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Abstract— Systems with fast and slow dynamics give rise to
objectives in different time scales which may not be aligned.
The existing dynamic optimal control methods might become
computationally infeasible due to the fine discretization re-
quired to capture the fast dynamics. On the other hand, a
real time optimization (RTO) method based on steady-state
models, which is computationally efficient, can greedily drive
the plant towards optimal operation. The drawback of the RTO
approach is that it may yield actions that only focus on near
future goals and the objectives involving the slower dynamics
are neglected. In this paper, we propose to extend RTO with
a lookahead strategy by introducing a predictor to capture
the effect of changing the current controls on the long-term
objective. In this way, we introduce the long-term objectives
in RTO while maintaining its computational efficiency and not
losing focus of short-term objectives. The proposed approach
is demonstrated in a simulation study from offshore petroleum
production, that compares the proposed method with both an
“industry-standard” RTO method, and a full fledged dynamic
optimization method that takes both slow and fast dynamics
into account. The proposed methodology performs almost as
well as the dynamic optimization method while maintaining a
low computational effort.

I. INTRODUCTION

Complex industrial processes have goals in different time
scales ranging from the long-term planning and scheduling
to automatic actions for stable and safe operation. Such goals
can be of different nature, and it can be challenging to
achieve an overall good performance treating the problem as
a whole. Thus, a proper manner to deal with such problems
is to decompose the decision making process into several
layers [1]. This hierarchical methodology is accepted as
a standard industrial practice [2] and also well-known in
academic literature as plant-wide control [3]–[6].

The decisions in a hierarchical control system are divided
in layers depending on their time frame [3] as shown in
Fig. 1. The top layer, commonly known as Asset Manage-
ment, focuses on long-term decisions which typically involve
risk handling, investments and infrastructure planning. Next
are the decisions taken in a time frame of a couple of
days or weeks such as operations scheduling and plant-wide
operations. Next follows the Real-time Optimization (RTO)
layer, which is responsible for decisions that have to be taken
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in a time scale of hours or days. Shorter-term operational
decisions regarding the control and automation of the plant
aim to keep operations stable and mitigate disturbances in
a range of seconds to hours, being performed automatically
without human interference.
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Fig. 1. Multi-level control hierarchy, adapted from [7].

Traditionally the interplay between the layers functions
with the upper layers providing setpoints to the layers below
such that near-optimal economic operation of the process
is achieved. This hierarchical scheme is suitable in many
industrial applications, especially when the objectives in the
layers are aligned. However, in some applications, these
goals might be conflicting in different time scales such that
the overall objective of the control system becomes less
obvious.

An example of such problems appears in resource-
constrained production optimization. In the short-term, the
top-ranked objective is the maximization of economic rev-
enues obtained with the current production, while in a long-
term perspective this might lead to suboptimal utilization
of resources. In other words, the decision variables might
be shared between different layers, but the objectives are
not necessarily aligned, which means that prioritizing short-
term economic performance comes at the cost of long-term
economic performance.

In some cases, problems of this type are approached
by constructing objectives that weigh control performance
against usage of inputs, yielding thereby a multi-objective
optimization problem for which some tuning effort is re-
quired [8], [9].

Depending on the research field, this approach may be
known as Dynamic Real Time Optimization (DRTO) or Eco-
nomic Model Predictive Control (EMPC). These frameworks
are capable of handling complex dynamical systems with
conflicting objectives and constraints. The main limitations
of this approach are the requisite of computational power,



and the potential unexpected behaviour due to an improper
choice of weights, which is typically problem-dependent.
The former limitation becomes evident as the size of the
decision variable vector grows due to the increasing amount
of control steps needed to capture the dynamics of the faster
system.

The challenge addressed in this paper is inspired by
production optimization problems involving multiple time
scales within the petroleum industry. The proposed solution
is generalized into a systematic approach which can possibly
be extended to other application areas. It consists of a novel
control method that reconciles problems with conflicting
goals and heterogeneous time scales by incorporating long-
term objectives in the RTO layer using a lookahead strategy.
This involves some level of integration between the models
from different layers, but in such a way that the integrated
problem remains computationally tractable.

