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Abstract: Today, coordinated expansion planning is one of the key challenges for electricity systems including active distribution
networks (ADNs) and transmission networks (TNs) hosting distributed renewable generation as well as large-scale wind energy
generation. Accordingly, this study presents a decentralised hybrid robust and stochastic (HR&S) expansion planning
optimisation method to determine a robust generation and transmission planning for a TN and stochastic expansion planning for
ADNs. The proposed HR&S planning model is formulated with the objective of achieving an effective expansion of both
TN&ADN while minimises the investment and operation costs of TN&ADN planning considering wind uncertainty in TNs and
load uncertainty in ADNs. Finally, the IEEE 30-bus test system has been analysed to show the effectiveness of the proposed
TN&ADN expansion planning framework and decentralised solution strategy.

 Nomenclature
A. Indices

y index of planning years
t index of time blocks
w, g index for generating units and wind farms, respectively
k/l index of transmission lines/feeders
n, m index of TN buses
i, j index of ADN buses
ℓ/ι index of linearisation segments of voltage angle term/

circular constraint.
( ∙ )s, ( ⋅ ) related to scenario s
( ∙ )( ⋅ ), t related to element ( ⋅ ) at time period t

Parameters

Cg
TOP/Cn, i

DOP operation cost of the generator/distribution unit

Cg
TIG/Ck

TIL investment cost of the generator unit/
transmission line

Cn, i
DIG/Cn, l

DIL investment cost of distribution generator unit/
feeder

Θ̄TIG/Θ̄TIL investment budget for a new generating units/
transmission lines

Θ̄DIG/Θ̄DIL investment budget for new distributed
generations (DGs)/feeders

ρs probability of scenario s
Cn, i

CPE cost of power exchange between TN&AND
PG( ⋅ )

min/PG( ⋅ )
max min/max active power generation

QG( ⋅ )
min/QG( ⋅ )

max min/max reactive power generation
PD( ⋅ )/QD( ⋅ ) active/reactive load demand
g( ⋅ )/b( ⋅ ) conductance/admittance of a line (or feeder)
Sl( ⋅ )

max/Pl( ⋅ )
max maximum value of the MVA/MW power flow

through a line (or feeder)
η( ⋅ ) power factor on a bus
P̄( ⋅ )

w forecasted wind power

Γw budget of uncertainty
V( ⋅ )

max/V( ⋅ )
min max/min voltage magnitude

φ( ⋅ )
max/φ( ⋅ )

min max/min voltage angle difference across a line
(or feeder)

φ̄ℓ length of each piecewise linear segment, in
radians

γ( ⋅ ), ℓ, nm, λ( ⋅ ), ℓ, nm constants in the ℓth linear segment
I′/C′, I

~′/C~′ coefficient matrices for investment/operation
cost in TN and ADN planning

α/β multipliers of the penalty function
M large enough constant
πt number of hours in time block t
σT/σD weighting factor in TN/ADN to make

comparable operation costs and investment
r discount rate.

Variables

ΦTN total cost of TN planning
Φn

ADN total cost of ADN planning
PG( ⋅ )/QG( ⋅ ) active/reactive power generation.
Pl( ⋅ )/Ql( ⋅ ) active/reactive power flow.
P~l( ⋅ )/Q

~ l( ⋅ ) active/ reactive power flow.
ψ( ⋅ ), nm piecewise linearisation of cos(φ( ⋅ ), nm).
ϑ( ⋅ ), ℓ, nm status of the ℓth linear segment of line (n, m).
Py, t

w wind power generation.
PS( ⋅ )/QS( ⋅ ) active/reactive power provided by a substation in

AND.
zT/zD vector of target/response variable
uT polyhedral uncertainty sets
υ( ⋅ ), g binary variable for the state of generating units
xy, g

G /xy, k
TL binary variable that equals 1 if the gth/kth (generator

unit)/ (transmission line) in TN planning is built, and
0 otherwise
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xy, n, i
DG /xy, n, l

DL binary variable that equals 1 if the gth/kth (DG)/
(feeder) in ADN planning is built, and 0 otherwise

φy, t, ( ⋅ ) voltage angle difference across a line
Vy, t, ( ⋅ ) voltage-magnitude
κ( ⋅ )

T dual variables associated with the corresponding
constraints

xΩ/yΩ investment/operation decision variables.
θ value of operation cost

Sets

Ωg/Ωg
+ existing/prospective generating units

Ωk /Ωk
+ existing/prospective transmission lines

Ωi/Ωi
+ existing/prospective DGs

Ωl/Ωl
+ existing/prospective feeders

1 Introduction
In recent years, growth of load demand and renewable generation
capacity, especially wind energy generation (WEG) with variable
and unpredictable nature, pose two main challenges to serve
electricity demand in a power system for the coming years with
acceptable reliability:

(i) The scarcity of transmission capacity and transmission
congestion in a transmission network (TN) are made resulting in
preventing the absorption of WEG and optimal commitment of
cheaper generating units (GUs).
(ii) The limited predictability and controllability of WEG are
expected to need large volumes of flexible generation capacity
which involves adverse economic effects.

In order to address the first challenge, building additional
transmission lines (TLs) is a feasible solution. However,
transmission expansion planning (TEP) as a regular solution is a
costly choice for mitigating these bottlenecks, especially with
WEG integration. The TEP is to determine where and when to
construct new TLs with the aim of providing sufficient
transmission capacity to serve the increasing load demand and
deliver high penetration of WEG to loads [1]. Although the TEP
approach can solve the first challenge, it fails to provide sufficient
flexible generation capacity to cover the uncertainty of the variable
output of wind farms. Accordingly, in this study, the generation
expansion planning (GEP) is introduced in order to address the
second challenge [2]. The GEP is considered one of the major parts
of TN planning that could solve the deficiency of flexible
generation capacity in power system operation. Although this
approach is interesting, it is often very costly in the TN expansion
planning scheme [2]. Under this circumstance, this study finds
another option to relieve transmission bottlenecks, enhance
generation capacity and reduce the cost of TN expansion planning
through the utilisation of active distribution networks (ADNs).
Owing to the integration of distributed generations (DGs), the
distribution network is changed from passive status to an ADN, in
other words, the ADN can be utilised as a controllable demand in
transmission buses [3]. Accordingly, expansion planning of ADN
can play a critical role in providing demand side flexibility in TN
planning. The expansion planning of ADNs seeks to define the
capacity of the DGs and feeders where and when they should be
installed to meet forecasted demand with acceptable quality
standards and minimal cost.

