Closing_force 0.05 0.58 0.12 0 0.00 0.15
22. | Clamp_force_switchov 0.01 0.63 0.05 0 0.00 0.14
23. | Screw_speed 0.06 0.04 0.13 0 0.20 0.09
24. | Speed_max 0.02 0 0.09 0 0.24 0.07
25. | Switchov_vol 0 0.08 0 0 0.00 0.02

MLP R? score 0.83 0.8 0.84 0.82 0.81

MLP RMSE 0.095 0.1 0.093 0.1 0.097

Correlation coef. 0.93 0.92 0.93 0.92 0.92

Table 6.11 summarizes the MLP scores obtained with no FS and with application of the
5 chosen FS methods. The average method’s score is used to choose the method that
performs best on the available set of data. Some of the ML methods that are used to create
the predictive models in this study do not require assistance of the FS methods, as they
have “built-in” feature selection, these methods are Decision Trees, Gradient Boosting,
AdaBoost and Random Forest. MLP and kNN, on the other hand, need feature selection
to be performed before training the models using these methods, to filter out redundant
and irrelevant features that might be acting as noise. Based on the results depicted in
Table 6.11, RReliefF is the method that will be used to select the attributes for the width
target variable for all the experiments. Table with the corresponding RReliefF scores for
parallel and sequential datasets for experiments 1-4 with width target variable can be
found in Appendix D.

Table 6.11. MLP average accuracy measures (R?, RMSE, correlation coefficient) for
feature selection with different methods (width target variable)

Accuracy measure | NoFS | Pearson | RFE | Spearman | CFS | RReliefF

Experiment 1, MLP R?score 041 | 077 | 078 0.77 035 | 084

parallel dataset,
widthl target MLP RMSE 013 | 0085 | 0088 | 008 |0141| 007
variable Correlation coef. 081 | 0.89 0.9 0.89 0.79 092

Experiment 1, MLP R2 score 08 085 | 0.82 09 057 0.9

parallel dataset,
width? target MLP RMSE 0102 | 0078 | 0094 | 0058 | 0149 | 0067
variable Correlation coef. 092 | 094 | 093 0.95 083 | 096
MLP R2 score 077 | 083 | 08 0.84 082 | 081

Experiment 1,

sequential dataset, | \|_p RMSE 0106 | 0095 | 0.1 0.093 01 | 0097
width target variable

Correlation coef. 091 0.93 0.92 0.93 0.92 0.92
MLP R?score,
Average average 066 | 08 | 080 0.84 058 0.85
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Accuracy measure | NoFS | Pearson | RFE | Spearman | CFS | RReliefF
MLP RMSE

average 0.11 0.09 0.09 0.08 0.13 0.08
Correlation coef.

average 0.88 0.92 0.92 0.92 0.85 0.93

Joined dataset

In addition to analyzing data from all the experiments separately, parallel and sequential
joined datasets are also created. The parallel dataset includes data from experiment 1, 3
and 4, as only these three experiments had two specimens produced per run. The
sequential dataset includes data from all four experiments, where dimensional properties
such as widthl and width2 (width of the first and the second specimens produced
simultaneously) are stored in the width target variable. Both parallel and sequential joined
datasets include only those parameters that were logged during all the experiments in the
joined dataset. In addition, a material parameter was added, that includes a code for virgin
HDPE, ContainerService and RePro recycled HDPE. In the sequential dataset a part type
column has also been added, that indicates 1 for a 4 mm thick dogbone and 2 for the 15
mm dogbone part. More information on how the joined datasets were created can be found
in Section 4.4.3. Similarly to the separate experiments datasets, five feature selection
methods were used and compared. To select the feature selection method with the best
performance, an MLP model was trained with the following parameters:

model = MLPRegressor(solver = 'lbfgs', activation = 'logistic',
alpha = 1e-5, learning_rate_init = 0.3, hidden_layer_sizes =
(X.shape[1]+1)/2, random_state = 2, momentum = 0.2),

in this case X.shape[1] is a number of parameters considered in the model. Only
parameters with the FS method scores higher than 0.2 were included into the models. To
ensure that there is no overfitting, the datasets were divided into 70% training and 30%
testing subsets and 5-folds cross-validation was used when training the model on the
training subset. Random state for dataset partitioning was set to 0. The MLP models were
not tuned in this step. Tables 6.12, 6.13 and 6.14 show the FS scores for the different
parameters for widthl, width2 and width target variables and the corresponding MLP
models quality measures (R?, RMSE and correlation coefficient).

The parallel joined dataset includes 20 parameters, while the sequential one — 19, which
is significantly less than the full separate experiments datasets. For the parallel joined
dataset and widthl as a focus variable (width of the first out of two specimens produced
simultaneously) and no feature selection used, the R? equals to 0.86, RMSE = 0.084,
correlation coefficient = 0.94. Application of the RReliefF method can increase the R?
score to 0.87, decrease the RMSE to 0.08, while the correlation coefficient value stays
the same. It is also possible to notice that similarly to the separate experiments datasets,
parameters related to cushion and holding pressure receive the highest scores, while
plasticizing time, screw speed and the last ejector position get the lowest ones. Material
parameter gets a score higher than 0.2 from RFE, Spearman and RReliefF FS methods,
meaning that it contains certain amount of information that can be useful for creation of
the regression models of interest. Once again, the “Cooling time” parameter was
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excluded from the MLP model, as it is a set value of the “Cooling_time last” (actual
value) parameter.

Table 6.12. Feature selection for widthl target variable, joined parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Cushion_after_hold_pres 1 0.16 lall 1 1.00 0.83
2. Holding_pressure 0.95 0.79 0.99 0 0.79 0.70
3. Cushion_smallest 0.83 0.21 0.94 0 0.39 0.47
4. Switchov_vol 0.14 0.05 0.03 1 0.45 0.33
5. Heating_cyll z1 set 0.02 0.74 0.12 0 0.74 0.32
6. | Cooling_time 0.29 0.63 04 0 0.29 0.32
7. Cooling_time_last 0.25 0.68 0.35 0 0.26 0.31
8. | Speed_max 0.13 0.11 0.04 1 0.24 0.30
9. Holding_pres_time 0.08 0.89 0.23 0 0.26 0.29
10. | Backpressure 0.15 0.84 0.23 0 0.24 0.29
11. | Spec_pres_switchov 0.11 0.95 0.12 0 0.13 0.26
12. | Material 0.14 0.32 0.38 0 0.32 0.23
13. | Injection_Speed 0.15 0.58 0.18 0 0.19 0.22
14. | Last _cycle time 0.07 1 0 0 0.00 0.21
15. | Flow_no_plast 0.21 0.53 0.12 0 0.17 0.21
16. | Injection_time 0.26 0.47 0.22 0 0.01 0.19
17. | Injection_work 0.21 0.42 0.3 0 0.00 0.19
18. | Plast_time 0.1 0.37 0.03 0 0.13 0.13
19. | Screw_speed 0.11 0.26 0.02 0 0.22 0.12
20. | Ejector_pos_last 0 0 0.12 0 0.05 0.03

MLP R? score 0.8 0.84 0.81 0.8 0.87

MLP RMSE 0.11 0.09 0.1 0.11 0.08

Correlation coef. 0.91 0.92 0.91 091 0.94

For the width2 focus variable (width of the second out of two specimens produced
simultaneously) and no feature selection method, R? is 0.92, RMSE = 0.069, correlation
coefficient = 0.97. RReliefF method allows to increase the R? score to 0.94, lower RMSE
to 0.061and increase the correlation coefficient to 0.99. It is seen that the set of parameters
receiving the highest and the lowest scores for width2 is similar to that for widthl. The
material parameter once again receives score’s higher than 0.2 from RFE, Spearman and
RReliefF.

Table 6.13. Feature selection for width2 target variable, joined parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Holding_pressure 0.97 0.53 0.99 0 0.88 0.67
2. Cushion_after_hold_pres 1 0.16 1 1 1.00 0.83
3. Cushion_smallest 0.84 0.21 0.95 0 0.44 0.49
4. Cooling_time 0.28 0.79 0.4 0 0.37 0.37
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
5. Cooling_time_last 0.24 0.84 0.34 0 0.31 0.35
6. Injection_Speed 0.08 0.95 0.14 0 0.39 0.31
7. Injection_work 0.2 0.63 0.27 1 0.00 0.42
8. Holding_pres_time 0.1 0.74 0.26 0 0.31 0.28
9. Flow_no_plast 0.26 0.68 0.14 0 0.12 0.24
10. | Last cycle_time 0.04 1 0.01 0 0.00 0.21
11. | Spec_pres_switchov 0 0.89 0.06 0 0.20 0.23
12. | Backpressure 0.12 0.58 0.27 0 0.34 0.26
13. | Injection_time 0.22 0.42 0.21 0 0.00 0.17
14. | Material 0.17 0.32 0.36 0 0.25 0.22
15. | Heating_cyll z1_set 0.06 0.47 0.04 0 071 0.26
16. | Plast_time 0.12 0.37 0.05 0 0.13 0.13
17. | Screw_speed 0.14 0.26 0.04 0 0.21 0.13
18. | Speed_max 0.17 0.11 0.05 1 0.22 0.31
19. | Ejector_pos_last 0.05 0 0.16 1 0.02 0.25
20. | Switchov_vol 0.05 0.05 0 0 0.30 0.08

MLP R2 score 0.87 0.89 0.9 0.8 0.94

MLP RMSE 0.092 0.081 0.078 0.11 0.061

Correlation coef. 0.94 0.95 0.96 0.92 0.99

For the sequential joined dataset, width target variable (widthl and width2 merged
sequentially in one column) and no FS applied, similarly to the parallel joined dataset the
MLP quality measures scores are quite high, here R? = 0.93, RMSE = 0.083, correlation
coefficient = 0.96. Only Pearson FS allowed to increase the MLP model quality scores,
while the rest of the models have either almost equal characteristics or even the lower
ones. For this dataset the material parameter has received one of the highest scores from
each of the FS methods tested. The part type variable, at the same time, gets relatively
high scores from the Pearson and Spearman methods. The rest of the scores are divided
quite similarly to those for the parallel dataset.

Table 6.14. Feature selection for width target variable, joined sequential dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Cushion_after_hold_pres 1 0.11 1 1 0.24 0.67
2. Material 0.21 0.33 0.33 1 1.00 0.57
3. Holding_pressure 0.83 0.89 0.93 0 0.20 0.57
4. Cushion_smallest 0.91 0.17 0.96 0 0.15 0.44
5. Last_cycle_time 0.46 1 0.22 0 0.00 0.34
6. | Spec_pres_switchov 041 0.94 0.17 0 0.12 0.33
7. Holding_pres_time 0.49 0.67 0.4 0 0.08 0.33
8. | Screw_speed 0.18 0.28 0.1 1 0.03 0.32
9. | Cooling_time 0.53 0.83 0.04 0 0.02 0.28
10. | Speed_max 0.21 0.06 0.12 1 0.01 0.28
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
11. | Cooling_time_last 0.54 0.78 0 0 0.04 0.27
12. | Switchov_vol 0.65 0.22 0.27 0 0.06 0.24
13. | Backpressure 0.12 0.72 0.22 0 0.10 0.23
14. | Parttype 0.65 0 05 0 0.00 0.23
15. | Plast_time 041 0.39 0.28 0 0.04 0.22
16. | Flow_no_plast 0.28 0.44 0.2 0 0.15 0.21
17. | Injection_Speed 0.08 0.61 0.13 0 0.10 0.18
18. | Injection_work 0 0.56 0 0 0.04 0.12
19. | Injection_time 0 05 0 0 0.02 0.10

MLP R2 score 0.94 0.93 0.93 0.86 0.89

MLP RMSE 0.077 0.083 0.079 0.11 0.1

Correlation coef. 0.97 0.96 0.97 0.93 0.94

After looking at the feature selection methods results for sequential and parallel joined
datasets, Table 6.15 sums up the MLP model scores depending on the FS method applied.
On average, the RReliefF method allows to build models that are as good as the models
with no feature selection, while the rest of the methods result in the models whose average
measures are lower than those with no feature selection. Therefore, it is decided not to
use any feature selection for building the predictive models for width target variable and
joined datasets. This result is most probably obtained due to all the parameters included
in the joined datasets containing certain significant information about the focus variable
with no need to eliminate them.

Table 6.15. MLP average accuracy measures (R%, RMSE, correlation coefficient) for

feature selection with different methods (width target variable, joined datasets)

Accuracy measure | NoFS | Pearson | RFE | Spearman | CFS | RReliefF
Widtht target MLP R? score 0.86 08 | 084 081 08 0.87
variable, joined MLP RMSE 0084 | 011 | 009 01 011 | 008
parallel dataset
Correlation coef. 0.94 0.91 0.92 0.91 0.91 0.94
Width? target MLP R2 score 092 | 087 | 089 09 08 0.94
variable, joined MLP RMSE 0069 | 0092 | 0081 | 0078 011 | 0.061
parallel dataset
Correlation coef. 0.97 0.94 0.95 0.96 0.92 0.99
Width target MLP R2 score 093 | 094 | 093 093 086 | 089
variable, joined MLP RMSE 0083 | 0077 | 0083 | 0.079 0.11 0.1
parallel dataset
Correlation coef. 0.96 0.97 0.96 0.97 0.93 0.94
MLP R?score,
average 0.90 0.87 0.89 0.88 0.82 0.90
Average MLP RMSE
g average 0.08 0.09 0.08 0.09 0.11 0.08
Correlation coef.
average 0.96 0.94 0.94 0.95 0.92 0.96
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6.3.2 Thickness target variable

Separate experiments datasets

The same procedure as described for the width target variable has been performed for the
thickness focus variable. To use the 5-folds cross-validation, the random state for dataset
partitioning was set to 2. Only those parameters that have a corresponding FS method
score higher than 0.2 were considered in the MLP model and “Cooling_time” parameter
has been disregarded either way due to being a set value of the “Cooling_time last”
parameter. The MLP model was trained with the following settings:

model MLPRegressor(solver = 'lbfgs', activation = 'logistic',
alpha le-5, learning_rate_init = 0.3, hidden_layer_sizes = 5,
random_state = 2, momentum = 0.2);

Tables 6.16 — 6.18 show the parameters scores based on the different FS methods applied
for thicknessl, thickness2 and thickness target variables for parallel and sequential
datasets. Here thicknessl and thickness2 target variables are thicknesses of the first
and the second specimens produced during the same machine run correspondingly.
Thickness with no number focus variable includes thicknessl and thickness2 merged
sequentially. For the thickness1 focus variable and no feature selection method applied,
the R? score is 0.87, RMSE = 0.042, while the correlation coefficient is 0.93. None of the
FS methods in case of thicknessl target variable increase the MLP scores, however,
RReliefF MLP model scores are very close to the ones with no FS used. At the same time,
the parameters that get the highest scores from most of the tested feature selection
algorithms are those describing holding pressure, cushion, injection work and injection
speed. Those receiving the lowest scores are screw speed, clamping force at switchover,
the last ejector position, maximum speed and switchover volume. This is similar to the
parameters selected by the FS algorithms for the width target variable.

Table 6.16. Feature selection for experiment 1 thicknessl target variable, parallel dataset

# Parameter name Pearson | RFE Spearman CFS RREliefF | Mean
1. Holding_pressure 1 0.63 1 1 0.93 0.91
2. Cushion_after_hold_pres 0.99 0.42 0.91 1 1.00 0.86
3. Tool_Temperature 0.6 0.46 0.56 1 0.98 0.72
4. Cushion_smallest 0.87 0.13 0.81 1 0.76 0.71
5. Holding_pres_time 0.27 0.54 0.28 1 0.66 0.55
6. Cushion_average 0.79 0.17 0.77 0 0.75 0.50
7. Injection_Speed 0.25 0.92 0.46 0 0.79 0.48
8. Injection_work 0.35 0.33 0.43 1 0.27 0.48
9. Plast_time 0.13 0.67 0.18 1 0.29 0.45
10. | Spec_pres_switchov 0.25 0.96 0.46 0 0.58 0.45
11. | Cooling_time 0.14 0.79 0.15 0 0.69 0.35
12. | Backpressure 0.02 0.71 0.03 0 0.89 0.33
13. | Cooling_time_last 0.1 0.83 0.11 0 0.55 0.32
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# Parameter name Pearson | RFE Spearman | CFS RREliefF | Mean
14. | Screw_speed_max 0.14 0.75 0.18 0 0.42 0.30
15. | Last cycle_time 0.15 1 0.1 0 0.00 0.25
16. | Flow_no_plast 0 0.5 0.11 0 0.58 0.24
17. | Heating_cyll_z1_set 0.16 0.29 0.02 0 0.66 0.23
18. | Injection_time 0.32 0.37 0.31 0 0.12 0.22
19. | Nozzle_tempr_z2_average 0.16 0.25 0 0 0.66 0.21
20. | Closing_force 0.04 0.88 0.06 0 0.00 0.20
21. | Screw_speed 0.17 0.04 0.21 0 0.30 0.14
22. | Clamp_force_switchov 0.01 0.58 0.05 0 0.00 0.13
23. | Ejector_pos_last 0.24 0.08 0.11 0 0.10 0.11
24. | Speed_max 0.12 0 0.15 0 0.22 0.10
25. | Switchov_vol 0.04 0.21 0.01 0 0.00 0.05

MLP R?score 0.76 0.84 0.82 0.77 0.85

MLP RMSE 0.053 0.047 0.046 0.056 0.044

Correlation coef. 0.88 0.92 0.91 0.89 0.92

In case of the thickness2 focus characteristics (thickness of the second out of two target
variables produced simultaneously) and no FS applied, R? equals to 0.88, RMSE is 0.041
and correlation coefficient is 0.95. As seen from Table 6.17, Spearman method allows to
improve them: R? to 0.95, RMSE to 0.025, correlation to 0.98. Similar parameter set
receives the highest and the lowest scores as in case with thickness1, which is meaningful
as the parts with thickness1 and thickness2 are produced during the same production run.

Table 6.17. Feature selection for experiment 1 thickness2 target variable, parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF Mean
1. Cushion_after_hold_pres 0.98 0.63 0.91 1 0.72 0.85
2. Holding_pressure 1 0.54 1 1 0.64 0.84
3. Tool_Temperature 0.69 0.37 0.56 1 0.77 0.68
4. Cushion_smallest 0.88 0.17 0.87 0 0.51 0.49
5. Injection_work 0.33 0.46 0.34 1 0.21 0.47
6. Cushion_average 0.8 0.21 0.82 0 0.51 0.47
7. Spec_pres_switchov 0.3 1 0.44 0 0.35 0.42
8. Backpressure 0.13 0.71 0.16 0 1.00 0.40
9. Injection_Speed 0.26 0.83 0.4 0 0.50 0.40
10. | Holding_pres_time 0.26 0.75 0.29 0 0.64 0.39
11. | Screw_speed 0.26 0 0.24 1 0.36 0.37
12. | Cooling_time_last 0 0.92 0.03 0 0.44 0.28
13. | Cooling_time 0.01 0.79 0.05 0 0.51 0.27
14, | Last cycle_time 0.17 0.96 0.13 0 0.00 0.25
15. | Injection_time 0.4 0.33 0.32 0 0.15 0.24
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF Mean
16. | Screw_speed_max 0.16 0.5 0.19 0 0.33 0.24
17. | Plast_time 0.02 0.67 0.21 0 0.21 0.22
18. | Flow_no_plast 0.08 0.42 0.15 0 0.34 0.20
19. | Closing_force 0.01 0.88 0.03 0 0.00 0.18
20. | Heating cyll z1 set 0.04 0.29 0.14 0 0.42 0.18
21. | Nozzle_tempr_z2_average 0.04 0.25 0.13 0 0.42 0.17
22. | Speed_max 0.2 0.04 0.18 0 0.38 0.16
23. | Clamp_force_switchov 0 0.58 0.04 0 0.00 0.12
24. | Ejector_pos_last 0.27 0.08 0.13 0 0.02 0.10
25. | Switchov_vol 0.07 0.13 0 0 0.00 0.04

MLP R? score 0.9 0.9 0.95 0.51 091

MLP RMSE 0.038 0.035 0.025 0.085 0.034

Correlation coef. 0.95 0.96 0.98 0.77 0.95

For the sequential dataset and thickness target variable (thicknesses of the first and the
second specimens produced simultaneously merged sequantially), the MLP model quality
with no feature selection is lower than for the parallel dataset, thickness1 and thickness2:
R%=0.72, RMSE =0.059, correlation coefficient = 0.87. The use of the Spearman method
increases these scores: R? = 0.78, RMSE = 0.052, correlation coefficient = 0.89. Apart
from the lower model quality, the selected parameters list with significant scores is similar
to that for thickness1 and thickness2.

Table 6.18. Feature selection for experiment 1 thickness target variable, sequential dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Holding_pressure 1 0.54 1 1 0.38 0.78
2. Cushion_after_hold_pres 0.98 0.37 0.91 1 0.40 0.73
3. | Tool_Temperature 0.64 042 0.56 1 0.67 0.66
4. Cushion_smallest 0.87 0.13 0.84 1 0.30 0.63
5. Holding_pres_time 0.26 0.67 0.28 1 0.57 0.56
6. | Screw_speed_max 0.15 0.92 0.18 0 1.00 0.45
7. Injection_work 0.34 0.33 0.38 1 0.11 0.43
8. Cushion_average 0.8 0.21 0.79 0 0.35 0.43
9. Spec_pres_switchov 0.27 0.96 0.45 0 0.38 0.41
10. | Injection_Speed 0.25 0.88 0.43 0 0.35 0.38
11. | Backpressure 0.03 0.71 0.1 0 0.67 0.30
12. | Injection_time 0.36 0.63 0.31 0 0.13 0.29
13. | Cooling_time 0.07 0.75 0.1 0 0.49 0.28
14. | Flow_no_plast 0.04 0.46 0.13 0 0.75 0.28
15. | Cooling_time_last 0.03 0.79 0.06 0 0.39 0.25
16. | Last _cycle_time 0.16 1 0.11 0 0.00 0.25
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
17. | Plast_time 0.07 0.58 0.2 0 0.33 0.24
18. | Closing_force 0.02 0.83 0.05 0 0.00 0.18
19. | Heating_cyll_z1 set 0.1 0.29 0.08 0 0.38 0.17
20. | Nozzle_tempr_z2_average 0.1 0.25 0.06 0 0.38 0.16
21. | Ejector_pos_last 0.25 0.08 0.12 0 0.24 0.14
22. | Screw_speed 0.21 0 0.22 0 0.25 0.14
23. | Speed_max 0.15 0.04 0.16 0 0.23 0.12
24. | Clamp_force_switchov 0 0.5 0.04 0 0.00 0.11
25. | Switchov_vol 0.05 017 0 0 0.00 0.04

MLP R? score 0.75 0.74 0.78 0.67 0.69

MLP RMSE 0.056 | 0.058 0.052 0.071 0.06

Correlation coef. 0.87 0.87 0.89 0.83 0.86

Table 6.19 depicts the MLP models performance for the different datasets and FS
methods, including the average values of the models’ performance characteristics. For
the thickness target variable, the Spearman FS method allows to increase the MLP models
quality for both parallel and sequential datasets. Therefore, Spearman method will be used
for FS prior to training the MLP and kNN predictive models for the thickness target

variable.

Table 6.19. MLP average accuracy measures (R%, RMSE, correlation coefficient) for

feature selection with different methods (thickness target variable)

Accuracy measure | No FS Pearson | RFE | Spearman | CFS | RReliefF
Experiment 1, parallel
dataset, thicknessl MLP R? score 0.87 0.76 0.84 0.82 0.77 0.85
target variable MLP RMSE 0042 | 0053 | 0047 | 0046 | 0056 | 0.044
Correlation coef. 0.93 0.88 0.92 0.91 0.89 0.92
Experiment 1, parallel
dataset, thickness2 MLP R2 score 0.88 0.9 0.9 0.95 0.51 0.91
target variable MLP RMSE 0041 | 0038 | 0035 | 0025 |0085 | 0034
Correlation coef. 0.95 0.95 0.96 0.98 0.77 0.95
Experiment 1, MLP R2 score 0.72 0.75 0.74 0.78 0.67 0.69
sequential dataset,
thickness target MLP RMSE 0.059 0.056 0.058 0.052 0.071 0.06
variable Correlation coef, 0.87 087 | 087 0.89 083 | 086
MLP R?score,
average 0.82 0.80 0.83 0.85 0.65 0.82
Average MLP RMSE,
g average 0.05 0.05 0.05 0.04 0.07 0.05
Correlation coef.
average 0.92 0.90 0.92 0.93 0.83 0.91

Joined dataset

The same way as for the width target variable, parallel and sequential joined datasets are
also used with the thickness focus variable. The same procedure is applied, random state
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for dataset partitioning is set to 0 to split the training subset into 5 folds and only the
parameters with the FS scores higher than 0.2 are considered during the MLP model
training. The model is created using the following parameters:

model = MLPRegressor(solver = 'lbfgs', activation = 'logistic',
alpha = 1e-5, learning_rate_init = 0.3, hidden_layer_sizes =
(X.shape[1]+1)/2, random_state = 2, momentum = 0.2),

here X. shape[1] is a number of parameters considered in the model. Tables 6.20 —6.22
show the FS scores for the thickness1, thickness2 and thickness variables from the parallel
and sequential joined datasets, where data from all the relevant experiments is merged.
Thicknessl and thickness2 target characteristics are the thicknesses of the first and the
second specimens produced simultaneously. Thickness target variable, on the other
hand, includes thicknesses of both the first and the second specimens produced during the
same run. For thicknessl, parallel joined dataset and no feature selection the MLP scores
are as follows: R? = 0.64, RMSE = 0.076, correlation coefficient = 0.82. In this case,
RReliefF and CFS methods increase the model quality to R? equal to 0.68, RMSE = 0.072
and correlation coefficient equal to 0.83

Table 6.20. Feature selection for thicknessl target variable, joined parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Holding_pressure 1 0.84 1 1 0.65 0.90
2. Cushion_after_hold pres | 1 0.16 0.95 1 0.74 0.77
3. | Cushion_smallest 0.92 079 091 0 0.42 0.61
4. | Switchov_vol 0.38 0.05 | 0.38 1 1.00 0.56
5. | Material 0.25 021 |0.38 1 0.85 0.54
6. Ejector_pos_last 0.32 0 0.46 1 0.13 0.38
7. Spec_pres_switchov 0.32 0.95 0.41 0 0.22 0.38
8. Injection_work 0.36 0.11 0.33 1 0.00 0.36
9. Injection_Speed 0.17 0.89 0.2 0 0.26 0.30
10. | Backpressure 0.23 0.74 0.22 0 0.33 0.30
11. | Heating_cyll z1_set 0.14 058 | 0.13 0 0.56 0.28
12. | Cooling_time 0.2 0.47 0.15 0 0.55 0.27
13. | Cooling_time_last 0.15 0.42 0.09 0 0.47 0.23
14. | Last_cycle_time 0.03 1 0 0 0.10 0.23
15. | Flow_no_plast 0.06 0.68 0.03 0 0.34 0.22
16. | Injection_time 0.24 0.37 0.2 0 0.13 0.19
17. | Holding_pres_time 0.02 0.63 0 0 0.26 0.18
18. | Plast_time 0.07 053 | 0.03 0 0.11 0.15
19. | Screw_speed 0.01 0.26 0.03 0 0.23 0.11
20. | Speed_max 0 032 |0 0 0.20 0.10

MLP R? score 0.64 0.65 0.64 0.68 0.68

MLP RMSE 0.076 0.075 | 0.076 0.072 | 0.072

Correlation coef. 0.81 0.82 0.81 0.83 0.83
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For the thickness2 variable (thickness of the second out of two specimens produced
during the same run), the MLP characteristics with no feature selection are R? = 0.79,
RMSE = 0.06, correlation coefficient = 0.9. RFE feature selection method, however, can
improve it to R? = 0.8, RMSE = 0.057 and correlation coefficient = 0.91. At the same
time, it can be seen that for both thickness1 and thickness2 the material parameter receives
FS methods scores higher than 0.2, meaning that including this parameter into the datasets
and later to the models can help to create prediction models of higher quality.

Table 6.21. Feature selection for thickness2 target variable, joined parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Cushion_after_hold_pres 1 0.16 0.96 1 0.90 0.80
2. Holding_pressure 1 0.68 1 0 0.80 0.70
3. | Switchov_vol 04 0.05 0.44 1 1.00 0.58
4. | Material 0.27 0.21 0.43 1 0.80 0.54
5. | Cushion_smallest 0.93 0.32 0.94 0 0.49 0.54
6. Spec_pres_switchov 0.32 0.89 0.43 0 0.19 0.37
7. Backpressure 0.12 0.63 0.12 0 0.92 0.36
8. Injection_work 0.36 0.11 0.31 1 0.01 0.36
9. Injection_Speed 0.15 0.84 0.17 0 0.23 0.28
10. | Heating_cyll_z1_set 0.08 0.58 0.07 0 0.62 0.27
11. | Cooling_time 0.14 0.53 0.08 0 0.56 0.26
12. | Flow_no_plast 0.07 0.95 0.03 0 0.22 0.25
13. | Holding_pres_time 0.03 0.74 0.01 0 0.44 0.24
14. | Speed_max 0 0.79 0.01 0 0.40 0.24
15. | Cooling_time_last 0.09 0.47 0.03 0 051 0.22
16. | Last_cycle_time 0.02 1 0.01 0 0.00 0.21
17. | Ejector_pos_last 0.33 0 0.51 0 0.09 0.19
18. | Injection_time 0.25 0.26 0.2 0 0.14 0.17
19. | Screw_speed 0 0.37 0.01 0 0.40 0.16
20. | Plast_time 0.02 0.42 0 0 0.16 0.12

MLP R2 score 0.62 0.8 0.62 0.62 0.69

MLP RMSE 0.082_ | 0.057 0.082 0.082 0.074

Correlation coef. 0.8 0.91 0.8 0.79 0.83

In case of the sequential joined dataset and no FS, the MLP characteristics are as follows:
R? = 0.99, RMSE = 0.068, correlation coefficient = 0.99. Application of the Pearson FS
reaches the same R? and correlation coefficient values, while the RMSE value is worse
than with no feature selection, application of the rest of the FS methods leads to even
worse performance. It can also be seen from the table that material and parameter type
parameters seem to be significant for prediction of the target variable value.
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Table 6.22. Feature selection for thickness target variable, joined sequential dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Spec_pres_switchov 0.71 0.89 0.87 1 0.11 0.72
2. Cooling_time 0.91 0.61 0.55 1 0.00 0.61
3. | Parttype 1 0 0.9 1 0.00 0.58
4. Last_cycle_time 0.76 1 0.38 0 0.02 0.43
5. Injection_work 0.29 0.11 0.73 1 0.02 0.43
6. Cooling_time_last 0.91 0.56 0.5 0 0.01 0.40
7. | Material 0.15 0.22 0.54 0 1.00 0.38
8. Holding_pres_time 0.68 0.67 0.38 0 0.01 0.35
9. Holding_pressure 0.15 05 1 0 0.07 0.34
10. | Plast_time 0.52 0.78 0.38 0 0.01 0.34
11. | Cushion_smallest 0.79 0.28 0.45 0 0.07 0.32
12. | Cushion_after_hold_pres 0.69 0.17 0.49 0 0.11 0.29
13. | Flow_no_plast 0.15 0.94 0.06 0 0.19 0.27
14. | Injection_time 03 0.33 0.53 0 0.00 0.23
15. | Switchov_vol 1 0.06 0 0 0.06 0.22
16. | Backpressure 0.03 0.83 0.12 0 0.00 0.20
17. | Injection_Speed 0 0.72 0.16 0 0.02 0.18
18. | Speed_max 0.15 0.44 0.08 0 0.00 0.13
19. | Screw_speed 0.13 0.39 0.03 0 0.00 0.11

MLP R2 score 0.99 0.98 0.99 0.99 0.1

MLP RMSE 0.079 0.234 0.11 0.12 3.02

Correlation coef. 0.99 0.99 0.99 0.99 0.35

Table 6.23 includes the MLP accuracy measures for the parallel and sequential joined
datasets and thickness target variable. It is visible that the highest average accuracy scores
are obtained with no feature selection methods, as for the FS methods even if the R? and
correlation coefficient values are the same as with no FS, the RMSE value is higher.
Therefore, no FS will be used when creating prediction models for the thickness target
variable using the joined datasets. It is also worth mentioning that in general parameters
that receive the highest scores from the FS methods are similar to those having high scores
in case of the separate experiments’ datasets.