The paper is organized as follows: Section II presents a
motivating example from the petroleum industry. In Section
III we provide a general formulation for control problems
of systems containing both fast and slow dynamics. Section
IV contains the RTO with a lookahead strategy and the
solution method. In Section V we demonstrate the feasibility
of the proposed methodology by applying it to the motivating
example. Section VI contains a discussion. We conclude with
Section VII.

II. MOTIVATING EXAMPLE

In offshore petroleum production, there is typically a set
of wells producing from a hydrocarbon reservoir to the
topside facilities, see Fig. 2. While the reservoir consists of
considerable amounts of hydrocarbons trapped in subsurface
porous media, the network is a set of pipelines connecting
the wells to the platform.
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Fig. 2. Integrated production system with a reservoir, a production
gathering network, and the processing facilities [7].

The reservoir fluids are produced by the wells and
collected by a manifold before reaching the surface for
separation, processing and further exportation. The oil is
stored in tanks, while the water is treated before disposal or
reinjection, and the gas is either flared, reinjected or exported.
There are also some wells injecting either water or gas into
the reservoir to provide pressure support and enhance the
overall recovery factor of the asset.

The control hierarchy presented in Fig. 1 is also suitable
to describe the decisions in petroleum applications. In asset
management the production infrastructure and topside facil-
ities are designed. This provides a constraint in terms of
number of wells and processing capacity for the reservoir
management layer. This layer, on the other hand, determines

well locations and drainage strategies that improve the long-
term gains. Then, the RTO layer determines the well controls
and the platform settings to maximize the production such
that the operational constraints are honored. Finally, the
control and automation layer guides the system towards
the optimum, and autonomously stabilizes the rates and
pressures of the wells. Notice that rate control is performed
in both the reservoir management and the RTO layers, often
with fairly different operational strategies. While in reservoir
management the focus is to maintain the reservoir pressure
and improving the overall recovery factor, the RTO layer acts
greedily, prioritizing short-term gains often ignoring effects
on the long-term objective.

A. Reservoir management: long-term optimization

The oil-water fluid flow in the reservoir can be described
with a set of differential equations based on the mass-
conservation principle, the Darcy law, and the capillary
pressure principle [10]. After the discretization in time and
space, the pressure of oil poil,j,k and the water saturation
Swater,j,k typically suffice to describe the conditions in each
grid block j ∈ G at time step k ∈ K. The flows through the
wells are a boundary condition for two-phase fluid flow in
porous media, with qp,i,k denoting the flow rate of phase p
in well i ∈ Nw, and pbh,i,k being its Bottom-Hole Pressure
(BHP) at time step k. A state space model can be utilized to
formulate the aforementioned set of equations:

xj,k = (poil,j,k, Swater,j,k),∀j ∈ G, (1a)
vi,k = (qp,i,k, pbh,i,k), ∀i ∈ Nw, (1b)

where the states xk are the pressure of oil and water
saturation in the grid blocks, and the algebraic variables vk
are the flows and pressures in the wells. The control vector
uk contains one variable of vk per well which are used as a
setpoint whereas the remaining variables in vk are calculated
(cf. (2c)). Notice that, while the algebraic vector vk has the
length of the same magnitude of the number of wells, the
state vector xk have the same magnitude of the number of
grid blocks in G, which might range from thousands to a
few million. The implicit equations to be solved at each
simulation step are:

0 = R(xk−1, xk, vk), (2a)
0 = V (xk, vk), (2b)
0 = B(vk, uk), (2c)

where R(·) represents the fluid flow in the reservoir, V (·)
maps the reservoir states and the well algebraic variables,
and B(·) are the relationship between the setpoints and the
algebraic variables, see [10] for more details.

