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a b s t r a c t 

The effect of self-contacting surface defects generated by largely compressing metals on the ductile-to- 

brittle transition observed in metallic structures is investigated. In order to analyse such an effect, a finite 

element model of a half-space plane-strain material block with an imperfection was subjected to different 

levels of compression followed by reverse tensile straining. Experimentally validated associative J 2 and 

porous plasticity models were used to describe the mechanical response of the pipeline steel employed as 

a baseline material for this investigation. Both models predicted onset of creasing at compressive strains 

of around 70%. To ascertain whether the creases created large and sharp enough defects to trigger the 

ductile-to-brittle transition during the tensile straining phase, a bifurcation analysis implemented within 

a user material subroutine was used as fracture initiation indicator. This confirmed that at compressive 

strains above 70% the self-contact defect acted as a crack during the tensile straining phase. 

© 2020 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t  

i  

E  

a  

m  

s  

t  

c  

t  

s  

t  

d

 

t  

b  

s  

r  

s  

t  

h  
1. Introduction 

Wrinkles can be found on the surface of largely compressed ar-

eas of metallic materials such as the compressive side of compo-

nents subjected to bending actions. These surface instabilities can

be observed in structural elements that are of interest for the au-

tomotive and offshore industries, such as bent tubes or pipes, pres-

sure vessels or die formed sheet metal pieces. Here, wrinkles are

understood as undulations or surface roughness that might set in

due to large straining in metallic materials. Typically, they present

distinct geometrical features that are periodically repeated on the

surface and they are dimension-wise significantly smaller than any

of the dimensions that define the rest of the solid. They fold and

self-contact when the structural elements are increasingly strained

remotely. An example of such wrinkles can be observed in Fig. 1 ,

which shows an optical micrography obtained from the compres-

sion side of a quasi-static three-point pipe bending test conducted

on X65 steel ( Kristoffersen et al. (2016b) ). The details of the spec-

imen that the micrograph was taken from and the testing condi-

tions are described in Section 3.2 . The formation of instabilities on
∗ Corresponding author. 
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he compressive side or “concave” part of solids subjected to bend-

ng loads was already pointed out by Triantafyllidis et al. (1982) .

ventually, the self-contact grows unsteadily evolving into a crease,

 specific type of singularity. Therefore, the onset of a crease for-

ation can be detected when the self-contact length grows un-

teadily. This phenomenon by itself may not pose any threat to

he structural integrity of the solid. However, the formation of a

rease can develop into a surface crack that might lead to catas-

rophic failure when unloading or further reverse straining such

olid. Hence, this phenomenon is important to consider in indus-

rial applications when surface imperfections such as wrinkles are

etected. 

The onset of wrinkling as a surface instability when elas-

omeric materials are compressed is a phenomenon that has

een previously studied ( Gent and Cho (1999) ; Cao and Hutchin-

on (2012a) ; Lihua (2014) ). Similar studies on bi-layered solids

epresenting artificial substrate-film systems ( Cao and Hutchin-

on (2012b) ; Budday et al. (2017) ) or biological tissues such as

he mucosa–submucosa systems ( Li et al. (2011a) ; Li et al. (2011b) )

ave also been performed. The development of surface instabilities

as also been studied for metallic materials. Instability creation

n traction-free surfaces was investigated numerically using half-

pace unit cell finite element (FE) models that employed a smooth

nd corner-type ( Christoffersen and Hutchinson (1979) ) J 2 plastic-
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Compressive side of the same three-point pipe bending test performed on 

X65 steel (reproduced from Kristoffersen (2014) ). 
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ty by Hutchinson and Tvergaard (1980) . Using a similar unit cell

odel, Legarth and Richelsen (2006) studied the effect of the plas-

ic flow, and smooth isotropic and anisotropic yield surfaces on the

urface instability formation. In this investigation, the wrinkle or

urface instability formation is not the main subject of study and

ill therefore not be covered. However, the readers are referred to

Crease formation has been widely studied in soft elastomers

 Mora et al. (2011) ; Hohlfeld and Mahadevan (2012) ), biological

aterials such as tissues ( Jin et al. (2011) ; Stewart et al. (2016) )

nd hydrogels ( Trujillo et al. (2008) ; Hong et al. (2009) ;

oon et al. (2010) ) amongst others. However, there is not

uch literature devoted to crease formation in metallic materials

 Yang et al. (2019) ). Based on previous ideas that Cao and Hutchin-

on (2012b) or Hohlfeld and Mahadevan (2012) employed for dif-

erent materials, Yang et al. (2019) performed FE simulations on a

olid plane strain block with J 2 plasticity and linear work hard-

ning that had an artificial surface defect orders of magnitude

maller than the block dimensions. According to this recent and

nique study of crease formation in metals, the onset of creasing

as strongly influenced by the plasticity of the material, retarding

ts formation. More specifically, they observed that for larger val-

es of E t / E , being E and E t the elastic and tangent linear moduli

espectively, smaller compressive strains were needed to generate

 crease in the material. However, the range of studied E t / E values,

rom 0.08 to 0.75, is far from real work hardening characteristics

f most metallic alloys. 

The objective of the present investigation is twofold: (i) to de-

ermine the critical strain for the onset of crease formation for

uctile solids and (ii) to assess if the formation of creases due

o the self-contact eventually transforms into a defect capable of

eading to a brittle catastrophic failure. This latter phenomenon

ill cause a ductile-to-brittle fracture transition due to surface de-

ects. X65 pipe steel, previously studied and characterised in detail

y Kristoffersen et al. (2013) ; Kristoffersen et al. (2014) , has been

sed as a base material for the present study. 