Table 6.23. MLP average accuracy measures (R%, RMSE, correlation coefficient) for
feature selection with different methods (thickness target variable, joined datasets)

Accuracy measure | NoFS | Pearson | RFE | Spearman | CFS | RReliefF
Thickness1 target
variable, joined MLP R? score 064 | 064 | 065 0.64 0.68 0.68
parallel dataset MLP RMSE 0076 | 0076 | 0075 | 0076 | 0072 | 0072
Correlation coef. 0.82 0.81 0.82 0.81 0.83 0.83
Thickness2 target
variable, joined MLP R2 score 0.79 0.62 0.8 0.62 0.62 0.69
parallel dataset MLP RMSE 006 | 0082 |0057| 0082 | 008 | 0074
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Accuracy measure | NoFS | Pearson | RFE | Spearman | CFS | RReliefF

Correlation coef. 0.9 0.8 0.91 0.8 0.79 0.83

Thickness target MLP R2 score 0.99 0.99 0.98 0.99 0.99 0.1

variable, joined MLP RMSE 0.068 | 0079 | 0.234 0.1 0.12 3.02
parallel dataset

Correlation coef. 0.99 0.99 0.99 0.99 0.99 0.35
MLP RZscore,
average 0.81 0.75 0.81 0.75 0.76 0.49
Average MLP RMSE
average 0.07 0.08 0.12 0.09 0.09 1.06
Correlation coef.
average 0.90 0.87 0.91 0.87 0.87 0.67

6.4 Predictive models development

After performing data exploration to gain a better understanding of our data,
preprocessing and feature selection to remove features that are irrelevant for the target
variables of interest, it is now possible to move to development of predictive models for
dimensional target variables (width and thickness). The models will help to identify
dimensions of produced parts based on the corresponding process parameters settings and
avoid possible deviations.

As discussed in Chapter 2, in most of the reviewed studies there is lack of generalized
approach in application of ML methods for prediction of injection molded parts quality.
Some of the studies skip the data exploration step, while the others don’t have
preprocessing and/or feature selection, as a result, ML methods are still not widely used
in the real industrial environment and the injection molding in particular, while more and
more literature on this topic is being published. This work, however, presents a procedure
that can be applied for industrial data analysis for the injection molding process, as well
as for other manufacturing processes.

Each of the ML methods used in this chapter has its own hyperparameters that can and
need to be tuned to receive a model of high quality. This is done using grid search, in
order to go through various combinations of the tuned hyperparameters and select the
ones with the best model performance.

The set of hyperparameters used in the grid search is the same both for width and
thickness. For the MLP the next set of hyperparameters was used:

hidden layer sizes : [10, 15, 20, 25, 30],
activation function : ‘relu’, ‘logistic’,
solver : ‘Ibfgs’, ‘sgd’,

alpha (L2 penalty parameter): [0.0001, 0.05],
learning rate init: [0.001, 0.01, 0.05, 0.1, 0.3].

For Decision Tree another set of parameters was tuned:

e criterion: ‘mse’, “friedman_mse’, ‘mae’,
e maximum tree depth: [5, 7, 10, 12, 15].
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For kNN, in its turn, the following hyperparameters were tuned:

e weights: ‘uniform’, ‘distance’,
e number of neighbors: [2, 3, 4, 5, 6, 7].

For Gradient Boost Regressor a different set of hyperparameters is evaluated:

e loss: “Is’, “‘lad’, ‘huber’, ‘quantile’,
e learning rate: [0.001, 0.005, 0.01, 0.05, 0.1],
e number of estimators: [50, 100, 150, 200, 250, 300].

In case of AdaBoost, the same hyperparameters as for GBR are tuned, however, this
algorithm uses other loss functions:

e loss: ‘linear’, ‘square’, ‘exponential’,
e learning rate: [0.001, 0.005, 0.01, 0.05, 0.1, 1],
e number of estimators': [50, 100, 150, 200, 250, 300].

The last, but not the least is Random Forest, here the number of estimators, max features
and criterion hyperparameters were varied:

e number of estimators: [50, 100, 150, 200, 250, 300],
e max features: ‘auto’, ‘sgrt’, ‘log2’,
e criterion: ‘mse’, ‘mae’.

Each of the algorithms has a significant number of hypermeters that can be evaluated and
tuned, however, due to the time limitations, the ones listed above are considered in this
work. At the same time, it is worth mentioning that depending on the algorithm, the
training time significantly varies. In case of the MLP it is up to 1-2 minutes, while for
kNN and Decision Tree Regressor it is about 10 seconds. At the same time, GBR,
AdaBoost and Random Forest might take up to 5 minutes training time on the sequential
joined datasets considered in this dissertation. If the amount of data will increase, the
training times will increase correspondingly, and kNN training time might become
significantly larger due to the nature of the algorithm and its “memorizing” of the training
data samples.

6.4.1 Width target variable

This section presents hyperparameters and performance measures (R?, RMSE and
correlation coefficient) for the best performing models as a result of the grid search for
the width target variable. The nominal value of the width target variable is 10 mm for all
the datasets. The models were created for the separate experiments’ datasets (data for
experiments 1-4 saved in the separate files), as well as for the joined datasets. It is
important to note that one of the reasons for doing so is that different datasets contain
different parameter sets, therefore performance of the models trained on the separate
datasets varies due to the parameters present in the datasets and then included in the
models. In both separate and joined datasets parallel and sequential datasets are used. In
the parallel datasets for experiments 1, 3-4 the data for the specimens that were produced
during the same run is saved in the parallel columns. In the sequential ones, these values
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follow each other in one column and duplicate the data of one IMM run twice. As a result,
in the parallel datasets width1, width2, thicknessl and thickness2 target variables are
included, these variables correspond to the width and thickness of the first and the second
specimens produced during the same production runs. In the sequential datasets, on the
other hand width and thickness focus variables include values of the corresponding
measures for both specimens merged sequentially.

In case of the parallel datasets, the multi-output (2 output) models are created, where the
first output corresponds to the predicted value of widthl and the second to width2. Due
to this, only MLP, KNN, Decision Tree Regressor and Random Forest are used, as these
are the algorithms whose implementation supports the multi-output models creation. In
case of the sequential datasets, on the other hand, MLP, kNN, Decision Tree Regressor,
GBR, AdaBoost and Random Forest are utilized. While training the MLP and kNN
models based on the separate experiments’ datasets RReliefF feature selection is used,
where the threshold for including/ excluding parameters is set to 0.2. The rest of the
algorithms use the full set of features in the beginning and score them during the training
process. In case of the joined datasets no feature selection is used, based on the results
from Section 6.3.

All the datasets are divided into 70% training and 30% testing subsets, and 5-folds cross-
validation is performed on the training dataset to avoid overfitting.

Separate experiments datasets
Experiment 1

Table 6.24 presents results of the hyperparameter optimization for the used ML methods
on the parallel dataset obtained from experiment 1, while Table 6.25 for the sequential
dataset. The last six rows of the tables show the models’ quality characteristics for the
train and test datasets for the best performing set of hyperparameters. For the parallel
dataset the best model quality on training set is obtained using kNN and Decision Tree
algorithms, these performance characteristics are better than the ones obtained without
MLP model tuning when selecting the feature selection method, as R? for the width1 MLP
model is equal to 0.82 and for width2 — 0.9. Here, MLP’s R? is equal to 0.92, when
predicting both width1 and width2 simultaneously, while KNN’s and Decision Tree’s R?
is 0.99. At the same time, when analyzing the algorithms’ performance on the test set
(previously unseen data), Random Forest has the best performance with R? = 0.89.

For the sequential dataset, the MLP performance on the train data with the tuned
hyperparameters (R? = 0.88) is still better than the one developed for the feature selection
algorithm (R? = 0.82). At the same time, for the sequential dataset Random Forest
outperforms the other algorithms on both training and testing dataset. In general, all the
models developed using experiment 1 data have acceptable quality and demonstrate
satisfactory generalization abilities based on their performance on the train dataset.
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Table 6.24. Results of predictive models hyperparameter optimization for widthl and
width2, parallel dataset, experiment 1

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation logistic - - -
hidden layer 30 R R R
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 3 }
neighbors
loss - - - -
criterion - friedman_mse - mae
max_depth - 12 -
n_estimators - - - 150
max_features - - - auto
R? train set 0.92 0.99 0.99 0.98
RMSE train set 0.07 0.01 0.01 0.03
Correl. coef. 0.96 0.99 0.99 0.99
train set
R? test set 0.82 0.75 0.79 0.89
RMSE test set 0.1 0.12 0.11 0.08
Correl. coef.
test set 0.92 0.86 0.93 0.93

Table 6.25. Results of predictive models hyperparameter optimization for width,
sequential dataset experiment 1

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -
hidden layer 10 : } ; : ;

neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.01 1 -
weights - - uniform - - -
number of ; ; 3 N ; ;
neighbors
loss - - - lad exponential -
criterion - mae - - - mae
max_depth - 5 - - - -
n_estimators - - - 300 150 150
max_features - - - - - sqrt
R? train set 0.88 0.93 0.92 0.85 0.91 0.93
RMSE train set 0.08 0.06 0.07 0.09 0.07 0.06
Correl. coef.
train set 0.94 0.96 0.96 0.94 0.96 0.97
R? test set 0.87 0.76 0.82 0.78 0.82 0.81
RMSE test set 0.1 0.13 0.12 0.13 0.12 0.12
Correl. coef.
test set 0.94 0.87 0.91 0.91 0.91 0.9

Experiment 2

Unlike during experiments 1, 3 and 4, in the experiment 2 only one 15 mm thick dogbone
specimen was produced per production run. Due to this, there is only a sequential dataset
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for experiment 2. As it can be seen from Table 6.26, the best performing algorithms with
the same model scores are Decision Tree, kNN and GBR. They outperform MLP,
AdaBoost and Random Forest on the train set, but quite insignificantly. On the test
dataset, the best performance is observed for Decision Tree and GBR algorithms. Even
though the overfitting should not be present, as 5-folds cross-validation and division into
the training and testing sets is used, this dataset consists of only 72 data samples and
might be too small to create a model that will adequately generalize on the new data. The
last six rows of the Table 6.26 show the models’ performance scores for the set of the
best performing hyperparameters.

Table 6.26. Results of predictive models hyperparameter optimization for width,
experiment 2

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - -

hidden layer 25
neurons
solver Ibfgs
alpha 0.05 - -
learning rate 0.001 - 0.1 0.005
weights - distance - -
number of 7
neighbors
loss - - - Is exponential -
criterion mse - mse
max_depth 5 - - -
n_estimators - - - 100 100 50
max_features - - - - - auto
R? train set 0.98 0.99 0.99 0.99 0.98 0.98
RMSE train set 0.01 0.01 0.01 0.01 0.01 0.01
Correl. coef. 0.99 0.99 0.99 0.99 0.99 0.99
train set
R? test set 0.98 0.99 0.97 0.99 0.95 0.96
RMSE test set 0.02 0.01 0.02 0.01 0.02 0.02
Correl. coef. 0.99 0.99 0.99 0.99 0.98 098
test set

Experiment 3

In case of experiment 3 and the corresponding Tables 6.27 and 6.28, for the parallel
dataset all four algorithms have very high performance on the train set, however, MLP
has a higher RMSE in comparison to the rest of the methods. The best test set performance
is observed for the MLP and Decision Tree models. A similar situation is seen for the
sequential train dataset, as only value of the RMSE is slightly worse for MLP and
AdaBoost, while R? and the correlation coefficient are equally high for all the applied
algorithms. Decision Tree and Random Forest have the best performance on the test
dataset, with the highest R? and correlation coefficient and the lowest RMSE. In general,
all the models have high scores, however, Random Forest has the best performance and
is recommended to use over the Decision Tree, as it is more robust and uses a collection
of decision trees instead of one, increasing its overall generalization abilities and omitting
the bias. At the same time, Decision Tree model is easier to interpret and understand for
a human expert.
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Table 6.27. Results of predictive models hyperparameter optimization for widthl and
width2, parallel dataset, experiment 3

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation logistic - - -
hidden layer 20 R R R
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 2 }
neighbors
loss - - - -
criterion - mse - mae
max_depth - 10 -
n_estimators - - - 50
max_features - - - auto
R? train set 0.99 0.99 0.99 0.99
RMSE train set 0.03 0.01 0.01 0.01
Correl. coef. 0.99 0.99 0.99 0.99
train set
R? test set 0.99 0.99 0.93 0.98
RMSE test set 0.02 0.02 0.06 0.03
Correl. coef.
test set 0.99 0.99 0.97 0.99

Table 6.28. Results of predictive models hyperparameter optimization for width,
sequential dataset, experiment 3

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -
hidden layer 20 : } : : :

neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.1 1 -
weights - - distance - B B
number of ) ; 2 ; ; :
neighbors
loss - - - huber linear -
criterion mse - - - mse
max_depth 7 - - - -
n_estimators - - - 50 50 250
max_features - - - - - auto
R? train set 0.99 0.99 0.99 0.99 0.99 0.99
RMSE train set 0.03 0.01 0.01 0.01 0.02 0.01
Correl. coef.
train set 0.99 0.99 0.99 0.99 0.99 0.99
R? test set 0.99 0.99 0.86 0.99 0.99 0.99
RMSE test set 0.04 0.02 0.08 0.03 0.03 0.02
Correl. coef.
test set 0.99 0.99 0.94 0.99 0.99 0.99
Experiment 4

When looking at Tables 6.29 and 6.30, where the models created using the experiment 4
data are shown, it is possible to see that for the parallel train dataset all the models’
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performance is very high. However, for the test data, performance of Decision Tree is
significantly lower. This might be due to the data partitioning used in this case. As the
data is split into train and test set randomly, it might have happened that samples
describing behavior that is significantly different from all the samples in the train set were
selected into the test set. At the same time, Random Forest outperforms the rest of the
algorithms on the test set without any significant model performance decrease in
comparison to the train set. For the sequential dataset, Random Forest, AdaBoost and
GBR have the highest performance on both train and test sets and demonstrate remarkable
generalization abilities.

Table 6.29. Results of predictive models hyperparameter optimization for widthl and
width2, parallel dataset, experiment 4

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation logistic - - -
hidden layer 30 } ; )
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ) : 2 :
neighbors
loss - - - -
criterion - mse - mae
max_depth - 5 - -
n_estimators - - - 50
max_features - - - auto
R? train set 0.99 0.99 0.99 0.99
RMSE train set 0.02 0.01 0.01 0.02
Correl. coef. 0.99 0.99 0.99 0.99
train set
R? test set 0.94 0.45 0.86 0.98
RMSE test set 0.06 0.16 0.08 0.03
Correl. coef. 097 0.86 0.94 0.99
test set

Table 6.30. Results of predictive models hyperparameter optimization for width,
sequential dataset, experiment 4

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -

hidden layer
neurons 10 ) ) ) ) )
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.1 1 -
weights - - distance - - -
number of : a 3 a )
neighbors
loss - - - Is linear -
criterion - friedman_mse - - - mae
max_depth - 7 - - - -
n_estimators - - - 100 250 100
max_features - - - - - auto
R? train set 0.99 0.99 0.99 0.99 0.99 0.99
RMSE train set 0.02 0.01 0.01 0.01 0.01 0.01
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Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
Correl. coef. 0.99 0.99 0.99 0.99 0.99 0.99

train set
R? test set 0.98 0.99 0.95 0.99 0.99 0.99
RMSE test set 0.03 0.01 0.05 0.01 0.01 0.01
Correl. coef. 0.99 0.99 0.98 0.99 0.99 0.99

test set

Joined datasets

Unlike separate experiments datasets, joint datasets consist of the samples from all four
experiments. The parallel dataset includes only experiments 1, 3 and 4 data, while the
sequential one — data from all four of them. In the parallel dataset a material column is
added, it does not include the data about the material properties, such as viscosity or other
characteristics, but only a denotation for virgin HDPE used on the different days of
experiment 1 and two types of recycled materials used in experiments 3 and 4
correspondingly. In the sequential dataset a column for both material and product type is
added. The product type column includes value of 1 for the 4 mm dogbone part and 2 for
the 15 mm one.

As seen from Table 6.31, kNN has the highest model quality on the train dataset, however,
Random Forest outperforms all the other models on the test dataset. For Table 6.32, the
similar situation is observed for the train dataset, while AdaBoost has the best
performance on the test set.

These models for both parallel and sequential joined datasets are considered more useful
than those for the separate datasets, as they are trained on more data, include samples that
describe different materials and even two different part types. Overall models’
performance on the test data in case of the joined datasets is somewhat lower than that
for the separate experiments datasets. This is due to having more scattered data that
represents not only different process settings, but also various materials and even
geometries. These models are more useful in the real industrial setting for support of the
decision-making process in case of production of 4 and 15 mm dogbones than those
trained on the separate experiments datasets. However, addition of data about more
products with other geometries, materials, etc. will increase usefulness of the models and
make them more universal.

Table 6.31. Results of predictive models hyperparameter optimization for widthl and
width2, parallel joined dataset

Model’s MLP Decision Tree

hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation logistic _
hidden layer 30
neurons
solver Ibfgs
alpha 0.05
learning rate 0.001 N
weights - distance
number of 5
neighbors
loss N -
criterion - mae - mse
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Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
max_depth - 7 - -
n_estimators - - - 50
max_features - - - sqrt
R? train set 0.88 0.99 0.99 0.99
RMSE train set 0.09 0.02 0.01 0.03
Correl. coef. 0.94 099 0.99 0.99
train set
R? test set 0.84 0.92 0.81 0.95
RMSE test set 0.11 0.07 0.11 0.06
Correl. coef. 092 096 09 0.98
test set

Table 6.32. Results of predictive models hyperparameter optimization for width,
sequential joined dataset

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -

hidden layer
neurons 15 ) ) ) ) )
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.1 0.1 -
weights - - distance - - -
number of a : 2 ; : :
neighbors
loss - - - lad exponential -
criterion - friedman_mse - - - mae
max_depth - 7 - - - -
n_estimators - - - 200 300 300
max_features - - - - - sqrt
R? train set 0.89 0.98 0.99 0.97 0.94 0.98
RMSE train set 0.1 0.05 0.03 0.06 0.07 0.04
Correl. coef. 0.94 0.99 0.99 0.98 0.97 0.99
train set
R? test set 0.85 0.92 0.87 0.94 0.91 0.93
RMSE test set 0.11 0.08 0.11 0.07 0.09 0.08
Correl. coef. 093 096 0.94 0.97 095 097
test set

6.4.2 Thickness target variable

This section presents models with the best performance and hyperparameters tuned using
grid search for the thickness target variable. The nominal values of thickness are 4 mm
(data from experiments 1, 3 and 4) and 15 mm (experiment 2). The same datasets used
for development of the models for the width focus variable are utilized here. As a result,
models are trained on both separate experiments and joined datasets. The parallel datasets
include thicknessl and thickness2 target variables, which are the thicknesses of the
first and the second specimens produced during the same machine run. Thickness focus
variable in the sequential datasets, at the same time, includes both thicknessl and
thickness2 merged sequentially.

For development of MLP and KNN models that are trained on the separate experiments
datasets, Spearman’s feature selection is used. Spearman’s FS was identified as the best
performing FS method for the thickness target variable in Section 6.3. Once again,

102



threshold for acceptance/ rejection of the parameters is set to 0.2. The rest of the ML
algorithms perform “inner” feature selection. No feature selection is performed prior to
training models with any methods using joined datasets, based on results from Section
6.3.

The datasets are divided into 70% training and 30% testing subsets, and 5-folds cross-
validation is performed on the training set. This way it is more clearly visible whether the
proposed models are able to generalize on the previously unseen data. Models’
performance measures are shown both for training and testing data.

Separate experiments datasets
Experiment 1

Average R? of the non-tuned MLP models for the training dataset based on the
Spearman’s FS is equal to 0.85, the tuned MLP for the parallel dataset has R? = 0.86 and
for the sequential it is 0.76, as it can be seen from Tables6.33 and 6.34. The last six rows
in the tables correspond to the models’ quality characteristics for the set of the best
performing hyperparameters. However, Random Forest model has high scores not only
on the training set for the parallel dataset, but also outperforms the rest of the models on
the test set. When it comes to sequential dataset, KNN has one of the best scores on the
train set and the best score on the test set for experiment 1. In general, all the models have
acceptable scores and can be used as a starting point for development of more robust
models for prediction of thickness for 4 mm thick dogbones manufactured from virgin
HDPE.

Table 6.33. Results of predictive models hyperparameter optimization for thickness1 and
thickness2, parallel dataset, experiment 1

Model’s _ MLP Decision Tree KNN Random Forest
hyperparameter | FS = Spearman Regressor
activation logistic -
hidden layer
neurons 30
solver Ibfgs
alpha 0.05
learning rate 0.001 -
weights - distance
number of 3
neighbors
loss - -
criterion - mae - mse
max_depth - 7 -
n_estimators - - - 50
max_features - - - auto
R? train set 0.86 0.99 0.99 0.99
RMSE train set 0.05 0.01 0.01 0.01
Correl. coef.
train set 0.91 0.99 0.99 0.99
R? test set 0.76 0.85 0.85 0.86
RMSE test set 0.06 0.05 0.05 0.04
Correl. coef.
test set 0.87 0.92 0.92 0.93
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Table 6.34. Results of predictive models hyperparameter optimization for thickness,
sequential dataset, experiment 1

, MLP -
hypé\:g::;rzeter FS= Dggf;s'l;ee kNN GBR AdaBoost R;:EG.ZT
Spearman
activation logistic - - - - -
hidden layer
neurons 5 ) ) ) ) )
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.1 0.001 -
weights - - uniform - - -
number of ; a 4 ; ; :
neighbors
loss - - - lad square -
criterion - mae - - - mse
max_depth - 7 - - - -
n_estimators - - - 100 100 250
max_features - - - - - sqrt
R? train set 0.76 0.96 0.93 0.92 0.92 0.96
RMSE train set 0.06 0.02 0.03 0.04 0.04 0.03
Correl. coef. 087 0.98 0.96 0.96 0.96 0.98
train set
R? test set 0.6 0.7 0.82 0.76 0.8 0.78
RMSE test set 0.08 0.07 0.05 0.06 0.06 0.06
Correl. coef.
test set 0.8 0.85 0.91 0.87 0.9 0.88

Experiment 2

Performance of all the models trained on the experiment 2 dataset is significantly lower
on the test set than on the train set. This shows poor ability of the models to generalize on
the previously unseen data. Since 5-folds cross-validation was used to evaluate the
models on the train set, overfitting should not be present. One of the most probable
reasons for occurrence of this phenomena is having a small number of samples (72) in
this dataset. Therefore, to increase quality of these models, it is necessary to collect more
relevant data on production of the 15 mm thick dogbone parts before these models can
become useful for decision-making support in the real industrial setting.

Table 6.35. Results of predictive models hyperparameter optimization for thickness,
experiment 2

" Model’s "\:ASL:P Decision Tree KNN GBR AdaBoost Random
yperparameter Spearman Regressor Forest
activation logistic - - - - -

hidden layer
neurons 3 ) ) ) ) )
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.1 0.005 -
weights - - distance - - -
number of } } 5 } : }
neighbors
loss - - - huber exponential -
criterion - mae - - - mae
max_depth - 5 - - - -
n_estimators - - - 100 250 50
max_features - - - - - auto
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MLP .
Model’s Decision Tree Random
FS= KNN GBR AdaBoost
hyperparameter Spearman Regressor Forest
R? train set 0.78 0.99 0.99 0.99 0.98 0.99
RMSE train set 0.01 0.01 0.01 0.01 0.01 0.01
Correl. coef. 0.89 0.99 099 0.99 0.99 0.99
train set
R? test set 0.14 0.5 0.47 0.56 0.53 0.52
RMSE test set 0.03 0.02 0.03 0.02 0.02 0.02
Correl. coef.
test set 0.57 0.79 0.74 0.82 0.8 0.79

Experiment 3

The models trained on the parallel data from experiment 3 have big difference between
the performance on the train and test datasets, and only MLP and Random Forest models
have acceptable R? scores on the test set , which are 0.74 for MLP and 0.7 for Random
Forest. The models trained on the sequential dataset, on the other hand, have a better
performance on the test set with R? of up to 0.84 in the Decision Tree, GBR and Random
Forest models. This can be explained by having twice as many samples as in the case of
the parallel datasets and therefore having more data to train on. In addition, some of the
samples included in the train set might correspond to thicknessl1, while samples for this
machine run but for thickness2 might get included into the test one. GBR, AdaBoost and
Random Forest models created for prediction of thickness of 4 mm thick dogbone parts
manufactured from ContainerService recycled HDPE have a relatively high quality and
can be used as a starting point for the decision-making assistance. However, addition of
more relevant data will increase the models’ quality.

Table 6.36. Results of predictive models hyperparameter optimization for thickness1 and
thickness2, parallel dataset, experiment 3

Model’s MLP Decision Tree
hyperparameter | FS = Spearman Regressor kNN Random Forest
activation logistic - - -
hidden layer 20 : } )
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of R B 4 R
neighbors
loss - - - -
criterion - mse - mae
max_depth - 7 - -
n_estimators - - - 300
max_features - - - sqrt
R? train set 0.87 0.99 0.99 0.96
RMSE train set 0.04 0.01 0.01 0.02
Correl. coef.
train set 0.93 0.99 0.99 0.98
R? test set 0.74 0.37 0.54 0.7
RMSE test set 0.05 0.08 0.06 0.05
Correl. coef.
test set 0.87 0.84 0.77 0.84

105



Table 6.37. Results of predictive models hyperparameter optimization for thickness,
sequential dataset, experiment 3

s MLP -
hypé\:g::;r;eter FS= Dg:éSgI?;;rree kNN GBR AdaBoost R;:i'?sT
Spearman
activation logistic - - - - -
hidden layer
neurons 10 ) ) ) ) )
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.05 0.001 -
weights - - uniform - - -
number of ; } 2 } } )
neighbors
loss - - - lad exponential -
criterion - mae - - - mae
max_depth - 10 - - - -
n_estimators - - - 200 150 100
max_features - - - - - Log2
R? train set 0.81 0.93 0.91 0.89 0.89 0.93
RMSE train set 0.05 0.03 0.03 0.04 0.04 0.03
Correl. coef. 0.9 0.97 0.96 0.95 0.95 0.96
train set
R? test set 0.74 0.84 0.79 0.84 0.8 0.84
RMSE test set 0.06 0.05 0.05 0.05 0.05 0.05
Correl. coef.
test set 0.87 0.92 0.89 0.92 0.9 0.92
Experiment 4

Performance of the models trained on both parallel and sequential datasets for experiment
4 is similar to that for experiment 3, being slightly higher for the test set for the parallel
dataset. The reasons for having a relatively high performance on the test dataset for the
sequential dataset are similar to those for experiment 3. In general, it is possible to see
that the models’ performance for the separate experiments parallel and sequential datasets
for the thickness dimensional property are lower than for the width target variable. At the
same time, the experiment 4 models’ performance is acceptable in all cases except the
kNN model for the parallel dataset (due to the model’s score on the test set).