The long-term rate control problem can be formulated
as the maximization of the undiscounted Net Present Value
(NPV):

N∑
k=1

tk

 ∑
i∈Nw,prod

(qo,i,kro − qw,i,krw)−
∑

i∈Nw,inj

(qw,i,kri)

 (3)



subject to the implicit system of equations (2) and the well
control bounds:

ulb,i,k ≤ ui,k ≤ uub,i,k, ∀i ∈ Nw, k ∈ K, (4)

where Nw,prod and Nw,inj are the sets of production and
injection wells, respectively, with Nw := Nw,prod ∪ Nw,inj.
The flow rates qo,i,k and qw,i,k are part of the algebraic
variables vi,k of well i ∈ Nw. Further, the oil price, and
the water production and injection costs are denoted by ro,
rw and ri, respectively. Finally, the tk is the step length.

B. RTO: short-term optimization

In a shorter time-scale, rate control consists in determining
well controls and platform settings that optimize the daily
or weekly production. In this case, since the dynamics in
the reservoir are considerably slower than in the gathering
network, it is common to assume the reservoir at steady-
state, and disregard the long-term effects of current actions
[11]–[14]. Thus, the system of difference equations (2a) is
replaced with a static curve known as the Inflow Performance
Relationship (IPR), which describes the relationship between
the well BHP and its flow rates, and needs to be adjusted
routinely to match field measurements [15]. The short-term
rate control problem in a given time step k can be formulated
as follows:

min
uk

−
∑

i∈Nw,prod

(q̂o,i,k+1ro − q̂w,i,k+1rw) (5a)

s.t. q̂l,i,k+1 = ai,kui,k + bi,k, ∀i ∈ Nw,prod, (5b)
q̂w,i,k+1 = q̂l,i,k+1γi,k, ∀i ∈ Nw,prod, (5c)
q̂o,i,k+1 = q̂l,i,k+1(1− γi,k), ∀i ∈ Nw,prod, (5d)

∆P̂k+1 = h(uk, q̂l,k+1) ≥ 0, (5e)
ulb,i,k ≤ ui,k ≤ uub,i,k, ∀i ∈ Nw,prod, (5f)

where the control ui,k is the BHP and q̂l,i,k+1, q̂w,i,k+1, and
q̂o,i,k+1 are the flow rates of well i obtained with a linear
IPR with coefficients ai,k and bi,k. The IPR can be assumed
linear because there is no gas being produced at reservoir
conditions. The parameter γi,k is the proportion of water in
the liquid flow rate, also known as water cut. Further, the
lower bounds ulb,i,k are typically defined as the pressure at
the inlet of the topside facilities, and the upper bounds uub,i,k
are the minimum bottom-hole pressure given as reservoir
boundary conditions. In practice, this is a safe margin to
avoid the injection of oil into the reservoir. Each well has a
valve at the top, called choke, which can adjust the rates to
ensure feasibility with respect to the network infrastructure.
The pressure drops over the chokes ∆P̂i,k+1, ∀i ∈ Nw,prod

are calculated by a network simulation procedure, here
denoted by h(uk, q̂l,k+1), and must be positive such that the
chokes do not become virtual pumps.

C. Long-term vs. short-term optimization

The rate control of reservoirs in the long-term is often
performed in a resolution of a couple of months to a year,
meaning that the same settings should be kept at a constant
value for a long time. A review of methods for long-term

production optimization may be found in [16]. In practice,
such controls are typically changed every week, daily or
even several times a day on a platform. Further, because
many constraints are ignored while performing long-term
rate control planning, these controls may not be feasible
with respect to the gathering facilities. Among the attempts
to overcome this issue is a framework to handle output
constraints using a multiple shooting paradigm [17], and a
further extension to handle network constraints [18].

While it is common to treat RTO and reservoir manage-
ment separately, the limitations of standalone approaches are
evident: in the long-term, a coarse solution is obtained at a
high computational cost, while the short-term solutions are
greedy and disregard long-term effects of current actions.
We propose an optimization procedure that considers both
short- and long-term gains while keeping the computational
effort low, thereby enabling the use of the proposed method
in real-world decision-making workflows.

