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Abstract 

The thesis presents a modelling approach to calculate and fit the evolution of the drop size 

distributions of oil and water emulsions under turbulent flow in pipes. A simulation model is 

developed to investigate coalescence and breakage phenomena of droplets in liquid-liquid 

dispersion over a long-distance pipeline under a fully dispersed flow regime and compared to 

experimental data to fit the model parameters. In this simulation work, the experimental data 

are supplied by Statoil. The experimental measurements took place at two different positions 

along the length of the pipeline using Focused Beam Reflectance Method (FBRM). The first 

location is at the inlet of the pipeline and the final location is near the outlet of the pipe. The 

mathematical model employed the population balance equation (PBE) approach to predict the 

volume and number density distribution functions, mean radii, standard deviations as well as 

breakage and coalescence rates over various distances in pipes. A new alternative solution to 

the complex PBE in the form of volume density distribution has been introduced using 

orthogonal collocation method for the case of fully developed turbulent oil-water pipe flow. 

Several breakage and coalescence models are assessed and compared in order to understand 

the behavior of the model. In addition, the model is also studied under various parametric 

effects particularly on dispersed volume fraction, 𝜙 and energy dissipation rate, 𝜀. The study 

also involved minor modifications on the coalescence and breakage closures to account the 

correction factor of damping effect at high dispersed phase fraction, 𝜙. The model employed 

the newly modified energy dissipation rate, 𝜀 by Jakobsen (2014) that considers the shear 

wall as the primary source of turbulence in pipes. The results showed that the model has 

successfully fitted the model proportionality constants accordingly at the final measurement 

locations (in good agreement with experimental data at final location). The regressed 

proportionality constants studied in the model did not vary significantly over the range of 

engineering parameters investigated. 
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CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Motivation 

Liquid-liquid dispersions are prevalent in many industrial processes particularly for 

transportation and production of petroleum fluids. When an oil-water mixture in pipes 

accelerates at high velocity and the relative motion becomes large enough, the flow 

inherently turns turbulent and the fluids undergo highly disordered motion characterized by 

velocity fluctuations and chaotic changes in pressure. These include the configurations of the 

pipe such as valves, pipe bends, fittings and chokes. The energy dissipated in such flows and 

pipe configurations lead to the formation of an emulsion where the one liquid phase is 

dispersed as droplets into the dominant liquid called continuous phase. In this respect, the 

droplets from the dispersed phase undergo continuous oscillations from the turbulent eddies 

by the dynamic process occurring within the system. Depending on the physicochemical 

properties of the oil and water as well as the relative volumes ratios, the oil-water mixture can 

be in the form of water-in-oil emulsion (w/o) or oil-in-water emulsion (o/w) as illustrated in 

Fig. 1.1, and is also encountered in the petroleum industry with applications at many stages in 

terms of petroleum recovery, transportation, and processing (Becher 2001, Schramm 1992). 

The type of oil-in-water emulsion (w/o) flow is favorable in the case of heavy crude oil 

transportation due to the fact that water continuous emulsions should have a low viscosity 

compared to the heavy crude oils.   
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(a)              (b) 

 

(c) 

Figure 1.1 Images of oil-water mixture (a) water-in-oil emulsion, w/o under microscopic 

image by Gavrielatos et al., (2017), (b) oil-in-water emulsion, o/w in pipe flow by Vuong et 

al., (2009) and (c) typical structures for respective emulsion.  

 

The properties of a dispersion of oil and water mixture in two phase turbulent flow are 

associated with the drop size distribution. In general, the drop size distribution defines the 

interfacial area, which has a major influence on mass and/or heat transfer rates between one 

or more phases (Hesketh et al., 1991; Luo and Sevendsen, 1996). In pipe flow, the drop size 

distribution can greatly influence the rheological behaviour of the emulsions and the flow 

properties such as the effective viscosity, pressure gradient and the holdup fraction of the 
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mixture liquids (Arirachakaran et al., 1989; Schümann, 2016).  Hence, a detailed and 

properly parameterized model that can provide accurate predictions of the dynamic evolution 

of the drop size distribution of oil-water emulsion could be valuable for production 

optimization, particularly in the design of critical equipment such as multiphase separators 

and transport pipelines. Although there have been a plethora of studies on liquid-liquid 

dispersion from theoretical to experimental over the past years (Solsvik et al., 2015; Maaß et 

al., 2011; Raikar et al., 2010; Maaß and Kraume, 2012; Vankova et al., 2007; Alopaeus et al., 

2002; Alopaeus et al., 1999;  Chen et al., 1998; Chesters, 1991; Luo and Sevendsen, 1996; 

Nere and Ramkrishna, 2005; Coulaloglou and Tavlarides, 1977; Hsia and Tavlarides, 1980), 

the topic still remains one of the difficult and least understood mixing problems in turbulent 

flow (Azizi and Al Taweel, 2011; Kostoglou and Karabelas, 2007).  In this respect, any small 

changes in the chemical composition of the system will greatly affect its performance (Paul et 

al., 2004). A majority of the research work on drop behaviour modelling for liquid-liquid 

systems were found to be focused on stirred tank and gas column, compared to liquid-liquid 

pipe flow which has significant differences in parametric effects, geometrical setup, and 

physical configurations. One of the notable differences is the formation of the turbulent 

energy. For instance, in the stirred tank setup, the turbulent is uniformly distributed to the 

fluids by the static mixing element. However, in the pipe flow the turbulent is formed due to 

continuous oscillation (the energy is primarily supplied by the pumps) of the liquid phases 

(oil and water). Furthermore, turbulent disperse systems involve numerous parameters 

including hydrodynamics, turbulence, and physiochemical effects (Briceño et al., 2001). 

Besides that, liquid-liquid system has a relatively small density ratio between the phases as 

compared to gas-liquid system. Therefore, the various concepts and results related to gas-

liquid flows such as prediction of pressure drop cannot be simply or readily applied to liquid-

liquid systems.  
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From the complexity of the problem as aforementioned, a detailed understanding and 

accurate knowledge are needed in order to predict the dynamic evolution of the drop size 

distribution in turbulent pipe flow. There is a significant relevance in applications such as 

designing the nuclear reactors, chemical reactors, multiphase separators, oil sand extraction 

and processing, water and wastewater treatment (Liao and Lucas, 2010; Azizi and Al Taweel, 

2010). These have been the driving force behind the extensive research work on the 

understanding of droplets behaviour. Therefore, theoretical study has been conducted to 

investigate the droplet size behaviour under the liquid-liquid fully dispersed flow in isotropic 

turbulence in the fully dissipative regime. In this study, the experimental pipe flow data are 

supplied by Statoil. They employed the method of Focused Beam Reflectance Measurement 

(FBRM) at two different positions of measurement along the length of the pipeline to acquire 

the drop size distributions. The first location is at the inlet of the pipeline and the final 

location is near the outlet of the pipe. Three different data sets of drop size distributions are 

collected at various velocities (detailed in section 3). In this present work, to determine the 

drop size distribution two major events named coalescence and breakage are studied. Both 

the processes of drop coalescence and breakage profoundly influence the dynamic evolution 

of drop sizes. Hence, it is essential to accurately characterize and choose breakage and 

coalescence models that best represent the behavior of petroleum emulsions. One of the 

suitable methods to predict the dynamic evolution of drop density distribution in turbulent 

pipe flow is using the population balance equation (PBE) approach. PBE is a rigorous 

mathematical framework that employs a physical description of the two drop processes from 

breakage due to flow field and coalescence due to collisions in terms of various physical 

parameters and operating conditions and provides the evolution of the drop size distribution 

with time and space. However, the solution of a PBE model can be a challenge and often 

complicated due to the large number of equations involved, numerical complications, 
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accuracy of the system, computational efforts and/or efficiency, mechanisms governing the 

drop size evolution in liquid-liquid dispersions, and inclusion of particle growth due to 

breakage and coalescence events (Pinar et al., 2015; Rehman and Qamar, 2014; Korovessi 

and Linninger, 2004; Gunawan et al., 2004; Alexopoulos et al., 2004; Sing and Ramkrishna, 

1977). Hence, to address these issues, a new possible methodology is proposed to solve the 

PBE. The methods have been discussed thoroughly in the next chapters of this thesis (see 

Chapter 3). Minor modification for several breakage and coalescence kernels are also 

implemented to account for high volume fraction (dispersed phase). The system equation in 

this present work is formulated in terms of volume density distribution instead of number 

density distribution that allows the model to have a stable magnitude over time and consistent 

convergence criterion in numerical calculations. Finally, the model formulations are 

compared with experimental data under different breakage and coalescence models. 

Following the research strategy, the objectives of this research work are focused on three 

aspects as follows: 

 

1.2 Objectives of the research 

1) To propose new alternative solution method to the PBE and discuss possible 

breakage and coalescence models for the dynamic evolution of drop size density 

distribution of the oil-water emulsions in turbulent pipe flow. The study includes 

model formulation and numerical solution for the PBE. 

2) To study the various parametric effects and interplay on the evolution of the drop 

density distribution functions in turbulently flowing liquid-liquid emulsions. The 

parameters investigated include volume fraction of the dispersed phase, 𝜙, the 

energy dissipation rate, 𝜀, the pipe length, 𝐿, and all four fitting parameters, 𝑘𝜔, 

𝑘𝜓, 𝑘𝑔1
, and 𝑘𝑔2

.  
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3) To compare the model formulated with the experimental results (regression 

analysis) obtained for oil-water emulsion in turbulent pipe flow as well as to 

compare the applicability of various coalescence and breakage models. 

 

1.3 Scopes of the research 

The study is focused on formulating a model to describe the evolution of the drop size 

distribution of a liquid-liquid emulsion under turbulent pipe flow over long distances. The 

model is built upon population balance equation breakage and coalescence into account. 

Comparing the performance of various coalescence and breakage models against 

experimental data could allow us to predict and fit the drop distribution for long distance 

emulsion transport. The model is formulated to simulate: (i) the evolution of number and 

volume density distributions, (ii) the average radii of number and volume distributions, (iii) 

standard deviations of the number and volume density distributions, (iv) the length and time 

to establish equilibrium between coalescence to breakage, (v) the evolution of breakage and 

coalescence in terms of birth and death rates, and (vi) regression (fit) on final volume density 

distribution. Apart from that, in order to formulate the model and reduce the amount of 

computational efforts, certain simplifications are necessary to make the problem tractable. 

Some conditions have to be assumed such as isotropic turbulent and the droplet size is within 

the inertial subrange eddies 𝑙𝑒 ≥ 2𝑟 ≥ 𝜂 (i.e.,  𝑙𝑒 is the integral length scale for large eddies 

and 𝜂 is the Kolmogorov scale for small eddies). In this case, the viscous effect is negligible, 

and deformation of drops occurs primarily from turbulent fluctuations. Other assumptions 

made are written in details in chapter 3 of this thesis (research methodology). 
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1.4 Outline of the thesis 

This thesis is written in the form of monograph with a detailed description on every 

topic and consists of extended theoretical part to provide an overview and comprehensive 

knowledge of the topic. It is organized in various chapters as follows: 

 

Chapter 1 introduces the topic and provides an overview of liquid-liquid dispersions which 

include the objectives and scope of the research work. Chapter 2 discusses the important 

literature on coalescence and breakage models in detail. In Chapter 3, the proposed method to 

solve this problem is discussed and presented. The results and findings are discussed in 

Chapter 4 and Chapter 5. The conclusion is written in Chapter 6 and finally, the 

recommendations for future work is addressed Chapter 7. 

 

1.5 Chapter summary 

This chapter provides a description and overview of the research project on drop size 

density distribution in turbulent liquid-liquid flow, the challenges or problems encountered in 

liquid-liquid dispersion system, the significances and importance of the research work (i.e., 

the relevant applications). A new possible solution method for complex PBE in a fully 

developed oil-water turbulent pipe flow is proposed. To address these issues the objectives 

and scopes of the research were outlined. The details of the literature review and theory are 

discussed in the following section of Chapter 2. 
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CHAPTER 2 

 

2 BACKGROUND 

  

2.1 Oil-water emulsion in turbulent pipe flow 

The turbulent flow of oil and water is considered a ubiquitous and inherent 

phenomenon in many natural and industrial processes, particularly during the production or 

transportation of petroleum fluids. At high shear rate, the fluids undergo highly disordered 

motion characterized by velocity fluctuations and chaotic changes in pressure. Under such 

circumstances, emulsions of oil and water appear where droplets from one liquid disperse 

into another liquid phase. The formation of emulsions is influenced by many factors namely, 

interfacial tension between liquids, shear and geometrical properties of liquids (Schümann, 

2016). From the phenomenon known as phase inversion, the emulsion can be found in the 

form of oil-in-water (o/w) or water-in-oil (w/o) depending on various parameters such as 

volume fraction, pH and salinity, viscosities of fluids, interfacial compositions and turbulence 

(Piela et al., 2006). In general, droplets form as a result of instability at the interface between 

the liquids mixture due to continuous oscillations in the flow. Figure 2.1 shows the types of 

flow patterns in pipelines in the case of laminar (Fig.2.1a) and turbulent dispersed flows 

(Fig.2.1b). As a result of intense turbulent kinetic energy, the oil phase begins to detach from 

its surface forming small droplets and are dragged by the continuous phase (water) in the pipe 

as shown in Fig. 2.1. In the petroleum industry, for certain operations, emulsions are required 

during the drilling assignments in order to lift the drill cuttings to the surface as well as better 

hole cleaning (Werner et al., 2017). But in some situations, such as during the petroleum 

recovery process, emulsions are unwanted because they can accumulate and plug the 

pipelines as well as the production well-head. In the case of heavy crude oils, the high 
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viscosity hinders the efficient transportation of the fluids through pipelines to surface 

facilities (Hart, 2014). Hence, reducing the viscosity is the best alternative or having the type 

of oil-in-water (o/w) emulsion in oil-water pipe flow is preferable because it could reduce the 

pumping requirements as o/w emulsion could have lower viscosity than the heavy crude. 

 

  

                      (a)                                                                     (b) 

Figure 2.1 Example of oil-water flow behaviour in a pipeline (a) under laminar flow (b) 

under dispersed flow (Ismail et al., 2015a)  

 

 The drop size distribution from the liquid-liquid dispersions is important for 

characterizing the emulsions (Chen et al., 1998). According to Opedal et al., 2009 and Otsubo 

and Prud’homme, 1994, the drop size distribution affects the rheology and the stability of the 

emulsion. In an experimental investigation by Pal, (1996), he observed that the effective 

viscosity increases as the droplet sizes reduce for both oil-in-water (o/w) as well as water-in-

oil emulsions (w/o). In pipe flow for instance, the drop size distribution significantly affects 

the rheological behaviour and the pressure gradient of the liquids as reported by 

Arirachakaran et al., (1989) in their analysis of oil-water flow phenomena in horizontal pipes. 

Angeli and Hewitt, (1999) also discovered that the droplet size affects the drag reduction in 

oil-water flow due to turbulent fluctuations in the pipes. Therefore, an experimentally 

validated theoretical model for emulsion drop size of liquid-liquid dispersions is crucial due 
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to its significant effects and contributions particularly on processes related to transport and 

separation of liquid-liquid dispersions (Schümann, 2016).  

  

2.2 Population balance equation (PBE) 

One of the preferred methods to predict the drops evolution of oil-water emulsions 

under turbulent flow regime is using the population balance equation (PBE) approach. PBE is 

a useful tool that takes into account the processes from breakage due to the flow field, and 

coalescence due to collisions. The PBE method is generally applicable to particle growth 

processes such as crystallization, precipitation, flocculation, cell growth, mixing, multiphase 

flow, reaction etc. as reported in review article by Ramkrishna and Singh, (2014). The work 

on population balance was started as early as 1917 by von Smoluchowski who studied a poly-

dispersed particle dynamic. von Smoluchowski (1917) is considered the pioneer in deriving 

aggregation kernel from Brownian motion and has proposed a set of nonlinear differential 

equation for the aggregation of particles (Solsvik and Jakobsen, 2015; Ramkrishna and Singh, 

2014). However, the works on population balance have been widely considered to have been 

derived simultaneously by Hulburt and Katz (1964) along with Randolph (1964). Both have 

suggested a generic expression for the population balance in terms of integro-differential 

equations for the number density of the particles in the phase space. Hulburt and Katz (1964) 

introduced population balance equation as a tool to model liquid-liquid dispersions. They 

developed a model that used differential equations to show the variation of particle sizes in 

the dispersed flow system. Later, Coulaloglou and Tavlarides (1977) employed the model 

established by Hulburt and Katz (1964) and developed an improved set of breakage and 

coalescence models under turbulent flow field for liquid-liquid dispersion. Since then, there 

have been numerous studies and discussions on the population balance equations as reported 

comprehensively in review article by Jakobsen, (2008); Solsvik and Jakobsen (2015); Liao 
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and Lucas (2009, 2010); Abidin et al., (2015); Deju et al., (2015); Sajjadi et al., (2013); 

Rigopoulos, (2010); and Omar and Rohani, (2017).          

A vector is used to describe these changes in the system of states during the particle 

interactions (Ramkrishna and Singh, 2014) or also known as particle phase space by Solsvik 

and Jakobsen, (2015). The vector is composed of internal coordinates that indicate the 

properties concerning the particle such as the particle charge, lifetime, or size (i.e., radius, 

diameter, volume, and mass) and the external coordinates, representing the physical spatial 

location of the particle. In a nutshell, the phase space vector consists of location and property 

spaces of the particle. The PBE also accounts for the birth and death of the particle during 

either coalescence or breakage processes as well as provides the evolution of the drop size 

distribution with time and space. It is important to take into account the breakage and 

coalescence processes during the dispersion of liquid-liquid flow because the final drop sizes 

distributions are produced from the competition between both processes (DeRoussel et al., 

2001). Normally, PBEs are solved via numerical or statistical methods (Abidin et al., 2015). 

There are several numerical solutions techniques proposed to solve the PBE in literature and 

the most common methods used are finite difference method, weighted residuals method, 

discretization techniques, and Monte Carlo (Mesbah et al., 2009). Generally, PBE 

formulations are derived from the concept of Boltzman transport equation, continuum 

mechanical principles, and probability principles (Liao and Lucas, 2009; Solsvik and 

Jakobsen, 2015; Randolph and Larson, 1988). PBE can be illustrated as particles entering and 

leaving a control volume and those accumulating within it are balanced. According to 

Vennerker et al., (2002), the general form of population balance equation from Ramkrishna 

(1985) can be written as:  

 

𝜕𝑓𝑛(𝒛, 𝒓, 𝑡)

𝜕𝑡
+ ∇𝑧 . 𝒛̇𝑓𝑛(𝒛, 𝒓, 𝑡) + ∇𝑟 . 𝒖𝑓𝑛(𝒛, 𝒓, 𝑡) = 𝑆(𝒛, 𝒓, 𝑡)                                                    (2.1) 
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Where, 𝑓𝑛(𝒛, 𝒓, 𝑡) is the number density distribution function that represents the number of 

fluid particles per unit volume as a function of property vector 𝒛 (internal coordinate) and 

physical position of the particle 𝒓 (external coordinate) with time, 𝑡. The terms 𝒛̇ and 𝒖 are 

growth rate and velocity of the particle respectively. While, 𝑆(𝒛, 𝒓, 𝑡) is the generalized 

source term for birth and death of particle due to coalescence and breakage processes and can 

be expressed as follows: 

 

𝑆(𝒛, 𝒓, 𝑡) = 𝐵(𝒛, 𝒓, 𝑡) − 𝐷(𝒛, 𝒓, 𝑡)                                                                                                  (2.2)  

 

In Eqn. (2.2), the two terms on the right-hand side represent the birth and death rates of 

particles at particular state (𝒛, 𝒓) at time 𝑡. The birth rate  𝐵(𝒛, 𝒓, 𝑡) is the number of droplets 

formed from breakage of larger droplets or coalescence of smaller droplets. The death rate 

𝐷(𝒛, 𝒓, 𝑡) is the number of droplets that breakup into smaller drops and small drops that 

coalesce into larger drops. The birth and death processes from coalescence and breakage are 

illustrated in Fig. 2.2. The mechanistic derivation of the PBE source term 𝑆(𝒛, 𝒓, 𝑡) is 

explained in detailed by Solsvik and Jakobsen, (2015). By substituting Eqn. (2.2) into the 

generalized PBE equation in Eqn. (2.1) and becomes: 

 

𝜕𝑓𝑛(𝒛, 𝒓, 𝑡)

𝜕𝑡
+ ∇𝑧. 𝒛̇𝑓𝑛(𝒛, 𝒓, 𝑡) + ∇𝑟 . 𝒖𝑓𝑛(𝒛, 𝒓, 𝑡) = 𝐵(𝒛, 𝒓, 𝑡) − 𝐷(𝒛, 𝒓, 𝑡)                  (2.3) 
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Figure 2.2 Illustration of birth and death processes due to breakage and coalescence 

 

The PBE model requires appropriate functions to describe the breakage and coalescence 

phenomena. Presently, there are numerous models proposed in the literature on drop size 

predictions in turbulent flow, many of which have been discussed thoroughly in the review 

article by Liao and Lucas, (2009 and 2010), Abidin et al., (2015), Solsvik et al., (2013), 

Sajjadi et al., (2013) and Deju et al., (2015). The functions are developed based on four 

specific requirements namely breakage rate, daughter size distribution, collision frequency, 

and coalescence efficiency. Several of the breakage and coalescence models are discussed in 

the following sections. 
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2.3 Review of breakage models 

Normally, breakage occurs when turbulent fluctuations from the flow force the 

particle in the dispersed phase to breakup, although, more precisely, the turbulent kinetic 

energy is said to have exceeded the surface energy of the droplet. In this respect, the surface 

of the particle is exposed to the “bombardment” of eddies promoting instabilities and 

eventually causing the droplet to deform (split). Extensive effort has been spent in developing 

the model for breakage process. Among the earliest studies on this subject are the ones by 

Valentas et al., (1966) and Narsimhan et al., (1979). Valentas et al., (1966) developed an 

empirical model for a specific drop breakage, while Narsimhan et al., (1979) proposed a 

binary drop breakage that accounts for the number of eddies arriving with different scales at 

the surface of the droplet.  

There are several models introduced to elucidate the drop breakage in literature, with 

particular attention to the model developed by Coulaloglu and Tavlarides (1977). They 

proposed a phenomenological model in the population balance equation to describe the 

breakage process based on drop formation and breakup under the influence of local pressure 

fluctuations in a locally turbulent isotropic field. They assumed that the droplet sizes are 

within the inertial subrange and the breakup will take place if the turbulent kinetic energy 

transmitted from collision of eddies is greater than the surface energy of the droplets that 

keeps them physically intact. The breakup process in PBE can be described using two terms 

namely breakage frequency, 𝑔(𝑟)  and daughter size distribution (probability of droplets 

formed after breakup). Detailed descriptions of both terms are elucidated in the following 

sections. 
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2.3.1 Breakage frequency functions, 𝒈(𝒓)  

There are a number of mechanisms proposed in literature to elucidate the breakage 

process. In general, the breakage mechanisms can be classified into four categories as 

follows: 

(i) Breakup of droplet due to turbulent fluctuations. 

(ii) Breakup of droplet due to viscous shear stress. 

(iii) Breakup of droplet due to shearing off process. 

(iv) Breakup of droplets due to interfacial instabilities. 

 

Typically, the breakage frequency functions available in literature are developed based on 

these four suggested mechanisms. Fig. 2.3 shows the illustrations for each of the mechanisms 

that contribute to droplet breakup or deformation process (Liao et al., 2015). The most 

popular and preferred mechanism is from turbulent fluctuations where more work is found to 

be based on this mechanism as shown in the model classification flow chart in Fig. 2.4.  

 

 

(a)          (b)         (c)            (d) 

Figure 2.3 Type of mechanisms that promote the breakup and rupture of droplets: (a) 

breakup due turbulent fluctuations, (b) breakup due to viscous shear force, (c) breakup due to 

shearing-off process, and (d) breakup due to interfacial instabilities (Liao et al., 2015). 
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2.3.1.1 Breakup of droplets due to turbulent fluctuations 

In this type of mechanism, the breakup of droplet is assumed to occur when there is an 

imbalance between the dynamic forces (turbulent pressure fluctuations) and surface stresses 

(surface energy) of the droplets. Based on this assumption, several criteria have been 

proposed in the literature as follows: 

• Turbulent kinetic energy being greater than surface energy 

• Velocity fluctuation across the surface of the droplet 

• Turbulent kinetic energy from fluctuating eddies being greater than surface energy 

• Inertial force of the fluctuating eddies 

The details of these criteria have been discussed in depth by Liao and Lucas, (2009), Abidin 

et al., (2015), Solsvik et al., (2013) and Solsvik et al., (2014). Nevertheless, the pioneer of the 

breakup model based on the criteria of turbulent kinetic energy being greater than surface 

energy was proposed by Coulaloglou and Tavlarides (1977) and the model has been widely 

used in literature. The criteria postulated that when the turbulent kinetic energy supplied from 

turbulent eddies is large enough to overcome the critical value owned by each individual 

droplet (the critical value in this context refers to the surface energy of the droplet). Hence, 

the chaotic changes in velocity manifest the turbulent fluctuations and eventually promote the 

particle-eddy collisions along the surface of the droplet. The continuous process of turbulent 

fluctuations caused the droplet surface to become unstable. At higher oscillations, the process 

leads to elongation and rupture of droplet into two or more daughter droplets. Hence, from 

the assumptions discussed above, Coulaloglou and Tavlarides (1977) formulated the drop 

breakage function as follows: 

 

𝑔(𝑟) = (
1

𝑏𝑟𝑒𝑎𝑘𝑎𝑔𝑒 𝑡𝑖𝑚𝑒
) (

𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓
𝑑𝑟𝑜𝑝𝑠 𝑏𝑟𝑒𝑎𝑘𝑖𝑛𝑔

) ≈
1

𝑡𝑏
𝑒𝑥𝑝 (−

𝐸𝜎

𝐸𝑘
)                                         (2.4) 
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Where, 𝑡𝑏 denotes the breakage time, 𝐸𝜎 and 𝐸𝑘 are the drop surface energy and kinetic 

energy respectively. However, Lasheras et al., (2002) disagreed in general with the breakage 

efficiency (the exponential term as shown in Table 2.1) proposed by Coulaloglou and 

Tavlarides (1977) as they suggested that the breakup should be dependent more on 

continuous phase density, 𝜌𝑐. Vankova et al., (2007) has extended the model by Coulaloglou 

and Tavlarides (1977) and proposed drop breakage characterized by drop Reynolds number 

(𝑅𝑒𝑑) that accounts for both continuous phase density, 𝜌𝑐 and dispersed phase density, 𝜌𝑑.  

 

2.3.1.2 Breakup of droplets due to viscous shear stress 

In this mechanism, the breakup of bubbles is assumed to occur when there is an 

imbalance of forces between the external viscous stresses from the continuous fluid and 

surface stresses of the droplets in the air-water mixture. In this respect, the viscous shear 

stress from continuous fluid induced by the velocity gradient across the interface of the 

droplet ultimately leads to droplet deformation. However, the deformation of the droplet is 

based on the force balance characterized by the Capillary number, 𝐶𝑎. If 𝐶𝑎 is large enough 

and above the critical value, the interfacial forces can no longer hold the particle intact and 

eventually break the droplet into two or more daughter droplets.   

   

2.3.1.3 Breakup of droplets due to shearing off process 

In this mechanism, the breakage (erosive breakage) is assumed to occur when the 

small bubbles are sheared off from the larger bubbles (Liao and Lucas, 2009). This process is 

characterized by the imbalance of forces between the viscous shear force and surface tension 

at skirts of the cap/slug bubble. For instance, in the case of viscous gas-liquid in turbulent 

flows, the high relative velocity induces the bubble skirts to become unstable and 

disintegrates them from larger droplets. This leads to generation of large number of small 
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droplets at the rim (i.e., boundary). The velocity difference around the interface of the particle 

is the major contribution of this process (Fu and Isshi, 2002). Nevertheless, this mechanism is 

the major concern only in case of air-water mixtures (gas-liquid flows) and was found to be 

limited in the literature compared to turbulent fluctuations and viscous shear stress (Yeoh et 

al., 2014). 

 

2.3.1.4 Breakup of droplets due to interfacial instabilities 

In this mechanism, the breakage is assumed to occur without the presence of net flow where 

continuous fluid characteristics are insignificant. According to Liao and Lucas (2009) and 

Solsvik et al., (2013 and 2014), breakage can still take place in a motionless liquid for 

instance, the rise and fall of bubbles in continuous gas or immiscible liquids due to the 

interfacial instabilities. This can be expressed in Rayleigh-Taylor instability wherein the low-

density fluid travels rapidly into a high-density fluid. In the case of density ratio approaching 

unity, the breakage process is taking the Kelvin-Helmholtz instability.  