Table 6.38. Results of predictive models hyperparameter optimization for thickness1 and
thickness2, parallel dataset, experiment 4

Model’s _ MLP Decision Tree KNN Random Forest
hyperparameter | FS = Spearman Regressor
activation logistic - - -
hidden layer 10 B R R
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate - - -
weights - - distance -
number of } : 2 :
neighbors
loss - - - -
criterion - mse - mae
max_depth - 5 - -
n_estimators - - - 150
max_features - - - sqrt
R? train set 0.94 0.99 0.99 0.99
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Model’s _ MLP Decision Tree KNN Random Forest
hyperparameter | FS = Spearman Regressor
RMSE train set 0.03 0.01 0.01 0.01
Correl. coef.
train set 0.97 0.99 0.99 0.99
R? test set 0.77 0.73 0.38 0.79
RMSE test set 006 0.07 0.1 0.06
Correl. coef.
test set 0.89 0.87 0.7 0.89

Table 6.39. Results of predictive models hyperparameter optimization for thickness,
sequential dataset, experiment 4

Model’s '\FASL:P Decision Tree KNN GBR AdaBoost Random
hyperparameter S Regressor Forest
pearman
activation logistic - - - - -
hidden layer 20 ; ) a ) ;
neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.1 1 -
weights - - distance - - -
number of } : 2 : ) :
neighbors
loss - - - lad square -
criterion - mae - - - mse
max_depth - 7 - - - -
n_estimators - - - 300 200 300
max_features - - - - - sqrt
R? train set 0.95 0.99 0.99 0.99 0.98 0.99
RMSE train set 0.02 0.01 0.01 0.01 0.02 0.01
Correl. coef. 0.98 0.99 0.99 0.99 0.99 0.99
train set
R? test set 0.85 0.81 0.84 0.89 0.89 0.87
RMSE test set 0.05 0.06 0.05 0.04 0.04 0.05
Correl. coef. 093 0.92 0.92 095 094 0.94
test set

Joined datasets

Based on the data shown in Table 6.40 for the parallel joined dataset, Decision Tree and
Random Forest algorithms have the best performance on the train dataset, while on the
test set Random Forest model outperforms the rest. As for the Table 6.41 and the
sequential dataset, the models show extremely high scores in terms of R? and the
correlation coefficient both on train and test sets, while the RMSE varies. The worst
RMSE is obtained from the MLP model, while the best one from GBR and Random
Forest. The models’ quality trained on the joined datasets is higher in comparison to the
models trained on the separate experiments datasets. This confirms that the more relevant
production data is gathered, the better generalization abilities will be shown by the models
trained on it. At the same time, the joined datasets have relatively high performance
characteristics and can be utilized as a decision-support tool for production of 4 and 15
mm thick dogbones, however, the models need to be updated with more data in order to
increase their usefulness and generalization ability.
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Table 6.40. Results of predictive models hyperparameter optimization for thickness1 and
thickness2, parallel joined dataset

Model’s MLP Decision Tree
hyperparameter FS=No FS Regressor kNN Random Forest
activation logistic - - -
hidden layer 15 R R R
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 3 }
neighbors
loss - - - -
criterion - friedman_mse - mse
max_depth - 10 - -
n_estimators - - - 100
max_features - - - sqrt
R? train set 0.64 0.98 0.99 0.98
RMSE train set 0.08 0.02 0.01 0.02
Correl. coef. 0.82 0.99 0.99 0.99
train set
R? test set 0.61 0.8 0.67 0.87
RMSE test set 0.08 0.06 0.08 0.05
Correl. coef.
test set 0.79 0.9 0.83 0.94

Table 6.41. Results of predictive models hyperparameter optimization for thickness,
sequential joined dataset

Model’s MLP Decision Tree Random
hyperparameter FS =No FS Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -
hidden layer 20 ) : } ) ;

neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.1 0.05 -
weights - - distance - - -
number of ) ) 5 ; ) a
neighbors
loss - - - huber exponential -
criterion - mae - - - mae
max_depth - 15 - - - -
n_estimators - - - 150 200 150
max_features - - - - - sqrt
R? train set 0.99 0.99 0.99 0.99 0.99 0.99
RMSE train set 0.12 0.02 0.02 0.03 0.06 0.03
Correl. coef.
train set 0.99 0.99 0.99 0.99 0.99 0.99
R? test set 0.99 0.99 0.99 0.99 0.99 0.99
RMSE test set 0.12 0.06 0.07 0.05 0.06 0.05
Correl. coef.
test set 0.99 0.99 0.99 0.99 0.99 0.99

6.4.3 Dimensional properties prediction as a vector of width and thickness

In addition to creation of the models for prediction of separate dimensional properties of
the focus parts, it is also of interest to evaluate potential models for their simultaneous
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prediction, as a vector. To do this, the sequential joined dataset was used, and width and
thickness properties were predicted using the multi-output learning, similar to prediction
of width1 and width2 or thickness1 and thickness2 (width and thickness of the first and
the second specimens produced during the same machine run). However, in this case
width and thickness were used as target variables simultaneously. MLP, Decision Tree
Regressor, kNN and Random Forest algorithms can create the multi-output models
among the six methods used in this work.

The same way as before, the dataset was divided into 70% training and 30% testing
subsets, and 5-folds cross-validation was performed on the training dataset. Grid search
was used to evaluate a set of models’ hyperparameters to choose the one with the highest
score. The evaluated hyperparameter sets are the same as presented in the beginning of
Section 6.4 for the corresponding algorithms.

Table 6.42 shows the chosen hyperparameters and the corresponding model performance
characteristics (R?, RMSE and correlation coefficient). Since the used dataset includes
only 19 features and based on the results from Section 6.3, no feature selection was
performed prior to training the MLP and KNN models. As it can be seen from Table 6.42,
models trained using all four algorithms have high performance both on training and on
test sets. The best R? and correlation coefficient on test set are obtained by applying
Decision Tree Regressor and kNN, while Random Forest has the lowest RMSE.

Table 6.42. Results of predictive models hyperparameter optimization for width,
thickness, sequential joined dataset

Model’s MLP Decision Tree
hyperparameter | FS = No FS Regressor kNN Random Forest
activation logistic -
hidden layer
neurons 3
solver Ibfgs
alpha 0.05
learning rate 0.001 -
weights - distance
number of 2
neighbors
loss - -
criterion - mae - mae
max_depth - 12 -
n_estimators - - - 200
max_features - - - auto
R? train set 0.98 0.99 0.99 0.99
RMSE train set 0.35 0.03 0.03 0.03
Correl. coef. 0.95 0.99 0.99 0.99
train set
R? test set 0.99 0.99 0.99 0.95
RMSE test set 0.1 0.08 0.09 0.05
Correl. coef.
test set 0.96 0.97 0.97 0.94

Figures 6.10 and 6.11 show comparison of the actual (measured) and predicted by
different models width and thickness values. 15 specimens, for which prediction is made,
are randomly selected from the test set. In most of the cases Decision Tree, kNN and
Random Forest have very similar predictions, while MLP is the one who has the highest
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deviation (it also has the lowest scores in the Table 6.42). The Decision Tree, KNN and
Random Forest models can be used as a decision-support tool, while more data is obtained
to increase the models’ performance. It is also suggested that the Random Forest is
preferred over the rest of the models due to having lower RMSE and being more robust
in comparison to the others. The Decision Tree model can be used when an easy to
interpret model is needed.

Figures 6.12 and 6.13 show the scoring that Decision Tree and Random Forest algorithms
give to the variables that are included in the training dataset. Even though the algorithms
have similar performance characteristics, they score the models parameters in a
completely different way. Parameters with the highest scores from the Decision Tree
algorithm are cushion after holding pressure and holding pressure. The rest of the
parameters have very low values, and some are equal to zero. Random Forest, on the other
hand, gives a bigger number of parameters higher scores, and the ones with the highest
scores are material, cushion after holding pressure, smallest cushion value, injection time
and pressure at switchover.

Width Actual and Predicted

mWidth Actual ~ ® Width MLP  ® Width Decision Tree Width kNN ® Width Random Forest

98
96
24
9.2
9
- “‘ “‘
86

1532 3022 2331 2251 3121 3272 1211 31.32 23.1 422 2642 511 2512 17.11 10.12

Width, mm

Specimen code

Figure 6.10. Actual and predicted values of width target variable
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Figure 6.11. Actual and predicted values of thickness target variable
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Decision Tree parameter scores
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Figure 6.12. Decision Tree parameter scores

Random Forest parameter scores
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Figure 6.13. Random Forest parameter scores
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Chapter 7

Module CC2 - Prediction of mechanical properties of the
produced parts based on the general datasets

To be or not to be
Is a stupid question
If you have been happy at least once.

— Boris Akunin, “The Diamond Chariot”

This chapter describes development of the predictive models of mechanical properties of
the produced parts using the general datasets, composition of which is explained in
Section 4.4.1. The chapter includes four main sections: data exploration, data
preprocessing, feature selection and description of the created models.

7.1 Data exploration

Mechanical properties data (tensile modulus, tensile strength and tensile strain at break)
is part of the quality data used to create the predictive models. The ability to predict
approximate mechanical properties of the produced parts is as important as prediction of
the dimensions. There are many products where not only the appearance and dimensional
tolerances are critical, but also the amount of load and stress that the product can
potentially withstand. To gain a better understanding of the data obtained in the
experiments conducted within this PhD work and identify possible outliers, data
exploration of the mechanical properties data is presented.

7.1.1 Tensile modulus (Young’s modulus) measurements

According to the data sheet for the BorSafe™ virgin HDPE, the material’s tensile
modulus is 800 MPa, for tensile stress tests conducted with 1 mm/min speed. For RePro
recycled HDPE only the value of flexural modulus is provided — 900 MPa, while there is
no such data available for ContainerService due to the differences in the materials used
for production of the recycled plastic pallets. Table 7.1 shows maximum, minimum,
average and standard deviation values of the tensile modulus obtained from testing the
specimens at hand. The highest minimum tensile modulus is obtained for the RePro
recycled HDPE, while the lowest minimum value is for BorSafe™ virgin HDPE for a 4
mm thick specimen. The highest maximum tensile modulus is registered when testing the
RePro recycled material, the lowest maximum, on the other hand, is obtained from testing
15 mm thick virgin HDPE dogbone. In general, the data from Table 7.1 shows that
recycled materials used in the study have higher values of tensile modulus on average in
comparison to the virgin HDPE. The highest average is obtained from the experiment 4
data, while the lowest from experiment 1. The lowest standard deviation is observed for
experiment 2 measurements and the highest for experiment number 1.
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Table 7.1. Maximum and minimum values of tensile modulus within the experiments 1-

4

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Minimum tensile modulus, 752.22 873.43 1003.05 1061.15
MPa
Maximum tensile modulus, 1417.17 1017.35 1328.27 1428.53
MPa
Average, MPa 922.16 963.3 1142.05 1260.81
Standard deviation, MPa 115.2 18.28 60.76 60.92

Figure 7.1 depicts distribution of the tensile modulus measurements. Based on the Figures
7.1 (a)-(b) for experiments 1 and 2 all the data points, where tensile modulus is higher
than 1200 MPa are considered outliers and are removed from further analysis. For
experiment 3 all the data points higher than 1300 MPa are considered outliers, while for
experiment 4 — those above 1400 MPa. As a result, data about 3 specimens was removed
from experiment 1, no specimens data was removed from experiment 2 data, 3 specimens
were removed from experiment 3 and 5 from experiment 4. The outliers are examples of
samples that represent Young’s modulus values that significantly differ from the mean of
the random variable under consideration. The reasons for their appearance might be
human errors (an error of securing a specimen in the tensile testing machine’s grippers)
or instrumental errors (video extensometer has failed to correctly identify the white dots
on the surface of a specimen). These errors might have also influenced the measurements
related to the specimens that are not considered as outliers brining additional uncertainty
and a source of error into further calculations and analysis.

According to Figure 7.1 (a)-(d) for experiment 1 most of the values seem to lay between
800 and 1200 MPa, for experiment 2 between 920 and 1000 MPa, for experiment 3
between 1000 and 1300 MPa, while for experiment 4 in the range of 1100 and 1400 MPa.
These differences are mainly based on the differences in the used materials, set processing
parameters, as well as the dogbones parts thickness of 4 and 15 mm.

113



Y 4
.” .'0 .‘.'7.
- ® ]
b e, o
.“ﬁ. . e’ Se°
B0 900 1000 1100 1200 1300 1400 880 90 920 40 %0 980 1000 1020
Modulus Youngs, MPa Modulus Youngs, MPa
(a) Experiment 1 (b) Experiment 2
We .
* 'ﬂ.i’ . @ . %- ® 0,0
*, -a‘ .0 R - J [
. 0 ."; *e® 8 o, 0 t."
® q o000 ‘e . LI
; " ® g0 . . ‘l.l%‘ . -
* ee 3 X L] L] * ool s o
* B
e’ . o,
ase® PO S .
L ] . ]
LA ) ‘é..: . LY
. o ¥ o ¢ 3%
1000 1050 1100 1150 1200 1250 1300 1100 1200 1300 1400
Modulus Youngs, MPa Modulus Youngs, MPa
(c) Experiment 3 (d) Experiment 4

Figure 7.1. Distribution of tensile modulus values for experiments 1-4

Figure 7.2 helps to increase understanding of the data in Table 7.1 through depicting
kernel density estimation of the tensile modulus data and the corresponding average and
standard deviation values. For experiments 2-4 the KDE follow the distributions close to
normal. KDE for experiment 1, on the other hand, is multimodal. Some of the reasons for
this might be a larger number of machine runs in experiment 1 (and more datapoints),
differences in the material properties, molding conditions and IMM parameter settings.
At the same time, it is possible to see that one of the mode values for experiment 1 is
close to 800 MPa, for experiment 2 to about 975 MPa, for experiment 3 it is near to 1100
MPa, while for experiment 4 — 1300 MPa.

Figures 7.3 (a)-(b) depict KDE for the specimens 1 and 2 separately for experiments 1, 3
and 4. KDEs for the specimens 1 and 2 have very similar shapes, meaning that in terms
of tensile modulus the specimens produced during the same run are rather similar to each
other. Appendix C includes figures that show dependency of the tensile modulus or
Young’s modulus on the varied DOE parameters. However, it is hard to see any clear
patterns when observing the graphs, as in most cases both higher and lower tensile
modulus values are present for low/ high values of the varied process parameters.
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Figure 7.2. Kernel Density Estimation for tensile modulus measurements, experiments
1-4 with mean and standard deviation
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Figure 7.3. Kernel Density Estimation distributions for tensile modulus, experiments 1,
3, 4 and specimens 1 and 2
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7.1.2 Tensile strength measurements

Similarly to the tensile modulus Table 7.2 includes the minimum, maximum, average and
standard deviation values for the obtained tensile strength data. In this case, the largest
minimum for the 4 mm specimens was observed for one of the experiment 3 dogbones
and the corresponding ContainerService recycled HDPE. The largest maximum value
also corresponds to experiment 3. The same way as for the tensile modulus, experiment
3 and 4 and the corresponding recycled HDPE materials have higher tensile strength
values on average in comparison to experiments 1 and 2. At the same time, experiment 3
has the largest average value among the experiments, where the dogbone thickness is
equal to 4 mm, the lowest value of standard deviation for the same type of dogbones is
obtained for experiment 4.

Table 7.2. Maximum and minimum values of tensile strength within the experiments 1-4

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Minimum tensile strength, 20.93 20.46 27.3 26.7
MPa
Maximum tensile strength, 29.09 22.09 37.05 32.22
MPa
Average, MPa 24.63 21.56 29.93 28.59
Standard deviation, MPa 1.36 0.21 2.06 1.22

Figure 7.4 shows distribution of the tensile strength values within the conducted
experiments. For experiment 1 most of the values are concentrated in the range between
23 and 28.5 MPa, for experiment 2 between 21.25 and 22 MPa, for experiment 3 between
27 and 34, while for experiment 4 between 27 and 31 MPa. As a result, tensile strength
values for experiment 1 that are below 23 MPa and above 28.5 MPa are considered
outliers, for experiment 2 those below 21.25 MPa and above 22 MPa, for experiment 3
all the values above 34 MPa, while for experiment 4 those higher than 31 MPa. As a
result, data about 19 specimens was removed from the experiment 1 dataset, 5 from
experiment 2, 9 from experiment 3 and 8 from experiment 4. Once again human and
instrumental errors are the most probable sources of error, as it is in case of the Young’s
modulus.
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Figure 7.4. Distribution of tensile strength values for experiments 1-4

Figure 7.5 shows kernel density distributions for all the dogbones manufactured in the
experiments as well as average and standard deviation values. KDEs for experiments 2
and 4 seem to be close to being normally distributed, while KDEs for experiment 1 and 3
have bimodal or multimodal distributions. The mode values for experiment 1 are around
22.5 and 25.5 MPa, for experiment 2 21.5 MPa, for experiment 3 — 28 and 32 MPa, while
for experiment 4 28 MPa.

Figure 7.6 shows KDE for experiments 1, 3 and 4 and specimens 1 and 2 separately.
Distributions for specimen 2 for experiments 1, 3 and 4 follow multimodal distributions,
while for specimen 1 distributions for experiments 3 and 4 are close to normal. These
differences might come from uneven heat distribution in the mold during the production
of two doghones at the same time. Figures depicting relationships between the DOE
parameters and the tensile strength focus variable are presented in Appendix C, however,
similarly to tensile modulus graphs, it is hard to find any clearly visible patterns.
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Figure 7.5. Kernel Density Estimation for tensile strength, experiments 1-4 with mean
and standard deviation
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7.1.3 Tensile strain at break measurements

Table 7.3 contains range data for the tensile strain at break measurements. The highest
minimum and maximum values for the tensile strain at break were obtained for
experiment 2, this experiment also has the biggest range of values for this quality
characteristic. The lowest values, on the other hand, were measured during testing the
experiment 3 specimens, these values range is the smallest one among the four
experiments. According to the data in Table 7.3 tensile strain at break values are on
average higher for the experiments 1 and 2 (virgin HDPE) in comparison to those for
experiments 3 and 4 (recycled HDPE). The highest average value for the tensile strain at
break for experiments where the thickness value is 4 mm is gained for experiment 4, the
lowest standard deviation is obtained for experiment 3.

Table 7.3. Maximum and minimum values of the tensile strain at break within the
experiments 1-4

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Minimum tensile strain at break, 20.67 68.62 8.11 25.21
%
Maximum tensile strain at break, 160.45 274.6 34.4 106.35
%
Average, % 41.85 143.92 22.67 47.18
Standard deviation, % 21.52 47.56 5.7 12.55

Figure 7.7 shows distribution of the tensile strain at break values. It can be seen from
Figure 7.7 (a) that most of the tensile strain at break values of experiment 1 are between
20 and 120 %, while the highest concentration is observed between 20 and 40 %. For
experiment 2, most of the values lay between 68 and 250 %, for experiment 3 between 5
and 30 %, while for experiment 4 between 25 and 80 %. Therefore, the values above 120
% for experiment 1, above 250% for experiment 2, below 5 and above 30 % for
experiment 3 and above 80 % for experiment 4 are considered outliers and are removed
from the datasets for any further analysis. For experiment 1 6 specimens were removed,
for experiment 2 — 2 specimens, for experiment 3 — 17, while for experiment 4 — 6. The
possible sources or error here are human, instrumental and method. In case of the method
error, the break point can be calculated in different ways depending on the selected
method. It might be that another break point calculation algorithm would result in less
outliers.
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Figure 7.7. Distribution of tensile strain at break values for experiments 1-4

Figure 7.8 depicts KDEs for tensile strain at break for all the specimens manufactured
during the different experiments. As it is seen from the figures, KDEs for experiments 1
and 4 follow a distribution close to normal, while experiments 2 and 3 are bimodal.
Experiment 3 distribution is also the narrowest one, as it has the smallest range of the

tensile strain at break values.
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Figure 7.8. Kernel Density Estimation for tensile strain at break, experiments 1-4 with

mean and standard deviation

Figure 7.9 shows KDE for specimens 1 and 2 separately. In general, distributions for
specimens 1 and 2 have very similar shapes and almost do not differ. Appendix C includes
figures that show relationships between the different DOE parameters and tensile strain
at break. However, similarly to the figures for tensile modulus and tensile strength it is
hard to see any clear trends.
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7.2 Data preprocessing

The same way as for the width and thickness target variables, preprocessing for the
mechanical properties data has been conducted. In addition to the steps described in
Section 6.2, samples number 4.3.2 (4.3) and 28.1.1 (28.1) were removed from the
experiment 3 sequential and parallel datasets.

When it comes to removal of outliers for experiments 1 and 2 all the data points, where
tensile modulus is higher than 1200 MPa were removed. For experiment 3 all the data
points higher than 1300 MPa were eliminated, while for experiment 4 — those above 1400
MPa.

For tensile strength all the samples with values lower than 23 and higher than 28.5 MPa
where removed from experiment 1 data, those lower than 21.25 and higher than 22 from
the experiment 2 data, values higher than 34 MPa from experiment 3 data samples and
those higher than 31 MPa from the experiment 4 data.

In addition the samples with tensile strain at break values above 120 % for experiment 1,
above 250% for experiment 2, below 5 and above 30 % for experiment 3 and above 80
% for experiment 4 are considered outliers and are removed from the datasets for any
further analysis. As mentioned in the previous sections. The resulting datasets sizes are
presented in Table 4.5, Chapter 4. After the outliers’ removal the feature selection
described in detail in Section 7.3 was carried out. The last step of data preprocessing for
the mechanical properties target data was normalization using z-score method.

7.3 Feature selection

Similarly to the dimensional target variables it is necessary to conduct the feature
selection process for the mechanical quality characteristics. Young’s modulus or tensile
modulus, tensile strength and tensile strain at break characteristics are of interest, and
therefore, feature selection is performed for each of them separately for separate
experiments and joined datasets.

Five different feature selection methods (Pearson’s correlation, Spearman’s correlation,
RFE, CFS and RReliefF) are tested to define which is best to be used in this case. The
most fitting FS method is chosen based on application of the FS methods to the
experiment 1 dataset. The procedure that is used in this case is similar to that described
in Chapter 6, Section 6.3. The most suitable method is chosen based on the score of the
MLP model trained using the features considered significant by the corresponding FS
method.

7.3.1 Young’s modulus target variable

Separate experiments datasets

The list of the parameters considered in feature selection for all the mechanical properties
target variables is the same as for the dimensional ones. However, the number of samples
in the datasets is a bit smaller due to elimination of the outliers mentioned in the previous
section. Random state for dataset partitioning for application of 5-folds cross-validation
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is set to 2. All the parameters whose score is higher than 0.2 are considered significant
and are included in the MLP model. The model was trained using the following settings:

model = MLPRegressor(solver = 'lbfgs', activation = 'logistic',
alpha le-5, learning_rate_init = 0.3, hidden_layer_sizes = 12,
random_state = 2, momentum = 0.2);

Tables 7.4 — 7.6 show the scores obtained by using the FS methods for identifying the
most influential parameters for Young’s modulusl, Young’s modulus2 and Young’s
modulus from the parallel and sequential datasets. Young’s modulusl and Young’s
modulus2 target variables are characteristics for specimens number 1 and 2 that are
produced during the same production run, they are used as focus variables in the parallel
datasets. For the sequential datasets, however, Young’s modulus target variable is used,
which includes Young’s modulusl and Young’s modulus2 merged sequentially. When
no feature selection is used with Young’s modulus1 and the parallel dataset, the MLP
scores are as follows: R? = 0.4, RMSE = 74.55, correlation coefficient = 0.66. CFS
method is able to increase the model’s R? score to 0.46, RMSE is lowered down to 71.63,
while the correlation coefficient becomes 0.76. Parameters with some of the lowest scores
according to any of the methods are plasticization time, injection speed, injection time
and switchover volume. Nozzle temperature, holding pressure, various cushion
characteristics, closing force and holding pressure time, on the other hand, are those with
some of the highest scores.

Table 7.4. Feature selection for experiment 1 Young’s modulusl target variable, parallel
dataset

# Parameter name Pearson | RFE | Spearman | CFS RReliefF | Mean
1. Nozzle_tempr_z2_average 1 0.71 0.97 1 0.65 0.87
2. Holding_pressure 0.68 0.92 0.72 1 1.00 0.86
3. | Heating_cyll z1 set 1 0.63 1 1 0.66 0.86
4. Cushion_after_hold_pres 0.79 0.29 0.88 1 0.99 0.79
5. Cushion_smallest 0.84 0.17 0.87 1 0.80 0.74
6. Cushion_average 0.86 0.21 0.87 1 0.69 0.73
7. Closing_force 0.35 0.75 0.62 1 0.48 0.64
8. Holding_pres_time 0.23 0.67 0.18 1 0.73 0.56
9. Clamp_force_switchov 0.56 0.37 0.66 1 0.18 0.55
10. | Screw_speed 05 0.08 0.53 1 0.32 0.49
11. | Ejector_pos_last 0.67 0 0.67 1 0.07 0.48
12. | Speed_max 0.52 0.04 0.55 1 0.28 0.48
13. | Screw_speed_max 0.49 1 0.5 0 0.34 0.47
14. | Backpressure 0.37 0.79 0.34 0 0.61 0.42
15. | Flow_no_plast 0.58 0.46 0.6 0 0.14 0.36
16. | Cooling_time_last 0.32 0.88 0.33 0 0.11 0.33
17. | Tool_Temperature 0.03 0.83 0.03 0 0.72 0.32
18. | Last_cycle time 0.19 0.96 0.17 0 0.13 0.29
19. | Cooling_time 0.33 0.5 0.34 0 0.26 0.29
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
20. | Spec_pres_switchov 0.25 0.58 0.28 0 0.19 0.26
21. | Injection_work 0.39 0.25 0 0 0.58 0.24
22. | Plast_time 0.17 0.42 0.57 0 0.00 0.23
23. | Injection_Speed 0 0.54 0.02 0 0.49 0.21
24. | Injection_time 0.39 0.33 017 0 0.00 0.18
25. | Switchov_vol 0 0.13 0.12 0 0.20 0.09

MLP R?score 0.08 041 0.29 0.46 0.44

MLP RMSE 92.38 74.6 79.55 71.63 70.97

Correlation coef. 04 0.72 0.51 0.76 0.73

For the Young’s modulus2 (characteristic of the second specimen out of two that are
produced simultaneously) no feature selection results in the R? equal to 0.43, RMSE =
68.66 and correlation coefficient of 0.75. RReliefF and Pearson’s correlation are able to
improve these characteristics to R? 0.52, RMSE of 62.72 and 62.93 correspondingly,
while the correlation coefficient is either 0.76 or 0.78. Distribution of the parameter scores

is quite similar to that for the Young’s modulus1 with some slight differences.

Table 7.5. Feature selection for experiment 1 Young’s modulus2 target variable, parallel

dataset
# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Holding_pressure 0.8 0.92 0.82 1 0.79 0.87
2. Nozzle_tempr_z2_average 1 0.33 0.97 1 0.47 0.75
3. Heating_cyll z1 set 1 0.29 1 1 0.47 0.75
4. Cushion_after_hold_pres 0.89 0.25 0.96 1 0.63 0.75
5. Cushion_smallest 0.92 0.17 0.94 1 0.48 0.70
6. Cushion_average 0.91 0.21 0.92 1 0.40 0.69
7. Clamp_force_switchov 0.65 0.37 0.72 1 0.52 0.65
8. Closing_force 041 0.58 0.65 1 0.55 0.64
9. Speed_max 0.5 0.13 0.52 1 0.35 0.50
10. | Backpressure 0.45 0.88 0.42 0 0.69 0.49
11. | Screw_speed 0.5 0.08 051 1 0.29 0.48
12. | Ejector_pos_last 0.69 0 0.66 1 0.00 0.47
13. | Tool_Temperature 0.01 1 0.04 0 1.00 0.41
14. | Flow_no_plast 0.56 0.63 0.56 0 0.27 0.40
15. | Screw_speed _max 0.49 0.54 0.48 0 0.30 0.36
16. | Spec_pres_switchov 041 0.79 0.36 0 0.09 0.33
17. | Holding_pres_time 0.16 0.83 0.09 0 0.55 0.33
18. | Plast_time 0.2 0.71 0.56 0 0.00 0.29
19. | Injection_work 0.21 0.5 0.16 0 0.54 0.28
20. | Last cycle time 0.09 0.96 0.05 0 0.10 0.24
21. | Injection_time 0.43 0.67 0.08 0 0.00 0.24
22. | Cooling_time 0.24 0.42 0.23 0 0.10 0.20
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
23. | Cooling_time_last 0.19 0.46 0.21 0 0.12 0.20
24. | Injection_Speed 0 0.75 0 0 0.06 0.16
25. | Switchov_vol 0.02 0.04 0.09 0 0.00 0.03
MLP R?score 0.52 0.15 0.34 0.49 0.52
MLP RMSE 62.93 96.51 74.22 66.71 62.72
Correlation coef. 0.78 0.25 0.62 0.75 0.76

For the sequential dataset and no FS, the MLP model has an R? of 0.52, RMSE equal to
71.51, while the correlation coefficient is 0.74. However, the Pearson’s correlation
coefficient use can improve these scores to 0.66, 60.42 and 0.82 correspondingly.

Table 7.6. Feature selection for experiment 1 Young’s modulus target variable, sequential
dataset

# Parameter name Pearson | RFE | Spearman | CFS RReliefF | Mean
1. Holding_pressure 0.75 0.92 0.77 1 0.22 0.73
2. Closing_force 0.42 0.58 0.65 1 1.00 0.73
3. Clamp_force_switchov 0.6 0.37 0.67 1 0.93 0.71
4. Cushion_smallest 0.88 0.54 0.9 1 0.21 0.71
5. Nozzle_tempr_z2_average 1 0.17 0.97 1 0.21 0.67
6. Heating_cyll z1 set 1 0.13 1 1 0.21 0.67
7. Cushion_after_hold_pres 0.85 0.21 0.91 1 0.16 0.63
8. Speed_max 0.56 0.04 0.57 1 0.31 0.50
9. | Screw_speed 0.54 0.08 0.55 1 0.24 0.48
10. | Ejector_pos_last 0.68 0 0.66 1 0.00 0.47
11. | Cushion_average 0.88 0.33 0.89 0 0.20 0.46
12. | Backpressure 0.41 0.83 0.37 0 0.54 0.43
13. | Screw_speed_max 0.53 0.88 0.52 0 0.17 0.42
14. | Flow_no_plast 0.62 0.5 0.62 0 0.10 0.37
15. | Holding_pres_time 0.24 0.79 0.17 0 047 0.33
16. | Last cycle_time 0.18 1 0.16 0 0.33 0.33
17. | Cooling_time 0.35 0.63 0.34 0 0.28 0.32
18. | Spec_pres_switchov 0.38 0.71 0.36 0 0.14 0.32
19. | Cooling_time_last 0.32 0.75 0.32 0 0.19 0.32
20. | Tool Temperature 0.07 0.96 0.03 0 0.35 0.28
21. | Plast_time 0.23 0.42 0.59 0 0.00 0.25
22. | Injection_work 0.34 0.46 0.1 0 0.27 0.23
23. | Injection_Speed 0 0.67 0 0 0.33 0.20
24. | Switchov_vol 0.1 0.29 0.15 0 0.34 0.18
25. | Injection_time 0.44 0.25 0.19 0 0.00 0.18
MLP R?score 0.66 0.55 0.5 0.63 0.56
MLP MSE 60.42 69.1 71.91 62.66 68.64
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean

Correlation coef. 0.82 0.75 0.77 0.8 0.77

Based on the average MLP models scores presented in Table 7.7 RReliefF feature
selection method allows to select the most relevant features and increase the overall model
performance. As a result, RReliefF FS method will be used before training the MLP and
kNN models for the Young’s modulus target variable.

Table 7.7. MLP average accuracy measures (R?, RMSE, correlation coefficient) for
feature selection with different methods (Young’s modulus target variable)

Accuracy measure | No FS Pearson | RFE | Spearman | CFS | RReliefF
Experiment 1, parallel
dataset, Young’s MLP R? score 04 0.08 041 0.29 0.46 0.44
modulusl target MLP RMSE 7455 | 9238 | 746 | 7955 | 7163 | 70.97
variable
Correlation coef. 0.66 0.4 0.72 0.51 0.76 0.73
Experiment 1, parallel
dataset, Young’s MLP R2 score 0.43 0.52 0.15 0.34 0.49 0.52
modulus2 target MLP RMSE 68.66 | 6293 | 9651 | 7422 | 6671 | 6272
variable
Correlation coef. 0.75 0.78 0.25 0.62 0.75 0.76
Experiment 1, MLP R2 score 0.66 0.55 0.5 0.63 0.56 0.66
sequential dataset,
Young’s modulus target | MLP RMSE 60.42 69.1 7191 62.66 68.64 60.42
variable Correlation coef. 0.82 075 | 077 08 077 | 082
MLP R?score,
average 0.50 0.38 0.35 0.42 0.50 0.54
Average MLP RMSE,
9 average 67.88 74.80 81.01 72.14 68.99 64.70
Correlation coef.
average 0.74 0.64 0.58 0.64 0.76 0.77

Joined dataset

It is of interest to apply feature selection methods to the joined datasets, where data from
different experiments is integrated together. There is no difference in the FS procedure
and the same five FS methods are tested with the datasets. To apply 5-folds cross-
validation the random state for dataset partitioning is set to 0. Only those parameters that
have the FS score higher than 0.2 are included in the MLP model to check performance
of the feature selection methods. The model is created using the following settings:

model = MLPRegressor(solver = 'lbfgs', activation = 'logistic',
alpha = 1e-5, learning_rate_init = 0.3, hidden_layer_sizes =
(X.shape[1]+1)/2, random_state = 2, momentum = 0.2),

as in the previous cases of the joined dataset utilization, X.shape[1] is a number of
parameters considered in the model. For the parallel joined dataset and Young’s
modulusl target variable (characteristic of the first out of two specimens produced at the
same time) with no FS the MLP scores are as follows: R? = 0.77, RMSE = 75.3,
correlation coefficient = 0.89. Use of the RFE method can improve the models’ R? to
0.78, decrease the RMSE to 74.9, while the correlation coefficient stays 0.89. At the same
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time, the material parameter has highest scores from all the FS methods except for RFE.
In case of predicting mechanical properties of the produced parts, it is important to include
any information about the material, especially in the datasets where there are several
different materials involved.