Inspired by the results from Yang et al. (2019) , FE simulations of

 plane-strain block with a surface imperfection subjected to dif-

erent levels of increasing compressive strains have been carried

ut with calibrated J 2 -based metal and porous plasticity models of

he X65 pipe steel to determine the critical strain for crease for-

ation. To ascertain if the folded self-contacting defects generated

n the crease formation process pose a threat for the structural in-

egrity of the solid, a reverse tensile strain has been prescribed in

he block and the stress state on the tip of the defect has been
nalysed. To further evaluate if the geometry of such a defect will

ventually produce a brittle failure, virtually behaving like a crack,

 strain localisation criterion has been implemented in the material

evel user subroutine of the porous plasticity model allowing the

etection of inhomogeneous strain states within a finite element.

ollowing Rice (1976) , and as indicated in Morin et al. (2018) ,

he implementation has been carried out performing a bifurcation

nalysis and getting the strain localisation indicator from the con-

ition of loss of ellipticity. For this particular material a critical

ompressive engineering strain of 70% was detected. Furthermore,

he study showed that for compressive strains above such critical

train, the lengths of the self-contacting defects generated in the

ompression phase were large enough to act like cracks causing

he material to fracture in a brittle manner during the tensile load-

ng. 

. Porous plasticity model 

.1. Constitutive equations 

The constitutive equations have been formulated using a coro-

ational formulation where we define the following transforma-

ions of the Cauchy stress and rate-of-deformation tensors, 

 = R 

T · σ · R and ̂

 D = R 

T · D · R (1) 

here � is an orthogonal tensor, i.e. � 

−1 = � 

T , that transforms

he tensor components between the fixed, global and a corota-

ional, local coordinate systems. The local material coordinate sys-

em evolves according to ˙ � = W · � , where W is the spin tensor

nd the rotation tensor has an initial value of � | t = 0 = I where

 I ) ij = δij is the second-order unit tensor. 

We assume the additive decomposition of the rate-of-

eformation tensor as: 

ˆ 
 = 

ˆ D 

e + 

ˆ D 

p (2) 

here ˆ D 

e and 

ˆ D 

p are the elastic and plastic parts of the corota-

ional rate-of-deformation tensor respectively. The rate form of the

inear elastic isotropic law is then defined as: 

˙ ˆ = 

ˆ C : ̂  D 

e = 

ˆ C : 
(̂ D − ̂ D 

p 
)

(3) 

eing ˆ C the symmetric fourth-order tensor that contains the shear

 and the bulk K moduli in the following form: 

ˆ 
 = 2 G I ′ + KI � I (4) 

ith G = E/ ( 2 + 2 ν) and K = E/ ( 3 − 6 ν) that contain the elastic

odulus E and the Poisson’s ratio ν . The symmetric fourth-order

eviatoric unit tensor, I ′ = I S − 1 / 3(I � I ) is defined with the sym-

etric fourth-order unit tensor, ( I S ) ijkl = 1 / 2(δik δjl + δil δjk ) and the

ensor ( I �I ) ijkl = δij δkl . The main advantage of choosing the coro-

ational formulation is that the stress rate ˙ ˆ σ is an objective tensor.

The function chosen to describe the plastic yielding of the

orous solid, first introduced by Gurson (1977) and later modified

y Tvergaard (1981) , is given by: [
ˆ σ, a 

]
= 

σ 2 

σ 2 
m 

+ 2 q 1 f cosh 

[ 
3 

2 

q 2 
σh 

σm 

] 
− 1 − q 2 1 f 

2 = 0 (5) 

here q 1 and q 2 are the so-called Tvergaard constants, σ =
 

3 / 2 ̂  σ′ : ˆ σ′ is the macroscopic von Mises stress, σh = tr [ ̂  σ] / 3 is

he hydrostatic stress, ˆ σ′ = ˆ σ − σh I is the deviatoric part of the

orotational Cauchy stress tensor, σ m 

is the flow stress of the ma-

rix material, and a = { ε p f } T is the vector that contains the inter-

al variables: the equivalent plastic strain ε̄ p and the void volume

raction f . The classical von Mises (or J 2 ) associative plasticity is re-

overed if the void volume fraction is zero and it does not evolve

ith any of the internal variables. 
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For the sake of simplicity, the matrix hardening is considered

isotropic and it is defined with the following law: 

σm 

[ ̄ε p ] = σ0 + B ̄ε n p + 

2 ∑ 

i =1 

Q i ( 1 − exp [ −C i ̄ε p ] ) (6)

where σ 0 is the yield stress, B and n are the constants of the

power-law hardening and Q 1 , C 1 , Q 2 , C 2 are the constants of the two-

term Voce work hardening law. 