Several models of breakage frequency functions 𝑔(𝑑) are derived from four different 

criteria or mechanisms (see section 2.3.1.1) for droplets break process. For instance, 

Coulaloglou and Tavlarides (1977) proposed a model for breakage frequency function mainly 

on turbulent fluctuations. They assumed breakage rate to be a product of the fraction of 

breaking drops and the reciprocal time needed for the drop breakup to occur as a result of 

collision with turbulent eddy. They further added the factor of (1 + 𝜙) to account for the 

damping effects on the local turbulent intensities at high hold up fractions. Chen et al. (1998) 

introduced a mechanistic model for breakage rate function that accounts for interfacial 

tension and viscosity. They also employed the effect of turbulent intensities at high holdup 

fraction as suggested earlier by Coulaloglou and Tavlarides (1977). Rather simplistic, Cristini 

et al., (2003) introduced a direct proportionality model or linear dependence based on sub-
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Kolmogorov drops in terms of drop volume(𝑣), 𝑔(𝑣) ≈ 𝑘𝑣. Some of the breakage frequency 

models in the literature are described in the Table 2.1. Majority of the proposed breakage 

models are found to neglect the correction factor for dampening of turbulent intensities at 

high dispersed phase fraction (1 + 𝜙) as suggested by Coulaloglou and Tavlarides (1977).  

 

 

Figure 2.4 Mechanisms for breakage frequency 
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2.3.2 Daughter size distribution (breakage probability), 𝛃(𝒓, 𝒓′) 

In order to have a complete description of the breakage sub-process, it is necessary to 

consider the daughter size distribution in terms of the number of drops formed and their 

distribution. The model has to be developed separately from the breakage frequency. The 

main goal of this function is to determine the probability of a certain size of droplets formed 

as a result of bigger droplets being ruptured. The daughter size distribution is composed of a 

probability density function and the number of drops formed after the breakage process. Most 

of the modelling works describe breakage as a series of binary breakage processes (Raikar, 

2010). There are limited numbers of experimental and modelling studies for daughter size 

distribution with multiple and/or unequal size daughter droplets or combination of equal and 

unequal size daughter droplets to account for breakage event (Abidin et al., 2015). In general, 

the average number of daughter droplets formed depends on the forces applied, diameter, and 

the interfacial tension of the parent droplet (Hsia and Tavlarides, 1980). Based on these 

requirements, the daughter size distribution can be classified into three categories namely, 

empirical, statistical, and phenomenological.  

 

2.3.2.1 Empirical model 

Empirical model is formulated based on observation and experiment. Hence, it is considered 

as case specific (i.e., for a specific application and system). Thus, the model is normally not 

considered or preferred for the droplet size distribution. According to Solsvik et al., (2013), 

the empirical model limits the range of applications and is incapable of extrapolating outside 

of the operational conditions for which the model parameters were determined. In this 

respect, generalized model is more applicable where the number and size of droplets formed 

from a breakage event can be decently described regardless of the conditions (i.e., liquid-

liquid or gas-liquid, stir tank or pipe flow). Hesketh et al., (1991) developed an empirical 
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model to determine the daughter size distribution in their study of bubble breakage in air-

water pipeline flow.  

 

2.3.2.2 Statistical model 

In statistical approach, the size of the daughter droplets is usually described by the random 

variable and its probability distribution function proposed satisfies a simple expression. The 

common expressions used are as follows:  

• Normal or Gaussian distribution 

• Beta (β) distribution  

• Uniform distribution 

The normal density function was first introduced by Valentas et al., (1966) which later 

became widely used for investigations such as Coulaloglou and Tavlarides (1977), Chatzi et 

al., (1989), Lasheras (2002), and Raikar (2010). On the other hand, beta (β) distribution has 

been proposed by Hsia and Tavlarides in 1980 by modifying their earlier work. One of the 

advantages of beta (β) distribution is preventing zero probability for the evolution of equal-

sized droplets as compared to other models (Azizi and Taweel, 2011). Nevertheless, 

Narsimhan et al., (1979) and Randolph, (1969) suggested that a random (uniform) 

distribution for binary breakage could be used to describe the droplets formed from the 

breakage event in agitated liquid-liquid dispersions. There has been disagreement reported 

from this assumption by Sajjadi et al., (2013) and Liao and Lucas, (2009) because nature does 

not split liquid volumes at random (Villermaux, 2007).  

 

2.3.2.3 Phenomenological model 

In the phenomenological model, the underlying concept is to relate empirical observations of 

important phenomena that corresponds to fundamental theory but is not directly derived from 
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the theory. In this respect, the underlying theory of such phenomena is not fully understood 

and may not yet have been discovered (Liao and Lucas, 2009) or the mathematics to describe 

such phenomena are too complex (Solsvik et al., 2013). From the shape of the daughter size 

distribution, the proposed phenomenological models are comprised of functions that are 

generally classified as U-shaped, Bell-shaped, and M-shaped. As reported by Abidin et al., 

(2015), the most widely used phenomenological model for the daughter size distribution is 

from the bimodal U-shaped function developed by Tsouris and Tavlarides, (1994). This is a 

model with highest probability density when one of the daughters has a minimum diameter 

(parent droplet unlikely to break) and lower probability density for two daughter droplets of 

same size. The model was developed based on the energy requirements for the daughter 

drops formation. In comparison to beta (β) distribution function, this model by Tsouris and 

Tavlarides, (1994) yielded minimum probability at equal size breakage while, beta (β) 

function produced maximum probability at equal size breakage which is the opposite of this 

model. However, the advantage of beta distribution model is that it predicts zero probability 

for daughter droplets with size equal to parent droplet and for droplets infinitely small 

(Abidin et al., 2015). In addition, the beta (β) distribution function is also capable to account 

for the total volume of droplets within the lower and upper limits of droplet size (Abidin et 

al., 2015). Luo and Svendsen, (1996) also proposed the U-shaped model for the daughter size 

distribution for drop breakage. The model has similar criteria with Tsouris and Tavlarides, 

(1994) where the probability is minimum at equal size breakage at maximum the volume 

fraction approaches zero or unity. Furthermore, the model has a non-zero minimum and 

mainly relies on the size of the parent droplet (Liao and Lucas, 2009). All the models 

discussed above for daughter size distribution are presented in the diagram as shown in Fig. 

2.5 below.  
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Figure 2.5 Type of models proposed for daughter size distribution, β 

 

 

Additionally, Table 2.2 provides an insight and overview of several mathematical models 

developed and available in literature for breakage size distribution, β(𝑟, 𝑟′) in terms of drop 

radius, 𝑟. Most of the models proposed in the literature are developed from the stirred tanks 

setup for liquid-liquid dispersions.  
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2.4 Review of coalescence model 

Apart from breakage process, coalescence is also responsible for the evolution of 

droplets in liquid-liquid or gas-liquid flows. In general, coalescence is a process when two or 

more droplets are merging to form a droplet. In this respect, the process is typically 

associated with contact and collision between droplets. In turbulence, the coalescence process 

is considered complex (Chesters, 1991) due to the interactions of droplets with surrounding 

continuous liquid and alongside other droplets. The coalescence model is normally expressed 

as the product of collision frequency, 𝜔𝐶 and coalescence efficiency functions, 𝜓𝐸 . There are 

several models proposed in literature to calculate the collision frequency, 𝜔𝐶 and coalescence 

efficiency functions, 𝜓𝐸 . Among the earliest models studied on coalescence are the ones by 

von Smoluchowski, (1917) who investigated the aggregation of particles by Brownian motion 

and Valentas and Amundson, (1966) that proposed mathematical descriptions for coalescence 

based on a film drainage process. The most widely applied modeling approach for 

coalescence is the film drainage model (Liao and Lucas, 2010). Film drainage is a process in 

which when the droplets collide, they will trap a small film of liquid between them. As they 

remain in contact, the liquid film separating the droplets slowly drains out to a critical 

thickness and eventually ruptures due to film instabilities which lead to formation of a single 

new droplet. In this section, a number of proposed models will be reviewed in the following 

sections:  

 

2.4.1 Collison frequency function, 𝝎𝑪(𝒓′, 𝒓′′)  

In turbulent flow, there are numerous mechanisms that could contribute to collision 

between droplets. These include the turbulent induced collision that forces the random 

motion of droplets during a chaotic turbulent flow, the eddy-induced collision in which the 

droplets that are captured in the same eddy may collide due to the shear rate in the eddy, the 
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velocity-induced collision where droplets from a region of relatively high velocity field may 

collide with a droplet at a region of relatively low velocity field, the buoyancy-induced 

collision such that the droplets of different sizes collide due to different 

sedimentation/creaming velocities and finally the wake effect that promote the collision of 

droplets due to the rise velocity of different size droplets. Fig. 2.6 shows the illustrations for 

each of the mechanism that contribute to coalescence process from Liao et al., (2015). 

 

 

(a)          (b)     (c)   (d)   (e) 

Figure 2.6 Types of collision mechanisms for droplets in turbulent flow: (a) Turbulent-

induced collisions, (b) Droplets capture in an eddy, (c) Velocity gradient-induced collisions, 

(d) Buoyancy-induced collisions, and (e) Wake interactions-induced collision (Liao et al., 

2015) 

 

2.4.1.1 Turbulent-induced collisions 

Turbulent-induced collision is the most important and dominant mechanism in 

describing the coalescence phenomenon (Abidin et al., 2015; Sajjadi et al., 2013). The 

collision between droplets occurs due to fluctuations of the turbulent velocity in the 

surrounding liquid and consequently induces a random motion to the liquid droplet. In this 

respect, the random movement of the liquid droplet is assumed to be analogous to the kinetic 

theory for collision between two gas molecules. All droplets in this mechanism are always 
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assumed to be within the inertial subrange of isotropic turbulence. The criteria for inertial 

subrange are as follows (Prince and Blanch, 1990; Luo, 1993): 

 

𝑘𝑒 ≪ 𝑘𝑏 ≪ 𝑘𝑑   ,                       𝑟𝑒 ≫ 𝑟𝑏 ≫ 𝑟𝑑                                                                                   (2.5) 

 

In expression (2.5) above, 𝑘𝑒 denotes the wave number of the large size (𝑟𝑒) energy 

containing eddies, 𝑘𝑏 represents the wave number related to the droplet size (𝑟𝑏), and 𝑘𝑑 and 

𝑟𝑑 are the wave number of eddies where viscous dissipation occurs. Apart from that, it also 

considers that very small eddies are having less energy to significantly affect the droplet 

motion and larger eddies in which bigger than the droplet size, transport the droplets without 

significantly affect the relative motion between droplets (Prince and Blanch, 1990). In terms 

of length scale, the largest length scale, 𝑟𝑒 is considered the radius of the physical system (i.e., 

pipe, impeller) and the smallest length scale, 𝑟𝑑 is the Kolmogorov microscale [i.e., 𝑟𝑑 =

(𝜈 𝜀⁄ )1 4⁄ ]. In this mechanism, the collision frequency is generally expressed as the effective 

volume swept by the moving droplet per unit time (Liao and Lucas, 2009): 

 

𝜔𝐶(𝑟′, 𝑟′′) = 𝐴𝑟,𝑟′(𝑢𝑡,𝑟
2 + 𝑢𝑡,𝑟′

2 )
1 2⁄

                                                                                               (2.6) 

 

Where, 𝐴 is the cross sectional of the colliding droplets and 𝑢𝑡 is the turbulent velocity. The 

cross-sectional area is given by (Prince and Blanch, 1990): 

 

𝐴𝑟,𝑟′ = 𝜋(𝑟′ + 𝑟′′)2                                                                                                                         (2.7) 
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While, to determine the turbulent velocity 𝑢𝑡 one must consider that the droplets are within 

the turbulent inertial subrange, hence it can be approximated by applying the classical 

turbulent theories (Luo, 1993): 

 

𝑢𝑡,𝑟
2 = 𝑘𝑐2

2 3⁄ (𝜀𝑟)2 3⁄                                                                                                                          (2.8) 

 

Substitute both equations (2.7) and (2.8) into (2.6), the collision frequency becomes (Luo, 

1993, Prince and Blanch, 1990, Coulaloglou and Tavlarides, 1977): 

 

𝜔𝐶(𝑟′, 𝑟′′) = 𝑘𝑐𝜋𝜀1 3⁄ 4√2
3

(𝑟′ + 𝑟′′)2 (𝑟′2 3⁄ + 𝑟′′2 3⁄
)
1 2⁄

                                                       (2.9) 

 

This expression has been employed by many researchers some of which are Hsia and 

Tavlarides (1980), Lee et al., (1987), Kamp et al., (2001), Colin et al., (2004), and Wang et 

al., (2005). In a study of drop coalescence by Prince and Blanch (1990), they also postulated 

that the eddy motion due to turbulent fluctuations is primarily responsible for the random 

motion between droplets. The model proposed is similar to the one by Coulaloglou and 

Tavlarides, (1977), however the main differences are they discounted the effect of local 

turbulent intensities at volume fraction (1 + 𝜙) and probability efficiency of complete mobile 

surfaces between droplets instead of immobile surfaces proposed by Coulaloglou and 

Tavlarides, (1977). 

 

2.4.1.2 Velocity gradient-induced collisions  

The mechanism of velocity gradient-induced collision is usually applied for gas-liquid 

system where the densities of bulk and droplet can be distinguished significantly. In this 

respect, the droplet movements are mainly dictated by their size and collisions are caused by 
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the relative sedimentation/creaming velocities between droplets. According to Pumir and 

Wilkinson, (2016) collision between droplets due to velocity gradient can be illustrated by 

two events: (i) from the gravitational effect in bubble column where larger bubble overtakes 

another bubble of small size, and (ii) shear flow effect where bubble (low-density phase) 

collides with bubble (high-density phase) as they are transported together. This is also agreed 

by Friedlander (1977) who explained that velocity gradient in laminar shear flow can 

contribute to collisions of droplets. They proposed a function to express the frequency of 

shear-induced collisions and can be applied in any case related to velocity gradient-induced 

collision (Liao and Lucas, 2009). Prince and Blanch, (1990) employed the function by 

Friedlander (1977) to describe the drop coalescence in the case of high gas rates in air-

sparged bubble columns. 

 

2.4.1.3 Droplet capture in an eddy 

The third mechanism that contributes to collision is droplet capture in turbulent 

eddies. In this respect, the droplet size and eddy size can significantly influence the collision 

frequency. In turbulent flow, the collision frequency is predominantly viscous or inertial 

depending on the size of the particles. Chesters (1991) explained that in turbulent flow, when 

a droplet has a smaller size compared to energy dissipation eddies, the collision frequency is 

predominantly viscous and the force governing the collision is inertial if the particles are 

larger than Kolmogorov scale. Hence, in this case the drop velocity will be directly 

influenced by the eddies. In terms of density difference, Kocamustafaogullari and Ishii (1995) 

elucidated that in a system where the density of the drop is similar to the density of the 

continuous phase, the droplet velocities will be approximately close to the velocity of the 

continuous phase. Therefore, the collision frequency will be described by local shear of flow 

in turbulent eddies similar to laminar shear flow as expressed below (Liao and Lucas, 2010):  
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𝜔𝐶(𝑟′, 𝑟′′) = 0.618(𝑟′ + 𝑟′′)3√𝜀 𝜈⁄                                                                                            (2.10) 

 

Where, √𝜀 𝜈⁄  is a rate of strain characteristic of flow in the smallest eddies (Chesters, 1991). 

In comparison to laminar shear flow, the term √𝜀 𝜈⁄  is often used referred as the turbulent 

shear rate. Under this circumstance, the collision mechanism is known as eddy-capture (Liao 

and Lucas, 2010). 

 

2.4.1.4 Buoyancy-induced collisions 

The buoyancy-induced collisions are similar to the explanation by Pumir and 

Wilkinson (2016) where the collisions are resulted by the gravitational effect or the 

difference in rise velocity of the droplets having different sizes (Prince and Blanch, 1990). 

Friedlander (1977) has expressed the general function to determine collision frequency from 

the buoyancy-induced collision mechanism which is similar in Eqn. (2.6) except the turbulent 

velocity is replaced by the rise velocity due to gravitational body forces (Liao and Lucas, 

2009). The rise velocity can be calculated from the Fan-Tcuchiya equation or Clift et al., 

(1978) as reported by Wang et al., (2005) and Prince and Blanch (1990). 

 

2.4.1.5 Wake entrainment 

The wake-induced collisions is produced by a liquid moving with uniform velocity 

under turbulent flow over the bubbles particularly during the free-rise of gas bubbles in 

vertical column. The wake entrainment collision is only important for gas-liquid systems with 

large fluid particles (Parente and De Wilde, 2018). During the event of free-rise of gas 

bubbles, the smaller fluid particles close to the wake can be accelerated, carried up and 

brought to collide with the leading fluid particles, thus generating the wake (Sun et al., 2004). 

According to Komosawa et al., (1980) the wake plays a significant role in promoting the 



 

45 

 

collisions between bubbles. Fu and Ishii, (2002) considered that coalescence due to wake 

entrainment as one of the five major bubble interactions. Karn et al., (2016) found that when 

bubbles are entrained into the wake region of a leading bubble, the smaller bubbles undergo 

acceleration in comparison to the larger bubbles and may collide with the preceding bubbles 

at higher speed than the velocity of the liquid. The same phenomenon was also encountered 

and explained before by Bilicky and Kestin (1987) in their study on transition criteria for air-

water system in vertical upward flow. By taking into account the frequency between a trailing 

bubble in the wake and its leading bubble, Kalkach-Navarro et al., (1994), suggested the 

following expression for collision frequency: 

 

𝜔𝐶(𝑟′, 𝑟′′) = 𝑘𝑐(𝑉
′ + 𝑉′′)(𝑉′1 3⁄ + 𝑉′′1 3⁄ )

2
                                                                             (2.11) 

 

Where, 𝑘𝑐 has the unit of rate per unit area (1/s.m2) and is to be determined experimentally. 

 

The classifications of mechanisms for collision frequency are illustrated in flow chart 

as shown in Figure 2.7. In general, there are various mechanisms that could contribute to 

particles collision. Hence, it is difficult to decide which mechanism plays the most significant 

role in certain collision cases (Liao and Lucas, 2010). However, if the particles size is within 

the inertial subrange of turbulence, the most important mechanism for collision will be the 

turbulent fluctuations (Liao and Lucas, 2010). This is due to the fact that, particles are 

exposed to random motion of eddies from all directions and most likely will result in 

collision between the particles. Due to this reason, turbulent fluctuation has been the 

preferred mechanism for drop formation and breakup as many research works are found to be 

based on this mechanism (shown in Fig. 2.7). Additionally, Table 2.3 depicts several of the 

proposed collision frequency models available in literature. It is observed that, majority of the 
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suggested coalescence models neglect the damping effects/factor (1 + 𝜙𝑑) on the local 

turbulent intensities at high dispersed fraction in a similar way to breakage model. The author 

believes that, the inclusion for the effect of high dispersed phase in local turbulent intensities 

is critical in both breakage and coalescence models because for dispersed fluid flowing at low 

viscosity, the size of the droplet increases with increasing dispersed phase fraction as a result 

of turbulence hindering (Maaß et al., 2012). From liquid-liquid dispersion study by 

Coulaloglou and Tavlarides (1977), it is found that, they are not successful in the first attempt 

to correlate the theoretical and experimental size distributions over the range of dispersed 

phase between 0.025 ≤ 𝜙 ≤ 0.15. However, the experimental data are correlated 

successfully when they accounted the damping effects (1 + 𝜙𝑑) at high dispersed fraction in 

turbulent flow field. 

 

 

Figure 2.7 Type of mechanisms for collision frequency 𝜔𝐶 models 
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2.4.2 Coalescence efficiency function, 𝝍𝑬(𝒓′, 𝒓′′)  

The model for coalescence efficiency or coalescence probability is introduced due to 

the fact that not all the droplets that collided coalesce and some fractions of the droplets are 

found to be separated after the collisions. In general, coalescence efficiency models are 

determined based on three major approaches namely energy model, critical velocity model, 

and film drainage model (Liao and Lucas, 2010; Solsvik and Jakobsen, 2014).  

 

2.4.2.1 The energy model 

The coalescence efficiency model based on energy approach was first introduced by 

Howarth in 1964 in his study on coalescence of droplets in a turbulent flow field. From the 

model proposed, it was found that, the efficiency of coalescence significantly increases with 

increasing energy of collision. Experimental evidence from Park and Blair, (1975) proved 

that   the coalescence is most likely to occur when the turbulence energy increased. To 

express this phenomenon, Sovova, (1981) introduced the coalescence efficiency model that 

incorporates with kinetic collision energy (𝐸𝑘) and surface energy (𝐸𝜎) as written below: 

 

𝜓𝐸(𝑑, 𝑑′) = 𝑒𝑥𝑝 (−𝑘𝑐

𝐸𝜎

𝐸𝑘
)                                                                                                           (2.12) 

 

From the expression in Eqn. (2.12) shows that the probability of coalescence (𝜓𝐸) from drop 

collision increases if the kinetic collision energy is greater than the surface energy holding the 

droplet together (i.e., 𝐸𝑘 > 𝐸𝜎). Simon, (2004) proposed coalescence efficiency model based 

on similar principles as Sovova, (1981) but using momentum balance expression to determine 

the kinetic energy during collision. Nevertheless, the model discounted the effect from the 

drainage and rupture of intervening film between droplets.  
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2.4.2.2 The critical velocity model 

On the other hand, the critical velocity model approach is developed based on the 

opposite principles to the energy model approach. In this respect, the coalescence of droplets 

is observed to favour gentle collisions instead of high velocity collisions as proposed in the 

energy model (Liao and Lucas, 2010).  In this model, the result of coalescence efficiency 

mainly relies upon the approach velocity of the colliding droplets. Lehr et al., (2002) 

proposed a simple expression to describe the coalescence efficiency in terms of critical 

approach velocity in bubble columns as follows: 

 

𝜓𝐸(𝑟, 𝑟′) = 𝑚𝑖𝑛 (
𝑢𝑐𝑟𝑖𝑡

𝑢𝑟𝑒𝑙
, 1)                                                                                                          (2.13) 

 

In Eqn. (2.13) above, the 𝑢𝑐𝑟𝑖𝑡 denotes the critical velocity and 𝑢𝑟𝑒𝑙 is the relative velocity 

between the droplets. This model is considered empirical owing to the fact that 𝑢𝑐𝑟𝑖𝑡 has to be 

determined experimentally. 

 

2.4.2.3 The film drainage model 

The film drainage model is the most accepted and widely used theory to determine the 

coalescence efficiency and has become the reference for all subsequent models (Liao and 

Lucas, 2010; Sajjadi et al., 2013). The film drainage model is developed based on two 

characteristic time scales known as contact time, 𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡 between colliding droplets and 

drainage time, 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 for the intervening film to reach the critical thickness and rupture. 

To achieve coalescence, the collided drops must remain in contact for sufficient time until the 

liquid film thins to its critical thickness. In short, the contact time must be longer than the 

drainage time (𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡 > 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒) for coalescence to occur as shown in Fig. 2.8 (Kamp et 
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al., 2017). Hence, through a constant force from the turbulence, the film will rupture and drop 

coalescence will occur.  

 

 

Figure 2.8 Coalescence efficiency events from the film drainage model  

 

It is understood that the model is primarily dependent on the droplet size and the turbulent 

energy. Hence, the larger size droplets will have greater contact areas and high turbulent 

energy will increase the probability of an eddy to separate two droplets in contact (Prince et 

al., 1989). Coulaloglou and Tavlarides, (1977) introduced an expression that encompasses the 

two characteristic time scales as follows: 

 

𝜓𝐸(𝑟, 𝑟′) = 𝑒𝑥𝑝 (−
𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒

𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡
)                                                                                                    (2.14) 

 

In this expression, an increase in contact time over drainage time will increase the probability 

of coalescence and vice versa. The film drainage model has been investigated extensively 
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with a large number of models proposed in the literature are established from this concept as 

shown in the flow chart of Fig. 2.9. However most of the models proposed are subjected to 

specific criteria (i.e., drop rigidity and mobility interfaces) and the main difference between 

these models are in the expression for the drainage time, 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 and contact time, 𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡.  

 

 

Figure 2.9 Type of coalescence efficiency models proposed in literature 

 

 

The drainage time 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 plays an important role in probability of successful 

coalescence. Hence it has been the subject to various investigations (Lee and Hodgson, 1968; 

Jeffreys and Davis, 1971; Lee et al., 1987; Coulaloglou and Tavlarides, 1977; Prince and 
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Blanch, 1990; Tsouris and Tavlarides, 1994; Luo, 1993; Chesters, 1991; Saboni et al., 1995; 

Simon, 2004; Lane et al., 2005). Most of the researchers agreed that in film drainage model 

the drainage time 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 depends on the rigidity of the droplet surfaces as well as mobility 

of the contact interfaces (Lee and Hodgson, 1968; Chesters, 1991; Liao and Lucas, 2010; 

Sajjadi et al., 2013; Abidin et al., 2015). Analytical solution for 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 exist is only for the 

case of non-deformable drops with immobile interfaces (Chesters, 1991). The contact time, 

𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡 is also important for the calculation of the coalescence time in a turbulent system. 

There have been numerous studies and models proposed for the contact time in literature 

(Schwartzber and Treybal, 1968; Chesters, 1991; Luo, 1993; Coulaloglou and Tavlarides, 

1977; Kamp et al., 2001; Tsouris and Tavlarides, 1994) and most of the models developed 

used the expression from Levich (1962) that are based on dimensional analysis. 

 

2.4.2.3.1 Rigidity of droplet surfaces: non-deformable 

The non-deformable droplets apply to the case where the droplets are far away from 

each other or the droplets are physically small in size for instance, the drop size diameter, 

𝑑 < 1.0 mm and the droplets have higher viscosity than the continuous phase (Simon, 2004, 

Liao; Lucas, 2010). In this respect, the droplets are assumed to be spherically rigid and non-

deformable. Chesters (1991) proposed a model to describe the drainage time, 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 under 

these circumstances for two equal-sized droplets with non-deformable surfaces via the 

Poiseuille relation. However, most researchers disagree with non-deformable surfaces theory 

due to the fact that the model only applies for very small droplets (𝑑 < 1.0 mm) wherein 

practically larger droplets also existed and should be considered during the collision (Simon, 

2004).  
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2.4.2.3.2 Rigidity of droplet surfaces: deformable 

Nearly all the film drainage models available in literature consider that the droplet 

surfaces are deformable. This is true considering the droplets in real conditions are present in 

the form of bigger and smaller sizes. Hence, deformable surfaces should be considered if one 

is investigating the coalescence efficiency based on the film drainage model. Kamp et al., 

(2017) explained that the collision between two droplets mostly occurs with deformable 

droplet surfaces as shown in Fig. 2.13 that subsequently resulted in coalescence. Liao and 

Lucas, (2010) argued that the complex film drainage with deformable surfaces depends on 

the mobility of the colliding interfaces. In this respect, the film drainage model can be 

divided into three regimes known as the deformable droplet with immobile, partially mobile, 

and fully mobile interfaces. These regimes are controlled by either inertial force dominate, or 

viscous force dominate in the draining film (Chesters, 1991). In the case where highly 

viscous dispersed phase is present in the liquid-liquid system, the drainage is mainly 

dominated by viscous force.  

The rigidity of the droplet surfaces can be classified into two categories namely, 

deformable and non-deformable surfaces as shown in Fig. 2.10. While the mobility of the 

contact interfaces is divided into three types such as immobile interfaces, partially mobile 

interfaces, and fully mobile interfaces as depicted in Fig. 2.11 from Simon (2004) and Sajjadi 

et al., (2013) and Fig. 2.12 from Lee and Hodgson, (1968). Analytical solution for 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 

exist only for the case of non-deformable drops with immobile interfaces (Chesters, 1991). 
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Figure 2.10 Rigidity of the droplet surfaces: (a) Non-deformable and (b) Deformable from 

Simon, (2004) and Chesters, (1991). 

 

 

(a)     (b)              (c) 

Figure 2.11 Mobility of the droplet interfaces: (a) Immobile interfaces, (b) Partially mobile 

interfaces, (c) Fully mobile interfaces, from Simon, (2004) and Sajjadi et al., (2013). 
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Figure 2.12 Mobility of the droplet interfaces at plane film (Lee and Hodgson, 1968): (a) 

Immobile interfaces, (b) Partially mobile interfaces, and (c) Fully mobile interfaces. The 

pressure distribution is shown at the top (a). 

 

On the other hand, if the continuous phase has a low viscosity (i.e., inviscid), the 

drainage is dominated by the inertial force where the film deformed due to acceleration and 

continuous movements at the interfaces. Apart from that, in the deformable surfaces of the 

droplets, Derjaguin and Kussakov (1939) found that there is a dimple on the surfaces which 

indicates the presence of pressure gradient across the surfaces of the deformable droplets as 

shown Fig. 2.11. In this respect, the film layer is not flat and needs to be converted to a 

curved shape in order to accommodate the pressure gradient. However, due to simplicity, 

most of the drainage models proposed in literature discounted the dimple but instead 

considered a parallel (flat) model such that the thickness layer of liquid film is smaller than 

the radius of the droplets (Kamp et al., 2017). From this assumption, several models have 

been proposed while taking into account the mobility of the droplet interfaces.  
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Figure 2.13 Deformable surfaces of droplets (Kamp et al., 2017) 

 

2.4.2.3.2.1 Interface mobility: deformable with immobile interfaces 

Droplets with immobile interfaces are generally applied to systems with a very 

viscous dispersed phase or systems with very specific surfactant soluble concentration in the 

continuous phase (Saboni et al., 1995; Liao and Lucas, 2010). In this respect, the deformable 

droplet with immobile interfaces (i.e., contact surfaces) is influenced by the viscous thinning 

or thinning rate of the film. The contact surfaces can be another droplet, a wall or the 

interface of the continuous fluid (Æther, 2002). According to Lee and Hodgson (1968), the 

immobile interfaces mean that there is a sufficiently large surface shear stress existing to 

oppose the viscous shear stress of the droplet or in other words, the droplet can support an 

infinite high shear stress (Æther, 2002). This occurs due to the presence of surfactant or 

impurities to immobilize the surface (Æther, 2002; Lee and Hodgson, 1968). The film at this 

condition will drain very slowly in comparison to the fully mobile case (Æther, 2002). The 

underlying theory for this model assumes that continuous flow in the liquid film is laminar 

and the inertial effects are negligible (Tsouris and Tavlarides, 1994). No slip at the surface 

and velocity profile as depicted in Fig. 2.11(a) indicates that the film is having maximum 

velocity at the centre and no velocity at the contact surfaces. Furthermore, the forces at the 

interfaces are assumed normal, hence, the Van der Waals, tangential, and double layer 

stresses are all negligible. The interaction between the film drainage and the movement 
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within the particles are separated. Colaloglou and Tavlarides, (1977) presented thorough 

synthesis of how coalescence occurs in liquid-liquid dispersion when the intervening liquid 

film drains to a critical thickness with deformable droplets at immobile interfaces.   