Table 7.8. Feature selection for Young’s modulus] target variable, joined parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS RReliefF | Mean
1. | Material 1 0.05 1 1 1.00 0.81
2. Spec_pres_switchov 0.53 0.84 0.56 1 0.08 0.60
3. Ejector_pos_last 0.8 0 0.77 1 0.18 0.55
4. | Switchov_vol 0.37 0.42 0.28 1 0.46 0.51
5. Flow_no_plast 0.18 1 0.13 1 0.03 0.47
6. Cushion_smallest 0.27 0.32 0.26 1 0.04 0.38
7. Holding_pres_time 0.44 0.95 0.42 0 0.00 0.36
8. Last_cycle_time 0.13 0.89 0.19 0 0.00 0.24
9. Holding_pressure 0.25 0.53 0.25 0 0.06 0.22
10. | Plast_time 0.12 0.68 0.08 0 0.01 0.18
11. | Injection_Speed 0.02 0.79 0.03 0 0.04 0.18
12. | Backpressure 0 0.74 0.02 0 0.10 0.17
13. | Heating cyll z1 set 0.14 0.47 0.13 0 0.12 0.17
14. | Cushion_after_hold_pres 0.26 0.26 0.25 0 0.08 0.17
15. | Cooling_time_last 0.01 0.63 0.01 0 0.00 0.13
16. | Cooling_time 0.01 0.58 0.01 0 0.00 0.12
17. | Injection_time 0 0.37 0.06 0 0.03 0.09
18. | Speed_max 0.11 0.11 0.06 0 0.02 0.06
19. | Screw_speed 0.04 0.21 0 0 0.05 0.06
20. | Injection_work 0 0.16 0.06 0 0.05 0.05

MLP R?score 0.44 0.78 0.44 -0.02 0.67

MLP RMSE 119.6 749 119.6 164.15 91.77

Correlation coef. 0.73 0.89 0.73 0 0.84

For the Young’s modulus2 (the second out of two specimens produced simultaneously)
and no FS, the MLP characteristics are R? = 0.76, RMSE = 77.72, correlation coefficient
= 0.88. None of the feature selection methods have MLP scores higher than with no FS,
this might change if a lower threshold for the parameter inclusion to the model is chosen.
Here once again material parameter has the highest scores from all the parameters except
the RFE.

Table 7.9. Feature selection for Young’s modulus?2 target variable, joined parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. | Material 1 0.05 1 1 1.00 0.81
2. Spec_pres_switchov 0.54 0.89 0.55 1 0.08 0.61
3. Ejector_pos_last 0.8 0 0.78 1 0.15 0.55
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
4. Switchov_vol 0.39 0.42 0.28 1 0.38 0.49
5. Flow_no_plast 0.16 0.68 0.1 1 0.07 0.40
6. | Cushion_smallest 0.27 0.26 0.23 1 0.03 0.36
7. Holding_pres_time 04 1 0.37 0 0.00 0.35
8. Holding_pressure 0.25 0.63 0.22 0 0.07 0.23
9. Last_cycle_time 0.09 0.95 0.11 0 0.00 0.23
10. | Plast_time 0.12 0.79 0.04 0 0.00 0.19
11. | Backpressure 0.01 0.74 0.01 0 0.16 0.18
12. | Injection_Speed 0.01 0.84 0 0 0.04 0.18
13. | Heating_cyll_z1 set 0.13 0.53 0.09 0 0.09 0.17
14. | Injection_work 0.09 0.58 0.02 0 0.09 0.16
15. | Cushion_after_hold_pres 0.26 0.21 0.21 0 0.05 0.15
16. | Injection_time 0.01 0.47 0.01 0 0.08 0.11
17. | Cooling_time 0 0.37 0 0 0.00 0.07
18. | Cooling_time_last 0.02 0.32 0.02 0 0.00 0.07
19. | Speed_max 0.09 0.11 0.02 0 0.04 0.05
20. | Screw_speed 0.02 0.16 0 0 0.05 0.05

A very similar situation is seen for the Young’s modulus target parameter (this parameter
includes a sequence of Young’s modulusl and 2 values for specimens 1 and 2 that are
produced during the same production run) from the sequential joined dataset. The MLP
built with no prior FS has R? of 0.73, RMSE equal to 82.68 and correlation coefficient of
0.86. No FS methods contribute to the increase of the models’ quality, however, with a

threshold lower than 0.2 it might change.

Table 7.10. Feature selection for Young’s modulus] target variable, joined sequential

dataset
# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Material 1 0 1 1 1.00 0.80
2. Spec_pres_switchov 0.52 0.89 0.61 1 0.12 0.63
3. Holding_pressure 0.2 0.67 0.19 1 0.01 0.41
4. Holding_pres_time 0.41 0.94 0.48 0 0.00 0.37
5. Last_cycle_time 0.22 1 0.26 0 0.00 0.30
6. | Speed_max 0.12 0.17 0.11 1 0.00 0.28
7. Flow_no_plast 0.19 0.61 0.2 0 0.09 0.22
8. | Plast_time 0.21 0.56 0.21 0 0.00 0.20
9. | Injection_time 0.05 0.78 0.12 0 0.00 0.19
10. | Injection_Speed 0.03 0.83 0.05 0 0.04 0.19
11. | Cooling_time_last 0.2 0.44 0.12 0 0.00 0.15
12. | Backpressure 0 0.72 0 0 0.02 0.15
13. | Cooling_time 0.21 0.39 0.13 0 0.00 0.15
14. | Cushion_smallest 0.01 05 0.09 0 0.04 0.13
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
15. | Part type 0.23 0.06 0.28 0 0.00 0.11
16. | Switchov_vol 0.2 0.11 0.13 0 0.07 0.10
17. | Cushion_after_hold_pres 0 0.33 0.08 0 0.05 0.09
18. | Injection_work 0.1 0.22 0.1 0 0.04 0.09
19. | Screw_speed 0.05 0.28 0.04 0 0.00 0.07

Based on the data depicted in Table 7.11 no feature selection will be used for building the
MLP models based on the joined datasets. The datasets initially include a relatively low
number of features and most of them seem to contain useful information about the
mechanical characteristics of interest.

Table 7.11. MLP average accuracy measures (R%, RMSE, correlation coefficient) for
feature selection with different methods (Young’s modulus target variable, joined
datasets)

Accuracy measure | NoFS | Pearson | RFE Spearman | CFS RReliefF
Young’s modulusl "
target variable, MLP R* score 0.77 0.44 0.78 0.44 -0.02 0.67
joined parallel MLP RMSE 753 | 1196 | 749 1196 | 16415 | 9177
dataset
Correlation coef. 0.89 0.73 0.89 0.73 0 0.84
Young’s modulus?2
target variable, MLP R2 score 0.76 0.55 0.75 0.55 -0.02 0.54
J°'“§gtgggf”e' MLP RMSE 76.72 | 10053 | 7836 | 10054 | 16038 | 100.98
Correlation coef. 0.88 0.78 0.88 0.78 0 0.78
Young’s modulus MLP R2 score 0.73 0 0.13 0.78 -0.02 -0.02
target variable,
joined parallel MLP RMSE 82.68 | 155.18 | 147.18 74.98 161.75 | 161.76
dataset Correlationcoef. | 086 | -014 | 023 0.88 0.17 0
MLP R?score,
average 0.75 0.33 0.55 0.59 -0.02 0.40
Average MLP RMSE
9 average 78.23 125.10 | 100.15 98.37 162.09 118.17
Correlation coef.
average 0.88 0.46 0.67 0.80 0.06 0.54

7.3.2 Tensile strength target variable
Separate experiments datasets

Before building the predictive models for tensile strength, feature selection is performed
as in case with the other target variables. The same set of features and procedure are used.
Parameters that have a feature selection scores higher than 0.2 are included in the training
dataset for the MLP model. 5-folds cross-validation is applied with random state for data
partitioning equal to 1. The MLP settings are identified as follows:

model = MLPRegressor(solver =
alpha le-5,
random_state =

'1bfgs', activation =
learning_rate_init = 0.3, hidden_layer_sizes =
2, momentum = 0.2);

'logistic’,
5,
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Similarly to the previous cases, “Cooling time” parameter is excluded from the model
independently of its score, instead “Cooling_time last” is included (if one of these
parameter’s score is high enough) as it is actual value of the same parameter. For the
parallel dataset and the tensile strengthl target variable (characteristics of the first out of
two specimens produced during the same run), no feature selection application results in
the following model characteristics: R? = 0.65, RMSE = 0.62, correlation coefficient =
0.87. Application of RReliefF allows to increase these scores to R2 of 0.81, RMSE of 0.47
and correlation coefficient equal to 0.92.

When applying the feature selection methods such parameters as nozzle temperature,
barrel temperature, cushion characteristics, screw speed and clamping force at switchover
have some of the highest scores from at least four out of five FS methods. Some of these
parameters had the lowest scores when evaluated in terms of the dimensional focus
variables. However, in case of the mechanical properties they seem to play an important
role for the high quality model development.

Table 7.12. Feature selection for experiment 1 tensile strengthl target variable, parallel
dataset

# Prameter name Pearson RFE | Spearman | CFS | RReliefF | Mean
1. Nozzle_tempr_z2_average 1 0.21 0.99 1 0.99 0.84
2. Heating_cyll_z1 set 1 0.17 1 0 1.00 0.63
3. Cushion_average 0.68 0.29 0.7 1 0.42 0.62
4. Cushion_after_hold_pres 0.55 0.37 0.65 1 0.48 0.61
5. Cushion_smallest 0.66 0.25 0.7 1 0.42 0.61
6. | Clamp_force_switchov 0.4 0.67 0.48 1 0.03 0.52
7. Screw_speed 0.43 0.08 0.46 1 0.43 0.48
8. Speed_max 0.42 0.13 0.45 1 0.35 0.47
9. Ejector_pos_last 0.53 0 0.54 1 0.05 0.42
10. | Holding_pressure 0.43 0.75 0.49 0 0.43 0.42
11. | Flow_no_plast 0.56 0.46 0.58 0 0.33 0.39
12. | Screw_speed_max 041 0.63 0.43 0 041 0.38
13. | Backpressure 0.26 0.79 0.26 0 0.56 0.37
14. | Closing_force 0.24 0.88 0.45 0 0.06 0.33
15. | Spec_pres_switchov 0.28 0.58 0.29 0 0.44 0.32
16. | Tool Temperature 0.04 0.96 0.06 0 0.44 0.30
17. | Injection_work 0.34 05 0.18 0 0.48 0.30
18. | Holding_pres_time 0.04 0.83 0.08 0 0.46 0.28
19. | Last_cycle_time 0.08 1 0.12 0 0.15 0.27
20. | Plast_time 0.27 0.42 0.51 0 0.07 0.25
21. | Injection_Speed 0.09 0.54 0.06 0 0.47 0.23
22. | Switchov_vol 0.02 0.04 0.09 1 0.00 0.23
23. | Cooling_time_last 0 0.92 0.03 0 0.14 0.22
24. | Injection_time 0.39 0.33 0.2 0 0.12 0.21
25. | Cooling_time 0.02 0.71 0 0 0.26 0.20
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# Prameter name Pearson RFE | Spearman | CFS | RReliefF | Mean
MLP R?score 0.51 0.55 0.53 0.65 0.81
MLP RMSE 0.79 0.68 0.76 0.68 0.47
Correlation coef. 0.82 0.86 0.84 0.84 0.92

For the same dataset and tensile strength2 (characteristic of the second out of two
specimens produced at the same time), no feature selection leads to R? value of 0.85,
RMSE equal to 0.49 and the correlation coefficient of 0.93. RReliefF application slightly
improves those scores to R? = 0.87, RMSE = 0.46 and correlation coefficient = 0.95. The
parameters with the highest scores are the same as for tensile strengthl target variable.

Table 7.13. Feature selection for experiment 1 tensile strength? target variable, parallel

dataset

# Parameter name Pearson RFE | Spearman | CFS | RReliefF | Mean
1. Nozzle_tempr_z2 average 1 0.25 0.99 1 0.99 0.85
2. | Cushion_smallest 0.72 0.63 0.73 1 0.49 0.71
3. Cushion_average 0.73 0.29 0.72 1 0.50 0.65
4. Heating_cyll z1 set 1 0.21 1 0 1.00 0.64
5. Cushion_after_hold_pres 0.6 0.13 0.66 1 0.54 0.59
6. Clamp_force_switchov 0.41 0.67 0.47 1 0.00 051
7. Screw_speed 0.45 0.08 0.48 1 0.38 0.48
8. | Speed_max 0.44 0.17 0.48 1 0.29 0.48
9. Holding_pressure 0.47 0.75 0.5 0 0.48 0.44
10. | Ejector_pos_last 0.55 0 0.54 1 0.01 0.42
11. | Flow_no_plast 0.57 0.46 0.59 0 0.31 0.39
12. | Backpressure 0.25 0.79 0.28 0 0.59 0.38
13. | Screw_speed_max 043 0.37 0.45 0 0.33 0.32
14. | Spec_pres_switchov 0.26 0.58 0.26 0 0.46 0.31
15. | Holding_pres_time 0.1 0.88 0.15 0 0.40 0.31
16. | Closing_force 0.22 0.83 0.42 0 0.01 0.30
17. | Last_cycle_time 0.14 1 0.19 0 0.09 0.28
18. | Tool_Temperature 0 0.96 0.06 0 0.36 0.28
19. | Cooling_time 0.04 0.92 0.02 0 0.36 0.27
20. | Plast_time 0.28 0.42 0.54 0 0.10 0.27
21. | Injection_time 0.38 0.54 0.2 0 0.18 0.26
22. | Switchov_vol 0.07 0.04 0.13 1 0.00 0.25
23. | Injection_work 0.3 0.33 0.22 0 0.35 0.24
24. | Injection_Speed 0.1 0.5 0.1 0 0.44 0.23
25. | Cooling_time_last 0.02 0.71 0 0 0.26 0.20

MLP R?score 0.8 0.84 0.8 0.76 0.87

MLP RMSE 0.58 0.51 0.58 0.6 0.46

Correlation coef. 0.92 0.93 0.92 0.9 0.95
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When it comes to the sequential dataset, the MLP quality measures with no feature
selection are: R? = 0.89, RMSE = 0.42, correlation coefficient = 0.95 for tensile strength
target variable (a merged sequence of tensile strengthl and tensile strength2
characteristics for specimens 1 and 2 produced during the same machine run). Pearson’s
correlation application can improve the measures’ values to 0.92, 0.37 and 0.96
correspondingly. Once again, the features’ scores distribution in terms of the highest and
the lowest ones is similar to those for the parallel dataset and the corresponding target
variables.

Table 7.14. Feature selection for experiment 1 tensile strength target variable, sequential
dataset

# Parameter name Pearson RFE | Spearman | CFS | RReliefF | Mean
1. Nozzle_tempr_z2_average 1 0.29 0.99 1 0.62 0.78
2. Cushion_average 0.73 0.21 0.73 1 0.55 0.64
3. Cushion_smallest 0.72 0.13 0.73 1 0.50 0.62
4. Cushion_after_hold_pres 0.61 0.37 0.68 1 0.36 0.60
5. Heating_cyll z1 set 1 0.25 1 0 0.63 0.58
6. Clamp_force_switchov 0.4 0.63 0.43 1 0.07 0.51
7. Screw_speed 0.45 0.08 0.47 1 0.50 0.50
8. | Speed_max 0.45 0.17 047 1 0.38 0.49
9. Backpressure 0.25 0.79 0.25 0 1.00 0.46
10. | Flow_no_plast 0.58 0.46 0.59 0 0.55 0.44
11. | Holding_pressure 0.49 0.75 0.52 0 0.34 0.42
12. | Screw_speed_max 0.42 071 043 0 0.50 041
13. | Spec_pres_switchov 0.29 0.58 0.28 0 0.61 0.35
14. | Closing_force 0.25 0.96 041 0 0.05 0.33
15. | Tool_Temperature 0.06 0.92 0.08 0 0.57 0.33
16. | Holding_pres_time 0.08 0.83 0.1 0 0.50 0.30
17. | Injection_work 0.33 0.5 0.19 0 0.44 0.29
18. | Last cycle time 0.12 1 0.14 0 0.13 0.28
19. | Injection_Speed 0.1 0.54 0.07 0 0.66 0.27
20. | Cooling_time 0.01 0.88 0 0 0.45 0.27
21. | Plast_time 0.28 042 0.52 0 0.10 0.26
22. | Injection_time 0.41 0.33 0.22 0 0.29 0.25
23. | Switchov_vol 0.08 0.04 011 1 0.00 0.25
24. | Ejector_pos_last 0.54 0 0.52 0 0.09 0.23
25. | Cooling_time_last 0 0.67 0.02 0 0.35 0.21

MLP R? score 0.92 091 0.86 0.49 0.88

MLP RMSE 0.37 0.38 0.46 0.83 0.43

Correlation coef. 0.96 0.96 0.93 0.8 0.95

Table 7.15 sums up the MLP models’ quality measures for sequential and parallel datasets
and allows to conclude that application of RReliefF FS method leads to selection of the

132



most relevant parameters and creation of the highest quality MLP models based on the
provided data. Therefore, RReliefF will be used to select parameters to be included into
the predictive models of tensile strength with the separate experiments datasets.

Table 7.15. MLP average accuracy measures (R%, RMSE, correlation coefficient) for
feature selection with different methods (tensile strength target variable)

Accuracy measure | NoFS | Pearson | RFE | Spearman | CFS | RReliefF
Experiment 1, parallel )
dataset, tensile MLP R?score 0.65 0.51 0.55 0.53 0.65 0.81
strengthl target MLP RMSE 062 | 079 | 068 0.76 068 | 047
variable
Correlation coef. 0.87 0.82 0.86 0.84 0.84 0.92
Experiment 1, parallel
dataset, tensile MLP R2 score 0.85 0.8 0.84 0.8 0.76 0.87
strength2 target MLP RMSE 049 | 058 | 051 058 06 0.46
variable
Correlation coef. 0.93 0.92 0.93 0.92 0.9 0.95
Experiment 1, MLP R2 score 0.89 0.92 0.91 0.86 0.49 0.88
sequential dataset,
tensile strength target | MLP RMSE 0.42 0.37 0.38 0.46 0.83 0.43
variable Correlation coef. 095 | 096 | 0.96 093 08 095
MLP R?score,
average 0.80 0.74 0.77 0.73 0.63 0.85
Average MLP RMSE,
9 average 051 058 | 052 0.60 0.70 0.45
Correlation coef.
average 0.92 0.90 0.92 0.90 0.85 0.94

Joined dataset

Same way as for the other target variables, the predictive models based on the joined
datasets will be also trained for the tensile strength. Due to this we need to see if the
feature selection methods need to be used to discard any irrelevant features. The
procedure in this case is the same as previously and the feature rejection threshold is set
as 0.2, as for all the previous variables and datasets. Random state for the 5-folds data
partitioning is set to 0 and the following MLP settings are set:

model = MLPRegressor(solver = 'lbfgs', activation = 'logistic',
alpha = 1e-5, learning_rate_init = 0.3, hidden_layer_sizes =
(X.shape[1]+1)/2, random_state = 2, momentum = 0.2)

here X. shape[1] is a number of parameters considered in the model. Tables 7.16 — 7.18
contain the scores various feature selection methods assign to the parameters from the
used datasets. The parallel joined dataset and tensile strengthl focus variable (tensile
strength of specimen 1 out of two that are produced at the same time) result in the MLP
models with R? = 0.93, RMSE = 0.63, correlation coefficient = 0.97, when no FS is
applied. Pearson and Spearman correlation allow to increase R? to 0.95, decrease RMSE
to 0.56 and improve the correlation coefficient to 0.98. Parameters that have the highest
scores from most of the FS methods are material, specific pressure at switchover,
switchover volume, last ejector position, the smallest cushion value. The ones with the
lowest scores, on the other hand, are plasticizing time, screw speed, maximum speed and
injection work.
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Table 7.16. Feature selection for tensile strengthl target variable, joined parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. | Material 0.85 0.11 0.86 1 1.00 0.76
2. Spec_pres_switchov 0.66 0.68 0.67 1 0.16 0.63
3. | Switchov_vol 0.9 0.05 0.74 1 0.48 0.63
4. Ejector_pos_last 1 0 1 1 0.15 0.63
5. Cushion_smallest 0.34 0.47 0.29 1 0.22 0.46
6. Flow_no_plast 0.19 0.84 0.15 1 0.14 0.46
7. Heating_cyll z1 set 0.35 1 0.33 0 0.63 0.46
8. Holding_pres_time 04 0.95 0.38 0 0.18 0.38
9. Holding_pressure 0.17 0.74 0.14 0 0.19 0.25
10. | Cushion_after_hold_pres 0.3 0.32 0.24 0 0.26 0.22
11. | Last _cycle_time 0 0.89 0.04 0 0.07 0.20
12. | Backpressure 0.03 0.79 0 0 0.10 0.18
13. | Injection_Speed 0.07 0.63 0.03 0 0.08 0.16
14. | Cooling_time 0.08 0.58 0.09 0 0.04 0.16
15. | Cooling_time_last 0.09 0.53 0.11 0 0.02 0.15
16. | Injection_time 0 0.42 0.07 0 0.09 0.12
17. | Plast_time 0.14 0.37 0.04 0 0.00 011
18. | Screw_speed 0 0.26 0.04 0 0.17 0.09
19. | Speed_max 0.07 0.21 0.02 0 0.15 0.09
20. | Injection_work 0.05 0.16 0.15 0 0.05 0.08

MLP R? score 0.95 0.82 0.95 0.82 0.94

MLP RMSE 0.56 1.05 0.56 1.05 0.63

Correlation coef. 0.98 0.91 0.98 091 0.97

For tensile strength2 (characteristics of specimen 2 out of two that are produced
simultaneously), on the other hand, no FS method leads to having an MLP model with R?
=0.93, RMSE = 0.66, correlation coefficient = 0.97. Selection of only those parameters
that have Pearson’s correlation value higher than 0.2, improves these values to 0.94, 0.63
and 0.97 correspondingly. The feature scores have a similar distribution as for the tensile
strengthl target variable. For both focus variables the material parameter is one of those
with highest score.

Table 7.17. Feature selection for tensile strength2 target variable, joined parallel dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. | Material 0.84 0.11 0.87 1 1.00 0.76
2. Spec_pres_switchov 0.66 0.84 0.67 1 0.16 0.67
3. | Switchov_vol 0.9 0.05 0.75 1 0.56 0.65
4. Ejector_pos_last 1 0 1 1 0.15 0.63
5. Flow_no_plast 0.2 1 0.16 1 0.12 0.50
6. | Heating_cyll z1_set 0.37 0.89 0.34 0 0.67 0.45
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
7. Cushion_smallest 0.37 0.26 03 1 0.28 0.44
8. Holding_pres_time 0.38 0.58 0.36 0 0.13 0.29
9. Cushion_after_hold_pres 0.32 0.37 0.24 0 0.31 0.25
10. | Last cycle_time 0 0.95 0.02 0 0.07 0.21
11. | Holding_pressure 0.19 0.47 0.15 0 0.23 0.21
12. | Injection_Speed 0.07 0.79 0.04 0 0.07 0.19
13. | Injection_work 0.05 0.74 0.15 0 0.02 0.19
14. | Cooling_time 0.07 0.68 0.11 0 0.05 0.18
15. | Cooling_time_last 0.09 0.63 0.13 0 0.02 0.17
16. | Backpressure 0 0.53 0 0 0.12 0.13
17. | Plast_time 0.15 0.42 0.05 0 0.00 0.12
18. | Injection_time 0 0.32 0.06 0 0.10 0.10
19. | Screw_speed 0 0.21 0.03 0 0.14 0.08
20. | Speed_max 0.07 0.16 0.02 0 0.13 0.08

MLP R2 score 0.94 0.77 0.93 0.83 0.92

MLP RMSE 0.63 1.2 0.65 1.02 0.72

Correlation coef. 0.97 0.89 0.97 0.92 0.96

When the sequential dataset is used with no feature selection, the model’s characteristics
improve in comparison to those for the parallel dataset and are: R? = 0.97, RMSE = 0.51,
correlation coefficient = 0.98. No feature selection methods are able to improve these
scores. The parameters’ scores are similar to those given to them when the parallel dataset
is used.

Table 7.18. Feature selection for tensile strength target variable, joined sequential dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Spec_pres_switchov 1 0.83 1 1 0.17 0.80
2. | Material 0.88 0.11 0.97 1 1.00 0.79
3. Holding_pres_time 0.76 0.94 0.68 1 0.00 0.68
4. | Parttype 0.81 0 0.79 1 0.00 0.52
5. Flow_no_plast 0.29 0.89 0.29 1 0.08 0.51
6. Plast_time 0.51 0.39 0.42 1 0.00 0.46
7. Last_cycle_time 0.6 1 0.37 0 0.01 0.40
8. | Cooling_time 0.71 0.67 03 0 0.00 0.34
9. Cooling_time_last 0.71 0.61 0.28 0 0.00 0.32
10. | Speed_max 0.17 0.17 0.14 1 0.04 0.30
11. | Cushion_smallest 0.46 0.5 0.12 0 0.12 0.24
12. | Switchov_vol 0.76 0.06 0.25 0 0.07 0.23
13. | Injection_time 0.24 0.44 0.36 0 0.04 0.22
14. | Injection_Speed 0.08 0.78 0.05 0 0.12 0.21
15. | Cushion_after_hold_pres 0.37 0.33 0.16 0 0.13 0.20
16. | Backpressure 0 0.72 0 0 0.08 0.16
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
17. | Injection_work 0.26 0.28 0.19 0 0.04 0.15
18. | Holding_pressure 0.04 0.56 0.03 0 0.07 0.14
19. | Screw_speed 0.09 0.22 0.05 0 0.01 0.07
MLP R2 score 0.94 0.88 0.9 0.8 0.69
MLP RMSE 0.69 0.98 0.91 131 161
Correlation coef. 0.97 0.94 0.95 0.9 0.83

Based on information presented in Table 7.19, even though Pearson correlation allows to
slightly increase the MLP performance measures for the tensile strength1 and 2 variables
(characteristics of specimens 1 and 2 produced during the same machine run), the best
average score is obtained when no FS is performed. Therefore, no feature selection will
be used when training the prediction models with parallel and sequential joined datasets.

Table 7.19. MLP average accuracy measures (R%, RMSE, correlation coefficient) for
feature selection with different methods (tensile strength target variable, joined datasets)

Accuracy measure | NoFS | Pearson | RFE | Spearman | CFS | RReliefF
Tensile strengthl
target variable, MLP R?score 0.93 0.95 0.82 0.95 0.82 0.94
joined parallel MLP RMSE 0.63 | 056 | 105 0.56 1.05 | 063
dataset
Correlation coef. 0.97 0.98 0.91 0.98 0.91 0.97
Tensile strength2
target variable, MLP R2 score 0.93 0.94 0.77 0.93 0.83 0.92
joined parallel MLP RMSE 066 | 063 | 12 0.65 102 | 072
dataset
Correlation coef. 0.97 0.97 0.89 0.97 0.92 0.96
Tensile strength MLP R2 score 0.97 0.94 0.88 0.9 0.8 0.69
target variable,
joined parallel MLP RMSE 0.51 0.69 0.98 0.91 131 1.61
dataset Correlationcoef. | 098 | 097 | 094 | 095 09 | o083
MLP R?score,
average 0.94 0.94 0.82 0.93 0.82 0.85
Average MLP RMSE
g average 0.60 0.63 1.08 0.71 1.13 0.99
Correlation coef.
average 0.97 0.97 0.91 0.97 0.91 0.92

7.3.3 Tensile strain at break target variable

Separate experiments datasets

The same way as for the other target variables, five feature selection methods are used to
identify which method suits best for selection of parameters to be included in the
predictive models for tensile strain at break. The methods’ performance is evaluated
through building of an untuned MLP model. The training dataset is divided into 5 folds
to apply cross-validation procedure when evaluating the obtained model performance.
Only parameters that have feature selection scores higher than 0.2 are included into the
model. To do this random state for dataset partitioning is set to 5. The MLP model is
created using the following settings:
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model MLPRegressor(solver = 'lbfgs', activation = 'logistic’,
alpha le-5, learning_rate_init = 0.3, hidden_layer_sizes = 5,
random_state = 2, momentum = 0.2);

Tensile strain at breakl target variable (characteristics of specimen number 1 out of two
that are produced at the same time) from the parallel dataset allows to build an MLP
model with R? = 0.55, RMSE = 10.18, correlation coefficient = 0.81 if no feature selection
is applied. All feature selection methods, except CFS, are able to improve these scores.
The most significant improvement is achieved using the Pearson’s correlation, as in this
case R? becomes as high as 0.69, RMSE as low as 8.09 and the correlation coefficient for
the predicted and actual values is 0.89. Barrel temperature, the smallest cushion value,
holding pressure, injection time, average nozzle temperature are some of the crucial
parameters in the predictive model. Last cycle time, injection speed, last cooling time,
injection work and switchover volume, on the other hand, are those that are excluded
from the model to increase its performance.