III. OPTIMAL CONTROL PROBLEMS WITH FAST
AND SLOW DYNAMICS

In this section, a mathematical formulation of the problem
is presented followed by two fairly standard approaches to
tackle it. A conceptual formulation of an optimal control
problem with fast and slow dynamics is given below:

min
u(·)

∫ tf

t0

αLs
c(x(t), z(t), u(t))

+(1− α)Ll
c(x(t), z(t), u(t)) dt (6a)

s.t. ẋ(t) = fc(x(t), z(t), u(t)), ∀t ∈ [t0, tf ], (6b)
ż(t) = gc(x(t), z(t), u(t)), ∀t ∈ [t0, tf ], (6c)

0 ≤ hc(x(t), z(t), u(t)), ∀t ∈ [t0, tf ], (6d)

where Ls
c and Ll

c are the possibly conflicting economical
objectives for the short-term and long-term perspective,
respectively, fc(·) and x represent the dynamics and states
of the system with slow dynamics, respectively, while gc(·)
and z are the equivalent for the system with fast dynamics.
Equation (6d) are the path constraints. The decision variables
are the control inputs u(t) ∀t ∈ [t0, tf ], and the objective
function is given as the integral in (6a) with α ∈ [0, 1].

In this paper we focus on a modified version of (6) in
which the fast dynamics are seen at steady-state conditions,
i.e., ż(t) = 0. This assumption is made because we assume
the slow dynamics to be much slower than the fast dynamics
such that the transients of the fast dynamics system do
not affect the integrated system. Thus, the fast dynamics
are replaced with algebraic equations (cf. (7c) below). The
resulting formulation can be written in discrete time domain
as follows:

min
u

∑
∀k∈K

tk
[
αLs(xk+1, uk) + (1− α)Ll(xk+1, uk)

]
(7a)

s.t. xk+1 = f(xk, uk), ∀k ∈ K, (7b)
0 = g(xk, uk), ∀k ∈ K, (7c)
0 ≤ h(xk, uk), ∀k ∈ K, (7d)



where K := [0, 1, . . . , N − 1] is the set of time steps.
The functions in (7) are the discrete versions of the same
functions in (6). The long-term rate control problem, given
in the motivating example, in combination with the network
gathering constraints in (5e) would be an example of (7)
if we weigh the two objective functions (3) and (5a). Note
that variables with subscript k denote (in general) vector-
valued quantities corresponding to the time instant k. The
same variable without the subscript will be a matrix, e.g.,
u = [u0, u1, . . . , uN−1] and x = [x1, x2, . . . , xN ]. The
control i at the time step k is denoted ui,k whereas uk
indicates a vector of all these controls.

A. Solving the optimal control problem

A common way to solve the optimal control problem (6)
is by a direct transcription method such as Multiple Shooting
(MS) or Single Shooting (SS) [19]. However, these may run
into computational limitations as the complexity is typically
cubic in state- and input dimension, and time horizon.

B. Solving a sequence of quasi steady-state optimization
problems

To circumvent the computational issues of solving the
problem as a large dynamic optimization problem, one
alternative is to decompose it into smaller and separate sub-
problems, one for each time step k, such that the integrated
state from step k becomes the initial state for step k + 1.
The formulation of an individual subproblem at time step k
resembles an RTO problem, and is given by:

min
uk

Ls(xk+1, uk) (8a)

s.t. xk+1 = f(xk, uk), (8b)
0 = g(xk+1, uk), (8c)
0 ≤ h(xk+1, uk). (8d)

Each subproblem (8) is a quasi steady-state optimization
problem since the fast dynamics are assumed to be steady-
state whereas the slow dynamics is integrated one step ahead.
Notice that, if possible, it is only necessary to integrate the
states that are needed to calculate the constraints and the
objective function while solving the RTO. In the subproblem
(5) in the motivating example, we use a linear approximation
of the integration.

This approach greedily solves a sequence of quasi steady-
state problems such that the optimized variables are purely
based upon what is the best action in the current step. In other
words, it is expected that the final value of (7a) will be worse
than the one from a direct optimal control approach. On the
other hand, the greedy strategy is computationally tractable
since each subproblem is solved individually. As a result
of each step being treated separately, this strategy avoids
running into dimensionality issues due to an increase in the
number of control steps. Thus, the computational bottleneck
for this method can be taken as the time it takes to solve a
single instance of (8).