 

2.4.2.3.2.2 Interface mobility: deformable with partially mobile interfaces 

Droplets with partially mobile interfaces are generally applied to the system with 

intermediate viscosity, which is less than immobile case and greater than fully mobile case. It 

can also apply to a system where the impurities or the surfactants are swept away from the 

interfaces (Æther, 2002). In general, the drainage in liquid-liquid system is controlled by the 

motion of the film surface. Hence, if there is a presence of additional flow within the film due 

to prevailing pressure gradient being much smaller, the event is known as partially immobile 

interfaces (Chesters, 1991; Æther, 2002). Since film drainage model for drops with partially 

mobile interfaces is an intermediate case between immobile and fully mobile interfaces, 

partial mobility can be considered complicated case due to the fact that the drainage process 

is controlled by both inertia and viscous forces. Hydrodynamic force, 𝐹𝑦 and compressing 

force, 𝐹𝑐 are introduced to describe the interaction forces at the contact surfaces between the 

two droplets in terms of resisting (𝐹𝑦) and attracting (𝐹𝑐) forces. Both forces are assumed to 

occur during the film drainage and play an important role to develop the expression for the 

drainage time in terms of deformable drops with partially mobile interfaces and fully mobile 

interfaces. Davis et al., (1989) approximated the interaction forces, 𝐹𝑦 and 𝐹𝑐 to determine the 

drainage time, 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 for drop with partially mobile interface and later employed by 

Tsouris and Tavlarides, (1994). On the other hand, Chesters (1991) also proposed the film 

drainage model for drops with partially mobile interfaces by assuming a quasi-steady 

creeping flow and Lee et al., (1987) employed the model from Sagert and Quinn (1976) to 

express the model for drops with partially mobile case. 
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2.4.2.3.2.3 Interface mobility: deformable with fully mobile interfaces 

Deformable droplet with fully mobile interfaces is the case where the dispersed phase 

having a very low viscosity (i.e., inviscid). In this respect, the drainage is no longer controlled 

by the viscous stress as in partial mobility and immobile interfaces but instead by the 

resistance occurred in the film due to deformation and acceleration (Chesters, 1991). 

Therefore, the inertial forces are controlling the process of film drainage. As shown in Fig. 

2.12 (c), the fully mobile has the uniform velocity profile which indicates that the film will 

drain fast at this condition compared to immobile case (Æther, 2002). In general, Chesters, 

(1991) and Chan et al., (2011) defined the deformable drops with fully mobile interfaces as a 

shear-stress free case or when the surface could not withstand the shear stress and move with 

the flow (Æther, 2002). In this respect, the system is either pure fluids (i.e., no impurities or 

surfactants) or the surfactant and impurities are swept away from the interface from the 

partial mobility. On the other hand, Davis et al., (1989) described the process to be influenced 

by the viscous force and approximated the resisting hydrodynamic force for fully mobile 

interfaces in terms of dispersed phase viscosity. Luo, (1993) proposed the film drainage 

model from the inertia-controlled limit for the case involving gas bubbles in turbulent flow. 

Chesters, (1991) proposed the drainage model by using the parallel-film model approach and 

taking into account the both terms which is viscous and inertial stresses. Lee et al., (1987) 

proposed the model for a system having a pure inviscid dispersed phase liquid (𝜇 < 10mPa.s) 

and Prince and Blanch, (1990) suggested the improved model from Oolman and Blanch, 

(1986) by discounting the Hamaker contribution due to the small influence on overall 

coalescence time. Several numbers of coalescence efficiency models proposed in the 

literature which are based on the three discussed mechanism are depicted in Table 2.4.  
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2.5 Energy dissipation rate 

The turbulence kinetic energy dissipation rate, 𝜀 is an important property in turbulent 

flow at high Reynolds number as it controls the drop breakup, heat transfer and mass transfer 

(Wang et al, 2020). The rate of the dissipation is associated with the turbulent eddies in the 

fluid flow or in brief, the strength of turbulence. Ideally, the dissipation rate, 𝜀 indicates the 

rate at which the turbulence energy is absorbed, redistributed and transferred in the 

fluctuating flow by breaking the eddies into smaller scales in cascade process driven by 

vortex. In general, there are three different regions or energy flow of the turbulent energy 

cascade. The length scale of the largest eddy is referred to the region of energy-containing 

range. Instead, the smallest scale at which the eddies are dissipated by the viscous force and 

converted into heat is denoted as to the region of dissipation range (viscous effect is 

dominant). If the viscous effects are negligible, the eddies are suggested to be in inertial 

subrange. There are various energy dissipation rates have been proposed in the literature 

based on different turbulent conditions as depicted in Table 2.5.(Azizi and Taweel, 2011; 

Raikar et al., 2009; Galinat et al., 2005; Jakobsen, 2014; Hesketh et al., 1991).  

 

Table 2.5 Turbulent dissipation rate, 𝜀 from literature 

Author Energy dissipation rate, 𝜺 Descriptions 

Galinat et al. (2005) 
𝜀 =

1

𝜌𝑐

∆𝑃𝑚𝑎𝑥𝑈

2𝐷
(

1

𝛽2
− 1) 

Where, 𝛽 =
𝐷𝑜

𝐷
 

The model is developed 

based on the relation between 

dissipation rate and 

maximum pressure drop 

across the orifice 

∆𝑃𝑚𝑎𝑥 (pipe flow with 

restriction) as well as the 

orifice-pipe ratio, 𝛽. 

Azizi and Taweel (2011) 
𝜀 =

𝑈∆𝑃

𝜌𝑐𝐿𝑀
 

The rate of energy 
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dissipation proposed from the 

pressure drop, ∆𝑃 in the 

static mixer. 

Hesketh et al. (1991) 
𝜀 =

2𝑣𝑐
3𝑓

𝐷
 

Where 𝑓 is from the Blasius 

relation friction factor. 

The energy dissipation rate is 

calculated based on the 

widely used empirical 

relationship in turbulent pipe 

flow. The friction factor, 𝑓 is 

used for pressure drop in the 

system.  

Raikar et al. (2009) 
𝜀 =

𝑐𝑃3 2⁄

𝑉1 3⁄ 𝜌𝑑
−3 2⁄

 

Where 𝑃 is the 

homogenization pressure and 

 𝑐 is constant. 

The estimate is modified 

from Coulaloglou and 

Tavlarides (1977) for 

emulsion in high pressure 

homogeneizer. 

Flórez-orrego et al. (2012) 
𝜀 = 0.0176

𝑈3𝑅𝑒
−3 8⁄

𝐷
 

The energy dissipation rate is 

proposed from 𝜅 − 𝜀  model. 

The turbulence assumed to 

be generated from the bulk. 

 

Jacobi, (2014) modified the estimate of the energy dissipation rate, 𝜀, based on the 

relationship between Reynolds number equation and friction factor, 𝑓 in the global specific 

energy dissipation rate as follows: 

 

𝜀 ≈
2𝑣𝑙

3𝑓

𝐷
≈

2𝑅𝑒3𝜈4𝑓

𝐷4
≈ 0.16𝑅𝑒2.75 (

𝜈3

𝐷4
)                                                                               (2.15) 

 

Where 𝑓 in equation 2.15 is fanning friction factor. The relation for the turbulent dissipation 

energy is based on the wall friction as the primary source of turbulence production and is the 

extended version from Hesketh et al. (1991). The turbulent dissipation energy can also be 
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derived from the 𝜅 − 𝜀  model as suggested by Flórez-orrego et al. (2012). However, this 

estimate is only valid in the bulk as there are hardly any production of turbulence in the bulk, 

thus the 𝜅 − 𝜀  model length scale gives very minimum turbulence. Nevertheless, estimation 

of turbulent dissipation rate in turbulent multiphase flows is still limited (Wang et al., 2020). 

In the following section, an overview of the available and popular approaches for PBE 

solution are elucidated.  

 

2.6 Solution to population balance equation (PBE) 

This section offers an insight into several challenges as well as approaches employed 

by other researchers in the literature as an effort to solve the complex PBE. For a liquid-

liquid flow in pipes, the droplet size distribution can affect significantly the rheological 

behaviour and the pressure gradient of the fluids (Arirachakaran et al., 1989). Hence, a good 

model that could accurately predict the drop size distribution in liquid-liquid emulsion is 

crucial, particularly in processes related to separation application (Schümann, 2016). 

Population balance equations (PBE) can be used to model and describe the complex case of 

dynamic evolution of drop size distribution in pipe flow. The PBE are also represent the 

transport equation for number density function of the droplets (Nguyen et al., 2016). In 

general, to solve the PBE, one must discretize the particle volume domain into a number of 

discrete elements. The resulting solutions will be in the form of stiff, nonlinear differential 

and/or algebraic equations that are subsequently integrated numerically (Alexopoulos et al., 

2004). It is of interest to mention here that, there are many challenges involved in solving 

PBE such as numerical complications, large number of equations involved, modeling 

accuracy, computational efficiency, growth rate of the droplet due to breakage and 

coalescence, inconsistency of droplet distribution in terms of size and time, as well as the 

mechanism attributed to the drop size evolution (Rehman and Qamar, 2014; Pinar et al., 
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2015; Korovessi and Linninger, 2005; Gunawan et al., 2004). According to Mesbah et al., 

(2009), the numerical solutions of PBE can be complicated due to the occurrence of sharp 

discontinuities and steep moving fronts that result from convective nature of partial 

differential equations as well as initial and boundary conditions incompatibility.  

In recent years, there have been numerous methods proposed in literature to solve the 

PBE (Kumar et al., 2008; Omar and Rohani, 2017). These include finite volume methods, 

finite element methods, finite difference method, method of characteristics, moments method, 

least-squares method, and Monte-Carlo method (see details in the review article by Vikas et 

al., 2013; Kumar et al., 2008; Mesbah et al., 2009; Omar and Rohani, 2017; Solsvik et al., 

2013). The finite volume method was originally established for gas dynamics and presently it 

has been adopted to solve the PBE (Qamar and Wernecke, 2007). It includes the 

discretization of the spatial domain and uses piecewise functions to approximate the 

derivatives (Mesbah et al., 2009). The resulting ordinary differential equations (ODE) will be 

integrated over time (see details in Vikas et al., 2013; Gunawan et al., 2004; Qamar and 

Wernecke, 2007). The finite element method involves the conversion from partial differential 

equations (PDE) into algebraic equations for steady state and ODE for dynamic state (Omar 

and Rohani, 2017). The final result in the form of stiff nonlinear differential equations is 

integrated over time (see details in Alexopoulos et al., 2004; Rigopoulos and Jones, 2003). 

However, this method may experience numerical complications due to the incompatibility 

between the initial condition and boundary condition that cause moving discontinuity in 

numerical solutions (Mesbah et al., 2009). In finite difference method, the differential 

equations in PBE are approximated by difference equations in which implicit, explicit, and 

Crank-Nicolson schemes are commonly used (Omar and Rohani, 2017). According to John 

and Suciu (2014), the finite difference method will lead to nonphysical oscillations and 
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accuracy may have to compromise with computational cost (see details in Bennet and 

Rohani, 2001; John and Suciu, 2014). 

Kumar and Ramkrishna (1997) proposed method of characteristic to enhance the 

solution accuracy of the discretized PBE. In this method, the PDE are transformed into ODE 

by finding curves in the internal coordinate and time planes (i.e., 𝐿-𝑡 plane) resulting in 

significant improvement of solution accuracy (Gunawan et al., 2004; Mesbah et al., 2009). 

However, there are limitations involve of using this method in terms of long calculation times 

for complex case and practical system, time-step selections, and obligated scalar modelling 

(Lim et al., 2002) – see details in Lim et al., (2002) and Kumar and Ramkrishna (1997). 

Hulburt and Katz (1964) are among the first who introduced the method of moments and the 

main focus is to convert the PDE into ODE using a moment transformation. In this respect 

the PBE are converted into moment equations of the number density (Omar and Rohani, 

2017). There are various other subsequent models developed based on this method for 

instance, quadrature method of moments, direct quadrature method of moments, sectional 

quadrature method of moments, and extended quadrature method of moments (see details in 

McGraw, 1997; Marchisio and Fox, 2005; Attarakih et al., 2009; Yuan et al., 2012; Akinola 

et al., 2013). However, for complex systems the moment closure conditions are violated, 

applicable to limited number of problems and no available information about the shape of the 

distribution (Dorao and Jakobsen, 2006a; Gunawan et al., 2004; Omar and Rohani, 2017). 

Another way of solving the PBE is by employing the least-squares method. The fundamental 

idea of least-squares method is to minimize the integral of the square of the residual over the 

computational domain (Dorao and Jakobsen, 2006a; 2006b). In this respect, the minimization 

is performed for the norm-equivalent functional (see details in Solsvik et al., 2013; Dorao and 

Jakobsen, 2006b; Zhu et al., 2008). 
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The least-square method is a well-established technique for solving various 

mathematical problems and details of this method are discussed by Jiang (1998) and Bochev 

and Gunzburger, (2009). However, in a system with high non-linearity and large scale, an 

error occurred in the properties of the distribution and the method becomes unstable (Omar 

and Rohani, 2017; Zhu et al., 2008). To address these issues, Zhu et al., (2008) introduced 

least-squares method with direct minimization method. Still, the method does not always 

produce a symmetric and positive-definite system (Omar and Rohani, 2017). Monte-Carlo 

method solves the PBE by generating a set of solutions from randomly generated numbers in 

the mathematical system (Omar and Rohani, 2017). To increase the accuracy of the system, a 

greater number of randomly generated input trials is needed, and many individual droplets 

must be tracked. In this regard, the method becomes computationally expensive (Nguyen et 

al., 2016; Kumar et al., 2008; Gunawan et al., 2004). Monte-Carlo method is suitable for a 

multi-dimensional and stochastic PBE particularly in a complex system (Kumar et al., 2008; 

Ramkrishna, 1985).  Although a plethora of studies have been conducted on numerical 

solutions for PBE, robust solutions are still needed because more advanced control and 

optimization strategies can be developed (Omar and Rohani, 2017).  

 

2.7 Chapter summary 

In this chapter the introduction and the importance of PBE in modeling the liquid-liquid 

drops evolution is elucidated. In addition, the sub-processes for the population balance 

equations in terms of breakage and coalescence models are also reviewed and discussed. The 

underlying mechanisms for breakage frequency, daughter size distributions, coalescence 

frequency, and coalescence efficiency are also reviewed. Details of method employed are 

discussed in the following section. 
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CHAPTER 3 

 

3 MODELING AND SIMULATION SETUP  

 

3.1 Physical descriptions of the model 

In turbulent dispersion of liquid-liquid systems, the fluid dynamics and the processes 

involving particularly breakage and coalescence are complex. The simplist model for the 

dynamic evolution of the drop density distribution of a liquid-liquid dispersion in turbulent 

pipe flow system should assume isotropic turbulence with a uniform (plug) velocity, 𝑈 as 

shown in Fig. 3.1 across pipe diameter, 𝐷 and length, 𝐿. This is a reasonable assumption 

considering that the fine-scale structure in most of non-isotropic turbulent flows is found to 

be locally close to isotropic (Hinze, 1959). Furthermore, isotropic turbulence assumption has 

often been used for liquid-liquid dispersion studies (Coulaloglou and Tavlarides, 1977; 

Tsouris and Tavlarides, 1994; Azizi and Tawell, 2011).  

 

 

Figure 3.1 Sketch of turbulent flow field of a moving fluid in a pipe of length 𝐿, diameter 𝐷, 

and moving with an average velocity (plug flow), 𝑈 
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Due to the plug flow assumption any variance of the droplet sizes along the radial direction as 

well as angular direction of the pipe is neglected. The model considers that the birth and 

death processes of drops are due to breakage and coalescence. While, the distribution will be 

a function of time, axial position, 𝑧 and drop radius, 𝑟 (i.e., internal coordinate of 𝑟).  

In addition, to minimize the complexity as well as to simplify the models, other 

assumptions and certain simplifications are necessary. In this regard, the model considers 

that, the droplets are spherical in shape and the droplet size is within the inertial subrange 

eddies 𝑟𝑒 ≥ 2𝑟 ≥  𝑟𝑑 (i.e.,  𝑟𝑒 is the integral length scale for large eddies and  𝑟𝑑 is the 

Kolmogorov scale for small eddies). In this case, the viscous effect is negligible, and 

deformation of drops occurs primarily from turbulent fluctuations. Binary breakage is also 

assumed to take place in the system. With respect to these model assumptions, experimental 

evidence has also shown that binary breakage as depicted in Fig. 3.2 is most likely to occur in 

turbulent pipe flows (Hesketh et al., 1991).  

 

Figure 3.2 Binary breakage as a result of turbulent eddies 

 

3.2 Initial conditions and population balance equation (PBE) 

The number density distribution, 𝑓𝑛(𝑟, 𝑧) as a function of drop radius 𝑟 (internal 

coordinate) and axial position 𝑧 of the pipe (external coordinate) is used to represent the 

number distribution of droplets per unit volume (m3) per unit drop size (m) in the system. 

From the definition of droplet number density distribution, 𝑓𝑛(𝑟, 𝑧) described above, the local 
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total number density function, 𝑁𝑑(𝑧) and the local volume fraction, 𝜙(𝑧), of the dispersed 

phase at a particular position of  𝑧 coordinate can be written as follows, respectively: 

 

𝑁𝑑(𝑧) =  ∫ 𝑓𝑛

∞

0

(𝑟′, 𝑧)𝑑𝑟′                                                                                                                 (3.1) 

 

𝜙(𝑧) =  ∫ (
4𝜋

3
𝑟′3) 𝑓𝑛(𝑟′, 𝑧)𝑑𝑟′

∞

0

                                                                                                 (3.2) 

 

In Eqn. (3.2) above, 𝜙(𝑧) remains constant across the length of the pipeline since no drop 

volume is gained or lost from coalescence or breakage and the volume is conserved. It is 

worth noting that, using the drop volume, 𝑣, the number density distribution 𝑓𝑛 can be 

converted to the volume density distribution, 𝑓𝑣, as follows: 

 

𝑓𝑣(𝑟, 𝑧) = 𝑣𝑓𝑛(𝑟, 𝑧) =   (
4𝜋

3
𝑟3)𝑓𝑛(𝑟, 𝑧)                                                                                       (3.3) 

 

Apart from that, by taking into account the process of birth and death by breakage and 

coalescence on the overall droplet growth processes, PBE for locally isotropic turbulent field 

can be written as follows:  

 

𝜕𝑓𝑛
𝜕𝑡

= 𝑅𝐶𝑏
(𝑟, 𝑡) − 𝑅𝐶𝑑

(𝑟, 𝑡) + 𝑅𝐵𝑏
(𝑟, 𝑡) − 𝑅𝐵𝑑

(𝑟, 𝑡)                                                                  (3.4) 

 

By assuming isotropic turbulence with a uniform (plug) velocity, 𝑈 in pipe flow. The 

expression in Eqn. (3.4) can be converted to rate of change of concentration of drops of 

radius 𝑟 with axial position, 𝑧 as follows: 
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𝑈
𝜕𝑓𝑛
𝜕𝑧

= 𝑅𝐶𝑏
(𝑟, 𝑧) − 𝑅𝐶𝑑

(𝑟, 𝑧) + 𝑅𝐵𝑏
(𝑟, 𝑧) − 𝑅𝐵𝑑

(𝑟, 𝑧)     𝑓𝑜𝑟 0 ≤ 𝑧 ≤ 𝐿 , 0 ≤ 𝑟 ≤ ∞     (3.5) 

 

In the Eqn. (3.5), 𝑅𝐶𝑏  and 𝑅𝐶𝑑
 denote the birth and death rates of a droplet with radius 𝑟 due 

to coalescence. While, 𝑅𝐵𝑏  and 𝑅𝐵𝑑
 both represent the birth and death rates with radius 𝑟 due 

to breakage, respectively.  

 

The inlet (𝑧 = 0) number density function is, 𝑓𝑛0
 and is given as: 

 

0 ≤ 𝑧 ≤ 𝐿  ,  0 ≤ 𝑟 ≤ ∞ , and  𝑓𝑛(𝑟, 𝑧 = 0) = 𝑓𝑛0
(𝑟, 𝑧 = 0)                                                   

 

3.3 Coalescence birth and death functions 

As volume is conserved in the coalescence process, the volumes of the parent droplets 

(i.e., volume of the colliding particles) must equal to the volume of droplet formed. In this 

respect, the radius, 𝑟′′, of the second parent droplet is constrained by the radius, 𝑟, of the 

droplet formed and the radius, 𝑟′, of the first parent droplet. The relationship between the 

merger of primary parent droplet which is having radius of  𝑟′ with a secondary parent 

droplet of  𝑟′′ and the formation of new droplet, 𝑟 can be expressed as follows:  

 

𝑟′′ = (𝑟3 − 𝑟′3)1 3⁄                                                                                                                              (3.6) 

Therefore, based on these definitions and relationships, the coalescence birth rate as a 

function of drop radius, 𝑟 and axial position, 𝑧 is then given by: 

 

𝑅𝐶𝑏
(𝑟, 𝑧) =  ∫ 𝑟𝑐(𝑟

′, 𝑟′′)𝑓𝑛(𝑟′, 𝑧)𝑓𝑛(𝑟′′, 𝑧)
𝑟2

𝑟′′2
𝑑𝑟′ 

𝑟 √2
3⁄

0

                                                          (3.7) 
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In the above equation (i.e., Eqn. 3.7),  𝑟𝑐  represents the volume rate of coalescence and is the 

product between the collision frequency, 𝜔𝑐(𝑟
′, 𝑟′′ ) and the coalescence efficiency, 

𝜓𝑒(𝑟
′, 𝑟′′ ) for drops having sizes of 𝑟′ and 𝑟′′. These two functions physically mean that two 

droplets will coalesce when they are in collision. Therefore, the volume rate of coalescence 𝑟𝑐 

can be written as follows: 

 

 𝑟𝑐(𝑟
′, 𝑟′′ ) = 𝜔𝑐(𝑟

′, 𝑟′′ )𝜓𝑒(𝑟
′, 𝑟′′ )                                                                                               (3.8) 

 

By taking into consideration the volume conservation in coalescence process, the parent 

droplets lost (death) from the birth of droplets by coalescence must be accounted for. 

Therefore, the death rate function from coalescence of parent droplets having radius 𝑟 is 

given by:   

 

𝑅𝐶𝑑
(𝑟, 𝑧) =  𝑓𝑛(r, z)∫ 𝑟𝑐(𝑟, 𝑟

′)𝑓𝑛(𝑟′, 𝑧)
∞

0

𝑑𝑟′                                                                               (3.9) 

 

Both Eqns. (3.7) and (3.9) are valid under conditions of, 0 ≤ 𝑧 ≤ 𝐿  , 0 ≤ 𝑟 ≤ ∞. 

 

3.4 Breakage birth and death functions 

The death rate of a droplet having radius 𝑟 due to breakage can be determined by the 

product of the breakage frequency, 𝑔(𝑟) and number density function, 𝑓𝑛(𝑟, 𝑧) as follows:  

 

𝑅𝐵𝑑
(𝑟, 𝑧) =  𝑔(𝑟)𝑓𝑛(𝑟, 𝑧)                                                                                                               (3.10)  
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On the other hand, the breakage birth integral takes into account the birth of daughter droplets 

having radius, 𝑟 that formed during the death of a parent droplet with radius, 𝑟′. The birth of 

droplets due to breakage can be determined by integrating over the interval of drop sizes, 

𝑟(𝑟 ≤ 𝑟′ ≤ ∞). Therefore, for binary breakage, the breakage birth integral can be expressed 

as follows: 

 

𝑅𝐵𝑏
(𝑟, 𝑧) = ∫ 2𝛽(𝑟, 𝑟′)𝑔(𝑟′)𝑓𝑛(𝑟′, 𝑧)

∞

𝑟

𝑑𝑟′                                                                               (3.11) 

 

Both Eqns. (3.10) and (3.11) are valid for the following domains: 0 ≤ 𝑧 ≤ 𝐿  , 0 ≤ 𝑟 ≤ ∞. 

 

In Eqn. (3.10), 𝛽(𝑟, 𝑟′) is a daughter size distribution. The 𝛽(𝑟, 𝑟′) term is introduced to 

characterize the probability of a drop with size 𝑟′ to form a drop with size 𝑟 during breakage. 

The model assumed binary breakage which indicates that at least two drops are formed 

during breakage process. In this respect, the number of drops formed is represented by the 

coefficient 2 in the breakage integral.  

 

3.5 Collision frequency function, 𝝎𝑪 

Collison is essential for droplets to coalesce and merge in a multiphase flow system due to 

turbulent fluctuations. In this present study, turbulent-induced collision is selected due to its 

suitability as the collision frequency mechanism for the liquid-liquid system, while buoyancy 

and velocity gradient mechanisms are only applicable for gas-liquid system. For this study, 

the first collision frequency model by Coulaloglou and Tavlarides (1977) without the 

damping effects (1+ϕ) at high volume fraction is employed. The model is later compared with 

the addition of correction factor to observe the droplet growth (see discussion in Chapter 4). 

This coalescence frequency function will be utilized for the model comparison study 
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discussed in Chapter 4 of this thesis. The final expression for collision frequency function is 

given by: 

 

𝜔𝑐(𝑟
′, 𝑟′′ ) =  4√2 

3
𝑘𝜔𝜀1 3⁄ (𝑟′ + 𝑟′′)2(𝑟′2 3⁄ + 𝑟′′2 3⁄ )

1 2⁄
                                                       (3.12) 

 

Where 𝑘𝜔 in Eqn. (3.12) above is a proportionality constant (or fitting parameter in the 

model) and 𝜀 is the energy dissipation rate per unit mass. The energy dissipation rate, 𝜀 in this 

work is employed from Jakobsen, (2014). The equation is recently developed by considering 

that wall shear from the pipe is the main source of turbulence production. Hence, the energy 

dissipation rate can be expressed as follows: 

 

𝜀 ≈ 0.16𝑅𝑒𝑚
2.75 (

𝜇𝑚
3

𝜌𝑚
3𝐷4

)                                                                                                              (3.13) 

 

In the Eqn. (3.13) above, 𝑅𝑒𝑚 denotes the mixture Reynolds number and can be estimated as 

follows: 

 

𝑅𝑒𝑚 =
𝜌𝑚𝑈𝐷

𝜇𝑚
                                                                                                                                  (3.14) 

 

In Eqn. (3.14), 𝜇𝑚 is the mixture viscosity, 𝜌𝑚 represents the mixture density, 𝑈 is the 

average flow velocity. The mixture estimations for viscosity and density are calculated based 

on suggestions by Schümann, (2016) for liquid-liquid mixture in pipe flow. For density 

mixture, the equation can be written as follows: 

 

𝜌𝑚 = 𝜙𝑤𝜌𝑤 + 𝜙𝑜𝜌𝑜                                                                                                                        (3.15) 
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In Eqn. (3.15) above, the 𝜙𝑤 and 𝜙𝑜 indicate the phase fractions of oil and water, 

respectively. Where, 𝜌𝑤 and 𝜌𝑜 denote the density of water and oil, respectively. Schümann, 

(2016) proposed the widely used equation by Pal and Rhodes (1989) to estimate the mixture 

viscosity in liquid-liquid system as follows: 

 

𝜇𝑚 = 𝜇𝑐 [1 +
0.8415𝜙/𝜙𝜇𝑟=100

1 − 0.8415𝜙/𝜙𝜇𝑟=100
]

2.5

                                                                                   (3.16) 

 

In Eqn. (3.16), 𝜇𝑐 indicates the viscosity of the continuous phase, 𝜙 is the dispersed phase 

fraction, and 𝜙𝜇𝑟=100 is a constant factor of the dispersed phase fraction. The value for 

𝜙𝜇𝑟=100 is estimated when the mixture viscosity exceeds hundred times that of continuous 

phase. Schümann, (2016) used the value 𝜙𝜇𝑟=100 = 0.765 proposed by Søntvedt and Valle 

(1994) for the liquid-liquid system as reported in Elseth (2001). From the author’s best 

knowledge there are limited studies that focused on utilizing the mixture Reynolds number in 

estimating the rate of dissipation energy, 𝜀. It is crucial to use the mixture Reynolds number 

𝑅𝑒𝑚 in liquid-liquid dispersed flow to avoid overestimate of the energy dissipation rate, 𝜀. 