Table 7.20. Feature selection for experiment 1 tensile strain at breakl target variable,
parallel dataset

Parameter name Pearson | RFE | Spearman CFS RReliefF Mean|

#

1. Heating_cyll z1 set 0.8 0.42 0.94 1 0.52 0.74
2. Cushion_smallest 1 0.21 0.94 1 0.34 0.70
3. Holding_pressure 0.96 0.79 0.94 0 0.76 0.69
4. Injection_time 0.78 0.08 0.39 1 0.94 0.64
5. Nozzle tempr_z2_average 0.8 0.63 0.93 0 0.52 0.58
6. Cushion_average 1 0.5 0.9 0 0.34 0.55
7. Cushion_after_hold_pres 0.91 0.37 1 0 0.35 0.53
8. Speed_max 0.39 0.17 0.36 1 0.48 0.48
9. Flow_no_plast 0.43 0.83 0.47 0 0.46 0.44
10. | Screw speed max 0.38 0.92 0.32 0 0.49 0.42
11. | Tool_Temperature 0.09 0.75 0.19 0 1.00 0.41
12. | Spec_pres_switchov 0.51 0.58 0.31 0 0.61 0.40
13. | Closing_force 0.29 1 0.62 0 0.00 0.38
14. | Backpressure 0.23 0.88 0.42 0 031 0.37
15. | Ejector_pos_last 0.32 0 0.45 1 0.00 0.35
16. | Holding_pres_time 0.2 0.46 0.01 0 0.77 0.29
17. | Screw_speed 0.39 0.13 0.37 0 041 0.26
18. | Cooling_time 0.19 0.71 0.05 0 0.33 0.26
19. | Plast_time 0.26 0.25 0.47 0 0.28 0.25
20. | Clamp_force_switchov 0.3 0.33 0.56 0 0.00 0.24
21. | Last_cycle_time 0.08 0.96 0 0 0.12 0.23
22. | Injection_Speed 0.18 0.54 0.01 0 0.42 0.23
23. | Cooling_time_last 0.17 0.67 0.03 0 0.27 0.23
24. | Injection_work 0.19 0.29 0.03 0 0.00 0.10
25. | Switchov_vol 0 0.04 0.07 0 0.00 0.02
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# Parameter name Pearson | RFE | Spearman CFS RReliefF Mean
MLP R? score 0.69 0.63 0.58 0.12 0.56
MLP RMSE 8.09 9.19 9.33 17.99 9.08
Correlation coef. 0.89 0.84 0.84 0.45 0.87

In case of the tensile strain at break?2 target variable (characteristics of the second out of
two specimens produced during the same machine run), no feature selection MLP scores
are unsatisfactory: R? = 0.19, RMSE = 7.6, correlation coefficient = 0.67. However,
RReliefF FS improves the situation and the MLP model performance: R? = 0.76, RMSE
= 8.1, correlation coefficient = 0.87.

Table 7.21. Feature selection for experiment 1 tensile strain at break?2 target variable,
parallel dataset

# Parameter name Pearson RFE | Spearman CFS RReliefF | Mean
1. Cushion_after_hold_pres 0.92 0.54 1 0 0.21 0.53
2. | Holding_pressure 0.93 0.46 0.92 0 0.55 0.57
3. Heating_cyll z1 set 0.83 0.25 1 0 0.36 0.49
4. Cushion_average 0.99 0.17 0.91 0 0.14 0.44
5. Cushion_smallest 1 0.13 0.93 1 0.17 0.65
6. Nozzle_tempr_z2_average 0.83 0.21 0.98 0 0.36 0.48
7. Closing_force 0.31 0.96 0.62 0 0.00 0.38
8. Clamp_force_switchov 0.42 0.67 0.59 0 0.00 0.34
9. Screw_speed_max 0.34 0.92 0.36 0 0.52 0.43
10. | Flow_no_plast 041 0.58 0.5 0 0.39 0.38
11. | Backpressure 0.14 0.88 0.38 0 0.53 0.39
12. | Spec_pres_switchov 0.25 0.79 0.32 0 0.63 0.40
13. | Plast_time 0.38 0.42 0.49 0 0.51 0.36
14. | Last _cycle time 0.13 1 0.12 0 0.16 0.28
15. | Injection_time 0.43 0.37 0.36 0 0.71 0.37
16. | Cooling_time_last 0.11 0.83 0.1 0 0.32 0.27
17. | Holding_pres_time 0.32 05 0.13 1 0.69 0.53
18. | Tool_Temperature 0.06 0.75 0.13 0 1.00 0.39
19. | Ejector_pos_last 0.39 0 0.5 1 0.00 0.38
20. | Cooling_time 0.13 0.63 0.15 0 0.40 0.26
21. | Screw_speed 0.34 0.08 0.39 0 0.44 0.25
22. | Speed_max 0.34 0.04 0.39 1 0.51 0.46
23. | Injection_Speed 0.02 0.71 0 0 0.64 0.27
24. | Injection_work 0.31 0.33 0.06 0 0.00 0.14
25. | Switchov_vol 0 0.29 0.09 0 0.00 0.08

MLP R? score -0.21 -0.7 0.49 -0.86 0.76

MLP RMSE 9.07 9.3 6.22 10.62 8.1

Correlation coef. 0.73 0.66 0.82 0.52 0.87
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For the sequential dataset use of all the parameters in the dataset also does not allow to
build a good model, as its characteristics are: R?> = 0.25, RMSE = 11.5, correlation
coefficient = 0.74. RReliefF, however, once again allows to improve it, this way R?
becomes 0.52, RMSE = 9.87 and the correlation coefficient is increased to 0.79. This
might not seem like a high-quality model, however, it is better than the one created with
no prior feature selection.

Table 7.22. Feature selection for experiment 1 tensile strain at break target variable,
sequential dataset

# Parameter name Pearson RFE | Spearman CFS | RReliefF Mean
1. | Cushion_smallest 1 042 | 094 1 0.29 0.73
2. Cushion_average 0.99 0.37 0.92 1 0.30 0.72
3. | Nozzle_tempr_z2_average | 0.82 021 | 095 1 0.25 0.65
4. Injection_time 0.61 0.5 041 1 0.65 0.63
5. Cushion_after_hold_pres | 0.92 054 |1 0 0.34 0.56
6. Holding_pressure 0.95 0.33 0.93 0 0.48 0.54
7. Spec_pres_switchov 0.39 0.79 0.32 0 0.87 0.47
8. Heating_cyl1l_z1_set 0.82 0.17 0.97 0 0.25 0.44
9. | Speed_max 0.39 0.04 |0.39 1 0.34 0.43
10. | Tool_Temperature 0 0.92 0.12 0 1.00 0.41
11. | Screw_speed_max 0.38 1 0.35 0 0.27 0.40
12. | Flow_no_plast 0.45 0.58 0.51 0 0.40 0.39
13. | Ejector_pos_last 0.36 0 0.48 1 0.06 0.38
14. | Plast_time 031 029 | 049 0 0.80 0.38
15. | Closing_force 0.32 0.96 0.6 0 0.00 0.38
16. | Backpressure 0.21 0.71 0.38 0 0.50 0.36
17. | Cooling_time 0.18 0.75 0.13 0 0.47 0.31
18. | Holding_pres_time 0.27 0.46 0.07 0 0.63 0.29
19. | Last _cycle_time 0.18 0.88 0.05 0 0.26 0.27
20. | Injection_Speed 0.08 0.67 0 0 0.60 0.27
21. | Cooling_time_last 0.15 0.63 0.09 0 0.47 0.27
22. | Injection_work 0.27 0.83 | 0.08 0 0.12 0.26
23. | Screw_speed 0.39 0.13 0.39 0 0.36 0.25
24. | Clamp_force_switchov 0.35 0.25 | 0.53 0 0.00 0.23
25. | Switchov_vol 0.06 0.08 | 0.12 0 0.00 0.05

MLP R?score 0.15 041 | 042 028 | 0.52

MLP RMSE 10.74 11.23 | 10.15 11.71 | 9.87

Correlation coef. 0.81 0.75 | 0.79 0.75 | 0.79

As a result of the previous analysis summed up in Table 7.23, it is easy to see that
application of RReliefF can improve the tensile strain at break prediction models.
Therefore, it is decided that this FS method will be used to select the most influential
parameter for creation of the corresponding predictive models.
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Table 7.23. MLP average accuracy measures (R?, RMSE, correlation coefficient) for
feature selection with different methods (tensile strain at break target variable)

Accuracy measure | NoFS | Pearson | RFE | Spearman | CFS | RReliefF
Experiment 1, parallel
dataset, tensile strain at | _MLP R?score 055 | 069 | 063 058 012 | 056
breakl target variable | pmip RMSE 1018 | 809 | 919 9.33 17.99 | 9.8
Correlation coef. 0.81 0.89 0.84 0.84 0.45 0.87
Experiment 1, parallel
dataset, tensile strain at MLP R2 score 0.19 -0.21 -0.7 0.49 -0.86 0.76
break target variable | pmip RMSE 76 9.07 9.3 6.22 10.62 8.1
Correlation coef. 0.67 0.73 0.66 0.82 0.52 0.87
Experiment 1, MLP R2 score 0.25 0.15 0.41 0.42 0.28 0.52
sequential dataset,
tensile strain at break MLP RMSE 115 10.74 11.23 10.15 11.71 9.87
target variable Correlationcoef. | 074 | 081 | 075 0.79 075 | 079
MLP R?score,
average 0.33 0.21 0.11 0.50 -0.15 0.61
Average MLP RMSE,
9 average 9.76 930 | 991 8.57 1344 | 9.02
Correlation coef.
average 0.74 0.81 0.75 0.82 0.57 0.84

Joined dataset

Similarly to the other focus variables, joined datasets are used to create the predictive
models for tensile strain at break. The procedure and threshold for the parameters’
elimination are the same. The random state for data partitioning is set to 0 for utilization
of 5-folds cross-validation, while the MLP setting is as specified below:

model = MLPRegressor(solver = 'lbfgs', activation = 'logistic',
alpha = 1e-5, learning rate_init = 0.3, hidden_layer_sizes =
(X.shape[1]+1)/2, random_state = 2, momentum = 0.2)

Tables 7.24 — 7.26 contain scores that the various feature selection methods give to the
considered parameters for tensile strain at breakl, tensile strain at break2 and parallel
joined dataset (target variables that represent characteristics of the first and second
specimens produced during the same production run), as well as tensile strain at break
(includes tensile strain at break1 and 2 merged sequentially) and sequential joined dataset.
When no FS is applied for the tensile strain at breakl, the trained MLP has the following
performance characteristics: R? = 0.65, RMSE = 8.77, correlation coefficient = 0.84. In
case of tensile strain at break2: R? = 0.66, RMSE = 7.85, correlation coefficient = 0.84.

Table 7.24. Feature selection for tensile strain at breakl target variable, joined parallel
dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Switchov_vol 1 0 1 1 1 0.8
2. Heating_cyll z1_set 0.61 0.84 0.5 1 0.01 0.59
3. Cushion_smallest 0.79 0.32 0.64 1 0.05 0.56
4. Cushion_after_hold_pres 0.71 0.47 0.58 0 0.02 0.36
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
5. Holding_pressure 0.65 0.63 0.43 0 0 0.34
6. Spec_pres_switchov 0.5 0.74 0.27 0 0.08 0.32
7. | Material 0.22 0.16 0.37 0 0.82 0.32
8. Ejector_pos_last 0.65 0.05 0.69 0 0.11 0.3
9. | Flow_no_plast 0.29 0.95 0.2 0 0.054 03
10. | Speed_max 0.23 0.11 0.14 1 0 0.3
11. | Holding_pres_time 0 1 0.09 0 0 0.22
12. | Last _cycle_time 0.06 0.89 0.04 0 0.05 0.21
13. | Backpressure 0.12 0.79 0.12 0 0 0.21
14. | Plast_time 0.23 0.42 0.16 0 0.03 0.17
15. | Injection_Speed 0.11 0.68 0.05 0 0 0.17
16. | Injection_time 0.37 0.21 0.12 0 0.13 0.16
17. | Cooling_time 0.09 0.58 0.01 0 0 0.14
18. | Cooling_time_last 0.03 0.53 0.04 0 0 0.12
19. | Screw_speed 0.2 0.26 0.12 0 0 0.12
20. | Injection_work 0.12 0.37 0 0 0 0.1

MLP R?score 0.69 0.27 0.62 051 045

MLP RMSE 8.1 12.72 8.96 10.68 11.36

Correlation coef. 0.87 0.61 0.82 0.76 0.69

Table 7.25. Feature selection for tensile strain at break2 target variable, joined parallel
dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Switchov_vol 1 0.05 1 1 1.00 0.81
2. | Material 0.47 0.21 0.47 1 0.72 0.57
3. | Cushion_smallest 0.54 0.32 0.53 1 0.01 0.48
4. Heating _cyll z1 set 0.47 0.47 0.45 1 0.00 0.48
5. Cushion_after_hold_pres 0.51 0.58 0.49 0 0.00 0.32
6. Last_cycle_time 0.09 1 0.06 0 0.07 0.24
7. Ejector_pos_last 05 0 0.63 0 0.09 0.24
8. Spec_pres_switchov 0.24 0.74 0.18 0 0.04 0.24
9. Holding_pressure 0.4 0.42 0.35 0 0.00 0.23
10. | Flow_no_plast 0.13 0.79 0.13 0 0.03 0.22
11. | Backpressure 0.06 0.89 0.11 0 0.00 0.21
12. | Cooling_time 0.03 0.95 0 0 0.00 0.20
13. | Holding_pres_time 0.06 0.84 0.07 0 0.00 0.19
14. | Injection_time 0.15 0.63 0.11 0 0.05 0.19
15. | Injection_Speed 0 0.68 0.04 0 0.00 0.14
16. | Plast_time 0.16 0.37 0.1 0 0.04 0.13
17. | Cooling_time_last 0.02 0.53 0.03 0 0.00 0.12
18. | Injection_work 0.16 0.26 0 0 0.00 0.08
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# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
19. | Speed_max 0.11 0.11 0.1 0 0.00 0.06
20. | Screw_speed 0.07 0.16 0.06 0 0.00 0.06
MLP R2 score 0.68 0.48 0.64 0.65 0.53
MLP RMSE 751 9.46 8.02 8.08 9.3
Correlation coef. 0.85 0.75 0.83 0.81 0.73

In case of the sequential dataset and no feature selection, the trained MLP model has R?
= 0.84, RMSE = 13.02, correlation coefficient = 0.92. In all cases except for the tensile
strain at breakl with the parallel dataset, application of FS to the data from the joined
dataset only decreases the resulting MLP model performance.

Table 7.26. Feature selection for tensile strain at break target variable, joined sequential
dataset

# Parameter name Pearson | RFE | Spearman | CFS | RReliefF | Mean
1. Part type 1 0 1 1 0.00 0.60
2. Spec_pres_switchov 0.81 0.89 0.74 0 0.12 0.51
3. Injection_time 0.44 0.11 0.54 1 0.20 0.46
4. Holding_pres_time 0.64 1 0.49 0 0.14 0.45
5. | Cooling_time 0.92 0.56 051 0 0.16 043
6. Cooling_time_last 0.92 0.5 0.46 0 0.17 041
7. Last_cycle_time 0.71 0.83 0.35 0 0.15 0.41
8. Plast_time 0.48 0.61 0.6 0 0.07 0.35
9. | Material 0.02 0.28 0.27 0 1.00 031
10. | Flow_no_plast 0.15 0.94 0.32 0 0.15 0.31
11. | Switchov_vol 0.98 0.06 0.35 0 0.07 0.29
12. | Cushion_smallest 0.7 0.39 0 0 0.13 0.24
13. | Cushion_after_hold_pres 0.6 0.44 0 0 0.13 0.23
14. | Backpressure 0.04 0.72 0.1 0 0.22 0.22
15. | Injection_Speed 0.04 0.78 0.01 0 0.20 0.21
16. | Holding_pressure 0 0.67 0.22 0 0.11 0.20
17. | Injection_work 0.19 0.33 0.34 0 0.06 0.18
18. | Speed_max 0.13 0.17 0.27 0 0.09 0.13
19. | Screw_speed 0.11 0.22 0.21 0 0.11 0.13

MLP R2 score 0.74 0.81 0.8 0.68 0.48

MLP RMSE 16.65 14.09 14.5 18.64 23.62

Correlation coef. 0.87 0.91 091 0.89 0.72

As it is seen from the Table 7.27 it is not worth applying any of the feature selection
techniques to the joined datasets as the highest average model score is obtained with no
feature selection application. Therefore, no feature selection will be used prior to the
models’ development for tensile strain at break variable and joined datasets. It is also
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interesting to note that the material parameter for the parallel dataset has higher FS
algorithms scores in comparison to the score for the sequential dataset. In the sequential
dataset, however, the part type parameter is acknowledged by the high FS from Pearson’s
and Spearman’s correlation and CFS methods.

Table 7.27. MLP average accuracy measures (R2, RMSE, correlation coefficient) for
feature selection with different methods (tensile strain at break target variable, joined
datasets)

Accuracy measure | NoFS | Pearson | RFE | Spearman | CFS | RReliefF
Tensile strain at
breakl target MLP R?score 0.65 0.69 0.27 0.62 0.51 0.45
variable, joined MLP RMSE 8.77 81 |1272| 896 |1068| 1136
parallel dataset
Correlation coef. 0.84 0.87 0.61 0.82 0.76 0.69
Tensile strain at
break? target MLP R2 score 0.66 0.68 0.48 0.64 0.65 0.53
variable, joined MLP RMSE 7.85 751 | 946 8.02 8.08 9.3
parallel dataset
Correlation coef. 0.84 0.85 0.75 0.83 0.81 0.73
Tensile strain at MLP R2 score 0.84 0.74 0.81 0.8 0.68 0.48
break target variable,
joined parallel MLP RMSE 13.02 16.65 14.09 14.5 18.64 23.62
dataset Correlation coef. | 092 | 087 | 0.91 091 | 089 | o072
MLP RZscore,
average 0.72 0.70 0.52 0.69 0.61 0.49
Average MLP RMSE
g average 9.88 10.75 12.09 10.49 12.47 14.76
Correlation coef.
average 0.87 0.86 0.76 0.85 0.82 0.71

7.4 Predictive models development

After performing data exploration for the mechanical properties target variables in order
to gain a better understanding of data at hand, data preprocessing, where constant features
and outliers were removed, as well as feature selection, it is now possible to train
predictive models for the target variables of interest. The procedure followed in this step
is similar to that used for creation of prediction models for the dimensional target
variables. MLP, Decision Tree Regressor, KNN, GBR, AdaBoost and Random Forest
methods are used to train the models. The models are trained for the separate experiments
datasets, as well as for the joined datasets.

The preprocessing step led to elimination of outliers from the datasets at hand. Therefore,
they contain smaller number of samples than those used for development of the
dimensional properties models. Results of the feature selection are used for creation of
MLP and kNN models (for the separate experiments datasets), as they do not have internal
mechanisms for filtering out the irrelevant features. When training models using the
joined datasets, no prior FS is used based on the results from Section 7.3.

The datasets are divided into 70% training and 30% testing subsets, where 5-folds cross-
validation is performed on the training set. Models with the highest performance
characteristics are searched for using grid search on the corresponding sets of the
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hyperparameters. The same hyperparameter sets are used for training the mechanical
properties models as for prediction of the dimensional characteristics.

As a reminder, the list of the hyperparameters and their tested values is presented once
more. For the MLP the following set of hyperparameters was considered:

hidden layer sizes : [10, 15, 20, 25, 30],
activation function : ‘relu’, “logistic’,
solver : ‘Ibfgs’, ‘sgd’,

alpha (L2 penalty parameter): [0.0001, 0.05],
learning rate init: [0.001, 0.01, 0.05, 0.1, 0.3].

For Decision Tree the criterion and maximum tree depth parameters were evaluated:

e criterion: ‘mse’, ‘friedman_mse’, ‘mae’,
e maximum tree depth: [5, 7, 10, 12, 15].

For KNN, in its turn, the following hyperparameters were tuned:

e weights: ‘uniform’, ‘distance’,
e number of neighbors: [2, 3, 4, 5, 6, 7].

For Gradient Boost Regressor a different set of hyperparameters is considered:

e loss: ‘Is’, ‘lad’, ‘huber’, ‘quantile’,
e learning rate: [0.001, 0.005, 0.01, 0.05, 0.1],
e number of estimators: [50, 100, 150, 200, 250, 300].

In case of AdaBoost, the same hyperparameters as for GBR are tuned, however, this
algorithm uses different loss function types:

e loss: ‘linear’, ‘square’, ‘exponential’,
e learning rate: [0.001, 0.005, 0.01, 0.05, 0.1, 1],
e number of estimators': [50, 100, 150, 200, 250, 300].

The last, but not the least is Random Forest, here the number of estimators, max features
and criterion hyperparameters were varied:

e number of estimators: [50, 100, 150, 200, 250, 300],

e max features: ‘auto’, ‘sqrt’, ‘log2’,

e criterion: ‘mse’, ‘mae’.
The same way as while tuning hyperparameters for the dimensional properties, the overall
models’ training time significantly varies for the different algorithms. With the data
amount at hand, it takes the least time to perform grid search for KNN and Decision Tree
Regressor models (up to 30 seconds), followed by MLP (1-3 minutes) and GBR,
AdaBoost and Random Forest (up to 10 minutes).
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7.4.1 Young’s modulus target variable

Similarly to Chapter 6 this section includes results of the models’ hyperparameters tuning
for the Young’s modulus (tensile modulus) target variable. There is no nominal value that
can be identified for the tensile modulus, however, the data at hand includes the minimum
value of Young’s modulus of about 750 MPa, while the largest after the outlier removal
is close to 1200 MPa. The datasets for the separate experiments, as well as joined datasets
are utilized. Their sizes are slightly smaller than those used for development of models
for dimensional target variables, as certain outliers were removed, as described in Section
7.2. The threshold for including or excluding the parameters scored by RReliefF FS is set
to 0.2, unless stated otherwise. The FS is used only for MLP and KNN models (separate
experiments datasets), while the rest of the algorithms receive a full set of parameters as
an input.

Separate experiments datasets
Experiment 1

Tables 7.28 and 7.29 show the best perfroming combinations of hyperparameters for the
parallel and sequential datasets correspondingly. As it can be seen from the tables, both
for parallel and sequential datasets, the MLP scores are higher than those obtained without
the parameter tuning in Section 7.3. The best performance, however, is shown by kNN
and Random Forest models, and not by MLP. In case of the sequential dataset, Random
Forest model performance stands out among the rest of the models.

Table 7.28. Results of predictive models hyperparameter optimization for Young’s
modulusl and Young’s modulus2, parallel dataset, experiment 1

Model’s MLP Decision Tree

hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation logistic -
hidden layer 10
neurons
solver Ibfgs
alpha 0.05
learning rate 0.001 -
weights - distance
number of 7
neighbors
loss - -
criterion - mae - mae
max_depth - 5 -
n_estimators - - - 200
max_features - - - sqrt
R? train set 0.62 0.91 0.99 0.95
RMSE train set 60.86 30.14 0.01 2151
Correl. coef. 08 0.95 0.99 0.98
train set
R? test set 0.59 0.57 0.71 0.7
RMSE test set 78.67 80.39 66.06 66.83
Correl. coef.
test set 0.8 0.78 0.85 0.85
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Table 7.29. Results of predictive models hyperparameter optimization for Young’s
modulus, sequential dataset, experiment 1

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -
hidden layer 10 R R } } R

neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.01 0.05 -
weights - - uniform - - -
number of ) : 3 :
neighbors
loss - - - huber exponential -
criterion - mse - - - mae
max_depth - 5 - - - -
n_estimators - - - 300 50 150
max_features - - - - - sqrt
R? train set 0.66 0.86 0.86 0.87 0.81 0.91
RMSE train set 60.82 39.74 39.72 38.31 45.89 31.81
Correl. coef. 081 0.93 0.93 0.94 0.9 0.95
train set
R? test set 0.67 0.6 0.74 0.77 0.71 0.78
RMSE test set 64.39 70.31 57.08 53.8 60.46 52.56
Correl. coef.
test set 0.82 0.8 0.86 0.88 0.84 0.88

Experiment 2

Unlike results for the experiment 1 model training, all the models for experiment 2 have
unacceptably low performance, especially on the test set. This means that their
generalization abilities are not high enough and more data needs to be obtained before
they can be used for the assistance in the decision-making process. This dataset consists
of only 65 samples, which does not seem to be enough to create a meaningful model for
prediction of the Young’s modulus.

Table 7.30. Results of predictive models hyperparameter optimization for Young’s
modulus, experiment 2

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation relu - - - - -

hidden layer
neurons 30 ) ) ) ) )
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.005 0.1 -
weights - - uniform - - -
number of : : 7 A : ;
neighbors
loss - - - Is linear -
criterion - Friedman_mse - - - mse
max_depth - 10 - - - -
n_estimators - - - 150 100 100
max_features - - - - - sqrt
R? train set 0.51 0.4 0.28 057 0.9 0.88
RMSE train set 7.64 8.34 9.25 7.13 3.43 3.75
Correl. coef. 071 0.67 0.5 09 0.96 0.98
train set
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Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
R? test set 0.25 0.07 0.09 0.2 0.37 0.16
RMSE test set 12.73 13.75 11 11.91 12.34 11.22
Correl. coef.
test set 0.21 0.05 0.35 0.16 0.05 0.21

Experiment 3

For experiment 3, the feature selection threshold was decreased from 0.2 to 0.05, as the
0.2 threshold was too high in this case. However, even after doing so, the obtained models
for parallel and sequential datasets had unacceptably low performance, in some cases both
on the training and test sets. There might be several reasons for this. The first reason is
necessity to collect more relevant data, and the second one is general complications
related to prediction of mechanical properties such as Young’s modulus for plastic
materials, due to the materials’ nature, dependence of the mechanical properties on the
carbon chains orientation, etc.

Table 7.31. Results of predictive models hyperparameter optimization for Young’s
modulus1 and Young’s modulus2, parallel dataset, experiment 3

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation logistic - - -
hidden layer 30 B R R
neurons
solver Ibfgs - - -
alpha 0.0001 - - -
learning rate 0.001 - - -
weights - - uniform -
number of } . 5 :
neighbors
loss - - - -
criterion - friedman_mse - mse
max_depth - 5 - -
n_estimators - - - 50
max_features - - - sgrt
R? train set 0.12 0.87 05 0.89
RMSE train set 54.13 19.28 38.27 17.66
Correl. coef. 0.22 0.93 0.71 0.96
train set
R? test set 0.08 0.08 0.05 0.2
RMSE test set 51.11 59.79 59.04 43.93
Correl. coef. 0.04 0.26 0.09 05
test set

Table 7.32. Results of predictive models hyperparameter optimization for Young’s
modulus, sequential dataset, experiment 3

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -

hidden layer
neurons 10 ) ) ) ) )
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.01 0.1 -
weights - - uniform - - -
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Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
number of ) B 2 : : :

neighbors
loss - - - huber linear -
criterion - mae - - - mae
max_depth - 5 - - - -
n_estimators - - - 200 50 300
max_features - - - - - sqrt
R? train set 0.48 0.75 0.8 0.74 0.71 0.84
RMSE train set 38.08 26.43 23.47 26.94 28.58 21.21
Correl. coef. 0.69 0.87 09 0.88 0.84 0.92
train set
R? test set 0.33 0.01 0.34 0.37 0.3 0.36
RMSE test set 43.69 53.26 43.65 42.42 44.89 42.8
Correl. coef.
test set 0.6 0.45 0.59 0.61 0.6 0.61
Experiment 4

The same result as for experiments 2 and 3 is observed for experiment 4. The models’
performance is low, especially on the test set. If the model has high performance on the
train set and a low one on the test set it means that the model is not capable of making
meaningful predictions on the previously unseen data and, therefore, cannot be used in its
current state. To increase the models’ quality, it is necessary to collect more relevant data
and if possible add material characteristics (such as viscosity) of the material batches used
for the focus parts production.

Table 7.33. Results of predictive models hyperparameter optimization for Young’s
modulus] and Young’s modulus2, parallel dataset, experiment 4.

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation relu - - -
hidden layer 20 : } :
neurons
solver Ibfgs - - -
alpha 0.0001 - - -
learning rate 0.001 - - -
weights - - distance -
number of R B 7 R
neighbors
loss - - - -
criterion - 12 - mse
max_depth - mae - -
n_estimators - - - 250
max_features - - - log2
R? train set 0.43 0.78 0.99 0.91
RMSE train set 39.05 0.05 0.01 15.62
Correl. coef.
train set 0.66 0.82 0.99 0.98
R? test set 0.06 0.04 0.19 0.38
RMSE test set 73.7 52.32 46.19 40.58
Correl. coef. 012 0.46 042 065
test set
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Table 7.34. Results of predictive models hyperparameter optimization for Young’s
modulus, sequential dataset, experiment 4

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation relu - - - - -
hidden layer 15 } R R B R

neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.01 0.005 -
weights - - distance - - -
number of ) 7 } : :
neighbors
loss - - - lad square -
criterion - mae - - - mse
max_depth - 5 - - - -
n_estimators - - - 250 50 50
max_features - - - - - log2
R? train set 0.45 0.76 0.85 0.61 0.67 0.79
RMSE train set 38.98 2551 20.25 32.87 30.34 23.96
Correl. coef. 0.67 0.88 0.92 083 0.83 09
train set
R? test set 0.36 0.33 0.28 0.4 0.41 0.45
RMSE test set 45.05 46.09 48.03 43.76 43.59 42.09
Correl. coef.
test set 0.61 0.62 0.56 0.66 0.66 0.68

Joined datasets

When the data from three experiments (joined parallel dataset) and data from four
experiments (joined sequential dataset) is added to create the joined datasets and
predictive models are created thereafter, the obtained models’ performance is
significantly higher. The models’ scores increase as more data is used to train them. In
addition, simplified material and part type parameters are added, which also seem to be
helpful. RMSE value for the Young’s modulus is much higher than for the dimensional
target variables. This is due to tensile modulus having a significantly larger range of
values (from 750 to 1400 MPa). As a result, Random Forest has the best performing
model for the parallel dataset, while GBR has the highest performance scores for the
sequential dataset, with Random Forest having the second best score for both train and
test sets. These models, unlike the ones for the separate datasets for experiments 2-4, can
be taken into consideration when selecting parameters for production of dogbone
specimens.

Table 7.35. Results of predictive models hyperparameter optimization for Young’s
modulusl and Young’s modulus2, parallel joined dataset

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation relu - - -
hidden layer 10 : } )
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ) } 6 :
neighbors
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Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
loss - - - -
criterion - mae - mse
max_depth - 5 - -
n_estimators - - - 150
max_features - - - auto
R? train set 0.76 0.94 0.99 0.99
RMSE train set 81.57 4152 0.01 19.16
Correl. coef.
train set 0.88 0.97 0.99 0.99
R? test set 0.67 0.86 0.61 0.9
RMSE test set 87.62 56.24 94.6 49
Correl. coef. 0.83 0.93 0.79 0.95
test set

Table 7.36. Results of predictive models hyperparameter optimization for Young’s
modulus, sequential joined dataset

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation relu - - - - -
hidden layer 25 B ) ; } }

neurons
solver Ibfgs - - - - -
alpha 0.0001 - - - - -
learning rate 0.001 - - 0.05 0.1 -
weights - - distance - - -
number of ) B 6 } : :
neighbors
loss - - - lad linear -
criterion - mae - - - mse
max_depth - 5 - - - -
n_estimators - - - 300 100 200
max_features - - - - - auto
R? train set 0.65 0.93 0.98 0.95 0.91 0.97
RMSE train set 92.66 40.6 22.55 36.03 46.07 25.35
Correl. coef. 081 0.97 0.99 0.97 0.96 0.99
train set
R? test set 0.62 0.89 0.83 0.91 0.89 0.91
RMSE test set 101.43 54.56 69.01 48.75 54.52 50.03
Correl. coef. 08 0.95 091 0.96 0.95 0.96
test set

7.4.2 Tensile strength target variable

Tensile strength is another target variable for which the predictive models are created and
tuned using grid search. The procedure does not differ from that described for the
dimensional target variable and tensile modulus. Tensile strength values obtained from
the experiments vary from 21.5 to 34 MPa. Due to having a larger range of values in
comparison to those for the dimensional properties, higher values of the RMSE are to be
expected.

