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Abstract

The thesis presents a modelling approach to calculate and fit the evolution of the drop size
distributions of oil and water emulsions under turbulent flow in pipes. A simulation model is
developed to investigate coalescence and breakage phenomena of droplets in liquid-liquid
dispersion over a long-distance pipeline under a fully dispersed flow regime and compared to
experimental data to fit the model parameters. In this simulation work, the experimental data
are supplied by Statoil. The experimental measurements took place at two different positions
along the length of the pipeline using Focused Beam Reflectance Method (FBRM). The first
location is at the inlet of the pipeline and the final location is near the outlet of the pipe. The
mathematical model employed the population balance equation (PBE) approach to predict the
volume and number density distribution functions, mean radii, standard deviations as well as
breakage and coalescence rates over various distances in pipes. A new alternative solution to
the complex PBE in the form of volume density distribution has been introduced using
orthogonal collocation method for the case of fully developed turbulent oil-water pipe flow.
Several breakage and coalescence models are assessed and compared in order to understand
the behavior of the model. In addition, the model is also studied under various parametric
effects particularly on dispersed volume fraction, ¢ and energy dissipation rate, €. The study
also involved minor modifications on the coalescence and breakage closures to account the
correction factor of damping effect at high dispersed phase fraction, ¢». The model employed
the newly modified energy dissipation rate, ¢ by Jakobsen (2014) that considers the shear
wall as the primary source of turbulence in pipes. The results showed that the model has
successfully fitted the model proportionality constants accordingly at the final measurement
locations (in good agreement with experimental data at final location). The regressed
proportionality constants studied in the model did not vary significantly over the range of

engineering parameters investigated.
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CHAPTER 1

1 INTRODUCTION

1.1 Motivation

Liquid-liquid dispersions are prevalent in many industrial processes particularly for
transportation and production of petroleum fluids. When an oil-water mixture in pipes
accelerates at high velocity and the relative motion becomes large enough, the flow
inherently turns turbulent and the fluids undergo highly disordered motion characterized by
velocity fluctuations and chaotic changes in pressure. These include the configurations of the
pipe such as valves, pipe bends, fittings and chokes. The energy dissipated in such flows and
pipe configurations lead to the formation of an emulsion where the one liquid phase is
dispersed as droplets into the dominant liquid called continuous phase. In this respect, the
droplets from the dispersed phase undergo continuous oscillations from the turbulent eddies
by the dynamic process occurring within the system. Depending on the physicochemical
properties of the oil and water as well as the relative volumes ratios, the oil-water mixture can
be in the form of water-in-oil emulsion (w/0) or oil-in-water emulsion (o/w) as illustrated in
Fig. 1.1, and is also encountered in the petroleum industry with applications at many stages in
terms of petroleum recovery, transportation, and processing (Becher 2001, Schramm 1992).
The type of oil-in-water emulsion (w/o) flow is favorable in the case of heavy crude oil
transportation due to the fact that water continuous emulsions should have a low viscosity

compared to the heavy crude oils.



w/o emulsion o/w emulsion

Figure 1.1 Images of oil-water mixture (a) water-in-oil emulsion, w/o under microscopic

image by Gavrielatos et al., (2017), (b) oil-in-water emulsion, o/w in pipe flow by Vuong et

al., (2009) and (c) typical structures for respective emulsion.

The properties of a dispersion of oil and water mixture in two phase turbulent flow are
associated with the drop size distribution. In general, the drop size distribution defines the
interfacial area, which has a major influence on mass and/or heat transfer rates between one
or more phases (Hesketh et al., 1991; Luo and Sevendsen, 1996). In pipe flow, the drop size
distribution can greatly influence the rheological behaviour of the emulsions and the flow

properties such as the effective viscosity, pressure gradient and the holdup fraction of the



mixture liquids (Arirachakaran et al., 1989; Schiimann, 2016). Hence, a detailed and
properly parameterized model that can provide accurate predictions of the dynamic evolution
of the drop size distribution of oil-water emulsion could be valuable for production
optimization, particularly in the design of critical equipment such as multiphase separators
and transport pipelines. Although there have been a plethora of studies on liquid-liquid
dispersion from theoretical to experimental over the past years (Solsvik et al., 2015; Maal et
al., 2011; Raikar et al., 2010; Maaf and Kraume, 2012; Vankova et al., 2007; Alopaeus et al.,
2002; Alopaeus et al., 1999; Chen et al., 1998; Chesters, 1991; Luo and Sevendsen, 1996;
Nere and Ramkrishna, 2005; Coulaloglou and Tavlarides, 1977; Hsia and Tavlarides, 1980),
the topic still remains one of the difficult and least understood mixing problems in turbulent
flow (Azizi and Al Taweel, 2011; Kostoglou and Karabelas, 2007). In this respect, any small
changes in the chemical composition of the system will greatly affect its performance (Paul et
al., 2004). A majority of the research work on drop behaviour modelling for liquid-liquid
systems were found to be focused on stirred tank and gas column, compared to liquid-liquid
pipe flow which has significant differences in parametric effects, geometrical setup, and
physical configurations. One of the notable differences is the formation of the turbulent
energy. For instance, in the stirred tank setup, the turbulent is uniformly distributed to the
fluids by the static mixing element. However, in the pipe flow the turbulent is formed due to
continuous oscillation (the energy is primarily supplied by the pumps) of the liquid phases
(oil and water). Furthermore, turbulent disperse systems involve numerous parameters
including hydrodynamics, turbulence, and physiochemical effects (Bricefio et al., 2001).
Besides that, liquid-liquid system has a relatively small density ratio between the phases as
compared to gas-liquid system. Therefore, the various concepts and results related to gas-
liquid flows such as prediction of pressure drop cannot be simply or readily applied to liquid-

liquid systems.



From the complexity of the problem as aforementioned, a detailed understanding and
accurate knowledge are needed in order to predict the dynamic evolution of the drop size
distribution in turbulent pipe flow. There is a significant relevance in applications such as
designing the nuclear reactors, chemical reactors, multiphase separators, oil sand extraction
and processing, water and wastewater treatment (Liao and Lucas, 2010; Azizi and Al Taweel,
2010). These have been the driving force behind the extensive research work on the
understanding of droplets behaviour. Therefore, theoretical study has been conducted to
investigate the droplet size behaviour under the liquid-liquid fully dispersed flow in isotropic
turbulence in the fully dissipative regime. In this study, the experimental pipe flow data are
supplied by Statoil. They employed the method of Focused Beam Reflectance Measurement
(FBRM) at two different positions of measurement along the length of the pipeline to acquire
the drop size distributions. The first location is at the inlet of the pipeline and the final
location is near the outlet of the pipe. Three different data sets of drop size distributions are
collected at various velocities (detailed in section 3). In this present work, to determine the
drop size distribution two major events named coalescence and breakage are studied. Both
the processes of drop coalescence and breakage profoundly influence the dynamic evolution
of drop sizes. Hence, it is essential to accurately characterize and choose breakage and
coalescence models that best represent the behavior of petroleum emulsions. One of the
suitable methods to predict the dynamic evolution of drop density distribution in turbulent
pipe flow is using the population balance equation (PBE) approach. PBE is a rigorous
mathematical framework that employs a physical description of the two drop processes from
breakage due to flow field and coalescence due to collisions in terms of various physical
parameters and operating conditions and provides the evolution of the drop size distribution
with time and space. However, the solution of a PBE model can be a challenge and often

complicated due to the large number of equations involved, numerical complications,



accuracy of the system, computational efforts and/or efficiency, mechanisms governing the
drop size evolution in liquid-liquid dispersions, and inclusion of particle growth due to
breakage and coalescence events (Pinar et al., 2015; Rehman and Qamar, 2014; Korovessi
and Linninger, 2004; Gunawan et al., 2004; Alexopoulos et al., 2004; Sing and Ramkrishna,
1977). Hence, to address these issues, a new possible methodology is proposed to solve the
PBE. The methods have been discussed thoroughly in the next chapters of this thesis (see
Chapter 3). Minor modification for several breakage and coalescence kernels are also
implemented to account for high volume fraction (dispersed phase). The system equation in
this present work is formulated in terms of volume density distribution instead of number
density distribution that allows the model to have a stable magnitude over time and consistent
convergence criterion in numerical calculations. Finally, the model formulations are
compared with experimental data under different breakage and coalescence models.
Following the research strategy, the objectives of this research work are focused on three

aspects as follows:

1.2 Objectives of the research

1) To propose new alternative solution method to the PBE and discuss possible
breakage and coalescence models for the dynamic evolution of drop size density
distribution of the oil-water emulsions in turbulent pipe flow. The study includes
model formulation and numerical solution for the PBE.

2) To study the various parametric effects and interplay on the evolution of the drop
density distribution functions in turbulently flowing liquid-liquid emulsions. The
parameters investigated include volume fraction of the dispersed phase, ¢, the
energy dissipation rate, &, the pipe length, L, and all four fitting parameters, k.,

ky, kg, and kg, .



3) To compare the model formulated with the experimental results (regression
analysis) obtained for oil-water emulsion in turbulent pipe flow as well as to

compare the applicability of various coalescence and breakage models.

1.3 Scopes of the research

The study is focused on formulating a model to describe the evolution of the drop size
distribution of a liquid-liquid emulsion under turbulent pipe flow over long distances. The
model is built upon population balance equation breakage and coalescence into account.
Comparing the performance of various coalescence and breakage models against
experimental data could allow us to predict and fit the drop distribution for long distance
emulsion transport. The model is formulated to simulate: (i) the evolution of number and
volume density distributions, (ii) the average radii of number and volume distributions, (iii)
standard deviations of the number and volume density distributions, (iv) the length and time
to establish equilibrium between coalescence to breakage, (v) the evolution of breakage and
coalescence in terms of birth and death rates, and (vi) regression (fit) on final volume density
distribution. Apart from that, in order to formulate the model and reduce the amount of
computational efforts, certain simplifications are necessary to make the problem tractable.
Some conditions have to be assumed such as isotropic turbulent and the droplet size is within
the inertial subrange eddies [, > 2r > 7 (i.e., I, is the integral length scale for large eddies
and 7 is the Kolmogorov scale for small eddies). In this case, the viscous effect is negligible,
and deformation of drops occurs primarily from turbulent fluctuations. Other assumptions

made are written in details in chapter 3 of this thesis (research methodology).



1.4 Outline of the thesis
This thesis is written in the form of monograph with a detailed description on every
topic and consists of extended theoretical part to provide an overview and comprehensive

knowledge of the topic. It is organized in various chapters as follows:

Chapter 1 introduces the topic and provides an overview of liquid-liquid dispersions which
include the objectives and scope of the research work. Chapter 2 discusses the important
literature on coalescence and breakage models in detail. In Chapter 3, the proposed method to
solve this problem is discussed and presented. The results and findings are discussed in
Chapter 4 and Chapter 5. The conclusion is written in Chapter 6 and finally, the

recommendations for future work is addressed Chapter 7.

1.5  Chapter summary

This chapter provides a description and overview of the research project on drop size
density distribution in turbulent liquid-liquid flow, the challenges or problems encountered in
liquid-liquid dispersion system, the significances and importance of the research work (i.e.,
the relevant applications). A new possible solution method for complex PBE in a fully
developed oil-water turbulent pipe flow is proposed. To address these issues the objectives
and scopes of the research were outlined. The details of the literature review and theory are

discussed in the following section of Chapter 2.



CHAPTER 2

2 BACKGROUND

2.1  Oil-water emulsion in turbulent pipe flow

The turbulent flow of oil and water is considered a ubiquitous and inherent
phenomenon in many natural and industrial processes, particularly during the production or
transportation of petroleum fluids. At high shear rate, the fluids undergo highly disordered
motion characterized by velocity fluctuations and chaotic changes in pressure. Under such
circumstances, emulsions of oil and water appear where droplets from one liquid disperse
into another liquid phase. The formation of emulsions is influenced by many factors namely,
interfacial tension between liquids, shear and geometrical properties of liquids (Schimann,
2016). From the phenomenon known as phase inversion, the emulsion can be found in the
form of oil-in-water (o/w) or water-in-oil (w/0) depending on various parameters such as
volume fraction, pH and salinity, viscosities of fluids, interfacial compositions and turbulence
(Piela et al., 2006). In general, droplets form as a result of instability at the interface between
the liquids mixture due to continuous oscillations in the flow. Figure 2.1 shows the types of
flow patterns in pipelines in the case of laminar (Fig.2.1a) and turbulent dispersed flows
(Fig.2.1b). As a result of intense turbulent kinetic energy, the oil phase begins to detach from
its surface forming small droplets and are dragged by the continuous phase (water) in the pipe
as shown in Fig. 2.1. In the petroleum industry, for certain operations, emulsions are required
during the drilling assignments in order to lift the drill cuttings to the surface as well as better
hole cleaning (Werner et al., 2017). But in some situations, such as during the petroleum
recovery process, emulsions are unwanted because they can accumulate and plug the

pipelines as well as the production well-head. In the case of heavy crude oils, the high



viscosity hinders the efficient transportation of the fluids through pipelines to surface
facilities (Hart, 2014). Hence, reducing the viscosity is the best alternative or having the type
of oil-in-water (o/w) emulsion in oil-water pipe flow is preferable because it could reduce the

pumping requirements as o/w emulsion could have lower viscosity than the heavy crude.

(a) (b)

Figure 2.1 Example of oil-water flow behaviour in a pipeline (a) under laminar flow (b)

under dispersed flow (Ismail et al., 2015a)

The drop size distribution from the liquid-liquid dispersions is important for
characterizing the emulsions (Chen et al., 1998). According to Opedal et al., 2009 and Otsubo
and Prud’homme, 1994, the drop size distribution affects the rheology and the stability of the
emulsion. In an experimental investigation by Pal, (1996), he observed that the effective
viscosity increases as the droplet sizes reduce for both oil-in-water (o/w) as well as water-in-
oil emulsions (w/0). In pipe flow for instance, the drop size distribution significantly affects
the rheological behaviour and the pressure gradient of the liquids as reported by
Arirachakaran et al., (1989) in their analysis of oil-water flow phenomena in horizontal pipes.
Angeli and Hewitt, (1999) also discovered that the droplet size affects the drag reduction in
oil-water flow due to turbulent fluctuations in the pipes. Therefore, an experimentally

validated theoretical model for emulsion drop size of liquid-liquid dispersions is crucial due



to its significant effects and contributions particularly on processes related to transport and

separation of liquid-liquid dispersions (Schimann, 2016).

2.2 Population balance equation (PBE)

One of the preferred methods to predict the drops evolution of oil-water emulsions
under turbulent flow regime is using the population balance equation (PBE) approach. PBE is
a useful tool that takes into account the processes from breakage due to the flow field, and
coalescence due to collisions. The PBE method is generally applicable to particle growth
processes such as crystallization, precipitation, flocculation, cell growth, mixing, multiphase
flow, reaction etc. as reported in review article by Ramkrishna and Singh, (2014). The work
on population balance was started as early as 1917 by von Smoluchowski who studied a poly-
dispersed particle dynamic. von Smoluchowski (1917) is considered the pioneer in deriving
aggregation kernel from Brownian motion and has proposed a set of nonlinear differential
equation for the aggregation of particles (Solsvik and Jakobsen, 2015; Ramkrishna and Singh,
2014). However, the works on population balance have been widely considered to have been
derived simultaneously by Hulburt and Katz (1964) along with Randolph (1964). Both have
suggested a generic expression for the population balance in terms of integro-differential
equations for the number density of the particles in the phase space. Hulburt and Katz (1964)
introduced population balance equation as a tool to model liquid-liquid dispersions. They
developed a model that used differential equations to show the variation of particle sizes in
the dispersed flow system. Later, Coulaloglou and Tavlarides (1977) employed the model
established by Hulburt and Katz (1964) and developed an improved set of breakage and
coalescence models under turbulent flow field for liquid-liquid dispersion. Since then, there
have been numerous studies and discussions on the population balance equations as reported

comprehensively in review article by Jakobsen, (2008); Solsvik and Jakobsen (2015); Liao
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and Lucas (2009, 2010); Abidin et al., (2015); Deju et al., (2015); Sajjadi et al., (2013);
Rigopoulos, (2010); and Omar and Rohani, (2017).

A vector is used to describe these changes in the system of states during the particle
interactions (Ramkrishna and Singh, 2014) or also known as particle phase space by Solsvik
and Jakobsen, (2015). The vector is composed of internal coordinates that indicate the
properties concerning the particle such as the particle charge, lifetime, or size (i.e., radius,
diameter, volume, and mass) and the external coordinates, representing the physical spatial
location of the particle. In a nutshell, the phase space vector consists of location and property
spaces of the particle. The PBE also accounts for the birth and death of the particle during
either coalescence or breakage processes as well as provides the evolution of the drop size
distribution with time and space. It is important to take into account the breakage and
coalescence processes during the dispersion of liquid-liquid flow because the final drop sizes
distributions are produced from the competition between both processes (DeRoussel et al.,
2001). Normally, PBEs are solved via numerical or statistical methods (Abidin et al., 2015).
There are several numerical solutions techniques proposed to solve the PBE in literature and
the most common methods used are finite difference method, weighted residuals method,
discretization techniques, and Monte Carlo (Meshah et al.,, 2009). Generally, PBE
formulations are derived from the concept of Boltzman transport equation, continuum
mechanical principles, and probability principles (Liao and Lucas, 2009; Solsvik and
Jakobsen, 2015; Randolph and Larson, 1988). PBE can be illustrated as particles entering and
leaving a control volume and those accumulating within it are balanced. According to
Vennerker et al., (2002), the general form of population balance equation from Ramkrishna

(1985) can be written as:

0fn(z,1,t)

R +V,.z2f,(z,1,t) + V.. uf,(z,r,t) = S(z1,t) (2.1
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Where, f,,(z,1,t) is the number density distribution function that represents the number of
fluid particles per unit volume as a function of property vector z (internal coordinate) and
physical position of the particle r (external coordinate) with time, t. The terms z and u are
growth rate and velocity of the particle respectively. While, S(z,r,t) is the generalized
source term for birth and death of particle due to coalescence and breakage processes and can

be expressed as follows:

S(z,r,t) = B(z,r,t) — D(z,1,t) (2.2)

In Egn. (2.2), the two terms on the right-hand side represent the birth and death rates of
particles at particular state (z,7) at time t. The birth rate B(z,r,t) is the number of droplets
formed from breakage of larger droplets or coalescence of smaller droplets. The death rate
D(z,r,t) is the number of droplets that breakup into smaller drops and small drops that
coalesce into larger drops. The birth and death processes from coalescence and breakage are
illustrated in Fig. 2.2. The mechanistic derivation of the PBE source term S(z,7,t) is
explained in detailed by Solsvik and Jakobsen, (2015). By substituting Eqn. (2.2) into the

generalized PBE equation in Eqgn. (2.1) and becomes:

0fu(z,1,t)

R +V,.zf,(z,1,t) + V,..uf,(z,1r,t) = B(z,r,t) — D(z,1,t) (2.3)
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Figure 2.2 Illustration of birth and death processes due to breakage and coalescence

The PBE model requires appropriate functions to describe the breakage and coalescence

phenomena. Presently, there are numerous models proposed in the literature on drop size

predictions in turbulent flow, many of which have been discussed thoroughly in the review

article by Liao and Lucas, (2009 and 2010), Abidin et al., (2015), Solsvik et al., (2013),

Sajjadi et al., (2013) and Deju et al., (2015). The functions are developed based on four

specific requirements namely breakage rate, daughter size distribution, collision frequency,

and coalescence efficiency. Several of the breakage and coalescence models are discussed in

the following sections.
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2.3 Review of breakage models

Normally, breakage occurs when turbulent fluctuations from the flow force the
particle in the dispersed phase to breakup, although, more precisely, the turbulent Kinetic
energy is said to have exceeded the surface energy of the droplet. In this respect, the surface
of the particle is exposed to the “bombardment” of eddies promoting instabilities and
eventually causing the droplet to deform (split). Extensive effort has been spent in developing
the model for breakage process. Among the earliest studies on this subject are the ones by
Valentas et al., (1966) and Narsimhan et al., (1979). Valentas et al., (1966) developed an
empirical model for a specific drop breakage, while Narsimhan et al., (1979) proposed a
binary drop breakage that accounts for the number of eddies arriving with different scales at
the surface of the droplet.

There are several models introduced to elucidate the drop breakage in literature, with
particular attention to the model developed by Coulaloglu and Tavlarides (1977). They
proposed a phenomenological model in the population balance equation to describe the
breakage process based on drop formation and breakup under the influence of local pressure
fluctuations in a locally turbulent isotropic field. They assumed that the droplet sizes are
within the inertial subrange and the breakup will take place if the turbulent kinetic energy
transmitted from collision of eddies is greater than the surface energy of the droplets that
keeps them physically intact. The breakup process in PBE can be described using two terms
namely breakage frequency, g(r) and daughter size distribution (probability of droplets
formed after breakup). Detailed descriptions of both terms are elucidated in the following

sections.
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2.3.1 Breakage frequency functions, g(r)

There are a humber of mechanisms proposed in literature to elucidate the breakage
process. In general, the breakage mechanisms can be classified into four categories as
follows:

(i) Breakup of droplet due to turbulent fluctuations.
(i) Breakup of droplet due to viscous shear stress.
(iif)  Breakup of droplet due to shearing off process.

(iv)  Breakup of droplets due to interfacial instabilities.

Typically, the breakage frequency functions available in literature are developed based on
these four suggested mechanisms. Fig. 2.3 shows the illustrations for each of the mechanisms
that contribute to droplet breakup or deformation process (Liao et al., 2015). The most
popular and preferred mechanism is from turbulent fluctuations where more work is found to

be based on this mechanism as shown in the model classification flow chart in Fig. 2.4.

4~ (2 1
h_ PR
< 3 A Sﬂ“s;‘t;
i My
N & o Y ® 0
(a) (b) (c) (d)

Figure 2.3 Type of mechanisms that promote the breakup and rupture of droplets: (a)
breakup due turbulent fluctuations, (b) breakup due to viscous shear force, (c) breakup due to

shearing-off process, and (d) breakup due to interfacial instabilities (Liao et al., 2015).
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2.3.1.1 Breakup of droplets due to turbulent fluctuations
In this type of mechanism, the breakup of droplet is assumed to occur when there is an

imbalance between the dynamic forces (turbulent pressure fluctuations) and surface stresses
(surface energy) of the droplets. Based on this assumption, several criteria have been
proposed in the literature as follows:

e Turbulent kinetic energy being greater than surface energy

e Velocity fluctuation across the surface of the droplet

o Turbulent kinetic energy from fluctuating eddies being greater than surface energy

o Inertial force of the fluctuating eddies
The details of these criteria have been discussed in depth by Liao and Lucas, (2009), Abidin
etal., (2015), Solsvik et al., (2013) and Solsvik et al., (2014). Nevertheless, the pioneer of the
breakup model based on the criteria of turbulent kinetic energy being greater than surface
energy was proposed by Coulaloglou and Tavlarides (1977) and the model has been widely
used in literature. The criteria postulated that when the turbulent kinetic energy supplied from
turbulent eddies is large enough to overcome the critical value owned by each individual
droplet (the critical value in this context refers to the surface energy of the droplet). Hence,
the chaotic changes in velocity manifest the turbulent fluctuations and eventually promote the
particle-eddy collisions along the surface of the droplet. The continuous process of turbulent
fluctuations caused the droplet surface to become unstable. At higher oscillations, the process
leads to elongation and rupture of droplet into two or more daughter droplets. Hence, from
the assumptions discussed above, Coulaloglou and Tavlarides (1977) formulated the drop

breakage function as follows:

90 = ( 1 )( fraction of ) - iexp (_ E) 2.4)

breakage time/ \drops breaking)  t, Ey
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Where, t, denotes the breakage time, E, and E, are the drop surface energy and kinetic
energy respectively. However, Lasheras et al., (2002) disagreed in general with the breakage
efficiency (the exponential term as shown in Table 2.1) proposed by Coulaloglou and
Tavlarides (1977) as they suggested that the breakup should be dependent more on
continuous phase density, p.. Vankova et al., (2007) has extended the model by Coulaloglou
and Tavlarides (1977) and proposed drop breakage characterized by drop Reynolds number

(Rey) that accounts for both continuous phase density, p. and dispersed phase density, pg.