 

3.6 Coalescence efficiency function, 𝝍𝑬 

The colliding droplets may not coalesce and repulse when they are in contact. Hence, 

the expression for coalescence efficiency is introduced to describe the effectiveness of 

coalescence from the result of collision between droplets. In this present work, film drainage 

model together with energy model are assessed and evaluated for better insight and 

understanding of the model. The critical approach velocity model is not selected in this study 

due to the fact that 𝑢𝑐𝑟𝑖𝑡 term in the model has to be determined experimentally (empirical 
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model) and the model is developed for bubble coalescence (i.e., gas phase) (Lehr et al., 

2002), which is not applicable to the present study. For the main model, film drainage is 

selected, and energy model is employed as a model comparison (see chapter 4 in results and 

discussions as well as Part III of the manuscript prepared in the attachments – Appendix D). 

The efficiency function developed by Chesters (1991) is selected for this work. The model is 

based on film drainage between colliding dispersed phase entities of two deformable droplets 

of radius 𝑟ˊand 𝑟ˊˊ. The coalescence efficiency can be expressed as follows: 

 

𝜓𝐸(𝑟′, 𝑟′′) = exp [−𝑘𝜓

𝜌𝑐
1 2⁄

𝜀1 3⁄ 𝑟𝑒𝑞
5 6⁄

21 6⁄ 𝜎1 2⁄
]         𝑤ℎ𝑒𝑟𝑒, 𝑟𝑒𝑞 =

1

2
(

𝑟′𝑟′′

𝑟′ + 𝑟′′
)                               (3.17) 

 

Where 𝑘𝜓 in the Eqn. (3.17) is a universal constant that takes in the value of initial film 

thickness and the film thickness at which film rupture occurs and carries no unit. Apart from 

efficiency model by Chesters (1991), the film drainage model by Coulaloglou and Tavlarides 

(1977) as well as energy model by Simon, (2004) are also assessed and evaluated in the 

model comparisons discussed in Chapter 4 (results and discussions) of this thesis. The 

comprehensive study on regression and model comparison can also be found in the Part III of 

the manuscript prepared – refer to Appendix D.  

 

3.7 Breakage frequency functions, 𝒈(𝒓)  

Breakage frequency functions 𝑔(𝑟) are derived based on the interactions between the 

turbulent eddies and the droplets due to turbulent fluctuations. Vankova et al., (2007) 

modified the model by Coulaloglou and Tavlarides (1977) to consider the effect of densities 

from dispersed and continuous phases. In this present work, the model proposed by Vankova 

et al., (2007) is selected and the expression takes the following form: 
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𝑔(𝑟) =  𝑘𝑔1

𝜀1 3⁄

22 3⁄ 𝑟2 3⁄ √
𝜌𝑐

𝜌𝑑
𝑒𝑥𝑝 [−𝑘𝑔2

𝜎

𝜌𝑑25 3⁄  𝑟5 3⁄ 𝜀2 3⁄
]                                                         (3.18) 

 

Eqn. (3.18) above involves the system properties such as dispersed phase volume fraction 

(𝜙), interfacial tension (𝜎), dispersed and continuous phase densities (𝜌𝑑) and (𝜌𝑐), energy 

dissipation rate (𝜀) and proportionality constants (𝑘𝑔1
 and 𝑘𝑔2

). In this study, the model by 

Vankova et al., (2007) and Coulaloglou and Tavlarides (1977) are selected for model 

comparison and are discussed in Chapter 4 of this thesis. 

 

3.8 Breakage size distribution function (daughter size distribution), 𝛃(𝒓, 𝒓′) 

The expression for breakage size distribution is a relationship between the number of 

new (daughter) droplets as a function of 𝑟 formed to the number of initial (parent) droplets as 

a function of 𝑟′ that rupture. In this present study, the binary breakage event with equal sized 

droplets by Coulaloglou and Tavlarides (1977) is employed. The daughter size distribution is 

given as follows: 

 

β(𝑟, 𝑟′) =  
2.4

𝑟′3
exp [−4.5 

(2𝑟3 − 𝑟′3)2

𝑟′6
] × 3𝑟2                                                                       (3.19) 

 

Apart from the normal distribution model proposed by Coulaloglou and Tavlarides (1977), 

the more complex beta distribution by Hsia and Tavlarides, (1980) is also assessed in the 

model comparison discussed in the Chapter 4 of this thesis. Manuscript Part III (Appendix D) 

prepared for the model comparisons provide more comprehensive discussions.   
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3.9 The mean radii and standard deviations of number and volume density distributions 

The mean drops radii of the dynamic evolution of drop number and volume density 

distributions, 𝜇𝑁 and 𝜇𝑉 can be formulated by normalizing the number and volume density 

distributions to the first statistical moments. Hence, the mean radii 𝜇𝑁 and 𝜇𝑉 can be 

expressed as follows, respectively: 

 

𝜇𝑁(𝑧) =  
1

𝑁𝑑(𝑧)
   ∫ 𝑟′𝑓𝑛(𝑟′, 𝑧) 𝑑𝑟′

∞

0

                                                                                           (3.20) 

 

𝜇𝑉(𝑧) =
1

𝜙(𝑧)
∫ 𝑟′ (

4𝜋

3
𝑟′3) 𝑓𝑛(𝑟′, 𝑧)

∞

0

𝑑𝑟′                                                                                (3.21) 

 

The following are the expressions for standard deviation of the number and volume density 

distributions, 𝜎𝑁 and 𝜎𝑉. The standard deviations are determined by normalizing the 𝑓𝑛 and 𝑓𝑣 

to the second statistical moments about the mean. The standard deviations of 𝜎𝑁 and 𝜎𝑉 are 

given by: 

  

𝜎𝑁(𝑧) =  √
1

𝑁𝑑(𝑧)
∫ (𝑟′ − 𝜇𝑁(𝑧))

2
𝑓𝑛(𝑟′, 𝑧) 𝑑𝑟′

∞

0

                                                                    (3.22) 

 

𝜎𝑉(𝑧) =  √
1

𝜙(𝑧)
∫ (𝑟′ − 𝜇𝑉(𝑧))

2
(
4𝜋

3
𝑟′3) 𝑓𝑛(𝑟′, 𝑧) 𝑑𝑟′

∞

0

                                                     (3.23) 

 

3.10 Population balance equations for turbulent flow of oil and water in pipes 

In this present work, the population balance equation (PBE) can be written as follows: 
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𝑈
𝜕𝑓𝑛(𝑟, 𝑧)

𝜕𝑧
= ∫ 𝑟𝑐(𝑟

′, 𝑟′′)𝑓𝑛(𝑟′, 𝑧)𝑓𝑛(𝑟′′, 𝑧)
𝑟2

𝑟′′2
𝑑𝑟′ 

𝑟 √2
3⁄

0

− 𝑓𝑛(𝑟, 𝑧)∫ 𝑟𝑐(𝑟, 𝑟
′)𝑓𝑛(𝑟′, 𝑧)

∞

0

𝑑𝑟′ 

+∫ 2𝛽(𝑟, 𝑟′)𝑔(𝑟′)𝑓𝑛(𝑟′, 𝑧)
∞

𝑟

𝑑𝑟′     −  𝑔(𝑟)𝑓𝑛(𝑟, 𝑧)                                     (3.24) 

 

The population balance equations above are defined in the following domains: 

 

 0 ≤ 𝑧 ≤ 𝐿  ,  0 ≤ 𝑟 ≤ ∞ 

 

In Eq. (3.24) above, 𝑓𝑛(𝑟, 𝑧) denotes the number density function in terms of 𝑟, radius of the 

droplets (internal coordinate) and 𝑧, the axial position of the droplet in the pipe (external 

coordinate).  

In this present work, the PBE in Eqn. (3.24) is formulated in terms of number density 

distribution, 𝑓𝑛(𝑟, 𝑧). From the fact that the magnitude of number density distribution 𝑓𝑛(𝑟, 𝑧) 

can alter significantly during drop growth process, thus, the PBE in Eqn. (3.24) is modified to 

account for volume density distribution, 𝑓𝑣(𝑟, 𝑧) in order to have a consistent magnitude over 

time. One of the advantages of this approach is that the convergence criterion in terms of 

relative tolerance and absolute tolerance are consistent with volume density distribution for 

the numerical calculations. To achieve this, the volume fraction, 𝜙𝑣(𝑧) at a particular position 

of 𝑧 coordinate is required. By applying the Eqn. (3.3) into Eqn. (3.24), the modified 

population balance equation in terms of volume density distribution is given as follows: 

 

𝑈
𝜕𝑓𝑣(𝑟, 𝑧)

𝜕𝑧
= 𝑣 ∫ 𝑟𝑐(𝑟

′, 𝑟′′)
𝑓𝑣(𝑟

′, 𝑧)

𝑣′

𝑓𝑣(𝑟
′′, 𝑧)

𝑣′′

𝑟2

𝑟′′2
𝑑𝑟′

𝑟 √2
3⁄

0

− 𝑓𝑣(r, z)∫ 𝑟𝑐(𝑟, 𝑟
′)

𝑓𝑣(𝑟
′, 𝑧)

𝑣′

∞

0

𝑑𝑟′ 

+ 𝑣 ∫ 2𝛽(𝑟, 𝑟′)𝑔(𝑟′)
𝑓𝑣(𝑟

′, 𝑧)

𝑣′

∞

𝑟

𝑑𝑟′ −  𝑔(𝑟)𝑓𝑣(𝑟, 𝑧)                                     (3.25) 

For  0 ≤ 𝑧 ≤ 𝐿  ,  0 ≤ 𝑟 ≤ ∞ 
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This new formulation (Eqn. 3.25) represents population balance equation in terms of volume 

density distribution for dynamic evolution of droplet size in oil-water (turbulent) pipe flow. 

This formulation describes the volume change per unit pipe length instead of number change 

per unit pipe length. Thus, one could easily identify the coalescence birth relative to death at 

larger droplet sizes. To simulate the model and facilitate the numerical solutions, the system 

equations should be scaled into dimensionless variables. In this respect, the model is able to 

characterize the system behaviour at dynamically similar system and different scales. The 

scaling and the dimensionless analysis of the model equations are described in detail in the 

Appendix A of this thesis. For comprehensive descriptions of the dimensionless techniques 

and analysis, please refer to Part I of the manuscript – Appendix B.  

 

3.11 Algorithm and numerical protocols 

Following the non-dimensional conversions, the model equations are then solved 

numerically starting from the initial distribution of the system. In this work, the algorithm is 

written to operate on either a user defined distribution or from experimental data. In either 

case, the values of the distribution might be arbitrary meaning it would not satisfy Eqn. (3.2). 

To achieve this, the following methods are used:  

 

The variables in the distribution are defined as follows:  

 

𝑓𝑛0 ≈ 𝑓𝑛,𝑒𝑥𝑝,𝑖                                         𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, …… .𝑁𝑖𝑛𝑖                                              (3.26) 

𝑟𝑒 ≈ 𝑟𝑒𝑥𝑝,𝑖                                              𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, …… .𝑁𝑖𝑛𝑖                                               (3.27) 

𝛿𝑣 ≈
4

3
𝜋𝑟𝑒𝑥𝑝,𝑖

3                                      𝑤ℎ𝑒𝑟𝑒 𝑖 = 1,2, …… .𝑁𝑖𝑛𝑖                                                 (3.28) 
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In the above equations from (3.26) until (3.28), 𝑟𝑒𝑥𝑝 represents the experimental droplet 

radius, 𝑁𝑖𝑛𝑖 denotes the number of data (experimental data), and 𝛿𝑣 is the volume size of each 

droplet in the distribution. Depending on the type of initial distributions (i.e., number density 

distribution or volume density distributions), the integrations are approximated as follows: 

 

The program reads in and integrates an arbitrary number density distribution: 

𝐼𝑛 = ∫ 𝛿𝑣𝑓𝑛0𝑑𝑟′
𝑟𝑒

0

= ∑(𝛿𝑣,𝑖𝑓𝑛,𝑒𝑥𝑝,𝑖

𝑁𝑖𝑛𝑖

𝑖=2

+ 𝛿𝑣,𝑖−1𝑓𝑛,𝑒𝑥𝑝,𝑖−1)(𝑟𝑒𝑥𝑝,𝑖 − 𝑟𝑒𝑥𝑝,𝑖−1)/2                    (3.29) 

The program reads in and integrates an arbitrary volume density distribution: 

𝐼𝑣 = ∫ 𝑓𝑛0𝑒
𝑑𝑟′

𝑟𝑒

0

= ∑(𝑓𝑛,𝑒𝑥𝑝,𝑖

𝑁𝑖𝑛𝑖

𝑖=2

+ 𝑓𝑛,𝑒𝑥𝑝,𝑖−1)(𝑟𝑒𝑥𝑝,𝑖 − 𝑟𝑒𝑥𝑝,𝑖−1)/2                                        (3.30) 

  

Once the integration is determined, the number and volume density distributions can be 

scaled as follows: 

(i) For number basis 

𝑓𝑛 =
𝜙

𝐼𝑛
𝑓𝑛0,𝑒𝑥𝑝                                                                                                                                   (3.31) 

𝑓𝑣 = 𝑓𝑛𝛿𝑣                                                                                                                                            (3.32) 

(ii) For volume basis 

𝑓𝑣 =
𝜙

𝐼𝑣
𝑓𝑛0,𝑒𝑥𝑝                                                                                                                                    (3.33) 

𝑓𝑛 = 𝑓𝑣/𝛿𝑣                                                                                                                                          (3.34) 

 

It is worth noting that, the experimental data from FBRM technique supplied in this present 

work are measured in terms of number density distribution, 𝑓𝑛. Hence, Eqns. (3.29), (3.31), 

and (3.32) are employed for the experimental data used.  
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On the other hand, the parameter 𝑅𝑚𝑎𝑥 or maximum drop radius is introduced to the 

system. The value of  𝑅𝑚𝑎𝑥 is set arbitrarily due to the fact that the exact value for 𝑅𝑚𝑎𝑥 is 

unknown until the simulation is performed. In this respect, the value of 𝑅𝑚𝑎𝑥 is set large 

enough such that the volume and number density distributions are not exceeding the 𝑅𝑚𝑎𝑥 as 

they evolve. In addition, 𝑅𝑚𝑎𝑥 is important to the non-dimensionalization of the system 

equations because it represents the characteristic length of the radial coordinate (internal 

coordinate) in the scaling formulation (refer to Appendix A of dimensional analysis). Apart 

from that, to facilitate interpolation of the experimental data and the simulation grid, an 

arbitrary number of additional points are added between maximum experimental radius, 

𝑅𝑚𝑎𝑥,𝑒𝑥𝑝 and 𝑅𝑚𝑎𝑥. The additional points are added if the condition of 𝑅𝑚𝑎𝑥 > 𝑅𝑚𝑎𝑥,𝑒𝑥𝑝 is 

met.  

 

3.11.1  Numerical protocol in non-dimensionalization system 

On top of that, to enhance the numerical solutions, spectral elements (𝑛) are 

introduced to the system. This is achieved by splitting the drop radius coordinate into several 

domains, while the element boundaries are determined by  𝑟𝑛,𝑚𝑖𝑛 , 𝑟𝑛,𝑚𝑒𝑎𝑛, 𝑟𝑣,𝑎𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 99%, 

𝑟𝑣,log 𝑠𝑝𝑎𝑐𝑒 (from the logarithmic spacing), and 𝑟𝑚𝑎𝑥 (equivalent to 𝑅𝑚𝑎𝑥 in dimensional 

system) of the volume density distribution as shown in Fig. 3.3 with 𝑓𝑣̅ indicates the 

dimensionless volume density distribution (refer to dimensionless analysis in Appendix A). 

In this respect, the element end points or the boundaries in terms of dimensionless radius (𝜉𝑛) 

can be determined as follows: 

 

𝜉1 = 0/𝑅𝑚𝑎𝑥 = 0                                                                                                                             (3.35)   

𝜉2 = 𝑟𝑛,𝑚𝑖𝑛 𝑅𝑚𝑎𝑥⁄                                                                                                                            (3.36) 

𝜉3 = 𝑟 𝑛,𝑚𝑒𝑎𝑛 𝑅𝑚𝑎𝑥⁄                                                                                                                         (3.37) 
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𝜉4 = 𝑟𝑣,𝑎𝑡 𝑣𝑜𝑙𝑢𝑚𝑒 99% 𝑅𝑚𝑎𝑥⁄                                                                                                            (3.38) 

𝜉5 = 𝑟𝑣,log 𝑠𝑝𝑎𝑐𝑒 𝑅𝑚𝑎𝑥⁄                                                                                                                     (3.39)   

𝜉6 = 𝑟𝑚𝑎𝑥 𝑅𝑚𝑎𝑥⁄ = 1                                                                                                                      (3.40) 

 

 

 

Figure 3.3 schematic diagram of the radial coordinate and the properties of the volume 

density distribution in terms of minimum radius, peak radius, mean radius, radius at 99% 

volume, maximum experimental radius, and maximum (simulation) radius.  

 

The total number of spectral elements, 𝑁𝑡 employed in the system is important in order to set 

the element end point, 𝜉𝑛 for the system. For instance, if the total number of elements, 𝑁𝑡 ≥

5, the element end point, 𝜉𝑛 takes in the following value: 

 

𝑁𝑡 ≥ 5, 𝜉𝑛 = 𝜉0, 𝜉𝑛,𝑚𝑖𝑛 , 𝜉𝑛,𝑚𝑒𝑎𝑛 , 𝜉𝑣,99, 𝜉𝑣,log 𝑠𝑝𝑎𝑐𝑒 , 𝜉1  
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 In the expression above, 𝜉0 indicates the initial radius at zero coordinate, 𝜉𝑛,𝑚𝑖𝑛 represents 

the smallest radius where the number density distribution is non zero, 𝜉𝑛,𝑚𝑒𝑎𝑛 denotes the 

mean value of the number density distribution, 𝜉𝑣,99 signifies the radius located where the 

volume density distribution integral (i.e., 𝜙) is 99% of the total integral value, and at the last 

number of element (i.e., 𝑁𝑡 ≥ 5) the radius will be located at the logarithmically spaced 

points between 𝜉𝑣,99 and 1.0 (i.e., 100) which refers to 𝜉𝑣,log 𝑠𝑝𝑎𝑐𝑒. Otherwise, (i.e., if 𝑁𝑡 < 5), 

the element end point, 𝜉𝑛 will take the following steps: 

 

𝑁𝑡 = 4, 𝜉𝑛 = 𝜉0, 𝜉𝑛,𝑚𝑖𝑛 , 𝜉𝑛,𝑚𝑒𝑎𝑛 , 𝜉𝑣,99, 𝜉1 

𝑁𝑡 = 3, 𝜉𝑛 = 𝜉0, 𝜉𝑛,𝑚𝑒𝑎𝑛 , 𝜉𝑣,99, 𝜉1 

𝑁𝑡 = 2, 𝜉𝑛 = 𝜉0, 𝜉𝑣,99, 𝜉1 

𝑁𝑡 = 1, 𝜉𝑛 = 𝜉0, 𝜉1  

 

Gauss-Lobatto Quadrature with Jacobi Polynomials is constructed for each of the 

element (𝑛) along with user defined value for the number of internal collocation points in 

each element, 𝑁𝑖𝑝
𝑛 . In the numerical solutions, the degree of the Jacobi polynomials (𝑖) in 

every element of 𝑁𝑖𝑝
𝑛  can be varied. This method is essentially to provide numerical flexibility 

in the lower values of the 𝑟 domain. In this regard, the dynamics for small drop coalescence 

is very fast, hence, more points are needed to accommodate small 𝑟 values to provide 

numerical accuracy and speed in the initial stages of the simulation. The advantage of this 

feature in numerical scheme is that it allows one to place the collocation points strategically 

in the spectral element and as a result the computational time can be reduced effectively. 

Based on the value of  𝑁𝑖𝑝
𝑛  for each element, a set of roots 𝑢𝑖

𝑛 and weights 𝑤𝑖
𝑛 are calculated. 

The roots are determined by Newton’s method from the shifted Jacobi polynomial on the 
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interval [0 1]. The integration weights, 𝑤𝑖
𝑛 for each collocation point in the spectral elements 

are calculated using Gauss-Lobatto Quadrature from the roots of the Jacobi polynomials and 

its derivatives. The roots and weights calculated are used to approximate the integrals in the 

system equations. The overall properties of the gridding system and layout of the elements 

are depicted in Fig. 3. 4.  

 

 

Figure 3.4 Schematic diagram of the gridding system and the overall layout of elements. 

 

From the expression in Eqn. (3.42), the integration of volume density distribution and the 

first derivative weight of volume density distribution can be written as follows, respectively:  

 

∫ 𝑓𝑣̅𝑑𝜉
1

0

= ∑ ∑ 𝑓𝑣̅,𝑗
𝑛

𝑁𝑖𝑝
𝑛 +2

𝑗=1

𝑁𝑡

𝑛=1

𝑙𝑛𝑤𝑗
𝑛                                                                                                        (3.43) 
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𝑑𝑓𝑣̅,𝑖
𝑛

𝑑𝜉
|
𝑢𝑖

𝑛

= ∑ ∑
𝐴𝑖,𝑗

𝑛

𝑙𝑛
𝑓𝑣̅,𝑗

𝑛

𝑁𝑖𝑝
𝑛 +2

𝑗=1

𝑁𝑡

𝑛=1

                                                                                                          (3.44) 

 

In the algorithm, the matrices containing the first and second orders derivatives weights are 

calculated from the roots of the Jacobi polynomial at each of the collocation point (𝑖). The 

initial distributions can be interpolated onto the simulation grid once the simulation grid is 

constructed. The interpolation technique by Akima spline interpolation is selected due to its 

ability to produce smooth curves as well as its less proneness to wiggling (Salomon, 2011).  

To solve the system equation, the integration limits in the birth integral must be in the range 

of [0 1] and correspond to the orthogonal collocation weights constructed. Hence, the limits 

of the integrals have to be transformed and the number and volume density distributions will 

be then interpolated onto this new domain (coordinate system). To achieve this, the 

dimensionless volume and number density distributions (i.e., 𝑓𝑣̅ and 𝑓𝑛̅) are split into several 

sections in the spectral elements as shown in Fig. 3.5. The algorithm used cubic spline 

interpolation method due to the flexibility and suitability in the system to interpolate the birth 

integrals at every time step onto this new domain (i.e., 𝑓𝑣̅𝑝
 and 𝑓𝑛̅𝑝

). One of the attributes of 

this numerical scheme is that it enables the raw experimental data for an initial droplet size 

distribution to be employed. In addition, one feature of the spectral element method (𝑛) 

introduced in the numerical scheme is it allows one to place the number of collocation points 

(𝑖) in the system, strategically (details are discussed in Chapter 4 of this thesis). This feature 

will enable the model to solve the system equation at much lesser time without compromising 

the numerical stability and solutions. 
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Figure 3.5 The schematic diagram of the interpolated number density distribution, 𝑓𝑛̅𝑝
 onto 

coordinate system of 𝛼ˊand 𝛼ˊˊfor the coalescence birth integral. 

 

For the case of coalescence birth integral (Eqn. 3.25), new integration coordinate 𝛼ˊ(𝜉) is 

defined for every value of non-dimensional radius, 𝜉 in the domain. Based on the upper limit 

in the coalescence birth integral, 𝜉 √2
3

⁄ , hence 𝛼ˊ can be formulated as follows: 

 

𝛼ˊ =
𝜉ˊ

𝜉

√2
3⁄

                                                                                                                                         (3.45) 

 

Based on the expression in Eqn. (3.45) above, the dimensionless radius 𝜉ˊand its derivative 

𝑑𝜉ˊwith respect to 𝛼ˊ can be expressed as follows, respectively: 
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𝜉ˊ = (
𝜉

√2
3 ) 𝛼ˊ                                                                                                                                                          (3.46) 

𝑑𝜉ˊ = (
𝜉

√2
3 ) 𝑑𝛼ˊ                                                                                                                                (3.47) 

 

Subsequently, by taking into account the relationship of  𝜉ˊˊ = (𝜉3 − 𝜉ˊ3)
1 3⁄

 from the volume 

conservation in the coalescence process and Eqn. (3.46), the following expression for 𝛼ˊˊ can 

be obtained: 

 

𝛼ˊˊ = (2 − 𝛼ˊ3)
1 3⁄

                                                                                                                            (3.48) 

 

The following are the expression for the coalescence birth and death processes in terms of 

discretization. 

 

Discretized forms of birth and death rates due to coalescence, respectively: 

 

𝑃𝐶𝑏
[𝜉𝑖, 𝜆] =  𝜉𝑖

3 (
𝜉𝑖

√2
3 ) ∑ ∑

𝜉𝑖
2

𝜉𝑗
ˊˊ2

𝑟̅𝑐 (𝜉𝑗
ˊ , [𝜉𝑖

3 − 𝜉𝑗
ˊ3]

1 3⁄
 )

𝑁𝑖𝑝
𝑛 +2

𝑗=2

𝑁𝑡

𝑛=1

𝑓̅
𝑣𝑝

′ ,𝑗
𝑛 𝑓̅

𝑣𝑝
′′,𝑗
𝑛 𝑙𝑛𝑤𝑗

𝑛                         (3.49) 

 

𝑃𝐶𝑑
(𝜉𝑖, 𝜆) = 𝑓𝑣̅,𝑗

𝑛 ∑ ∑ 𝑟̅𝑐

𝑁𝑖𝑝
𝑛 +2

𝑗=2

(𝜉𝑖, 𝜉𝑗)
𝑓𝑣̅,𝑗

𝑛

𝑣̅𝑗
𝑛 𝑙𝑛𝑤𝑗

𝑛

𝑁𝑡

𝑛=1

                                                                           (3.50) 

 

In Eqn. (3.49) above 𝑓𝑣̅𝑝
 represents the interpolated dimensionless volume density 

distribution. The equations are simulated for every collocation point across all spectral 

elements. 



 

101 

 

On the other hand, for the breakage case, similar principles are applied in which the 

limits for the breakage birth integral have to be scaled to range from 0 to 1. To achieve this, 

the cubic spline interpolation method is employed to interpolate the distribution onto the new 

coordinate grid as shown in Fig. 3.6.  

 

 

Figure 3.6 The schematic diagram of the interpolated number density distribution, 𝑓𝑛̅𝑝
 onto 

coordinate system of 𝛼𝑏 for the breakage birth integral.  

 

Similar to the coalescence case, a new integration coordinate 𝛼𝑏(𝜉) is defined for every value 

of non-dimensional radius, 𝜉 in the domain. In this context, 𝜉ˊ along with its derivative 

𝑑𝜉ˊwith respect to 𝛼𝑏 can be expressed as follows, respectively: 
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𝜉ˊ = 𝜉 + (1 − 𝜉)𝛼𝑏                                                                                                                          (3.51) 

 

𝑑𝜉ˊ = (1 − 𝜉)𝑑𝛼𝑏                                                                                                                            (3.52) 

 

Hence, the discretized breakage birth and death can be written in the following form: 

Discretized form of birth and death rates due to breakage, respectively: 

 

𝑃𝐵𝑏
[𝜉𝑖, 𝜆] = [1 − 𝜉𝑖]𝜉𝑖

3 ∑ ∑ 2𝛽̅

𝑁𝑖𝑝
𝑛 +2

𝑗=1

(𝜉𝑖, 𝜉𝑗)𝑔̅(𝜉𝑗)𝑓𝑣̅𝑝,𝑗
𝑛 𝑙𝑛𝑤𝑗

𝑛

𝑁𝑡

𝑛=1

                                                (3.53) 

 

𝑃𝐵𝑑
(𝜉𝑖, 𝜆) = [𝑔̅(𝜉𝑖) 𝑓𝑣̅,𝑗

𝑛 ]                                                                                                                  (3.54) 

 

Where in Eqn. (3.53), the expression of 𝜉𝑗 can be written as follows: 

 

𝜉𝑗 = 𝜉𝑖 + (1 − 𝜉𝑖)𝛼𝑏,𝑗                                                                                                                     (3.55) 

 

Finally, the resulting ODE with initial conditions is numerically solved using Gear’s 

backward differentiation formulae (BDF) method and integrated for over the 𝑧 coordinate. 

 

3.12 Physical properties of the oil-water system  

In this work, three different data sets supplied by Statoil were measured from the 

Focused Beam Reflectance Method (FBRM) for the turbulently flowing oil-water system. 

The data sets in this present work are classified as ge12275a, ge12279a, ge12284a. The 

physical properties of each of the data set are shown in Table 3.1. It is worth to note that, the 

major difference between the three data sets is the average flow velocity, 𝑈. As depicted in 



 

103 

 

Table 3.1, ge12284 represents the highest average flow velocity, 𝑈 at 2.50 m/s, followed by 

ge12279a and ge12275a with 2.0 m/s and 1.70 m/s, respectively. These physical parameters 

of the system are used as inputs for the model simulations. 