The flow rule is associative, which leads to the following form

of the plastic corotational rate-of-deformation tensor, 

 D 

p = 

˙ λ
∂φ

∂ ̂  σ
= 

˙ λ̂ N (7)

where the flow vector N is calculated as: 

 N = 

∂φ

∂ ̂  σ
= 

3 

σ 2 
m 

ˆ σ ′ + 

q 1 q 2 f 

σm 

sinh 

[ 
3 

2 

q 2 
σh 

σm 

] 
I (8)

Note that due to its form, the flow vector can also be additively

decomposed into a deviatoric ( ̂  N 

′ ) and a volumetric ( ̂  N v ) part that

are directly related to the corresponding parts of the corotational

rate-of-deformation tensor such that, 

ˆ D 

p = 

ˆ D 

′ p + 

ˆ D 

p 
v = 

ˆ D 

′ p + 

1 

3 

ˆ D 

p 
v I = 

˙ λ
(

ˆ N 

′ + 

1 

3 

ˆ N v I 

)
(9)

Therefore, the deviatoric/volumetric split of the corotational

rate-of-deformation tensor is fully defined by: 

̂ N 

′ = dev 
[
N 

′ ] = 

3 

σ 2 
m 

ˆ σ ′ (10)

ˆ N v = tr 
[

ˆ N 

]
= 

3 q 1 q 2 f 

σm 

sinh 

[ 
3 

2 

q 2 
σh 

σm 

] 
(11)

The evolution of the hardening variables ˙ a is given by the hard-

ening moduli h = { h εh f } 
T as, 

˙ a = 

˙ λh (12)

Operating on the work conjugacy, i.e., 

ˆ σ : ̂  D 

p = ( 1 − f ) σm ̇

 ε p (13)

the evolution equation of the equivalent plastic strain as a function

of the plastic multiplier ˙ λ is obtained as, 

˙ ε p = 

˙ λh ε = 

˙ λ
ˆ σ : ̂  N 

( 1 − f ) σm 

being ε p = 

∫ 
˙ ε p dt (14)

The void volume fraction evolution is defined by combining

strain-based void nucleation ( ˙ f n ) and void growth ( ˙ f g ) terms. The

former is based on the rate of change of the equivalent plastic

strain, whereas the latter is related to the volumetric growth of

the plastic strain as: 

˙ f = 

˙ f n + 

˙ f g = 

˙ λh f = A n 
˙ ε̄ p + ( 1 − f ) ̂  D 

p 
v = 

˙ λ{ A n h ε + ( 1 − f ) N v } 
(15)

where A n is a material parameter. 

The loading/unloading conditions are stated in Kuhn-Tucker

form as: 

φ ≤ 0 , ˙ λ ≥ 0 , ˙ λφ = 0 (16)

From the consistency condition ( ˙ φ = 0 ) for plastic flow ( ̇ λ > 0 ),

the yield function is differentiated in terms of the corotational

Cauchy stress ˆ σ and the internal variables a , leading to the fol-

lowing non-linear equation in 

˙ λ, 

˙ φ = 

∂φ
: 

·
ˆ σ + 

∂φ · ˙ a = ̂

 N : ̂ C : ̂  D − ˙ λ̂ N : ̂ C : ̂  N + 

˙ λf a · h = 0 (17)

∂ ̂  σ ∂a 
here the components of f a = ∂φ/ ∂a = { φε φ f } T are: 

ε = 

∂φ
∂ ̄ε p 

= −
(

2 

σ̄ 2 

σ 3 
m 

+ 3 q 1 q 2 f 
σh 

σ 2 
m 

sinh 

[
3 
2 

q 2 
σh 

σm 

])
Bn ̄ε n −1 

p + 

2 ∑ 

i =1 

Q i C i exp [ −C i ̄ε p ] 

)
f = 

∂φ
∂ f 

= 2 q 1 cosh 

[
3 
2 

q 2 
σh 

σm 

]
− 2 q 2 1 f 

(18)

From eq. (17) we can explicitly obtain the plastic multiplier: 

˙ = 

̂ N : ̂ C : ̂  D ̂ N : ̂ C : ̂  N − f a · h 

(19)

Substituting eq. (19) in eq. (3) and operating we get: 

˙ ˆ = 

̂ C 

ep 
: ̂  D = 

̂ C : ̂  D − ˙ λ̂ C : ̂  N ⇒ 

̂ C 

ep = 

̂ C −
̂ P � ̂ P ̂ N : ̂ C : ̂  N − f a · h 

(20)

here ̂  P = 

̂ C : ̂  N = 2 G ̂

 N 

′ + K ̂

 N v I . This allows to define a direct rela-

ionship between the total rate-of-deformation and the rate of the

orotational Cauchy stress tensors given by the continuum tangent

odulus ̂ C 

ep 
. 

To express the rate constitutive equations in the fixed, global

oordinate system, the Jaumann rate of the Cauchy stress tensor
∇ is defined as: 

∇ = 

·
σ −W · σ + σ · W = R ·

·
ˆ σ ·R 

T (21)

The rate constitutive equations are then obtained in the form: 

· = C 

ep : D + W · σ − σ · W (22)

here the components of C 

ep in the fixed, global coordinate system

re expressed as: 

C 

ep 
)

ijkl 
= R im 

R jn R kp R lq 

(̂ C 

ep 
)

mnpq 
(23)

The constitutive model equations were implemented in their in-

remental form as a user material subroutine in the LS-DYNA non-

inear explicit time integration FE solver. 

In this study, we will consider strain localisation by loss of el-

ipticity as an indicator for material failure. The condition for a

ontinuous bifurcation in an elastic-plastic solid where a disconti-

uity of the velocity gradient field across a planar band with nor-

al n becomes possible, as illustrated in Fig. 2 (a), was derived by

ice (1976) and Rice and Rudnicki (1980) . Assuming plastic loading

oth outside and inside of the band, the condition for bifurcation

s given by 

et [ A ] = 0 (24)

here the acoustic tensor A is defined as 

 [ n ] = n · C 

ep · n + R (25)

ith 

 R = −n � ( n · σ) + ( n · σ) � n + ( n · σ · n ) I − σ (26)

This is a necessary condition for the loss of ellipticity. As

ointed out by Rudnicki and Rice (1975) we assume the planar

and normal to be contained in the plane defined by the maxi-

um and minimum principal stress directions e I and e III respec-

ively as shown in Fig. 2 (b), where the indices can be correlated

ith the principal stresses σ I ≥ σ II ≥ σ III . This allows to define

he normal with a single angle φ defined between the band nor-

al n φ and the maximum principal direction e I that can take val-

es from 0 ≤ ϕ ≤ π /2. To find the band normal with the condi-

ion min[det[ A [ n φ]]], an identical numerical procedure as that de-

ailed in Morin et al. (2018) is followed. Other approaches such

s the geometric close-form solutions proposed by Benallal and
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Fig. 2. Illustration of the planar band where all deformation is concentrated at onset of localisation causing non-homogeneous velocity gradient fields. 