A point often overlooked, the coordinated planning between
transmission and active distribution systems could help to postpone
the upgrading of the TN&ADNs, reduce the investment cost and
improve the asset utilisation, which improves the social welfare
and performance of the whole power system. Undoubtedly, with
the coordination of TN&ADN expansion planning, coordinated TN
planning may save some unnecessary investment in ADNs, which
can be impossible to handle using only ADN planning due to
incomplete construction conditions. Likewise, some weaknesses in
a TN planning could also be removed by the coordinated ADNs
planning. However, this point must be remembered that in almost

all TEP and GEP (T&GEP) in TN expansion planning problems,
the ADNs are only treated as load injections into the transmission
buses (these connection buses are called ‘boundary buses’), and
DG units output and inner optimal power flow (PFs) of the ADNs
are not measured [4, 5]. This assumption may reduce the running
time of the TN expansion planning problem but neglects the role of
ADNs in providing flexibility in transmission system planning [6].

On the other hand, currently, solving the T&GEP problem with
an entire transmission and distribution network model in a
centralised framework faces some challenges such as (i) once
considering both the TN&ADNs in planning problem, a large
number of non-linear PF equations with continuous/discrete
variables make difficulties in finding a solution for the centralised
framework; (ii) excessive differences in, line parameter values,
power levels, and voltage levels of the TN&ADNs lead to
numerical problems; and (iii) in real world, the TN&ADNs are
separately operated, hence, co-operation of both TN&ADNs in a
centralised framework is against privacy protection rules, and it is
ineligible to directly solve a whole TN&ADNs model in the
centralised framework. According to the above-mentioned
challenges, the PF is an important tool to describe the interactions
of transmission and distribution systems [7, 8]. Typically, most
studies in the field of the T&GEP problem in TN have only
focused on DC PF equations [1, 2, 9]. Nonetheless, the
assumptions of DC PF equations are not credible in distribution
systems since the resistance to reactance ratio (R/X) of distribution
lines is high. As a result, the AC PF is the only proper approach
that can be used in the distribution systems [8, 10]. On the other
hand, in order to obtain optimal results for the planning problem, a
similar PF tool should be applied for both TN&ADNs planning.
However, current commercial mixed integer non-linear
programming (MINLP) solvers are not able to find the global
optimal solution for the planning problems with AC PF equations
mixed with binary variables because they are mixed integer non-
linear problems [11]. Hence, in order to overcome the above-
mentioned challenge, a linear AC PF model is proposed for the
planning and operation in TN&ADNs. In fact, the linear AC PF
model converts this MINLP problem into a mixed integer linear
programming (MILP), thus, this problem has a globally optimal
solution that could be solved with available MILP solvers [11].

Another key point is that it is very challenging to handle the
wind and load uncertainties in the TN&ADNs expansion planning.
Either overrating or underestimating the effect of wind and load
uncertainties in planning decisions could possibly increase
investment costs and threaten the power-supply reliability.

In order to develop an advanced uncertainty management
scheme, it is necessary to classify the uncertainties for the
expansion planning problem. Thus, here, uncertainties can be
classified as follows:

• Non-haphazard uncertainties happen in lower frequency and
larger time scale, which are simple to accurately fit into any
probability density functions (PDFs) because of data sufficiency.
The load uncertainty falls into this class.

• Haphazard uncertainties repeatable in a high-frequency and
short period, which is difficult to accurately fit into any
distribution due to data insufficiency. The wind uncertainty is a
typical sample in this class.

Stochastic optimisation method (SOM) is a common tool to handle
the non-haphazard uncertainties in TN&ADN planning. The key
idea of the SOM is to employ a limited set of scenarios to denote
the possible realisations of non-haphazard uncertainties [12, 13].
The main disadvantage of the SOM is that this method is less
appropriate once data is inaccurate or unavailable. The TN&ADN
planning under haphazard uncertainties, whose PDFs are unknown,
is studied using the uncertainty set approach, e.g. robust
optimisation method (ROM). This method only needs uncertainty
sets rather than PDFs to represent the haphazard uncertainties and
make planning decisions under the worst scenarios within those
sets. Nevertheless, this method is not appropriate for non-
haphazard uncertainties due to its over conservatism, it makes
planning decision under the worst scenario because the worst
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scenario occurs frequently in haphazard uncertainty, not non-
haphazard uncertainty. Accordingly, the investment and operation
costs in the TN&ADN planning scheme mostly depend on the type
of uncertainty and a hybrid optimisation method is needed to
concurrently handle non-haphazard and haphazard uncertainties.
Therefore, a hybrid robust and stochastic (HR&S) optimisation
method has been proposed in this study.

A considerable amount of literature has focused on expansion
planning in TN or ADNs based on SOM or ROM. An expansion
model of T&GEP in a TN using ROM has been proposed in [1]
wherein the uncertainties have been represented by uncertainty
sets. In [14], the planning of transmission systems in TN has been
proposed based on a stochastic model. A two-stage stochastic
planning model is used in [15] to solve the T&GEP problem
considering wind power and system load uncertainties. Besides, in
[16, 17], a stochastic planning model is proposed to install feeders
and distributed generation (DGs) in the ADN. A multi-stage
expansion planning in ADN based on piecewisely linearised AC
PF is proposed in [18], in order to obtain the optimal planning of
DGs, configuration, feeder and substation capacities. In this work,
uncertainty has been modelled by dissimilar scenarios of WEG and
load demand according to a PDF.

The model proposed in this study differs from the above
references in two aspects: (i) in comparison with [1, 14–18], the
impact of the coordination between TN&ADNs on the planning
scheme has not been investigated. (ii) Although the SOM or ROM
is independently used for planning models in [1, 14–18], while the
model proposed in this study is developed based on the HR&S
optimisation method. Accordingly, coordination between
TN&ADNs based on the HR&S planning scheme is nowadays
needed to fully exploit their advantages.

According to the above-mentioned challenges, after addressing
PF and uncertainty model challenges, there is still another
challenge about how to solve the HR&S planning problem for
centralised TN&ADNs?

In response to the above question, an iterative decomposition
solution approach based on a decentralised optimisation algorithm
and primal Benders’ decomposition algorithm has been proposed
in this study to solve the HR&S planning problem for the
coordinated TN&ADNs. A major advantage of this solution
strategy is that the expansion planning for TN&ADNs can be
calculated by iteratively running transmission and distribution PF
programmes that are connected in different control centres, and
only the active, reactive powers and voltages of the boundary buses
are communicated between the control centres. Furthermore, under
certain sufficient conditions, a linear convergence of the proposed
solution strategy with high accurate results can be mathematically
guaranteed.