IV. LOOKAHEAD REAL TIME OPTIMIZATION

The greedy strategy is efficient but might yield consider-
able losses in the long-term objective in comparison to the
direct optimal control solution. The latter, on the other hand,
might become computationally infeasible for a fine resolution
in the discretization scheme. We propose a methodology that
extends the greedy approach with a lookahead strategy in
order to improve the cumulative objective (7a). The elements
of the methodology and an algorithm with the solution
method are provided in what follows.

A. The Predictor

A key ingredient of the methodology is the predictor. It is
used to predict the impact of changing the current controls,
uk, on the final value of the long-term objective,

∑
Ll(·),

in (7a):

P (uk; k,N, xk, u
init), (9)

where N is the total amount of time steps. The last parameter,
uinit, is a matrix containing an initial guess for the optimal
controls over the whole time period k ∈ K. This is needed
since it is required to simulate the slow dynamics from step
k to N to find the impact of changing uk. For simplicity,
the size of uinit is fixed. The predictor is a scalar function.

As an example of a predictor, which will be used in
this work, consider a linear predictor which can be used
to estimate the impact of changing uk on the long-term
objective, Ll(·), in (7a). The linear predictor can be obtained
by perturbing uk, as described in Algorithm 1.

Algorithm 1 Linear Predictor
Require: xk, uinit, ek.
Ensure: xk, uinit are feasible w.r.t. (7b)-(7d).

1: for i← 1, 2, . . . , nu do
2: ucopy ← uinit

3: ucopy
i,k ← ucopy

i,k + ei,k

4: ∆̂i,k ←
I(xk, u

copy, k,N)− I(xk, u
init, k,N)

ei,k
5: end for
6: P (uk; k,N, xk, u

init)← (uk − uinit
k )T ∆̂k

The perturbation vector ek has the same size of the control
vector uk. To calculate the impact of changing one element
in uk, the slow dynamics are simulated from xk to xN . This
requires the use of an initial guess containing the controls for
the whole horizon, uinit, for the matrix u. We assume here
that this guess is feasible with respect to all the constraints in
(7). The notation uinit

i,k denotes the element i of the controls
at step k of the initial guess uinit. Further, the function
I(xk, u, k,N) =

∑N−1
i=k Ll(xi+1, ui) where the future states

of the slow dynamics are obtained by integration.

B. Conflicting objectives

The predictor consists of an estimate of how the value of
the long-term objective changes with respect to the current



control actions, while the short-term objective prioritizes
immediate profit. To deal with these possibly conflicting
objectives, we propose a two-stage optimization approach.
The first stage consists of optimizing the short-term objec-
tives by solving the quasi steady-state RTO (8). We denote
the integrated state and optimized control actions by x′k+1

and u′k. The second stage is performed with the lookahead,
i.e., using the predictor P (uk; k,N, xk, u

init), but allowing
only a certain deviation from the objective function value
obtained with the RTO. The second optimization stage can
be formulated as:

min
uk

P (uk; k,N, xk, u
init) (10a)

s.t. xk+1 = f(xk, uk), (10b)
0 = g(xk+1, uk), (10c)
0 ≤ h(xk, xk+1, uk), (10d)

Ls(xk+1, uk) ≤ βLs(x′k+1, u
′
k), (10e)

where the additional constraint (10e) imposes a limit on the
deviation from the first-stage RTO objective Ls(x′k+1u

′
k).

Note that Ls(x′k+1u
′
k) is assumed to be negative. The

parameter β ∈ [0, 1] determines how much the short-term
objective function Ls(·) may worsen, e.g., β = 0.9 implies
an acceptable worsening of 10%. The objective function in
(10a) is the predictor replacing the first stage RTO objective.