Separate experiments dataset

Experiment 1
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The most suitable FS method was selected by training MLP models with and without the
different FS methods. For the train parallel dataset R? for tensile strength1 (characteristics
of the first specimen out of two that are produced during the same machine run) was equal
to 0.81 and 0.87 for tensile strength2 (characteristics of the second specimen out of two
that are produced during the same machine run) with RReliefF feature selection method.
For the train sequential dataset, the obtained R? was 0.88. If these values are compared to
the ones presented in Tables 7.37 and 7.38 after applying the grid search, we can see that
they are outperformed. For the parallel dataset, the best performance is shown by Random
Forest with the R? value of 0.98 and 0.91 for train and test sets correspondingly. For the
sequential dataset, all the models except MLP have comparatively high scores for both
train and test set, with KNN slightly outperforming the rest.

Table 7.37. Results of predictive models hyperparameter optimization for tensile
strengthl and tensile strength2, parallel dataset, experiment 1

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation logistic - - -
hidden layer 10 : } :
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 7 )
neighbors
loss - - - -
criterion - mse - mse
max_depth - 7 - -
n_estimators - - - 50
max_features - - - sqrt
R? train set 0.8 0.99 0.99 0.98
RMSE train set 0.57 0.11 0.01 0.16
Correl. coef.
train set 0.9 0.98 0.99 0.98
R? test set 0.81 0.88 0.89 0.91
RMSE test set 0.57 0.46 0.43 0.39
Correl. coef.
test set 0.9 0.94 0.94 0.96

Table 7.38. Results of predictive models hyperparameter optimization for tensile strength,
sequential dataset, experiment 1

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBaost Forest
activation logistic - - - - -
hidden layer 15 ) ) } ; )
neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.1 0.1 -
weights - - distance - - -
number of } : 5 : } .
neighbors
loss - - - Is exponential -
criterion - friedman_mse - - - mae
max_depth - 15 - - - -
n_estimators - - - 50 100 250
max_features - - - - - auto
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Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
R? train set 0.89 0.97 0.97 0.96 0.92 0.96
RMSE train set 0.43 0.23 0.23 0.26 0.36 0.25
Correl. coef.
train set 0.94 0.98 0.98 0.98 0.96 0.98
R? test set 0.89 0.92 0.93 0.93 0.91 0.92
RMSE test set 0.42 0.37 0.35 0.35 0.39 0.36
Correl. coef.
test set 0.95 0.96 0.96 0.96 0.96 0.96

Experiment 2

For the experiment 2 data, Decision Tree, kNN, GBR, AdaBoost and Random Forest
models have rather high scores on the train set. On the test set, however, none of the
models show acceptable performance. The main reason for this is the same as described
for the Young’s modulus target variable — a small number of samples in the dataset.
Therefore, before obtaining a meaningful predictive model for tensile strength of 15 mm
thick dogbones, more relevant data needs to be obtained and incorporated in the model
creation process.

Table 7.39. Results of predictive models hyperparameter optimization for tensile strength,
experiment 2

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -
hidden layer 25 _ _ - - -

neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.05 1 -
weights - - distance - - -
number of ; : 6 ;
neighbors
loss - - - lad exponential -
criterion - mse - - - mae
max_depth - 7 - - - -
n_estimators - - - 100 250 300
max_features - - - - - log2
R? train set 0.67 0.99 0.99 0.9 0.96 0.93
RMSE train set 0.05 0.01 0.01 0.03 0.02 0.02
Correl. coef. 082 0.99 0.99 0.97 0.98 098
train set
R? test set 0.2 0.31 0.21 0.44 041 0.36
RMSE test set 0.09 0.08 0.09 0.07 0.08 0.08
Correl. coef.
test set 0.576 0.71 0.66 0.81 0.77 0.74

Experiment 3

Unlike in case with tensile modulus models trained on the experiment 3 data, the models
for tensile strength have a slightly better quality. When it comes to the parallel dataset,
the only model that has good performance characteristics on both train and test sets is
Random Forest with R? of 0.97 and 0.81 correspondingly. Decision Tree and kNN, at the
same time, have extremely good scores on the training set, but low scores on the test one,
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this means that overfitting is most probably present. For the sequential dataset the
performance of AdaBoost and Random Forest is almost equally good. The mentioned
models can be used as a starting point for development of even more robust models for
the decision-making support.

Table 7.40. Results of predictive models hyperparameter optimization for tensile
strengthl and tensile strength2, parallel dataset, experiment 3

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation logistic - - -
hidden layer 20 : } a
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; } 6 )
neighbors
loss - - - -
criterion - Friedman_mse - mae
max_depth - 10 - -
n_estimators - - - 50
max_features - - - sqrt
R? train set 0.78 0.99 0.99 0.97
RMSE train set 0.82 0.01 0.01 0.3
Correl. coef.
train set 0.89 0.99 0.99 0.99
R? test set 0.6 0.45 0.65 0.81
RMSE test set 0.97 1.14 0.91 0.66
Correl. coef.
test set 0.79 0.74 0.84 0.91

Table 7.41. Results of predictive models hyperparameter optimization for tensile strength,
sequential dataset, experiment 3

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -
hidden layer 15 ; a ) : )

neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.05 1 -
weights - - distance - - -
number of : : 3 . }
neighbors
loss - - - lad square -
criterion - friedman_mse - - - mse
max_depth - 5 - - - -
n_estimators - - - 100 250 100
max_features - - - - - sqrt
R? train set 0.54 0.97 0.98 0.95 0.96 0.97
RMSE train set 1.14 0.27 0.21 0.39 0.33 0.27
Correl. coef. 073 0.99 0.99 0.98 0.98 0.99
train set
R? test set 0.38 0.83 0.76 0.81 0.84 0.84
RMSE test set 1.38 0.71 0.87 0.76 0.71 0.7
Correl. coef. 062 092 0.89 092 092 093
test set
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Experiment 4

Unlike models based on the data for experiments 2 and 3, the models for the experiment
4 data have relatively higher performance characteristics both for the parallel and
sequential datasets. For both cases MLP and kNN have a noticeably lower R? on the test
sets. Random Forest and Decision Tree algorithms have the highest performing models
for the parallel dataset, while for the sequential one Decision Tree, GBR and Random
Forest have the highest scores. As a result, these models can be used for decision support
and reference when producing the focus parts from RePro recycled HDPE.

Table 7.42. Results of predictive models hyperparameter optimization for tensile
strengthl and tensile strength2, parallel dataset, experiment 4

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation logistic - - -
hidden layer 20 : } )
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 2 }
neighbors
loss - - - -
criterion - mse - mae
max_depth - 5 - -
n_estimators - - - 50
max_features - - - auto
R? train set 0.91 0.98 0.99 0.97
RMSE train set 0.29 0.15 0.01 0.17
Correl. coef. 0.96 0.99 0.99 0.99
train set
R? test set 0.88 0.89 0.71 0.83
RMSE test set 0.39 0.37 0.62 0.47
Correl. coef. 0.94 095 0.87 0.94
test set

Table 7.43. Results of predictive models hyperparameter optimization for tensile strength,
sequential dataset, experiment 4

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation logistic - - - - -
hidden layer 15 ) : . . :

neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.1 1 -
weights - - distance - - -
number of ) 2 : : :
neighbors
loss - - - lad linear -
criterion - mse - - - mae
max_depth - 12 - - - -
n_estimators - - - 300 150 250
max_features - - - - - log2
R? train set 0.89 0.99 0.99 0.98 0.95 0.98
RMSE train set 0.35 0.12 0.12 0.15 0.23 0.16
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Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
Correl. coef. 0.95 0.99 0.99 0.99 0.98 0.99

train set
R? test set 0.88 0.94 0.81 0.94 0.93 0.94
RMSE test set 0.36 0.26 0.52 0.26 0.28 0.25
Correl. coef. 0.94 0.97 0.91 0.97 0.97 0.98

test set

Joined dataset

Tables 7.44 and 7.45 show results of the hyperparameter optimization using greed search
for the parallel and sequential joined datasets and tensile strength target variable. The
observed situation is similar to that with the Young’s modulus models’ performance on
the joined datasets. Decision Tree and Random Forest models are able to predict tensile
strength with R? = 0.99 on the train set and R? = 0.92 and 0.94 for the corresponding
methods on the test set of the parallel dataset. For the sequential dataset, on the other
hand, GBR and Random Forest outperform other methods on the test set. This testifies
that both models are able to generalize on the previously unseen data and therefore can
have a value for the real industrial environment. Unlike the models for the separate
experiments datasets, they are more useful, as they are trained on larger datasets and the
samples they are trained on include data about dogbones with two thicknesses and three
different materials.

Table 7.44. Results of predictive models hyperparameter optimization for tensile
strengthl and tensile strength2, parallel joined dataset

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation relu - - -
hidden layer 15 : } a
neurons
solver Ibfgs - - -
alpha 0.0001 - - -
learning rate 0.001 - - -
weights - - distance -
number of ) ; 2 )
neighbors
loss - - - -
criterion - friedman_mse - mse
max_depth - 12 - -
n_estimators - - - 250
max_features - - - auto
R? train set 0.77 0.99 0.99 0.99
RMSE train set 1.2 0.01 0.01 0.19
Correl. coef.
train set 0.88 0.99 0.99 0.99
R? test set 0.69 0.92 0.64 0.94
RMSE test set 1.52 0.79 1.64 0.68
Correl. coef.
test set 0.85 0.96 0.82 0.97
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Table 7.45. Results of predictive models hyperparameter optimization for tensile strength,
sequential joined dataset

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation relu - - - - -

hidden layer 20
neurons
solver Ibfgs
alpha 0.0001 - -
learning rate 0.001 - 0.05 0.1
weights - distance - -
number of 7
neighbors
loss - huber exponential -
criterion - mse - - mae
max_depth - 12 - - - -
n_estimators - - - 300 300 100
max_features - - - - - auto
R? train set 0.84 0.99 0.99 0.99 0.95 0.99
RMSE train set 1.2 0.2 0.21 0.28 0.68 0.24
Correl. coef. 0.92 0.99 0.99 0.990 0.98 0.99
train set
R? test set 0.81 0.96 0.95 0.97 0.94 0.97
RMSE test set 1.25 0.59 0.64 0.46 0.71 0.48
Correl. coef.
test set 0.9 0.98 0.97 0.99 0.97 0.99

7.4.3 Tensile strain at break target variable

In addition to tensile modulus and tensile strength, tensile strain at break is also a focus
variable of interest. Therefore, this section presents results of the hyperparameter
optimization with grid search, but for tensile strain at break target variable. The values of
this variable in the data at hand vary from 5 to 250 %. Therefore, the values of the RMSE
will be higher than in case of the dimensional target variables, as their range is
significantly smaller. The procedure followed in this case is the same as for the other
focus variables. RReliefF is used as a FS method to retain the most relevant variables
before training the MLP and KNN prediction models on the separate experiments datasets.
RRelieF is selected based on the results presented in the Section 7.3. The threshold for
including/ excluding a process parameter into the model is set to 0.2. At the same time,
all the datasets are divided into 70% train and 30% test datasets. 5-folds cross-validation
is performed on the training set to avoid overfitting and confirm the models” ability to
perform meaningful predictions on new data.

Separate experiments dataset
Experiment 1

For experiment 1 data, the models trained on the parallel dataset have a better
performance in comparison to those trained on the sequential dataset. At the same time,
MLP and KNN models have a better performance in comparison to the untuned MLP
models that were used to select the feature selection method for training the tensile strain
at break models. The untuned models have R? = 0.56 and 0.76 for the tensile strain at
breakl and 2 target variables on train set, while the ones obtained after the grid search
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have an R? up to 0.99 on the train set. When it comes to the sequential dataset, the untuned
MLP model has R? = 0.52, the tuned MLP model has a value of 0.64 on the train set,
while Random Forest R? reaches 0.92.

Table 7.46. Results of predictive models hyperparameter optimization for tensile strain at
breakl and tensile strain at break2, parallel dataset, experiment 1

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation relu - - -
hidden layer
neurons 30 ) ) )
solver Ibfgs - - -
alpha 0.0001 - - -
learning rate 0.001 - - -
weights - - distance -
number of ) : 5 a
neighbors
loss - - - -
criterion - friedman_mse - mae
max_depth - 5 - -
n_estimators - - - 100
max_features - - - sqrt
R? train set 0.64 0.97 0.99 0.96
RMSE train set 8.57 25 0.01 2.77
Correl. coef. 0.79 0.98 0.99 0.98
train set
R? test set 0.57 0.66 0.62 0.71
RMSE test set 11.02 9.78 10.38 9.05
Correl. coef.
test set 0.72 0.83 0.77 0.83

Table 7.47. Results of predictive models hyperparameter optimization for tensile strain at
break, sequential dataset, experiment 1

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation relu - - - - -
hidden layer 10 _ - - - -

neurons
solver Ibfgs - - - - -
alpha 0.0001 - - - - -
learning rate 0.001 - - 0.05 0.1 -
weights - - uniform - - -
number of : ) 3 } } )
neighbors
loss - - - Is square -
criterion - friedman_mse - - - mse
max_depth - 5 - - - -
n_estimators - - - 50 100 50
max_features - - - - - sqrt
R? train set 0.64 0.88 0.94 0.88 0.83 0.92
RMSE train set 9.64 5.69 4.02 5.51 6.67 4.67
Correl. coef.
train set 0.8 0.94 0.97 0.95 0.91 0.96
R? test set 0.48 0.37 0.25 0.52 0.49 0.51
RMSE test set 13.36 10.67 11.63 9.36 9.59 9.4
Correl. coef.
test set 0.72 0.7 0.61 0.73 0.72 0.73
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Experiment 2

kNN has the best performance on both train and test sets for the experiment 2 dataset,
with R? = 0.72 on the test set. The rest of the models have lower scores, even though their
performance on the train set is rather high. However, the test set scoring is extremely
important, as it reflects the model’s ability to predict target variable values on previously
unseen data. Once again, it is possible to conclude that more data is needed in order to
obtain models of a better quality.

Table 7.48. Results of predictive models hyperparameter optimization for tensile strain at
break, experiment 2

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation relu - - - - -

hidden layer 30
neurons
solver Ibfgs -
alpha 0.05 -
learning rate 0.001 - 0.05 1
weights - distance -
number of } A 3
neighbors
loss - lad linear -
criterion - mse - - mae
max_depth - 10 - - - -
n_estimators - - - 250 50 200
max_features - - - - - log2
R? train set 0.85 0.99 0.99 0.97 0.97 0.96
RMSE train set 16.06 0.01 0.01 7.36 7.2 8.62
Correl. coef. 092 0.99 0.99 0.99 0.99 0.98
train set
R? test set 0.21 0.66 0.72 0.62 0.69 0.61
RMSE test set 43.8 28.68 25.87 30.13 27.23 30.51
Correl. coef.
test set 0.61 0.85 0.85 0.85 0.88 0.85

Experiment 3

Tables 7.49 and 7.50 contain characteristics of the models that have the highest
performance characteristics based on the grid search. The models trained on the sequential
dataset have a better performance in comparison to the multi-output ones obtained using
the parallel dataset. At the same time, Random Forest algorithm outperforms the other
methods in both cases with the corresponding R? equal to 0.96 and 0.92 for the train set,
as well as 0.69 and 0.87 for the test set. The model for the sequential dataset can be used
as a s starting point for development of a more robust model for prediction of tensile strain
at break for 4 mm thick dogbones produced with ContainerService recycled HDPE
material.

Table 7.49. Results of predictive models hyperparameter optimization for tensile strain at
breakl and tensile strain at break2, parallel dataset, experiment 3

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation relu -
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Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
hidden layer 30 : ) }
neurons
solver Ibfgs - - -
alpha 0.0001 - - -
learning rate 0.001 - - -
weights - - distance -
number of ) } 4 :
neighbors
loss - - - -
criterion - mse - mae
max_depth - 7 - -
n_estimators - - - 200
max_features - - - sqrt
R? train set 0.78 0.99 0.99 0.96
RMSE train set 2.05 0.52 0.01 0.86
Correl. coef. 0.88 0.99 0.99 0.99
train set
R? test set 0.43 0.61 0.62 0.69
RMSE test set 2.79 2.33 2.29 2.05
Correl. coef.
test set 0.76 0.8 0.79 0.84

Table 7.50. Results of predictive models hyperparameter optimization for tensile strain at
break, sequential dataset, experiment 3

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation relu - - - - -

hidden layer
neurons 10 ) ) ) ) )
solver Ibfgs - - - - -
alpha 0.0001 - - - - -
learning rate 0.001 - - 0.01 0.1 -
weights - - distance - - -
number of } : 2 : : :
neighbors
loss - - - huber square -
criterion - mae - - - mae
max_depth - 7 - - - -
n_estimators - - - 300 50 50
max_features - - - - - sqrt
R? train set 0.78 0.91 0.94 0.89 0.86 0.92
RMSE train set 2.08 1.34 1.09 1.48 1.66 1.29
Correl. coef. 0.88 0.95 0.97 0.95 0.93 0.96
train set
R? test set 0.8 0.81 0.7 0.84 0.85 0.87
RMSE test set 1.92 1.85 2.34 1.72 1.67 1.51
Correl. coef. 09 092 085 092 092 094
test set
Experiment 4

In case of the data obtained during the experiment 4, none of the models have high
performance neither for parallel, nor for sequential dataset. In both cases, even if a model
has a relatively high sore on the train set (Random Forest for the parallel dataset), the
model’s score drops significantly when it is tested on the test set. As it can be seen from
the models’ quality for all three mechanical characteristics, it is important to obtain more
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data and if possible, add the relevant material information about the material
characteristics of the material batch used for production of the focus parts.

Table 7.51. Results of predictive models hyperparameter optimization for tensile strain at
breakl and tensile strain at break2, parallel dataset, experiment 4

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation relu - - -
hidden layer 15 : ; a
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - uniform -
number of R B 5 R
neighbors
loss - - - -
criterion - friedman_mse - mse
max_depth - 5 - -
n_estimators - - - 250
max_features - - - sqrt
R? train set 0.51 0.72 0.53 0.9
RMSE train set 5.46 4.09 5.36 25
Correl. coef. 072 0.85 0.74 0.97
train set
R? test set 0.51 0.25 0.43 0.53
RMSE test set 6.38 7.87 6.86 6.26
Correl. coef. 0.73 053 0.68 0.77
test set

Table 7.52. Results of predictive models hyperparameter optimization for tensile strain at
break, sequential dataset, experiment 4

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation relu - - - - -
hidden layer 20 A ) } : :

neurons
solver Ibfgs - - - - -
alpha 0.05 - - - - -
learning rate 0.001 - - 0.01 0.001 -
weights - - uniform - - -
number of ) 5 } ; :
neighbors
loss - - - Is linear -
criterion - mse - - - mae
max_depth - 5 - - - -
n_estimators - - - 150 200 100
max_features - - - - - sqrt
R? train set 0.45 0.69 0.64 0.65 0.65 0.76
RMSE train set 7.12 5.32 5.73 5.68 5.63 4.67
Correl. coef. 0.67 0.83 0.81 0.84 0.81 0.88
train set
R? test set 0.52 0.49 0.51 0.5 0.53 0.49
RMSE test set 5.63 5.8 5.72 5.79 5.58 5.79
Correl. coef.
test set 0.72 0.71 0.73 0.71 0.73 0.71
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Joined dataset

When it comes to the joined datasets, as Table 7.53 and 7.54 shows, there are no models
trained on the parallel dataset that have acceptable characteristics. The Random Forest
model has a relatively good performance, but it can and needs to be improved by adding
more relevant data and the real material characteristics to the dataset. For the sequential
dataset, the GBR and Random Forest models have acceptable scores of R? equal to 0.94
and 0.93 correspondingly, with the RMSE of 8.35 and 8.69. These models are more useful
than those trained on the separate experiments datasets, as they have “learned” using more
samples of data and as a result have better generalization abilities.

Table 7.53. Results of predictive models hyperparameter optimization for tensile strain at
breakl and tensile strain at break2, parallel joined dataset

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation relu - - -
hidden layer
neurons 10 ) ) )
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ) ; 4 ;
neighbors
loss - - - -
criterion - friedman_mse - mse
max_depth - 7 - -
n_estimators - - - 200
max_features - - - auto
R? train set 0.39 0.95 0.99 0.97
RMSE train set 11.19 3.18 0.01 2.32
Correl. coef.
train set 0.59 0.97 0.99 0.99
R? test set 0.16 0.51 0.02 0.72
RMSE test set 15.6 10.11 14.32 7.72
Correl. coef. 0.26 0.77 0.43 0.85
test set

Table 7.54. Results of predictive models hyperparameter optimization for tensile strain at
break, sequential joined dataset

Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
activation relu - - - - -
hidden layer 30 ; : : ) }

neurons
solver Ibfgs - - - - -
alpha 0.0001 - - - - -
learning rate 0.001 - - 0.05 0.05 -
weights - - distance - - -
number of ) } 7 : ; }
neighbors
loss - - - huber exponential -
criterion - friedman_mse - - - mae
max_depth - 12 - - - -
n_estimators - - - 200 50 300
max_features - - - - - auto
R? train set 0.81 0.99 0.99 0.97 0.91 0.98
RMSE train set 16.07 3.98 3.87 6.29 11.02 4.97
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Model’s MLP Decision Tree Random
hyperparameter | FS = RReliefF Regressor kNN GBR AdaBoost Forest
Correl. coef. 0.9 0.99 0.99 0.99 0.95 0.99

train set
R? test set 0.78 0.9 0.88 0.94 0.9 0.93
RMSE test set 15.94 10.67 11.64 8.35 10.88 8.69
Correl. coef. 0.88 0.96 0.94 0.97 0.95 0.97

test set

7.4.4 Mechanical properties prediction as a vector of tensile modulus,
tensile strength and tensile strain at break

It is also of interest to train models for prediction of the Young’s modulus, tensile strength
and tensile strain at break as a vector. This can be done using MLP, Decision Tree
Regressor, KNN and Random Forest, as these algorithms can be utilized for the multi-
output learning.

In order to do this the sequential joined dataset is used and the models are tuned using the
grid search, similarly to how it was done in the previous sections. The hyperparameter set
used for the grid search is the same as presented in the beginning of Section 7.4. This
dataset is smaller than the one used for the same procedure for the dimensional properties,
as some outliers were removed here as described in Section 7.2. No feature selection is
applied prior to the model training, as the dataset includes only 19 features and based on
the results presented in Section 7.3. Once again, the 70% — 30% training to testing ratio
is used in combination with the 5-folds cross- validation on the training set. Table 7.55
shows the models that are obtained from the grid search. It is possible to see that Random
Forest has the best performance in terms of the model’s scores on the test set, while
Decision Tree is the second best.

Table 7.55. Results of predictive models hyperparameter optimization for Young’s
modulus, tensile strength, tensile strain at break, sequential joined dataset

Model’s MLP Decision Tree
hyperparameter | FS = RReliefF Regressor kNN Random Forest
activation relu -
hidden layer 30
neurons
solver Ibfgs
alpha 0.05
learning rate 0.001 -
weights - distance
number of 6
neighbors
loss - -
criterion - mse - mae
max_depth - 7 - -
n_estimators - - - 50
max_features - - - auto
R? train set 0.6 0.96 0.98 0.97
RMSE train set 58.91 18.93 13.21 15.31
Correl. coef. 06 0.97 0.99 0.99
train set
R? test set 0.57 0.87 0.83 0.92
RMSE test set 63.71 35.53 40.43 28.32
Correl. coef. 056 094 0.94 097
test set
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Figures 7.10 —7.12 show comparison of the actual and predicted values of the mechanical
target variables of interest. The results are shown for 15 randomly selected test set
samples. It is possible to see that the model predicts Young’s modulus and tensile strength
with higher precision in comparison to tensile strain at break. The reason for this might
be that during the tensile testing, it is often hard to calculate the break point precisely and
different methods might have different values of this characteristics. It is also visible that
in most of the cases Random Forest values are the closest to the actual value of the focus
variable, even for the tensile strain at break.

Young's modulus Actual and Predicted

mActual ®MLP  ® Decision Tree kNN ®Random Forest
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Figure 7.10. Actual and predicted values of Young’s modulus target variable
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Figure 7.11. Actual and predicted values of tensile strength target variable
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Figure 7.12. Actual and predicted values of tensile strain at break target variable

Since Decision Tree Regressor and Random Forest have very similar models’ quality and
a rather high performance, it was of interest to see if they use the same process parameters
to make the predictions. Figures 7.13 and 7.14 are presented for this purpose. Both of the
models give the material variable the highest score, which is very meaningful since the
models are used for prediction of mechanical properties. Both models give some of the
highest scores to the smallest cushion value, cushion after holding pressure, injection time
and pressure value at switchover. Random Forest model, however, seems to be utilizing
a higher number of parameters in comparison to the Decision Tree. At the same time, it
is worth mentioning, that the Random Forest model is more robust and can be more useful
in the long term perspective, as it uses many decision tree learners to do the prediction,
while Decision Tree Regressor uses a single tree, and therefore might have a higher bias.
At the same time, if a model with high interpretability is needed, Decision Tree Regressor
model is the best choice.

Decision Tree parameter scores
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Figure 7.13. Decision Tree parameter scores
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Random Forest parameter scores
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Figure 7.14. Random Forest parameter scores
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Chapter 8

CC4 - Prediction of dimensional properties based on the data
series datasets

Dear future generations:
Please accept our apologies. We were rolling drunk on
petroleum.

— Kurt Vonnegut

This chapter describes development of the predictive models for the width and thickness
dimensional properties of the produced parts based on the data series datasets.
Composition of these datasets is described in more details in Section 4.4.2. The chapter
shows how width and thickness can be predicted using the data series data of such
parameters as cushion, mold pressure, mold temperature and screw position.

8.1 Preliminaries

As it has been mentioned previously, some of the injection molding process variables stay
constant during production cycle, while the others are described with a curve rather than
with a single number. Examples of such variables are cushion, mold pressure and
temperature. Unlike datasets used in Chapters 6 and 7, where a set of various process
variables is used as a model input to describe the injection molding process, in this chapter
the datasets include data series that correspond to a curve that describes variation of a
single process parameter. Here all the model’s input features are the chosen process
parameter values logged each 0.5 seconds during a production run. The number of input
parameters in this case corresponds to the cycle time in seconds multiplied by 2 (one
parameter per each 0.5 seconds). Cycle time is calculated as the time between the mold
closing until its opening. The output/ focus variables are width1, width2, thickness1 and
thickness2 (quality characteristics of specimens 1 and 2 that are produced during the same
machine run). The data series datasets are only parallel datasets, no sequential or joined
datasets for several experiments are used.

These prediction models are different from the ones trained in the previous chapters, as
values of only one parameter need to be logged during the production cycle. As the cycle
length might vary, in order to have the same number of features in all the data samples,
cycles with the shorter cycle time are completed with zeros (padding) to become the same
length as the samples with the longest cycle time. The nominal value of the width target
variable is 10 mm for all experiments, while for thickness it is 4 mm for experiments 1,
3, 4 and 15 mm for experiment 2. No outliers are removed in the datasets used for training
predictive models for the dimensional target variables.

Unlike the procedure described in Chapters 6 and 7, here no feature selection is
performed, and all parameters are used as an input for training the models. This is done
as removal of information regarding the value of the variable that describes the injection
molding process at any point of the process might negatively influence the dataset’s
usefulness. Depending on the variables logged during the different experiments, various
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parameters are used as a base for the dataset. In case of experiment 1, the cushion values
during the production cycle are logged each 0.5 seconds, transposed, padded and used as
the input parameters of the dataset. As it has been shown in the previous chapters various
cushion characteristics, such as the minimum cushion value, cushion at switchover, etc.
are often considered valuable by the feature selection methods. During experiment 2, such
parameters as cushion, mold pressure, mold temperature and screw position are logged.
Therefore, four different datasets based on the data series of the corresponding parameter
are created to develop the prediction models. Mold pressure and temperature are
considered as “fingerprints” of the process. It has been proven that the mold pressure
trajectory can reflect variation of melt temperature, screw rotational speed, injection
pressure and other useful process parameters [59]. For experiments 3 and 4 the screw
position is used to develop the predictive models, as it is also one of the parameters that
are representative of the production cycle’s flow.

8.2 Predictive models development

Since the multi-output models are developed in this chapter, only MLP, Decision Tree
Regressor, kNN and Random Forest methods are utilized. Apart from not using the FS
methods prior to training the MLP and kNN models, the procedure is similar to that
presented in Chapters 6 and 7. The dataset is divided into 70% train and 30% test set, and
5-folds cross-validation is performed on the train set. Grid search is once again used to
select the most meaningful model through tuning the relevant hyperparameters. For the
MLP the following hyperparameters and their values are considered:

hidden layer sizes : [20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70],
activation function : ‘relu’, ‘logistic’,

solver : ‘Ibfgs’, ‘sgd’,

alpha (L2 penalty parameter): [0.0001, 0.05],

learning rate init: [0.001, 0.01, 0.05, 0.1, 0.3].

For Decision Tree the criterion and maximum tree depth parameters were evaluated:

e criterion: ‘mse’, “friedman_mse’, ‘mae’,
e maximum tree depth: [5, 7, 10, 12, 15, 20, 25].

For KNN the next hyperparameters were used:

e weights: ‘uniform’, ‘distance’,
e number of neighbors: [2, 3, 4, 5, 6, 7].

In case of the Random Forest, the number of estimators, max features and criterion
hyperparameters were varied:

e number of estimators: [50, 100, 150, 200, 250, 300],
e max features: ‘auto’, ‘sqrt’, ‘log2’,
e criterion: ‘mse’, ‘mae’.

It is important to note that time needed for the grid search for selection of the best
performing MLP and Random Forest models has increased. With use of the data series
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datasets it takes up to 20 minutes to find the best set of hyperparameters. Time for the
hyperparameters selection for the Decision Tree Regressor and kNN did not vary.