Briefly, the contributions of this study include

(i) Developing a hybrid stochastic and robust method to solve an
integrated TN&ADNs hosting large-scale WEG under the wind
and load uncertainties; the proposed method takes the advantages
of both stochastic and robust optimisation methods. It can provide
an expansion planning decision with minimum investment and
operation costs while ensuring the system's robustness.
(ii) An iterative decomposition optimisation algorithm based on the
decentralised optimisation algorithm and primal Benders’
decomposition algorithm has been presented to solve the HR&S
planning scheme for TN&ADNs.

2 Centralised co-planning of TN&ADNs
2.1 Assumptions

For the sake of transparency, the key assumptions of the proposed
model are summarised as follows:

• Only wind uncertainty (haphazard uncertainty) in TN planning
has been considered because this research study focuses on
hosting large-scale WEG. Nevertheless, the proposed model is
capable of considering load uncertainty as well.

• In ADNs planning only load uncertainty (non-haphazard
uncertainty) has been considered. However, the proposed ADNs

planning model is capable of considering the uncertainty of DG
output as well.

• The ROM is used to model the wind uncertainty, by using
uncertainty sets, in the TN planning scheme. Similarly, in the
ADNs planning scheme, the SOM has been used to model the
load uncertainty by using a set of scenarios.

The detailed formulation of the centralised HR&S co-planning of
T&GEP in TN&ADNs is provided as follows.

2.2 Objective function

ΦTC = min
Ξ1

max
Ξ2

min
Ξ3

ΦTN + min
Ξ4

n
∑

n ∈ Ωn
ADN

Φn
ADN

(1)

where Ξ1 = xy, g
G , xy, k

TL, xy, n, i
DG , xy, n, l

DL , Ξ2 = Py, t
w ,

Ξ3 = PGy, t, g, QGy, t, g, Ply, t, nm, Qly, t, nm, Vy, t, n, φy, t, nm, P~ly, t, nm, Q~ ly, t, nm,
Py, t, n, Qy, t, n
and

Ξ4
n =

PGs, y, t, i, QGs, y, t, i, φs, y, t, i j, Pls, y, t, i j, Qls, y, t, i j

P~ls, y, t, i j, Q~ ls, y, t, i j, Vs, y, t, i, PSy, t, i, QSy, t, i
.

The objective function (1) represents the min–max–min
consecutive structure of a robust optimisation model for the TN
planning and a minimisation structure of a stochastic optimisation
model for ADNs planning. Indeed, the objective function (1)
denotes the total cost (TC) for the TN&ADNs planning scheme,
which includes the TN plus ADNs planning costs. More details
about the constraints for the TN&ADNs planning are given in the
following section.

2.3 Robust TN planning constraints

ΦTN = ∑
y

∑
g ∈ Ωg

+

Cg
TIG xy, g

G − xy − 1, g
G

(1 + r)y − 1

+∑
y

∑
k ∈ Ωk

+

Cg
TIL xy, k

TL − xy − 1, k
TL

(1 + r)y − 1

+β∑
y

∑
t

πt∑
g

Cg
TOPPGy, t, g

(1 + r)y − 1

(2)

xy, g
G , xy, k

TL ∈ 0, 1 ; ∀g ∈ Ωg
+, k ∈ Ωk

+ (3)

xy, g
G , xy, k

TL = 1; ∀g ∈ Ωg/Ωg
+, k ∈ Ωk /Ωk

+ (4)

xy, g
G ≥ xy − 1, g

G (5)

xy, k
TL ≥ xy − 1, k

TL (6)

∑
y

∑
g ∈ Ωg

+

Cg
TIG xy, g

G − xy − 1, g
G

(1 + r)y − 1 ≤ Θ̄TIG
(7)

∑
y

∑
k ∈ Ωk

+

Cg
TIL xy, k

TL − xy − 1, k
TL

(1 + r)y − 1 ≤ Θ̄TIL
(8)

0 ≤ PGy, t, g ≤ PGg
maxxy, g

G (9)

0 ≤ QGy, t, g ≤ QGg
maxxy, g

G (10)

Ply, t, nm = gkVy, t, n
2 − Vy, t, nVy, t, m gkcos φy, t, nm + bksin φy, t, nm (11)

Qly, t, nm = − bk + bk0 Vy, t, n
2 − Vy, t, nVy, t, m

bkcos φy, t, nm − gsin φy, t, nm
(12)
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Ply, t, nm − M 1 − xy, k
TL ≤ P~ly, t, nm ≤ Ply, t, nm + M 1 − xy, k

TL (13)

Qly, t, nm − M 1 − xy, k
TL ≤ Q~ ly, t, nm ≤ Qly, t, nm + M 1 − xy, k

TL (14)

P~ly, t, nm
2 + Q~ ly, t, nm

2 ≤ Slnm
max 2xy, k

TL (15)

−Plkmaxxy, k
TL ≤ P~ly, t, nm ≤ Plkmaxxy, k

TL (16)

−Slkmaxxy, k
TL ≤ Q~ ly, t, nm ≤ Slkmaxxy, k

TL (17)

Vn
min ≤ Vy, t, n ≤ Vn

max (18)

φk
min ≤ φy, t, nm ≤ φk

max (19)

∑
g(n)

PGy, t, g − ∑
k(n, m)

P~ly, t, nm − PDy, t, n = − ∑
w(n)

Py, t
w

(20)

∑
g(n)

QGy, t, g − ∑
k(n, m)

Q~ ly, t, nm = ηnQDy, t, n = Qy, t, n (21)

ΩUS
w =

Py, t
w ∈ 0, P̄y, t

w ,

∑
y

∑
t

∑
w

P̄y, t
w − Py, t

w

P̄y, t
w ≤ Γ̄w

(22)