 

Table 3.1 The physical properties of the oil-water system in pipe 

Parameter Ge12275a Ge12279a Ge12284a Descriptions 

𝜙 0.30 0.30 0.30 Volume fraction 

𝑈 1.70 [m/s] 2.00 [m/s] 2.50 [m/s] Average flow velocity 

𝐿 30 [m] 30 [m] 30 [m] Length of the pipe 

𝑅𝑚𝑎𝑥 1000 [μm] 1000 [μm] 1000 [μm] 

Upper bound of the radius 

domain 

𝐷 0.069 [m] 0.069 [m] 0.069 [m] Diameter of the pipe 

𝜌𝑑 865 [kg/m3] 865 [kg/m3] 865 [kg/m3] Density of the dispersed phase 

𝜇𝑑 177 [mPas] 169 [mPas] 152 [mPas] Viscosity of the dispersed phase 

𝜌𝑐 1021 [kg/m3] 1021 [kg/m3] 1021 [kg/m3] Density of the continuous phase 

𝜇𝑐 1.0 [mPas] 1.0 [mPas] 1.0 [mPas] 

Viscosity of the continuous 

phase 

σ 26.0 [mN/m] 26.0 [mN/m] 26.0 [mN/m] Interfacial tension 

 

3.13 Experimental data of droplet size distribution 

When oil and water are transported through pipeline under vigorous shear rates, the 

formation of dispersion between oil and water will occur. In laboratory work, one of the 

techniques to record the droplet size distribution during dispersion process of oil and water in 

dynamic pipe transportation is using Focused Beam Reflectance Measurement (FBRM). The 

method of using FBRM probe has been studied in detail experimentally in horizontal pipes by 
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Placensia (2013) and Schümann (2016). Their research work suggested that FBRM probe can 

provide in-situ drop size evolution measurement through oil-water pipe flow. In this research 

work, the in-situ measurement of droplet size distribution profiles was obtained using two 

FBRM probes, one at the inlet and the other one at the outlet of the pipe. The advantages of 

using FBRM are droplet size variations in the dispersion process can be easily tracked 

compared to other instrument such as Particle Video Microscope (PVM) and  real time 

measurement of particle size, count and shape can be obtained during oil-water emulsion in 

turbulent pipe flow (Placensia, 2013). FBRM utilizes highly precise chord length distribution 

(CLD), sensitive to particle size and count under real-time measurement without the need of 

sample preparation. FBRM is capable to measure droplet size in the range of 0.8-1000 μm 

which is ideal for in-situ droplet size analysis in real time (Dowding et al., 2001). 

 

 

(a)                (b) 

Figure 3.7 FBRM Measurement (a) Schematic of FBRM probe tip (b) Particle size 

distribution using FBRM probe (Worlitschek and Buhr, 2005). 
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In general, the droplet size distribution was measured during the experimental work 

once the flow of oil-water dispersions reached a stabilized oil-water dispersion (steady state 

condition: stable pressure drop, mixture density, temperature and droplet size). In addition, 

the homogeneity of the mixture was also tracked by measuring the mixture density using the 

Coriolis flow meter during the dynamic flow of oil-water dispersion. These conditions must 

be met to ensure the quality of the droplet size distribution profiles obtained are accurate. It is 

to be noted that the experimental data of droplet size distributions were completely supplied 

by Statoil Research Centre, Trondheim. Hence, the validation of data was performed by the 

appointed researcher from Statoil. The samples of experimental data of drop size distribution 

is depicted in Fig. 3.8. FBRM probe is known to be one of the exceptional methods to 

measure real time droplet size distribution in liquid-liquid system. This is indicated by 

numerous studies on oil-water system using FBRM method (Maaß et al., 2011; Schümann et 

al., 2015; Schümann, 2016; Plasencia, 2013; Boxall et al., 2010; Naeeni and Pakzad, 2019).    

 

 

Figure 3.8 Samples of number density distributions for oil-water dispersions in pipe flow 

using FBRM probe. The  𝑓𝑛,𝑒𝑥𝑝 indicates experimental number distribution and 𝑓𝑛,0 the 

interpolated number distribution. 
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During the lab experiment of this current project, no other devices for droplet 

monitoring installed in the flow loop (pipes). However, to ensure the quality of the data 

obtained, direct comparison of drop size distribution profiles was established using PVM 

simultaneously with FBRM probes in a separate experiment in stirred tank setup using the 

same fluids. A conversion factor was derived from the comparison results of chord length 

distribution (CLD) from FBRM to real droplet size and distribution. Thorough discussion on 

the conversion factor can be found in research work by Khatibi, (2013) and Schümann et al. 

(2015). In addition, Boxall et al. (2010) also suggested that PVM probe is a useful tool for a 

calibration method with FBRM probe. For this present work, the shape of the droplet from 

experimental data is assumed spherical. Therefore, the mean chord length size measured by 

FBRM corresponds to the diameter of the droplet. However, there will be uncertainty in the 

chord length measured by the FBRM from the real droplet size distribution due to several 

factors such off-center crossing of the droplets by the laser beam, dense emulsions scattering 

of light by other droplets, variation in refractive index of the liquids, surface structures and 

properties such as translucent or transparent surface that may cause internal reflection and/or 

subsurface scattering (Vay et al., 2012; Schümann et al., 2015). Therefore, a general 

correction has been proposed by comparing simultaneous FBRM with PVM measurements in 

the same fluid system in order to reduce underestimation of the droplet size. The method 

allows combination of both techniques and produce real time and in situ measurement of 

correct droplet sizes although with an uncertainty of 50% (Schümann et al., 2015). This 

method introduced the log-normal distribution function to describe the droplet size 

distribution and it can be written as follows (Farr, 2013):  

 

𝑓(𝐷) =
1

𝐷𝜎√2𝜋
𝑒𝑥𝑝 {

[ln(𝐷 𝐷0⁄ )]2

2𝜎2
}                                                                                           (3.56) 
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Where 𝑓(𝐷) is log-normal function of the droplet size distribution, 𝐷 is the droplet size, 𝜎 is 

the dimensionless geometric standard deviation (the width of the distribution) and 𝐷0 is a 

reference diameter setting the scale or the length scale of the distribution. According to 

Schümann et al. (2015), the conversion method from FRBM measurements has successfully 

reduced the error from factor of five to factor of two. Since the distribution of droplet size is 

commonly presented in logarithmic scale, thus, the error is considered within the acceptable 

limits. The conversion has been applied for this research work across all the measurements 

and the particle sizes measured from the three different experiments are observed to be in the 

range of 1.00 μm to 616.00 μm (refer to Table 3.2 and Fig. 3.8). It is worth to note that, the 

author is not involved in the experimental work. Hence, details about the experimental 

procedures and data preparations are exclusively owned by Statoil.  

 

Table 3.2 Size range of the droplets from three different data sets of oil-water pipe flow 

Experimental data set Size range of the droplets 

Ge12275a 1.00 μm – 616.00 μm 

Ge12279a 1.00 μm – 575.00 μm 

Ge12287a 1.00 μm – 537.00 μm 
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Figure 3.9 Overview of the simulation flow processes 
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3.14  Chapter summary 

In this chapter, all models derived and formulated are showed and elucidated in each 

subsection. Since the system equations involve turbulent flows, assumptions have to be made 

(in early subsections) in order to simplify and enhance the simulation work. In the model 

formulation, possible methodologies are introduced using orthogonal collocation approach on 

finite elements as an alternative technique to solve the PBE. For any axial position in 

pipeline, the model developed from this method is able to predict the evolution of number 

and volume density distributions, the average drop radii for number and volume density 

distributions, the standard deviations of the droplet in terms of number and volume density 

distributions, and the rates of breakage and coalescence as well as total growth rates over a 

distance in pipes. For more comprehensive and details discussions of the model formulations 

and techniques, the reader is encouraged to refer to Part I of this manuscript in the attachment 

of Appendix B.   
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CHAPTER 4 

 

4 RESULTS AND DISCUSSION (PART I) 

 

4.1  Simulation results and discussion 

In this thesis, the results and discussion are divided into two main parts: (i) the model 

behaviour and parametric effects and (ii) regression of the experimental pipe flow data: 

comparison between simulation and experimental data. The first part (Part I) is discussed in 

this chapter – Chapter 4, while the second part (Part II) is discussed in the next chapter – 

Chapter 5. In these two chapters (i.e., Chapter 4 and Chapter 5), two manuscripts are prepared 

for each of the results discussed in Part I and Part II. Including the paper prepared in Chapter 

3, there are three manuscripts altogether for this research work and they can be found in the 

Appendix B, Appendix C, and Appendix D of this thesis, respectively.  

  

4.2  Part I: The model behaviour and parametric effects  

In liquid-liquid systems, many physical properties of the dispersion are strongly 

related to the drop size distribution of the dispersed phase. In pipe flow, any changes in the 

drop size distribution may affect the flow pattern and pressure drop significantly. Hence, the 

evaluation and study of parametric effect is important because coalescence and breakage 

processes in liquid-liquid turbulent pipe flow are strongly dependent on the physical 

properties of the continuous and dispersed phase, state of flow, and mixing conditions in the 

system (Solsvik et al., 2015). For this purpose, the model is investigated under various 

parametric effects to provide insights toward the overall model behaviour. For these 

investigations, the following physical properties as shown in Table 4.1 are employed as an 

input for the simulation. 
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Table 4.1 Input parameters for the simulation 

Parameter Value Descriptions 

𝜙 0.30 Volume fraction 

𝑈 2.00 [m/s] Average flow velocity 

𝐿 1500 [m] Length of the pipe 

𝑅𝑚𝑎𝑥 1000 [μm] Upper bound of the radius domain 

𝐷 0.069 [m] Diameter of the pipe 

𝜌𝑑 865 [kg/m3] Density of the dispersed phase 

𝜇𝑑 169 [mPas] Viscosity of the dispersed phase 

𝜌𝑐 1021 [kg/m3] Density of the continuous phase 

𝜇𝑐 1.0 [mPas] Viscosity of the continuous phase 

σ 26.0 [mN/m] Interfacial tension 

 

Depicted in Fig. 4.1 is the plot of experimental number density distribution,  𝑓𝑛,𝑒𝑥𝑝 at initial 

position in the pipe (𝑧 = 0) as a function of drop radius, 𝑟. The distribution is then compared 

against the interpolated initial number density distribution, 𝑓𝑛,0. On the same figure, the 

experimental and interpolated volume density distributions, 𝑓𝑣,𝑒𝑥𝑝 and 𝑓𝑣,0 respectively, are 

also plotted against the drop radius, 𝑟. Essentially, the comparison between the experimental 

and interpolated distributions is to map the experimental data points onto the collocation 

points that consist of simulation grid. In this respect, the interpolation was showing good 

results wherein the interpolated initial number and volume density distributions, 𝑓𝑛,0, 𝑓𝑣,0 are 

perfectly fits with the experimental data points consistently. 
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Figure 4.1 Initial experimental number and volume density distributions, 𝑓𝑛,𝑒𝑥𝑝, 𝑓𝑣,𝑒𝑥𝑝 in blue 

and red dotted lines, and interpolated initial number and volume distributions, 𝑓𝑛,0, 𝑓𝑣,0 in 

blue and red circles, are plotted as a function of droplet radius, 𝑟.  

 

4.2.1  Base case 

In this present work, a base case is prepared as a reference to give an overview of how 

the system behaves with the given set of input parameters. For this purpose, the following 

fitting parameters are used as shown in Table 4.2. 

 

Table 4.2 Base case: fitting parameters  

Parameter Value Descriptions 

𝑘𝜔 1.00 𝑒 -04 Fitting parameter for coalescence frequency expression 

𝑘𝜓 1.00 𝑒 -03 Fitting parameter for coalescence efficiency expression 

𝑘𝑔1
 5.00 𝑒 -01 Fitting parameter for breakage frequency expression 

𝑘𝑔2
 5.00 𝑒 -01 Fitting parameter for breakage efficiency expression 
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From the set of fitting parameters above, the evolution of the number and volume 

density distributions (𝑓𝑛 and 𝑓𝑣) are simulated and depicted in Fig. 4.2. From the figure, the 

dynamic evolution of 𝑓𝑛 and 𝑓𝑣 of the base case are plotted in terms of radius, 𝑟, throughout 

nine different axial (𝑧) locations in the pipeline. The number density distribution, 𝑓𝑛 in Fig. 

4.2(a) demonstrates that there is a small quantity of larger size droplets at the beginning of 

the pipeline and the magnitude of 𝑓𝑛 grows higher as the droplets evolve toward the end of 

the pipeline. This is true considering that the larger droplets present at the beginning of the 

pipeline are more likely to break than smaller droplets. This indicates that breakage is 

dominant in the system at short axial distances. Similarly, for volume density distribution, 𝑓𝑣, 

the magnitude increases towards the end of pipeline. This shows that, coalescence balances 

breakage as axial (𝑧) increases and the distribution reaches equilibrium. An increasing 

magnitude of drops evolution (𝑓𝑣) as shown in Fig. 4(b) suggests that, the distribution is 

narrower at equilibrium relative to the initial condition, in which there are large numbers of 

small droplets formed at the end of the pipeline. 

 

 

(a) 

 

(b) 
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Figure 4.2 Evolution of (a) number density distribution, 𝑓𝑛 and (b) volume density 

distribution, 𝑓𝑣 along the pipeline as a function of drop radius, 𝑟. The fitting parameters used 

are shown on top left corner of the plots for the base case. 

 

On the other hand, Fig. 4.2 illustrates the dynamic evolution of mean radii in terms of 

number and volume density distributions (𝜇𝑁 and 𝜇𝑉) as a function of axial position, 𝑧 of the 

pipe for the base case. The mean radii in Fig. 4.3 depict that, 𝜇𝑁 and 𝜇𝑉 are decreasing as the 

droplets travel through the 1500 m pipeline. This suggests that, breakage is initially dominant 

over coalescence for this set of fitting parameters and initial distribution (i.e., base case) as 

the droplets evolve towards the end of the pipeline. It is worth noting that the mean radii of  

𝜇𝑁 and 𝜇𝑉 are equilibrated after they surpass the 1 m of pipeline. As this takes place, the 

mean radii have reached constant values in which the system is in balance between the 

breakage and coalescence processes particularly, at the equilibrium state. Similar events are 

found to occur in the standard deviations for number and volume density distribution, 𝜎𝑁 and 

𝜎𝑉, as shown in Fig. 4.3(b). The magnitudes for both 𝜎𝑁 and 𝜎𝑉 are gradually decreasing as 

they approach the end of the pipeline. They are also found to be levelled once the system 

reaches the equilibrium.  

 

 

(a) 
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(b) 

 

Figure 4.3 The plot of: (a) the average radii of number density distribution, 𝜇𝑁 and volume 

density distribution, 𝜇𝑉 as a function of axial position, 𝑧 in the pipe, and (b) the standard 

deviations of number density distribution, 𝜎𝑁 and volume density distribution, 𝜎𝑉 as a 

function of axial position, 𝑧 in the pipe. The fitting parameters used are shown on top left 

corner of the plot for the base case. 

 

To further evaluate the drop growth from the PBE model, the total coalescence and 

breakage rates, 𝑅𝐶𝑡
 and 𝑅𝐵𝑡

 are plotted as a function of drop radius 𝑟 for nine different 

locations as shown in Fig. 4.4. In this figure, the positive part of the curve indicates the birth 

and the negative part of the curve represents the death by virtue of coalescence and breakage 

processes. In Fig. 4.4(a), the total coalescence rate is lower in magnitude at the beginning of 

the pipeline and as axial position, 𝑧 increases, the rate gets higher. This suggests that, 

coalescence rate is stronger approaching the end of the pipe and somewhat weaker at the 

beginning stage in the pipe. This is true considering the large number of smaller droplets 

presence towards the end of the pipe. Hence, coalescence is expected to increase towards the 

end of the pipeline due to the fact that small droplets are more likely to coalesce, and the 

larger number density promotes collision, while larger droplets tend to rupture. Conversely, 

the total breakage rate, 𝑅𝐵𝑡
 in Fig. 4.4(b) is found to reduce in magnitude as the breakage 

process moves towards the end of the pipeline. Moreover, it is expected that 𝑅𝐵𝑡
 is found to 

be greater at low 𝑧 values because larger droplets at the onset of the pipeline are easier to 
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break and rupture than smaller droplets at the end. Apart from that, the birth rate due to 

breakage shown in Fig. 4.4(b) is observed to be higher (i.e., 𝑅𝐵𝑡
≈ 2000) than the death rate 

by breakage (i.e., 𝑅𝐵𝑡
≈ -1200). This is primarily because of the difference in the number of 

larger droplets present at the beginning of the pipeline than at the end which will significantly 

affect the breakage frequency and efficiency.  

 

 

(a) 

 

(b) 

Figure 4.4 Evolution of (a) total coalescence rate, 𝑅𝐶𝑡
and (b) total breakage death rate, 𝑅𝐵𝑡

. 

Both rates are plotted for the base case parameter set and as a function of droplet radius, 𝑟 at 

nine different locations from 1500 m pipe length. The fitting parameters used are shown on 

top left corner of the plots for the base case. 

 

4.2.2  Numerical techniques and model behavior  

Prior to analysis on various parametric effects, the model performance is assessed in 

terms of the proposed numerical technique (orthogonal collocation method) as described in 
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Chapter 3 of this thesis to give a comprehensive understanding of the overall model behavior. 

These results will complement the assessment made in the various parametric effects 

discussed in the following section 4.3 and show the capability of the model, thoroughly. To 

achieve this, the following fitting parameters are set as shown in Table 4.3 to demonstrate the 

drop rates and model behavior. 

 

Table 4.3 Fitting parameters  

Parameter Value Descriptions 

𝑘𝜔 1.70 𝑒 -03 Fitting parameter for coalescence frequency expression 

𝑘𝜓 1.50 𝑒 -03 Fitting parameter for coalescence efficiency expression 

𝑘𝑔1
 2.50 𝑒 -02 Fitting parameter for breakage frequency expression 

𝑘𝑔2
 3.50 𝑒 -01 Fitting parameter for breakage efficiency expression 

 

From the fitting parameters suggested in Table 4.3 above, the following results are 

simulated to highlight the evolution of number and volume density distributions (𝑓𝑛 and 𝑓𝑣), 

the mean radii in terms of number and volume density distributions (𝜇𝑁 and 𝜇𝑉), and total 

breakage and coalescence rates (𝑅𝐵𝑡 and 𝑅𝐶𝑡
). Fig. 4.5 shows the dynamic evolution of 

number density distribution, 𝑓𝑛 and volume density distribution, 𝑓𝑣 throughout nine different 

axial (𝑧) locations in the pipeline. As opposed to the base case, the results from the dynamic 

evolution of number density distribution, 𝑓𝑛 in Fig. 4.5(a) shows that there is a large number 

of small size droplets present at the beginning of the pipeline (𝑧 = 0 m) and the magnitude 

gets lower as the droplets evolve through the end of the pipeline (𝑧 = 1500 m). These results 

are expected since the number of small droplets present at the beginning is higher. Hence, the 

chances of droplets to coalesce and merge into larger droplets are greater. This will result in 

coalescence being dominant in the early stage of the pipeline. However, as 𝑧 increases, the 
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growth rate reduces due to breakage growing in dominance. Similar to the case in 𝑓𝑛, the 

volume density distribution, 𝑓𝑣 shown in Fig. 4.5(b) is found to decrease particularly towards 

the end of the pipeline. This indicates that, coalescence and breakage narrow the drop size 

distribution relative to the initial condition. With a wide initial drop size distribution of small 

drops, the droplets are expected to have longer contact time than the drainage time, thus 

enhancing the coalescence process between droplets. Subsequently, the breakage process is 

becoming stronger as larger droplets formed from the coalescence process earlier begin to 

rupture. This is due to the fact that larger droplets are prone and easy to breakup than small 

droplets. 

 

 

(a) 

 

  (b) 

Figure 4.5 Evolution of (a) number density distribution, 𝑓𝑛 and (b) volume density 

distribution, 𝑓𝑣 along 1500m pipeline as a function of drop radius, 𝑟. The fitting parameters 

used are shown on top left corner of the plots. 
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 Further, the average radii (𝜇𝑁 and 𝜇𝑉) and the standard deviations (𝜎𝑁 and 𝜎𝑉) of the 

number density and volume density distributions are plotted as a function of axial position in 

the pipe, 𝑧 as depicted in Fig. 4.6(a) and (b), respectively. The plots provide an intriguing 

insight on the dynamic evolution of the mean radii during the oil-water fully dispersed flow 

in a very long-distance pipeline (i.e., 1500 m). In Fig. 4.6(a), the mean radii for both number 

and volume density distributions (𝜇𝑁 and 𝜇𝑉) are found to increase approaching the end of 

the pipeline. The same trend is observed for the standard deviations, 𝜎𝑁 and 𝜎𝑉 as depicted in 

Fig. 4.6(b). The increase in the magnitude of mean radii and standard deviations suggest that 

coalescence is dominant over breakage for this set of fitting parameters as the mixture liquids 

travel through 1500 m pipeline. The results suggest that the forces particularly, the kinetic 

energy involved in deforming the droplets are not sufficiently large enough to overcome the 

surface energy of the droplets which results in an increase in the mean radii and standard 

deviations (coalescence dominating) instead of a decrease (breakage dominating). It is also 

worth noting that the magnitude of the mean radii (𝜇𝑁 and 𝜇𝑉) as well as the standard 

deviations (𝜎𝑁 and 𝜎𝑉) are growing in the initial stage of the pipeline and are equilibrated 

approaching 102 m of the pipeline.  

 It is also important to note that the determination of average droplet size in liquid-

liquid dispersion is imperative because it provides a useful parameter for droplet movement 

describing the sedimentation and coalescence profiles (Jeelani and Hartland, 1998; Yu and 

Mao, 2004). Apart from that, the maximum value of mean radii (towards the end of the 

pipeline) in Fig. 4.6(a) indicates the characteristic radius, 𝑅𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐 of the system. The 

characteristic radius is determined once the system reaches an equilibrium at which the 

breakage and coalescence processes are said to have balanced. 
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(a) 

 

(b) 

Figure 4.6 The plot of: (a) mean radii of number density distribution, 𝜇𝑁 and volume density 

distribution, 𝜇𝑉 as a function of axial position, 𝑧 in the pipe and (b) standard deviations of 

number density distribution, 𝜎𝑁 and volume density distribution, 𝜎𝑉 as a function of axial 

position, 𝑧 in the pipe. The fitting parameters used are shown on top left corner. 

 

4.2.2.1 The importance of conversion from 𝒇𝒏 to 𝒇𝒗 

It is important to note that, in this work, the solutions of PBE are solved in terms of 

the volume density distribution, 𝑓𝑣 instead of number density distribution, 𝑓𝑛. This can be 

done by converting the system equation as depicted in Eqn. 3.25 of Chapter 3. To elucidate 

the importance of volume density distribution, 𝑓𝑣 in solving the PBE, we employed two 

different initial distributions in the system. The primary reason is to compare the evolution of 

total number density function, 𝑁̅𝑑 and volume fraction, 𝜙 across 1500m pipeline as shown in 

Fig. 4.7. In this comparison, the three different initial distributions are named as case I, case 

II, and case III. The main difference between the initial distributions in case I, case II, and 
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case III is the average flow velocity, 𝑈 in the pipes. The average flow velocity of the liquid-

liquid system in the pipes increases from case I to case III. Fig. 4.7 demonstrates the 

comparison between the total number density function, 𝑁̅𝑑 and the volume fraction, 𝜙 in 

terms of axial position, 𝑧 in the pipeline for all the cases employed (i.e., cases I, II, and III).  

The results in Fig. 4.7(a) show that, at increase number of cases (i.e., cases I, II, III), the total 

number density as a function of axial position, 𝑁𝑑(𝑧) decreases in terms of the magnitude 

towards the end of the pipeline. While, the results of volume fraction, 𝜙 for all the cases 

simulated remain constant throughout the pipeline as depicted in Fig. 4.7(b). This clearly 

shows that, the magnitude of number density distribution 𝑓𝑛 can alter significantly during the 

drop growth compared to the magnitude of volume density distribution, 𝑓𝑣. In this respect, 

one can have an insight that solving the PBE for dynamic evolution of drop size density 

distribution in liquid-liquid system over a distance in pipe is more effective in the form of 

volume density distribution, 𝑓𝑣  instead of number density distribution, 𝑓𝑛 (which has been 

widely used in the literature) due to its consistent magnitude over time. This is primarily 

crucial in order to ensure that the convergence criteria for the absolute and relative error 

tolerances of the numerical integrator are consistent with the magnitude of the dependent 

variable over the entire simulation. 

 

 
(a) 
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(b) 

Figure 4.7 The evolution of (a) dimensionless total number density function, 𝑁̅𝑑 as a function 

of axial position, 𝑧 and (b) the volume fraction of droplets, 𝜙 as a function of axial position, 

𝑧. Both are plots in terms of case I, case II and case III of different initial distributions. The 

fitting parameters used are shown on top left corner of the plots. 

 

4.2.2.2 Error analysis on the numerical methods  

In this present work, the error from the mass balance (𝜙) and the volume density 

distribution, 𝑓𝑣 at equilibrium are assessed to give an overview of the overall system 

behaviour. To achieve this, four cases are prepared with different model behaviors: case I 

(coalescence-dominated), case II (breakage-dominated), case III (fast dynamics), and case IV 

(slow dynamics). Each of the cases is set with different fitting parameters to elucidate the 

model behavior in which, case I employs higher magnitude of and 𝑘𝑔1
 and 𝑘𝑔2

 (higher mean 

radii), case II employs lower magnitude of 𝑘𝑔1
 and 𝑘𝑔2

 (lower mean radii), case III employs 

greater magnitude of 𝑘𝜔 and 𝑘𝑔1
(faster equilibrium), and case IV employs smaller magnitude 

of 𝑘𝜔 and 𝑘𝑔1
(slower equilibrium). Fig. 4.8 (a), (b), (c), and (d) indicate the mass balance 

error analysis for case I, II, III, and IV at different total number of spectral elements, 𝑁𝑡 and 

total number of points, 𝑖𝑡𝑜𝑡. In general, the error is greater as lower number of points are 

allocated and conversely for higher number of points, regardless of the total number of 

spectral elements employed (𝑁𝑡 = 1 or 𝑁𝑡 = 6). However, the error is found to be 

significantly lower when total number of spectral elements, 𝑁𝑡 = 6  is used instead of 𝑁𝑡 =



 

123 

 

1. Increment in the number of total collocation points, 𝑖𝑡𝑜𝑡 particularly, at 𝑁𝑡 = 6 has 

effectively decreased the magnitude of the mass balance error. This indicates that, spectral 

element method of 𝑁𝑡 = 6  is more efficient in numerical solutions for all types of cases (i.e., 

coalescence and breakage dominated systems and slow and fast dynamics systems) due to the 

strategic placement of collocation points in the system.  Ideally, increase in number of points 

provides efficient numerical solutions (lower mass balance error) as sufficient number of 

points are places to accommodate the droplets evolution over the axial position, 𝑧, but at the 

cost of longer simulation times. 

 

 
(a) 

 

 
(b) 
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(c) 

 

(d) 

Figure 4.8 The mass balance error: (a) case I – coalescence dominated, (b) case II – breakage 

dominated, (c) case III – fast dynamics, and (d) case IV – slow dynamics.  

 

 On the other hand, the volume density distribution (𝑓𝑣) at equilibrium with different 

total number of spectral elements (𝑁𝑡) and collocation points (𝑖𝑡𝑜𝑡) employed are 

demonstrated in Fig. 4.9 (a), (b), (c), and (d) for all cases (coalescence-dominated, breakage-

dominated, fast dynamics, and slow dynamics), respectively. The volume density distribution 

(𝑓𝑣) in Fig. 4.9 shows that the distributions at equilibrium are varied for all cases in terms of 

different spectral elements methods (i.e., 𝑁𝑡 = 1 and 𝑁𝑡 = 6) and collocation points. The 
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magnitude of 𝑓𝑣 is found to be maximum when higher number of collocation points are 

allocated for both spectral element methods (𝑁𝑡 = 1 and 𝑁𝑡 = 6) in all cases. On the 

contrary, if a smaller number of points are employed, the magnitude of 𝑓𝑣 reduces due to the 

losses in mass balance, particularly in case III of fast dynamics system as shown Fig. 4.9(c). 