2.3.1.2 Breakup of droplets due to viscous shear stress

In this mechanism, the breakup of bubbles is assumed to occur when there is an
imbalance of forces between the external viscous stresses from the continuous fluid and
surface stresses of the droplets in the air-water mixture. In this respect, the viscous shear
stress from continuous fluid induced by the velocity gradient across the interface of the
droplet ultimately leads to droplet deformation. However, the deformation of the droplet is
based on the force balance characterized by the Capillary number, Ca. If Ca is large enough
and above the critical value, the interfacial forces can no longer hold the particle intact and

eventually break the droplet into two or more daughter droplets.

2.3.1.3 Breakup of droplets due to shearing off process

In this mechanism, the breakage (erosive breakage) is assumed to occur when the
small bubbles are sheared off from the larger bubbles (Liao and Lucas, 2009). This process is
characterized by the imbalance of forces between the viscous shear force and surface tension
at skirts of the cap/slug bubble. For instance, in the case of viscous gas-liquid in turbulent
flows, the high relative velocity induces the bubble skirts to become unstable and

disintegrates them from larger droplets. This leads to generation of large number of small
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droplets at the rim (i.e., boundary). The velocity difference around the interface of the particle
is the major contribution of this process (Fu and Isshi, 2002). Nevertheless, this mechanism is
the major concern only in case of air-water mixtures (gas-liquid flows) and was found to be
limited in the literature compared to turbulent fluctuations and viscous shear stress (Yeoh et

al., 2014).

2.3.1.4 Breakup of droplets due to interfacial instabilities

In this mechanism, the breakage is assumed to occur without the presence of net flow where
continuous fluid characteristics are insignificant. According to Liao and Lucas (2009) and
Solsvik et al., (2013 and 2014), breakage can still take place in a motionless liquid for
instance, the rise and fall of bubbles in continuous gas or immiscible liquids due to the
interfacial instabilities. This can be expressed in Rayleigh-Taylor instability wherein the low-
density fluid travels rapidly into a high-density fluid. In the case of density ratio approaching
unity, the breakage process is taking the Kelvin-Helmholtz instability.

Several models of breakage frequency functions g(d) are derived from four different
criteria or mechanisms (see section 2.3.1.1) for droplets break process. For instance,
Coulaloglou and Tavlarides (1977) proposed a model for breakage frequency function mainly
on turbulent fluctuations. They assumed breakage rate to be a product of the fraction of
breaking drops and the reciprocal time needed for the drop breakup to occur as a result of
collision with turbulent eddy. They further added the factor of (1 + ¢) to account for the
damping effects on the local turbulent intensities at high hold up fractions. Chen et al. (1998)
introduced a mechanistic model for breakage rate function that accounts for interfacial
tension and viscosity. They also employed the effect of turbulent intensities at high holdup
fraction as suggested earlier by Coulaloglou and Tavlarides (1977). Rather simplistic, Cristini

et al., (2003) introduced a direct proportionality model or linear dependence based on sub-
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Kolmogorov drops in terms of drop volume(v), g(v) = kv. Some of the breakage frequency

models in the literature are described in the Table 2.1. Majority of the proposed breakage

models are found to neglect the correction factor for dampening of turbulent intensities at

high dispersed phase fraction (1 + ¢) as suggested by Coulaloglou and Tavlarides (1977).

The droplets will break if:

Mechanisms

L.b

o

Modified

Modified

Figure 2.4 Mechanisms for breakage frequency
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2.3.2 Daughter size distribution (breakage probability), B(r,r")

In order to have a complete description of the breakage sub-process, it is necessary to
consider the daughter size distribution in terms of the number of drops formed and their
distribution. The model has to be developed separately from the breakage frequency. The
main goal of this function is to determine the probability of a certain size of droplets formed
as a result of bigger droplets being ruptured. The daughter size distribution is composed of a
probability density function and the number of drops formed after the breakage process. Most
of the modelling works describe breakage as a series of binary breakage processes (Raikar,
2010). There are limited numbers of experimental and modelling studies for daughter size
distribution with multiple and/or unequal size daughter droplets or combination of equal and
unequal size daughter droplets to account for breakage event (Abidin et al., 2015). In general,
the average number of daughter droplets formed depends on the forces applied, diameter, and
the interfacial tension of the parent droplet (Hsia and Tavlarides, 1980). Based on these
requirements, the daughter size distribution can be classified into three categories namely,

empirical, statistical, and phenomenological.

2.3.2.1 Empirical model

Empirical model is formulated based on observation and experiment. Hence, it is considered
as case specific (i.e., for a specific application and system). Thus, the model is normally not
considered or preferred for the droplet size distribution. According to Solsvik et al., (2013),
the empirical model limits the range of applications and is incapable of extrapolating outside
of the operational conditions for which the model parameters were determined. In this
respect, generalized model is more applicable where the number and size of droplets formed
from a breakage event can be decently described regardless of the conditions (i.e., liquid-

liquid or gas-liquid, stir tank or pipe flow). Hesketh et al., (1991) developed an empirical
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model to determine the daughter size distribution in their study of bubble breakage in air-

water pipeline flow.

2.3.2.2 Statistical model
In statistical approach, the size of the daughter droplets is usually described by the random
variable and its probability distribution function proposed satisfies a simple expression. The
common expressions used are as follows:

¢ Normal or Gaussian distribution

e Beta (B) distribution

e  Uniform distribution
The normal density function was first introduced by Valentas et al., (1966) which later
became widely used for investigations such as Coulaloglou and Tavlarides (1977), Chatzi et
al., (1989), Lasheras (2002), and Raikar (2010). On the other hand, beta () distribution has
been proposed by Hsia and Tavlarides in 1980 by modifying their earlier work. One of the
advantages of beta (B) distribution is preventing zero probability for the evolution of equal-
sized droplets as compared to other models (Azizi and Taweel, 2011). Nevertheless,
Narsimhan et al., (1979) and Randolph, (1969) suggested that a random (uniform)
distribution for binary breakage could be used to describe the droplets formed from the
breakage event in agitated liquid-liquid dispersions. There has been disagreement reported
from this assumption by Sajjadi et al., (2013) and Liao and Lucas, (2009) because nature does

not split liquid volumes at random (Villermaux, 2007).

2.3.2.3 Phenomenological model
In the phenomenological model, the underlying concept is to relate empirical observations of

important phenomena that corresponds to fundamental theory but is not directly derived from
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the theory. In this respect, the underlying theory of such phenomena is not fully understood
and may not yet have been discovered (Liao and Lucas, 2009) or the mathematics to describe
such phenomena are too complex (Solsvik et al., 2013). From the shape of the daughter size
distribution, the proposed phenomenological models are comprised of functions that are
generally classified as U-shaped, Bell-shaped, and M-shaped. As reported by Abidin et al.,
(2015), the most widely used phenomenological model for the daughter size distribution is
from the bimodal U-shaped function developed by Tsouris and Tavlarides, (1994). This is a
model with highest probability density when one of the daughters has a minimum diameter
(parent droplet unlikely to break) and lower probability density for two daughter droplets of
same size. The model was developed based on the energy requirements for the daughter
drops formation. In comparison to beta () distribution function, this model by Tsouris and
Tavlarides, (1994) yielded minimum probability at equal size breakage while, beta (B)
function produced maximum probability at equal size breakage which is the opposite of this
model. However, the advantage of beta distribution model is that it predicts zero probability
for daughter droplets with size equal to parent droplet and for droplets infinitely small
(Abidin et al., 2015). In addition, the beta () distribution function is also capable to account
for the total volume of droplets within the lower and upper limits of droplet size (Abidin et
al., 2015). Luo and Svendsen, (1996) also proposed the U-shaped model for the daughter size
distribution for drop breakage. The model has similar criteria with Tsouris and Tavlarides,
(1994) where the probability is minimum at equal size breakage at maximum the volume
fraction approaches zero or unity. Furthermore, the model has a non-zero minimum and
mainly relies on the size of the parent droplet (Liao and Lucas, 2009). All the models
discussed above for daughter size distribution are presented in the diagram as shown in Fig.

2.5 below.
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Structure/model

Uniform
distribution
function

Beta distribution
function

Figure 2.5 Type of models proposed for daughter size distribution, 3

Additionally, Table 2.2 provides an insight and overview of several mathematical models
developed and available in literature for breakage size distribution, B(r,r") in terms of drop
radius, . Most of the models proposed in the literature are developed from the stirred tanks

setup for liquid-liquid dispersions.
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2.4 Review of coalescence model

Apart from breakage process, coalescence is also responsible for the evolution of
droplets in liquid-liquid or gas-liquid flows. In general, coalescence is a process when two or
more droplets are merging to form a droplet. In this respect, the process is typically
associated with contact and collision between droplets. In turbulence, the coalescence process
is considered complex (Chesters, 1991) due to the interactions of droplets with surrounding
continuous liquid and alongside other droplets. The coalescence model is hormally expressed
as the product of collision frequency, w. and coalescence efficiency functions, Y. There are
several models proposed in literature to calculate the collision frequency, w. and coalescence
efficiency functions, ;. Among the earliest models studied on coalescence are the ones by
von Smoluchowski, (1917) who investigated the aggregation of particles by Brownian motion
and Valentas and Amundson, (1966) that proposed mathematical descriptions for coalescence
based on a film drainage process. The most widely applied modeling approach for
coalescence is the film drainage model (Liao and Lucas, 2010). Film drainage is a process in
which when the droplets collide, they will trap a small film of liquid between them. As they
remain in contact, the liquid film separating the droplets slowly drains out to a critical
thickness and eventually ruptures due to film instabilities which lead to formation of a single
new droplet. In this section, a number of proposed models will be reviewed in the following

sections:

2.4.1 Collison frequency function, w¢(r',r"")

In turbulent flow, there are numerous mechanisms that could contribute to collision
between droplets. These include the turbulent induced collision that forces the random
motion of droplets during a chaotic turbulent flow, the eddy-induced collision in which the

droplets that are captured in the same eddy may collide due to the shear rate in the eddy, the
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velocity-induced collision where droplets from a region of relatively high velocity field may
collide with a droplet at a region of relatively low velocity field, the buoyancy-induced
collision such that the droplets of different sizes collide due to different
sedimentation/creaming velocities and finally the wake effect that promote the collision of
droplets due to the rise velocity of different size droplets. Fig. 2.6 shows the illustrations for

each of the mechanism that contribute to coalescence process from Liao et al., (2015).

(@) (b) (© (d) ©)

Figure 2.6 Types of collision mechanisms for droplets in turbulent flow: (a) Turbulent-
induced collisions, (b) Droplets capture in an eddy, (c) Velocity gradient-induced collisions,
(d) Buoyancy-induced collisions, and (e) Wake interactions-induced collision (Liao et al.,

2015)

2.4.1.1 Turbulent-induced collisions

Turbulent-induced collision is the most important and dominant mechanism in
describing the coalescence phenomenon (Abidin et al., 2015; Sajjadi et al., 2013). The
collision between droplets occurs due to fluctuations of the turbulent wvelocity in the
surrounding liquid and consequently induces a random motion to the liquid droplet. In this
respect, the random movement of the liquid droplet is assumed to be analogous to the kinetic

theory for collision between two gas molecules. All droplets in this mechanism are always
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assumed to be within the inertial subrange of isotropic turbulence. The criteria for inertial

subrange are as follows (Prince and Blanch, 1990; Luo, 1993):

ke Kkp <kg, Te D1, D1y (2.5)

In expression (2.5) above, k. denotes the wave number of the large size (r,) energy
containing eddies, k;, represents the wave number related to the droplet size (r3,), and k,; and
r, are the wave number of eddies where viscous dissipation occurs. Apart from that, it also
considers that very small eddies are having less energy to significantly affect the droplet
motion and larger eddies in which bigger than the droplet size, transport the droplets without
significantly affect the relative motion between droplets (Prince and Blanch, 1990). In terms
of length scale, the largest length scale, 7, is considered the radius of the physical system (i.e.,
pipe, impeller) and the smallest length scale, r; is the Kolmogorov microscale [i.e., ry =
(v/€)Y4]. In this mechanism, the collision frequency is generally expressed as the effective

volume swept by the moving droplet per unit time (Liao and Lucas, 2009):

1/2
wc(r',r") = Ay (U, + uf / (2.6)

Where, A is the cross sectional of the colliding droplets and u, is the turbulent velocity. The

cross-sectional area is given by (Prince and Blanch, 1990):

A =m(r +1r")? (2.7)
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While, to determine the turbulent velocity u, one must consider that the droplets are within
the turbulent inertial subrange, hence it can be approximated by applying the classical

turbulent theories (Luo, 1993):
u?,r = k622/3 (er)?/3 (2.8)

Substitute both equations (2.7) and (2.8) into (2.6), the collision frequency becomes (Luo,

1993, Prince and Blanch, 1990, Coulaloglou and Tavlarides, 1977):
oo 1/3 43 ’ 1\2 12/3 1n2/3 1/2
wc(r, 1" = ke /342" + ") (r B yr ) (2.9)

This expression has been employed by many researchers some of which are Hsia and
Tavlarides (1980), Lee et al., (1987), Kamp et al., (2001), Colin et al., (2004), and Wang et
al., (2005). In a study of drop coalescence by Prince and Blanch (1990), they also postulated
that the eddy motion due to turbulent fluctuations is primarily responsible for the random
motion between droplets. The model proposed is similar to the one by Coulaloglou and
Tavlarides, (1977), however the main differences are they discounted the effect of local
turbulent intensities at volume fraction (1 + ¢) and probability efficiency of complete mobile
surfaces between droplets instead of immobile surfaces proposed by Coulaloglou and

Tavlarides, (1977).

2.4.1.2 Velocity gradient-induced collisions

The mechanism of velocity gradient-induced collision is usually applied for gas-liquid
system where the densities of bulk and droplet can be distinguished significantly. In this
respect, the droplet movements are mainly dictated by their size and collisions are caused by
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the relative sedimentation/creaming velocities between droplets. According to Pumir and
Wilkinson, (2016) collision between droplets due to velocity gradient can be illustrated by
two events: (i) from the gravitational effect in bubble column where larger bubble overtakes
another bubble of small size, and (ii) shear flow effect where bubble (low-density phase)
collides with bubble (high-density phase) as they are transported together. This is also agreed
by Friedlander (1977) who explained that velocity gradient in laminar shear flow can
contribute to collisions of droplets. They proposed a function to express the frequency of
shear-induced collisions and can be applied in any case related to velocity gradient-induced
collision (Liao and Lucas, 2009). Prince and Blanch, (1990) employed the function by
Friedlander (1977) to describe the drop coalescence in the case of high gas rates in air-

sparged bubble columns.

2.4.1.3 Droplet capture in an eddy

The third mechanism that contributes to collision is droplet capture in turbulent
eddies. In this respect, the droplet size and eddy size can significantly influence the collision
frequency. In turbulent flow, the collision frequency is predominantly viscous or inertial
depending on the size of the particles. Chesters (1991) explained that in turbulent flow, when
a droplet has a smaller size compared to energy dissipation eddies, the collision frequency is
predominantly viscous and the force governing the collision is inertial if the particles are
larger than Kolmogorov scale. Hence, in this case the drop velocity will be directly
influenced by the eddies. In terms of density difference, Kocamustafaogullari and Ishii (1995)
elucidated that in a system where the density of the drop is similar to the density of the
continuous phase, the droplet velocities will be approximately close to the velocity of the
continuous phase. Therefore, the collision frequency will be described by local shear of flow

in turbulent eddies similar to laminar shear flow as expressed below (Liao and Lucas, 2010):
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wc(, ") =0.618(r" +r'")3/¢e/v (2.10)

Where, /£/v is a rate of strain characteristic of flow in the smallest eddies (Chesters, 1991).

In comparison to laminar shear flow, the term /&/v is often used referred as the turbulent
shear rate. Under this circumstance, the collision mechanism is known as eddy-capture (Liao

and Lucas, 2010).

2.4.1.4 Buoyancy-induced collisions

The buoyancy-induced collisions are similar to the explanation by Pumir and
Wilkinson (2016) where the collisions are resulted by the gravitational effect or the
difference in rise velocity of the droplets having different sizes (Prince and Blanch, 1990).
Friedlander (1977) has expressed the general function to determine collision frequency from
the buoyancy-induced collision mechanism which is similar in Egn. (2.6) except the turbulent
velocity is replaced by the rise velocity due to gravitational body forces (Liao and Lucas,
2009). The rise velocity can be calculated from the Fan-Tcuchiya equation or Clift et al.,

(1978) as reported by Wang et al., (2005) and Prince and Blanch (1990).

2.4.1.5 Wake entrainment

The wake-induced collisions is produced by a liquid moving with uniform velocity
under turbulent flow over the bubbles particularly during the free-rise of gas bubbles in
vertical column. The wake entrainment collision is only important for gas-liquid systems with
large fluid particles (Parente and De Wilde, 2018). During the event of free-rise of gas
bubbles, the smaller fluid particles close to the wake can be accelerated, carried up and
brought to collide with the leading fluid particles, thus generating the wake (Sun et al., 2004).

According to Komosawa et al., (1980) the wake plays a significant role in promoting the
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collisions between bubbles. Fu and Ishii, (2002) considered that coalescence due to wake
entrainment as one of the five major bubble interactions. Karn et al., (2016) found that when
bubbles are entrained into the wake region of a leading bubble, the smaller bubbles undergo
acceleration in comparison to the larger bubbles and may collide with the preceding bubbles
at higher speed than the velocity of the liquid. The same phenomenon was also encountered
and explained before by Bilicky and Kestin (1987) in their study on transition criteria for air-
water system in vertical upward flow. By taking into account the frequency between a trailing
bubble in the wake and its leading bubble, Kalkach-Navarro et al., (1994), suggested the

following expression for collision frequency:

w7 = ko (V! + V") (V3 4 y1/3)? (2.11)

Where, k. has the unit of rate per unit area (1/s.m?) and is to be determined experimentally.

The classifications of mechanisms for collision frequency are illustrated in flow chart
as shown in Figure 2.7. In general, there are various mechanisms that could contribute to
particles collision. Hence, it is difficult to decide which mechanism plays the most significant
role in certain collision cases (Liao and Lucas, 2010). However, if the particles size is within
the inertial subrange of turbulence, the most important mechanism for collision will be the
turbulent fluctuations (Liao and Lucas, 2010). This is due to the fact that, particles are
exposed to random motion of eddies from all directions and most likely will result in
collision between the particles. Due to this reason, turbulent fluctuation has been the
preferred mechanism for drop formation and breakup as many research works are found to be
based on this mechanism (shown in Fig. 2.7). Additionally, Table 2.3 depicts several of the

proposed collision frequency models available in literature. It is observed that, majority of the
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suggested coalescence models neglect the damping effects/factor (1 + ¢4) on the local
turbulent intensities at high dispersed fraction in a similar way to breakage model. The author
believes that, the inclusion for the effect of high dispersed phase in local turbulent intensities
is critical in both breakage and coalescence models because for dispersed fluid flowing at low
viscosity, the size of the droplet increases with increasing dispersed phase fraction as a result
of turbulence hindering (Maal3 et al., 2012). From liquid-liquid dispersion study by
Coulaloglou and Tavlarides (1977), it is found that, they are not successful in the first attempt
to correlate the theoretical and experimental size distributions over the range of dispersed
phase between 0.025 < ¢ < 0.15. However, the experimental data are -correlated
successfully when they accounted the damping effects (1 + ¢,) at high dispersed fraction in

turbulent flow field.

Collision
frequency, o (d.d")
most preferred Mechanisms
Turbulent Capture in Velocity gradient Buoyancy-induced Wake-induced
fluctuations/collisions turbulent eddy induced collisions collision collision
|~ Coulaloglou and " Friedlander : Kalkach-Navarr
: Chesters [ Prince and
Tavlarides ) 1977y Blanch (19 oetal., (1994)
(1977) / (1991) lanch (1990)
< Kocamustafaogull
Leeetal., : 5
(1987) ari and Ishii (1995)
Luo and
Svendsen (1996)
Lehr et al.,
(2002)
Prince and

Blanch (1990)

Tsouris and
Tavlarides (1994)

Kamp et al.,
(2001)

Modified
Colin and
Riou (2004)

‘Wang et al.,
(2005)

Figure 2.7 Type of mechanisms for collision frequency w, models
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2.4.2 Coalescence efficiency function, Y g(r',r"")

The model for coalescence efficiency or coalescence probability is introduced due to
the fact that not all the droplets that collided coalesce and some fractions of the droplets are
found to be separated after the collisions. In general, coalescence efficiency models are
determined based on three major approaches namely energy model, critical velocity model,

and film drainage model (Liao and Lucas, 2010; Solsvik and Jakobsen, 2014).

2.4.2.1 The energy model

The coalescence efficiency model based on energy approach was first introduced by
Howarth in 1964 in his study on coalescence of droplets in a turbulent flow field. From the
model proposed, it was found that, the efficiency of coalescence significantly increases with
increasing energy of collision. Experimental evidence from Park and Blair, (1975) proved
that the coalescence is most likely to occur when the turbulence energy increased. To
express this phenomenon, Sovova, (1981) introduced the coalescence efficiency model that

incorporates with kinetic collision energy (E;) and surface energy (E,) as written below:

E,
Yp(d,d') = exp (—kc E_k) (2.12)

From the expression in Egn. (2.12) shows that the probability of coalescence (y ) from drop
collision increases if the kinetic collision energy is greater than the surface energy holding the
droplet together (i.e., E}, > E,). Simon, (2004) proposed coalescence efficiency model based
on similar principles as Sovova, (1981) but using momentum balance expression to determine
the kinetic energy during collision. Nevertheless, the model discounted the effect from the

drainage and rupture of intervening film between droplets.
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2.4.2.2 The critical velocity model

On the other hand, the critical velocity model approach is developed based on the
opposite principles to the energy model approach. In this respect, the coalescence of droplets
is observed to favour gentle collisions instead of high velocity collisions as proposed in the
energy model (Liao and Lucas, 2010). In this model, the result of coalescence efficiency
mainly relies upon the approach velocity of the colliding droplets. Lehr et al., (2002)
proposed a simple expression to describe the coalescence efficiency in terms of critical

approach velocity in bubble columns as follows:

Ye(r,7') = min (? 1) (2.13)

rel

In Egn. (2.13) above, the u..; denotes the critical velocity and u,.; is the relative velocity
between the droplets. This model is considered empirical owing to the fact that u.,;; has to be

determined experimentally.

2.4.2.3 The film drainage model

The film drainage model is the most accepted and widely used theory to determine the
coalescence efficiency and has become the reference for all subsequent models (Liao and
Lucas, 2010; Sajjadi et al., 2013). The film drainage model is developed based on two
characteristic time scales known as contact time, t.,n:qc: Detween colliding droplets and
drainage time, tgrqinage fOr the intervening film to reach the critical thickness and rupture.
To achieve coalescence, the collided drops must remain in contact for sufficient time until the
liquid film thins to its critical thickness. In short, the contact time must be longer than the

drainage time (twnmct > tdminage) for coalescence to occur as shown in Fig. 2.8 (Kamp et
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al., 2017). Hence, through a constant force from the turbulence, the film will rupture and drop

coalescence will occur.