The corresponding optimisation objective function of the TN in the
planning problem is to minimise the investment (i.e. GU and TL
construction) and operation (i.e. generation) costs, under the worst-
case wind uncertainty realisation, which can be expressed by (2).
Note that in (2), the investment decisions relating to transmission
and generation construction are made before the worst-case
uncertainty realisation. Actually, constraint (2) denotes the TC in
the TN planning, including (i) investment cost (IC) of building new
generation unit (first term) and installing new TLs (second term)
and (ii) the operation cost (OC) of conventional generation units
(third term). Note that the OCs are multiplied by parameter πt
which is the number of hours corresponding to time block t.
Constraints (3) and (4) define the prospective and existing
generation units and TLs, respectively. Constraints (5) and (6)
indicate that when a new generation unit and a new line are
constructed, they will exist during the rest of the planning horizon.
Constraints (7) and (8) guarantee that the IC of GUs and TLs do
not exceed their available investment budgets, respectively.
Constraints (9) and (10) impose the active and reactive capacity
limits of the generation units, respectively. Constraints (11) and
(12) indicate non-linear active and reactive PF equations for each
line, respectively. Constraints (13) and (14) show active and
reactive PF in the prospective and existing TLs, respectively.
Apparent PF, active and reactive PF limits for both the existing and
prospective lines, respectively, are shown by (15), (16) and (17).
Constraints (18) and (19) put a limit on the voltage magnitude at
buses and the phase angle difference across lines, respectively.
Constraints (20) and (21) show active and reactive power balance
at each bus, respectively. In this study, the WEG uncertainties are
modelled in terms of polyhedral uncertainty sets [1]. As WEG
forecast value P̄y, t

w  could be inaccurate, Py, t
w  is implemented to

denote possible WEG realisations that could take any value within
the uncertain intervals, i.e. Py, t

w ∈ 0, P̄y, t
w . In (22), constraint

∑y ∑t ∑w P̄y, t
w − Py, t

w /P̄y, t
w ≤ Γw handles the total deviations of

WEGs from their forecast values throughout the whole planning
horizon, where Γw is a constant that can take values between 0 and
Γw

max, which is named the degree of robustness. If Γw = 0, then
P̄y, t

w = Py, t
w , i.e. the wind power generation uncertainty is not

considered. However, if Γw = Γw
max, then Py, t

w  can take any value
within the interval 0, P̄y, t

w , which can be seen as the case of the
maximum level of uncertainty.

2.4 Stochastic ADN planning constraints

The corresponding stochastic optimisation objective function of the
ADN planning in the proposed problem is to minimise the IC and
OC, which can be formulated by (23). Equation (23) includes the
four terms as follows: the DGs and feeders building costs (first and
second terms), expected operation cost of DGs (third term) and
purchased energy from the substation or TN (fourth term)

Φn
ADN = ∑

y
∑

i ∈ Ωi
+

Cn, i
DIG xy, n, i

DG − xy − 1, n, i
DG

(1 + r)y − 1

+∑
y

∑
l ∈ Ωl

+

Cn, l
DIL xy, n, l

DL − xy − 1, n, l
DL

(1 + r)y − 1

+β∑
s

ρs∑
y

∑
t

πt∑
i

Cn, i
DOPPGs, y, t, n, i

(1 + r)y − 1

+β∑
y

∑
t

πt∑
i

Cn, i
CPEPSy, t, n, i

(1 + r)y − 1

(23)

xy, n, i
DG , xy, n, l

DL ∈ 0, 1 ; ∀i ∈ Ωi
+, l ∈ Ωl

+ (24)

xy, n, i
DG , xy, n, l

DL = 1; ∀i ∈ Ωi/Ωi
+, l ∈ Ωl/Ωl

+ (25)

xy, n, i
DG ≥ xy − 1, n, i

DG (26)

xy, n, l
DL ≥ xy − 1, n, l

DL (27)

∑
y

∑
i ∈ Ωi

+

Cn, i
DIG xy, n, i

DG − xy − 1, n, i
DG

(1 + r)y − 1 ≤ Θ̄DIG
(28)

∑
y

∑
l ∈ Ωl

+

Cn, l
DIL xy, n, l

DL − xy − 1, n, l
DL

(1 + r)y − 1 ≤ Θ̄DIL
(29)

0 ≤ PGs, y, t, i ≤ PGi
maxxy, i

DG (30)

0 ≤ QGs, y, t, i ≤ QGi
maxxy, i

G (31)

Pls, y, t, i j = gkVs, y, t, i
2 − Vs, y, t, iVs, y, t, j gkcos φs, y, t, i j + bksin φs, y, t, i j (32)

Qls, y, t, i j = − bk + bk0 Vs, y, t, i
2 − Vs, y, t, iVs, y, t, j

bkcos φs, y, t, i j − gsin φs, y, t, i j
(33)

Pls, y, t, i j − M 1 − xy, l
TL ≤ P~ls, y, t, i j ≤ Pls, y, t, i j + M 1 − xy, l

TL (34)

Qls, y, t, i j − M 1 − xy, l
TL ≤ Q~ ls, y, t, i j ≤ Qls, y, t, i j + M 1 − xy, l

TL (35)

P~ls, y, t, i j
2 + Q~ ls, y, t, i j

2 ≤ Sli j
max 2xy, l

DL (36)

Pllmaxxy, l
DL ≤ Pls, y, t, i j ≤ Pllmaxxy, l

DL (37)

Sllmaxxy, l
DL ≤ Qls, y, t, i j ≤ Sllmaxxy, l

DL (38)

Vi
min ≤ Vs, y, t, i ≤ Vi

max (39)

φl
min ≤ φs, y, t, i j ≤ φl

max (40)

∑
i

PGs, y, t, i + ∑
i(n)

PSy, t, i − ∑
l(i, j)

P
~

s, y, t, i j = PDs, y, t, i (41)

∑
i

QGs, y, t, i + ∑
i(n)

QSy, t, i − ∑
l(i, j)

Q~ ls, y, t, i j = QDs, y, t, i (42)

∑
l

xy, l
DL = i − 1 (43)
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Constraints (24)–(42) are similar to constraints (3)–(21),
respectively. To prevent any loop in the ADN and for maintaining
the radial configuration in ADN planning scheme, constraint (43)
is used [19].

2.5 Coupled constraints

PSy, t, i

ADN
= PDy, t, n

TN

QSy, t, i = QDy, t, n

Vs, y, t, i = Vy, t, n

∀i ∈ i(n)&n ∈ Ωn
ADN (44)

Here, constraint (44) links the TN and ADNs planning problems
together. Thus, the constraint (44) includes active power, reactive
power, and voltage equalities, respectively.

In constraint (44), PDy, t, n and QDy, t, n are the active and reactive
loads in the TN. While PSy, t, i and QSy, t, i are the active and reactive
power generations at substation bus for the ADN. Similarly, Vs, y, t, i
and Vy, t, n are the voltage magnitudes at the ADN and TN sides,
respectively. Note that the voltage magnitudes for all scenarios at
the substation bus of ADN are equal.