In a given time step k, the solution obtained at the first
stage RTO (8) is optimal with respect to the objective
(8a). Thus, the solution obtained with the Lookahead RTO
(LRTO) is expected to worsen the instantaneous objective
in exchange for a potential improvement in the long-term
objective

∑
Ll(·) in (7a). An alternative to solve the two-

stage optimization problem is to combine the two, possi-
bly conflicting, objective functions into one by introducing
weights. However, by doing so, the guarantee given by the
parameter β would be lost. This guarantee is of interest
because it limits the risk taken by reducing the near future
objectives. This risk reflects that it is likely that the models
used in optimization of Ls(x′k+1u

′
k) are more certain than

those used for calculation of the predictor (9).

C. The algorithm

The building blocks of the proposed methodology are
put together in a two-stage optimization method described
in Algorithm 2. For a given initial state x0 and nominal
path uinit that are feasible with respect to the slow dynamics
system (8b), the algorithm first solves the RTO to obtain the
greedy solution u′k. Then a predictor is calculated and used in
the second stage optimization to obtain the current optimized
control u∗k. The calculated control is applied to the plant (or
simulator) to obtain the next state. The process is repeated
until the end of the control interval. Notice that Lookahead
RTO is defined as the procedure performed at lines 2 to 4
of Algorithm 2.

Algorithm 2 The workflow of Lookahead RTO
Require: x0, u0.
Ensure: x0, u0 are feasible w.r.t. (8b).

1: for k ← 0, 1, . . . , N − 1 do
2: x′k+1, u

′
k ← Solve RTO in (8).

3: Obtain the predictor, (9).
4: u∗k ← Solve modified RTO in (10) with x′k+1, u

′
k.

5: xk+1 ← Apply u∗k to the plant.
6: end for

V. SIMULATION ANALYSIS

The Lookahead RTO method is assessed in the rate control
optimization problem described in Section II. We consider
an oil production system consisting of an oil-water reservoir,
a production gathering network, and the topside facilities.
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Fig. 3. Illustration of the reservoir model.

A. The simulator setup

The reservoir model is an adapted case instance from
Roysem [20], which is based on the SPE1 benchmark, and
implemented in the Matlab Reservoir Simulation Toolbox
2019a [21]. As illustrated in Fig. 3, it consists of a Cartesian
three-dimensional box, split in 1200 regular grid blocks
being 20×10×6 in x, y, and z coordinates, respectively. Each
block is 60 meters long, 60 meters wide and 3 meters high.
The fluid utilized is the incompressible black-oil model, and
the initial oil pressure poil,i,0 is set to 200 bar, while the water
saturation Swater,i,0 is set to 0.15 in all grid blocks i ∈ G. The
field has 5 production wells and 2 water injectors, while its
life time is taken as 10 years of 360 days, with time steps of
30 days, resulting in 120 time steps. We chose such a coarse
resolution to maintain the problem computationally feasible
for the aforementioned dynamic optimization approach.

The gathering network has 5 wells producing to a common
manifold at the inlet of the topside facilities. Each producer
is equipped with a choke at the top of the well, i.e. the
well-head, which allows the regulation of the well flow. The
set of pipelines transporting the fluids are divided into the
production tubings and the flowlines. The tubings are pipes in
the well bore through which the reservoir fluids are produced.
The tubings of all wells have the same features, a length
of 250 meters, diameter of 76 millimeters, inclination of 90
degrees, i.e. they are vertical. The flowlines are the pipes that
take the fluids from wells to the platform. Each well has a
separate flowline with the same features, a total length of
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Fig. 4. Different control strategies.

1000 meters, diameter of 240 millimeters, and an inclination
angle of 55 degrees. The downstream boundary condition of
the network is a constant pressure of 5 bar at the inlet of the
processing facilities.

The fluid flow in the gathering network is modeled and
simulated with a network solver developed in [18]. The
pressure drops are calculated using the framework for nodal
analysis in [22], which consists of several correlations to
compute fluid properties and pressure-drop derivatives. The
calculations are performed by an integrator that utilizes
an interface to the ODE solver CVODES, which is part
of Suite of Nonlinear and Differential/Algebraic Equation
Solver (Sundials), version 2.6.2 [23].