Fig. 3. Sketch of the axisymmetric unit cell with J 2 plasticity matrix that contains an elastic particle (a) and the axisymmetric element with the porous plasticity model (b), 

both subjected to proportional loadings. 
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Table 1 

Strain hardening constants for the porous and von Mises 

plasticity models corresponding to the X65 pipe steel. 

Strain hardening 

Porous plasticity 

B [MPa] Q 1 [MPa] C 1 Q 2 [MPa] C 2 
0.00 130.00 26.46 350.00 0.87 

J 2 plasticity (after Kristoffersen et al. (2014) ) 

B [MPa] n Q 1 [MPa] Q 2 [MPa] 

410.8 0.4793 0.0 0.0 

K  

f  

t  

s  

c

 

r  

E

w

E

omi (1996) or Oliver and Huespe (2004) could be used to ob-

ain the band orientation. The bifurcation criterion has been im-

lemented together with the material model for porous media in

 user material subroutine in the LS-DYNA non-linear explicit time

ntegration FE solver. 

.2. Parameter identification 

The elastic properties, E = 208 GPa and ν = 0.3, and yield stress

0 = 465.5 MPa, were obtained from the mechanical tests on an

65 pipe steel reported in Kristoffersen et al. (2014) . The yield

unction parameter q 1 , was chosen to be q 1 = 1.5, a very widely

mployed constant in the literature based on Tvergaard (1981) . The

echanical response of a unit cell containing the relevant features

f the material was used to calibrate the remaining yield func-

ion constant q 2 , the two-term Voce isotropic hardening parame-

ers Q 1 , C 1 , Q 2 , C 2 ( B = 0), and the strain-based void nucleation coef-

cient A n . 

Taking advantage of the material symmetry allowed to model

nly half of an axisymmetric unit cell of initial height H 0 and ini-

ial radius R 0 that was composed by a linear elastic particle of

nitial radius r 0 and elastic modulus of E = 208 GPa embedded

n an elastic-plastic matrix (see Fig. 3 (a)) that was modelled us-

ng associative J plasticity with isotropic hardening calibrated in
2 
ristoffersen et al. (2016a) (see Table 1 ). The initial void volume

raction and size of the particles were measured and found out

o be f 0 = 2 r 3 
0 
/ ( 3 R 2 

0 
H 0 ) = 0 . 0 0 05 and r 0 = 25 μm, respectively, as

hown in Kristoffersen et al. (2016a) . Henceforth, the term f will

ontain the combined volume fraction of both void and particle. 

The cylindrical strain state that the unit cell is subjected to is

eflected in the form of the macroscopic logarithmic strain tensor:

 = E 1 ( e 1 � e 1 + e 3 � e 3 ) + E 2 e 2 � e 2 (27) 

here its components E 1 and E 2 are calculated as follow: 

 1 = ln 

[ 
R 

R 

] 
and E 2 = ln 

[ 
H 

H 

] 
(28) 
0 0 
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Fig. 4. Macroscopic equivalent stress-strain curves (in blue) and normalised com- 

bined void and particle volume fraction against macroscopic equivalent strain (in 

red) for triaxialities of T = [0.8, 1.0, 1.2, 1.5] and Lode angle parameter of L = −1. 

Dots indicate the results from the unit cell analysis, while the solid lines are the 

numerical simulations using the porous plasticity model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Normalised combined void and particle volume fraction against macroscopic 

equivalent strain with triaxialities of T = [ − 0.33, −0.50, −0.66, −0.80] and Lode 

angle parameter of L = + 1 . Symbols indicate the results from the unit cell analysis, 

while the solid lines with symbols correspond to the numerical simulations using 

the porous plasticity model. 
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Here, R = R 0 + u 1 and H = H 0 + u 2 are the deformed compo-

nents of the unit cell’s radius and height, respectively. The equiv-

alent macroscopic strain is defined with the macroscopic logarith-

mic strain tensor: 

Ē = 

√ 

2 

3 

E 

′ : E 

′ = 

2 

3 

| E 2 − E 1 | (29)

The macroscopic Cauchy stress tensor components are defined

as the work conjugates of their respective strain components giv-

ing the following tensor: 

� = �1 ( e 1 � e 1 + e 3 � e 3 ) + �2 e 2 � e 2 (30)

where its components are: 

�1 = 

P 1 
2 πRH 

and �2 = 

P 2 
πR 

2 
(31)

P 1 and P 2 are the tractions integrated over the planes with normals

e 1 and e 2 respectively. 