2.6 Linearised AC PF

Here, a piecewise linearisation approach is used for linearised AC
PF equations [11, 20]. At first, the following assumptions are
considered in the linearisation procedure: (i) the voltage magnitude
V( ⋅ ) is near to 1, for both TN and ADN, i.e. 0.95 ≤ V( ⋅ ) ≤ 1.05; (ii)
the angle difference across a line (between two buses), for both TN
and ADN, is very small, i.e. φ( ⋅ ) ≤ 10∘. According to the second
assumption, it is assumed sin(φ( ⋅ )) ≃ φ( ⋅ ) and cos(φ( ⋅ )) ≃ 1 [21,
22].Therefore, the active and reactive PFs (11), (12), (32), and (33)
can be linearised as follows:

P( ⋅ ), nm = gk V( ⋅ ), n − V( ⋅ ), m − ψ( ⋅ ), nm + 1 − bk φ( ⋅ ), nm (45)

Q( ⋅ ), nm = − bk V( ⋅ ), n − V( ⋅ ), m − ψ( ⋅ ), nm + 1 − gk φ( ⋅ ), nm (46)

According to the second assumption, the piecewise linearisation of
ψ( ⋅ ), nm = cos(φ( ⋅ ), nm) in (45) and (46) can be obtained as follows:

ψ( ⋅ ), nm ≤ γ( ⋅ ), ℓ, nmφ( ⋅ ), nm + λ( ⋅ ), ℓ, nm + M 1 − ϑ( ⋅ ), ℓ, nm

ψ( ⋅ ), nm ≥ γ( ⋅ ), ℓ, nmφ( ⋅ ), nm + λ( ⋅ ), ℓ, nm − M 1 − ϑ( ⋅ ), ℓ, nm
(47)

φ̄ℓϑ( ⋅ ), ℓ, nm ≤ φ( ⋅ ), nm ≤ φ̄ℓ + 1ϑ( ⋅ ), ℓ, nm (48)

∑
ℓ

ϑ( ⋅ ), ℓ, nm = 1 (49)

At first, the angle difference across the line (n, m), i.e. φ( ⋅ ), nm, is
divided into L equal segment then the value of ψ( ⋅ ), nm for the ℓth
segment can be calculated by constraint (47). Constraint (48)
ensures that φ( ⋅ ), nm is placed on which segment, which is enforced
using binary variable ϑ( ⋅ ), ℓ, nm. Note that φ( ⋅ ), nm only can be placed
on one segment, which is enforced by (49). Similarly, the non-
linear equations of (15) and (36) are transformed into N linear
equations as follows:

sin 2πl
N − sin 2π l − 1

N P( ⋅ ), nm

cos 2πl
N − cos 2π l − 1

N Q( ⋅ ), nm

− Snm
max sin 2π

N ≤ 0

(50)

Linear constraints (50) hold for l = 1, 2,…, N. The higher the
number of sides (N), the more precise the solution is, but at the
expense of more computational burden. More details about
piecewise linearisation can be found in [23].

3 Decentralised solution strategy
In order to solve the proposed HR&S planning problem for
centralised TN&ADNs, the iterative decomposition algorithm is
used. In fact, the iterative decomposition algorithm includes two
main solution methods as follows: (i) the two-level hierarchical
method and (ii) the primal Benders’ decomposition method. The
first method is used to coordinate TN&ADNs planning problems
and the second one is implemented to solve the robust optimisation
problem for TN planning. The following part describes the details
of the proposed solution strategy.

3.1 Centralised model

For the sake of shortness, the compact matrix formulation, i.e.
(51)–(63), is used to represent the HR&S planning of TN&ADNs,
i.e. (1)–(44). The compact form of the model is

min
xT

I′xT + max
uT

min
yT, zT

C′yT + min
xD, yD, zD

I
~′xD + C

~′yD
(51)

xΩ ∈ 0, 1 , ∀Ω ∈ T , D (52)

TxΩ ≤ W , ∀Ω ∈ T , D (53)

I′xΩ ≤ ΘΩ, ∀Ω ∈ T , D (54)

AyΩ ≤ BxΩ : κ1
T, ∀Ω ∈ T , D (55)

DyΩ = E : κ2
T, ∀Ω ∈ T , D (56)

FyΩ + GxΩ ≤ H : κ3
T, ∀Ω ∈ T , D (57)

JyΩ ≤ K : κ4
T, ∀Ω ∈ T , D (58)

LyΩ + VzΩ = MuT : κ5
T ∀Ω ∈ T , D (59)

uT ∈ UT (60)

OuT ≤ N : κ6
T (61)

P′xD = Q (62)

RzT = SzD (63)

The objective function (51) corresponds to (1) where the
superscript ( ⋅ )′ shows transpose of the vector. Note that, in (51),
sets xT, xD , uT , yT , and yD  represent the Ξ1, Ξ2, Ξ3, and Ξ4,
respectively. Furthermore, constraints (52)–(54) mimic (3)–(8) and,
in the TN model, and (24)–(29), in the ADN model, which define
the investment decision variables. The superscripts ( ⋅ )T and ( ⋅ )D

for variables in constraints (51)–(63) show the variables associated
with TN and ADN models, respectively. Constraint (55) represents
the inequality constraints involving binary variables, (9), (10),
(15)–(17), (30), (31) and (36)–(38). Constraint (56) corresponds to
(11), (12), (32), and (33), constraint (57) corresponds to (13)–(15),
(34), and (36), constraint (58) represents (18), (19), (39), and (40),
constraint (59) represents (20), (21), (41), and (42), constraint (60)
represents the worse-case uncertainty set that corresponds to (22),
constraint (61) denotes the inequality constraints involving an
uncertain variable, (22). Constraint (62) mimics (43) that defines
the radial configuration in the distribution network. Constraint (63)
mimics (44) that expresses the coupled constraints.

3.2 Decentralised model

As mentioned, the centralised TN&ADNs planning model is not
applicable because the TN and ADNs are planned individually
through a TN planner and a distribution network planner.
Additionally, due to the shared variable in (59) and coupled
constraint (63), the TN&ADNs planning problem cannot be solved
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separately. Hence, a two-level hierarchical method has been
proposed to decompose TN&ADNs planning problems. In brief,
the two-level hierarchical method decomposes the optimal co-
planning problem, i.e. (51)–(63), into two independent planning
problems that the TN planning problem is located in the upper
level and the ADN planning problem is in the lower level.
Accordingly, the TN and each ADN planning problems are
individually formulated and solved in a two-level hierarchical
manner. Then, the communications and optimal coordination
between the TN and ADN planning problems can be achieved with
the target variable, i.e. zT, in the TN planning and response
variable, i.e. zD, in the ADN planning. Accordingly, the TN and
ADN planning problems and coordination between both planning
problems can be formulated in detail as follows.