In fast dynamics system, the event of small drop coalescence and large drop breakup 

especially at equilibrium occurs at a faster rate. Hence, more points are required in order to 

accommodate the stiffness of the numerical system in the 𝑟 domain. In this respect, enhanced 

numerical accuracy can be expected. Furthermore, the results of 𝑓𝑣 complement with the error 

results obtained in the mass balance errors depicted Fig. 4.8. In this error analysis of the 

system from case to case basis, both methods 𝑁𝑡 = 1 and 𝑁𝑡 = 6 are found to reduce the 

errors in the numerical system as higher number of collocation points are set. However, the 

spectral element method  ( 𝑁𝑡 = 6) is considered the best method to be employed in the 

model due to the performance of spectral element methods 𝑁𝑡 = 6 is much better and 

efficient than single element method 𝑁𝑡 = 1. The spectral element methods, 𝑁𝑡 = 6 produced 

the lowest error than one element method ( 𝑁𝑡 = 1) irrespective of the total number of points 

(𝑖𝑡𝑜𝑡) employed. In orthogonal collocation method, for each of the spectral element assigned, 

one can strategically place the number of points to specifically account for the stiffness in the 

numerical system. For instance, if the dynamics for small drop coalescence is very fast 

particularly at lower 𝑟 domain, hence, more points can be strategically placed in this domain 

to accommodate these small 𝑟 values (due to fast coalescence process) instead of uniformly 

distributed (placement) collocation points as shows in the single element method (𝑁𝑡 = 1). In 

this respect, the numerical accuracy and speed (refer to Table 4.4) can be enhanced due to 

strategic distribution of collocation points in the system. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.9 The volume density distribution (𝑓𝑣) at equilibrium: (a) case I – coalescence 

dominated, (b) case II – breakage dominated, (c) case III – fast dynamics, and (d) case IV – 

slow dynamics.  
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 Apart from that, CPU time and simulation time for all the cases studied (i.e., case I, II, 

III, and IV) at  𝑁𝑡 = 6 and 𝑁𝑡 = 1 are also investigated as depicted in Table 2. The results 

suggest that, a system with spectral elements (i.e., sub-domain of  𝑁𝑡 = 6) provide lower 

CPU time and faster simulation time. This is true considering the fact that, strategic numbers 

of collocation points placed at different spectral elements promote faster numerical 

convergence. In other words, one may choose 𝑁𝑡 = 1 and higher number 𝑖𝑡𝑜𝑡  but at cost of 

CPU expensive and longer simulation time. However, with the spectral element scheme, low 

CPU time and faster solutions can be expected as well as low errors as discussed earlier.  

 

Table 4.4 CPU time and real time usages for given cases of 𝑁𝑡 and 𝑖𝑡𝑜𝑡 

Case CPU time (s) Simulation time (s) 

Case: coalescence dominated 
  

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 30 34.5 33 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 40 43.4 41 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 50 47.5 45 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 60 51.6 49 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 30 33.8 31 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 40 42.3 40 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 50 45.3 43 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 60 49.8 47 

Case: breakage dominated   

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 40 42.2 34 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 50 47.2 37 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 60 55.0 41 
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𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 30 37.3 29 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 40 41.9 33 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 50 45.9 35 

Case: fast dynamics   

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 40 42.5 37 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 50 44.8 39 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 60 52.7 47 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 70 62.5 57 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 90 87.2 76 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 40 40.0 35 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 50 41.6 36 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 60 49.2 44 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 70 57.2 52 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 90 81.6 71 

Case: slow dynamics   

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 30 32.2 28 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 40 36.0 32 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 50 40.2 35 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 60 49.5 42 

𝑁𝑡 = 1, 𝑖𝑡𝑜𝑡 = 70 56.8 45 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 30 30.1 26 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 40 34.8 30 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 50 39.5 34 

𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 60 45.5 39 
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𝑁𝑡 = 6, 𝑖𝑡𝑜𝑡 = 70 56.0 45 

 

4.2.3  Parametric effects  

Analysis of the parametric effects would enhance the understanding of the model 

behavior in turbulently flowing liquid-liquid dispersions particularly for oil-water flow in 

pipes. To investigate the system behavior on the various parametric effects, the fitting 

parameters are set to a new value as depicted in Table 4.5 below. In this new set of fitting 

parameters, the variations of parameters in terms of energy dissipation rate, 𝜀 and volume 

fraction, 𝜙 are assessed and evaluated. 

 

Table 4.5 New fitting parameters  

Parameter Value Descriptions 

𝑘𝜔 1.70 𝑒 -03 Fitting parameter for coalescence frequency expression 

𝑘𝜓 1.50 𝑒 -03 Fitting parameter for coalescence efficiency expression 

𝑘𝑔1
 2.50 𝑒 -02 Fitting parameter for breakage frequency expression 

𝑘𝑔2
 3.50 𝑒 -01 Fitting parameter for breakage efficiency expression 

 

These parameters (i.e., 𝜙, and 𝜀) are crucial and contribute significantly to the 

experimental strategies and design of the liquid-liquid two-phase pipe flow. For instance, in 

experimental study of the overall drop size behaviour in two phase pipe flow, the typical 

approaches are by changing and/or varying the fluid volume fraction (i.e., 𝜙) and the flow 

conditions (i.e., 𝑈) of the system. In regard to the fluid volume fraction, altering the volume 

fraction, 𝜙 of the dispersed phase will significantly affect the oil-water emulsion stability 

(Meybodi et al., 2014). While, in the context of flow condition, changing the velocity is the 

preferred method because of the direct influence on the turbulent kinetic energy in the system 
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which eventually leads to varying the energy dissipation rate, 𝜀. The rate of energy 

dissipation is estimated based on the newly proposed energy dissipation rate 𝜀 by Jakobsen 

(2014). The rate is utilized based on the reason that the wall shear is the primary source of 

turbulence production. Fig. 4.10 shows the effect of various energy dissipation rates, 𝜀 during 

the drop size evolutions in terms of mean drop radii for number and volume density 

distributions, 𝜇𝑁, and 𝜇𝑉. The results in Fig. 4.10 show that, at increase number of energy 

dissipation rate, 𝜀, the mean drop radii decreased and the magnitude is consistent approaching 

the end of 1500m pipeline. Conversely, at low energy dissipation rate of 𝜀 = 2.0 m2/s3 the 

mean radii are observed to be increased. These events are true considering that the energy 

dissipation rate, 𝜀 is one of the primary mechanisms that control the breakage frequency as 

depicted in Eqn. (3.17). Hence, due to an effect of small mean radii, the system will be 

breakage dominated and high energy dissipation rate, 𝜀. Conversely, if the mean radii are 

large in magnitude, the system indicates coalescence dominated and low energy dissipation 

rate, 𝜀. As breakage becomes stronger due to increase in energy dissipation rate, 𝜀, more 

droplets will likely break into smaller droplets which leads to small magnitude in mean radii 

as depicted in Fig. 4.10 (a) and (b). This is due to the increase in kinetic energy in the system 

that eventually overcomes the surface energy of the droplets. Kumar et al., (1991) explained 

that, droplets will deform and break under the influence of turbulent inertial stresses. In this 

premise, increase in turbulent stresses will produce higher energy dissipation rate as a result 

of high Reynolds number and consequently force the droplet to break and rupture. Solsvik et 

al., (2017) also agreed that all droplets will break in turbulent liquid flows under high 

Reynolds numbers and energy dissipation rate. Although, turbulent eddies is responsible for 

breakup, however only large turbulent eddies from high energy dissipation rate contain 

sufficient energy to affect breakage (Prince and Blanch, 1990). In general, the result on 

parameter 𝜀 indicates that, the overall system behaviour can be in the form of breakage-
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dominated or coalescence-dominated. The system is breakage-dominated if higher energy 

dissipation rate is introduced (i.e., higher flow rate and Reynolds number) and coalescence-

dominated if the opposite criterion is met. 

 

 

(a) 

 

(b) 

Figure 4.10 The effect of various energy dissipation rates, 𝜀 on the average radii of (a) 

number density distribution, 𝜇𝑁 and (b) volume density distribution,  𝜇𝑉. The new fitting 

parameters used are shown on top left corner of the plot. 

 

Besides that, fitting parameters of 𝑘𝜔 and 𝑘𝑔1 are also important parameters to 

evaluate because they can significantly affect the overall model behavior, particularly the 

length of equilibrium, 𝐿𝑒𝑞. In this work, the  𝐿𝑒𝑞 is the length at which the mean radii are 

consistently unchanged or equilibrated towards the end of the pipeline due to the balance 

between the breakage and coalescence processes. Hence, to evaluate the effect of fitting 

parameters 𝑘𝜔 and 𝑘𝑔1 on the overall system behaviour, the mean radii for number and 
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volume density distributions are plotted against the axial position, 𝑧 as depicted in Fig. 

4.11(a) and (b). Furthermore, to maintain consistency in the study, the plot is selected at pipe 

length 𝐿 = 10,000m and the fitting parameters 𝑘𝜔 and 𝑘𝑔1 are varied at three different order 

of magnitudes (i.e., 10n where, n=-2,-3,-4). From Fig. 4.11, the system is found to equilibrate 

at faster rate and shorter distance (shift to the left) as 𝑘𝜔 and 𝑘𝑔1 increase. Conversely, the 

system is found to take slower time and longer equilibrium length (shift to the right) as 𝑘𝜔 

and 𝑘𝑔1 decrease. The results indicate that the 𝑘𝜔 and 𝑘𝑔1 play a major role in altering and 

controlling the equilibrium state of the system. In this respect, as the magnitude of 𝑘𝜔 and 

𝑘𝑔1 increase, the equilibrium rate increases. This is true considering the intensity of the 

coalescence and breakage rates generated as fitting parameters 𝑘𝜔 and 𝑘𝑔1 increase due to 

direct proportionality effect of 𝑘𝜔 and 𝑘𝑔1 as depicted in Eqn. (3.11) and Eqn. (3.17). In 

general, the results signify that, 𝑘𝜔 and 𝑘𝑔1
 have a strong influence the overall system 

behavior especially on the 𝐿𝑒𝑞. Hence, altering or changing these values one can gain control 

on the relative magnitudes of coalescence and breakage frequencies which result in different 

length of equilibrium.  

 

 
(a) 
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(b) 

Figure 4.11 The effect of fitting parameters 𝑘𝜔 and 𝑘𝑔1 at pipe length, 𝐿= 10,000m on the 

average radii of (a) number density distribution, 𝜇𝑁 and (b) volume density distribution,  𝜇𝑉.  

 

The last and most important parameter evaluated is the volume fraction of the oil-water 

system, 𝜙. Fig. 4.12 shows the effect of various volume fractions on the mean number radii 

as a function of axial position, 𝑧. The mean radii are found to be consistently growing until 

they stabilize and level at a constant magnitude approaching the end of the pipeline (at higher 

𝑧). The results of the mean radii in Fig. 4.12 indicates that, the volume fraction, 𝜙 plays a 

major role in affecting the overall system behavior. In this regard, the bigger the volume 

fraction, more droplets are expected to be present in the pipe and due to considerably high 

coalescence frequency and efficiency parameters at about  𝑘𝜔= 1.70e-03 and  𝑘𝜓= 1.50e-03 in 

the system, hence, the tendency to form larger droplets also increases. At these conditions, 

the frequencies and chances of the droplets to collide and coalesce respectively are enhanced 

particularly at high volume fraction. Experimental study by Maaß et al., (2012) on the effect 

of dispersed phase fraction on drop size distributions supported the argument. They observed 

that, the increase in dispersed phase fraction causes the mean drop sizes to increase. In a 

nutshell, the magnitude of average drop radius becomes higher as volume fraction increased 

at the given fitting parameters. Several authors relate this behavior due to turbulence damping 

(Cohen 1991: Coulaloglou and Tavlarides, 1977), while, others attribute it to coalescence 
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process. There are also other researchers believe that this trend is associated with both 

turbulence dampening and coalescence (Gäbler et al., 2006). This, however, is not the case 

when the volume fraction is at 0.6 as depicted in Fig. 4.12. The mean number radii, 𝜇𝑁 at 

𝜙 = 0.6 is observed to drop to a magnitude less than at volume fraction, 𝜙 = 0.5 at the 

equilibrium state towards the end of the pipeline. This is possibly due to the model kernels 

employed in the system neglect the damping effects (1 + 𝜙) in turbulent local intensities at 

high volume fraction as suggested by Coulaloglou and Tavlarides (1977). Hence, at increase 

amount of dispersed volume fraction (i.e., 𝜙 > 0.3) the system did not account the damping 

effect which results in lower mean radii at high volume fractions in the equilibrium state. 

However, the mean number radii 𝜇𝑁 are found to be not affected at lower dispersed volume 

fractions (𝜙 ≤ 0.3) with an increasing trend as expected. 

 

 

Figure 4.12 The effect of various volume fractions, 𝜙 on the average radii of number density 

distribution, 𝜇𝑁. The fitting parameters used are shown on top left corner of the plot. 

 

Many literatures have reported that an increase in the dispersed phase fraction will 

result in an increasing drop diameter. Hence, to address the issue of high-volume fraction in 

the system, the models as depicted in Table 4.6 have been implemented with minor 

modifications by introducing the factor of (1 + 𝜙) to account for the damping effect as 

suggested by Coulaloglou and Tavlarides, (1977). The modified model for the breakage and 
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coalescence kernels are shown in Table 4.7 and the results are plotted in Fig. 4.13 using the 

same fitting parameters plotted in Fig. 4.12 for the mean number radii, 𝜇𝑁.  

 

Table 4.6 Existing model for breakage and coalescence kernels 

Process  Existing model 

Breakage frequency 

(Vankova et al., 2007) 

𝑔(𝑟) =  𝑘𝑔1

𝜀1 3⁄

22 3⁄ 𝑟2 3⁄ √
𝜌𝑐

𝜌𝑑
𝑒𝑥𝑝 [−𝑘𝑔2

𝜎

𝜌𝑑25 3⁄  𝑟5 3⁄ 𝜀2 3⁄
] 

Collision frequency 

(Prince and Blanch, 

1990) 

𝜔𝑐(𝑟′, 𝑟′
′) = 4√2 

3
𝑘𝜔𝜀1 3⁄ (𝑟′ + 𝑟′′)

2
(𝑟′2 3⁄

+ 𝑟′′2 3⁄
)
1 2⁄

 

Coalescence efficiency 

(Chesters, 1991) 

𝜓𝐸(𝑟′, 𝑟′′) = exp [−𝑘𝜓

𝜌𝑐
1 2⁄

𝜀1 3⁄ 𝑟𝑒𝑞
5 6⁄

21 6⁄ 𝜎1 2⁄
] 

 

Table 4.7 Modified model for breakage and coalescence kernels 

Process  Modified model 

Breakage frequency 𝑔(𝑟) =  𝑘𝑔1

𝜀1 3⁄

22 3⁄ 𝑟2 3⁄ (1 + 𝜙)
√

𝜌𝑐

𝜌𝑑
𝑒𝑥𝑝 [−𝑘𝑔2

𝜎(1 + 𝜙)2

𝜌𝑑25 3⁄  𝑟5 3⁄ 𝜀2 3⁄
] 

Collision frequency 𝜔𝑐(𝑟′, 𝑟′
′) =

4√2 
3

𝑘𝜔𝜀1 3⁄

1 + 𝜙
(𝑟′ + 𝑟′′)

2
(𝑟′2 3⁄

+ 𝑟′′2 3⁄
)
1 2⁄

 

Coalescence efficiency 𝜓𝐸(𝑟′, 𝑟′′) = exp [−𝑘𝜓

𝜌𝑐
1 2⁄

𝜀1 3⁄ 𝑟𝑒𝑞
5 6⁄

21 6⁄ 𝜎1 2⁄ (1 + 𝜙)3
] 

  

Based on the coalescence and breakage models published in the literature (see Table 

2.1 – 2.4), majority are found to neglect the damping factor (1 + 𝜙) on the local turbulent 

intensities at high dispersed phase fraction as depicted in Table 4.6. Hence, this present work 
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offers an insight of the droplet sizes by accounting the dampening of the turbulence due to 

disperse phase fraction in the modified breakage and coalescence models as depicted in Table 

4.7. The results in Fig. 4.13 suggests that, as the volume fraction increases the mean radii 

increase in magnitude, particularly at 𝜙 = 0.6. This indicates that, higher volume fraction 

enhances the probability of the formation of larger droplets and consequently increases the 

mean radii. Recent experimental investigation by Schümann (2016) has shown that, the mean 

and the maximum droplet sizes increase when the dispersed volume fraction is increased. 

Earlier investigation by Ioannou, (2006) also found that higher fractions of dispersed phase 

lead to coalescence dominating and eventually increase the average droplet size. In general, 

the results have shown that, modelling drop size distributions at high volume fraction is in a 

good agreement with experimental work reported in literature. Thus, for drop size analysis in 

liquid-liquid dispersions, one should consider the damping factor (1 + 𝜙) so that the 

turbulence damping at high volume fraction is appropriately accounted. From another point 

of view, the overall results of parametric effects suggest that, one can have the understanding 

and control of the breakage and coalescence processes when conducting the experiment on 

drop size distribution in turbulent pipe flow.  

 

 

Figure 4.13 The effect of various volume fractions, 𝜙 on the average radii of number density 

distribution, 𝜇𝑁 with damping effect (1 + 𝜙) proposed by Coulaloglou and Tavlarides, (1977) 

for the new fitting parameters shown on top left corner. 
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 Additionally, simple regression analysis of drop size distribution at the final location 

in the pipe is also evaluated to understand the overall model behavior. To demonstrate the 

regression behavior, the sum of squares (SSQ) is evaluated between the simulation results 

and the experimental results at the final location in the pipe. In general, the results from SSQ 

enable important information in finding the best fit for the dynamic evolution of the drop size 

density distribution in liquid-liquid emulsions in turbulent pipe flow. In this regression study, 

the behavior of SSQ is plotted in terms of  𝑘𝜔 and 𝑘𝑔1
 for three different values of fitting 

parameters 𝑘𝜓 and 𝑘𝑔2
 as depicted in Fig. 4.14(a), (b), and (c). The fitting parameters 𝑘𝜓 and 

𝑘𝑔2
 are set at decreasing in magnitude as shown in Fig. 4.14(a), (b), and (c), respectively. The 

behavior of SSQ at 𝑘𝜓 =1.50e-02 and 𝑘𝑔2
= 3.50e0 as portrayed in Fig. 4.19(a) indicates that 

the local minima are lies in the region approaching the 10-4 of  𝑘𝑔1
 and 100 for  𝑘𝜔. As shown 

in this figure, the value for fitting parameters 𝑘𝜔 and 𝑘𝑔1
 are set at lower, 𝑘𝜔 (i.e., ≤ 10-5) 

and higher, 𝑘𝑔1
 (i.e., ≥ 101). In this respect, for these set of fitting parameters (𝑘𝜓 and 𝑘𝑔2

), 

one should avoid placing the higher and smaller values for the fitting parameters of, 𝑘𝑔1
 and 

𝑘𝜔, respectively, in order to find the best fit or local minima. On the other hand, Fig. 4.14(b) 

provides significant information on finding the best fit. From these results of regression 

behavior, one can have an insight on which order of magnitude and values of fitting 

parameters in finding the best fit for the dynamic evolution of drop size distribution in 

turbulently flowing liquid-liquid emulsions. In general, to find the best fit or local minima of 

the system, one must consider the appropriate magnitude of 𝑘𝜓 and 𝑘𝑔2
 (as depicted in Fig. 

4.14(b)). This is because, the interplay between the four fitting parameters is crucial as they 

are found to be significantly affecting the overall regression behavior.  
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(a) 

 

(b) 

 

(c) 
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Figure 4.14 The behavior of sum of squares (SSQ) as a function of 𝑘𝜔 and 𝑘𝑔1
 at given 

fitting parameters: (a) 𝑘𝜓= 1.50e-02 and 𝑘𝑔2
= 3.50e-00, (b) 𝑘𝜓= 1.50e-03 and 𝑘𝑔2

= 3.50e-01, and 

(c) 𝑘𝜓= 1.50e-04 and 𝑘𝑔2
= 3.50e-02. 

 

4.3 Chapter summary 

 This chapter discussed the drops evolution of oil-water emulsion in a long-distance 

turbulent pipe flow. One of the main contributions in this present work is the proposed 

solutions for the PBE. In this present work, the PBE is solved in the form of volume density 

distribution, 𝑓𝑣 instead of the typical number density distribution, 𝑓𝑛. The study is also crucial 

for case-specific system in a liquid-liquid condition with various fluids properties and flow 

conditions. In this regard, the study on parametric effects provides the understanding on the 

interplay between various parametric effects that contribute to the overall behavior of the 

drop size distributions. Besides that, the model has proved to be reliable and robust from the 

arbitrary set of results depicted. Two manuscripts are prepared (i.e.., Part I and Part II) for 

this discussion (Chapter 4) as attached in Appendix B and C of this thesis. Next section will 

discuss the regression of experimental pipe flow between simulation and experimental data. 
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CHAPTER 5 

 

5 RESULTS AND DISCUSSION (PART II) 

 

5.1  Part II: Regression of the experimental pipe flow data: comparison between 

simulation and experimental data  

In this chapter, the comparisons between the simulation and experimental data as well 

as the best fitting parameters are analyzed and discussed. For the second part of the 

discussions (Part II), the following physical properties of the oil-water system are used in the 

simulation as depicted in Table 5.1. The physical properties shown in Table 5.1 are divided 

into three different data sets known as ge12275a, ge12279a, and ge12284a. The primary 

difference between the three experimental data sets is the average flow velocity, 𝑈. In this 

respect, ge12275a represents the lowest average flow velocity, 𝑈 at 1.70 m/s, followed by 

ge12279a and ge12284a with 2.0 m/s and 2.50 m/s, respectively. All the parameters in Table 

5.1 are then used as inputs for the model simulations.  

In this regression study, several models are selected for the breakage and coalescence 

kernels in order to evaluate their effect on the dynamic evolution of the drop size density 

distribution in pipes. The details of the models are summarized in Table 5.2, Table 5.3, and 

Table 5.4. It is important to note that, the breakage kernels are selected based on the 

mechanism of turbulent fluctuations. While, the coalescence kernels are selected from the 

film drainage model and energy model as a result from turbulent-induced collisions. In Table 

5.2, the selected models are categorized into three different cases known as case I, case II, 

and case III. Each case comprised of different underlying mechanisms. 
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 Table 5.1 Overview of the physical parameters from the experimental oil-water pipe flow 

Parameter Ge12275a Ge12279a Ge12284a Descriptions 

Ø 0.30 0.30 0.30 Volume fraction 

𝑈 1.70 [m/s] 2.00 [m/s] 2.50 [m/s] Average flow velocity 

𝐿 30 [m] 30 [m] 30 [m] Length of the pipe 

𝑅𝑚𝑎𝑥 1000 [μm] 1000 [μm] 1000 [μm] 

Upper bound of the radius 

domain 

𝐷 0.069 [m] 0.069 [m] 0.069 [m] Diameter of the pipe 

𝜌𝑑 865 [kg/m3] 865 [kg/m3] 865 [kg/m3] Density of the dispersed phase 

𝜇𝑑 177 [mPas] 169 [mPas] 152 [mPas] Viscosity of the dispersed phase 

𝜌𝑐 1021 [kg/m3] 1021 [kg/m3] 1021 [kg/m3] Density of the continuous phase 

𝜇𝑐 1.0 [mPas] 1.0 [mPas] 1.0 [mPas] 

Viscosity of the continuous 

phase 

σ 26.0 [mN/m] 26.0 [mN/m] 26.0 [mN/m] Interfacial tension 

 

 

Table 5.2 Comparison between simulation cases for breakage and coalescence kernels 

Case Breakage kernels  Coalescence kernels 

I Coulaloglou and Tavlarides, (1977) + 

Hsia and Tavlarides, (1980) 

Coulaloglou and Tavlarides, (1977) + 

Coulaloglou and Tavlarides, (1977)  

II Vankova et al., (2007) + Coulaloglou 

and Tavlarides, (1977) 

Prince and Blanch (1990) + Chesters 

(1991) 

III Vankova et al., (2007) + Coulaloglou 

and Tavlarides, (1977) 

Prince and Blanch (1990) + Simon 

(2004) 

 



 

142 

 

Table 5.3 Summary of breakage models for every case 

Case Breakage kernels  

I 
𝑔(𝑟) =  𝑘𝑔1

𝜀1 3⁄

𝑟2 3⁄ (1 + 𝜙)
exp [−𝑘𝑔2

𝜎(1 + 𝜙)2

𝜌𝑑𝜀2 3⁄ 𝑟5 3⁄
]   + 

𝛽(𝑟, 𝑟′) =
45

2√2
3  

𝑟2

𝑟′3
(
𝑟3

𝑟′3
)

2

[1 − (
𝑟3

𝑟′3
)

2

] 

II 

𝑔(𝑟) =  𝑘𝑔1

𝜀1 3⁄

22 3⁄ 𝑟2 3⁄ √
𝜌𝑑

𝜌𝑐
𝑒𝑥𝑝 [−𝑘𝑔2

𝜎

𝜌𝑑25 3⁄  𝑟5 3⁄ 𝜀2 3⁄
]  + 

β(𝑟, 𝑟′) =  
2.4

𝑟′3
exp [−4.5 

(2𝑟3 − 𝑟′3)2

𝑟′6
] × 3𝑟2 

III 

𝑔(𝑟) =  𝑘𝑔1

𝜀1 3⁄

22 3⁄ 𝑟2 3⁄ √
𝜌𝑑

𝜌𝑐
𝑒𝑥𝑝 [−𝑘𝑔2

𝜎

𝜌𝑑25 3⁄  𝑟5 3⁄ 𝜀2 3⁄
]  + 

β(𝑟, 𝑟′) =  
2.4

𝑟′3
exp [−4.5 

(2𝑟3 − 𝑟′3)2

𝑟′6
] × 3𝑟2 

 

Table 5.4 Summary of coalescence models for every case 

Case Coalescence kernels 

I 
𝜔𝑐(𝑟

′, 𝑟′′ ) =  𝑘𝜔

ɛ1 3⁄

1 + 𝜙
(𝑟′ + 𝑟′′ )2 [𝑟′2 3⁄

+ 𝑟′′ 2 3⁄ ]
1 2⁄

   + 

𝜓𝑒(𝑟
′, 𝑟′′ ) =  exp [−

1

𝑘𝜓

𝜇𝑐𝜌𝑐𝜀

𝜎2(1 + 𝜙)3
(

𝑟′𝑟′′ 

𝑟′ + 𝑟′′ 
)

4

] 

II 𝜔𝑐(𝑟
′, 𝑟′′) = 4√2 

3
𝑘𝜔𝜀1 3⁄ (𝑟′ + 𝑟′′)

2
(𝑟′2 3⁄ + 𝑟′′2 3⁄ )

1 2⁄
   + 

𝜓𝑒(𝑟′, 𝑟′
′) = exp [−𝑘𝜓

𝜌𝑐
1 2⁄

𝜀1 3⁄ 𝑟𝑒𝑞
5 6⁄

21 6⁄ 𝜎1 2⁄
] 

III 𝜔𝑐(𝑟
′, 𝑟′′) = 4√2 

3
𝑘𝜔𝜀1 3⁄ (𝑟′ + 𝑟′′)

2
 (𝑟′2 3⁄ + 𝑟′′2 3⁄ )

1 2⁄
   +          
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𝜓𝑒(𝑟′, 𝑟′
′) = exp [−

4𝑘𝜓𝜎(𝑟′2 + 𝑟′′2)

𝜌𝑑𝜀2 3⁄ 211 3⁄ (𝑟′11 3⁄ + 𝑟′′11 3⁄ )
] 

 

There are various mechanisms discussed to describe the breakage process (refer to 

Chapter 2, section 2.3.1 of this thesis) and the coalescence process (refer to Chapter 2, section 

2.4.1 of this thesis) as explained in the review articles by Liao and Lucas (2009), Liao and 

Lucas (2010), Sajjadi et al., (2013), Solsvik et al., (2013), and Abidin et al., (2015). However, 

in this study, mechanism of turbulent fluctuations for breakage process is selected due to its 

relevance applicability to the present study (i.e., liquid-liquid flow) as well as its extensive 

used in the literature. Apart from limited discussions in literature, the other mechanisms such 

as breakup due to viscous shear force, breakup due to shearing-off process, and breakup due 

to interfacial instabilities are mainly developed based on gas-liquid system (Liao and Lucas, 

2009).   

On the other hand, for the coalescence process, the mechanism of turbulent-induced 

collisions is selected. Wherein, other mechanisms such as droplets capture in an eddy, 

velocity gradient-induced collisions, buoyancy-induced collisions, and wake interactions-

induced collision are primarily relevance only for gas-liquid system where the different in 

properties of the phases are significant in affecting the collisions between bubbles/droplets. 

Although there is an exception on drop collision mechanism of droplets capture in an eddy. 

However, the mechanism is not able to predict the coalescence kinetics accurately as reported 

by Sajjadi et al., (2013) and limited studies are found in the literature. Therefore, turbulent 

fluctuations for breakage process and turbulent-induced collisions for coalescence process are 

considered while, other mechanisms are not evaluated in the current work. The overview of 

mechanisms for the simulation cases in each selected breakage and coalescence kernels are 

illustrated in Table 5.5 as follows.   
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Table 5.5 Comparison between simulation cases based on underlying mechanisms for each 

breakage and coalescence kernels 

Case Mechanisms for breakage kernels  Mechanisms for coalescence kernels 

I Turbulent fluctuations + statistical 

model (beta distribution function) 

Turbulent-induced collisions + film 

drainage model (deformable particles 

with immobile interfaces) 

II Turbulent fluctuations + statistical 

model (normal distribution function) 

Turbulent-induced collisions + film 

drainage model (deformable particles 

with fully mobile interfaces) 

III Turbulent fluctuations + statistical 

model (normal distribution function) 

Turbulent-induced collisions + energy 

model 

 

In Table 5.5, the coalescence efficiency function in case I and case II are selected 

based on film drainage model with specific characteristics of deformable droplets with 

immobile interfaces and deformable droplets with mobile interfaces, respectively. In film 

drainage, these characteristics are essential because they describe the quality of the 

coalescence efficiency during the collision between two droplets, particularly in liquid-liquid 

system. For both cases the deformable droplets refer to the rigidity of the particle surfaces, 

while, the mobility denotes the motion of the colliding droplet interfaces during the process 

of film drainage. In case I, the coalescence efficiency by film drainage is characterized by a 

viscous thinning. Hence, this film drainage model is applicable for very viscous dispersed 

phase or system with very specific surfactant soluble concentration (Liao and Lucas, 2010). 