8.2.1 Experiment 1

Table 8.1 shows results of training the chosen ML methods using the cushion data series
dataset and the hyperparameters tuning with grid search. The model can predict values of
width and thickness for the first and the second specimen molded during the same
production run for experiments 1, 3-4 or for only one specimen produced per run in case
of experiment 2. The models do not have extremely high performance, however, it isn’t
low either. KNN has the highest model’s scores both on the train and the test sets with R?
=0.79, RMSE = 0.09 and the correlation coefficient of 0.92 on the test set. Random Forest
also has a rather high performance and is only slightly outperformed by the KNN. These
two models demonstrate that they can to certain extent generalize on the previously
unseen data. Their performance is comparative with that of the models trained on
experiment 1 parallel dataset (Sections 6.4.1 and 6.4.2). However, only cushion process
variable data is used in the presented model, instead of over 10 parameters utilized in the
previously trained models. It is assumed that addition of more samples to the training
dataset will lead to increase of the model’s quality and development of a useful decision-
making support tool.

Table 8.1. Results of predictive models hyperparameter optimization for widthl, width2,
thickness1 and thickness2, cushion data series dataset for experiment 1

Model’s MLP Decision Tree
hyperparameter FS=NoFS Regressor kNN Random Forest
activation logistic -
hidden layer 5
neurons
solver Ibfgs
alpha 0.0001
learning rate 0.001 -
weights - distance
number of 2
neighbors
loss - -
criterion friedman_mse mse
max_depth 7 -
n_estimators - 100
max_features - - - auto
R? train set 0.87 0.99 0.99 0.98
RMSE train set 0.07 0.02 0.01 0.03
Correl. coef. 0.92 0.99 0.99 0.99
train set
R? test set 0.66 0.69 0.79 0.77
RMSE test set 0.11 0.11 0.09 0.09
Correl. coef.
test set 0.83 0.87 0.92 0.89

8.2.2 Experiment 2

Four different datasets are used to train the predictive models in this section based on the
data obtained from experiment 2. The model scores with hyperparameters selected using
grid search are shown in Tables 8.2 — 8.5. They use values of the selected variable logged
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each 0.5 seconds during the production cycle as inputs, the variables are: cushion, mold
pressure, mold temperature or screw position. The models based on cushion and mold
pressure have rather high performance for train and test sets, except for MLP trained on
the mold pressure data. When looking at the models trained on the mold temperature data,
only Decision Tree Regressor and Random Forest have relatively acceptable scores, while
MLP and kNN are not able to generalize on the test set data. In case of the screw position,
kNN and Random Forest show good results. The models trained on the experiment 2
dataset to predict width and thickness in Chapter 6 have rather high scores. However, it
has been mentioned that obtaining more data would increase the models’ performance
even more. In case of the data series datasets, which have significantly more features (one
per each 0.5 seconds of the production cycle), it is shown that it is also possible to obtain
models with acceptable quality that can predict both width and thickness simultaneously.
If we compare the models’ performance depending on which process parameter was used
as a base for the dataset, it is possible to see that the cushion data series dataset has the
highest average score. The models trained using the mold temperature data series dataset
have the lowest score on the test sets. KNN and Random Forest models created based on
the mold pressure and screw position data series datasets have relatively good scores on
both train and test sets, while the rest do not have acceptable quality.

Table 8.2. Results of predictive models hyperparameter optimization for width and
thickness, cushion data series dataset for experiment 2

Model’s MLP Decision Tree
hyperparameter FS=No FS Regressor kNN Random Forest
activation logistic -
hidden layer
neurons 50
solver Ibfgs
alpha 0.05
learning rate 0.001 -
weights - distance
number of 2
neighbors
loss - -
criterion - mae - mse
max_depth - 10 -
n_estimators - - - 50
max_features - - - auto
R? train set 0.97 0.99 0.99 0.97
RMSE train set 0.02 0.01 0.01 0.01
Correl. coef.
train set 0.89 0.99 0.99 0.99
R? test set 0.84 0.83 0.92 0.88
RMSE test set 0.03 0.03 0.02 0.03
Correl. coef.
test set 0.71 0.86 0.9 0.87

Table 8.3. Results of predictive models hyperparameter optimization for width and
thickness, mold pressure data series dataset for experiment 2

Model’s MLP Decision Tree
hyperparameter FS =No FS Regressor kNN Random Forest
activation logistic -
hidden layer 60
neurons
solver Ibfgs
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Table 8.4.

Table 8.5. Results of predictive models hyperparameter optimization for width and
thickness, screw position data series dataset for experiment 2

Model’s MLP Decision Tree
hyperparameter FS=NoFS Regressor kNN Random Forest
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of } : 4 :
neighbors
loss - - - -
criterion - mse - mse
max_depth - 7 - -
n_estimators - - - 50
max_features - - - log2
R? train set 0.87 0.99 0.99 0.99
RMSE train set 0.03 0.01 0.01 0.01
Correl. coef.
train set 0.83 0.99 0.99 0.99
R? test set 0.62 0.93 0.89 0.91
RMSE test set 0.05 0.02 0.03 0.02
Correl. coef. 067 0.89 0.86 085
test set

Results of predictive models hyperparameter optimization for width and
thickness, mold temperature data series dataset for experiment 2

Model’s

MLP

Decision Tree

hyperparameter FS=NoFS Regressor kNN Random Forest
activation logistic - - -
hidden layer 70 ; } )
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 2 }
neighbors
loss - - - -
criterion - mae - mae
max_depth - 10 - -
n_estimators - - - 50
max_features - - - auto
R? train set 0.84 0.99 0.99 0.95
RMSE train set 0.03 0.01 0.01 0.02
Correl. coef. 0.9 0.99 0.99 0.98
train set
R? test set 0.32 0.66 0.17 0.72
RMSE test set 0.11 0.05 0.08 0.04
Correl. coef. 0.35 071 0.67 0.74
test set

Model’s MLP Decision Tree
hyperparameter | FS = No FS Regressor kNN Random Forest
activation logistic - - -
hidden layer

neurons 2 ) ) )
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
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Model’s MLP Decision Tree
hyperparameter FS=NoFS Regressor kNN Random Forest
number of ; : 2 }
neighbors
loss - - - -
criterion - friedman_mse - mse
max_depth - 5 - -
n_estimators - - - 150
max_features - - - log2
R? train set 0.42 0.99 0.99 0.98
RMSE train set 0.06 0.01 0.01 0.01
Correl. coef. 0.79 0.99 0.99 0.99
train set
R? test set 0.2 0.52 0.92 0.84
RMSE test set 0.14 0.06 0.02 0.03
Correl. coef.
test set 0.16 0.5 0.9 0.85

8.2.3 Experiment 3

Table 8.6 shows that KNN and Random Forest models developed based on the screw
position trajectories data for the experiment 3 have high values of R? and correlation
coefficient and a low value of the RMSE. They are able to predict the produced part’s
width and thickness simultaneously based only on the screw position data obtained during
the production cycle without any other process parameter information. The models
presented in Section 6.4.1 (width target variable), have even higher model characteristics
scores. However, those obtained in Section 6.4.2 (width focus variable) underperform the
kNN and Random Forest models presented in this chapter. Such models can be used for
the decision-making support and their quality can be increased as more data is added to
the training set.

Table 8.6. Results of predictive models hyperparameter optimization for width1, width2,
thicknessl and thickness2, screw position data series dataset for experiment 3

Model’s MLP Decision Tree
hyperparameter FS =No FS Regressor kNN Random Forest
activation logistic - - -
hidden layer 50 : ) }
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 2 a
neighbors
loss - - - -
criterion - mse - mae
max_depth - 10 - -
n_estimators - - - 300
max_features - - - log2
R? train set 0.98 0.99 0.99 0.98
RMSE train set 0.03 0.01 0.01 0.04
Correl. coef.
train set 0.99 0.99 0.99 0.99
R? test set 0.61 0.67 0.91 0.89
RMSE test set 0.11 0.1 0.05 0.06
Correl. coef. 0.89 0.9 0.98 0.96
test set
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8.2.4 Experiment 4

Based on the models’ scores seen in Table 8.7, the random Forest is the only model that
has a high score on the training set and a somewhat acceptable performance on the test
set. At the same time, even this score might not be good enough to use this model for an
accurate decision support while producing 4 mm thick dogbones from the RePro recycled
HDPE material. The models are trained using screw position parameter logged during the
parts’ production cycle. The models presented in Chapter 6 for both width and thickness
target variables outperform the models obtained in this section.

Table 8.7. Results of predictive models hyperparameter optimization for width1, width2,
thickness1 and thickness2, screw position data series dataset for experiment 4

Model’s MLP Decision Tree
hyperparameter FS=NoFS Regressor kNN Random Forest
activation logistic - - -
hidden layer 5 : } )
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 7 }
neighbors
loss - - - -
criterion - mse - mae
max_depth - 7 - -
n_estimators - - - 50
max_features - - - auto
R? train set 0.96 0.99 0.99 0.97
RMSE train set 0.03 0.01 0.01 0.03
Correl. coef. 0.99 0.99 0.99 0.99
train set
R? test set 0.32 0.43 0.63 0.75
RMSE test set 0.15 0.14 0.11 0.09
Correl. coef. 08 083 0.83 09
test set
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Chapter 9

CC5 - Prediction of mechanical properties based on the data
series datasets

When you ’re seventeen you know everything. When
you re twenty-seven if you still know everything you re
still seventeen.

— Ray Bradbury, “Dandelion Wine”

Chapter 9 presents how predictive models for tensile modulus, tensile strength and tensile
strain at break target variables were developed using the data series datasets. The datasets
development and structure are described in Section 4.4.2. Depending on the experiment
number, data series for cushion, mold pressure, mold temperature or screw position are
utilized.

9.1 Preliminaries

Similarly to the case with the dimensional target variables, it is of interest to compare
quality of the predictive models based on the data series datasets with those developed
using the general datasets. While creating the datasets, the same outliers as mentioned in
Chapter 7 were removed. The input variables are points from cushion, mold pressure,
mold temperature or screw speed trajectories, depending on the experiment number.
Instead of width and thickness, the mechanical properties are used as the target variables.
Multi-output models are trained, where values of all the parameters for one (experiment
2) or two (experiments 1, 3-4) specimens produced during one run are predicted
simultaneously. MLP, Decision Tree Regressor, KNN and Random Forest methods are
used to develop the models, as the rest of the methods used in this work cannot be used
to train the multi-output models.

Young’s modulus has a range of values between 750 to 1200 MPa, tensile stress varies
between 21.25 and 34 MPa, while tensile strain at break between 5 and 250 % based on
the data at hand. The presented range corresponds to the target variables values across all
four experiments. Due to a large spread of the values, the RMSE is expected to be
significantly higher for the models obtained in this chapter. No prior feature selection is
applied before training MLP or KNN models.

9.2 Predictive models development

The procedure used to train the models is similar to that described in Chapter 8. The
dataset is divided into 70-30 % ratio for the train and test set, 5-folds cross-validation is
used on the train set. Grid search is utilized to find the best performing model on the set
of the chosen hyperparameters. The hyperparameters search space is the same as the one
used in Chapter 8 and is therefore not repeated here.
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9.2.1 Experiment 1

Table 9.1 contains the MLP, Decision Tree Regressor, kNN and Random Forest model
scores and hyperparameter values selected using the grid search. The obtained models
scores are similar to those from Sections 7.4.1 (Young’s modulus target variable) and
7.4.3 (tensile strain at break target variable), while the models for separate prediction of
tensile strength have higher model characteristics. The models obtained in this section are
trained only on the cushion value cycle data, while for the models from Chapter 7 over
10 model parameters are used within a prediction model. Random Forest outperforms the
other methods but does not have high enough scores on the test set to be used on practice.
If more data is obtained, the models’ quality will increase, and their usability will improve
correspondingly. Young’s modulusl and 2, tensile strengthl and 2 and tensile strain at
break 1 and 2 are characteristics of specimen 1 and 2 that are produced during the same
production cycle.

Table 9.1. Results of predictive models hyperparameter optimization for Young’s
modulusl, Young’s modulus2, tensile strengthl and tensile strength2, tensile strain at
break1, tensile strain at break2 cushion data series dataset for experiment 1

Model’s MLP Decision Tree
hyperparameter FS =No FS Regressor kNN Random Forest
activation logistic -
hidden layer
neurons 55
solver Ibfgs
alpha 0.05
learning rate 0.001 -
weights - distance
number of 5
neighbors
loss - -
criterion mse mse
max_depth 7 -
n_estimators - 300
max_features - - - auto
R? train set 0.68 0.91 0.99 0.94
RMSE train set 32.74 17.3 2.08 13.77
Correl. coef.
train set 0.8 0.91 0.99 0.98
R? test set 0.58 0.63 0.65 0.7
RMSE test set 46.17 43.25 42.03 39.05
Correl. coef. 0.88 083 0.88 0.89
test set

9.2.2 Experiment 2

Tables 9.2 — 9.5 describe the models obtained through use of the data series datasets for
cushion, mold pressure, mold temperature and screw position. Unfortunately, the only
model with a relatively acceptable performance is a Decision Tree Regressor trained on
the mold temperature data series dataset (Table 9.4). The rest of the models regardless of
the dataset they were trained on have very low performance characteristics and need to
be further worked on. It is a huge difference between the models’ quality for the same
experiment datasets, but for the dimensional properties target variables. Prediction of
mechanical properties is more challenging and requires more data. All the datasets used
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in this chapter are slightly smaller than those used in Chapter 8, due to the outlier’s
removal. However, for the experiment 2 dataset the difference is only in 7 samples. At
the same time, the dataset obtained from the experiment 2 is in general relatively small
and this is the main reason for obtaining models of low quality. The models developed
within this section have performance characteristics that are similarly low to those
presented in Sections 7.4.1 for tensile modulus, in 7.4.2 for tensile strength and in 7.4.3
for tensile strain at break using the separate experiment 2 dataset. Since in experiment 2
only one specimen was produced per production cycle, mechanical properties of one
specimen are predicted by the models.

Table 9.2. Results of predictive models hyperparameter optimization for Young’s
modulus, tensile strength, tensile strain at break cushion data series dataset for experiment
2

Model’s MLP Decision Tree
hyperparameter FS=NoFS Regressor kNN Random Forest
activation logistic - - -
hidden layer
neurons 5 ) ) )
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of } : 6 a
neighbors
loss - - - -
criterion - mse - mae
max_depth - 7 - -
n_estimators - - - 200
max_features - - - auto
R? train set 0.04 0.99 0.99 0.94
RMSE train set 23.96 242 0.01 6.14
Correl. coef. 0.07 0.94 0.99 0.98
train set
R? test set 0.03 0.41 0.17 0.7
RMSE test set 29.44 22.33 26.51 15.9
Correl. coef. 0.25 001 0.15 031
test set

Table 9.3. Results of predictive models hyperparameter optimization for Young’s
modulus, tensile strength, tensile strain at break mold pressure data series dataset for
experiment 2

Model’s MLP Decision Tree
hyperparameter FS=No FS Regressor kNN Random Forest
activation logistic - - -
hidden layer 50 } ; )
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ) } 6 :
neighbors
loss - - - -
criterion - mse - mse
max_depth - 5 - -
n_estimators - - - 100
max_features - - - auto
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Model’s MLP Decision Tree
hyperparameter FS=NoFS Regressor kNN Random Forest
R? train set 0.12 0.97 0.99 0.89
RMSE train set 22.85 3.95 0.01 8.13
Correl. coef.
train set 0.01 0.83 0.99 0.99
R? test set 0.05 0.04 0.53 0.44
RMSE test set 28.29 28.39 19.91 21.63
Correl. coef.
test set 0.11 0.14 0.51 0.45

Table 9.4. Results of predictive models hyperparameter optimization for Young’s
modulus, tensile strength, tensile strain at break mold temperature data series dataset for
experiment 2

Model’s MLP Decision Tree
hyperparameter FS=No FS Regressor kNN Random Forest
activation logistic - - -
hidden layer 70 R R R
neurons
solver Ibfgs - - -
alpha 0.0001 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 5 }
neighbors
loss - - - -
criterion - friedman_mse - mse
max_depth - 5 - -
n_estimators - - - 50
max_features - - - auto
R? train set 0.07 0.86 0.99 0.86
RMSE train set 23.49 9.08 0.01 9.2
Correl. coef. 0.32 0.74 0.99 0.98
train set
R? test set 0.03 0.79 0.17 0.56
RMSE test set 29.48 8.96 26.37 19.18
Correl. coef. 0.24 0.72 0.15 0.43
test set

Table 9.5. Results of predictive models hyperparameter optimization for Young’s
modulus, tensile strength, tensile strain at break screw position data series dataset for
experiment 2

Model’s MLP Decision Tree
hyperparameter FS =No FS Regressor kNN Random Forest
activation logistic - - -
hidden layer 55 B R R
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; ; 6 ;
neighbors
loss - - - -
criterion - mae - mae
max_depth - 5 - -
n_estimators - - - 50
max_features - - - auto
R? train set 0.22 0.92 0.99 0.9
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Model’s MLP Decision Tree
hyperparameter FS=NoFS Regressor kNN Random Forest
RMSE train set 21.53 6.99 0.01 7.57
Correl. coef.
train set 0.29 0.78 0.99 0.97
R? test set 0.21 0.22 0.29 0.53
RMSE test set 31.69 25.62 24.38 19.9
Correl. coef.
test set 0.18 0.03 0.24 0.25

9.2.3 Experiment 3

Table 9.6 indicates that all the models obtained as a result of application of selected ML
methods to the screw position data series dataset for experiment 3 are of extremely low
quality, as they are not able to perform adequately on the test set. MLP model has a rather
low performance even on the train set. If these models are compared to the ones for the
parallel dataset of experiment 3 used in Sections 7.4.1 — 7.4.3 with different target
variables, it can be seen that those models for tensile strength and tensile strain at break
have a better performance on the test set, while those for Young’s modulus have very low
scores. The models presented in this chapter, however, predict all those target variables
simultaneously. Due to this and to the relatively small dataset size, the models cannot be
considered for further use in their current state and need to be further worked on.

Table 9.6. Results of predictive models hyperparameter optimization for Young’s
modulusl, Young’s modulus2, tensile strengthl and tensile strength2, tensile strain at
breakl, tensile strain at break2 screw position data series dataset for experiment 3

Model’s MLP Decision Tree
hyperparameter FS =No FS Regressor kNN Random Forest
activation logistic - - -
hidden layer 55 : } )
neurons
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of } . 4 :
neighbors
loss - - - -
criterion - friedman_mse - mae
max_depth - 7 - -
n_estimators - - - 300
max_features - - - sqrt
R? train set 0.37 0.86 0.99 0.92
RMSE train set 24.82 11.68 0.01 9.13
Correl. coef. 0.69 0.93 0.99 0.98
train set
R? test set 0.01 0.02 0.29 0.25
RMSE test set 28.54 28.67 23.94 24.62
Correl. coef.
test set 0.29 0.63 0.81 0.69

9.2.4 Experiment 4

When it comes to the data from experiment 4, the models that were trained using the
separate parallel dataset have low performance for Young’s modulus and tensile strain at
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break, while the models for tensile strength have relatively good results. In case of the
screw position data series dataset from experiment 4, Table 9.7 shows that the models
have low scores for the test set and are not useable in their current form. The reasons and
ways to help this are the same as for the other experiments described in this chapter
(collection of more relevant data, addition of information about the material properties of
the used material batch, etc.).

Table 9.7. Results of predictive models hyperparameter optimization for Young’s
modulus1, Young’s modulus2, tensile strengthl and tensile strength2, tensile strain at
breakl, tensile strain at break2 screw position data series dataset for experiment 4

Model’s MLP Decision Tree
hyperparameter | FS = No FS Regressor kNN Random Forest
activation logistic - - -
hidden layer
neurons 60 ) ) )
solver Ibfgs - - -
alpha 0.0001 - - -
learning rate 0.001 - - -
weights - - distance -
number of ; : 6 }
neighbors
loss - - - -
criterion - mae - mae
max_depth - 10 - -
n_estimators - - - 150
max_features - - - log2
R? train set 0.38 0.99 0.99 0.92
RMSE train set 23.74 25 0.01 8.37
Correl. coef. 0.62 0.98 0.99 0.98
train set
R? test set 0.07 0.03 0.28 0.14
RMSE test set 29.04 37.3 25.56 32.21
Correl. coef.
test set 0.36 0.55 0.43 0.52
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Chapter 10

CC6 — Prediction of dimensional deviations using the general
datasets

This too shall pass.
— Persian adage

This chapter describes development of models for prediction of dimensional deviations
of focus parts. The models are trained using parallel and sequential joined datasets. More
information about these datasets can be found in Section 4.4.3.

10.1 Preliminaries

Chapter 6 describes development of predictive models for the dimensional properties of
focus parts trained on separate and joined datasets. It is of interest to compare quality of
those models with the models that predict dimensional deviations. The models are trained
only on joined datasets, as it has been seen based on results described in Chapters 6 and
7 that the separate experiments datasets are often too small to create a meaningful model.

There were no outliers removed from the joined datasets for prediction of dimensions and
dimensional deviations. No feature selection is applied prior to the model development
as parallel joined dataset contains only 20 features, while the sequential one only 19. In
addition, results from Section 6.3 have shown that the quality of the models increase if
all the features from the joined datasets are included. The dataset was divided into 70%
train and 30% test sets, where 5-folds cross-validation was performed on the train set.
MLP, Decision Tree Regressor, KNN and Random Forest are used for the models’
development, as they are capable of creating multi-output models. Similarly to Chapters
6 — 9, grid search is utilized to tune various hyperparameters. The set of the tuned
hyperparameters for selected ML methods is the same as the one used in Chapters 8 and
9 and can be found in Section 8.2. Similar models are not proposed for prediction of the
mechanical properties, as no nominal value was identified for them. In case of width the
nominal value is 10 mm for all experiments, while the nominal thickness is 4 mm for
experiments 1, 3-4 and 15 mm for experiment 2.

10.2 Predictive models for dimensional deviations, parallel joined
dataset

Table 10.1 contains information about the models’ hyperparameters selected in the
process of grid search application. Since the parallel joined dataset is utilized here, the
predicted variables are thicknessl, thickness2, widthl and width2 — these are
dimensional characteristics of specimen 1 and 2 produced during the same machine run.
Random Forest model outperforms the rest of the models with R? = 0.99 on the train and
R? =0.94 on the test set. Values of the correlation coefficient for this model are also high.
RMSE at the same time is considerably high, since the dimensional deviations and not
the dimensions value itself is predicted. The second-best model is the one created with
Decision Tree Regressor method. It has R? = 0.99 on the train set and R? = 0.88 on the
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test set. Values of the correlation coefficient are also acceptable, while the RMSE is
slightly higher than the one for the Random Forest. These results are not compared with
those presented in Section 6.4.3 as sequential joined dataset is utilized there.

Table 10.1. Results of predictive models hyperparameter optimization for deviations of
thicknessl, thickness2, widthl and width2 target variables, parallel joined dataset

Model’s MLP Decision Tree
hyperparameter FS=No FS Regressor kNN Random Forest
activation logistic - - -
hidden layer
neurons % ) ) )
solver Ibfgs - - -
alpha 0.05 - - -
learning rate 0.001 - - -
weights - - distance -
number of ) : 3 a
neighbors
loss - - - -
criterion - mae - mse
max_depth - 12 - -
n_estimators - - - 200
max_features - - - auto
R? train set 0.77 0.99 0.99 0.99
RMSE train set 0.1 0.01 0.01 0.02
Correl. coef. 0.74 0.99 0.99 0.99
train set
R? test set 0.68 0.88 0.78 0.94
RMSE test set 0.12 0.07 0.1 0.05
Correl. coef.
test set 0.64 0.88 0.83 0.94

Figures 10.1 — 10.4 depict comparison of the actual and predicted values of the
dimensional deviations for each of the variables predicted by various models. Here,
thicknessl, thickness2, widthl and width2 are dimensional characteristics of specimens
1 and 2 produced simultaneously. The values are shown for 15 randomly selected data
samples from the test set. The figures show that the Random Forest is the one that usually
predicts values that are closest to the actual one. In case of sample 11.2, however, all the
models have a significant difference between the actual and the predicted values. MLP is
the model that underperforms the most in case of all the target variables predictions.
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Figure 10.1. Actual and predicted values of thickness1 deviation target variable
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Figure 10.2. Actual and predicted values of thickness2 deviation target variable
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Figure 10.3. Actual and predicted values of width1 deviation target variable
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Figure 10.4. Actual and predicted values of width2 deviation target variable

Since Random Forest and Decision Tree Regressor have the best and the second-best
model qualities, it was of interest to see which features do these models utilize and how
do they score them. Figures 10.5 and 10.6 show parameter scores of Decision Tree and
Random Forest models correspondingly. Both models give the highest scores to holding
pressure, cushion after holding pressure and material. The Decision Tree gives more
parameters significant scores, such as the smallest cushion value, injection work, last
ejector position and backpressure. The Random Forest model, on the other hand, has
many parameters with very low scores and some that are equal to zero.

Decision Tree parameter scores
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Figure 10.5. Decision Tree parameter scores, parallel joined dataset
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Random Forest parameter scores
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Figure 10.6. Random Forest parameter scores, parallel joined dataset

10.3 Predictive models for dimensional deviations, sequential
joined dataset

Table 10.2 shows results of the hyperparameter tuning for the models with width and
thickness target variables (include widthl, width2 and thicknessl, thickness2
correspondingly merged sequentially) for the sequential joint dataset. Since this dataset
is larger than the parallel one and more data is available for training, the predictive
models’ quality is slightly higher than for the models trained on the parallel joined dataset.
Once again Random Forest and Decision Tree Regressor algorithms outperform the rest
in terms of their performance on the test set, at the same time kNN has the highest scores
on the train set. The models able to predict the dimensional properties values described
in Section 6.4.3 have better scores than the ones presented in this section. However,
Random Forest and Decision Tree Regressor still have a worthy performance and can be
used as a starting point for further development of the models for prediction of the
dimensional properties’ deviations.

Table 10.2. Results of predictive models hyperparameter optimization for thickness and
width deviation target variables, sequential joined dataset

Model’s MLP Decision Tree
hyperparameter FS=No FS Regressor kNN Random Forest
activation logistic -
hidden layer 70
neurons
solver Ibfgs
alpha 0.05
learning rate 0.001 -
weights - distance
number of 2
neighbors
loss -
criterion mse mae
max_depth 5 -
n_estimators - 100

183




Model’s MLP Decision Tree
hyperparameter FS=NoFS Regressor kNN Random Forest
max_features - - - sqrt
R? train set 0.86 0.95 0.99 0.98
RMSE train set 0.09 0.05 0.03 0.03
Correl. coef.
train set 0.86 0.96 0.99 0.99
R? test set 0.84 0.92 0.85 0.92
RMSE test set 0.09 0.06 0.09 0.06
Correl. coef. 0.87 0.94 09 0.94
test set

Figures 10.7 and 10.8 reflect on the difference between the actual and predicted values of
the thickness and width deviations target variables correspondingly. The values are shown
for 15 samples that are randomly selected from the test dataset. In most of the cases all
four models can predict the deviation values close to the actual one. However, for some
of the samples, such as 17.1.1 for the thickness deviation, all models’ predictions
significantly differ from the real value.

Figures 10.9 and 10.10, at the same time, depict the parameter scores that Decision Tree
Regressor and Random Forest methods give to the input parameters. These two models
have the best performance on the test set and are therefore compared. Unlike the models
trained on the parallel dataset, Decision Tree has more parameters with low and zero
scores, while Random Forest utilizes most of the input parameters. Similarly to the
parallel dataset models, cushion after holding pressure, holding pressure and material
features are those with the highest scores in both models.
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Figure 10.7. Actual and predicted values of thickness deviation target variable
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Figure 10.8. Actual and predicted values of width deviation target variable

Decision Tree parameter scores

Part type
Material -
Switchov_vol
Speed_max
Spec_pres_switchov =
Screw_speed
Plast_time
Last_cycle_time
Injection_work
Injection_time
Injection_Speed
Holding_pressure ~ mummmm
Holding_pres._time
Flow_no_plast m
Cushion_smallest =
Cushion_after_hold_pres
Cooling_time_last
Cooling_time
Backpressure

Figure 10.9. Decision Tree parameter scores, sequential joined dataset

Random Forest parameter scores
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Figure 10.10. Decision Tree parameter scores, sequential joined dataset
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Chapter 11

Discussion

No one travels
Along this way but I,
This autumn evening.

— Matsuo Basho

This chapter discusses results obtained in Chapters 6 — 10, provides answers to the
research questions formulated in Section 1.3 of Chapter 1, as well as elaborates on the
use of the research philosophy paradigms applied in this study.

In Section 4.1 of Chapter 4, it has been stated that combination of positivism and
pragmatism was used in this PhD work. Positivism is often adopted by natural scientists
as it “entails working on observable social reality to produce law-like generalizations”
[135]. The focus of this paradigm emphasizes using data obtained from the objective
reality to draw facts uninfluenced by human interpretation from it. In this work, the
injection molding data was acquired to create prediction models for various quality
characteristics of focus parts. It is attempted to create those models so that they can
describe the injection molding process and relationships between the process and target
variables clearly and concisely. The research questions are formulated so that the answers
to them can be used by other researchers in a similar way as described in this study.

Pragmatism concentrates on identification of a research problem and finding a practical
solution to it by applying methods that bring the best results. This paradigm, however,
suggests that there might be more than one method that suits the problem at hand,
depending on what kind of data is available and what type of knowledge needs to be
created. At the same time, pragmatists agree that different interpretations of the reality
exist and that one single point of view can never provide the entire picture [135]. In this
work this point of view is adopted. The research problem of development of an intelligent
control system for thermoplastics injection molding is addressed and the research
questions that would help to find a corresponding practical solution are formulated. It is
proposed to use ML methods to develop the necessary prediction models, as these
methods are reported to have a better performance in comparison to other more
conventional modelling techniques.

Even though the combination of positivism and pragmatism fits well the quantitative
study at hand, interpretivism also plays an important role here. Despite the fact that in
most cases this paradigm is considered as the one used in the qualitative or social studies,
it can to certain extent be applied when conducting the technical studies as well.
Positivistic paradigm claims that a scientist needs to be neutral and detached of what is
researched. However, how can one be completely sure of fully meeting this requirement
is not completely understandable. The way reality is viewed by a scientist adopting the
positivistic or pragmatic paradigm is influenced by the person’s interpretation of reality
and problem at hand. Problem formulation, selection of relevant method, data analysis
and conclusions based on it are integral parts of any study, including the quantitative ones.
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However, all these stages are influenced by the scientist’s view on the surrounding world,
his or her background and previous experiences. Therefore, interpretivism is also partially
involved in the described PhD study, as the person conducting it was formulating the
research questions, selecting the methods to be applied and analyzing the obtained results
based on her past experiences. Any mathematical model will always be a more or less
simplified representation of an abstract “truth” and it is up to the end user to decide to
what extent it is useful. The author means that machine learning can be a useful approach
for prediction of quality of IM parts, given enough samples for training of the models are
provided.

11.1 RQ1

How to select parameters that influence the injection molded part
quality using the ML methods?