3.2.1 Upper level (robust TN planning problem): The
mathematical model of TN planning can be written as follows:

min
xT

max
uT

min
yT

I′xT + C′yT + α zT − ẑD + β zT − ẑD 2

(64)

Constraints 52 − 58 , 60 , and 61 ∀ Ω ∈ T (65)

LyT + VẑD = MuT : κ5
T (66)

Here, the objective function (64) has two terms, the first term of
the objective function (64) is similar to the first term of the
objective function (1), which has been described in Section 3. The
second term is the penalty function related to the shared variables
with the TN planner. In the second term, zT and ẑD are,
respectively, target and response variables between TN&ADNs
planners. Therefore, TN planning is coordinated with ADN
planning through these variables zT and zD. The penalty function
consists of two terms, linear and quadratic. α and β are multipliers
associated with linear and quadratic terms, respectively, and they
will be updated during the iterative solution process. An important
feature of the second-order penalty function is that it is a convex
quadratic curve. Therefore, this quadratic penalty function can be
piecewisely linearised as presented in [24].

It should be noted that in the penalty function, the target
variable, i.e. zT, should be determined by TN planning, while the
value of the response variable, i.e. ẑD, is received from the ADNs
planning. Meanwhile, the TN planning constraints (65) and (66)
should be satisfied. Note that ẑD in constraint (66) is a constant
term determined by the ADN planning problem.

3.2.2 Lower level (stochastic ADN planning problem): The
mathematical model of the ADN planning is presented by

min
xD, yD

I
~′xD + C

~′yD + α ẑT − zD + β ẑT − zD 2

(67)

Constraints 52 − 58 and 62 ∀ Ω ∈ D (68)

LẑT + V zD = M (69)

Similarly, the objective function (67) has two terms, the first term
of the objective function (67) is related to the TC of ADN
planning, i.e. (23), that has been defined in Section 3. The second
term is the penalty function related to the shared variables with the
ADN planner. Here, in the penalty function, the target variable, i.e.
ẑT, is a constant term that is determined from the TN planning
problem, hence, variable zD should be determined by ADN
planning. Note that ẑT is a constant term in (67) and (69).

3.2.3 Convergence mechanism: The target and response
variables zD and zT are transferred between TN and ADN planning
problems, and the iterative procedure continues until the following
stopping criteria are satisfied:

zT, (v) − zT, (v − 1) ≤ ε (70)

zD, (v) − zD, (v − 1) ≤ ε (71)

zT − zD ≤ ε (72)

where ɛ is the pre-specified error level; the superscript (v) marks
the vth circulated iterative calculation between TN&ADNs
planning problems; |∗| is the absolute value of ∗.

3.3 Decomposition algorithm

The min–max–min problem of (64)–(66) cannot be solved directly
via the commercial standard optimisation packages. Accordingly, a
primal Benders’ decomposition method is introduced which
decomposes the original problem into a master problem and a sub-
problem under uncertainty. The detailed formulations for the
master problem and sub-problem, plus the detailed solution method
steps are described below.

3.3.1 Master problem: The master problem of the primal
Benders’ decomposition method, including primal cutting planes,
finds the optimal values of the vectors xT, zT and θ. The
formulation of the master problem can be written as follows:

min
xT

I′xT + θ + α zT, (v) − ẑD + β zT, (v) − ẑD 2

(73)

52 − 58 and 61 ∀ Ω ∈ D , u = u^T (74)

θ ≥ C′yT, (v) (75)

LyT, (v) + VẑD = Mu^T (76)

Constraints (74)–(76) denote the primal cuts. Note that index ν
denotes the iteration counter.

3.3.2 Sub-problem: The sub-problem finds the optimal value of
the worst-case realisation of u^T. The max–min sub-problem
considering the uncertainty pertaining to WEG can be written as
follows:

max
uT

min
yT

C′yT
(77)

Constraints 52 − 58 , 60 , and 61 ∀ Ω ∈ T (78)

LyT + VẑD = MuT : κ5
T (79)

The max–min sub-problem formulation, i.e. (58)–(60), can be
recast via considering the dual of the inner minimisation problem
as follow:

max
uT

Bx^T ′κ1
T + E′κ2

T + H − Gx^T ′κ3
T + K′κ4

T

+ MuT − VẑD ′κ5
T + OuT ′κ6

T (80)

A′κ1
T + D′κ2

T + G′κ3
T + J′κ4

T + L′κ5
T + N′κ6

T + C = 0 (81)

κ1
T, κ3

T, κ4
T, κ6

T ≥ 0 (82)

κ2
T, κ2

T, κ5
T: free (83)

uT ∈ UT (84)

OuT ≤ N (85)
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Constraints (80)–(85) denote the constraints of the dual problem of
(78) and (79). They are generated by differentiating the Lagrangian
of the problems (77)–(79) with respect to operation variables yT.
The objective function (80) includes multiplication of κ( ⋅ )

T  and uT,
which makes the resulting bilinear sub-problem. This problem can
be solved using the approach proposed in [6].

3.4 Solution procedure

Fig. 1 illustrates the solution procedure of the proposed iterative
decomposition optimisation algorithm, which determines the
optimal HR&S planning results for the TN&ADNs. This algorithm
has three iteration loops, loops I, II and III, which are explained as
follows.

Step 0: Set the iteration index w = 0 for loop I, v = 0 for loop II (or
sub-problem) and k = 0 for loop III and choose initial values for
ẑD, α k , β k , UB = + ∞ and LB = − ∞.
Step 2: Set w ← w + 1. Solve the master problem (73) subject to
(74)–(76) for ẑD, (w − 1) value obtained from the previous iteration in
the loop I to obtain zT, (w).
Step 3: Solve each stochastic ADN planning problem (67) subject
to (68) and (69) for ẑT, (w − 1) value to find zD, (w).
Step 4: Check the convergence of loop I with (70) and (71). If (70)
and (71) are not satisfied, return to step 2 for the next iteration;
else, go to step 5. It should be noted that in the process of the loop I
of this method, α and β are fixed, and only ẑT, (w) and ẑD, (w) need to
be updated.
Step 5: Check the convergence of loop II, i.e. (72), or stopping
criteria for loop II. If it is not satisfied, go to step 6, otherwise, the
converged optimal result ẑD, (w) is obtained and go to step 7.
Step 6: Set k ← k + 1 and update the values of multipliers α k  and
β k  using (86) and (87)

α k + 1 = α k + 2 β k 2
zT, (w) − zD, (w) (86)

β k + 1 = λβ k (87)

where constant λ should be selected equal or larger than one in
order to get the converged optimal results. This approach to
updating α k + 1  and β k + 1  is verified in [25].
Step 6: Obtain ẑD, xT, (v), and θ(v), and update the lower bound as:
LB = I′xT, (v) + θ(v).
Step 7: Solve sub-problem (80) subject to (81)–(85) with the values
of ẑD and x^T, (v) obtained from step 7 to get u^T and update the upper
bound as UB = I′xT, (v) + C′y^T, (v).
Step 8: Check the convergence of loop III, i.e. UB − LB ≤ ε; if it
is satisfied to terminate the solution procedure and return the
current values of ẑD, xT, (v) and u^T as the optimal solution. Else, fix
the values of u^T to its obtained values in step 7, update the iteration
counter ν←ν + 1, and return to step 2 for the next iteration for loop
III.