The long-term objective given in (3) has the parameters
ro, rw and ri set to 60, 10 and 10 USD/stb, respectively. We
chose α = 1 and Ls(·) = Ll(·) in (7a) such that the stage
costs of LRTO, RTO and the dynamic optimization method
remain the same. Note that the objectives are still conflicting,
due to the different horizons. This selection implies that the
injectors are not a part of the decision variables. The injection
rates of wells “i1” and “i2” are set to 302.0778 m3/d and
88.7446 m3/d, respectively. The IPRs for the wells which
are needed for the production optimization, as explained in
Section II, are identified by perturbation of the control inputs
by -10 bar. This way we can find a linear approximation of
what the flows will be at step k+1 given a control action uk.
The IPRs are reconstructed at each iteration of Algorithm 2.
The separator pressure is used as the lower bound for the

BHPs of the wells in all time steps. The upper bound for
the BHP for each well is set to 99% of the minimum value
of the pressures in the surrounding grid blocks. Just like the
IPRs, these values will be updated at each iteration. Ideally,
the upper bounds should be made for the state at k+1, but to
avoid having to add a nonlinear constraint, the upper bound
is created by first integrating along the nominal path for one
step and then use this state to determine the upper bound.
The reservoir pressure is a part of the slow dynamics, and
thus this approximation is considered justified.

The second stage optimization problem for this experi-
ment, solved at step 4 of Algorithm 2, will be similar to the
one solved at the first stage, which is given the motivating
example (5), but with the two following changes. The first
is the additional constraint

−
∑
i∈Nw

(q̂o,i,k+1ro − q̂w,i,k+1rw) ≤ βL(q̂′o,k+1, q̂
′
w,k+1)

with β = 0.75. The second change is that the objective func-
tion is replaced by the linear predictor given in Algorithm
1:

P (uk; k,N, xk, u
init) = (uk − uinit

k )T ∆̂k.

A small modification was done to Algorithm 2. In addition
to applying u∗k to the plant, it was also copied into uinit

k+1. This
change was done due to the assumption that the controls
should not aggressively change from one step to another.
This would provide a better linearization point for the linear
predictor and the IPRs.



B. Results

Four different strategies are compared in the simulation
analysis. In addition to the methods Greedy RTO and Looka-
head RTO addressed in the paper, two different strategies ob-
tained by a multiple shooting framework [18] are presented.
The first, named DRTO, is configured to have a 30-day step
size. In the second trajectory each well will keep the same
control for 10 years. This trajectory is used as an initial guess
for the other strategies and is named Initial guess.

The quality of the prediction obtained with the linear
predictor described in Algorithm 1, with a perturbation size
of 1.5 bar, is measured as the ratio of the actual change to the
predicted change, which means that a value of 1 indicates a
perfect prediction. Some characteristics of the quality of the
linear predictor are given in Tab. I. The predictor performed
well on average, which justifies its choice as the predictor
for the experiments.

TABLE I
MEASUREMENTS OF THE QUALITY OF THE LINEAR PREDICTOR.

Min Max Mean RMSE
-2.34 3.70 1.01 0.47

The different trajectories for the controls for the four
strategies are shown in Fig. 4. The controls in the Greedy
RTO case are all changing smoothly. This is because the only
constraint is that the pressure loss over the choke has to be
greater than zero and the wells still produce a good amount of
oil at the end, and thus qo,i,k+1ro ≥ qw,i,k+1rw throughout
the 10 year period. This implies that it is most valuable
to simply produce as much as possible as the production
network allows at all times. If ∆P = 0, then maximum flow
rate is achieved. At the very end of the simulation we can
see that there is a large jump in the control for both well 2
and well 5 for the Lookahead RTO strategy, this is due to
the fact that the sign of the linear predictor changes and the
greedy strategy aligns with the predictor. Phrased differently,
the short-term and long-term objectives are aligned.