Film rupture

Collision between droplets

> .
tcomucl tdramugc

< z
tconlzu;l tdramagc

Non-coalescence

Figure 2.8 Coalescence efficiency events from the film drainage model

It is understood that the model is primarily dependent on the droplet size and the turbulent
energy. Hence, the larger size droplets will have greater contact areas and high turbulent
energy will increase the probability of an eddy to separate two droplets in contact (Prince et
al., 1989). Coulaloglou and Tavlarides, (1977) introduced an expression that encompasses the

two characteristic time scales as follows:

Yp(r,r') = exp (— M) (2.14)

teontact

In this expression, an increase in contact time over drainage time will increase the probability

of coalescence and vice versa. The film drainage model has been investigated extensively
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with a large number of models proposed in the literature are established from this concept as
shown in the flow chart of Fig. 2.9. However most of the models proposed are subjected to
specific criteria (i.e., drop rigidity and mobility interfaces) and the main difference between

these models are in the expression for the drainage time, tg,4inqge @nd contact time, teonzace-

Coalescence efficiency,
v (d.d)
Categories

‘ " most preferred [

Energy model Film drainage model Critical aP:ﬁro(:jtih velocity
wc(d.d') = exp [- Interfacial energy o
(E_)/Kinetic energy (E,,)] V(') = min (g0 pyen s D
( Howarth (1964) ( Lc(i;):!)l;)ll, |
) Vo (dd) =exp (-t oo /tontact)
 Sovova (1981) ‘ drainage’ ontact

(" Simon (2004) Surface rigidity

I

Non-deformable = Deformable
surface surface

Chesters

(1991) Mobility

Fully mobile Partially mobile

Immobile
interfaces interface interfaces
Chesters { Tsouris and Chesters
(1991) Tavlarides (1994) (1991)
| Modified Alopaeus et Coulaloglu and
al., (1999) Tavlarides (1977)
|/ Laneetal,
“ (2005)
Prince and 5 l
R / Chesters = -
Blanch (1990) A (1991) | Modified
_ / Kampet
Lee et al., N X
L » ) Leeetal., o
(1987) sy D 0 Hsia and \
Tavlarides (1980)

Figure 2.9 Type of coalescence efficiency models proposed in literature

The drainage time tgyqinage Plays an important role in probability of successful
coalescence. Hence it has been the subject to various investigations (Lee and Hodgson, 1968;

Jeffreys and Davis, 1971; Lee et al., 1987; Coulaloglou and Tavlarides, 1977; Prince and
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Blanch, 1990; Tsouris and Tavlarides, 1994; Luo, 1993; Chesters, 1991; Saboni et al., 1995;
Simon, 2004; Lane et al., 2005). Most of the researchers agreed that in film drainage model
the drainage time t4rqinage depends on the rigidity of the droplet surfaces as well as mobility
of the contact interfaces (Lee and Hodgson, 1968; Chesters, 1991; Liao and Lucas, 2010;
Sajjadi et al., 2013; Abidin et al., 2015). Analytical solution for 4, ginage €Xist is only for the
case of non-deformable drops with immobile interfaces (Chesters, 1991). The contact time,
teontact 1S @lso important for the calculation of the coalescence time in a turbulent system.
There have been numerous studies and models proposed for the contact time in literature
(Schwartzber and Treybal, 1968; Chesters, 1991; Luo, 1993; Coulaloglou and Tavlarides,
1977; Kamp et al., 2001; Tsouris and Tavlarides, 1994) and most of the models developed

used the expression from Levich (1962) that are based on dimensional analysis.

2.4.2.3.1 Rigidity of droplet surfaces: non-deformable

The non-deformable droplets apply to the case where the droplets are far away from
each other or the droplets are physically small in size for instance, the drop size diameter,
d < 1.0 mm and the droplets have higher viscosity than the continuous phase (Simon, 2004,
Liao; Lucas, 2010). In this respect, the droplets are assumed to be spherically rigid and non-
deformable. Chesters (1991) proposed a model to describe the drainage time, tgrqinage UNder
these circumstances for two equal-sized droplets with non-deformable surfaces via the
Poiseuille relation. However, most researchers disagree with non-deformable surfaces theory
due to the fact that the model only applies for very small droplets (d < 1.0 mm) wherein
practically larger droplets also existed and should be considered during the collision (Simon,

2004).
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2.4.2.3.2 Rigidity of droplet surfaces: deformable

Nearly all the film drainage models available in literature consider that the droplet
surfaces are deformable. This is true considering the droplets in real conditions are present in
the form of bigger and smaller sizes. Hence, deformable surfaces should be considered if one
is investigating the coalescence efficiency based on the film drainage model. Kamp et al.,
(2017) explained that the collision between two droplets mostly occurs with deformable
droplet surfaces as shown in Fig. 2.13 that subsequently resulted in coalescence. Liao and
Lucas, (2010) argued that the complex film drainage with deformable surfaces depends on
the mobility of the colliding interfaces. In this respect, the film drainage model can be
divided into three regimes known as the deformable droplet with immobile, partially mobile,
and fully mobile interfaces. These regimes are controlled by either inertial force dominate, or
viscous force dominate in the draining film (Chesters, 1991). In the case where highly
viscous dispersed phase is present in the liquid-liquid system, the drainage is mainly
dominated by viscous force.

The rigidity of the droplet surfaces can be classified into two categories namely,
deformable and non-deformable surfaces as shown in Fig. 2.10. While the mobility of the
contact interfaces is divided into three types such as immobile interfaces, partially mobile
interfaces, and fully mobile interfaces as depicted in Fig. 2.11 from Simon (2004) and Sajjadi
et al., (2013) and Fig. 2.12 from Lee and Hodgson, (1968). Analytical solution for t;rqinage

exist only for the case of non-deformable drops with immaobile interfaces (Chesters, 1991).
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Figure 2.10 Rigidity of the droplet surfaces: (a) Non-deformable and (b) Deformable from

Simon, (2004) and Chesters, (1991).

(@) (b) (©

Figure 2.11 Mobility of the droplet interfaces: (a) Immobile interfaces, (b) Partially mobile

interfaces, (c) Fully mobile interfaces, from Simon, (2004) and Sajjadi et al., (2013).
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e

(b)

Yyy

(©)
Figure 2.12 Mobility of the droplet interfaces at plane film (Lee and Hodgson, 1968): (a)
Immobile interfaces, (b) Partially mobile interfaces, and (c) Fully mobile interfaces. The

pressure distribution is shown at the top (a).

On the other hand, if the continuous phase has a low viscosity (i.e., inviscid), the
drainage is dominated by the inertial force where the film deformed due to acceleration and
continuous movements at the interfaces. Apart from that, in the deformable surfaces of the
droplets, Derjaguin and Kussakov (1939) found that there is a dimple on the surfaces which
indicates the presence of pressure gradient across the surfaces of the deformable droplets as
shown Fig. 2.11. In this respect, the film layer is not flat and needs to be converted to a
curved shape in order to accommodate the pressure gradient. However, due to simplicity,
most of the drainage models proposed in literature discounted the dimple but instead
considered a parallel (flat) model such that the thickness layer of liquid film is smaller than
the radius of the droplets (Kamp et al., 2017). From this assumption, several models have

been proposed while taking into account the mobility of the droplet interfaces.
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Figure 2.13 Deformable surfaces of droplets (Kamp et al., 2017)

242321 Interface mobility: deformable with immobile interfaces

Droplets with immobile interfaces are generally applied to systems with a very
viscous dispersed phase or systems with very specific surfactant soluble concentration in the
continuous phase (Saboni et al., 1995; Liao and Lucas, 2010). In this respect, the deformable
droplet with immobile interfaces (i.e., contact surfaces) is influenced by the viscous thinning
or thinning rate of the film. The contact surfaces can be another droplet, a wall or the
interface of the continuous fluid (&ther, 2002). According to Lee and Hodgson (1968), the
immobile interfaces mean that there is a sufficiently large surface shear stress existing to
oppose the viscous shear stress of the droplet or in other words, the droplet can support an
infinite high shear stress (Z&ther, 2002). This occurs due to the presence of surfactant or
impurities to immobilize the surface (&ther, 2002; Lee and Hodgson, 1968). The film at this
condition will drain very slowly in comparison to the fully mobile case (&ther, 2002). The
underlying theory for this model assumes that continuous flow in the liquid film is laminar
and the inertial effects are negligible (Tsouris and Tavlarides, 1994). No slip at the surface
and velocity profile as depicted in Fig. 2.11(a) indicates that the film is having maximum
velocity at the centre and no velocity at the contact surfaces. Furthermore, the forces at the
interfaces are assumed normal, hence, the Van der Waals, tangential, and double layer

stresses are all negligible. The interaction between the film drainage and the movement
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within the particles are separated. Colaloglou and Tavlarides, (1977) presented thorough
synthesis of how coalescence occurs in liquid-liquid dispersion when the intervening liquid

film drains to a critical thickness with deformable droplets at immobile interfaces.

2.4.2.3.2.2 Interface mobility: deformable with partially mobile interfaces

Droplets with partially mobile interfaces are generally applied to the system with
intermediate viscosity, which is less than immobile case and greater than fully mobile case. It
can also apply to a system where the impurities or the surfactants are swept away from the
interfaces (/ther, 2002). In general, the drainage in liquid-liquid system is controlled by the
motion of the film surface. Hence, if there is a presence of additional flow within the film due
to prevailing pressure gradient being much smaller, the event is known as partially immobile
interfaces (Chesters, 1991; Ather, 2002). Since film drainage model for drops with partially
mobile interfaces is an intermediate case between immobile and fully mobile interfaces,
partial mobility can be considered complicated case due to the fact that the drainage process
is controlled by both inertia and viscous forces. Hydrodynamic force, F, and compressing
force, F. are introduced to describe the interaction forces at the contact surfaces between the
two droplets in terms of resisting (F,) and attracting (F) forces. Both forces are assumed to
occur during the film drainage and play an important role to develop the expression for the
drainage time in terms of deformable drops with partially mobile interfaces and fully mobile
interfaces. Davis et al., (1989) approximated the interaction forces, F, and F, to determine the
drainage time, tgrqinage fOr drop with partially mobile interface and later employed by
Tsouris and Tavlarides, (1994). On the other hand, Chesters (1991) also proposed the film
drainage model for drops with partially mobile interfaces by assuming a quasi-steady
creeping flow and Lee et al., (1987) employed the model from Sagert and Quinn (1976) to

express the model for drops with partially mobile case.
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2.4.2.3.2.3 Interface mobility: deformable with fully mobile interfaces

Deformable droplet with fully mobile interfaces is the case where the dispersed phase
having a very low viscosity (i.e., inviscid). In this respect, the drainage is no longer controlled
by the viscous stress as in partial mobility and immobile interfaces but instead by the
resistance occurred in the film due to deformation and acceleration (Chesters, 1991).
Therefore, the inertial forces are controlling the process of film drainage. As shown in Fig.
2.12 (c), the fully mobile has the uniform velocity profile which indicates that the film will
drain fast at this condition compared to immobile case (&ther, 2002). In general, Chesters,
(1991) and Chan et al., (2011) defined the deformable drops with fully mobile interfaces as a
shear-stress free case or when the surface could not withstand the shear stress and move with
the flow (Ather, 2002). In this respect, the system is either pure fluids (i.e., no impurities or
surfactants) or the surfactant and impurities are swept away from the interface from the
partial mobility. On the other hand, Davis et al., (1989) described the process to be influenced
by the viscous force and approximated the resisting hydrodynamic force for fully mobile
interfaces in terms of dispersed phase viscosity. Luo, (1993) proposed the film drainage
model from the inertia-controlled limit for the case involving gas bubbles in turbulent flow.
Chesters, (1991) proposed the drainage model by using the parallel-film model approach and
taking into account the both terms which is viscous and inertial stresses. Lee et al., (1987)
proposed the model for a system having a pure inviscid dispersed phase liquid (1 < 10mPa.s)
and Prince and Blanch, (1990) suggested the improved model from Oolman and Blanch,
(1986) by discounting the Hamaker contribution due to the small influence on overall
coalescence time. Several numbers of coalescence efficiency models proposed in the

literature which are based on the three discussed mechanism are depicted in Table 2.4.
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2.5  Energy dissipation rate

The turbulence Kkinetic energy dissipation rate, € is an important property in turbulent
flow at high Reynolds number as it controls the drop breakup, heat transfer and mass transfer
(Wang et al, 2020). The rate of the dissipation is associated with the turbulent eddies in the
fluid flow or in brief, the strength of turbulence. Ideally, the dissipation rate, ¢ indicates the
rate at which the turbulence energy is absorbed, redistributed and transferred in the
fluctuating flow by breaking the eddies into smaller scales in cascade process driven by
vortex. In general, there are three different regions or energy flow of the turbulent energy
cascade. The length scale of the largest eddy is referred to the region of energy-containing
range. Instead, the smallest scale at which the eddies are dissipated by the viscous force and
converted into heat is denoted as to the region of dissipation range (viscous effect is
dominant). If the viscous effects are negligible, the eddies are suggested to be in inertial
subrange. There are various energy dissipation rates have been proposed in the literature
based on different turbulent conditions as depicted in Table 2.5.(Azizi and Taweel, 2011;

Raikar et al., 2009; Galinat et al., 2005; Jakobsen, 2014; Hesketh et al., 1991).

Table 2.5 Turbulent dissipation rate, € from literature

Author Energy dissipation rate, & Descriptions
Galinat et al. (2005) . 1 ABpayU (i B 1) The model is developed
pe 2D \p? based on the relation between
Where, g = Do dissipation rate and
! D

maximum pressure drop
across the orifice

AP, 0. (pipe flow with
restriction) as well as the

orifice-pipe ratio, 3.

Azizi and Taweel (2011) _ UAP The rate of energy
chM
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dissipation proposed from the

pressure drop, AP in the

static mixer.
Hesketh et al. (1991) _ 203 f The energy dissipation rate is
=D calculated based on the
Where f is from the Blasius | widely used empirical
relation friction factor. relationship in turbulent pipe

flow. The friction factor, f is

used for pressure drop in the

system.
Raikar et al. (2009) cp3/2 The estimate is modified
£E=——
yi/3p 3/ from Coulaloglou and

Tavlarides (1977) for

emulsion in high pressure

Where P is the

homogenization pressure and

. homogeneizer.
c is constant.

Flérez-orrego et al. (2012) U3Rg3/8 The energy dissipation rate is
£=0.0176 ————

D proposed from x — & model.
The turbulence assumed to

be generated from the bulk.

Jacobi, (2014) modified the estimate of the energy dissipation rate, &, based on the
relationship between Reynolds number equation and friction factor, f in the global specific

energy dissipation rate as follows:

2v3f  2Re3vif
7D T e

V3
~ 0.16Re?75 <ﬁ) (2.15)

Where f in equation 2.15 is fanning friction factor. The relation for the turbulent dissipation
energy is based on the wall friction as the primary source of turbulence production and is the

extended version from Hesketh et al. (1991). The turbulent dissipation energy can also be
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derived from the ¥ — & model as suggested by Flérez-orrego et al. (2012). However, this
estimate is only valid in the bulk as there are hardly any production of turbulence in the bulk,
thus the k — & model length scale gives very minimum turbulence. Nevertheless, estimation
of turbulent dissipation rate in turbulent multiphase flows is still limited (Wang et al., 2020).
In the following section, an overview of the available and popular approaches for PBE

solution are elucidated.

2.6 Solution to population balance equation (PBE)

This section offers an insight into several challenges as well as approaches employed
by other researchers in the literature as an effort to solve the complex PBE. For a liquid-
liquid flow in pipes, the droplet size distribution can affect significantly the rheological
behaviour and the pressure gradient of the fluids (Arirachakaran et al., 1989). Hence, a good
model that could accurately predict the drop size distribution in liquid-liquid emulsion is
crucial, particularly in processes related to separation application (Schumann, 2016).
Population balance equations (PBE) can be used to model and describe the complex case of
dynamic evolution of drop size distribution in pipe flow. The PBE are also represent the
transport equation for number density function of the droplets (Nguyen et al., 2016). In
general, to solve the PBE, one must discretize the particle volume domain into a number of
discrete elements. The resulting solutions will be in the form of stiff, nonlinear differential
and/or algebraic equations that are subsequently integrated numerically (Alexopoulos et al.,
2004). It is of interest to mention here that, there are many challenges involved in solving
PBE such as numerical complications, large number of equations involved, modeling
accuracy, computational efficiency, growth rate of the droplet due to breakage and
coalescence, inconsistency of droplet distribution in terms of size and time, as well as the

mechanism attributed to the drop size evolution (Rehman and Qamar, 2014; Pinar et al.,
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2015; Korovessi and Linninger, 2005; Gunawan et al., 2004). According to Meshah et al.,
(2009), the numerical solutions of PBE can be complicated due to the occurrence of sharp
discontinuities and steep moving fronts that result from convective nature of partial
differential equations as well as initial and boundary conditions incompatibility.

In recent years, there have been numerous methods proposed in literature to solve the
PBE (Kumar et al., 2008; Omar and Rohani, 2017). These include finite volume methods,
finite element methods, finite difference method, method of characteristics, moments method,
least-squares method, and Monte-Carlo method (see details in the review article by Vikas et
al., 2013; Kumar et al., 2008; Mesbah et al., 2009; Omar and Rohani, 2017; Solsvik et al.,
2013). The finite volume method was originally established for gas dynamics and presently it
has been adopted to solve the PBE (Qamar and Wernecke, 2007). It includes the
discretization of the spatial domain and uses piecewise functions to approximate the
derivatives (Mesbah et al., 2009). The resulting ordinary differential equations (ODE) will be
integrated over time (see details in Vikas et al., 2013; Gunawan et al., 2004; Qamar and
Wernecke, 2007). The finite element method involves the conversion from partial differential
equations (PDE) into algebraic equations for steady state and ODE for dynamic state (Omar
and Rohani, 2017). The final result in the form of stiff nonlinear differential equations is
integrated over time (see details in Alexopoulos et al., 2004; Rigopoulos and Jones, 2003).
However, this method may experience numerical complications due to the incompatibility
between the initial condition and boundary condition that cause moving discontinuity in
numerical solutions (Mesbah et al., 2009). In finite difference method, the differential
equations in PBE are approximated by difference equations in which implicit, explicit, and
Crank-Nicolson schemes are commonly used (Omar and Rohani, 2017). According to John

and Suciu (2014), the finite difference method will lead to nonphysical oscillations and
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accuracy may have to compromise with computational cost (see details in Bennet and
Rohani, 2001; John and Suciu, 2014).

Kumar and Ramkrishna (1997) proposed method of characteristic to enhance the
solution accuracy of the discretized PBE. In this method, the PDE are transformed into ODE
by finding curves in the internal coordinate and time planes (i.e., L-t plane) resulting in
significant improvement of solution accuracy (Gunawan et al., 2004; Mesbah et al., 2009).
However, there are limitations involve of using this method in terms of long calculation times
for complex case and practical system, time-step selections, and obligated scalar modelling
(Lim et al., 2002) — see details in Lim et al., (2002) and Kumar and Ramkrishna (1997).
Hulburt and Katz (1964) are among the first who introduced the method of moments and the
main focus is to convert the PDE into ODE using a moment transformation. In this respect
the PBE are converted into moment equations of the number density (Omar and Rohani,
2017). There are various other subsequent models developed based on this method for
instance, quadrature method of moments, direct quadrature method of moments, sectional
quadrature method of moments, and extended quadrature method of moments (see details in
McGraw, 1997; Marchisio and Fox, 2005; Attarakih et al., 2009; Yuan et al., 2012; Akinola
et al., 2013). However, for complex systems the moment closure conditions are violated,
applicable to limited number of problems and no available information about the shape of the
distribution (Dorao and Jakobsen, 2006a; Gunawan et al., 2004; Omar and Rohani, 2017).
Another way of solving the PBE is by employing the least-squares method. The fundamental
idea of least-squares method is to minimize the integral of the square of the residual over the
computational domain (Dorao and Jakobsen, 2006a; 2006b). In this respect, the minimization
is performed for the norm-equivalent functional (see details in Solsvik et al., 2013; Dorao and

Jakobsen, 2006b; Zhu et al., 2008).
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The least-square method is a well-established technique for solving various
mathematical problems and details of this method are discussed by Jiang (1998) and Bochev
and Gunzburger, (2009). However, in a system with high non-linearity and large scale, an
error occurred in the properties of the distribution and the method becomes unstable (Omar
and Rohani, 2017; Zhu et al., 2008). To address these issues, Zhu et al., (2008) introduced
least-squares method with direct minimization method. Still, the method does not always
produce a symmetric and positive-definite system (Omar and Rohani, 2017). Monte-Carlo
method solves the PBE by generating a set of solutions from randomly generated numbers in
the mathematical system (Omar and Rohani, 2017). To increase the accuracy of the system, a
greater number of randomly generated input trials is needed, and many individual droplets
must be tracked. In this regard, the method becomes computationally expensive (Nguyen et
al., 2016; Kumar et al., 2008; Gunawan et al., 2004). Monte-Carlo method is suitable for a
multi-dimensional and stochastic PBE particularly in a complex system (Kumar et al., 2008;
Ramkrishna, 1985). Although a plethora of studies have been conducted on numerical
solutions for PBE, robust solutions are still needed because more advanced control and

optimization strategies can be developed (Omar and Rohani, 2017).

2.7 Chapter summary

In this chapter the introduction and the importance of PBE in modeling the liquid-liquid
drops evolution is elucidated. In addition, the sub-processes for the population balance
equations in terms of breakage and coalescence models are also reviewed and discussed. The
underlying mechanisms for breakage frequency, daughter size distributions, coalescence
frequency, and coalescence efficiency are also reviewed. Details of method employed are

discussed in the following section.
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CHAPTER 3

3 MODELING AND SIMULATION SETUP

3.1  Physical descriptions of the model

In turbulent dispersion of liquid-liquid systems, the fluid dynamics and the processes
involving particularly breakage and coalescence are complex. The simplist model for the
dynamic evolution of the drop density distribution of a liquid-liquid dispersion in turbulent
pipe flow system should assume isotropic turbulence with a uniform (plug) velocity, U as
shown in Fig. 3.1 across pipe diameter, D and length, L. This is a reasonable assumption
considering that the fine-scale structure in most of non-isotropic turbulent flows is found to
be locally close to isotropic (Hinze, 1959). Furthermore, isotropic turbulence assumption has
often been used for liquid-liquid dispersion studies (Coulaloglou and Tavlarides, 1977;

Tsouris and Tavlarides, 1994; Azizi and Tawell, 2011).

A

4
Figure 3.1 Sketch of turbulent flow field of a moving fluid in a pipe of length L, diameter D,

and moving with an average velocity (plug flow), U
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Due to the plug flow assumption any variance of the droplet sizes along the radial direction as
well as angular direction of the pipe is neglected. The model considers that the birth and
death processes of drops are due to breakage and coalescence. While, the distribution will be
a function of time, axial position, z and drop radius, r (i.e., internal coordinate of r).

In addition, to minimize the complexity as well as to simplify the models, other
assumptions and certain simplifications are necessary. In this regard, the model considers
that, the droplets are spherical in shape and the droplet size is within the inertial subrange
eddiesr, = 2r > r; (i.e.,, 7, is the integral length scale for large eddies and 1, is the
Kolmogorov scale for small eddies). In this case, the viscous effect is negligible, and
deformation of drops occurs primarily from turbulent fluctuations. Binary breakage is also
assumed to take place in the system. With respect to these model assumptions, experimental
evidence has also shown that binary breakage as depicted in Fig. 3.2 is most likely to occur in

turbulent pipe flows (Hesketh et al., 1991).