4 Simulation results
In order to illustrate the performance of the proposed decentralised
robust planning strategy for TN&ADNs, the modified IEEE 30-bus
TN and IEEE 33-bus distribution network have been studied here.

Both network topologies are presented in Fig. 2. The IEEE 30-
bus TN has one wind farm (WF), six GUs, 41 lines, and 20
demands. The peak load is 310 MW. One WF with 115 MW
capacity has been installed at bus 11. The additional data of
existing GUs, demands, and TLs are given in [26]. Also, the data
of two- and four-type GUs and prospective TLs are provided in
Tables 1 and 2, respectively. Two candidate GUs are allowed to
install on each bus. One ADN, i.e. IEEE 33-bus distribution
network, has been connected to the transmission system through
bus 4. As shown in Fig. 2, the ADN consists of 33 buses, 31

distribution lines, and 32 demands. For generation and
transmission planning in ADN, two-type DGs and four prospective
TLs are considered whose data are described in Tables 1 and 2,
respectively. The additional data of demands and feeders for the
IEEE 33-bus distribution network are given in [27].

The horizon of planning is 10 years and the yearly increase rate
of load consumption is 5% and WEG is 0%. As can be seen in
Fig. 3, both loads and WEG have been denoted through time
blocks for each year in the planning horizon [28]. As in TN, there
is one WF and the scheduling period contains 10 years and each
year includes five time blocks, the budget of uncertainty can adopt
different integer values between 0 and 1 × 10 × 5 = 50 (i.e.
0 ≤ Γ̄w ≤ 50). The uncertainty of load demand in ADN planning
over the years is modelled by a set of probable load scenarios
based on the available forecasted data prior to running the
proposed ADN planning problem. It should be noted that scenario
generation and reduction methods are outside of the scope of this
study. Another key point, the investment budgets for TN and ADN
are limited to 95% of their operation costs. Finally, the simulations
are carried out on a PC with an Intel Core CPU with eight
processors clocking at 4.50 GHz and 16 GB RAM using GAMS
25.1 and CPLEX solver (ver. 12.6.3). In order to investigate the
efficiency of the proposed planning problem and solution strategy,
three case studies in the following subsections.

4.1 Comparison of de/coupled TN&ADN planning

This section compares the robust planning of coupled and
decoupled TN&ADN to validate the high performance of coupled
TN&ADN planning from the transmission's and distribution's
perspective. Note that in the decoupled planning approach, the
distribution grid in TN planning is modelled as the constant
(forecasted) load connected to bus 4. Also, in this planning
approach, the data exchange between TN&ADN planning is not
taken into account.

Accordingly, the robust TN&ADN planning results of the
decoupled/coupled planning approaches for different uncertainty
budgets are given in Tables 3–7 and Figs. 4 and 5. 

Important to realise that in Tables 3–7 and Figs. 4 and 5, if
parameter Γw is fixed to zero, then the wind uncertainty in the

Fig. 1  Algorithm to solve the HR&S co-planning model
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Fig. 2  IEEE 30-bus test system with one ADN
(a) 30-bus transmission test network, (b) 33-bus distribution test network

 
Table 1 Data of candidate TLs for TN and ADN
Network No. From bus To bus Pmax, MW B, p.u. R, p.u. IC, M$
TN 1 4 11 50 0.06 0.01 10

2 6 11 50 0.19 0.04 15
3 5 9 50 0.17 0.05 20
4 26 27 50 0.17 0.05 20

ADN 1 18 33 1 0.20 0.10 2
2 22 33 2 0.18 0.05 3
3 25 33 2 0.12 0.02 2.1
4 32 33 2 0.18 0.05 2.7

 

Table 2 GU/DG data of TN/ADN
Network Type Pmin/Pmax, MW Qmin/Qmax, MVar IC/OC, M$/$/MWh
TN 1 10/50 −20/20 25/30

2 20/120 −60/60 50/20
ADN 1 0/15 −10/10 4/16

2 0/18 −15/15 5.5/15
 

Fig. 3  Load and wind power duration curve
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planning decisions is not considered. However, as the value of this
parameter is increased, the wind uncertainty in planning decisions
is taken into account. As can be observed in Table 3, in decoupled
planning approach the value of the uncertainty budget has a great
impact on the TN expansion decisions including locations, and
installation years of GUs and lines, while there are no changes in
the ADN expansion decisions. These results were expected because

in the decoupled planning approach there is no link between TN
and ADN planners. However, as Table 4 illustrates, the obtained
results for the coupled planning approach prove that the uncertainty
budget has an impact on the ADN expansion decisions comprising
locations and installation years of feeders and DGs. Besides, as can
be observed in Tables 3 and 4, there are a number of important
differences between decoupled and coupled planning approaches.

Table 3 Decoupled TN&ADNs planning results under different levels of the uncertainty budget
Γ̄w Network Planning Results
0 TN GUs (bus 10, type 1, years 9–10)

TLs (line 4–11, years 1–10)
ADN feeders (feeder 18–33, years 1–10)

DGs (bus 24, type 1, years 1–10)
50 TN GUs (bus 6, type 1, years 6–10)

(bus 24, type 1, year 10)
TLs (line 4–11, years 1–10), (line 26–27, years 8–10)

ADN feeders (feeder 18–33, years 1–10)
DGs (bus 14, type 1, years 1–10)

 

Table 4 Coupled TN&ADNs planning results under different levels of the uncertainty budget
Γ̄w Network Planning Results
0 TN GUs —

TLs (line 4–11, years 1–10)
ADN feeders (feeder 18–33, years 1–10)

DGs (bus 4, type 1, years 2–10)
GUs (bus 12, type 1, years 1–10)

50 TN units (bus 2, type 1, year 10)
TLs (bus 10, type 1, years 7–10)

feeders (line 4–11, years 1–10)
ADN DGs (feeder 25–33, years 1–10)

GUs (bus 2, type 2, years 1–10)
(bus 25, type 1, years 3–10)

 