The values of the long-term goal for the different strategies
may be seen in Fig. 5. We can see, not unexpectedly, that the
Greedy RTO strategy gives a higher income in the beginning.
Around day 1000, the Lookahead RTO takes the lead and
remains most profitable until around day 2600. From this
point forward, the DRTO strategy is the best. The two most
interesting comparisons are the two RTO approaches, and
the Lookahead RTO vs. DRTO. The solution obtained with
the Lookahead RTO method is 7.1 % (or 16.3 million USD)
better NPV than the greedy RTO. When compared to DRTO,
the Lookahead RTO method achieved a solution that is only
0.4% (or 1.1 million USD) lower in terms of NPV. Although
the original objective of Lookahead RTO was to improve
the greedy strategy, which is similar to daily routines in real
world platforms, it also performed almost as well as DRTO.

To illustrate the differences in terms of production
achieved by the different methods, the accumulated flows of
oil and water are plotted in Fig. 6. The Greedy RTO approach
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produces the least oil and most water. The Lookahead
RTO and the DRTO approaches produces almost identical
amounts of water throughout the entire horizon, implying
that the shape of the NPV curves and accumulated oil flow
curves will be similar due to (3). This means that, with the
lookahead strategy, it is possible to avoid the excessive water
production that the greedy method causes, while maintaining
a low computational effort.

The solving time for the most computationally heavy
iteration of the lookahead method was less than 1 minute,
while the DRTO took around 3.5 hours. Keep in mind that
we are using a toy reservoir with a long step size. The
computational efficiency of the lookahead method allows its
use in a RTO fashion in daily operations, while, in a similar
manner, using the multiple shooting approach in a Model



Predictive Control fashion would probably not be reasonable.
Further, the entire trajectory for the Lookahead RTO in the
figures took less than 1 hour to compute.

VI. DISCUSSION

The suggested methodology is computationally inexpen-
sive because it only uses the simulator of the slow dynamics
to create the predictors and to evolve in time. Since the
simulator is not embedded into the smaller optimization
problems, the method does not inherit its computational
complexity and the problem dimensionality is kept low. This
strength enables the use of Lookahead RTO in similar fashion
to the standard RTO.

These days it is becoming more common to have easily
available aggregated plant data. The LRTO may incorporate
such information in the same manner as RTO. For example,
if we gather data and new knowledge about the system, we
may update the models in between iterations of Algorithm 2.
Further, the uinit trajectory may also be updated if we obtain
a better model for the slow dynamics.

The β parameter indicates how much of a worsening of
the first stage objective function is accepted. It could also be
tuned based upon how much we trust the model for the slow
dynamics, or the projected oil price. If the slow dynamics are
highly uncertain, then this parameter could be increased. This
parameter can also be used in another way. Assume we have
a good model for the slow dynamics. It would make sense to
allow for a larger deviation in the beginning, because there is
less future to consider when the end is getting closer. In this
sense, the β could be gradually increased as time passes.
This would result in a more greedy approach towards the
end.

One issue one might run into when using Algorithm
2 is infeasibility in the slow dynamics. The initial guess,
uinit, is feasible. However, after solving (10) we change
u∗k (6= uinit

k ). The fact that uinit = [uinit
0 , uinit

1 , . . . , uinit
N−1] is

feasible does not imply feasibility of [u∗0, u
init
1 , . . . , uinit

N−1].
This could perhaps be solved by, e.g., by running the multiple
shooting method again with a coarser resolution such that the
infeasibility is avoided. Note that this optimization should
happen after one has applied u∗k to the plant, but before a
new iteration of Algorithm 2 is started.

A consequence of solving the optimal control problem in
(7) as a sequence of smaller optimization problems, instead
of one larger problem, is that the predictor, which is based
upon a guess of the future control actions, will not be perfect
unless this guess is followed.

VII. CONCLUSIONS

In the simulation study, it was shown that including the
long-term effects into the short-term decision making process
was valuable. The existing methods in literature, to optimize
systems with both fast and slow dynamics, may suffer from
the computational requirements due to the dimensionality.
Disregarding the long-term effects gives rise to a method
that is fast but non-optimal in the long run. The suggested
methodology combines the advantages of the traditional real

time optimization with a lookahead strategy to improve
the long-term goal. The simulation study shows promising
results for this novel methodology.
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