Turbulent eddies Parent droplet Daughter droplets

Figure 3.2 Binary breakage as a result of turbulent eddies

3.2 Initial conditions and population balance equation (PBE)

The number density distribution, f,,(r,z) as a function of drop radius r (internal
coordinate) and axial position z of the pipe (external coordinate) is used to represent the
number distribution of droplets per unit volume (m®) per unit drop size (m) in the system.
From the definition of droplet number density distribution, f,,(r, z) described above, the local

81



total number density function, N;(z) and the local volume fraction, ¢(z), of the dispersed

phase at a particular position of z coordinate can be written as follows, respectively:

No(2) = f £, G 2)dr 31)
0

(o0}

() = f (5r) e, (3.2)

In Eqgn. (3.2) above, ¢(z) remains constant across the length of the pipeline since no drop
volume is gained or lost from coalescence or breakage and the volume is conserved. It is
worth noting that, using the drop volume, v, the number density distribution f,, can be

converted to the volume density distribution, f,, as follows:

frD=vhrn) = (37°)fur2) (33)

Apart from that, by taking into account the process of birth and death by breakage and
coalescence on the overall droplet growth processes, PBE for locally isotropic turbulent field

can be written as follows:

% = Rcb(r, t) - Rcd(r, t) + RBb(T', t) - RBd(T, t) (34)

By assuming isotropic turbulence with a uniform (plug) velocity, U in pipe flow. The
expression in Eqgn. (3.4) can be converted to rate of change of concentration of drops of

radius r with axial position, z as follows:

82



of;
Ua_zn =R¢,(r,z) —Rc,(r,z) + Rp,(1,2) —Rg,(r,z) for0<z<L,0<r<o (3.5)

In the Eqn. (3.5), R¢, and R, denote the birth and death rates of a droplet with radius r due
to coalescence. While, Rg, and Ry, both represent the birth and death rates with radius r due

to breakage, respectively.

The inlet (z = 0) number density function is, f, ; and is given as:
0<z<L,0<r<ow,and fn(r,z=0)=fn0(r,z=0)

3.3 Coalescence birth and death functions

As volume is conserved in the coalescence process, the volumes of the parent droplets
(i.e., volume of the colliding particles) must equal to the volume of droplet formed. In this
respect, the radius, r"”, of the second parent droplet is constrained by the radius, r, of the
droplet formed and the radius, r’, of the first parent droplet. The relationship between the
merger of primary parent droplet which is having radius of r’ with a secondary parent

droplet of ' and the formation of new droplet, r can be expressed as follows:

= (3 —r'3)1/3 (3.6)
Therefore, based on these definitions and relationships, the coalescence birth rate as a

function of drop radius, r and axial position, z is then given by:

r/3\/7 72
R, (r,2) = j rc(r’,r”)fn(r’,z)fn(r”,z)r,—lzdr’ (3.7
0
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In the above equation (i.e., Eqn. 3.7), 7. represents the volume rate of coalescence and is the
product between the collision frequency, w.(r',r"”) and the coalescence efficiency,
Y, (r',r'"") for drops having sizes of ' and r"". These two functions physically mean that two
droplets will coalesce when they are in collision. Therefore, the volume rate of coalescence 7,

can be written as follows:

r.(r',r") = w (', r" Y (r',r"") (3.8)
By taking into consideration the volume conservation in coalescence process, the parent
droplets lost (death) from the birth of droplets by coalescence must be accounted for.

Therefore, the death rate function from coalescence of parent droplets having radius r is

given by:
Resr2) = 16 [ nrr G ) ar (3.9)
0

Both Eqgns. (3.7) and (3.9) are valid under conditionsof, 0 <z <L ,0 <r < oo.
3.4 Breakage birth and death functions

The death rate of a droplet having radius r due to breakage can be determined by the

product of the breakage frequency, g(r) and number density function, f;,(r, z) as follows:

Rp,(r,z) = g(r)fu(r,2) (3.10)
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On the other hand, the breakage birth integral takes into account the birth of daughter droplets
having radius, r that formed during the death of a parent droplet with radius, r'. The birth of
droplets due to breakage can be determined by integrating over the interval of drop sizes,
r(r < r' < o). Therefore, for binary breakage, the breakage birth integral can be expressed

as follows:
Ro, 2 = [ 26 rg R D dr (3.11)

Both Egns. (3.10) and (3.11) are valid for the following domains: 0 <z <L ,0 <r < oo.

In Eqgn. (3.10), B(r,r') is a daughter size distribution. The B(r,r") term is introduced to
characterize the probability of a drop with size r' to form a drop with size r during breakage.
The model assumed binary breakage which indicates that at least two drops are formed
during breakage process. In this respect, the number of drops formed is represented by the

coefficient 2 in the breakage integral.

3.5  Collision frequency function, w

Collison is essential for droplets to coalesce and merge in a multiphase flow system due to
turbulent fluctuations. In this present study, turbulent-induced collision is selected due to its
suitability as the collision frequency mechanism for the liquid-liquid system, while buoyancy
and velocity gradient mechanisms are only applicable for gas-liquid system. For this study,
the first collision frequency model by Coulaloglou and Tavlarides (1977) without the
damping effects (1+¢) at high volume fraction is employed. The model is later compared with
the addition of correction factor to observe the droplet growth (see discussion in Chapter 4).

This coalescence frequency function will be utilized for the model comparison study
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discussed in Chapter 4 of this thesis. The final expression for collision frequency function is

given by:

(l)c(T’,T”) — 43v2_kw€1/3(r1 + T”)Z(T'IZ/3 + 7"”2/3)1/2 (312)

Where k,, in Eqgn. (3.12) above is a proportionality constant (or fitting parameter in the
model) and ¢ is the energy dissipation rate per unit mass. The energy dissipation rate, € in this
work is employed from Jakobsen, (2014). The equation is recently developed by considering
that wall shear from the pipe is the main source of turbulence production. Hence, the energy

dissipation rate can be expressed as follows:

3
~ 275 [ _Hm
& =~ 0.16Re?’ (,Dm3D4 (3.13)

In the Eqgn. (3.13) above, Re,, denotes the mixture Reynolds number and can be estimated as

follows:

_ puUD
HUm

(3.14)

em

In Eqgn. (3.14), u,, is the mixture viscosity, p,, represents the mixture density, U is the
average flow velocity. The mixture estimations for viscosity and density are calculated based
on suggestions by Schimann, (2016) for liquid-liquid mixture in pipe flow. For density

mixture, the equation can be written as follows:

Pm = PwpPw + PoPo (3.15)
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In Egn. (3.15) above, the ¢,, and ¢, indicate the phase fractions of oil and water,
respectively. Where, p,, and p, denote the density of water and oil, respectively. Schimann,
(2016) proposed the widely used equation by Pal and Rhodes (1989) to estimate the mixture

viscosity in liquid-liquid system as follows:

0.8415¢ /¢, 100 |*°

1-0.8415¢ /b, =100

In Eqgn. (3.16), u. indicates the viscosity of the continuous phase, ¢ is the dispersed phase
fraction, and ¢, —100 is a constant factor of the dispersed phase fraction. The value for
¢y, =100 IS estimated when the mixture viscosity exceeds hundred times that of continuous
phase. Schimann, (2016) used the value ¢, —100 = 0.765 proposed by Sgntvedt and Valle
(1994) for the liquid-liquid system as reported in Elseth (2001). From the author’s best
knowledge there are limited studies that focused on utilizing the mixture Reynolds number in
estimating the rate of dissipation energy, €. It is crucial to use the mixture Reynolds number

Re,, in liquid-liquid dispersed flow to avoid overestimate of the energy dissipation rate, «.

3.6 Coalescence efficiency function, g

The colliding droplets may not coalesce and repulse when they are in contact. Hence,
the expression for coalescence efficiency is introduced to describe the effectiveness of
coalescence from the result of collision between droplets. In this present work, film drainage
model together with energy model are assessed and evaluated for better insight and
understanding of the model. The critical approach velocity model is not selected in this study

due to the fact that u.,;; term in the model has to be determined experimentally (empirical
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model) and the model is developed for bubble coalescence (i.e., gas phase) (Lehr et al.,
2002), which is not applicable to the present study. For the main model, film drainage is
selected, and energy model is employed as a model comparison (see chapter 4 in results and
discussions as well as Part 11l of the manuscript prepared in the attachments — Appendix D).
The efficiency function developed by Chesters (1991) is selected for this work. The model is
based on film drainage between colliding dispersed phase entities of two deformable droplets

of radius r'and r”. The coalescence efficiency can be expressed as follows:

- pe e e 1
l/)E(T ' ) = exp _k¢21/6—0-1/2 where, Teq = E m (317)

Where ky, in the Eqn. (3.17) is a universal constant that takes in the value of initial film
thickness and the film thickness at which film rupture occurs and carries no unit. Apart from
efficiency model by Chesters (1991), the film drainage model by Coulaloglou and Tavlarides
(1977) as well as energy model by Simon, (2004) are also assessed and evaluated in the
model comparisons discussed in Chapter 4 (results and discussions) of this thesis. The
comprehensive study on regression and model comparison can also be found in the Part |11 of

the manuscript prepared — refer to Appendix D.

3.7  Breakage frequency functions, g(r)

Breakage frequency functions g(r) are derived based on the interactions between the
turbulent eddies and the droplets due to turbulent fluctuations. Vankova et al., (2007)
modified the model by Coulaloglou and Tavlarides (1977) to consider the effect of densities
from dispersed and continuous phases. In this present work, the model proposed by Vankova

et al., (2007) is selected and the expression takes the following form:
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£1/3 Pe o
g() = kg, 22/3,2/3 —exp [_kgz 04257 r5/3£2/3] (3.18)

Pa
Eqn. (3.18) above involves the system properties such as dispersed phase volume fraction
(¢), interfacial tension (o), dispersed and continuous phase densities (pg) and (p.), energy
dissipation rate (¢) and proportionality constants (k,, and kg, ). In this study, the model by
Vankova et al., (2007) and Coulaloglou and Tavlarides (1977) are selected for model

comparison and are discussed in Chapter 4 of this thesis.

3.8  Breakage size distribution function (daughter size distribution), B(r,r")

The expression for breakage size distribution is a relationship between the number of
new (daughter) droplets as a function of r formed to the number of initial (parent) droplets as
a function of r' that rupture. In this present study, the binary breakage event with equal sized
droplets by Coulaloglou and Tavlarides (1977) is employed. The daughter size distribution is

given as follows:

(2r3 — 1'3)2
r'é x

2.4
B(r,r") = 73 eXp —4.5 3r?2 (3.19)

Apart from the normal distribution model proposed by Coulaloglou and Tavlarides (1977),
the more complex beta distribution by Hsia and Tavlarides, (1980) is also assessed in the
model comparison discussed in the Chapter 4 of this thesis. Manuscript Part 111 (Appendix D)

prepared for the model comparisons provide more comprehensive discussions.
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3.9 The mean radii and standard deviations of number and volume density distributions

The mean drops radii of the dynamic evolution of drop number and volume density
distributions, uy and p, can be formulated by normalizing the humber and volume density
distributions to the first statistical moments. Hence, the mean radii pyand p, can be

expressed as follows, respectively:

1 [ee]
un(z) = m fo r'f,(r', z) dr' (3.20)

1 . ! 47-[ ! ! !
uy(z) = %L T (?r 3)fn(r ,z)dr (3.21)

The following are the expressions for standard deviation of the number and volume density
distributions, oy and a;,. The standard deviations are determined by normalizing the f,, and f,

to the second statistical moments about the mean. The standard deviations of oy and oy, are

given by:

1 [ee]
on(@) = szd(z) | - m@) 0D ar (3.22)
(@) = |— fm(r’— (z))2(4—”r'3)f(r' 2) dr’ (3.23)
1% = 2@ J, Uy 3 n\7"", .

3.10 Population balance equations for turbulent flow of oil and water in pipes

In this present work, the population balance equation (PBE) can be written as follows:
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0fu(r2)
v 9z

r? e
2 dr' — fn(r,z)f r.(r,v") f,(r',z) dr’
0

"
f R Tl D fa " 2)
0

+ f 2B(r, gl D A — g fulr2) (3.24)

The population balance equations above are defined in the following domains:

In Eq. (3.24) above, f,,(r,z) denotes the number density function in terms of r, radius of the
droplets (internal coordinate) and z, the axial position of the droplet in the pipe (external
coordinate).

In this present work, the PBE in Eqn. (3.24) is formulated in terms of number density
distribution, f;,(r, z). From the fact that the magnitude of number density distribution f,(r, z)
can alter significantly during drop growth process, thus, the PBE in Eqgn. (3.24) is modified to
account for volume density distribution, f,,(r, z) in order to have a consistent magnitude over
time. One of the advantages of this approach is that the convergence criterion in terms of
relative tolerance and absolute tolerance are consistent with volume density distribution for
the numerical calculations. To achieve this, the volume fraction, ¢, (z) at a particular position
of z coordinate is required. By applying the Egn. (3.3) into Eqgn. (3.24), the modified

population balance equation in terms of volume density distribution is given as follows:

oty (7 RGLDAG"D) T N A I
UTvaO r.(r',r )TTW_’Zdr —ﬁ,(r,z)fo rc(r,r)Tdr
+ vfwz,[?(r,r’)g(r’)ﬁ’(;:'z) dr' — g(nf,(r,2) (3.25)

r

For0<z<L ,6,0<r<ow
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This new formulation (Eqgn. 3.25) represents population balance equation in terms of volume
density distribution for dynamic evolution of droplet size in oil-water (turbulent) pipe flow.
This formulation describes the volume change per unit pipe length instead of number change
per unit pipe length. Thus, one could easily identify the coalescence birth relative to death at
larger droplet sizes. To simulate the model and facilitate the numerical solutions, the system
equations should be scaled into dimensionless variables. In this respect, the model is able to
characterize the system behaviour at dynamically similar system and different scales. The
scaling and the dimensionless analysis of the model equations are described in detail in the
Appendix A of this thesis. For comprehensive descriptions of the dimensionless techniques

and analysis, please refer to Part | of the manuscript — Appendix B.

3.11 Algorithm and numerical protocols

Following the non-dimensional conversions, the model equations are then solved
numerically starting from the initial distribution of the system. In this work, the algorithm is
written to operate on either a user defined distribution or from experimental data. In either
case, the values of the distribution might be arbitrary meaning it would not satisfy Egn. (3.2).

To achieve this, the following methods are used:

The variables in the distribution are defined as follows:

an =~ fn,exp,i where i = 1,2, -"-Nini (326)
Ty & Toxpi wherei =12, ....... Ny, (3.27)
= 4’ 3 .

Oy = §nrexp,i where i =1,2,....... Nip; (3.28)
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In the above equations from (3.26) until (3.28), 7., represents the experimental droplet
radius, N;,; denotes the number of data (experimental data), and §,, is the volume size of each
droplet in the distribution. Depending on the type of initial distributions (i.e., number density

distribution or volume density distributions), the integrations are approximated as follows:

The program reads in and integrates an arbitrary number density distribution:

Nini

Te
L, = J Oy frodr’ = Z(Sv,ifn,exp,i + av,i—lfn,exp,i—l)(rexp,i - rexp,i—l)/z (3.29)
0 i=2

The program reads in and integrates an arbitrary volume density distribution:
Nini

Te
I, = f fnoedr’ = Z(fn,exp,i + fn,exp,i—l)(rexp,i - Texp,i—l)/z (3.30)
0 i=2

Once the integration is determined, the number and volume density distributions can be
scaled as follows:

(i For number basis

fn= Igfno,exp (3.31)
fo = faby (3.32)

(i) For volume basis

fo= ;ﬂfno,exp (3.33)
fo = 1o/ 6y (3.34)

It is worth noting that, the experimental data from FBRM technique supplied in this present
work are measured in terms of number density distribution, f,,. Hence, Egns. (3.29), (3.31),

and (3.32) are employed for the experimental data used.

93



On the other hand, the parameter R,,,,, or maximum drop radius is introduced to the
system. The value of R,,,, is set arbitrarily due to the fact that the exact value for R, is
unknown until the simulation is performed. In this respect, the value of R,,,, is set large
enough such that the volume and number density distributions are not exceeding the R, as
they evolve. In addition, R,,,, is important to the non-dimensionalization of the system
equations because it represents the characteristic length of the radial coordinate (internal
coordinate) in the scaling formulation (refer to Appendix A of dimensional analysis). Apart
from that, to facilitate interpolation of the experimental data and the simulation grid, an
arbitrary number of additional points are added between maximum experimental radius,
Rmax,exp aNd Rpyq,. The additional points are added if the condition of Ryax > Riaxexp 1S

met.

3.11.1 Numerical protocol in non-dimensionalization system

On top of that, to enhance the numerical solutions, spectral elements (n) are
introduced to the system. This is achieved by splitting the drop radius coordinate into several
domains, while the element boundaries are determined by 75 i » Tmean: Tv.at volume 99%:
Tylogspace (from the logarithmic spacing), and 7,4, (equivalent to R, in dimensional
system) of the volume density distribution as shown in Fig. 3.3 with £, indicates the
dimensionless volume density distribution (refer to dimensionless analysis in Appendix A).
In this respect, the element end points or the boundaries in terms of dimensionless radius (¢™)

can be determined as follows:

51 =0/Rpax =0 (3.35)
§ = Tnmin/ Rmax (3.36)
&= rn,mean/Rmax (3.37)

94



64 = Tyat volume 99%/Rmax (3'38)
fs = rv,logspace/Rmax (3.39)

56 = Tmax/Rmax = 1 (3.40)
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T r r r
rv,min rv,pcak v,mean v,at volume 99% max,exp max

Figure 3.3 schematic diagram of the radial coordinate and the properties of the volume
density distribution in terms of minimum radius, peak radius, mean radius, radius at 99%

volume, maximum experimental radius, and maximum (simulation) radius.
The total number of spectral elements, N, employed in the system is important in order to set

the element end point, £™ for the system. For instance, if the total number of elements, N, >

5, the element end point, ™ takes in the following value:

Nt = 5: Scn = EO' en,min ) fn,mean ) fv,99' fv,logspace: Scl
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In the expression above, &, indicates the initial radius at zero coordinate, &, ,;,, represents
the smallest radius where the number density distribution is non zero, &, ;,eqn denotes the
mean value of the number density distribution, &, o9 signifies the radius located where the
volume density distribution integral (i.e., ¢) is 99% of the total integral value, and at the last
number of element (i.e., N, = 5) the radius will be located at the logarithmically spaced
points between &, 49 and 1.0 (i.e., 10°) which refers to &v,log space- Otherwise, (i.e., if N, <'5),

the element end point, £™ will take the following steps:

Ny =4, §" =¢&,, fn,min 'fn,mean ’ fv,99’ 1
N, =3, fn = &o, fn,mean , €V,99: &1
Ny =2, ¢"= S(o'fv,99:f1

Nt = 1' fn = 50'61

Gauss-Lobatto Quadrature with Jacobi Polynomials is constructed for each of the
element (n) along with user defined value for the number of internal collocation points in
each element, Nj;. In the numerical solutions, the degree of the Jacobi polynomials (i) in
every element of Nj;, can be varied. This method is essentially to provide numerical flexibility
in the lower values of the » domain. In this regard, the dynamics for small drop coalescence
is very fast, hence, more points are needed to accommodate small r values to provide
numerical accuracy and speed in the initial stages of the simulation. The advantage of this
feature in numerical scheme is that it allows one to place the collocation points strategically
in the spectral element and as a result the computational time can be reduced effectively.
Based on the value of Ny, for each element, a set of roots w;" and weights w;* are calculated.

The roots are determined by Newton’s method from the shifted Jacobi polynomial on the
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interval [0 1]. The integration weights, w;* for each collocation point in the spectral elements
are calculated using Gauss-Lobatto Quadrature from the roots of the Jacobi polynomials and
its derivatives. The roots and weights calculated are used to approximate the integrals in the
system equations. The overall properties of the gridding system and layout of the elements

are depicted in Fig. 3. 4.

1~4 T T ¥ T T T T T T
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0.6 ~»/ N, =1 -
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0.2 f? =2 i=3 ]
. . . e el 1 1 1 \\. i 1 1
Collocation point (i) 01 02 03 04 05% 06 07% 08 09
Drop radius, £
E"O é;n,min én‘mcan év‘zn volume 99% év,log space E"max
X . n 1 2 3 4 5
Collocation weight (u ) u u u u u
n 1 2 3 4 S
Length of element (/ ) / / / / /
. n 12 3 4 5 6
Element end point (£ ) & & & & &
Global index 1234 5 678 9 10 11 121314 15 16 17 18

Figure 3.4 Schematic diagram of the gridding system and the overall layout of elements.

From the expression in Egn. (3.42), the integration of volume density distribution and the
first derivative weight of volume density distribution can be written as follows, respectively:

n
tN+2

an )

N,
f fd§ = (3.43)
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N” +2

Z Z fvj (3.44)

dfm

In the algorithm, the matrices containing the first and second orders derivatives weights are
calculated from the roots of the Jacobi polynomial at each of the collocation point (i). The
initial distributions can be interpolated onto the simulation grid once the simulation grid is
constructed. The interpolation technique by Akima spline interpolation is selected due to its
ability to produce smooth curves as well as its less proneness to wiggling (Salomon, 2011).
To solve the system equation, the integration limits in the birth integral must be in the range
of [0 1] and correspond to the orthogonal collocation weights constructed. Hence, the limits
of the integrals have to be transformed and the number and volume density distributions will
be then interpolated onto this new domain (coordinate system). To achieve this, the
dimensionless volume and number density distributions (i.e., f, and f;,) are split into several
sections in the spectral elements as shown in Fig. 3.5. The algorithm used cubic spline
interpolation method due to the flexibility and suitability in the system to interpolate the birth

integrals at every time step onto this new domain (i.e., ﬁ,p and f;p). One of the attributes of

this numerical scheme is that it enables the raw experimental data for an initial droplet size
distribution to be employed. In addition, one feature of the spectral element method (n)
introduced in the numerical scheme is it allows one to place the number of collocation points
(1) in the system, strategically (details are discussed in Chapter 4 of this thesis). This feature
will enable the model to solve the system equation at much lesser time without compromising

the numerical stability and solutions.
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Figure 3.5 The schematic diagram of the interpolated number density distribution, f;p onto

coordinate system of 'and «” for the coalescence birth integral.

For the case of coalescence birth integral (Eqn. 3.25), new integration coordinate a'(§) is

defined for every value of non-dimensional radius, ¢ in the domain. Based on the upper limit

in the coalescence birth integral, £ /3/2, hence a” can be formulated as follows:

. ¢

o =——o (3.45)
¢
/12

Based on the expression in Eqn. (3.45) above, the dimensionless radius & and its derivative

d& with respect to a” can be expressed as follows, respectively:
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&= (%) a (3.46)

& = (i) da’ (3.47)

Subsequently, by taking into account the relationship of & = (&3 — 5'3)1/3 from the volume

conservation in the coalescence process and Eqn. (3.46), the following expression for &~ can

be obtained:

,3)1/3

a’=02-«a (3.48)

The following are the expression for the coalescence birth and death processes in terms of

discretization.

Discretized forms of birth and death rates due to coalescence, respectively:

Ny Nip+2
P, l601] = & (f)z Z R (66— €717 ) o o (3.49)
Ne Nip+2
Pe(§ad) = 3 ). Z A f‘”ln 0 (3:50)

n=1 j=

In Egn. (3.49) above f,,p represents the interpolated dimensionless volume density

distribution. The equations are simulated for every collocation point across all spectral

elements.
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On the other hand, for the breakage case, similar principles are applied in which the
limits for the breakage birth integral have to be scaled to range from 0 to 1. To achieve this,
the cubic spline interpolation method is employed to interpolate the distribution onto the new

coordinate grid as shown in Fig. 3.6.

4] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 6 |
Drop radius, £

Figure 3.6 The schematic diagram of the interpolated number density distribution, f;p onto

coordinate system of a;, for the breakage birth integral.

Similar to the coalescence case, a new integration coordinate a,,(¢) is defined for every value
of non-dimensional radius, € in the domain. In this context, & along with its derivative

d& with respect to a;, can be expressed as follows, respectively:
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§=¢+1-9ay (3.51)
d& = (1 - 8da, (3.52)

Hence, the discretized breakage birth and death can be written in the following form:

Discretized form of birth and death rates due to breakage, respectively:

Ny Nip+2

Pa, 6021 = [1 - £1¢° Z Z 26 (§0.,)3 (&) s mw] (3:53)

j=
Pp, (&, ) = [g(&) f5] (3.54)
Where in Eqgn. (3.53), the expression of &; can be written as follows:

=8+ —-8&)ayp (3.55)

Finally, the resulting ODE with initial conditions is numerically solved using Gear’s

backward differentiation formulae (BDF) method and integrated for over the z coordinate.