The macroscopic stress state of the axisymmetric unit cell is de-

fined by the macroscopic von Mises stress �̄, the stress triaxiality

T and the Lode angle parameter L with: 

�̄ = 

√ 

3 

2 

�′ : �′ = | �2 − �1 | , T = 

�h 

�̄

= 

2 �1 + �2 

3 | �2 − �1 | , L = 

2 �II − �I − �I I I 

�I − �I I I 

(32)

where L = −1 for axisymmetric tension ( �I = �2 , �II = �III = �1 )

and L = + 1 for axisymmetric compression

( �I = �II = �1 , �III = �2 ). 

The unit cell simulations were performed employing the

ABAQUS/Standard implicit time integration solver under

displacement-controlled boundary conditions, while values of

the macroscopic stress triaxiality and the Lode angle parameter

were prescribed. The methodology and procedure to perform such

simulations has been successfully used by other authors in the

past, e.g. Faleskog et al. (1998) , and more details about it can be

found in the work by Dæhli et al. (2016) . Unit cell simulations in

axisymmetric tension ( L = −1) were carried out for macroscopic

stress triaxialities of T = [0.8, 1.0, 1.2, 1.5] (see Fig. 4 ). Since

the parameter f is considered as the combined void and particle

volume fraction, henceforth referred to as the combined volume

fraction, it was of interest observing the response of the unit cell
nder stress states which could cause anomalous effects for the

ype of material model described in the previous section, i.e. the

bsence of voids collapsing. Therefore, unit cell simulations in

xisymmetric compression ( L = + 1) were performed for macro-

copic stress triaxialities of T = [ − 0.33, −0.50, −0.66, −0.80]. As

bserved in Fig. 5 , the combined volume fraction increases with

ncreasing macroscopic equivalent strain until a global maximum

as reached. This maximum varied depending on the triaxiality

mposed on the unit cell. After the maximum, it decreased to

lmost the initial combined volume fraction. 

To calibrate the constitutive model, single axisymmetric ele-

ent simulations with prescribed pressure boundary conditions

hat contained the porous plasticity material model described in

he Section 2.1 above were carried out using the LS-DYNA non-

inear explicit time integration FE solver as illustrated in Fig. 3 (b).

he initial combined volume fraction was set to f 0 = 0.0 0 05 as in

he unit cell simulations. The combined volume fraction evolution

urves (see Figs. 4 and 5 ) from all the unit cell simulations were

mployed as targets in an iterative domain-reduction scheme for

btaining the material constants using the LS-OPT software pack-

ge. As a result, a second yield function constant of q 2 = 0.92

nd a strain-based nucleation coefficient of A n = 9.13 ·10 −4 com-

ined with the strain hardening constants reported in Table 1 were

ound to give a more than reasonable fit as will be discussed sub-

equently. The strain-based nucleation was applied until a maxi-

um value of combined volume fraction of f = 0.001 was reached.

The numerical results are shown as solid lines in Figs. 4 and

 for the tensile ( L = −1) and compressive ( L = + 1) cases respec-

ively. The porous plasticity model results for the tensile loading

ere in good agreement for larger triaxialities, i.e. T equals 1.5, 1.2

nd 1.0, while the lowest triaxiality case deviated from the unit

ell results for macroscopic equivalent strains above 1.0. The simu-

ations performed for the compressive case shown in Fig. 5 are in

easonable agreement with the unit cell simulations, capturing the

eneral trend and, more importantly, avoiding the combined vol-

me fraction to deviate excessively from the initial value. However,

t should be emphasised that the void nucleation is a purely phe-

omenological artefact whose sole purpose is to avoid the com-
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Fig. 6. Geometry and dimensions in mm of the smooth (a) and notched (c) tensile specimens. Numerical simulations of axisymmetric smooth (c) and notched (d) tensile 

specimens loaded under quasi-static conditions employing J2 (red) and porous plasticity (blue) models calibrated for the X65 pipe steel compared against the experimental 

data (hollow black circles) from Kristoffersen et al. (2016a) . 
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ined volume fraction to deviate unreasonably from its initial value

nder compressive loads. 

. Model validation 

To check the predictive capabilities of the calibrated porous

lasticity model with the built-in bifurcation analysis, two types

f quasi-static tests were simulated: tensile tests on smooth and

otched specimens, and a three-point bending pipe test. For the

ake of comparison, all tests were also simulated employing a stan-

ard J 2 plasticity model with isotropic hardening. The material

onstants for this model are summarised in Table 1 , and the cali-

ration procedure is reported in Kristoffersen et al. (2014) . 

.1. Tensile tests 

In the tensile tests with specimen geometries shown in Fig. 6 (a)

nd (b), previously performed by Kristoffersen et al. (2016a) , the

rue axial stress σ and the true axial strain ε were obtained from:

= 

F 

π( d/ 2 ) 
2 

and ε = 2 ln 

[ 
D 

d 

] 
(33) 

here F is the force measured with the load cell, and D and d

re the initial and the minimum cross-section diameters measured

ith a laser-based measuring device. The readers are referred to

ristoffersen et al. (2016a) for additional details on the experi-

ents. 

Using the specimen symmetries, only half of the geome-

ries were discretised using 0.05 mm × 0.05 mm four-node

ingle-integration-point axisymmetric elements with stiffness- 

ased hourglass control. The experimentally measured velocities

ere prescribed on the nodes of one end, while the same de-

ree of freedom was constrained on the nodes of the opposite

nd. A mass scaled solution with a stable time increment that pro-

ided 10 5 increments over the total time was employed. The reac-

ion forces on these nodes and the minimum cross-section diame-

er were monitored to compute the axial true stress-strain curves

hown in Fig. 6 (c) and (d). 
The axial true stress-strain response of both specimens was ac-

urately described by both the J 2 and the porous plasticity mod-

ls as show in Fig. 6 (c) and (d). For both specimens, the bifur-

ation indicator predicted the onset of localisation to develop at

he element located in the centre of the minimum cross-section.

n Fig. 6 (c) and (d), a blue dot indicates the precise moment when

he bifurcation indicator first computed a negative det[ A ] for a cer-

ain band orientation. The predictions of the bifurcation indicator

re in very good agreement with the experiments, giving an excel-

ent estimation for the onset of material failure. 