In most of the research studies reviewed in Chapters 2 and 3 important process parameters
are selected based on the theoretical knowledge, experience related to the injection
molding process or using ANOVA [87]. A limited number of selected process parameters
is chosen and then their values are logged, then these parameters are further included in
the prediction model. Such approach might be relevant only in cases when the expert
involved in the parameter selection is completely sure that these are the most important
process features or in cases when no access to the rest of the parameters can be obtained.
In some other cases, ANOVA is used. However, it also has its downsides, for example, it
assumes that the parameters under analysis are independent and normally distributed,
which is not always the case.

The amounts of logged process data are increasing, and the number of obtained process
parameters raises correspondingly. In some cases, theoretical background, previous
experience or ANOVA application might not be enough to identify the most relevant
parameters among dozens of the obtained ones, as identification of the most important
process features is an ongoing field of research [79]. Therefore, it is suggested that feature
selection methods are put in use for these purposes. FS methods can be used not only for
identification of the most relevant process parameters, but in order to increase
understanding of relationships between the target characteristic and the process features,
as well as for dimensionality reduction.

Various studies suggest different process parameters to be important for prediction of
dimensional characteristics of focus parts. In [63] injection time, switchover time and
mold temperature are used for development of a mathematical prediction models for
warpage. Holding pressure and cooling time are among the parameters considered in [58]
for shrinkage prediction. Mold temperature, holding time and pressure, as well as
injection time are considered for minimization analysis of shrinkage and warpage in [88].

In this study 41 various machine and process parameters were logged during experiment
1, 65 during experiment 2 and 52 during experiments 3 and 4. Some of these parameters
can be more relevant for predictive maintenance of IMMs, while the others can be used
for development of models for prediction of dimensional and mechanical properties of
injection molded parts. Five feature selection methods (Pearson’s correlation, RFE,
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Spearman’s Correlation, CFS and RReliefF) were used to eliminate the parameters that
do not contain significant amount of information about the corresponding target variables.
Their performance was compared through training of an MLP model on the full
parameters set and on the sets created based on results of the FS methods.

When it comes to prediction of width and thickness dimensional variables, based on
Section 6.3, some of the important parameters selected by the feature selection methods
are various characteristics of cushion variable (cushion value after holding pressure,
average value, the smallest value), holding pressure, pressure at switchover, cooling time,
material, mold temperature, holding pressure time, injection speed, backpressure and flow
number of plastics (specific parameter utilized by the ENGEL IMM used during the
experimental work). While some of these parameters were extensively utilized by other
scholars, some of them are rarely or almost never considered. RReliefF and Spearman’s
FS methods were identified as the ones with the highest performance for width and
thickness focus variables based on the collected data.

When mechanical properties rather than dimensional ones are in focus, the reviewed
studies highlight such process parameters as holding pressure, injection pressure, melt
temperature, injection time, holding time and cooling time to be influencing the final
part’s mechanical characteristics [86, 90]. Based on the results presented in Section 7.3
and utilization of FS methods parameters that are considered relevant for prediction of
mechanical target variables are: mold pressure, holding pressure, average nozzle
temperature, cushion characteristics, last ejector position, screw speed, material,
clamping force at switchover, barrel temperature and closing force. RReliefF FS method
has shown the best performance on the experimental data at hand, when compared to
untuned MLP models developed based on the features selected by four other methods.

Some of the parameters that receive the highest scores by the FS methods in cases of both
dimensional and mechanical target variables are rarely mentioned or used by other
scholars for development of the corresponding prediction models. This is despite the fact
that literature on the injection molding process itself often stresses importance of such
parameters as cushion or barrel temperature. Based on the theoretical foundations of the
injection molding process, it is possible to say that parameters selected by the FS methods
are relevant to the corresponding target variables. Therefore, when in need to identify
those that are the most influential for IM or other manufacturing processes the FS methods
might be useful.

The FS methods advantage over application of, for example, ANOVA is that not all of
these methods assume that the input parameters are normally distributed, independent or
have only linear dependency with the target variable. In addition, these methods can be
used for identification of process problem places, as some of them are based on analysis
of variance, as well as for dimensionality reduction or improved understanding of
relationships between the target variable and process parameters.

11.2 RQ2

How can machine learning methods be used for prediction of
dimensions of the injection molded parts?
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In this work results of development of prediction models for the dimensional target
variables (width, thickness) and the corresponding deviations are described in Chapters
6, 8 and 10. The models are developed using various ML techniques. There are examples
of such models creation using more traditional methods as FEM, RSM, numerical and
stochastic simulations, analysis of P-V-T relationship and Taguchi methodology [63, 74,
79, 80]. However, as mentioned in Chapter 3, Section 2.2.3, most of them have certain
disadvantages that make their application for the predictive models’ creation too
cumbersome and ineffective. For example, FEM requires significant computation efforts,
numerical modeling might include simplifications that hinder possibility of proper
reflection of the non-linear relationships due to the material behavior, etc. ML methods,
on the other hand were reported to require smaller computational time, be capable of
processing large amounts of data and model non-linear relationships. Therefore, in this
dissertation application of six ML methods was investigated (MLP, Decision Tree
Regressor, KNN, GBR, AdaBoost and Random Forest).

Shrinkage in the injection molding process is inherent, as it is caused by the difference in
the polymer density at the processing temperature and the ambient temperature. As a
result, final part’s shrinkage might be up to 20% of the initial part size, depending on the
process parameter settings. Low injection pressure, short holding or cooling times might
be some of the main causes of extensive shrinkage and variation of the dimensional target
characteristics. The task of considering various parameters that influence width and
thickness is not easy. However, ML methods are capable of developing the models that
describe a dynamic system with a significant number of important parameters. If the
number is too large, FS methods should be applied as discussed in the previous section.

To make the Machine Learning methods work effectively and develop high quality
models, large amounts of process data need to be acquired. This is necessary due to the
fact that the ML methods are statistical methods and a small dataset will not allow to
create a model that can adequately generalize on the previously unseen data. The data can
be obtained on the daily basis, when the IMMs are running to produce focus parts at the
shop floor. Later the data can be used to create or update the existing models to increase
their initial quality characteristics. The latter is possible as the ML methods allow to adjust
the models to the fast-changing environment, when more relevant data is acquired.
However, standardized routines for the data acquisition and processing need to be
established.

After obtaining the IM process data, this work proposes to go through four main steps:
preprocess the data (remove missing data, eliminate outliers, normalize the data), perform
feature selection (removal of constant, irrelevant features), apply the chosen ML methods
and validate the models. This approach will allow to train the models on high quality data
that doesn’t have missing pieces of information or features that act like noise and lower
quality of the overall model. In addition, it will allow to verify the final models’ quality.

Based on the results presented in this dissertation, the separate experiments datasets might
be too small to create meaningful models. However, when the data is integrated together
and material and part type parameters are added, the obtained models often have a rather
high performance and can be used as a starting point for further development of the
necessary decision-support tools. Performance of the models trained on joined parallel
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and sequential datasets for prediction of dimensional characteristics is comparable. The
joined sequential dataset models usually slightly outperform the joined parallel models.
In addition, the predictive models for the dimensional characteristics have higher
performance than those created for prediction of the dimensional deviations. Random
Forest was the method with the highest performance on the test set in most of the cases,
showing that the obtained models have good generalization abilities and can make
predictions on new data samples.

To confirm the models’ usefulness validation routines are very important. In this work
prior to the ML method application, used dataset was divided into 70% train and 30% test
sets. This way the model was trained on 70% of data from the dataset, while 30% of it
were used to show the model’s performance on new data. At the same time, 5-folds cross-
validation was applied on the train data. This way a two-step process for avoiding
overfitting was used. In some cases, it has been observed no overfitting on the train
dataset, but when testing the model on the test set, its generalization abilities were not
reaching the acceptable level.

Three model characteristics were used in this work: R?, square root mean error and
correlation coefficient. R? shows how close the real data is to the fitted regression line.
RMSE reflects on difference between predicted and observed (real) values. Correlation
coefficient (Pearson’s in this case) measures the strength and direction of a linear
relationship between the predicted and measured values. Each of these measures reflects
on the model’s quality from a different perspective and if two of the scores are acceptable,
while the third one is not, the obtained model’s quality should be questioned. It is
important to utilize several such measures rather than one, as a single measure might not
always show the whole picture. For example, in some of the cases the correlation
coefficient value is quite high, however, R? is too low, while the RMSE is too high. This
means that the model systematically predicts values that are higher or lower than the
observed ones. In such cases if only the correlation coefficient performance score is used,
the obtained model’s quality might be considered acceptable. However, in the reality it is
not.

11.3 RQ3

How can machine learning methods be used for prediction of physical
properties of the injection molded parts?

Quality is a complex concept and its definition might vary depending on the application
field [43]. In case of injection molding, some of the most important quality issues are
dimensional tolerances and mechanical properties [37]. Due to this, prediction models for
mechanical properties (tensile modulus, tensile strength, tensile strain at break) are also
developed in this work using the ML methods.

The data used for the models’ development was collected during four different
experiments and in the two first experiments virgin HDPE was used, in experiment 3
recycled HDPE from ContainerService supplier was utilized, while in experiment 4 —
recycled HDPE from the RePro supplier. The created models’ quality show that it is
possible to create the relevant prediction models not only using the virgin material data,
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but also utilizing the recycled materials data. Moreover, including this data into the
training datasets for the prediction models will potentially facilitate the recycled materials
use for production of various parts.

For each of the experiments a DOE was created, where certain process parameters were
varied in order to gather data that reflects to certain extent on the variations within the
injection molding process. This way a more diversified information about the process was
obtained. The received datasets were used for development of predictive models for both
dimensional and mechanical properties. The only difference between the datasets used
for the width and thickness models training and the mechanical properties models
development, is that in the second case, outliers related to the mechanical properties
values had to be removed from the datasets. Appearance of the outliers might be caused
by the errors in the data acquisition system, measuring devices or human errors. This,
however, shows that the same data can be reused for creation of different models and for
various purposes.

Due to the focus on the mechanical properties, material parameter was added to the joined
datasets. It was not a value of a certain material characteristic, but just a code for different
batches for the same material used on different days or the different material. When
looking at the scores various FS and ML methods were giving to the dataset parameters,
it is possible to see that the material parameter was often scored rather high. When further
developing the models and gathering the relevant data, it would be useful to add a
parameter for a real material property, such as for example viscosity rather than just a
material code.

To collect the mechanical properties data a destructive tensile stress test needs to be
conducted. When collecting the real production data, this might often be impossible to
do, as only several control parts out of each batch are tested. In addition, it is
understandable that no one wants to produce actual parts to apply destructive tests on all
of them. At the same time, if a large number of products needs to be evaluated, this
method becomes expensive and time consuming. This provides challenges regarding
collection of the relevant mechanical properties data, and further investigation of their
solutions is needed.

Most of the models created based on the sequential joined dataset have rather high quality
and can be used as a starting point for further development of the necessary decision
support tool. However, the current models might not be general enough and in case of the
separate experiments datasets do not have high enough quality characteristics to be
utilized in their current form. The fact that the data was collected using the same IMM,
only three material types and two parts whose main difference is in the thickness value,
pose too many limitations. One of the solutions for this might be transfer learning, as it
allows to use the same data to solve new tasks and addition of data from different sources
to find a suitable solution to the task at hand.

11.4 RQ4

How to create an intelligent control system for thermoplastics injection
molding?
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Chapter 5 presents application of the model-based systems engineering approach for
development of the intelligent control system for thermoplastics injection molding. The
chapter includes a framework that can be used as a basis/ support for planning and
creation of such systems. Some of the important functions that the system should be able
to perform are: acceptance of various user inputs, the input analysis, acquisition of
machine and process data from the IMM built-in and additional sensors, prediction of the
requested characteristics of the parts’ quality, optimization of the IMM parameter values,
reporting, etc. The corresponding CC (computational core) modules are described that
should cover most of the system’s functions. At the same time, the examples of the
computational units” development and operation are provided in the results Chapters from
6 to 10. These chapters formulate a basis and a rough example of how a decision-support
system for enhancement of the injection molding process can be created.

For such system to be successful, high quality and timely data acquisition is a must. If no
relevant data can be acquired — no further analysis is possible. As it has been mentioned
in the previous chapters, there is possibility for destructive and non-destructive data
collection. Non-destructive data collection allows to log the data through use of sensors
that are already available on an IMM without installation of additional ones, as well as in
some cases through use of mathematical models and simulation. In addition,
nondestructive sensors such as ultrasonic probes, dielectrometers and displacement
transducers can be applied. On the one hand, IMMs and their built-in sensors are the most
important source of the relevant data [7]. On the other hand, there is a significant number
of scholars that underline importance of acquisition of mold data, such as mold cavity
pressure and temperature, since cavity pressure trajectory during the IM process is
claimed to be “fingerprints” of the process [59].

In this work, models based on a number of parameters, whose data was acquired from the
machine built-in sensors, were developed, as well as models based on the data from the
destructive mold pressure and temperature sensors. In addition, cushion and screw
position trajectories logged from the machine built-in sensors were used to propose the
corresponding prediction models. When comparing quality of the models developed
using the multiple parameters data (joined datasets) and single parameter trajectories data,
it is possible to see that the models’ quality for prediction of the dimensional target
variables is comparable, even though the models trained on the general joined datasets
outperform those trained on the data series datasets. However, when it comes to
development of the models for prediction of mechanical properties, the general joined
datasets models significantly outperform the data series ones. This might be due to the
fact that joined datasets models have more data or due to not having enough information
about the process, when a dataset includes data of only one parameter trajectory. One of
the disadvantages of using the data series datasets is that length of the production cycle
might significantly vary depending on the produced part size, geometry and material.
Therefore, the length of the obtained data samples and features differs for the data series
dataset. Padding or interpolation techniques can be applied to make sure that all the data
samples are of the same length, however, this requires additional data processing and
increases the dataset size in terms of the features space.
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Development of an intelligent control system for thermoplastics injection molding might
not only help to directly optimize the IM process, but also contribute to elimination of
unnecessary plastics waste and energy consumption. If trial and error method is used less
often and prediction models are utilized to select the proper process parameters settings
instead, the amount of produced scrap and energy consumed will be reduced. This can to
certain extent contribute to the Goal 9 “Industry, innovation and infrastructure” and Goal
12 “Responsible consumption and production” of the Sustainable Development Goals
(SDGs) presented by the United Nations [154]. The Goal number 9 focuses on
development of infrastructure that provides the basic physical systems, industrialization
for driving the economic growth and innovation to advance the technological capabilities
and to prompt development of new skills. The Goal 12 is focused on sustainable
development that requires minimization of natural resources and toxic materials used.
The intelligent control system can address both of them in a sense that it contributes to
the technology advancement, minimization of plastic material use and the corresponding
energy consumption.

The process of designing the framework for the intelligent system development described
in Chapter 5 is considered as part of the verification in this work. The predictive models
that are developed within the study are parts of the corresponding modules of the
proposed system and are, in their turn, validated using the 70%-30% training-test set
division, as well as 5-folds cross-validation on the train set. These steps help to show if
the models face challenges related to the overfitting and if they are able to generalize on
the previously unseen data. Connection of the developed parts of the system and its
application in the real industrial setting will help to confirm the system’s and the
framework’s validity in future. This, however, is not addresses in this study due to the
time limitations.

11.5 Validation and limitation of results

The results presented in this work have certain limitations in terms of conducted quality
characteristics measurements. The main types of measurement errors are systematic and
random. While random errors are extremely hard to avoid and are related to things like
equipment precision, systematic errors appear due to how well/ correct this equipment is
used or an experiment is controlled. Some of the main sources of systematic errors are
humans, instruments/ equipment and selected methods. A human might make an error
due to a distraction or tiredness, equipment might not be properly calibrated, while
selected method might be not the most suitable for the task at hand.

In case of the dimensional characteristics’ measurements, both width and thickness were
measured in three points along the narrow section of specimens and these values were
then averaged to obtain the desired characteristic. This might be a source of error, because
if the measurements were conducted in more points, the obtained value might have been
more precise. At the same time, decision to take the measurements in three points was
due to the limited amount of time provided to perform the study and a large number of
samples at hand (in total 798 specimens were measured). Another source of error here
was putting each of the specimens in the fixture designed to hold them during the
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measurement. Since this operation was performed by a human, a slight deviation in
placement of the specimens in the fixture might have been present.

When it comes to definition of mechanical properties and the corresponding tensile
testing, several possible sources of errors were present. The first source is a human
performing the tests. It was necessary to add two white dots on each of the specimens to
assist the video extensometer’s work. This was done by hand using an Instron stencil.
Next, the placement of the specimens in the tensile testing machine was also performed
by a human and might have led to slight deviations in placement relative to the machine’s
grippers. The second source of error is equipment and the video extensometer that does
not always precisely recognize the white dots on the specimen’s surface. The third source
is the method. For example, a method that is used for calculation of the break point of the
tested specimen, as different methods might calculate it differently. This source might be
a reason for the obtained performance of the tensile strain at break predictive models.

All of these sources of errors add to the overall uncertainty of the performed
measurements and potential errors in the datasets. It was attempted to avoid these errors
through removing the data samples that appeared to be outliers, as well as through
controlling the experimental process along the way. However, it can not be guaranteed
that all of them were successfully eliminated. Possible presence of the measurement errors
in the data is one of the limitations of this work, which directly influences the quality of
the obtained models.
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Chapter 12

Conclusions and future work

The moment you doubt whether you can fly, you cease for
ever to be able to do it.

—J. M. Barrie, “Peter Pan”

This chapter concludes presented in this dissertation work and describes ideas that need
to be addressed in the future.

12.1 Conclusions

In this PhD study a new approach to control of the injection molding process is presented.
It was investigated how various IM process parameters influence dimensional and
mechanical properties of focus parts. The main challenge that has been addressed was
how to develop an intelligent system that would allow to avoid use of trial and error
method for selection of process settings when fabricating injection molded parts.

The thesis is based on analysis of data acquired during four experiments, where dogbone
specimens with 4 mm thickness are produced in experiments 1, 3 and 4, and 15 mm thick
specimens during experiment 2. Virgin HDPE material is used in the first two
experiments, while recycled material from two suppliers is utilized in experiments 3 and
4 correspondingly. DOE that includes variation of 8 parameters is created for experiment
1, 6 parameters for experiment 2 and the same DOE with variation of 7 parameters is used
in experiments 3 and 4. During experiment 1, 41 machine and process parameters are
logged per production cycle, during experiment 2 — 65 parameters, and 52 parameters
during experiments 3-4. A procedure for the IMM data acquisition and preprocessing is
proposed, as before developing the predictive models, the data needs to go through several
steps to obtain a high-quality dataset. If the dataset quality is not acceptable, no matter
which methods are applied, the predictive models will not have high characteristics
scores. Therefore, data cleaning, integration, normalization and feature selection become
important steps within the ML approach.

Model-based systems engineering approach was applied to develop a framework for
designing an intelligent control system for thermoplastics injection molding. The system
includes 7 computational core (CC) modules, where each is responsible for a certain
prediction or optimization task. The connections between the modules are also described
and used as guidelines for the data preprocessing and analysis. Prototypes for 5 modules
are presented in this work, as well as the corresponding prediction models for dimensional
and mechanical characteristics. The models are trained using the data obtained from
experiments. In total 798 specimens were produced during the corresponding 435 IMM
runs. Producing a large number of specimens with different process settings allowed to
demonstrate that it is possible to create prediction models for quality characteristics of
focus parts.

Prior to development of the modules and the corresponding prediction models, removal
of missing, redundant data, as well as outliers is performed as part of the data pre-
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processing. Next the FS is applied to select the most influential process parameters that
need to be included into the model. Five feature selection methods were used on the
available data: Pearson’s correlation, RFE, Spearman’s Correlation, CFS and RReliefF.
According to the parameters scoring by the selected FS methods, parameters that are to
be included in the models are cushion characteristics (cushion value after holding
pressure, average value, the smallest value), holding pressure, pressure at switchover,
cooling time, material, mold temperature, holding pressure time, injection speed,
backpressure and flow number of plastics (specific parameter utilized by the ENGEL
IMM used during the experimental work). Most of these parameters are relevant for
creation of models for dimensional and mechanical characteristics prediction. RReliefF
has shown to be the best performing method in cases of FS for width, Young’s modulus,
tensile strength, tensile strain at break, while Spearman’s correlation for thickness.
Application of the FS methods does not only help to create models of better quality, but
also contributes to the knowledge of which parameters need to be logged at all.

A different number of parameters was used to develop models based on the individual
experiments datasets, depending on the experiment number. When it comes to joined
datasets, the parallel dataset included 20 parameters and the sequential one 19 parameters.
As a result, 12 models were proposed:

4. A predictive model with R? = 0.95, RMSE = 0.05 and correlation coefficient =
0.94 (test set of sequential joined dataset) for dimensional properties (width and
thickness) was developed using Random Forest ML method. The models created
using MLP, Decision Tree Regressor and kNN methods have higher R? and
correlation coefficient, but also worse RMSE. The model belongs to the CC1
module of the intelligent control system for IM.

5. A Random Forest predictive model with R? = 0.92, RMSE = 28.32 and correlation
coefficient = 0.97 for the test set of sequential joined dataset for mechanical
properties (tensile modulus, tensile strength, tensile strain at break) is proposed.
The model has a significantly higher RMSE in comparison to the dimensional
properties model due to having larger values of the focus variables. The model is
part of the CC2 module of the proposed intelligent system.

6. Predictive models for dimensional properties based on individual experiments
data series datasets have lower quality characteristics than those developed using
general datasets. For example, a model trained on the experiment 1 cushion data
series dataset has R? = 0.79, RMSE = 0.09, correlation coefficient = 0.92 created
using KNN ML method. Models developed using data series datasets from the rest
of experiments have similar quality scores. In most of the cases models trained
using the general datasets show better results than those trained on the data series
datasets. These models are part of the CC4 module.

7. Predictive models for the mechanical properties using the separate experiments
data series datasets are also proposed. However, their scores are too low, and these
models require more work. They were developed as part of the CC5 module of
the intelligent system.

8. Inaddition, models for prediction of dimensional deviations are created as part of
the CC6 module. The best performing model is developed using the Random
Forest machine learning method and sequential joined dataset. It has R? = 0.92,
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RMSE = 0.06 and correlation coefficient of 0.94. A Decision Tree Regressor
model has the same scores and can also be used.

In cases when several ML algorithms have models with similar quality scores, a model
created by the most robust method is suggested for utilization. For example, when
choosing between a Random Forest model and a Decision Tree Regressor model, a model
by Random Forest is better to be used, as this method is usually more robust in terms of
overfitting. At the same time, if a highly interpretable model is needed, Decision Tree
Regressor should be chosen instead.

All the proposed models have constraints related to possible measurement errors, being
trained on data collected from the same IMM, using only virgin and two types of recycled
HDPE material, as well as being limited to the same geometry with two thickness values.

12.2 Future work

Based on the results and limitations of this work, the following aspects should be
considered:

e More experimental work needs to be conducted, and more relevant data collected.
Different machines, focus parts geometries and materials should be taken into
consideration. Collection of data from a real production environment, where parts
with complex geometry are manufactured would be beneficial. The datasets and
the models are to be updated correspondingly. Possibility of using simulation and
experimental data together needs to be investigated to see if the datasets size can
be increased this way.

e Other ways of obtaining the quality data need to be reviewed. For example, if a
final part has a more complicated geometry with various values of width and
thickness along the part’s body, procedures for taking this into account need to be
established. In addition, new ways of obtaining the mechanical properties data
that do not involve destructive testing are to be investigated.

e Transfer learning approach should be taken into account so that the obtained
knowledge is stored and applied for solving similar tasks on different IMMs, for
different parts and materials.

e The material parameter needs to be included into the datasets not by using a
material code, but rather a real material characteristic, such as, for example,
viscosity.

e A database module that would store data logged during various experiments needs
to be developed. This is important for storing data in an organized and concise
manner to facilitate its reuse and sharing.

e All the remaining intelligent system modules need to be developed and smooth
connection between them should be established.

e Fuzzy methods should be considered for future development and improvement of
the intelligent control system for thermoplastics injection molding. This would
allow to predict a range of values for the desired quality characteristic of focus
part rather than a single value. A range for correction can be provided this way
[4].
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The author of this work hopes that it will bring certain value and additional knowledge to
the injection molding and manufacturing community. And that more intelligent machines
capable of providing decision-support and higher degree of autonomy are soon a reality.
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Appendix A

Design of experiments for experiments 1-4

Table A.1. Design of experiment for experiment 1

pressure | _pressuretime_| Beckpressure | S0 | MR | Soeed | eating eyl 21 set | _tomp
65 60 20 30 25 0.45 190 50
30 30 37 10 75 0.733 190 70
40 20 4 5 10 0.55 190 70
55 50 58 4.9 60 0.6 195 35
70 65 11 25 65 0.35 195 40
60 45 7 4.6 30 0.7 200 45
45 25 95 4.6 15 0.733 200 60
60 80 40 5 60 0.733 205 60
30 55 78 30 40 0.5 200 65
40 30 78 20 35 0.2 210 70
20 75 68 20 50 0.733 210 25
45 50 31 20 20 0.7 205 25
25 25 30 5 60 0.25 215 28
50 80 18 30 30 0.65 215 28
25 45 26 15 80 0.3 225 30
15 65 53 15 35 0.8 230 30
10 35 63 4.76 75 0.6 235 30
50 80 82 5 45 0.55 240 35
25 55 75 10 65 0.65 245 35
85 35 49 10 50 0.4 245 28
75 40 46 15 75 0.4 240 25
85 70 93 25 70 0.55 215 50
35 35 53 10 80 0.35 220 50
90 20 62 25 20 0.4 225 45
65 40 0 20 55 0.25 235 45
80 60 44 30 45 0.45 245 45
15 50 13 20 40 0.35 230 40
70 45 70 4.78 55 0.65 235 55
10 70 86 10 25 0.2 250 55
90 75 100 25 10 0.2 250 60
80 25 24 25 15 0.5 225 65
70 70 90 15 30 0.3 220 65
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Table A.2. Design of experiment for experiment 2

Holding pressure Holding pressure time | Backpressure Cooling time Insj;g;ié)n Screw speed
35 99 58 119 67 0.21
27 121 45 97 48 0.26
44 63 64 7 62 0.26
38 88 72 149 37 0.3
19 132 39 131 40 0.31
31 104 81 115 42 0.33
32 143 48 104 34 0.34
42 82 53 99 43 0.35
55 96 22 135 47 0.36
39 151 36 109 61 0.37
46 107 67 123 33 0.38
21 92 43 91 54 04
40 114 63 87 19 041
25 129 91 124 50 0.42
33 116 55 127 25 0.43
38 49 31 73 31 043
29 91 58 69 46 0.45
34 111 49 111 38 0.46
33 70 70 82 55 0.48
48 124 60 154 52 0.49
30 58 55 176 49 0.51
41 139 51 104 57 0.54
26 75 41 144 45 0.55
36 192 68 47 40 0.63
Table A.3. Design of experiment for experiments 3 and 4
Holding Holding pressure Backpressur Cooling Injectio Screw H Bgrrel temp./
pressure time e time n speed speed eatlng_(;yll_zl_se
85 48 10 30 75 0.68 190
85 43 70 30 20 0.68 190
60 43 100 9 40 0.59 195
20 60 40 26 20 0.55 195
15 35 100 13 35 0.2 195
45 60 20 5 15 0.55 200
35 27 60 13 60 0.42 200
75 52 90 13 65 0.33 205
70 18 60 22 65 0.24 205
35 56 80 9 45 0.42 205
25 31 40 22 50 0.72 210
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Barrel temp./

;(;L(:Lnrge Holdlnt? rrr:eressure Backperessur Cg?]lql:g Inn é[e)zgg i;gz\év Heating_ctyl 171 se
65 31 70 30 55 0.29 210
75 23 50 18 80 0.33 215
50 18 90 30 55 0.46 215
30 43 100 5 30 0.37 215
15 14 80 22 30 0.5 220
85 39 20 22 80 0.42 220
65 60 10 18 45 0.63 225
55 43 0 9 30 0.2 225
50 14 50 13 40 0.63 230
55 10 20 18 10 0.46 230
65 23 30 5 15 0.55 230
10 39 0 9 55 0.24 235
80 18 30 26 25 0.29 235
15 31 60 9 70 0.24 235
45 56 60 26 70 0.37 240
90 27 10 22 15 0.72 240
25 52 80 13 75 0.46 245
30 35 40 5 60 0.33 245
40 23 50 26 50 0.72 250
75 10 0 30 10 0.5 250
35 48 80 18 40 0.59 250
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Appendix C

Figures depicting relationships between the DOE parameters
and the target quality parameters

C.1 Width figures
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Figure C.1.1. Relationship between the specimen’s width and holding pressure time
DOE parameter
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Figure C.1.2. Relationship between the specimen’s width and backpressure DOE
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Cooling time, s

Cooling time, s
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Figure C.1.3. Relationship between the specimen’s width and cooling time DOE



Injection speed

Injection speed

Experiment 1 Experiment 2

80 »e me e -
- e san e B .
70 | - 60 -
- s me wumm -
&0 4 me sean . . ..
- T s LA
50 -mee = " oa -3 ° = L]
- £ - =
n{ee @@ [] smms == a0 e o
o= e - £ *
30 am = - o
-e - - E oo
20 [ -
s@mme
10 — 20 -
88 2.0 92 94 26 98 100 88 89 9.0 £ 92
Width, mm Width, mm
(a) Experiment 1 (b) Experiment 2
Experiment 3 Experiment 4
80 4 - 80 1 -
wee ] - -
704 L 11 - 70 4 L] -
- [
50 - e 60 -
- L b - -
50 = . 2 50 L= -
- . I e =
40 e @ £ 40 A -
- = -e
n{ ees - - = 30 - e =
- .
20 - - 20 - -
* @ L
10 - 10 1 -
2.0 92 9.4 96 98 10.0 92 94 96 98 10.0
Width, mm Width, mm
(c) Experiment 3 (d) Experiment 4

Figure C.1.4. Relationship between the specimen’s width and injection speed DOE
parameter
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Screw speed

Screw speed
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Figure C.1.5. Relationship between the specimen’s width and screw speed DOE

parameter
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Experiment 1 Experiment 3

Barrel temperature, C
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C.2 Thickness figures
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Barrel temperature, C
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C.3 Tensile modulus (Young’s modulus) figures
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Figure C.3.1. Relationship between tensile modulus (Young’s modulus) and holding
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Figure C.3.6. Relationship between tensile modulus (Young’s modulus) and screw
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Barrel temperature, C
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Figure C.3.7. Relationship between tensile modulus (Young’s modulus) and barrel
temperature DOE parameter
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C.4 Tensile strength figures
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Figure C.4.1. Relationship between tensile strength and holding pressure DOE
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Figure C.4.4. Relationship between tensile strength and cooling time DOE parameter
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C.5 Tensile strain at break figures
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Figure C.5.1. Relationship between tensile strain at break and holding pressure DOE
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