3.12 Physical properties of the oil-water system

In this work, three different data sets supplied by Statoil were measured from the
Focused Beam Reflectance Method (FBRM) for the turbulently flowing oil-water system.
The data sets in this present work are classified as ge12275a, gel2279a, gel2284a. The
physical properties of each of the data set are shown in Table 3.1. It is worth to note that, the
major difference between the three data sets is the average flow velocity, U. As depicted in
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Table 3.1, ge12284 represents the highest average flow velocity, U at 2.50 m/s, followed by

gel2279a and gel2275a with 2.0 m/s and 1.70 m/s, respectively. These physical parameters

of the system are used as inputs for the model simulations.

Table 3.1 The physical properties of the oil-water system in pipe

Parameter Gel2275a Gel2279a Gel2284a Descriptions
o) 0.30 0.30 0.30 Volume fraction
U 1.70 [m/s] 2.00 [m/s] 2.50 [m/s] Average flow velocity
L 30 [m] 30 [m] 30 [m] Length of the pipe
Upper bound of the radius
Roax 1000 [pm] 1000 [pm] 1000 [pm]
domain
D 0.069 [m] 0.069 [m] 0.069 [m] Diameter of the pipe
Pa 865 [kg/m®] 865 [kg/m®] 865 [kg/m®]  Density of the dispersed phase
U 177 [mPas] 169 [mPas] 152 [mPas] Viscosity of the dispersed phase
Pe 1021 [kg/m®] 1021 [kg/m®] 1021 [kg/m®]  Density of the continuous phase
Viscosity of the continuous
Ue 1.0 [mPas] 1.0 [mPas] 1.0 [mPas]
phase
o} 26.0 [MN/m] 26.0 [mN/m] 26.0 [mN/m] Interfacial tension

3.13 Experimental data of droplet size distribution

When oil and water are transported through pipeline under vigorous shear rates, the

formation of dispersion between oil and water will occur. In laboratory work, one of the

techniques to record the droplet size distribution during dispersion process of oil and water in

dynamic pipe transportation is using Focused Beam Reflectance Measurement (FBRM). The

method of using FBRM probe has been studied in detail experimentally in horizontal pipes by
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Placensia (2013) and Schiimann (2016). Their research work suggested that FBRM probe can
provide in-situ drop size evolution measurement through oil-water pipe flow. In this research
work, the in-situ measurement of droplet size distribution profiles was obtained using two
FBRM probes, one at the inlet and the other one at the outlet of the pipe. The advantages of
using FBRM are droplet size variations in the dispersion process can be easily tracked
compared to other instrument such as Particle Video Microscope (PVM) and real time
measurement of particle size, count and shape can be obtained during oil-water emulsion in
turbulent pipe flow (Placensia, 2013). FBRM utilizes highly precise chord length distribution
(CLD), sensitive to particle size and count under real-time measurement without the need of
sample preparation. FBRM is capable to measure droplet size in the range of 0.8-1000 um

which is ideal for in-situ droplet size analysis in real time (Dowding et al., 2001).
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detector ) . FA
| N fibre optic 8001 7 X
aser N sl g\
diode beam splitter I\
450+ "‘*‘ i
laser beam | i ,f 1
. i b
sapphire 350 it I \‘
. window 300+ /t A
optics f |
rotating at a o f :1
fixed high 200- fl !
velocity 150 . f 4
-8y 1.00 a; ;\
probe at approx. 45°angle % o W ehord tength /
to turbulent well-mixed flow oood : g . BN )
T i Crarre Boudaien o ioons 1m0 10000
%/Channel w| Counts/Sec | Sqrwt  wr| Line Graph | g%l,%‘ﬂ
(@) (b)

Figure 3.7 FBRM Measurement (a) Schematic of FBRM probe tip (b) Particle size

distribution using FBRM probe (Worlitschek and Buhr, 2005).
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In general, the droplet size distribution was measured during the experimental work
once the flow of oil-water dispersions reached a stabilized oil-water dispersion (steady state
condition: stable pressure drop, mixture density, temperature and droplet size). In addition,
the homogeneity of the mixture was also tracked by measuring the mixture density using the
Coriolis flow meter during the dynamic flow of oil-water dispersion. These conditions must
be met to ensure the quality of the droplet size distribution profiles obtained are accurate. It is
to be noted that the experimental data of droplet size distributions were completely supplied
by Statoil Research Centre, Trondheim. Hence, the validation of data was performed by the
appointed researcher from Statoil. The samples of experimental data of drop size distribution
is depicted in Fig. 3.8. FBRM probe is known to be one of the exceptional methods to
measure real time droplet size distribution in liquid-liquid system. This is indicated by
numerous studies on oil-water system using FBRM method (MaaR et al., 2011; Schiimann et

al., 2015; Schumann, 2016; Plasencia, 2013; Boxall et al., 2010; Naeeni and Pakzad, 2019).

—— " expge12275a
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+fn,exp ge12284a
O Thoge12275a
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o
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n0gel12284a

Drop radius, r (zzm)
Figure 3.8 Samples of number density distributions for oil-water dispersions in pipe flow
using FBRM probe. The f; .., indicates experimental number distribution and f,, the

interpolated number distribution.
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During the lab experiment of this current project, no other devices for droplet
monitoring installed in the flow loop (pipes). However, to ensure the quality of the data
obtained, direct comparison of drop size distribution profiles was established using PVM
simultaneously with FBRM probes in a separate experiment in stirred tank setup using the
same fluids. A conversion factor was derived from the comparison results of chord length
distribution (CLD) from FBRM to real droplet size and distribution. Thorough discussion on
the conversion factor can be found in research work by Khatibi, (2013) and Schiimann et al.
(2015). In addition, Boxall et al. (2010) also suggested that PVM probe is a useful tool for a
calibration method with FBRM probe. For this present work, the shape of the droplet from
experimental data is assumed spherical. Therefore, the mean chord length size measured by
FBRM corresponds to the diameter of the droplet. However, there will be uncertainty in the
chord length measured by the FBRM from the real droplet size distribution due to several
factors such off-center crossing of the droplets by the laser beam, dense emulsions scattering
of light by other droplets, variation in refractive index of the liquids, surface structures and
properties such as translucent or transparent surface that may cause internal reflection and/or
subsurface scattering (Vay et al., 2012; Schimann et al., 2015). Therefore, a general
correction has been proposed by comparing simultaneous FBRM with PVM measurements in
the same fluid system in order to reduce underestimation of the droplet size. The method
allows combination of both techniques and produce real time and in situ measurement of
correct droplet sizes although with an uncertainty of 50% (Schiimann et al., 2015). This
method introduced the log-normal distribution function to describe the droplet size

distribution and it can be written as follows (Farr, 2013):

fD) =

[1n(D/Do)]2} 356)

1
ex
Do2m p{ 202
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Where f(D) is log-normal function of the droplet size distribution, D is the droplet size, o is
the dimensionless geometric standard deviation (the width of the distribution) and D, is a
reference diameter setting the scale or the length scale of the distribution. According to
Schiimann et al. (2015), the conversion method from FRBM measurements has successfully
reduced the error from factor of five to factor of two. Since the distribution of droplet size is
commonly presented in logarithmic scale, thus, the error is considered within the acceptable
limits. The conversion has been applied for this research work across all the measurements
and the particle sizes measured from the three different experiments are observed to be in the
range of 1.00 um to 616.00 um (refer to Table 3.2 and Fig. 3.8). It is worth to note that, the
author is not involved in the experimental work. Hence, details about the experimental

procedures and data preparations are exclusively owned by Statoil.

Table 3.2 Size range of the droplets from three different data sets of oil-water pipe flow

Experimental data set Size range of the droplets
Gel2275a 1.00 pm — 616.00 um
Gel2279 1.00 pm — 575.00 um
Gel2287a 1.00 pm — 537.00 pm
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Figure 3.9 Overview of the simulation flow processes
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3.14 Chapter summary

In this chapter, all models derived and formulated are showed and elucidated in each
subsection. Since the system equations involve turbulent flows, assumptions have to be made
(in early subsections) in order to simplify and enhance the simulation work. In the model
formulation, possible methodologies are introduced using orthogonal collocation approach on
finite elements as an alternative technique to solve the PBE. For any axial position in
pipeline, the model developed from this method is able to predict the evolution of number
and volume density distributions, the average drop radii for number and volume density
distributions, the standard deviations of the droplet in terms of number and volume density
distributions, and the rates of breakage and coalescence as well as total growth rates over a
distance in pipes. For more comprehensive and details discussions of the model formulations
and techniques, the reader is encouraged to refer to Part | of this manuscript in the attachment

of Appendix B.
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CHAPTER 4

4 RESULTS AND DISCUSSION (PART I)

4.1  Simulation results and discussion

In this thesis, the results and discussion are divided into two main parts: (i) the model
behaviour and parametric effects and (ii) regression of the experimental pipe flow data:
comparison between simulation and experimental data. The first part (Part 1) is discussed in
this chapter — Chapter 4, while the second part (Part 1) is discussed in the next chapter —
Chapter 5. In these two chapters (i.e., Chapter 4 and Chapter 5), two manuscripts are prepared
for each of the results discussed in Part | and Part Il. Including the paper prepared in Chapter
3, there are three manuscripts altogether for this research work and they can be found in the

Appendix B, Appendix C, and Appendix D of this thesis, respectively.

4.2  Part I: The model behaviour and parametric effects

In liquid-liquid systems, many physical properties of the dispersion are strongly
related to the drop size distribution of the dispersed phase. In pipe flow, any changes in the
drop size distribution may affect the flow pattern and pressure drop significantly. Hence, the
evaluation and study of parametric effect is important because coalescence and breakage
processes in liquid-liquid turbulent pipe flow are strongly dependent on the physical
properties of the continuous and dispersed phase, state of flow, and mixing conditions in the
system (Solsvik et al., 2015). For this purpose, the model is investigated under various
parametric effects to provide insights toward the overall model behaviour. For these
investigations, the following physical properties as shown in Table 4.1 are employed as an

input for the simulation.
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Table 4.1 Input parameters for the simulation

Parameter Value Descriptions

¢ 0.30 Volume fraction
U 2.00 [m/s] Average flow velocity
L 1500 [m] Length of the pipe

Ronax 1000 [um] Upper bound of the radius domain
D 0.069 [m] Diameter of the pipe
Pa 865 [kg/m®]  Density of the dispersed phase
Ug 169 [mPas] Viscosity of the dispersed phase
Pe 1021 [kg/m®]  Density of the continuous phase
Ue 1.0 [mPas] Viscosity of the continuous phase
o 26.0 [nN/m] Interfacial tension

Depicted in Fig. 4.1 is the plot of experimental number density distribution, f;, .., at initial

position in the pipe (z = 0) as a function of drop radius, r. The distribution is then compared

against the interpolated initial number density distribution, f,, 5. On the same figure, the

experimental and interpolated volume density distributions, f, ., and f, o respectively, are

also plotted against the drop radius, r. Essentially, the comparison between the experimental

and interpolated distributions is to map the experimental data points onto the collocation

points that consist of simulation grid. In this respect, the interpolation was showing good

results wherein the interpolated initial number and volume density distributions, £, o, f;,0 are

perfectly fits with the experimental data points consistently.
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Figure 4.1 Initial experimental number and volume density distributions, f;, exp, fy,exp IN blue
and red dotted lines, and interpolated initial number and volume distributions, f,q, fy0 in

blue and red circles, are plotted as a function of droplet radius, r.

4.2.1 Base case
In this present work, a base case is prepared as a reference to give an overview of how
the system behaves with the given set of input parameters. For this purpose, the following

fitting parameters are used as shown in Table 4.2.

Table 4.2 Base case: fitting parameters

Parameter Value Descriptions
ke 1.00 e -04 Fitting parameter for coalescence frequency expression
ky 1.00 e -03 Fitting parameter for coalescence efficiency expression
kg, 5.00e -01 Fitting parameter for breakage frequency expression
kg, 5.00 ¢ -01 Fitting parameter for breakage efficiency expression
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From the set of fitting parameters above, the evolution of the number and volume
density distributions (f,, and f,,) are simulated and depicted in Fig. 4.2. From the figure, the
dynamic evolution of f,, and f, of the base case are plotted in terms of radius, r, throughout
nine different axial (z) locations in the pipeline. The number density distribution, f,, in Fig.
4.2(a) demonstrates that there is a small quantity of larger size droplets at the beginning of
the pipeline and the magnitude of f,, grows higher as the droplets evolve toward the end of
the pipeline. This is true considering that the larger droplets present at the beginning of the
pipeline are more likely to break than smaller droplets. This indicates that breakage is
dominant in the system at short axial distances. Similarly, for volume density distribution, f,,,
the magnitude increases towards the end of pipeline. This shows that, coalescence balances
breakage as axial (z) increases and the distribution reaches equilibrium. An increasing
magnitude of drops evolution (f,,) as shown in Fig. 4(b) suggests that, the distribution is
narrower at equilibrium relative to the initial condition, in which there are large numbers of

small droplets formed at the end of the pipeline.
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Figure 4.2 Evolution of (a) number density distribution, f, and (b) volume density
distribution, f,, along the pipeline as a function of drop radius, r. The fitting parameters used

are shown on top left corner of the plots for the base case.

On the other hand, Fig. 4.2 illustrates the dynamic evolution of mean radii in terms of
number and volume density distributions (u, and uy) as a function of axial position, z of the
pipe for the base case. The mean radii in Fig. 4.3 depict that, uy and p, are decreasing as the
droplets travel through the 1500 m pipeline. This suggests that, breakage is initially dominant
over coalescence for this set of fitting parameters and initial distribution (i.e., base case) as
the droplets evolve towards the end of the pipeline. It is worth noting that the mean radii of
uy and py, are equilibrated after they surpass the 1 m of pipeline. As this takes place, the
mean radii have reached constant values in which the system is in balance between the
breakage and coalescence processes particularly, at the equilibrium state. Similar events are
found to occur in the standard deviations for number and volume density distribution, oy and
oy, as shown in Fig. 4.3(b). The magnitudes for both oy and oy, are gradually decreasing as
they approach the end of the pipeline. They are also found to be levelled once the system

reaches the equilibrium.
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Figure 4.3 The plot of: (a) the average radii of number density distribution, uy and volume
density distribution, u;, as a function of axial position, z in the pipe, and (b) the standard
deviations of number density distribution, oy and volume density distribution, o, as a
function of axial position, z in the pipe. The fitting parameters used are shown on top left

corner of the plot for the base case.

To further evaluate the drop growth from the PBE model, the total coalescence and
breakage rates, Rc, and Rg, are plotted as a function of drop radius r for nine different
locations as shown in Fig. 4.4. In this figure, the positive part of the curve indicates the birth
and the negative part of the curve represents the death by virtue of coalescence and breakage
processes. In Fig. 4.4(a), the total coalescence rate is lower in magnitude at the beginning of
the pipeline and as axial position, z increases, the rate gets higher. This suggests that,
coalescence rate is stronger approaching the end of the pipe and somewhat weaker at the
beginning stage in the pipe. This is true considering the large number of smaller droplets
presence towards the end of the pipe. Hence, coalescence is expected to increase towards the
end of the pipeline due to the fact that small droplets are more likely to coalesce, and the
larger number density promotes collision, while larger droplets tend to rupture. Conversely,
the total breakage rate, Rg, in Fig. 4.4(b) is found to reduce in magnitude as the breakage
process moves towards the end of the pipeline. Moreover, it is expected that Rp, is found to
be greater at low z values because larger droplets at the onset of the pipeline are easier to
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break and rupture than smaller droplets at the end. Apart from that, the birth rate due to
breakage shown in Fig. 4.4(b) is observed to be higher (i.e., R, ~ 2000) than the death rate
by breakage (i.e., Rg, ~ -1200). This is primarily because of the difference in the number of

larger droplets present at the beginning of the pipeline than at the end which will significantly

affect the breakage frequency and efficiency.
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Figure 4.4 Evolution of (a) total coalescence rate, R¢,and (b) total breakage death rate, Rp, .
Both rates are plotted for the base case parameter set and as a function of droplet radius, r at
nine different locations from 1500 m pipe length. The fitting parameters used are shown on

top left corner of the plots for the base case.

4.2.2 Numerical techniques and model behavior
Prior to analysis on various parametric effects, the model performance is assessed in

terms of the proposed numerical technique (orthogonal collocation method) as described in
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Chapter 3 of this thesis to give a comprehensive understanding of the overall model behavior.
These results will complement the assessment made in the various parametric effects
discussed in the following section 4.3 and show the capability of the model, thoroughly. To
achieve this, the following fitting parameters are set as shown in Table 4.3 to demonstrate the

drop rates and model behavior.

Table 4.3 Fitting parameters

Parameter Value Descriptions
ke 1.70 e -03 Fitting parameter for coalescence frequency expression
ky 1.50 e -03 Fitting parameter for coalescence efficiency expression
kg, 2.50 e -02 Fitting parameter for breakage frequency expression
kg, 3.50¢e-01 Fitting parameter for breakage efficiency expression

From the fitting parameters suggested in Table 4.3 above, the following results are
simulated to highlight the evolution of number and volume density distributions (f,, and £,),
the mean radii in terms of number and volume density distributions (uy and wy), and total
breakage and coalescence rates (Rg, and Rc,). Fig. 4.5 shows the dynamic evolution of
number density distribution, f,, and volume density distribution, £, throughout nine different
axial (z) locations in the pipeline. As opposed to the base case, the results from the dynamic
evolution of number density distribution, f,, in Fig. 4.5(a) shows that there is a large humber
of small size droplets present at the beginning of the pipeline (z = 0 m) and the magnitude
gets lower as the droplets evolve through the end of the pipeline (z = 1500 m). These results
are expected since the number of small droplets present at the beginning is higher. Hence, the
chances of droplets to coalesce and merge into larger droplets are greater. This will result in
coalescence being dominant in the early stage of the pipeline. However, as z increases, the
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growth rate reduces due to breakage growing in dominance. Similar to the case in f,, the
volume density distribution, £, shown in Fig. 4.5(b) is found to decrease particularly towards
the end of the pipeline. This indicates that, coalescence and breakage narrow the drop size
distribution relative to the initial condition. With a wide initial drop size distribution of small
drops, the droplets are expected to have longer contact time than the drainage time, thus
enhancing the coalescence process between droplets. Subsequently, the breakage process is
becoming stronger as larger droplets formed from the coalescence process earlier begin to
rupture. This is due to the fact that larger droplets are prone and easy to breakup than small

droplets.
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Figure 4.5 Evolution of (a) number density distribution, f, and (b) volume density

f(nz)

distribution, f, along 1500m pipeline as a function of drop radius, r. The fitting parameters

used are shown on top left corner of the plots.
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Further, the average radii (uy and wy) and the standard deviations (gy and o) of the
number density and volume density distributions are plotted as a function of axial position in
the pipe, z as depicted in Fig. 4.6(a) and (b), respectively. The plots provide an intriguing
insight on the dynamic evolution of the mean radii during the oil-water fully dispersed flow
in a very long-distance pipeline (i.e., 1500 m). In Fig. 4.6(a), the mean radii for both number
and volume density distributions (uy and u,) are found to increase approaching the end of
the pipeline. The same trend is observed for the standard deviations, gy and oy, as depicted in
Fig. 4.6(b). The increase in the magnitude of mean radii and standard deviations suggest that
coalescence is dominant over breakage for this set of fitting parameters as the mixture liquids
travel through 1500 m pipeline. The results suggest that the forces particularly, the Kkinetic
energy involved in deforming the droplets are not sufficiently large enough to overcome the
surface energy of the droplets which results in an increase in the mean radii and standard
deviations (coalescence dominating) instead of a decrease (breakage dominating). It is also
worth noting that the magnitude of the mean radii (uy and uy) as well as the standard
deviations (oy and ay) are growing in the initial stage of the pipeline and are equilibrated
approaching 102 m of the pipeline.

It is also important to note that the determination of average droplet size in liquid-
liquid dispersion is imperative because it provides a useful parameter for droplet movement
describing the sedimentation and coalescence profiles (Jeelani and Hartland, 1998; Yu and
Mao, 2004). Apart from that, the maximum value of mean radii (towards the end of the
pipeline) in Fig. 4.6(a) indicates the characteristic radius, R ,qracteristic OF the system. The
characteristic radius is determined once the system reaches an equilibrium at which the

breakage and coalescence processes are said to have balanced.
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Figure 4.6 The plot of: (a) mean radii of number density distribution, p, and volume density
distribution, p; as a function of axial position, z in the pipe and (b) standard deviations of
number density distribution, oy and volume density distribution, g, as a function of axial

position, z in the pipe. The fitting parameters used are shown on top left corner.

4.2.2.1 The importance of conversion from f, to f,,

It is important to note that, in this work, the solutions of PBE are solved in terms of
the volume density distribution, £, instead of number density distribution, f,. This can be
done by converting the system equation as depicted in Eqn. 3.25 of Chapter 3. To elucidate
the importance of volume density distribution, f, in solving the PBE, we employed two
different initial distributions in the system. The primary reason is to compare the evolution of
total number density function, N, and volume fraction, ¢ across 1500m pipeline as shown in
Fig. 4.7. In this comparison, the three different initial distributions are named as case I, case
Il, and case Ill. The main difference between the initial distributions in case I, case Il, and
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case Il is the average flow velocity, U in the pipes. The average flow velocity of the liquid-
liquid system in the pipes increases from case | to case Ill. Fig. 4.7 demonstrates the
comparison between the total number density function, N; and the volume fraction, ¢ in
terms of axial position, z in the pipeline for all the cases employed (i.e., cases I, Il, and I11).
The results in Fig. 4.7(a) show that, at increase number of cases (i.e., cases I, 11, I1), the total
number density as a function of axial position, N;(z) decreases in terms of the magnitude
towards the end of the pipeline. While, the results of volume fraction, ¢ for all the cases
simulated remain constant throughout the pipeline as depicted in Fig. 4.7(b). This clearly
shows that, the magnitude of number density distribution f;, can alter significantly during the
drop growth compared to the magnitude of volume density distribution, f,. In this respect,
one can have an insight that solving the PBE for dynamic evolution of drop size density
distribution in liquid-liquid system over a distance in pipe is more effective in the form of
volume density distribution, f,, instead of number density distribution, f,, (which has been
widely used in the literature) due to its consistent magnitude over time. This is primarily
crucial in order to ensure that the convergence criteria for the absolute and relative error
tolerances of the numerical integrator are consistent with the magnitude of the dependent

variable over the entire simulation.
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Figure 4.7 The evolution of (a) dimensionless total number density function, N, as a function
of axial position, z and (b) the volume fraction of droplets, ¢ as a function of axial position,
z. Both are plots in terms of case I, case Il and case Il of different initial distributions. The

fitting parameters used are shown on top left corner of the plots.

4.2.2.2 Error analysis on the numerical methods

In this present work, the error from the mass balance (¢) and the volume density
distribution, f, at equilibrium are assessed to give an overview of the overall system
behaviour. To achieve this, four cases are prepared with different model behaviors: case |
(coalescence-dominated), case Il (breakage-dominated), case 11 (fast dynamics), and case IV
(slow dynamics). Each of the cases is set with different fitting parameters to elucidate the
model behavior in which, case | employs higher magnitude of and k,, and kg, (higher mean
radii), case Il employs lower magnitude of k, and kg, (lower mean radii), case Il employs
greater magnitude of k,, and k (faster equilibrium), and case 1V employs smaller magnitude
of k., and kg, (slower equilibrium). Fig. 4.8 (a), (b), (c), and (d) indicate the mass balance
error analysis for case I, Il, 11, and IV at different total number of spectral elements, N, and
total number of points, i;,:. In general, the error is greater as lower number of points are
allocated and conversely for higher number of points, regardless of the total number of
spectral elements employed (N, =1 or N, =6). However, the error is found to be

significantly lower when total number of spectral elements, N, = 6 is used instead of N, =
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1. Increment in the number of total collocation points, i;,. particularly, at N, = 6 has
effectively decreased the magnitude of the mass balance error. This indicates that, spectral
element method of N, = 6 is more efficient in numerical solutions for all types of cases (i.e.,
coalescence and breakage dominated systems and slow and fast dynamics systems) due to the
strategic placement of collocation points in the system. ldeally, increase in number of points
provides efficient numerical solutions (lower mass balance error) as sufficient number of
points are places to accommodate the droplets evolution over the axial position, z, but at the

cost of longer simulation times.
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Figure 4.8 The mass balance error: (a) case | — coalescence dominated, (b) case Il — breakage

dominated, (c) case Il — fast dynamics, and (d) case IV — slow dynamics.