.2. Three-point pipe bending test 

A quasi-static three-point bending test on a pipe with geome-

ry and dimension depicted in Fig. 7 (a) and reported as “Q2” by

ristoffersen et al. (2016b) was simulated to validate the porous

lasticity model at the component level. The force measurements

ere gathered from the load cell that the indenter was attached to,

hereas the displacement was obtained from the cross-head posi-

ion. The resulting force displacement curve is plotted in Fig. 7 (c). 

Only half of the component and the set-up was modelled mak-

ng use of the pipe symmetry as it can be seen in the FE model

hown in Fig. 7 (b). The geometry was discretised with eight-

ode single-integration-point elements with stiffness-based hour- 

lass control. The element size was progressively reduced, starting

rom the edges to the centre where a minimum element size of

round 0.5 mm × 0.5 mm × 0.5 mm was employed. The cylin-

rical supports and indenter were modelled as rigid bodies. A pre-

cribed constant velocity of 10 mm/min was imposed on the latter.

 mass scaled solution with a stable time increment that provided

 ·10 5 increments over the total time was employed. The forces

ere computed from the contact forces between the indenter and

he pipe, while the displacement was directly obtained from the

igid body movement of the indenter. The geometry of the spec-

men after being tested (see Fig. 7 (a)) was compared against the

umerical simulations showing a very good agreement. 

The force-displacement response from the numerical simula-

ions using the J and the porous plasticity models is compared
2 
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Fig. 7. (a) Geometry, dimensions in mm and testing conditions of the three-point pipe bending specimen (“Q2” from Kristoffersen et al. (2016b) ) as well as its indented 

geometry. (b) Finite element model for the three-point pipe bending test. (c) Numerical simulations of quasi-static three-point pipe bending tests employing J2 (red) and 

porous plasticity (blue) models calibrated for the X65 pipe steel compared against the experimental data (hollow black circles) from Kristoffersen et al. (2016b) . 
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against the experimental data in Fig. 7 (c). The predictions of both

models are in excellent agreement with the experimental force-

displacement curve. The bifurcation indicator did not predict any

onset of localisation for this particular test, which is in agreement

with the observations reported in Kristoffersen et al. (2016b) . How-

ever, it should be noted that the porous plasticity model was cali-

brated for an element size that corresponded to the tensile speci-

mens. Therefore, even if the simulations are in agreement with the

experimental observations, on must be cautious when analysing

the results from the numerical simulations. 

4. Finite element simulations of crease formation 

Based on the numerical analysis performed by

Yang et al. (2019) , FE simulations of a plane-strain material

block of dimensions 2 L × L with a symmetric quarter-circular

imperfection with radius R = L/ 10 0 0 as detailed in Fig. 8 (a) were

carried out. Employing the block’s symmetry, only half was discre-

tised with four-node reduced integration single-integration-point

plane strain elements with stiffness-based hourglass control. Six

elements were employed to discretise the contour of the artificial

defect. To simulate the contact with the other half of the speci-

men, a rigid wall with no friction was employed as the symmetry

plane. Since there are no experimental data to compare with, as a
rst approximation, the friction between contact surfaces was not

onsidered. A prescribed horizontal displacement u = u [ t ] was ap-

lied on the nodes located on the opposite edge to the symmetry

lane, whereas the vertical displacement was constrained on the

odes located on the bottom edge. The prescribed displacement

oundary conditions were obtained from assuming a constant

pplied velocity of v = L × 10 −3 [ m / s ] . The non-linear explicit time

ntegration FE analysis solver LS-DYNA was employed to perform

he numerical simulations. Mass scaled solutions with a stable

ime increment that required a minimum number of increments

f no less than 2 ·10 6 were used. 

The horizontal stretch λ = l/L was used to measure the applied

ngineering strain, e = λ − 1, and the logarithmic strain, ε = ln [ λ].

he reference configuration at t = 0 and the current configuration

t a time t of the symmetric FE model of the plane strain block are

epicted in Fig. 8 (b). 

To ensure that the numerical set-up was properly defined, a

 2 plasticity model with a yield stress of σy /E = 0 . 005 was as-

igned to the block of material, which was compressed for three

ases of bilinear work hardening with tangent moduli E t / E of

.1, 0.3 and 0.6. The normalised self-contact length a / L against

he applied engineering strain was compared to the results from

ang et al. (2019) in Fig. 9 . The numerical simulations per-

ormed with LS-DYNA applying the numerical set-up described
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Fig. 8. (a) Schematic illustration of a plane-strain material block of 2 L × L that 

contains a symmetric quarter-circular imperfection of radius R = L/ 10 0 0 on the top 

surface located at a distance L from the edges as shown in the detail. (b) Reference 

and current configurations of the symmetric half-block with an infinite rigid wall 

simulating the material self-contact. 

Table 2 

Tested specimen geometrical comparison between experiment (“Q2”) from 

Kristoffersen et al. (2016b) and the numerical simulations performed with J 2 
and Porous plasticity models. 