According to Lee and Hodgson (1968), the immobile interfaces refers to interfaces when the 

surfaces shear stresses due to flow within the film are resisted by the interfacial tension 

gradient set up because of expansion of the surface in the central regions of the film. In this 
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regard, the droplet can support an infinite high shear stress (Æther, 2002). This is due to the 

presence of the surfactant or impurities at the interfaces and in this condition, the film will 

drain very slowly (Æther, 2002). On the other hand, in case II, the coalescence efficiency 

from the drainage process is the opposite criteria of case I. This model of deformable droplets 

with fully mobile interfaces is suitable for a case of liquid-liquid system of the dispersed 

phase (Chesters, 1991). In this respect, the drainage is no longer controlled by the viscous 

stress as in immobile interfaces but instead by the resistance occurred in the film due to 

deformation and acceleration (Chesters, 1991; Liao and Lucas, 2010).  

 

5.2 Regression results and discussion (model validation with experimental data) 

It is of interest in this section to compare the solution of the population balance 

equation using various breakage and coalescence models against the three different 

experimental data sets at the final location (pipeline). We used the fitting parameters to 

determine the most robust and applicable coalescence or breakage models. Table 5.6 shows 

the best estimation of the fitting parameters (i.e., 𝑘𝜔 , 𝑘𝜓, 𝑘𝑔1
, 𝑘𝑔2

) for the regression of 

experimental pipe flow data in terms of volume density distribution, 𝑓𝑣 at the final location. 
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Table 5.6 Numerical value of best fitting parameters and confidence intervals 

Data set Case  𝑘𝜔 ± confidence interval 𝑘𝜓 ± confidence interval 𝑘𝑔1
± confidence interval 𝑘𝑔2

± confidence interval 

Ge12275a 

I 2.200 × 10−2 ± 5.19 × 10−5 4.550 × 10−11 ± 7.39 × 10−14 3.879 × 10−1 ± 6.27 × 10−4 1.010 × 10−1 ± 3.80 × 10−4 

II 1.090 × 10−2 ± 2.74 × 10−5 8.499 × 10−3 ± 2.23 × 10−5 1.870 × 10−1 ± 4.70 × 10−4 2.380 × 10−1 ± 6.25 × 10−4 

III 2.799 × 10−2 ± 1.25 × 10−5 1.100 × 10−4 ± 4.89 × 10−8 4.750 × 10−1 ± 7.93 × 10−4 2.350 × 10−1 ± 4.89 × 10−4 

Ge12279a 

I 2.550 × 10−2 ± 1.30 × 10−5 6.900 × 10−11 ± 2.31 × 10−13 4.050 × 10−1 ± 2.69 × 10−4 1.450 × 10−1 ± 7.78 × 10−4 

II 1.560 × 10−2 ± 1.26 × 10−5 5.500 × 10−3 ± 2.01 × 10−7 2.460 × 10−1 ± 1.90 × 10−5 3.350 × 10−1 ± 1.65 × 10−5 

III 1.950 × 10−2 ±1. 46 × 10−6 1.100 × 10−4 ± 6.02 × 10−7 3.000 × 10−1 ± 2.71 × 10−4 3.250 × 10−1 ± 2.16 × 10−5 

Ge12284a 

I 2.500 × 10−2 ± 2.15 × 10−5 9.850 × 10−11 ± 1.07 × 10−13 3.249 × 10−1 ± 3.24 × 10−4 2.150 × 10−1 ± 1.95 × 10−4 

II 1.059 × 10−2 ± 2.60 × 10−7 5.500 × 10−3 ± 1.40 × 10−7 1.820 × 10−1 ± 1.21 × 10−6 6.149 × 10−1 ± 3.72 × 10−6 

III 3.200 × 10−2 ± 5.94 × 10−6 1.100 × 10−4 ± 1.73 × 10−7 5.320 × 10−1 ± 5.79 × 10−4 5.850 × 10−1 ± 1.46 × 10−4 
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It is worth noting that, each two of the fitting parameters are associated with 

coalescence (𝑘𝜔 , 𝑘𝜓) and breakage (𝑘𝑔1
, 𝑘𝑔2

) mechanisms, respectively. These four fitting 

parameters are crucial as they control the dynamics of the overall system behaviour (as 

discussed earlier in parametric effect in Part I of Chapter 4). The confidence intervals are 

calculated based on the difference between the simulation and experimental data at the final 

location of the pipes. The results tabulated in Table 5.6 also highlight the confidence intervals 

that consist of the probability or the range limit of the best fitted parameters. From all of the 

cases studied, the confidence interval is found to be at least one order of magnitude different 

than the actual parameter. This suggests that, the results for the regression of breakage and 

coalescence parameters at lower order of magnitude of the confidence interval are in good 

agreement with the experimental data as shown in Fig. 5.1 until Fig. 5.3. The results of 

regression clearly indicate that the model simulations are perfectly fit with the shape and peak 

of the volume density distribution at final location in the pipeline for each of the best fitting 

parameters depicted in Table 5.6. The comparison among all the cases and data sets suggests 

that the fit of the drop volume distribution at the final location is considered satisfactory in 

terms of the distribution properties (i.e., shape and peak location). This demonstrates that all 

the models evaluated match the experimental data.  
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(a)         (b) 

 

(c) 

Figure 5.1 Comparison of the scaled experimental volume density distribution and the model 

prediction using the best fit parameters for case I and data set of: (a) ge12275a, (b) ge12279a, 

and (c) ge12284a. 
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(a)        (b) 

 

      (c) 

Figure 5.2 Comparison of the scaled experimental volume density distribution and the model 

prediction using the best fit parameters for case II and data set of: (a) ge12275a, (b) 

ge12279a, and (c) ge12284a. 
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(a)        (b) 

 

(c) 

Figure 5.3 Comparison of the scaled experimental volume density distribution and the model 

prediction using the best fit parameters for case III and data set of: (a) ge12275a, (b) 

ge12279a, and (c) ge12284a. 

 

In this study, the fits are determined by using nonlinear regression model and while 

doing so, the effect toward the overall model behavior have to be considered. For every 

fitting parameter tested, the results are plotted and analyzed until it is considered to be 

perfectly fits with the final (location) experimental data in terms of the shape and peak of the 

volume density distribution. In addition to this approach, sum of squares (SSQ) are also 

calculated to verify the best regression of the volume density distribution at final location. 
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Principally, SSQ method is to find the local minima (deviation in data points) between the 

simulation results and the experimental data. As depicted in Fig. 5.4 until Fig. 5.6, at the 

given values of 𝑘𝜓 and 𝑘𝑔2
, one can estimate the range of 𝑘𝜔 and 𝑘𝑔1

 at the lowest SSQ 

(local minima) to find the best fits of the system. 

 

 

(a)        (b) 

 

      (c) 

Figure 5.4 Overview of sum of squares (SSQ) as a function of  𝑘𝑔1
 and 𝑘𝜔for case I and data 

set of: (a) ge12275a at 𝑘𝜓 =  4.55 × 10−11 and 𝑘𝑔2
=  1.01 × 10−1, (b) ge12279a at 𝑘𝜓 =

 6.90 × 10−11 and 𝑘𝑔2
=  1.45 × 10−1, and (c) ge12284a at 𝑘𝜓 =  9.85 × 10−11 and 𝑘𝑔2

=

 2.15 × 10−1. 
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(a)        (b) 

 

 

      (c) 

Figure 5.5 Overview of sum of squares (SSQ) as a function of  𝑘𝑔1
 and 𝑘𝜔for case II and 

data set of: (a) ge12275a at 𝑘𝜓 =  8.50 × 10−3 and 𝑘𝑔2
=  2.38 × 10−1, (b) ge12279a at 

𝑘𝜓 =  5.50 × 10−3 and 𝑘𝑔2
=  3.35 × 10−1, and (c) ge12284a at 𝑘𝜓 =  5.50 ×

10−3 and 𝑘𝑔2
=  6.15 × 10−1. 

 

 

 



 

153 

 

 

(a)        (b) 

 

(c) 

Figure 5.6 Overview of sum of squares (SSQ) as a function of  𝑘𝑔1
 and 𝑘𝜔for case III and 

data set of: (a) ge12275a at 𝑘𝜓 =  1.10 × 10−4 and 𝑘𝑔2
=  2.35 × 10−1, (b) ge12279a at 

𝑘𝜓 =  1.10 × 10−4 and 𝑘𝑔2
=  3.25 × 10−1, and (c) ge12284a at 𝑘𝜓 =  1.10 ×

10−4 and 𝑘𝑔2
=  5.85 × 10−1. 

 

The results of SSQ are tabulated in Table 5.7 along with the best fitting parameters for 

all the cases and data sets studied. The results demonstrate that the calculated values of SSQ 

from the function being fitted are in the range of ≈ 10−3 − 10−4, which indicates that the fits 

are in good agreement with the experimental data as demonstrated in Fig. 5.1 until Fig. 5.3. 

From Table 5.7, the best fitting parameter for collision frequency 𝑘𝜔 of this system is found 

to be in the range between 1.00 × 10−2 to 3.50 × 10−2 for all the cases and data sets. 
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Table 5.7 Numerical value of the best fitting parameters for all the cases and data sets 

Data set Case 𝑘𝜔 𝑘𝜓 𝑘𝑔1
 𝑘𝑔2

 
𝑘𝑔1

𝑘𝜔
 SSQ 

Ge12275a 

I 2.20 × 10−2 4.55 × 10−11 3.88 × 10−1 1.01 × 10−1 17.6 5.92 × 10−4 

II 1.09 × 10−2 8.50 × 10−3 1.87 × 10−1 2.38 × 10−1 17.1 6.32 × 10−4 

III 2.80 × 10−2 1.10 × 10−4 4.75 × 10−1 2.35 × 10−1 16.9 5.12 × 10−4 

Ge12279a 

I 2.55 × 10−2 6.90 × 10−11 4.05 × 10−1 1.45 × 10−1 15.9 8.50 × 10−4 

II 1.56 × 10−2 5.50 × 10−3 2.46 × 10−1 3.35 × 10−1 15.7 3.57 × 10−4 

III 1.95 × 10−2 1.10 × 10−4 3.00 × 10−1 3.25 × 10−1 15.3 6.06 × 10−4 

Ge12284a 

I 2.50 × 10−2 9.85 × 10−11 3.25 × 10−1 2.15 × 10−1 13.0 1.18 × 10−3 

II 1.06 × 10−2 5.50 × 10−3 1.82 × 10−1 6.15 × 10−1 17.1 6.22 × 10−4 

III 3.20 × 10−2 1.10 × 10−4 5.32 × 10−1 5.85 × 10−1 16.6 3.04 × 10−4 

 

The fitting parameter for coalescence efficiency 𝑘𝜓 is expected to change for different 

cases, however, in case I it is observed to be much smaller compared to the cases II and III. 

This is owing to the fact that the model developed by Coulaloglou and Tavlarides, (1977) 

assumed the initial thickness of the drops and the film thickness at which film rupture occurs 

to be constant and lumped into parameter, 𝑘𝜓. Therefore, the fitting parameter 𝑘𝜓 carries a 

unit of m2 and can take a very low magnitude (i.e., ≈  10−10 − 10−20). It is important to 

note that, in this present work, the equation by Coulaloglou and Tavlarides, (1977), 𝑘𝜓 is 

treated as a denominator instead of numerator in the original model which we found to be 

more practical and sensible in this system. The fitting parameter 𝑘𝜓 for case I is found to be 

in the range of 4.00 × 10−11 to 10.00 × 10−11, while case II lies between 5.00 × 10−3 

to 9.00 × 10−3 and case III, the parameter remains constant at 1.01 × 10−4. In other words, 

the higher the value of 𝑘𝜓, the slower the coalescence rate become (the plot in Fig. 5.1 and 

Fig. 5.3 will shift backward). This is due to the fact that, 𝑘𝜓 poses a direct proportionality 
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influence against the coalescence efficiency model in the exponential term (𝑘𝜓 as numerator) 

as shown in Table 5.4 for all the cases except case I. Consequently, higher magnitude of 𝑘𝜓 

will under-predict the final experimental drop volume density distribution aside from case I, 

where 𝑘𝜓 is the denominator (imposes indirect proportionality to the coalescence efficiency) 

in the exponential term of coalescence efficiency model (refer to Table 5.4). 

The result for breakage parameters, 𝑘𝑔1
 and 𝑘𝑔2

 are observed to be in the range of 

1.00 × 10−1 − 5.50 × 10−1 and 1.00 × 10−1 − 6.50 × 10−1, respectively. It is worth noting 

that the constants between 𝑘𝑔1
 and 𝑘𝜔 play an important role in finding the best fitting 

parameters. This is true by considering the results of sum of squares (SSQ) analysis as 

depicted in Fig. 5.4 until Fig. 5.6. The fitting parameters of 𝑘𝑔1
 and 𝑘𝜔 are observed to have a 

local minima at every order of magnitude (i.e., 10n where n = 1, 2, 3) for every set of best 

fitting parameters in 𝑘𝜓 and 𝑘𝑔2
. To put into another perspective, the ratio of 𝑘𝑔1

/𝑘𝜔 is 

calculated as depicted in Table 5.7. The ratio may provide an insight on the difference in the 

degree of magnitude between 𝑘𝑔1
 and 𝑘𝜔 for every cases and data sets in order to achieve the 

best fit between the simulation and experimental data of the system. Nevertheless, in this 

study, we are not determining the absolute value of 𝑘𝑔1
/𝑘𝜔 but only the ratio between both 

parameters. This due to the different complexity and system application as well as variation 

in terms of the model employed. 

 Apart from that, the evolution of number density distribution, 𝑓𝑛 and volume density 

distribution, 𝑓𝑣 are determined from the best fitting parameters estimated in Table 5.7 and 

plotted against droplet of radius, 𝑟 for nine different locations of the pipe length for case I, II, 

and III as illustrated in Fig. 5.7, 5.8 and 5.9. The plots provide an overview on the dynamic 

evolution of drop density distribution in terms of number and volume density distributions 

(𝑓𝑛 and 𝑓𝑣) throughout 30m pipe length for all the three different cases (case I, II, and III) and 

data sets (ge12275a, ge12279a, and ge12284a). From the dynamic evolution of number 
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density distributions shown from Fig. 5.7 until Fig. 5.9 (upper part), there is a large quantity 

of droplets (high magnitude) present at the beginning (z = 0) and the quantity reduces as it 

reached the end of the pipeline (z = 30 m). This can be clearly observed in all of the cases, 

wherein at increasing number of 𝑧, the curve begins to descend until it reaches the end of the 

axial position, 𝑧 = 30m. Under these conditions, coalescence balances breakage as 𝑧 increases 

and eventually the distribution reaches equilibrium. This occurred for all the cases and data 

sets. A decreasing magnitude of  𝑓𝑛 indicates that the drop size distribution is lower and lesser 

at equilibrium compared to the initial condition. On the other hand, the second plot (bottom 

part) of Fig. 5.7, 5.8, and 5.9 demonstrate that the droplets dynamic evolution in terms of 

volume density distribution, 𝑓𝑣 across nine different pipe lengths are behaving in similar trend 

to the 𝑓𝑛. The plots illustrate that, 𝑓𝑣 is higher at the beginning (large volume of droplets 

present at the initial condition) and decreases towards the end (fewer drops volume present at 

the final condition) of the pipeline at 𝑧 = 30m as they reaching an equilibrium. for all the 

cases simulated as shown in Fig. 5.7(c), 5.8(c), and 5.9(c). This indicates that breakage is 

weak at the beginning of the pipeline because smaller droplet is harder to break than larger 

droplet.   
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Number density distribution 

 
 

Volume density distribution 

(c) 

Figure 5.7 Evolution of number density distribution, 𝑓𝑛 (top) and volume density 

distribution, 𝑓𝑣 (bottom) along the pipeline as a function of drop radius, 𝑟 for case I: (a) 

ge12275a, (b) ge12279a, and (c) ge12284a. The fitting parameters used are shown on top left 

corner of the plots. 
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(c) 

Figure 5.8 Evolution of number density distribution, 𝑓𝑛 (top) and volume density 

distribution, 𝑓𝑣 (bottom) along the pipeline as a function of drop radius, 𝑟 for case II: (a) 

ge12275a, (b) ge12279a, and (c) ge12284a. The fitting parameters used are shown on top left 

corner of the plots. 
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Volume density distribution 

(c) 

Figure 5.9 Evolution of number density distribution, 𝑓𝑛 (top) and volume density 

distribution, 𝑓𝑣 (bottom) along the pipeline as a function of drop radius, 𝑟 for case III: (a) 

ge12275a, (b) ge12279a, and (c) ge12284a. The fitting parameters used are shown on top left 

corner of the plots. 

Besides that, to further investigate the changes in the droplets sizes as they travel 

dynamically through the 30 m pipeline, the average radii profile of the drop density 

distributions is plotted as depicted in Fig. 5.10(a) and (b). In this figure, the average radii for 

the number and volume distributions (𝜇𝑛 and 𝜇𝑣) are plotted as a function of axial position, 𝑧 

for all the three cases and data sets. The results in Fig. 5.10 show that, the average radii for 

number density distribution, 𝜇𝑛 and volume density distribution, 𝜇𝑣 increased as the droplets 

transport from the beginning towards the end of the pipeline. This indicates that, the 

coalescence process is initially dominating over breakage in the overall system behavior due 

to the increase in magnitude of the average radii (i.e., higher probability of droplets to 

coalesce and forming larger droplets than breakup at the beginning of the pipe) for both 

number and volume density distributions. The results are simulated based on the best fitting 

parameters and initial distributions for each case. Aside that, from all the data sets evaluated, 

data set ge12284a is found to experience higher relative change (i.e., larger magnitude of 
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mean radii) along the pipeline particularly at the equilibrium state (approaching the end of the 

pipeline) compared to data sets ge12275a and ge12279a. 

 

 

(a) 

 

(b) 

Figure 5.10 The average radii of (a) the number distribution, 𝜇𝑛 and (b) volume distribution, 

𝜇𝑣 versus the axial position in the pipe, 𝑧 for all cases and data sets.  

 

This is most likely owing to the different in magnitude of average flow velocity, 𝑈 in 

all of the experimental data sets. In this respect, data set ge12284a contains the highest 

average flow velocity, 𝑈 followed by data sets ge12279a and ge12275a. Hence, by taking this 

into consideration and based on the initial condition, the data set ge12284a is expected to 

experience greater kinetic energy from the turbulent eddies which ultimately leads to high 

breakup of the droplets at the beginning of the pipe. This is due to the fact that, turbulent 

kinetic energy supplied is sufficient or has exceeded the surface energy of the droplets. The 

strong turbulent fluctuations in the flow means high energy dissipation rate and more droplets 
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are likely to break which results in higher 𝑓𝑛 and 𝑓𝑣 for small size droplets at the beginning of 

the pipeline as depicted in Fig. 5.7, 5.8, and 5.9 (large quantity of smaller droplets at the 

onset of the pipe). Schümann, (2016) supported the assumption in his experimental study of 

oil-water pipe flow. He concluded that, higher mixture velocities increase the possibility of 

the droplets to breakup and the droplet sizes decrease at higher velocity with increasing 

Reynolds numbers. In this respect, more droplets will coalesce (high 𝜇𝑛 and 𝜇𝑣) and form due 

to smaller sizes droplets produced at onset of the pipes. It worth noting that, In Fig. 5.10(a) 

and (b), case II and case III are found to predict higher mean radii than case I for all the data 

sets studied (i.e., ge12275a, ge12279a, ge12284a). This suggests that, the mechanisms 

employed in the model for case II and case III have a tendency to predict high mean radii in 

the system. This is because in case II, the coalescence efficiency by Chesters (1991) from the 

film drainage model is considered from the deformable droplets at fully mobile interfaces 

(see Fig. 2.11(c) in Chapter 2 of this thesis). In this context, the fully mobile interfaces are 

expected to experience faster film drainage than case I at immobile interfaces (Æther, 2002). 

In other words, the rate of coalescence efficiency is higher in case II resulting in larger mean 

radii as demonstrated in Fig. 5.10(a) and (b). This process is suitable for a system having pure 

fluids (i.e., no impurities or surfactants) or low viscosity fluids where viscous forces are 

negligible (Chesters, 1991).  

On the other hand, in case I, the film drainage model of deformable droplets at 

immobile interfaces proposed by Coulaloglou and Tavlarides (1977) gives a lower magnitude 

of mean radii in comparison to case II and III. This is owing to the model developed by 

Coulaloglou and Tavlarides (1977) that takes into account the viscous stress effect from the 

viscosity of the dispersed phase or/and specific surfactant soluble concentration in the system 

(Liao and Lucas, 2010) as well as the effect of local turbulent intensities at high volume 

fraction (1 + 𝜙). It is worth noting that, the effect of local turbulent intensities at high volume 
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fraction (1 + 𝜙) effectively reduces the rate of collision frequency (𝜔𝑐) due to the indirect 

proportionality influence of the term as illustrated in Table 5.4. For these reasons, the 

probabilities of droplets to form larger droplets are lower and resulting in small magnitude of 

mean radii. Furthermore, if there is a presence of viscous effects at the interfaces, it is 

expected that the drainage time will be sufficiently longer than the contact time, thus some 

droplets may not be able to coalesce. As discussed by Kamp et al., (2017), in film drainage 

model, the droplets must remain in contact for sufficient time until the intervening liquid film 

thins to its critical thickness at which 𝑡𝑐𝑜𝑛𝑡𝑎𝑐𝑡 > 𝑡𝑑𝑟𝑎𝑖𝑛𝑎𝑔𝑒 (refer to Fig. 2.8 in Chapter 2 of 

this thesis) for coalescence to occur. On the other hand, in case III, the coalescence efficiency 

model proposed by Simon (2004) is strongly dependent on kinetic collision energy (as shown 

in Table 5.4 for coalescence kernels). In this respect, the higher the kinetic energy (i.e., 

higher flow velocity, 𝑈) as described in data set ge12284a, the more efficient the coalescence 

process will become (bigger droplet formed). Hence, the probability of coalescence (𝜓𝑒) from 

drop collision process increases if the kinetic collision energy is greater than the surface 

energy holding the droplet together (i.e., 𝐸𝑘 > 𝐸𝜎). Nevertheless, by taking into account the 

complexity of the model and the turbulent flow behavior, the predictions (results) are 

considered satisfactory based on the individual mechanisms as they appropriately described 

the essence of droplets behavior in emulsion of oil and water. In addition, the results on 

average radii may have important implication in terms of accessing designing strategies 

specifically for multiphase separator system as well as droplet movement describing the 

sedimentation and coalescence profiles (Jeelani and Hartland, 1998; Yu and Mao, 2004). 

Apart from that, the simulations results in both figures (5.10a and 5.10b) also indicate 

that the mean radii for number and volume density distributions (𝜇𝑛 and 𝜇𝑣) are approaching 

equilibrium in which no significant net changes in drop sizes after they surpassed the 1 m 

length of the pipe. In this case, the mean radii  𝜇𝑛 and 𝜇𝑣 are said to have equilibrate once 
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they reached the point where they are no longer growing (toward the end of the pipe length). 

This is due to the fact that, the system is having a balance between the coalescence and 

breakage processes. In this regard, the length at which the equilibrium achieved is called 

𝐿𝑒𝑞 and it is set to the axial position of 𝑧-axis. Table 5.8 elucidates the length of equilibrium, 

𝐿𝑒𝑞 based on the mean radii on each cases and pipe flow data for the set of best fitting 

parameters (details in Table 5.7). Table 5.8 also calculates the time required for each length 

once it reached the state of equilibrium. The length of equilibrium 𝐿𝑒𝑞 is an important 

number to measure because it plays a major role in the overall system behaviour. The steady 

and consistent magnitude of average drop radii approaching the end of the pipeline 

determines how fast the system can achieve the length of equilibrium, 𝐿𝑒𝑞.  

 

Table 5.8 Overview of length equilibrium, 𝐿𝑒𝑞 and time equilibrium, 𝑇𝑒𝑞 for number and 

volume density distributions at every cases and data sets 

Data set Case 𝐿𝑒𝑞𝑛 from 𝜇𝑛 𝐿𝑒𝑞𝑣
 from 𝜇𝑣 𝑇𝑒𝑞𝑛

=
𝐿𝑒𝑞𝑛

𝑈
 𝑇𝑒𝑞𝑣

=
𝐿𝑒𝑞𝑣

𝑈
 

Ge12275a 

Case I 4.16 m 3.82 m 2.45 s 2.25 s 

Case II 4.79 m  4.32 m 2.82 s 2.54 s 

Case III 3.78 m 3.65 m 2.23 s 2.15 s 

Ge12279a 

Case I 4.79 m  4.35 m  2.39 s 2.18 s 

Case II 5.52 m 4.66 m 2.76 s 2.33 s 

Case III 3.62 m 3.34 m 1.81 s 1.67 s 

Ge12284a 

Case I 4.16 m 3.62 m 1.66 s 1.45 s 

Case II 6.36 m  5.72 m  2.54 s 

 

2.28 s 

Case III 2.06 m 1.35 m 0.82 s 0.54 s 
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In a nutshell, the length of equilibrium, 𝐿𝑒𝑞 showed in Table 5.8 illustrates that the 

time of equilibrium is influenced by the velocity, 𝑈. In this respect, with the increase of 

velocity, 𝑈 from data set ge12275a to ge12284a, the system is observed to reach the 

equilibrium at faster rate. Furthermore, the results also demonstrate that, case III has reached 

the length of equilibrium, 𝐿𝑒𝑞 earlier compared to case I and case II. This is potentially due to 

the energy model proposed by Simon, (2004) in the coalescence efficiency function and 

combined with the turbulent fluctuation model from the breakage kernel which has greatly 

affects the overall system behavior. In addition, case III consists of both coalescence and 

breakage models developed from the similar mechanism of turbulent energy relationship. 

Hence, as the turbulent energy increases particularly from data set ge12275a to ge12284a, the 

equilibrium state of the system is accelerated. In other words, the higher the kinetic energy 

supplied from the turbulent eddies, the faster the system is expected to reach the stability 

(equilibrium). On the other hand, changing and altering the fitting parameters specifically the 

𝑘𝜔 and 𝑘𝑔1 will also have a greater effect on the behavior of  𝐿𝑒𝑞. In this respect, the higher 

the magnitude of fitting parameters 𝑘𝜔 and 𝑘𝑔1
, the faster the system reaches equilibrium 

(refer to Part I of Chapter 4 for details). This is mainly because of the direct effect on the rate 

of breakage and coalescence frequencies as depicted in Table 5.3 and Table 5.4. Therefore, 

the system will growth and equilibrates faster when the value of 𝑘𝜔 and 𝑘𝑔1
are set at 

substantially higher. 

  It is of interest in this study to investigate the dynamic evolution of drop density 

distribution in terms of coalescence and breakage rates throughout the pipeline. To achieve 

this, the best fit parameters shown in Table 5.7 are employed for every case to generate the 

results related to the breakage and coalescence rates functions. Fig. 5.11 until Fig. 5.13, 

illustrate the dynamic evolution of drop density distribution in terms of the total coalescence 

rate (top), 𝑅𝐶𝑡
 and total breakage rate (bottom), 𝑅𝐵𝑡

  as a function of drop radius, 𝑟 at nine 
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different axial positions, 𝑧 in the 30 m pipe. The total rate is accounted for the birth and death 

terms from the breakage and coalescence events. In these figures, the negative section of the 

curves indicates the death of the droplets due to the coalescence and breakage processes, 

while the positive section of the curves specifies the birth of the droplets owing to 

coalescence and breakage developments. Essentially, the plots in Fig. 5.11 until 5.13 provide 

an insight on the droplets behavior in terms of coalescence and breakage rates for all the 

cases and data sets investigated. From these figures, it clearly shows that the total coalescence 

rate is higher at the beginning of the pipeline and gradually decreases towards the end of the 

pipeline. This is stemming from the fact that large quantity of smaller droplets initially 

enhanced the collision rate between droplets. Moreover, film drainage is faster for small 

droplets due to the small surface area and for droplets with low surface energy particularly, 

for case I and II. While in case III, the efficiency of coalescence significantly increases with 

increasing energy of collision (energy model) from the turbulent eddies (energetic collision) 

as shown in data set ge12275a to data set ge12284a. It is worth noting that, case III produced 

the highest birth rate of coalescence among the three cases and data sets simulated, which is 

approximately in the range of 𝑅𝐶𝑡
≈ 90 − 120 m-1s-1. This suggests that, case III has the 

highest probability for coalescence to occur than case II and case I due to the higher 

magnitude of total coalescence rate produced. By taking into account the mechanism of 

energy-induced coalescence from the energy model by Simon, (2004), the coalescence 

efficiency may have been strongly intensified in the system which results in significant 

increase of overall total coalescence rate. Apart from that, at low 𝑟 values, the total 

coalescence rate, 𝑅𝐶𝑡
 is found to be in the negative section. This is expected because smaller 

droplets present at the beginning of the pipeline are more likely to coalesce and forming 

larger droplets. Subsequently, the larger droplets formed initially from the coalescence 

process will breakup into smaller droplets (birth by breakage) as bigger droplets are more 
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likely to break than smaller ones. In general, 𝑅𝐶𝑡
 is found to decrease as 𝑧 increases, which 

indicates that the larger droplets formed during the coalescence process are breakup into 

smaller droplets as breakage process becomes stronger towards the end of the pipeline until 

both systems equilibrate. Further evidence of this observation stems from the fact that initial 

droplets are too small to break which restricted the breakage process at the early stage of the 

pipeline. However, as 𝑧 increases, breakage is growing in dominance because larger droplets 

are more likely to break than coalesce.  
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(c) 

Figure 5.11 Evolution of the total coalescence rate 𝑅𝐶𝑡
 (top) and evolution of the total 

breakage rate, 𝑅𝐵𝑡
 for case I and data set of: (a) ge12275a, (b) ge12279a, and (c) ge12284a. 