On the other hand, the volume density distribution (f,) at equilibrium with different
total number of spectral elements (N;) and collocation points (i;,;) employed are
demonstrated in Fig. 4.9 (a), (b), (c), and (d) for all cases (coalescence-dominated, breakage-
dominated, fast dynamics, and slow dynamics), respectively. The volume density distribution
(fy) in Fig. 4.9 shows that the distributions at equilibrium are varied for all cases in terms of

different spectral elements methods (i.e., N; =1 and N, = 6) and collocation points. The
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magnitude of £, is found to be maximum when higher number of collocation points are
allocated for both spectral element methods (N; =1 and N, = 6) in all cases. On the
contrary, if a smaller number of points are employed, the magnitude of f, reduces due to the
losses in mass balance, particularly in case 11l of fast dynamics system as shown Fig. 4.9(c).
In fast dynamics system, the event of small drop coalescence and large drop breakup
especially at equilibrium occurs at a faster rate. Hence, more points are required in order to
accommodate the stiffness of the numerical system in the » domain. In this respect, enhanced
numerical accuracy can be expected. Furthermore, the results of f,, complement with the error
results obtained in the mass balance errors depicted Fig. 4.8. In this error analysis of the
system from case to case basis, both methods N, = 1 and N, = 6 are found to reduce the
errors in the numerical system as higher number of collocation points are set. However, the
spectral element method (N, = 6) is considered the best method to be employed in the
model due to the performance of spectral element methods N, = 6 is much better and
efficient than single element method N, = 1. The spectral element methods, N; = 6 produced
the lowest error than one element method ( N; = 1) irrespective of the total number of points
(i¢or) employed. In orthogonal collocation method, for each of the spectral element assigned,
one can strategically place the number of points to specifically account for the stiffness in the
numerical system. For instance, if the dynamics for small drop coalescence is very fast
particularly at lower r domain, hence, more points can be strategically placed in this domain
to accommodate these small r values (due to fast coalescence process) instead of uniformly
distributed (placement) collocation points as shows in the single element method (N; = 1). In
this respect, the numerical accuracy and speed (refer to Table 4.4) can be enhanced due to

strategic distribution of collocation points in the system.
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Figure 4.9 The volume density distribution (f,) at equilibrium: (a) case | — coalescence

dominated, (b) case Il — breakage dominated, (c) case Ill — fast dynamics, and (d) case IV —

slow dynamics.
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Apart from that, CPU time and simulation time for all the cases studied (i.e., case I, Il,
Il, and 1V) at N, = 6 and N, = 1 are also investigated as depicted in Table 2. The results
suggest that, a system with spectral elements (i.e., sub-domain of N, = 6) provide lower
CPU time and faster simulation time. This is true considering the fact that, strategic numbers
of collocation points placed at different spectral elements promote faster numerical
convergence. In other words, one may choose N, = 1 and higher number i,,, but at cost of
CPU expensive and longer simulation time. However, with the spectral element scheme, low

CPU time and faster solutions can be expected as well as low errors as discussed earlier.

Table 4.4 CPU time and real time usages for given cases of N; and i;,;

Case CPU time (s) Simulation time (s)

Case: coalescence dominated

Ny =1, i = 30 345 33
Ne =1, ippe = 40 43.4 41
Ny =1,ir0r = 50 475 45
Ny =1,ipor = 60 51.6 49
Ny = 6, i = 30 3338 31
Ny = 6, iy = 40 423 40
Ny = 6, i = 50 453 43
Ny = 6,igpr = 60 498 47

Case: breakage dominated

Nt = 1, ifOt = 40 42.2 34
Nf = 1, itot = 50 47.2 37
N, = 1,iz0 = 60 55.0 41
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Nt = 6, itot =30 37.3 29
N, = 6,0 = 40 41.9 33
Nt = 6, itOt = 50 45.9 35

Case: fast dynamics

Ne =1, ippr = 40 425 37
Ny =10 = 50 44.8 39
Ny =1,ir0r = 60 52.7 47
Ny =10 = 70 62.5 57
Ny =1, i = 90 87.2 76
Ny = 6,ippr = 40 40.0 35
Ny = 6, iz = 50 416 36
Ny = 6, i = 60 49.2 44
Ny = 6, i = 70 57.2 52
Ny = 6, iz = 90 81.6 71

Case: slow dynamics

Ny =1,ir0r = 30 322 28
Ne =1, igpe = 40 36.0 32
Ny =100 = 50 40.2 35
Ny =1,ippr = 60 495 42
Ny =100 = 70 56.8 45
Ny = 6, i = 30 30.1 26
Ny = 6,ipp; = 40 34.8 30
Ny = 6, iz = 50 395 34
Ny = 6, i = 60 455 39
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Nt = 6, itOt =70 560 45

4.2.3 Parametric effects

Analysis of the parametric effects would enhance the understanding of the model
behavior in turbulently flowing liquid-liquid dispersions particularly for oil-water flow in
pipes. To investigate the system behavior on the various parametric effects, the fitting
parameters are set to a new value as depicted in Table 4.5 below. In this new set of fitting
parameters, the variations of parameters in terms of energy dissipation rate, € and volume

fraction, ¢ are assessed and evaluated.

Table 4.5 New fitting parameters

Parameter Value Descriptions
ke 1.70 e -03 Fitting parameter for coalescence frequency expression
ky 1.50 e -03 Fitting parameter for coalescence efficiency expression
kg, 2.50 e -02 Fitting parameter for breakage frequency expression
kg, 3.50e-01 Fitting parameter for breakage efficiency expression

These parameters (i.e., ¢, and &) are crucial and contribute significantly to the
experimental strategies and design of the liquid-liquid two-phase pipe flow. For instance, in
experimental study of the overall drop size behaviour in two phase pipe flow, the typical
approaches are by changing and/or varying the fluid volume fraction (i.e., ¢») and the flow
conditions (i.e., U) of the system. In regard to the fluid volume fraction, altering the volume
fraction, ¢ of the dispersed phase will significantly affect the oil-water emulsion stability
(Meybodi et al., 2014). While, in the context of flow condition, changing the velocity is the
preferred method because of the direct influence on the turbulent kinetic energy in the system
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which eventually leads to varying the energy dissipation rate, €. The rate of energy
dissipation is estimated based on the newly proposed energy dissipation rate € by Jakobsen
(2014). The rate is utilized based on the reason that the wall shear is the primary source of
turbulence production. Fig. 4.10 shows the effect of various energy dissipation rates, € during
the drop size evolutions in terms of mean drop radii for number and volume density
distributions, uy, and uy. The results in Fig. 4.10 show that, at increase number of energy
dissipation rate, €, the mean drop radii decreased and the magnitude is consistent approaching
the end of 1500m pipeline. Conversely, at low energy dissipation rate of & = 2.0 m?/s® the
mean radii are observed to be increased. These events are true considering that the energy
dissipation rate, ¢ is one of the primary mechanisms that control the breakage frequency as
depicted in Eqn. (3.17). Hence, due to an effect of small mean radii, the system will be
breakage dominated and high energy dissipation rate, €. Conversely, if the mean radii are
large in magnitude, the system indicates coalescence dominated and low energy dissipation
rate, €. As breakage becomes stronger due to increase in energy dissipation rate, &, more
droplets will likely break into smaller droplets which leads to small magnitude in mean radii
as depicted in Fig. 4.10 (a) and (b). This is due to the increase in kinetic energy in the system
that eventually overcomes the surface energy of the droplets. Kumar et al., (1991) explained
that, droplets will deform and break under the influence of turbulent inertial stresses. In this
premise, increase in turbulent stresses will produce higher energy dissipation rate as a result
of high Reynolds number and consequently force the droplet to break and rupture. Solsvik et
al., (2017) also agreed that all droplets will break in turbulent liquid flows under high
Reynolds numbers and energy dissipation rate. Although, turbulent eddies is responsible for
breakup, however only large turbulent eddies from high energy dissipation rate contain
sufficient energy to affect breakage (Prince and Blanch, 1990). In general, the result on

parameter ¢ indicates that, the overall system behaviour can be in the form of breakage-
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dominated or coalescence-dominated. The system is breakage-dominated if higher energy
dissipation rate is introduced (i.e., higher flow rate and Reynolds number) and coalescence-

dominated if the opposite criterion is met.
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Figure 4.10 The effect of various energy dissipation rates, € on the average radii of (a)
number density distribution, uy and (b) volume density distribution, ;. The new fitting

parameters used are shown on top left corner of the plot.

Besides that, fitting parameters of k, and kg, are also important parameters to
evaluate because they can significantly affect the overall model behavior, particularly the
length of equilibrium, L. In this work, the L., is the length at which the mean radii are
consistently unchanged or equilibrated towards the end of the pipeline due to the balance
between the breakage and coalescence processes. Hence, to evaluate the effect of fitting
parameters k,, and kg, on the overall system behaviour, the mean radii for number and
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volume density distributions are plotted against the axial position, z as depicted in Fig.
4.11(a) and (b). Furthermore, to maintain consistency in the study, the plot is selected at pipe
length L = 10,000m and the fitting parameters k,, and kg, are varied at three different order
of magnitudes (i.e., 10" where, n=-2,-3,-4). From Fig. 4.11, the system is found to equilibrate
at faster rate and shorter distance (shift to the left) as k,, and kg, increase. Conversely, the
system is found to take slower time and longer equilibrium length (shift to the right) as k,,
and kg, decrease. The results indicate that the k,, and kg, play a major role in altering and
controlling the equilibrium state of the system. In this respect, as the magnitude of k,, and
kg, increase, the equilibrium rate increases. This is true considering the intensity of the
coalescence and breakage rates generated as fitting parameters k,, and kg, increase due to
direct proportionality effect of k,, and kg4, as depicted in Eqn. (3.11) and Egn. (3.17). In
general, the results signify that, k,, and k, have a strong influence the overall system
behavior especially on the L,,. Hence, altering or changing these values one can gain control

on the relative magnitudes of coalescence and breakage frequencies which result in different

length of equilibrium.
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Figure 4.11 The effect of fitting parameters k,, and kg, at pipe length, L= 10,000m on the

average radii of (a) number density distribution, u, and (b) volume density distribution, ;.

The last and most important parameter evaluated is the volume fraction of the oil-water
system, ¢. Fig. 4.12 shows the effect of various volume fractions on the mean number radii
as a function of axial position, z. The mean radii are found to be consistently growing until
they stabilize and level at a constant magnitude approaching the end of the pipeline (at higher
z). The results of the mean radii in Fig. 4.12 indicates that, the volume fraction, ¢ plays a
major role in affecting the overall system behavior. In this regard, the bigger the volume
fraction, more droplets are expected to be present in the pipe and due to considerably high
coalescence frequency and efficiency parameters at about k,,= 1.70e® and k,,= 1.50e™ in
the system, hence, the tendency to form larger droplets also increases. At these conditions,
the frequencies and chances of the droplets to collide and coalesce respectively are enhanced
particularly at high volume fraction. Experimental study by MaaR et al., (2012) on the effect
of dispersed phase fraction on drop size distributions supported the argument. They observed
that, the increase in dispersed phase fraction causes the mean drop sizes to increase. In a
nutshell, the magnitude of average drop radius becomes higher as volume fraction increased
at the given fitting parameters. Several authors relate this behavior due to turbulence damping

(Cohen 1991: Coulaloglou and Tavlarides, 1977), while, others attribute it to coalescence
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process. There are also other researchers believe that this trend is associated with both
turbulence dampening and coalescence (Gébler et al., 2006). This, however, is not the case
when the volume fraction is at 0.6 as depicted in Fig. 4.12. The mean number radii, uy at
¢ = 0.6 is observed to drop to a magnitude less than at volume fraction, ¢ = 0.5 at the
equilibrium state towards the end of the pipeline. This is possibly due to the model kernels
employed in the system neglect the damping effects (1 + ¢) in turbulent local intensities at
high volume fraction as suggested by Coulaloglou and Tavlarides (1977). Hence, at increase
amount of dispersed volume fraction (i.e., ¢ > 0.3) the system did not account the damping
effect which results in lower mean radii at high volume fractions in the equilibrium state.
However, the mean number radii u, are found to be not affected at lower dispersed volume

fractions (¢ < 0.3) with an increasing trend as expected.
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Figure 4.12 The effect of various volume fractions, ¢ on the average radii of number density

distribution, u,. The fitting parameters used are shown on top left corner of the plot.

Many literatures have reported that an increase in the dispersed phase fraction will
result in an increasing drop diameter. Hence, to address the issue of high-volume fraction in
the system, the models as depicted in Table 4.6 have been implemented with minor
modifications by introducing the factor of (1 + ¢) to account for the damping effect as

suggested by Coulaloglou and Tavlarides, (1977). The modified model for the breakage and
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coalescence kernels are shown in Table 4.7 and the results are plotted in Fig. 4.13 using the

same fitting parameters plotted in Fig. 4.12 for the mean number radii, py.

Table 4.6 Existing model for breakage and coalescence kernels

Process Existing model
Breakage frequency - k el/3 Py ) .
g\r) = gm—exp[—gm]
(Vankova et al., 2007) 1223723 | pa * pa23/3 r3/3e2
.. , 1/2
Collision frequency wc (', r'") = 42 ke (r + 1! )2 (r’2/3 + r”2/3)

(Prince and Blanch,
1990)

Coalescence efficiency o) Teq

1/2 1/3 5/6
V(' T’>—exp[ szl/s—auz]

(Chesters, 1991)

Table 4.7 Modified model for breakage and coalescence kernels

Process Modified model

gl/3 Pe o(1+¢)?
Breakage frequency gr) = kglm aexl’ —kg, 02573 r5/3g2/3

432k, /3

Collision frequency w(r',r'") = T+ o

(T"+TI,) ( 12/3 +T'”2/3)1/2

1/2 5/6
Pc/ 1/37” /

Coalescence efficiency g (', 7"") = exp [—ky, 21/65172(1 + E
g

Based on the coalescence and breakage models published in the literature (see Table
2.1 — 2.4), majority are found to neglect the damping factor (1 + ¢) on the local turbulent

intensities at high dispersed phase fraction as depicted in Table 4.6. Hence, this present work
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offers an insight of the droplet sizes by accounting the dampening of the turbulence due to
disperse phase fraction in the modified breakage and coalescence models as depicted in Table
4.7. The results in Fig. 4.13 suggests that, as the volume fraction increases the mean radii
increase in magnitude, particularly at ¢ = 0.6. This indicates that, higher volume fraction
enhances the probability of the formation of larger droplets and consequently increases the
mean radii. Recent experimental investigation by Schiimann (2016) has shown that, the mean
and the maximum droplet sizes increase when the dispersed volume fraction is increased.
Earlier investigation by loannou, (2006) also found that higher fractions of dispersed phase
lead to coalescence dominating and eventually increase the average droplet size. In general,
the results have shown that, modelling drop size distributions at high volume fraction is in a
good agreement with experimental work reported in literature. Thus, for drop size analysis in
liquid-liquid dispersions, one should consider the damping factor (1 + ¢) so that the
turbulence damping at high volume fraction is appropriately accounted. From another point
of view, the overall results of parametric effects suggest that, one can have the understanding
and control of the breakage and coalescence processes when conducting the experiment on

drop size distribution in turbulent pipe flow.
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Figure 4.13 The effect of various volume fractions, ¢ on the average radii of number density
distribution, u, with damping effect (1 + ¢) proposed by Coulaloglou and Tavlarides, (1977)

for the new fitting parameters shown on top left corner.
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Additionally, simple regression analysis of drop size distribution at the final location
in the pipe is also evaluated to understand the overall model behavior. To demonstrate the
regression behavior, the sum of squares (SSQ) is evaluated between the simulation results
and the experimental results at the final location in the pipe. In general, the results from SSQ
enable important information in finding the best fit for the dynamic evolution of the drop size
density distribution in liquid-liquid emulsions in turbulent pipe flow. In this regression study,
the behavior of SSQ is plotted in terms of k,, and k, for three different values of fitting
parameters k., and kg, as depicted in Fig. 4.14(a), (b), and (c). The fitting parameters k,, and
kg, are set at decreasing in magnitude as shown in Fig. 4.14(a), (b), and (c), respectively. The
behavior of SSQ at k,, =1.50e* and k,, = 3.50e° as portrayed in Fig. 4.19(a) indicates that
the local minima are lies in the region approaching the 10 of kg, and 10° for k,. As shown
in this figure, the value for fitting parameters k,, and kg, are set at lower, k,, (i.e., < 10°)
and higher, kg, (i.e., = 10%). In this respect, for these set of fitting parameters (ky and kg,),
one should avoid placing the higher and smaller values for the fitting parameters of, k,, and
k,,, respectively, in order to find the best fit or local minima. On the other hand, Fig. 4.14(b)
provides significant information on finding the best fit. From these results of regression
behavior, one can have an insight on which order of magnitude and values of fitting
parameters in finding the best fit for the dynamic evolution of drop size distribution in
turbulently flowing liquid-liquid emulsions. In general, to find the best fit or local minima of
the system, one must consider the appropriate magnitude of k,, and kg, (as depicted in Fig.
4.14(b)). This is because, the interplay between the four fitting parameters is crucial as they

are found to be significantly affecting the overall regression behavior.
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Figure 4.14 The behavior of sum of squares (SSQ) as a function of k,, and k,, at given
fitting parameters: (a) ky,= 1.50e2and k,,= 3.50e™, (b) ky,= 1.50e®and k,,= 3.50e™", and

() ky=1.50e*and kg, = 3.50e %%,

4.3  Chapter summary

This chapter discussed the drops evolution of oil-water emulsion in a long-distance
turbulent pipe flow. One of the main contributions in this present work is the proposed
solutions for the PBE. In this present work, the PBE is solved in the form of volume density
distribution, £, instead of the typical number density distribution, f,,. The study is also crucial
for case-specific system in a liquid-liquid condition with various fluids properties and flow
conditions. In this regard, the study on parametric effects provides the understanding on the
interplay between various parametric effects that contribute to the overall behavior of the
drop size distributions. Besides that, the model has proved to be reliable and robust from the
arbitrary set of results depicted. Two manuscripts are prepared (i.e.., Part | and Part 1) for
this discussion (Chapter 4) as attached in Appendix B and C of this thesis. Next section will

discuss the regression of experimental pipe flow between simulation and experimental data.
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CHAPTER 5

5 RESULTS AND DISCUSSION (PART I1I)

5.1  Part Il: Regression of the experimental pipe flow data: comparison between
simulation and experimental data

In this chapter, the comparisons between the simulation and experimental data as well
as the best fitting parameters are analyzed and discussed. For the second part of the
discussions (Part 11), the following physical properties of the oil-water system are used in the
simulation as depicted in Table 5.1. The physical properties shown in Table 5.1 are divided
into three different data sets known as gel2275a, gel2279a, and gel2284a. The primary
difference between the three experimental data sets is the average flow velocity, U. In this
respect, ge12275a represents the lowest average flow velocity, U at 1.70 m/s, followed by
gel2279a and gel2284a with 2.0 m/s and 2.50 m/s, respectively. All the parameters in Table
5.1 are then used as inputs for the model simulations.

In this regression study, several models are selected for the breakage and coalescence
kernels in order to evaluate their effect on the dynamic evolution of the drop size density
distribution in pipes. The details of the models are summarized in Table 5.2, Table 5.3, and
Table 5.4. It is important to note that, the breakage kernels are selected based on the
mechanism of turbulent fluctuations. While, the coalescence kernels are selected from the
film drainage model and energy model as a result from turbulent-induced collisions. In Table
5.2, the selected models are categorized into three different cases known as case I, case Il,

and case I11. Each case comprised of different underlying mechanisms.
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Table 5.1 Overview of the physical parameters from the experimental oil-water pipe flow

Parameter Gel2275a Gel2279a Gel2284a Descriptions
] 0.30 0.30 0.30 Volume fraction
U 1.70 [m/s] 2.00 [m/s] 2.50 [m/s] Average flow velocity
L 30 [m] 30 [m] 30 [m] Length of the pipe
Upper bound of the radius
Roax 1000 [pm] 1000 [pm] 1000 [pm]
domain
D 0.069 [m] 0.069 [m] 0.069 [m] Diameter of the pipe
Pa 865 [kg/m] 865 [kg/m®] 865 [kg/m®]  Density of the dispersed phase
U 177 [mPas] 169 [mPas] 152 [mPas] Viscosity of the dispersed phase
Pe 1021 [kg/m®] 1021 [kg/m®] 1021 [kg/m®]  Density of the continuous phase
Viscosity of the continuous
Ue 1.0 [mPas] 1.0 [mPas] 1.0 [mPas]
phase
c 26.0 [MN/m] 26.0 [mN/m] 26.0 [mN/m] Interfacial tension

Table 5.2 Comparison between simulation cases for breakage and coalescence kernels

Case

Breakage kernels

Coalescence kernels

Coulaloglou and Tavlarides, (1977) +
Hsia and Tavlarides, (1980)
Vankova et al., (2007) + Coulaloglou
and Tavlarides, (1977)

Vankova et al., (2007) + Coulaloglou

and Tavlarides, (1977)

Coulaloglou and Tavlarides, (1977) +
Coulaloglou and Tavlarides, (1977)
Prince and Blanch (1990) + Chesters
(1991)

Prince and Blanch (1990) + Simon

(2004)
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Table 5.3 Summary of breakage models for every case

Case

Breakage kernels

1/3 2
o) = k, € [_ . o(1+¢) ]

231+ @) P p€2/375/3

45 12 (13\? r3\?
e =gz (m) |1 ()
81/3

Pa 4
9(r) = kglm Eexp [_kgz 042573 rs/agz/a] +

, 2.4 (2r3 —r'3)2 5
B(r,r") = 73 €XP —4.5 — % X 3r

1/3 Pa

o
g(r) = kglm Eexp [_kgz g 2573 r5/3£2/3] +

, 2.4 (2r3 —r'3)2 5
B(r,r") = 3 €XP —4.5 — % X 3r

Table 5.4 Summary of coalescence models for every case

Case

Coalescence kernels

E1/3 1/2
Py ’ m~2|,.12/3 m2/3
w(r',r )—kw—l_l_d)(r +7r'") [r +r ] +

4
r o 1 HePcE r'r”
Ye(r'yr) = EXP[ kyo?(1+p)3\r' +r”

we(r', ") =42 k3 (r' + r")z(r’2/3 + r"2/3)1/2 +

Pc

1/2 _.1/3,.5/6
( 1 T'”) =e —k € Teq
Ye (1, = OXP TRy o176 5172

we(r',r") = 4§/Z_kwsl/3(r’ + r")z (r'?/3 + r"2/3)1/2 +
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o 4kyo(r'? +1'"?)
lpe(r , T ) = exp _pd£2/3211/3(r111/3 T T,,11/3)

There are various mechanisms discussed to describe the breakage process (refer to
Chapter 2, section 2.3.1 of this thesis) and the coalescence process (refer to Chapter 2, section
2.4.1 of this thesis) as explained in the review articles by Liao and Lucas (2009), Liao and
Lucas (2010), Sajjadi et al., (2013), Solsvik et al., (2013), and Abidin et al., (2015). However,
in this study, mechanism of turbulent fluctuations for breakage process is selected due to its
relevance applicability to the present study (i.e., liquid-liquid flow) as well as its extensive
used in the literature. Apart from limited discussions in literature, the other mechanisms such
as breakup due to viscous shear force, breakup due to shearing-off process, and breakup due
to interfacial instabilities are mainly developed based on gas-liquid system (Liao and Lucas,
2009).