Measurements Experiment (“Q2”) J 2 plasticity Porous plasticity 

L [mm] 1042 1080.580 1080.550 

w [mm] 380 345.054 345.514 

d 1 [mm] 202 203.970 203.870 

d 2 [mm] 26 21.093 21.091 

α[ ◦] 31 31.850 32.250 
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Fig. 9. Normalised self-contact length a / L against engineering strain e for a J 2 plas- 

ticity material with σy /E = 0 . 005 . The hollow black points correspond to the results 

from Yang et al. (2019) and the red curves are obtained from the finite element sim- 

ulations performed with the current numerical set-up in LS-DYNA. The numbers on 

top of the curves indicate the E t / E values. 
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bove were in excellent agreement with the results reported in

ang et al. (2019) . 

From Fig. 9 , the critical strain e c that characterises the crease

ormation can be easily determined as the applied strain that

auses an unsteady growth of the self-contact length a . In other

ords, an abrupt increase in the self-contact length for a small in-

rease in compressive strain. Therefore, from this figure two obser-

ations can be made: first, metals with stronger work hardening

ill form creases with lower applied compressive strains; and sec-

nd, determining the critical strain in metals with weaker work

ardening becomes progressively more and more difficult due to

he lack of an abrupt transition between the stable and unstable

elf-contact growth. As an example, one can clearly observe the

ransition from stable to unstable self-contact growth in Fig. 9 for

he cases where E t / E is 0.6 and 0.3, where e c is –0.43 and –0.57

espectively. However, for E t / E equal to 0.1 it could be defined as a

iffuse critical strain ranging from –0.74 to –0.80. 

Table 2 . 

.1. Compression-tension reverse straining simulations 

To determine the critical strain e c , simulations of the previously

escribed block of material up to a minimum strain of –80% were

erformed for the X65 steel material. The simulations were carried
ut using the Gurson porous plasticity model with the strain lo-

alisation indicator described in the previous sections along with

he J 2 plasticity model for the sake of comparison. Four cases with

inimum strains of –80%, –70%, –60% and –50% were studied. Af-

er the minimum strain was reached, the sign of the velocity was

eversed and the blocks were strained under tension to analyse the

nfluence of the defect created by the self-contact. Along with the

orizontal stretch λ, the normalised reaction force per unit depth

 /( L σ 0 ), the normalised contact force per unit depth F rw 

/( L σ 0 ), the

ormalised self-contact length a / L , and the normalised major prin-

ipal stress at the imperfection tip σ I / σ 0 were monitored at all

imes. 

Recall that the bifurcation condition (det[ A ] = 0) is used as an

ndicator of fracture initiation. Therefore, when bifurcation is de-

ected we assume material fracture. These simulations will allow

redicting when the self-contact defects created during the com-

ression phase are catastrophic. However, there are certain limi-

ations in the models employed in the numerical simulations that

ill be further discussed. 

.2. Results and discussion 

Normalised reaction force per unit depth F /( L σ 0 ) against engi-

eering strain plots for minimum applied strains of –80%, –70%, –

0% and –50% before strain reversal are shown in Fig. 10 (a) and

b). Henceforth, unless stated otherwise, the plot with the red

urves on the left ( Fig. 10 (a)) corresponds to the FE simulations

arried out with the J 2 plasticity model and the blue curves on the

ight ( Fig. 10 (b)) correspond to those performed with the porous

lasticity model. Despite largely exceeding the yield stress even

or the lowest compressive strain (–50%), the combined volume

raction in the porous plasticity model during such a phase did

ot increase enough to soften the material behaviour. Although

urson-like models do not explicitly produce material softening

uring compression phases, the previously mentioned anomalous

ehaviour exhibited by the combined volume fraction for this par-

icular material could. The contact of the matrix material with
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Fig. 10. Normalised reaction and contact forces F and F rw respectively against the applied engineering strain e for J 2 plasticity in red (a-c, left) and for porous plasticity in 

blue (b-d, right). The hollow circles indicate the minimum applied engineering strain before it is reversed, and the solid blue circles signal localisation. 

Fig. 11. Normalised self-contact length a / L against the applied engineering strain e logarithmic strain ε (top axis, grey) for J 2 plasticity in red (a) and for porous plasticity in 

blue (b). The hollow circles indicate the minimum applied engineering strain before it is reversed, and the solid blue circles signal localisation. 
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Fig. 12. Normalised major principal stress σ I / σ 0 ( σ 0 = 465.5MPa) against the applied engineering strain e for J 2 plasticity in red (a) and for porous plasticity in blue (b). 

The hollow circles indicate the minimum applied engineering strain before it is reversed, and the solid blue circles signal localisation. 

Fig. 13. Zoomed details of results obtained with the porous plasticity model normalised major principal stress σ I / σ 0 against the applied engineering strain e plot for the 

cases with minimum applied strains of –80% (a), –70% (b), –60% (c) and –50% (d). 
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a  
he particle embedded in it caused the combined volume frac-

ion to increase with increasing compressive strains. However, fur-

her straining made this effect to fade, progressively converging

owards a behaviour represented by a typical Gurson-like model.

oth Fig. 10 (a) and (b) present virtually identical responses during

he compression phase. During the tensile phase, after the strain

as reversed, the solid block was unloaded and then loaded back

lastically until it plastified globally again. Further straining af-

er this point showed some softening in the global response of

he porous model. Interestingly, the localisation indicator predicted

racture initiation under global elastic loading for minimum ap-

lied strains of –80% and –70%, whereas for the minimum strain of

50% the fracture initiation was predicted above the global yield-

ng point. The fracture initiation for the case of –60% applied strain

as predicted in between the global elastic and plastic response of

he solid block. 