Both rates are plotted as a function of droplet radius, 𝑟 at nine different locations in the pipe. 

The fitting parameters used are shown on top left corner of the plots. 
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Total breakage rate 

(b) 

 

Total coalescence rate 

 

Total breakage rate 

(c) 

Figure 5.12 Evolution of the total coalescence rate 𝑅𝐶𝑡
 (top) and evolution of the total 

breakage rate, 𝑅𝐵𝑡
 for case II and data set of: (a) ge12275a, (b) ge12279a, and (c) ge12284a. 

Both rates are plotted as a function of droplet radius, 𝑟 at nine different locations in the pipe. 

The fitting parameters used are shown on top left corner of the plots. 
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Total breakage rate 

(c) 

Figure 5.13 Evolution of the total coalescence rate 𝑅𝐶𝑡
 (top) and evolution of the total 

breakage rate, 𝑅𝐵𝑡
 (bottom) for case III and data set of: (a) ge12275a, (b) ge12279a, and (c) 

ge12284a. Both rates are plotted as a function of droplet radius, 𝑟 at nine different locations 

in the pipe. The fitting parameters used are shown on top left corner of the plots. 

 

The bottom sections of Fig. 5.11(a), (b), and (c), until Fig. 5.13(a), (b), and (c) show 

the dynamic evolution of the drop density distribution in terms of total breakage rate in the 30 

m pipeline for all the data sets and cases. As depicted in Fig. 5.11 until Fig. 5.13, the total 

breakage rate, 𝑅𝐵𝑡
 is found to have increased towards the end of the pipeline, in other words 

𝑅𝐵𝑡
 behaves in an exactly opposite trend to 𝑅𝐶𝑡

. The similar behaviour can be observed for all 

the cases and data sets. This suggests that breakage becomes dominant and stronger as 𝑧 

increases. Ideally, breakage occurs due to the interaction between the larger droplets and 
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turbulent eddies. Therefore, increase in number of larger droplets from coalescence process at 

the early stage of the pipeline has significantly affects the breakage to grow in dominance as 

they travel throughout the axial position, 𝑧. This is true considering larger eddies are 

responsible for breakup and with the presence of larger size droplets from coalescence 

process initially, the tendency of breakage to occur towards the end of the pipeline increased. 

It is worth noting that, very small eddies do not have sufficient energy to affect breakage 

compared to large eddies (Prince and Blanch, 1990). In this respect, the breakage process is 

highly influenced by the size of droplets and the turbulent energy in the system. According to 

Kumar et al., (1991), a drop will break under the influence of turbulent inertial stresses and 

under this condition, the physical of the droplets can no longer held together which results in 

deformation of the droplet as illustrated in Fig. 5.14. With that in mind, one would expect 

faster breakage rate when the emulsion contains larger size of droplets and high energy 

dissipation rate (𝜀) in the system. It should be emphasized that that these events are highly 

dependent on the initial distributions for each case and the set of fitting parameters. On the 

other hand, the positive curve (birth) of 𝑅𝐵𝑡
 in the same figure (Fig. 5.13(a), (b) and (c)) for 

case III is observed to produce the highest rate compared to case I and II with approximately 

in the range of  𝑅𝐵𝑡
≈ 80 − 120 m-1s-1 for all the data sets simulated. This indicates that, the 

model simulated in case III promotes higher breakage rate compared to the other cases, 

similar to the event observed in total coalescence rate (i.e., higher rate). The results provide 

further confirmation that case III may predict high drop rates and the mean radii in the 

system. 

 

Figure 5.14 Drop breakage chronologies by turbulent kinetic energy 
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5.3 Chapter summary 

This chapter discussed the regression of the dynamic evolution of the drop size 

density distribution of oil-water emulsion in a 30 m turbulent pipe flow. From the results, the 

drop behavior over the turbulently flow in pipe are found to be very promising and the 

models simulated have shown a good agreement with the experimental data. The fitting 

parameters tested are fitted accordingly the drops volume density distribution at the final 

location perfectly. The best fit results between the experimental data and simulation 

demonstrated that the methodologies proposed in this modelling work (as discussed in 

Chapter 3) have proved to be working effectively. Hence, the models can be considered 

reliable and robust from all the results depicted. One manuscript (Part III) has been prepared 

for this discussion and can be found in Appendix D of this thesis. 
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CHAPTER 6 

 

6 CONCLUDING REMARKS 

In this recent work, the dynamic evolution of the drop size density distribution of 

liquid-liquid emulsions in turbulent pipe flow was investigated. The results and discussions 

of this work are divided into two main parts, in which Part I covered the model behavior and 

parametric effects and Part II discussed the comparison between the simulation and 

experimental data for various breakage and coalescence models. In Part I of this research, the 

general form of a mathematical model to simulate the dynamic evolution of drop size density 

distribution in turbulently flowing liquid-liquid dispersions through pipeline was presented 

using the method of population balance equation (PBE). In the context of model 

development, possible methodology is elucidated incorporating the breakage process due to 

turbulent fluctuations and coalescence process from the film drainage between droplets. 

Moreover, the properties of the mixture liquids and the flow conditions are also incorporated 

in order to understand the overall system behavior of the drop sizes evolution in liquid-liquid 

dispersions. The model also suggests that the evolution of number density distribution, 

volume density distribution, mean radii, standard deviations, total coalescence and breakage 

rates, and total growth rates for a liquid-liquid system are take place in isotropic turbulence 

condition at any position over a long distance pipeline. The performances of both breakage 

and coalescence processes are presented based on how fitting parameters, 𝑘𝑔1
 and 𝑘𝜔  

𝑘𝜓 and 𝑘𝑔2
 are change from case to case (i.e., case I, case II, and case III). In addition, for any 

position in the pipeline, the model is able to simulate the evolution of breakage and 

coalescence processes in terms of birth and death rates as well as their total growth rates. At 

the same time, the advantages of solving the PBE in the form of volume density 

distribution 𝑓𝑣  compared to number density distribution 𝑓𝑛 are also discussed as well as the 
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error analysis of using the spectral element in the orthogonal collocation method (i.e., 𝑁𝑡 =

6) to identify the best numerical solutions. One of the important contributions of this model 

work is coming from the suggestion of converting the solution for PBE from number density 

distribution  𝑓𝑛 to volume density distribution  𝑓𝑣. The results have shown that, solving the 

PBE in the form of  𝑓𝑣 provide more stability and consistency to numerical solutions as 

volume remains constant due to volume conservation, while,  𝑓𝑛 changed significantly during 

drop growth process as number is not conserved (i.e., not consistent). In brief, the study 

provides an insight of the modelling strategies and the solutions to the PBE towards 

understanding and describing the overall system behavior of the drop size density distribution 

in turbulently flowing liquid-liquid dispersions. 

 On top of that, the discussions in Part I (Chapter 4) of this thesis are continued with 

the study of the model performance under various parametric effects to acquire understanding 

and to elucidate the overall system behavior. In this respect, several parameters are varied 

such as energy dissipation rate, 𝜀, volume fraction, 𝜙, and four fitting parameters, 𝑘𝜔, 𝑘𝜓, 

𝑘𝑔1
, and 𝑘𝑔2

. The performances of both breakage and coalescence processes are also assessed 

and evaluated based on these parametric effects. The model is also modified to incorporate 

the damping effect with the factor of (1 + 𝜙) to account for turbulent intensities at high 

volume fraction suggested by Coulaloglou and Tavlarides (1977). Overall, the results are 

considered satisfactory as they are in good agreement with the experimental data and 

theoretical studies. The results shown that, the mean radii increase as volume fraction 

increases and decrease when energy dissipation rate increases. This is followed by 

coalescence gradually growing in dominance as dispersed volume fraction increases and 

conversely when energy dissipation rate is set higher. Apart from that, sum of squares (SSQ) 

plots of the regression behavior are also presented and analyzed. The results indicate that the 

interaction between all four fitting parameters is crucial in finding the best local minima. In 
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general, the four fitting parameters play an important role in changing the behavior of 

coalescence and breakage models. Essentially, the study adds detail in understanding of the 

interplay between various parametric effects on the coalescence and breakage mechanisms 

and their relationship that contribute to the overall behavior of the drop size distributions. The 

results are encouraging and provide useful information for the understanding of the model in 

simulating and solving the dynamic evolution of liquid-liquid emulsions in turbulent pipe 

flow.  

 Finally, the regression of experimental drop size density distribution in turbulent pipe 

flow is investigated. In this present work, the performance of two different breakage kernels 

and three separate coalescence kernels by Coulaloglou and Tavlarides (1977), Hsia and 

Tavlarides (1980), Vankova et al., (2007), Prince and Blanch (1990), Chesters (1991), and 

Simon (2004) are assessed and evaluated. The model and experimental data are directly 

compared in terms of volume density distribution at final location in the pipe. Overall, 

satisfactory agreement is observed in all of the model’s predictions with the experimental 

pipe flow data. Based on the analysis of the results, turbulent fluctuation is the best 

mechanism for breakage process, wherein, film drainage is the suitable mechanism to 

describe for coalescence process particularly, in turbulently flowing oil-water emulsions in 

pipe flow. However, discrepancies are discovered in terms of mean radii and total drop rate 

predicted between the models studied. The models in Case III are found to promote higher 

breakage and coalescence rates compared to case I and case II. Aside that, case II and case III 

are found to produce higher mean radii in comparison to case I. The film drainage model 

employed in case I from Coulaloglou and Tavlarides (1977) at immobile interfaces is found 

to be the better model to describe the oil-water system in pipes. This is true considering that, 

the model incorporates the viscous shear stress effect between two different liquids (viscous 

liquid) as well as the effect from local volume fraction (1 + 𝜙). It is also worth noting that, 
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every model investigated in each case produced reasonable results for all the data sets of 

different velocity conditions. However, one should expect differing in the magnitude of the 

fitting parameters and higher mean radii as well as greater changes in total drop rate. In 

addition, the model and experimental data indicate that the difference in degree of velocity 

for data set of ge12275a, ge12279a, and ge12284a can affect the rate of coalescence and 

breakage. That is, increased in velocity leads to higher coalescence and breakage rates as well 

as faster equilibrium of mean radii (𝐿𝑒𝑞). 
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CHAPTER 7 

 

7 SUGGESTIONS AND RECOMMENDATIONS FOR FUTURE WORK 

It is recommended for the future work to study the dynamic evolution of the drop size 

distribution by taking into account the aspects of angular and radial effects in the pipe flow. It 

is because Schümann, (2016) and Lovick and Angeli (2004) have shown from the 

experimental evidence that, droplets at the center of the pipe are larger than the droplets 

found near the wall of the pipe. This is due to the fact that high shear rate close to the wall 

promote the breakup process of the particles and leads to smaller droplet size. Another 

essential aspect to consider in the future work is the physical state of the matter (i.e., gas, 

liquid, solid). Variation in terms of the phases, for instance gas-liquid system may provide 

profound understanding in modeling a more complicated three phase flow system (i.e., gas-

oil-water system or gas-liquid-solid system) which is becoming more common in the 

industries, particularly in petroleum production. The study of gas-liquid system in turbulently 

flowing pipeline will provide many significant information such that, the bubble size density 

distribution, the interactions behaviour between bubbles in pipes, and the status of breakage 

and coalescence rates in the system throughout the pipeline that benefitted the designs of 

critical equipment such as multiphase separator.   

 Finally, is it also suggested that, one should consider the experimental data of drop 

size density distribution (either number or volume density distribution) to be measured at the 

midway of the pipeline apart from the inlet and the outlet. This measurement will provide 

additional information of the drop size behaviour at the midway of the pipeline. Taking into 

account the midway distribution will greatly contribute in finding the best fit at the final 

location of the drop size density distribution. Hence, robust regression results can be 

expected. 
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APPENDIX A 

 

DIMENSIONLESS ANALYSIS 

 

A1 Dimensionless analysis 

In order to transform the system equations into dimensionless form, five dimensionless 

variables are introduced for the equations. These include dimensionless axial position in the 

pipe, dimensionless radius of droplet, dimensionless drop volume, and dimensionless number 

as well as volume number density distributions. For the scaling purposes, a characteristic 

length and velocity are defined to transform the model into a dimensionless form. In this 

respect, the characteristic length of the axial coordinate of the pipe (external coordinate) is 

described as the total length of the pipe, 𝐿, and the characteristic velocity of the system is 

defined as the average velocity in the pipe, 𝑈. On the other hand, the characteristic radius in 

the scaling process is given by 𝑅𝑚𝑎𝑥 which describe the maximum size of drop radius in the 

system. From the definitions above, the scaling relationships can be expressed as follows: 

 

A1.1 Dimensionless variables: 

(a) Dimensionless axial position in the pipe: 

 

 𝜆 =
𝑧

𝐿
                                                                                                                          (1𝑎) 

 

(b)  Dimensionless radius (droplet): 

 

                           𝜉 =  
𝑟

𝑅𝑚𝑎𝑥
                                                                                                                  (2𝑎) 
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(c) Dimensionless drop volume: 

 

𝑣̅ =
4

3
𝜋𝑟3 = (

4

3
𝜋𝑅𝑚𝑎𝑥

3 ) 𝜉3 = 𝑉𝑚𝑎𝑥𝜉
3                                                                (3𝑎) 

 

The number density distribution 𝑓𝑛̅ can be scaled from the definition of initial number density 

distribution, 𝑁𝑑0 at the initial position in pipe (𝑧 = 0) as follows: 

 

𝑁𝑑0(𝑧) =  ∫ 𝑓𝑛0

𝑅𝑚𝑎𝑥

0

(𝑟′, 𝑧)𝑑𝑟′                                                                                                         (4𝑎) 

  

 (d) Dimensionless number density distribution: 

 

𝑓𝑛̅ = 
𝑅𝑚𝑎𝑥

𝑁𝑑0
𝑓𝑛                                                                                                             (5𝑎) 

   

(e)  Dimensionless volume density distribution: 

 

𝑓𝑣̅ = 𝑅𝑚𝑎𝑥 . 𝑓𝑣                                                                                                             (6𝑎) 

 

Hence, from Eqn. (6a), the dimensionless number density distribution can be formulated in 

terms of dimensionless volume density distribution as follows: 

 

𝑓𝑛̅ = 
𝑓𝑣̅

𝑁𝑑0𝑉𝑚𝑎𝑥𝜉
3
                                                                                                                                 (7𝑎) 
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A2 Dimensionless population balance equation 

Dimensionless population balance equation (droplet transport equation) is given by: 

 

𝜕𝑓𝑣̅(𝜉, 𝜆)

𝜕𝜆
= [𝑣̅𝑃𝐶𝑏

(𝜉, 𝜆) − 𝑃𝐶𝑑
(𝜉, 𝜆) + 𝑣̅𝑃𝐵𝑏

(𝜉, 𝜆) − 𝑃𝐵𝑑
 (𝜉, 𝜆)]                                              (8𝑎) 

 

The dimensionless PBE above is valid under condition of, 0 ≤ 𝜆 ≤ 1,  0 ≤ 𝜉 ≤ 1 

 

The initial condition is given by:  

At  𝜆 = 0,     𝑓𝑣̅(𝜉, 0) = 𝑓𝑣̅0
(𝜉),     for 0 ≤ 𝜉 ≤ 1 

 

In the Eqn. (8a) above, 𝑃𝐶𝑏
 and 𝑃𝐶𝑑

 represent the dimensionless birth and death rates due to 

coalescence respectively, while,  𝑃𝐵𝑏
 and 𝑃𝐵𝑑

 are the dimensionless birth and death rates due 

to breakage, respectively. 

 

 

A3 Dimensionless coalescence birth and death rates 

The dimensionless coalescence birth and death rates can be written as: 

 

𝑃𝐶𝑏
(𝜉, 𝜆) = 𝜉3 ∫ 𝑟̅𝑐 (𝜉ˊ, [𝜉3 − 𝜉ˊ3]

1 3⁄
)

𝜉 √2
3⁄

0

1

𝑣̅ˊ
𝑓𝑣̅(𝜉

ˊ, 𝜆)
1

𝑣̅ˊˊ
𝑓𝑣̅ ([𝜉3 − 𝜉ˊ3]

1 3⁄
, 𝜆)

𝜉2

𝜉ˊˊ2
𝑑𝜉ˊ        (9𝑎) 

 

𝑃𝐶𝑑
(𝜉, 𝜆) =  𝑓𝑣̅(𝜉, 𝜆)∫ 𝑟̅𝑐(𝜉, 𝜉

ˊ)
1

𝑣̅ˊ

1

0

𝑓𝑣̅(𝜉
ˊ, 𝜆) 𝑑𝜉ˊ                                                                         (10𝑎) 
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Where, dimensionless rate of coalescence is given as:  

 

𝑟̅𝑐(𝜉
ˊ, 𝜉ˊˊ) = 𝜔̅𝑐(𝜉

ˊ, 𝜉ˊˊ)𝜓̅𝑒(𝜉
ˊ, 𝜉ˊˊ)                                                                                                   (11𝑎) 

 

By substituting the expression for 𝜔̅𝑐(𝜉
ˊ, 𝜉ˊˊ) and 𝜓̅𝑒(𝜉

ˊ, 𝜉ˊˊ)  into Eqn. (11a), dimensionless 

rate of coalescence 𝑟̅𝑐(𝜉
ˊ, 𝜉ˊˊ) can be written in details as follows:  

 

𝑟̅𝑐(𝜉
ˊ, 𝜉ˊˊ) =  𝜒𝑤(𝜉ˊ + 𝜉ˊˊ)2[𝜉ˊ2 3⁄ + 𝜉ˊˊ2 3⁄ ]

1 2⁄
𝑒𝑥𝑝

[
 
 
 

−𝜒𝜓 (
1

2 (
1
𝜉ˊ +

1
𝜉ˊˊ)

)

5 6⁄

]
 
 
 

                      (12𝑎) 

 

Where  𝜒𝑤 and  𝜒𝜓 are dimensionless parameters and can be expressed as follows: 

 

𝜒𝑤 = 𝑘𝑤

4√2
3

𝜀1 3⁄ 𝑅𝑚𝑎𝑥
7 3⁄

𝑁𝑑0𝐿

𝑈
 (𝑉𝑚𝑎𝑥. 𝑁𝑑0)                                                                                 (13𝑎) 

 

𝜒𝜓 = 𝑘𝜓

𝜌𝑐
1 2⁄ 𝜀1 3⁄ 𝑅𝑚𝑎𝑥

5 6⁄

21 6⁄ 𝜎1 2⁄
                                                                                                                (14𝑎) 

 

 

A4 Dimensionless breakage birth and death rates 

The dimensionless breakage birth and death rates can be written as: 

 

𝑃𝐵𝑏
(𝜉, 𝜆) =  𝜉3 ∫2𝛽̅

1

𝜉

(𝜉, 𝜉′)𝑔̅(𝜉′)
1

𝑣̅ˊ
𝑓𝑣̅(𝜉

′, 𝜆) 𝑑𝜉ˊ                                                                      (15𝑎) 
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𝑃𝐵𝑑
(𝜉, 𝜆) = [𝑔̅(𝜉) 𝑓𝑣̅ (𝜉, 𝜆)]                                                                                                            (16𝑎) 

 

In Eqns. (15a) and (16a), the dimensionless rate of breakage, 𝑔̅(𝑟) and dimensionless 

daughter size distribution, 𝛽̅(𝑟, 𝑟′) can be expressed as follows;  

 

𝑔̅(𝑟) = 𝜒𝑔1

1

𝜉2 3⁄
𝑒𝑥𝑝 [−𝜒𝑔2

1

𝜀5 3⁄
]                                                                                                 (17𝑎) 

 

𝛽̅(𝑟, 𝑟′) = 7.2 
𝜉2

𝜉ˊ3
𝑒𝑥𝑝 [−4.5

(𝜉3−𝜉ˊ3)
2

𝜉ˊ6
]                                                                                   (18𝑎) 

 

Where  𝜒𝑔1 and  𝜒𝑔2 are dimensionless parameters and can be written as follows: 

 

𝜒𝑔1 = 𝑘𝑔1

ɛ1 3⁄ 𝐿

𝑅𝑚𝑎𝑥
2 3⁄ (1 + 𝜙)𝑈

                                                                                                              (19𝑎) 

 

𝜒𝑔2 = 𝑘𝑔2

𝛾(1 + 𝜙)2

𝜌𝑑ɛ2 3⁄ 𝑅𝑚𝑎𝑥
5 3⁄

                                                                                                                   (20𝑎) 

 

In Eqns. (13a) and (14a), the expression of 𝜒𝑤 represents the ratio of the residence time for a 

drop in the pipe to the average time between droplet collisions. While the expression of 𝜒𝜓 

indicates the ratio of the film drainage time constant to the droplet contact time constant. 

Whereas, in Eqns. (19a) and (20a), the expression of 𝜒𝑔1 represents a comparison of the 

droplet residence time in the pipe to the breakage time (frequency) of the drop in the 

turbulent flow field. While, 𝜒𝑔2  signifies the ratio of the surface energy of the drop to the 

mean turbulent kinetic energy in an eddy. 
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Substitute all the equations above for dimensionless coalescence and breakage processes into 

the general equation shown in Eqn. (8a). Hence, the complete expression of dimensionless 

population balance equation in terms of volume density distribution can be written as 

follows: 

 

𝜕𝑓𝑣̅(𝜉, 𝜆)

𝜕𝜆
= 𝜉3 ∫

𝜉2

𝜉ˊˊ2
𝑟̅𝑐 (𝜉ˊ, [𝜉3 − 𝜉ˊ3]

1 3⁄
)

𝜉 √2
3⁄

0

1

𝑣̅ˊ
𝑓𝑣̅(𝜉

ˊ, 𝜆)
1

𝑣̅ ˊˊ
𝑓𝑣̅ ([𝜉3 − 𝜉ˊ3]

1 3⁄
, 𝜆) 𝑑𝜉ˊ 

− 𝑓𝑣̅(𝜉, 𝜆)∫ 𝑟̅𝑐(𝜉, 𝜉
ˊ)

1

𝑣̅ˊ

1

0

𝑓𝑣̅(𝜉
ˊ, 𝜆) 𝑑𝜉ˊ + 𝜉3 ∫2𝛽̅

1

𝜉

(𝜉, 𝜉′)𝑔̅(𝜉′)
1

𝑣̅ˊ
𝑓𝑣̅(𝜉

′, 𝜆) 𝑑𝜉ˊ 

− [𝑔̅(𝜉) 𝑓𝑣̅ (𝜉, 𝜆)]                                                                                                            (21𝑎) 

 

 

A5 Normalized number density, 𝑵𝒅
̅̅ ̅̅ (𝝀) and dimensionless volume fraction, 𝝓(𝝀) 

𝑁𝑑
̅̅̅̅ (𝜆) =  

𝑁𝑑(𝜆)

𝑁𝑑0
= ∫𝑓𝑛̅(𝜉ˊ, 𝜆)

1

0

 𝑑𝜉ˊ = ∫
𝑓𝑣̅
𝑣̅ ˊ

(𝜉ˊ, 𝜆)

1

0

 𝑑𝜉ˊ                                                           (22𝑎) 

 

𝜙(𝜆) =  𝑁𝑑0𝑉𝑚𝑎𝑥 ∫𝜉ˊ3𝑓𝑛̅(𝜉ˊ, 𝜆)

1

0

 𝑑𝜉ˊ  = ∫𝑓𝑣̅(𝜉
ˊ, 𝜆)

1

0

 𝑑𝜉ˊ                                                          (23𝑎) 

 

 

A6 Dimensionless mean drop radii 𝝁̅𝑵 and 𝝁̅𝑽 

𝜇̅𝑁(𝜆) =
𝑅𝑚𝑎𝑥

𝑁𝑑
̅̅̅̅ (𝜆)

∫𝜉ˊ𝑓𝑛̅(𝜉ˊ, 𝜆)

1

0

 𝑑𝜉ˊ =
𝑅𝑚𝑎𝑥

𝑁𝑑
̅̅̅̅ (𝜆)

∫ 𝜉ˊ
𝑓𝑣̅
𝑣̅ˊ

(𝜉ˊ, 𝜆)

1

0

 𝑑𝜉ˊ                                               (24𝑎) 
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𝜇̅𝑉(𝜆) =  𝑅𝑚𝑎𝑥

𝑁𝑑0

𝜙(𝜆)
𝑉𝑚𝑎𝑥 ∫𝜉ˊ4𝑓𝑛̅(𝜉ˊ, 𝜆)

1

0

 𝑑𝜉ˊ  =
𝑅𝑚𝑎𝑥

𝜙(𝜆)
∫𝜉ˊ𝑓𝑣̅(𝜉

ˊ, 𝜆)

1

0

 𝑑𝜉ˊ                            (25𝑎) 

 

 

A7 Dimensionless standard deviation number, 𝝈̅𝑵 and volume distributions, 𝝈̅𝑽 

𝜎𝑁(𝜆) =  √
𝑅𝑚𝑎𝑥

2

𝑁𝑑
̅̅̅̅ (𝜆)

∫ (𝜉ˊ −
𝜇̅𝑁

𝑅𝑚𝑎𝑥
)
2

𝑓𝑛̅(𝜉ˊ, 𝜆) 𝑑𝜉ˊ

1

0

                                                                        

= √
𝑅𝑚𝑎𝑥

2

𝑁𝑑
̅̅̅̅ (𝜆)

∫ (𝜉ˊ −
𝜇̅𝑁

𝑅𝑚𝑎𝑥
)
2 𝑓𝑣̅
𝑣̅ ˊ

(𝜉ˊ, 𝜆) 𝑑𝜉ˊ

1

0

                                                                      (26𝑎) 

 

 

𝜎𝑉(𝜆) =  √𝑅𝑚𝑎𝑥
2

𝑁𝑑0

𝜙(𝜆)
𝑉𝑚𝑎𝑥 ∫(𝜉ˊ −

𝜇̅𝑉

𝑅𝑚𝑎𝑥
)
2

𝜉ˊ3𝑓𝑛̅(𝜉ˊ, 𝜆) 𝑑𝜉ˊ

1

0

                                         

= √
𝑅𝑚𝑎𝑥

2

𝜙(𝜆)
∫ (𝜉ˊ −

𝜇̅𝑉

𝑅𝑚𝑎𝑥
)
2

𝑓𝑣̅(𝜉ˊ, 𝜆) 𝑑𝜉ˊ

1

0

                                                                        (27𝑎) 

 

Apart from that, mass balance is also calculated to ensure that there are no droplets entering 

or leaving the system during the simulation. This is crucial for the system to warrant the mass 

remains conserve throughout the pipe lengths. The mass balance is determined by taking into 

account the mass created and the mass disappeared from the coalescence and breakage 

processes so that the condition is met for the following expressions: 

 

𝑃𝐶𝑏
(𝜉, 𝜆) − 𝑃𝐶𝑑

(𝜉, 𝜆) = 0                                                                                                               (28𝑎) 
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𝑃𝐵𝑏
(𝜉, 𝜆) − 𝑃𝐵𝑑

(𝜉, 𝜆) = 0                                                                                                              (29𝑎) 

 

The ratio of the coalescence mass balance 𝑀𝐶 is determined by dividing the dimensionless 

volume integral for coalescence birth rate, 𝑃𝐶𝑏
 against the dimensionless coalescence loss 

rate, 𝑃𝐶𝑏
. The same method applied to calculate the breakage mass balance, 𝑀𝐵 and both 

ratios can be written as follows: 

 

𝑀𝐶 =
𝑃𝐶𝑏

(𝜉, 𝜆)

𝑃𝐶𝑑
(𝜉, 𝜆)

                                                                                                                                  (30𝑎) 

 

𝑀𝐵 =
𝑃𝐵𝑏

(𝜉, 𝜆)

𝑃𝐵𝑑
(𝜉, 𝜆)

                                                                                                                                 (31𝑎) 

 

To ensure that the local volume fraction, ϕ remains constant, the mass balance ratio for both 

coalescence and breakage, 𝑀𝐶 and 𝑀𝐵 are multiplied by the dimensionless coalescence and 

breakage birth rates, 𝑃𝐶𝑏
 and 𝑃𝐵𝑏

 respectively, as written below: 

 

 𝑃𝐶𝑏
= 𝑃𝐶𝑏

× 𝑀𝐶                                                                                                                                (32𝑎) 

 

𝑃𝐵𝑏
= 𝑃𝐵𝑏

× 𝑀𝐵                                                                                                                                (33𝑎) 
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