On the other hand, for the coalescence process, the mechanism of turbulent-induced
collisions is selected. Wherein, other mechanisms such as droplets capture in an eddy,
velocity gradient-induced collisions, buoyancy-induced collisions, and wake interactions-
induced collision are primarily relevance only for gas-liquid system where the different in
properties of the phases are significant in affecting the collisions between bubbles/droplets.
Although there is an exception on drop collision mechanism of droplets capture in an eddy.
However, the mechanism is not able to predict the coalescence kinetics accurately as reported
by Sajjadi et al., (2013) and limited studies are found in the literature. Therefore, turbulent
fluctuations for breakage process and turbulent-induced collisions for coalescence process are
considered while, other mechanisms are not evaluated in the current work. The overview of
mechanisms for the simulation cases in each selected breakage and coalescence kernels are

illustrated in Table 5.5 as follows.
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Table 5.5 Comparison between simulation cases based on underlying mechanisms for each

breakage and coalescence kernels

Case Mechanisms for breakage kernels Mechanisms for coalescence kernels
| Turbulent fluctuations + statistical Turbulent-induced collisions + film
model (beta distribution function) drainage model (deformable particles

with immobile interfaces)
I Turbulent fluctuations + statistical Turbulent-induced collisions + film
model (normal distribution function) drainage model (deformable particles
with fully mobile interfaces)
Il Turbulent fluctuations + statistical Turbulent-induced collisions + energy

model (normal distribution function)  model

In Table 5.5, the coalescence efficiency function in case | and case Il are selected
based on film drainage model with specific characteristics of deformable droplets with
immobile interfaces and deformable droplets with mobile interfaces, respectively. In film
drainage, these characteristics are essential because they describe the quality of the
coalescence efficiency during the collision between two droplets, particularly in liquid-liquid
system. For both cases the deformable droplets refer to the rigidity of the particle surfaces,
while, the mobility denotes the motion of the colliding droplet interfaces during the process
of film drainage. In case I, the coalescence efficiency by film drainage is characterized by a
viscous thinning. Hence, this film drainage model is applicable for very viscous dispersed
phase or system with very specific surfactant soluble concentration (Liao and Lucas, 2010).
According to Lee and Hodgson (1968), the immobile interfaces refers to interfaces when the
surfaces shear stresses due to flow within the film are resisted by the interfacial tension

gradient set up because of expansion of the surface in the central regions of the film. In this
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regard, the droplet can support an infinite high shear stress (&ther, 2002). This is due to the
presence of the surfactant or impurities at the interfaces and in this condition, the film will
drain very slowly (4ther, 2002). On the other hand, in case Il, the coalescence efficiency
from the drainage process is the opposite criteria of case 1. This model of deformable droplets
with fully mobile interfaces is suitable for a case of liquid-liquid system of the dispersed
phase (Chesters, 1991). In this respect, the drainage is no longer controlled by the viscous
stress as in immobile interfaces but instead by the resistance occurred in the film due to

deformation and acceleration (Chesters, 1991; Liao and Lucas, 2010).

5.2  Regression results and discussion (model validation with experimental data)

It is of interest in this section to compare the solution of the population balance
equation using various breakage and coalescence models against the three different
experimental data sets at the final location (pipeline). We used the fitting parameters to
determine the most robust and applicable coalescence or breakage models. Table 5.6 shows

the best estimation of the fitting parameters (i.e., k,, ky, kg,, kg,) for the regression of

experimental pipe flow data in terms of volume density distribution, £, at the final location.
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Table 5.6 Numerical value of best fitting parameters and confidence intervals

Data set

Case

k., * confidence interval

ky, + confidence interval

kg, + confidence interval

kg, + confidence interval

Gel2275a

2.200x 1072 £ 5.19 x 107>

4550 x 10711 +£7.39 x 10714

3.879x 1071+ 6.27 x 1074

1.010 X 1071 +3.80 x 107

1.090 X 1072 £ 2.74 x 1075

8.499 x 1073 £ 2.23 x 107°

1.870x 1071 £ 4.70 x 10™*

2380x1071+6.25%x107*

2.799 x 1072+ 1.25 x 1073

1.100 X 10™* + 4.89 x 1078

4750 x 1071 £ 7.93 x 10™*

2350x 1071+ 4.89x 1074

Gel2279a

2.550 x 1072+ 1.30 x 1073

6.900 x 10711 +2.31x 10713

4.050 x 1071 4+ 2.69 x 10™*

1.450 X 1071 £ 7.78 x 10™*

1.560 X 1072 £ 1.26 X 1075

5.500 x 1073 +£2.01 x 1077

2.460x 1071+ 190 x 1075

3350x 1071 £ 1.65x 1075

1.950 X 1072 +1.46 x 107

1.100 X 10™* £+ 6.02 x 1077

3.000x 1071 +2.71 x 107*

3250x 1071 £2.16 X 1075

Gel2284a

2.500 x 1072 +2.15x 1075

9.850 x 10711 + 1.07 x 10713

3249x10714+324x107*

2.150x 1071+ 1.95x 1074

1.059 X 1072 £ 2.60 X 1077

5,500 x 1073+ 1.40 x 1077

1.820x 1071 £ 1.21 x 107

6.149 x 1071 £ 3.72 x 107°

3.200 x 1072 £ 5.94 x 107°

1.100 X 107* £ 1.73 x 1077

5320x 1071 +5.79x 1074

5.850x 1071 +1.46 x 1074
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It is worth noting that, each two of the fitting parameters are associated with
coalescence (k, ky) and breakage (kg4,,kg,) mechanisms, respectively. These four fitting
parameters are crucial as they control the dynamics of the overall system behaviour (as
discussed earlier in parametric effect in Part | of Chapter 4). The confidence intervals are
calculated based on the difference between the simulation and experimental data at the final
location of the pipes. The results tabulated in Table 5.6 also highlight the confidence intervals
that consist of the probability or the range limit of the best fitted parameters. From all of the
cases studied, the confidence interval is found to be at least one order of magnitude different
than the actual parameter. This suggests that, the results for the regression of breakage and
coalescence parameters at lower order of magnitude of the confidence interval are in good
agreement with the experimental data as shown in Fig. 5.1 until Fig. 5.3. The results of
regression clearly indicate that the model simulations are perfectly fit with the shape and peak
of the volume density distribution at final location in the pipeline for each of the best fitting
parameters depicted in Table 5.6. The comparison among all the cases and data sets suggests
that the fit of the drop volume distribution at the final location is considered satisfactory in
terms of the distribution properties (i.e., shape and peak location). This demonstrates that all

the models evaluated match the experimental data.
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Figure 5.1 Comparison of the scaled experimental volume density distribution and the model

prediction using the best fit parameters for case | and data set of: (a) ge12275a, (b) gel2279a,

and (c) gel2284a.
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Figure 5.2 Comparison of the scaled experimental volume density distribution and the model

™

O il

prediction using the best fit parameters for case Il and data set of: (a) gel2275a, (b)

gel2279a, and (c) gel2284a.
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Figure 5.3 Comparison of the scaled experimental volume density distribution and the model

10

prediction using the best fit parameters for case Il and data set of: (a) gel2275a, (b)

gel2279a, and (c) gel2284a.

In this study, the fits are determined by using nonlinear regression model and while
doing so, the effect toward the overall model behavior have to be considered. For every
fitting parameter tested, the results are plotted and analyzed until it is considered to be
perfectly fits with the final (location) experimental data in terms of the shape and peak of the
volume density distribution. In addition to this approach, sum of squares (SSQ) are also

calculated to verify the best regression of the volume density distribution at final location.
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Principally, SSQ method is to find the local minima (deviation in data points) between the
simulation results and the experimental data. As depicted in Fig. 5.4 until Fig. 5.6, at the
given values of ky, and ky,, one can estimate the range of k, and k, at the lowest SSQ

(local minima) to find the best fits of the system.
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Figure 5.4 Overview of sum of squares (SSQ) as a function of kg, and k,for case | and data

set of: (a) gel2275a at ky, = 4.55 x 107" and kg, = 1.01 x 107, (b) gel2279a at k,, =

6.90 x 10~'* and k,, = 1.45 x 107", and (c) gel2284a at k, = 9.85 x 10~'*and k,, =

2.15x 1071,
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Figure 5.5 Overview of sum of squares (SSQ) as a function of kg, and k,for case Il and

data set of: (a) gel2275a at ky = 8.50 x 1073 and k,, = 2.38 x 107*, (b) gel2279 at

ky = 550x10"%andk,, = 3.35x 107", and (c) gel2284a at k= 5.50x

1073 and ky, = 6.15x 107"
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Figure 5.6 Overview of sum of squares (SSQ) as a function of k, and kfor case Il and

data set of: (a) gel2275a at ky = 1.10 x 10~*and k,, = 2.35x 107%, (b) gel2279a at
ky= 110x10"*and k,, = 3.25x 107", and (c) gel2284a at ky = 1.10x

10~*and kg, = 5.85x 107",

The results of SSQ are tabulated in Table 5.7 along with the best fitting parameters for
all the cases and data sets studied. The results demonstrate that the calculated values of SSQ
from the function being fitted are in the range of ~ 103 — 10~*, which indicates that the fits
are in good agreement with the experimental data as demonstrated in Fig. 5.1 until Fig. 5.3.
From Table 5.7, the best fitting parameter for collision frequency k., of this system is found

to be in the range between 1.00 x 1072 to 3.50 x 1072 for all the cases and data sets.

153



Table 5.7 Numerical value of the best fitting parameters for all the cases and data sets

Dataset Case ke ky, kg, kg, =91 SSQ

| 220%x 1072 455x107'*  3.88x107' 1.01x10"* 17.6 5.92x107*

Gel2275a Il 1.09x1072 850x107%  187x10°' 238x107' 17.1 6.32x107*
I 280x1072 1.10x107* 475%x 1071 235x107' 16.9 5.12 x 107*
I 255x1072 690 x 107"t 405x10"! 1.45x107' 159 8.50 x 10~*
Gel2279% Il 1.56x1072 550x107%  246x10' 335x107' 157 3.57 x 107*
I 1.95x1072 1.10x107*  3.00x10"'! 3.25x107' 153 6.06 x 107
I 250x 1072 9.85x 107t  325x10"! 215x107' 13.0 1.18 x 1073
Gel2284a 1 1.06 x 1072 550 x 1073 1.82x 107! 6.15x 107 171 6.22 X 107*

1 320x 1072 1.10 x 107* 532x10"! 585x10"! 16.6 3.04 x 107*

The fitting parameter for coalescence efficiency ky, is expected to change for different
cases, however, in case I it is observed to be much smaller compared to the cases II and III.
This is owing to the fact that the model developed by Coulaloglou and Tavlarides, (1977)
assumed the initial thickness of the drops and the film thickness at which film rupture occurs
to be constant and lumped into parameter, ky,. Therefore, the fitting parameter k,, carries a
unit of m? and can take a very low magnitude (i.e., ~ 1071% — 10729). It is important to
note that, in this present work, the equation by Coulaloglou and Tavlarides, (1977), ky, is
treated as a denominator instead of numerator in the original model which we found to be
more practical and sensible in this system. The fitting parameter k., for case I is found to be
in the range of 4.00 x 1071 to 10.00 x 10~%, while case Il lies between 5.00 x 1073
t09.00 x 1073 and case IlI, the parameter remains constant at 1.01 x 10~*. In other words,
the higher the value of ky, the slower the coalescence rate become (the plot in Fig. 5.1 and

Fig. 5.3 will shift backward). This is due to the fact that, k,, poses a direct proportionality
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influence against the coalescence efficiency model in the exponential term (ky, as numerator)
as shown in Table 5.4 for all the cases except case I. Consequently, higher magnitude of k,,
will under-predict the final experimental drop volume density distribution aside from case I,
where k,, is the denominator (imposes indirect proportionality to the coalescence efficiency)
in the exponential term of coalescence efficiency model (refer to Table 5.4).

The result for breakage parameters, k, and kg, are observed to be in the range of
1.00 x 1071 — 5.50 x 10~* and 1.00 x 10! — 6.50 x 1071, respectively. It is worth noting
that the constants between kg, and k,, play an important role in finding the best fitting
parameters. This is true by considering the results of sum of squares (SSQ) analysis as
depicted in Fig. 5.4 until Fig. 5.6. The fitting parameters of k, and k,, are observed to have a
local minima at every order of magnitude (i.e., 10" where n = 1, 2, 3) for every set of best
fitting parameters in k,, and kg,. To put into another perspective, the ratio of kg /k, is
calculated as depicted in Table 5.7. The ratio may provide an insight on the difference in the
degree of magnitude between k, and k,, for every cases and data sets in order to achieve the
best fit between the simulation and experimental data of the system. Nevertheless, in this
study, we are not determining the absolute value of k, /k,, but only the ratio between both
parameters. This due to the different complexity and system application as well as variation
in terms of the model employed.

Apart from that, the evolution of number density distribution, f,, and volume density
distribution, f,, are determined from the best fitting parameters estimated in Table 5.7 and
plotted against droplet of radius, r for nine different locations of the pipe length for case I, II,
and 111 as illustrated in Fig. 5.7, 5.8 and 5.9. The plots provide an overview on the dynamic
evolution of drop density distribution in terms of number and volume density distributions
(. and f,,) throughout 30m pipe length for all the three different cases (case I, Il, and I1I) and

data sets (gel2275a, gel2279a, and gel2284a). From the dynamic evolution of number
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density distributions shown from Fig. 5.7 until Fig. 5.9 (upper part), there is a large quantity
of droplets (high magnitude) present at the beginning (z = 0) and the quantity reduces as it
reached the end of the pipeline (z = 30 m). This can be clearly observed in all of the cases,
wherein at increasing number of z, the curve begins to descend until it reaches the end of the
axial position, z = 30m. Under these conditions, coalescence balances breakage as z increases
and eventually the distribution reaches equilibrium. This occurred for all the cases and data
sets. A decreasing magnitude of f;, indicates that the drop size distribution is lower and lesser
at equilibrium compared to the initial condition. On the other hand, the second plot (bottom
part) of Fig. 5.7, 5.8, and 5.9 demonstrate that the droplets dynamic evolution in terms of
volume density distribution, f,, across nine different pipe lengths are behaving in similar trend
to the f,. The plots illustrate that, f,, is higher at the beginning (large volume of droplets
present at the initial condition) and decreases towards the end (fewer drops volume present at
the final condition) of the pipeline at z= 30m as they reaching an equilibrium. for all the
cases simulated as shown in Fig. 5.7(c), 5.8(c), and 5.9(c). This indicates that breakage is
weak at the beginning of the pipeline because smaller droplet is harder to break than larger

droplet.
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Figure 5.7 Evolution of number density distribution, f, (top) and volume density
distribution, f, (bottom) along the pipeline as a function of drop radius,  for case I: (a)
gel2275a, (b) gel2279a, and (c) gel2284a. The fitting parameters used are shown on top left

corner of the plots.
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Figure 5.8 Evolution of number density distribution, f, (top) and volume density
distribution, f, (bottom) along the pipeline as a function of drop radius, r for case Il: (a)
gel2275a, (b) gel2279a, and (c) gel2284a. The fitting parameters used are shown on top left

corner of the plots.
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Figure 5.9 Evolution of number density distribution, f, (top) and volume density
distribution, f,, (bottom) along the pipeline as a function of drop radius, r for case IlI: (a)
gel2275a, (b) gel2279a, and (c) gel2284a. The fitting parameters used are shown on top left

corner of the plots.

Besides that, to further investigate the changes in the droplets sizes as they travel
dynamically through the 30 m pipeline, the average radii profile of the drop density
distributions is plotted as depicted in Fig. 5.10(a) and (b). In this figure, the average radii for
the number and volume distributions (u,, and p,,) are plotted as a function of axial position, z
for all the three cases and data sets. The results in Fig. 5.10 show that, the average radii for
number density distribution, u,, and volume density distribution, u,, increased as the droplets
transport from the beginning towards the end of the pipeline. This indicates that, the
coalescence process is initially dominating over breakage in the overall system behavior due
to the increase in magnitude of the average radii (i.e., higher probability of droplets to
coalesce and forming larger droplets than breakup at the beginning of the pipe) for both
number and volume density distributions. The results are simulated based on the best fitting
parameters and initial distributions for each case. Aside that, from all the data sets evaluated,

data set gel2284a is found to experience higher relative change (i.e., larger magnitude of
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mean radii) along the pipeline particularly at the equilibrium state (approaching the end of the

pipeline) compared to data sets ge12275a and ge12279a.
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Figure 5.10 The average radii of (a) the number distribution, u,, and (b) volume distribution,

W, Versus the axial position in the pipe, z for all cases and data sets.

This is most likely owing to the different in magnitude of average flow velocity, U in
all of the experimental data sets. In this respect, data set gel2284a contains the highest
average flow velocity, U followed by data sets ge12279a and ge12275a. Hence, by taking this
into consideration and based on the initial condition, the data set gel2284a is expected to
experience greater Kinetic energy from the turbulent eddies which ultimately leads to high
breakup of the droplets at the beginning of the pipe. This is due to the fact that, turbulent
kinetic energy supplied is sufficient or has exceeded the surface energy of the droplets. The
strong turbulent fluctuations in the flow means high energy dissipation rate and more droplets
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are likely to break which results in higher f,, and £, for small size droplets at the beginning of
the pipeline as depicted in Fig. 5.7, 5.8, and 5.9 (large quantity of smaller droplets at the
onset of the pipe). Schiimann, (2016) supported the assumption in his experimental study of
oil-water pipe flow. He concluded that, higher mixture velocities increase the possibility of
the droplets to breakup and the droplet sizes decrease at higher velocity with increasing
Reynolds numbers. In this respect, more droplets will coalesce (high u,, and u,) and form due
to smaller sizes droplets produced at onset of the pipes. It worth noting that, In Fig. 5.10(a)
and (b), case Il and case Il are found to predict higher mean radii than case | for all the data
sets studied (i.e., gel2275a, gel2279a, gel2284a). This suggests that, the mechanisms
employed in the model for case Il and case 11l have a tendency to predict high mean radii in
the system. This is because in case Il, the coalescence efficiency by Chesters (1991) from the
film drainage model is considered from the deformable droplets at fully mobile interfaces
(see Fig. 2.11(c) in Chapter 2 of this thesis). In this context, the fully mobile interfaces are
expected to experience faster film drainage than case | at immobile interfaces (&ther, 2002).
In other words, the rate of coalescence efficiency is higher in case Il resulting in larger mean
radii as demonstrated in Fig. 5.10(a) and (b). This process is suitable for a system having pure
fluids (i.e., no impurities or surfactants) or low viscosity fluids where viscous forces are
negligible (Chesters, 1991).

On the other hand, in case I, the film drainage model of deformable droplets at
immobile interfaces proposed by Coulaloglou and Tavlarides (1977) gives a lower magnitude
of mean radii in comparison to case Il and Ill. This is owing to the model developed by
Coulaloglou and Tavlarides (1977) that takes into account the viscous stress effect from the
viscosity of the dispersed phase or/and specific surfactant soluble concentration in the system
(Liao and Lucas, 2010) as well as the effect of local turbulent intensities at high volume

fraction (1 + ¢). It is worth noting that, the effect of local turbulent intensities at high volume
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fraction (1 + ¢) effectively reduces the rate of collision frequency (w.) due to the indirect
proportionality influence of the term as illustrated in Table 5.4. For these reasons, the
probabilities of droplets to form larger droplets are lower and resulting in small magnitude of
mean radii. Furthermore, if there is a presence of viscous effects at the interfaces, it is
expected that the drainage time will be sufficiently longer than the contact time, thus some
droplets may not be able to coalesce. As discussed by Kamp et al., (2017), in film drainage
model, the droplets must remain in contact for sufficient time until the intervening liquid film
thins to its critical thickness at which tcontace > tarainage (refer to Fig. 2.8 in Chapter 2 of
this thesis) for coalescence to occur. On the other hand, in case 111, the coalescence efficiency
model proposed by Simon (2004) is strongly dependent on kinetic collision energy (as shown
in Table 5.4 for coalescence kernels). In this respect, the higher the kinetic energy (i.e.,
higher flow velocity, U) as described in data set ge12284a, the more efficient the coalescence
process will become (bigger droplet formed). Hence, the probability of coalescence (i.) from
drop collision process increases if the kinetic collision energy is greater than the surface
energy holding the droplet together (i.e., Ex > E,). Nevertheless, by taking into account the
complexity of the model and the turbulent flow behavior, the predictions (results) are
considered satisfactory based on the individual mechanisms as they appropriately described
the essence of droplets behavior in emulsion of oil and water. In addition, the results on
average radii may have important implication in terms of accessing designing strategies
specifically for multiphase separator system as well as droplet movement describing the
sedimentation and coalescence profiles (Jeelani and Hartland, 1998; Yu and Mao, 2004).
Apart from that, the simulations results in both figures (5.10a and 5.10b) also indicate
that the mean radii for number and volume density distributions (u,, and u,) are approaching
equilibrium in which no significant net changes in drop sizes after they surpassed the 1 m

length of the pipe. In this case, the mean radii u, and p, are said to have equilibrate once
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they reached the point where they are no longer growing (toward the end of the pipe length).
This is due to the fact that, the system is having a balance between the coalescence and
breakage processes. In this regard, the length at which the equilibrium achieved is called
Leq and it is set to the axial position of z-axis. Table 5.8 elucidates the length of equilibrium,
Leq based on the mean radii on each cases and pipe flow data for the set of best fitting
parameters (details in Table 5.7). Table 5.8 also calculates the time required for each length
once it reached the state of equilibrium. The length of equilibrium L., is an important
number to measure because it plays a major role in the overall system behaviour. The steady
and consistent magnitude of average drop radii approaching the end of the pipeline

determines how fast the system can achieve the length of equilibrium, L.

Table 5.8 Overview of length equilibrium, L., and time equilibrium, T,, for number and

volume density distributions at every cases and data sets

Data set Case Leg, from py,  Leg, from p, Toq, = L‘Z;?n Teq, = LZJV
Case | 416 m 3.82m 2.45s 2.25s
Gel2275a Case Il 4.79m 4.32m 2.82s 254
Case IlI 3.78 m 3.65m 2.23s 2.15s
Case | 479 m 4.35m 2.39s 2.18s
Gel2279a Case Il 5.52m 4.66 m 2.76 s 2.33s
Case 11l 3.62m 3.34m 1.81s 1.67s
Case | 416 m 3.62m 1.66s 1.45s
Gel2284a Case Il 6.36 m 572m 2.54s 2.28s
Case Il 2.06 m 1.35m 0.82s 0.54s
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In a nutshell, the length of equilibrium, L., showed in Table 5.8 illustrates that the
time of equilibrium is influenced by the velocity, U. In this respect, with the increase of
velocity, U from data set gel2275a to gel2284a, the system is observed to reach the
equilibrium at faster rate. Furthermore, the results also demonstrate that, case Il has reached
the length of equilibrium, L., earlier compared to case | and case Il. This is potentially due to
the energy model proposed by Simon, (2004) in the coalescence efficiency function and
combined with the turbulent fluctuation model from the breakage kernel which has greatly
affects the overall system behavior. In addition, case Il consists of both coalescence and
breakage models developed from the similar mechanism of turbulent energy relationship.
Hence, as the turbulent energy increases particularly from data set ge12275a to gel12284a, the
equilibrium state of the system is accelerated. In other words, the higher the kinetic energy
supplied from the turbulent eddies, the faster the system is expected to reach the stability
(equilibrium). On the other hand, changing and altering the fitting parameters specifically the
k., and kg, will also have a greater effect on the behavior of L.4. In this respect, the higher
the magnitude of fitting parameters k, and k,, , the faster the system reaches equilibrium
(refer to Part | of Chapter 4 for details). This is mainly because of the direct effect on the rate
of breakage and coalescence frequencies as depicted in Table 5.3 and Table 5.4. Therefore,
the system will growth and equilibrates faster when the value of k, and kg, are set at
substantially higher.