Table 5 Decoupled TN&ADNs planning costs under different levels of the uncertainty budget
Networks Planning costs, M$ Γ̄w

0 25 50
TN IC 3.11 4.00 4.81

OC 30.75 33.25 38.11
TC 33.86 37.25 42.92

ADN IC 0.60 0.60 0.60
OC 4.55 4.55 4.55
TC 5.15 5.15 5.15

 

Table 6 Coupled TN&ADNs planning costs under different levels of the uncertainty budget
Networks Planning costs, M$ Γ̄w

0 25 50
TN IC 1.50 4.00 4.81

OC 25.24 32.74 37.87
TC 26.74 36.74 42.68

ADN IC 0.96 1.00 1.09
OC 1.72 1.68 1.61
TC 2.68 2.68 2.71

 

Table 7 Performance comparison of different techniques
Γ̄w Results Proposed decentralised technique Centralised technique
0 TC, M$ 39.37 39.42

computation time, s 100 1356
50 TC, M$ 47.41 47.50

computation time, s 134 3215
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For instance, for Γw = 0, for decoupled planning approach, one GU
is installed at bus 10 in TN planning, while in the coupled planning
approach, building GU is not required. Similarly, as can be
observed in Tables 3 and 4 for the ADN planning perspective, the
feeder planning schemes for both approaches are the same, while
for the coupled planning approach, more DGs are installed.
However, as Tables 3 and 4 illustrate, for Γw = 50, the coupled
planning approach can reduce line building and contribute to
postponing the GUs in TLs upgrades.

The results of the planning costs for decoupled and coupled
planning approaches are set out in Tables 5 and 6. The following
conclusions can be drawn from Tables 5 and 6:

(i) By increasing from 0 to 50, the IC, OC, and TC increase. In
fact, the main reason is that increasing the budget of uncertainty
results in more conservative expansion plans for TN, which can
withstand worse realisations of uncertain WEG (i.e. lower WEG).
Therefore, planning costs are increased, which is indeed the price
of the robustness of a more conservative expansion plan for TN.
(ii) In the decoupled planning approach for ADN, by increasing
parameter Γw, no increase in IC, OC, and TC is detected. This
result is expected. Since there is no correlation between TN and
ADN planners. However, for the coupled planning approach, the
budget of uncertainty can play an important role in ADN planning.
Following the addition of a budget of uncertainty, an increase in
the IC is recorded, while reduce in OC is detected. There are
several possible explanations for this result. The reasonable
explanation for this might be that with increase budget of
uncertainty number of building DGs in ADN is increased (as
shown in Table 4), thus, in this condition, the power generation
cost in ADN is lower than power purchasing from substation or
TN.
(iii) What is interesting about the data in these tables is that similar
to TN planning, the OC in the coupled planning approach for ADN
planning is reduced. This result was anticipated. For instance,
Figs. 4a and b display the amount of active power exchanged
(APE) between TN and ADN, in decoupled/coupled planning
approaches, for a budget of uncertainty 0 and 50, respectively. The
most interesting aspects of these figures are that in decoupled
planning approach APE between TN and ADN is constant while in

coupled planning approach the APE in time blocks 3 and 4 is
reduced. Under this circumstance, the coupled planning approach
can benefit a lot in reducing OC due to the coordination of TN and
ADN.
(iv) Point often overlooked, the IC in the coupled planning
approach for ADN planning increases compared with that in the
decoupled planning approach. However, the IC in the coupled
planning approach for TN planning decreases compared with that
in the decoupled planning approach. This result was expected.
However, the reason for this is probably is that in the coupled
planning approach, the ADN planning scheme can play a key role
in the TN planning decision. Although the IC of the ADN in the
coupled planning approach increases compared with that in the
decoupled planning, the OC and TC of the coupled planning
approach decrease.

4.2 Impact of scenario number in ADN planning

Here, at first, set Γw = 25 then the number of scenarios is varied
from 10 to 60, to show the impact of scenario number in decoupled
and coupled planning approaches for the ADN planning
perspective. The results of this impact can be found in Fig. 5.
According to this figure, the number of generated scenarios for
both approaches has been assigned. It can be seen from this figure
that after selecting more than 10 and 80 scenarios, respectively, for
the decoupled and coupled planning approaches, the value of the
IC converges to a stable value. This result implies that the coupled
planning approach needs a lower number of scenarios than the
decoupled approach to determine the optimal IC for ADN
planning.

4.3 Performance of the proposed solution strategy

Notice that in order to check the validity of the results of the
proposed decentralised technique, coupled TN&ADN planning
problem is also solved considering the transmission system and
distribution system as a single system which is called centralised
technique. Table 7 compares the results obtained from both
techniques for a budget of uncertainty 0 and 50. It is apparent from
this table that there were no significant differences between the
proposed decentralised technique and centralised technique in
terms of TC. Another key point, the analysis shows significant
differences between solution times for both techniques. What is
interesting about the data in this table is that by increasing the
budget of uncertainty, the solution time for the centralised
technique has been increased considerably while the solution times
for the decentralised technique are acceptable. Accordingly, these
results confirm that the proposed decentralised technique can
converge to an optimal solution within an acceptable solution time
for the budget of uncertainties 0 and 50.

5 Conclusions
The aim of this study was to present a decentralised hybrid robust/
stochastic approach for solving the coordinated expansion planning
problem of generation and transmission from the perspective of
TN&ADN planners. This study has highlighted that

Fig. 4  Comparison results
(a), (b) APE between TN and ADN for Γ̄w = 0 and 50, respectively

 

Fig. 5  IC for ADN under different scenario number
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• The proposed robust/stochastic approach provides an effective
tool to coordinate the expansion planning of transmission and
distribution systems.

• Coupled TN&ADNs planning can help to postpone the upgrade,
decrease the TCs for both planners, which improves the
performance of the entire power system.

• The expansion planning decisions for TN&ADN highly depend
on the budget of wind uncertainty. In this regard, the simulation
results approve that increasing the budget of uncertainty leads to
more conservative expansion plans, but with the higher
generation and ICs. On the other hand, in the coupled planning
approach, the IC, OC, and TC for both planners are less
increased compared to the decoupled planning approach.

• From the perspective of ADN planning to converge to an
optimal value in the coupled planning approach needs fewer
scenarios compared with that in the decoupled planning
approach.

• Compared with centralised decision making, the proposed
decentralised technique has alike performance.

To consider more real situations in the problem, the proposed
planning work will be extended by considering unbalanced
distribution networks in our future studies. Also, modelling the
uncertainties associated with other parameters such as the failure
rate of the network's components could be considered as a
suggestion for future work.
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