It is of interest in this study to investigate the dynamic evolution of drop density
distribution in terms of coalescence and breakage rates throughout the pipeline. To achieve
this, the best fit parameters shown in Table 5.7 are employed for every case to generate the
results related to the breakage and coalescence rates functions. Fig. 5.11 until Fig. 5.13,
illustrate the dynamic evolution of drop density distribution in terms of the total coalescence

rate (top), R¢, and total breakage rate (bottom), Rp, as a function of drop radius, r at nine
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different axial positions, z in the 30 m pipe. The total rate is accounted for the birth and death
terms from the breakage and coalescence events. In these figures, the negative section of the
curves indicates the death of the droplets due to the coalescence and breakage processes,
while the positive section of the curves specifies the birth of the droplets owing to
coalescence and breakage developments. Essentially, the plots in Fig. 5.11 until 5.13 provide
an insight on the droplets behavior in terms of coalescence and breakage rates for all the
cases and data sets investigated. From these figures, it clearly shows that the total coalescence
rate is higher at the beginning of the pipeline and gradually decreases towards the end of the
pipeline. This is stemming from the fact that large quantity of smaller droplets initially
enhanced the collision rate between droplets. Moreover, film drainage is faster for small
droplets due to the small surface area and for droplets with low surface energy particularly,
for case | and Il. While in case Il1, the efficiency of coalescence significantly increases with
increasing energy of collision (energy model) from the turbulent eddies (energetic collision)
as shown in data set ge12275a to data set ge12284a. It is worth noting that, case 111 produced
the highest birth rate of coalescence among the three cases and data sets simulated, which is
approximately in the range of R, ~ 90 — 120 ms™. This suggests that, case Ill has the
highest probability for coalescence to occur than case Il and case | due to the higher
magnitude of total coalescence rate produced. By taking into account the mechanism of
energy-induced coalescence from the energy model by Simon, (2004), the coalescence
efficiency may have been strongly intensified in the system which results in significant
increase of overall total coalescence rate. Apart from that, at low r values, the total
coalescence rate, R, is found to be in the negative section. This is expected because smaller
droplets present at the beginning of the pipeline are more likely to coalesce and forming
larger droplets. Subsequently, the larger droplets formed initially from the coalescence

process will breakup into smaller droplets (birth by breakage) as bigger droplets are more
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likely to break than smaller ones. In general, R, is found to decrease as z increases, which

indicates that the larger droplets formed during the coalescence process are breakup into

smaller droplets as breakage process becomes stronger towards the end of the pipeline until

both systems equilibrate. Further evidence of this observation stems from the fact that initial

droplets are too small to break which restricted the breakage process at the early stage of the

pipeline. However, as z increases, breakage is growing in dominance because larger droplets

are more likely to break than coalesce.

100

50

0

Rct(r'zi)

-50

-100

k_ =2.20e-02
k, =4.55e11
k  =3.88e-01
gl
k_ =1.0le-01
g2

10! 10°

100

10'
Drop radius, r (m)

Total coalescence rate

kw =2.20e-02
k{), =4.55e-11
k . =3.88e-01
gl
k =1.01le-01
g2

10!
Drop radius, r (zm)

10?

Total breakage rate

(@)

—e—R,(2=0.000)
—e—R_,(z=0.000)
—o—R_,(220.001)
+Rcc(z=0,005)
+RCt(Z=O'027)
—o—R,(2=0.152)
R.,(2=0.845)
—+—R_(2=4.69)
—Q—RCE(Z=30‘OOO)

—e—Ry (2=0.000)
—o—RBt(Z=D.DOD)
—o—R,(220.001)
+RBt(z=D.DOS)
—e—R,(220.027)
+RBt(Z=D'152)
Ry, (2=0.845)
+RBt(z=4'696)
—e—R,,(2230.000)

169



100 ; ; .
kw =2.55e-02
k =6.90e-11
_ or. ¥
N k ~=4.05e-01
= gl
s k _ =1.45e-01
= 100f ¥ ]
-200 L ! L
107! 10° 10! 102 10°
Drop radius, r (zzm)
Total coalescence rate
100 T ; -
k =2.55e-02
w
— 5ok, =6:90e 11 ]
N k . =4.05e-01
= gl
& k _=1.45e-01
o 0 L &
-50 ! . |
10t 10° 10t 102 10°
Drop radius, r (zm)
Total breakage rate
(b)
100 .
kw =2.50e-02
k, =9.85e-11
—~ of,"
~N k = =3.25e-01
Py gl
] k _=2.15e-01
= _j00f ¥
-200 . : .
10! 10° 10? 10% 103
Drop radius, r (pm)
Total coalescence rate
100 T . ’
kw =2.50e-02
~ 5ok, =985e1l ]
N k =3.25e-01
>, gl
& k _=2.15e-01
o ofF g
50 | ! |
101 10° 10! 10? 103

Drop radius, r (zm)

Total breakage rate

—O—RCI(Z=0‘OOO)
—O—RCI(Z=0.OOO)
—e—R_,(2=0.001)
—hRCt(z:O.OOS)
—_—— RCI(Z=0'027)
+RCI(Z=0'152)
R,(2=0.845)
—s—R_(2=4.696)
_‘—RCI(Z=3O.OOO)

—e—Ry,(220.000)
—e—R, (20.000)
—e—R, (2=0.001)
—a—R,,(220.005)
—o— Ry, (2=0.027)
—o—Ry,(220.152)
Rg,(2=0.845)
—a— Ry, (2=4.696)
—e—R,(2230.000)

—e—R_(220.000)
—G—Rc((z=0.000)
—Q—RCI(Z=0‘001)
—a—Rc[(z=0.005)
—e—R,(20.027)
+RCt(Z=O'152)
Rc[(z=0‘845)
—-—Rc((z=4,696)
—<—R_,(z=30.000)

—o—R(220.000)
—O—Rm(z:0.000)
—o—R,(220.001)
—.—RBR(Z=O.OOS)
—t—RBi(Z=O.OZ7)
—o— Ry (220.152)
RBK(Z=O.84S)
—— Ry, (224.696)
+RBE(Z=30'000)

170



(©

Figure 5.11 Evolution of the total coalescence rate R, (top) and evolution of the total

breakage rate, Rp, for case | and data set of: (a) ge12275a, (b) ge12279a, and (c) gel2284a.

Both rates are plotted as a function of droplet radius, r at nine different locations in the pipe.

The fitting parameters used are shown on top left corner of the plots.
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Figure 5.12 Evolution of the total coalescence rate R, (top) and evolution of the total
breakage rate, Rp, for case Il and data set of: (a) ge12275a, (b) ge12279a, and (c) gel2284a.
Both rates are plotted as a function of droplet radius, r at nine different locations in the pipe.

The fitting parameters used are shown on top left corner of the plots.
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Figure 5.13 Evolution of the total coalescence rate R¢, (top) and evolution of the total
breakage rate, Rp, (bottom) for case 11l and data set of: (a) ge12275a, (b) ge12279a, and (c)
gel2284a. Both rates are plotted as a function of droplet radius, r at nine different locations

in the pipe. The fitting parameters used are shown on top left corner of the plots.

The bottom sections of Fig. 5.11(a), (b), and (c), until Fig. 5.13(a), (b), and (c) show
the dynamic evolution of the drop density distribution in terms of total breakage rate in the 30
m pipeline for all the data sets and cases. As depicted in Fig. 5.11 until Fig. 5.13, the total
breakage rate, R, is found to have increased towards the end of the pipeline, in other words
Rp, behaves in an exactly opposite trend to R,. The similar behaviour can be observed for all
the cases and data sets. This suggests that breakage becomes dominant and stronger as z

increases. ldeally, breakage occurs due to the interaction between the larger droplets and
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turbulent eddies. Therefore, increase in number of larger droplets from coalescence process at
the early stage of the pipeline has significantly affects the breakage to grow in dominance as
they travel throughout the axial position, z. This is true considering larger eddies are
responsible for breakup and with the presence of larger size droplets from coalescence
process initially, the tendency of breakage to occur towards the end of the pipeline increased.
It is worth noting that, very small eddies do not have sufficient energy to affect breakage
compared to large eddies (Prince and Blanch, 1990). In this respect, the breakage process is
highly influenced by the size of droplets and the turbulent energy in the system. According to
Kumar et al., (1991), a drop will break under the influence of turbulent inertial stresses and
under this condition, the physical of the droplets can no longer held together which results in
deformation of the droplet as illustrated in Fig. 5.14. With that in mind, one would expect
faster breakage rate when the emulsion contains larger size of droplets and high energy
dissipation rate (¢) in the system. It should be emphasized that that these events are highly
dependent on the initial distributions for each case and the set of fitting parameters. On the
other hand, the positive curve (birth) of Rp, in the same figure (Fig. 5.13(a), (b) and (c)) for
case |11 is observed to produce the highest rate compared to case | and Il with approximately
in the range of Rp, ~ 80 — 120 ms™ for all the data sets simulated. This indicates that, the
model simulated in case Il promotes higher breakage rate compared to the other cases,
similar to the event observed in total coalescence rate (i.e., higher rate). The results provide
further confirmation that case Il may predict high drop rates and the mean radii in the

system.

T'urbulent eddies
Figure 5.14 Drop breakage chronologies by turbulent kinetic energy
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5.3 Chapter summary

This chapter discussed the regression of the dynamic evolution of the drop size
density distribution of oil-water emulsion in a 30 m turbulent pipe flow. From the results, the
drop behavior over the turbulently flow in pipe are found to be very promising and the
models simulated have shown a good agreement with the experimental data. The fitting
parameters tested are fitted accordingly the drops volume density distribution at the final
location perfectly. The best fit results between the experimental data and simulation
demonstrated that the methodologies proposed in this modelling work (as discussed in
Chapter 3) have proved to be working effectively. Hence, the models can be considered
reliable and robust from all the results depicted. One manuscript (Part 111) has been prepared

for this discussion and can be found in Appendix D of this thesis.
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CHAPTER 6

6 CONCLUDING REMARKS

In this recent work, the dynamic evolution of the drop size density distribution of
liquid-liquid emulsions in turbulent pipe flow was investigated. The results and discussions
of this work are divided into two main parts, in which Part | covered the model behavior and
parametric effects and Part 1l discussed the comparison between the simulation and
experimental data for various breakage and coalescence models. In Part | of this research, the
general form of a mathematical model to simulate the dynamic evolution of drop size density
distribution in turbulently flowing liquid-liquid dispersions through pipeline was presented
using the method of population balance equation (PBE). In the context of model
development, possible methodology is elucidated incorporating the breakage process due to
turbulent fluctuations and coalescence process from the film drainage between droplets.
Moreover, the properties of the mixture liquids and the flow conditions are also incorporated
in order to understand the overall system behavior of the drop sizes evolution in liquid-liquid
dispersions. The model also suggests that the evolution of number density distribution,
volume density distribution, mean radii, standard deviations, total coalescence and breakage
rates, and total growth rates for a liquid-liquid system are take place in isotropic turbulence
condition at any position over a long distance pipeline. The performances of both breakage

and coalescence processes are presented based on how fitting parameters, k, and k,,
ky and kg, are change from case to case (i.e., case I, case Il, and case Il1). In addition, for any
position in the pipeline, the model is able to simulate the evolution of breakage and
coalescence processes in terms of birth and death rates as well as their total growth rates. At
the same time, the advantages of solving the PBE in the form of volume density

distribution f,, compared to number density distribution f,, are also discussed as well as the
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error analysis of using the spectral element in the orthogonal collocation method (i.e., N; =
6) to identify the best numerical solutions. One of the important contributions of this model
work is coming from the suggestion of converting the solution for PBE from number density
distribution f;, to volume density distribution f,. The results have shown that, solving the
PBE in the form of f, provide more stability and consistency to numerical solutions as
volume remains constant due to volume conservation, while, f, changed significantly during
drop growth process as number is not conserved (i.e., not consistent). In brief, the study
provides an insight of the modelling strategies and the solutions to the PBE towards
understanding and describing the overall system behavior of the drop size density distribution
in turbulently flowing liquid-liquid dispersions.

On top of that, the discussions in Part | (Chapter 4) of this thesis are continued with
the study of the model performance under various parametric effects to acquire understanding
and to elucidate the overall system behavior. In this respect, several parameters are varied
such as energy dissipation rate, &, volume fraction, ¢, and four fitting parameters, k,,, ky,
kg, and kg4, . The performances of both breakage and coalescence processes are also assessed
and evaluated based on these parametric effects. The model is also modified to incorporate
the damping effect with the factor of (1 + ¢) to account for turbulent intensities at high
volume fraction suggested by Coulaloglou and Tavlarides (1977). Overall, the results are
considered satisfactory as they are in good agreement with the experimental data and
theoretical studies. The results shown that, the mean radii increase as volume fraction
increases and decrease when energy dissipation rate increases. This is followed by
coalescence gradually growing in dominance as dispersed volume fraction increases and
conversely when energy dissipation rate is set higher. Apart from that, sum of squares (SSQ)
plots of the regression behavior are also presented and analyzed. The results indicate that the

interaction between all four fitting parameters is crucial in finding the best local minima. In
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general, the four fitting parameters play an important role in changing the behavior of
coalescence and breakage models. Essentially, the study adds detail in understanding of the
interplay between various parametric effects on the coalescence and breakage mechanisms
and their relationship that contribute to the overall behavior of the drop size distributions. The
results are encouraging and provide useful information for the understanding of the model in
simulating and solving the dynamic evolution of liquid-liquid emulsions in turbulent pipe
flow.

Finally, the regression of experimental drop size density distribution in turbulent pipe
flow is investigated. In this present work, the performance of two different breakage kernels
and three separate coalescence kernels by Coulaloglou and Tavlarides (1977), Hsia and
Tavlarides (1980), Vankova et al., (2007), Prince and Blanch (1990), Chesters (1991), and
Simon (2004) are assessed and evaluated. The model and experimental data are directly
compared in terms of volume density distribution at final location in the pipe. Overall,
satisfactory agreement is observed in all of the model’s predictions with the experimental
pipe flow data. Based on the analysis of the results, turbulent fluctuation is the best
mechanism for breakage process, wherein, film drainage is the suitable mechanism to
describe for coalescence process particularly, in turbulently flowing oil-water emulsions in
pipe flow. However, discrepancies are discovered in terms of mean radii and total drop rate
predicted between the models studied. The models in Case Ill are found to promote higher
breakage and coalescence rates compared to case | and case II. Aside that, case Il and case IlI
are found to produce higher mean radii in comparison to case I. The film drainage model
employed in case | from Coulaloglou and Tavlarides (1977) at immobile interfaces is found
to be the better model to describe the oil-water system in pipes. This is true considering that,
the model incorporates the viscous shear stress effect between two different liquids (viscous

liquid) as well as the effect from local volume fraction (1 + ¢). It is also worth noting that,
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every model investigated in each case produced reasonable results for all the data sets of
different velocity conditions. However, one should expect differing in the magnitude of the
fitting parameters and higher mean radii as well as greater changes in total drop rate. In
addition, the model and experimental data indicate that the difference in degree of velocity
for data set of gel2275a, gel2279a, and gel2284a can affect the rate of coalescence and
breakage. That is, increased in velocity leads to higher coalescence and breakage rates as well

as faster equilibrium of mean radii (L)
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CHAPTER 7

7 SUGGESTIONS AND RECOMMENDATIONS FOR FUTURE WORK

It is recommended for the future work to study the dynamic evolution of the drop size
distribution by taking into account the aspects of angular and radial effects in the pipe flow. It
is because Schimann, (2016) and Lovick and Angeli (2004) have shown from the
experimental evidence that, droplets at the center of the pipe are larger than the droplets
found near the wall of the pipe. This is due to the fact that high shear rate close to the wall
promote the breakup process of the particles and leads to smaller droplet size. Another
essential aspect to consider in the future work is the physical state of the matter (i.e., gas,
liquid, solid). Variation in terms of the phases, for instance gas-liquid system may provide
profound understanding in modeling a more complicated three phase flow system (i.e., gas-
oil-water system or gas-liquid-solid system) which is becoming more common in the
industries, particularly in petroleum production. The study of gas-liquid system in turbulently
flowing pipeline will provide many significant information such that, the bubble size density
distribution, the interactions behaviour between bubbles in pipes, and the status of breakage
and coalescence rates in the system throughout the pipeline that benefitted the designs of
critical equipment such as multiphase separator.

Finally, is it also suggested that, one should consider the experimental data of drop
size density distribution (either number or volume density distribution) to be measured at the
midway of the pipeline apart from the inlet and the outlet. This measurement will provide
additional information of the drop size behaviour at the midway of the pipeline. Taking into
account the midway distribution will greatly contribute in finding the best fit at the final
location of the drop size density distribution. Hence, robust regression results can be

expected.
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APPENDIX A

DIMENSIONLESS ANALYSIS

Al Dimensionless analysis

In order to transform the system equations into dimensionless form, five dimensionless
variables are introduced for the equations. These include dimensionless axial position in the
pipe, dimensionless radius of droplet, dimensionless drop volume, and dimensionless number
as well as volume number density distributions. For the scaling purposes, a characteristic
length and velocity are defined to transform the model into a dimensionless form. In this
respect, the characteristic length of the axial coordinate of the pipe (external coordinate) is
described as the total length of the pipe, L, and the characteristic velocity of the system is
defined as the average velocity in the pipe, U. On the other hand, the characteristic radius in
the scaling process is given by R,,., Which describe the maximum size of drop radius in the

system. From the definitions above, the scaling relationships can be expressed as follows:

Al.1 Dimensionless variables:

€)) Dimensionless axial position in the pipe:

P 1
=7 (1a)
(b) Dimensionless radius (droplet):
f=— (2a)
= a
Rmax
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(©) Dimensionless drop volume:

4 4
v = §T[r3 = <§7TRr3nax) 53 = Vmaxf3 (3a)

The number density distribution f,, can be scaled from the definition of initial number density

distribution, Ny, at the initial position in pipe (z = 0) as follows:

Rmax

Nao(2) = j foy (', 2)dr” (4a)

0

(d) Dimensionless number density distribution:

fa (5a)

(e) Dimensionless volume density distribution:

fo = Rmax-fy (6a)

Hence, from Eqn. (6a), the dimensionless number density distribution can be formulated in

terms of dimensionless volume density distribution as follows:

= fo

= et )
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A2  Dimensionless population balance equation

Dimensionless population balance equation (droplet transport equation) is given by:

OF e
TSR _ (5, (6,2) = Poy(E,2) + 7Pa, (6,2) = Pa, (6D ©)

The dimensionless PBE above is valid under conditionof, 0 <A <1, 0<¢<1

The initial condition is given by:

At 1=0, f,(0)=/f,&, foro<és<i1

In the Eqn. (8a) above, P¢, and P, represent the dimensionless birth and death rates due to
coalescence respectively, while, Pg, and Py, are the dimensionless birth and death rates due

to breakage, respectively.

A3 Dimensionless coalescence birth and death rates

The dimensionless coalescence birth and death rates can be written as:

§/32
, . 1_, . 1_ , 2
PEn=¢ [ fc(s‘,[€3—53]1/3)312;(6,/1)?}%([63—63]1/3,/1)%& %a)

0

1
— ~ 1, . .
PN = 6D [ 2(66) SR 2) (100)
0
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Where, dimensionless rate of coalescence is given as:
7(6,67) = @.(§,6 e (€,87) (11a)

By substituting the expression for @.(¢',¢") and ¥ (¢,€") into Eqn. (11a), dimensionless

rate of coalescence 7.(&',€") can be written in details as follows:

5/6

;o , . 1
7o(€,6) = xw(@ + &€ + £ exp| 1, ﬁ (12a)

£ty

Where y,, and y,, are dimensionless parameters and can be expressed as follows:

43/2e/3R7/3 Nyl
Xw = ky Umax (Vmax- Nao) (13a)
5
_ L pME VPR 14
Xy = " 51765172 (14a)

A4 Dimensionless breakage birth and death rates

The dimensionless breakage birth and death rates can be written as:
7 1
Poy (6.0 = £ [ 20 (6.6)GE) S Rs D) dE (150)
3
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Pg,(&,1) = [g(&) f» (£, )] (16a)

In Egns. (15a) and (16a), the dimensionless rate of breakage, g(r) and dimensionless

daughter size distribution, 8(r, ") can be expressed as follows;

N 1 1

g(r) = xg 7273 ¥P [—xgz F] (17a)
2 3_z3)?

B(r,r") =72 ;—,3exp [—4.5 (Ef—i)] (18a)

Where x4q and x4, are dimensionless parameters and can be written as follows:

gl/3L,
PP S — (19a)
PRYE (L + U
y(1+ ¢)?
Xg2 = — 7 (20a)
9 9 pdsz/gRrsn/an

In Egns. (13a) and (14a), the expression of y,, represents the ratio of the residence time for a
drop in the pipe to the average time between droplet collisions. While the expression of y,,
indicates the ratio of the film drainage time constant to the droplet contact time constant.
Whereas, in Eqns. (19a) and (20a), the expression of y,, represents a comparison of the
droplet residence time in the pipe to the breakage time (frequency) of the drop in the
turbulent flow field. While, x4, signifies the ratio of the surface energy of the drop to the
mean turbulent kinetic energy in an eddy.
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Substitute all the equations above for dimensionless coalescence and breakage processes into
the general equation shown in Eqn. (8a). Hence, the complete expression of dimensionless
population balance equation in terms of volume density distribution can be written as

follows:

= ¢/32
0 v A 2 ~ , a1 1_ ., 1 _ ) ,
%=f3 .OI- ;—,Zrc(f;[f3_f3] /3)51;({,/1)?&([{3_{3]1/3’/1)(15
: 1
z PR , ) a1l ,
SREA [REOFRED &+ [ 26 @5 FRE D a8
° §

—[g@® £, ¢ 2] (21a)

A5 Normalized number density, N;(4) and dimensionless volume fraction, ¢(2)

1 _
W) = f R(e2) a = [2(c.0) ag (220)
0
S = NaoVias f £37,(£,2) de = f 7i(€,2) df (230)
0 0

A6 Dimensionless mean drop radii iy and fy

aNu)—waffn(f 2) df = waf 2(5.2) af (240)
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) = R Vo f EUR(E) df = f ERE.2) dE (250)

A7 Dimensionless standard deviation number, @y and volume distributions, oy

= | f (£ ~2) F g
1 ~ _

1

_ ooy Nao 2 T .
OB L Of (6 -2 ehe 2 ag

Rmax

N P
0

Apart from that, mass balance is also calculated to ensure that there are no droplets entering
or leaving the system during the simulation. This is crucial for the system to warrant the mass
remains conserve throughout the pipe lengths. The mass balance is determined by taking into
account the mass created and the mass disappeared from the coalescence and breakage

processes so that the condition is met for the following expressions:

Pe,(§, 1) — Pc,(§,1) =0 (28a)
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P, (§,4) — P, (§,1) =0 (29a)

The ratio of the coalescence mass balance M, is determined by dividing the dimensionless
volume integral for coalescence birth rate, P;, against the dimensionless coalescence loss
rate, Pc,. The same method applied to calculate the breakage mass balance, My and both

ratios can be written as follows:

PCb(E' A)

MC = m (30(1)
_ PBb (f! ;{)

5 PG ) Gle)

To ensure that the local volume fraction, ¢ remains constant, the mass balance ratio for both
coalescence and breakage, M. and My are multiplied by the dimensionless coalescence and

breakage birth rates, P, and Pg, respectively, as written below:

PCb = PCb X MC (32a)

Ps, = Pp, X Mg (33a)
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