Normalised contact force per unit depth F rw 

/( L σ 0 ), that rep-

esents the self-contact force, against engineering strain plots for
inimum applied strains before strain reversal of –80%, –70%, –

0% and –50% are shown in Fig. 10 (c) and (d). These curves rep-

esent the self-contact behaviour of the defect, and as such, they

ere able to indicate the steady-unsteady transition of the self-

ontact growth. It is clearly observed in these plots how the self-

ontact force grew very rapidly for small increases in compres-

ive strains after 70%. Both models roughly predicted the same

alue. However, it was perhaps more difficult to clearly discern

he appropriate value for the J 2 plasticity ( Fig. 10 (c)), whereas the

orous plasticity model predicted a slight increase in the contact

orce with respect to the J 2 plasticity ( Fig. 10 (d)). This effect can

e mainly attributed to the void growth in the porous plasticity

odel. For all cases, as expected, the fracture initiation was pre-

icted after the self-contacting force ceased to exit, once the de-

ect started to open. In summary, these curves could also be used

o determine the critical strain for the onset of crease formation. 

Normalised self-contact length a / L against engineering strain

nd their translation into logarithmic strain are shown in Fig. 11 ,
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Fig. 14. Tensile straining phase image sequence until fracture initiation detection of the plane strain block FE simulation compressed at −70%. The top row contour plots 

show the normalised major principal stresses σ I / σ 0 , while the bottom row depicts binary contours of the failure indicator. 

Fig. 15. Evolution of the normalised major principal stress σ I / σ 0 and the combined 

volume fraction f gathered from the self-contacting defect tip during the tensile 

straining phase of the plane-strain block FE simulation compressed at −70%. The 

cross indicates that f = 1 / q 1 . 
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for minimum applied strains before strain reversal of –80%, –70%,

–60% and –50%. The same conclusions as those extracted from

the self-contact forces (see Fig. 10 (c) and (d)) can be drawn from

Fig. 11 (a) and (b). However, the latter figures exhibited a slightly

cleaner transition from steady to unsteady self-contact growth, be-

ing sharper for the porous plasticity model. From these, a critical

strain of around e c ≈ −70% was estimated for both models. Frac-

ture initiation was always detected in the tension phase after load

reversal, clearly visible for the case of –80% of strain. However, for

the rest of the cases the maximum and fracture self-contact length

are very similar. For reference, Fig. 11 (a) and (b) also show the self-

contact length against the logarithmic strain, which can be more
epresentative of the cases where a more local strain is measured

uch as diameter increase/reduction in round bars or local exten-

ometers in flat specimens. 

Normalised major principal stress σ I / σ 0 against engineering

train plots for both models are shown in Fig. 12 (a) and (b). The

ajor principal stress at the tip of the defect during the compres-

ion phase was negative and progressively decreasing up to an en-

ineering strain of –80%. After the strain was reversed, an acute

ncrease of the major principal stress was observed changing the

ign from negative to positive indicating that the previously cre-

ted self-contact defect was pulled apart. In order to ascertain if

he self-contact defect acted like a crack, zoomed in plots of the

ensile straining phase of Fig. 12 (b) are depicted in Fig. 13 for the

inimum compression cases of –80% in (a), –70% in (b), –60% in

c) and –50% in (d). Two phases were identified in these plots:

rst, the unloading of the self-contact defect that seemed mostly

orizontal, and second, the abrupt increase on the major principal

tress until it reached a maximum value, followed by a progressive

ecrease attributed to the rounding of the self-contact defect tip.

his, in turn, increased the combined volume fraction and locally

oftened the material. Once the crease was formed, this is around

ompressive strains of 70% and above, the localisation indicator

redicted fracture initiation before the maximum major principal

tress was reached, before any rounding and stretching at the tip

f the defect occurred, as illustrated in Fig. 13 (a) and (b). For the

ases where the minimum applied strain was above –70%, the lo-

alisation indicator predicted fracture initiation way after the max-

mum major principal strain value was surpassed. In other words,

or compressive strains below the critical strain, the tip of the self-

ontact defect was rounded off and stretched before fracture was

etected. It should be remarked here that this is a first attempt to

odel the crease formation in steel materials and its effect on the

uctile-to-brittle transition, and thus these results should be cau-

iously analysed. Typical mechanical responses of metallic materi-

ls, such as the Bauschinger effect, that can significantly affect the

rediction of the fracture initiation were not taken into account.

uch effect, that depends on the composition and microstructure

f the metal in question, might either delay or promote the frac-
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Fig. 16. Tensile straining phase image sequence showing combined volume fraction contours of the plane strain block FE simulation compressed at −70%, where f = 1 / q 1 
was used as an element erosion criterion. 
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ure initiation. However, it does not change the fact that a surface

efect with a certain self-contact length has to be created during

he compressive phase in order to induce a brittle failure when re-

ersing the load. 

Directly related to Fig. 13 (b), Fig. 14 from (a) to (e) shows an

mage sequence corresponding to the tensile straining phase for

he case of minimum applied strain of –70%. The top row shows

ontour plots of normalised major principal stresses σ I / σ 0 . The

ottom row shows a binary contour where the blue colour rep-

esents values of the acoustic tensor larger than zero, i.e. det[ A ] >

, and the red colour indicates values equal or less than zero, i.e.

et[ A ] ≤ 0. The onset of fracture, i.e. det[ A ] = 0, was first detected

n the tip of the self-contact defect as it can be seen in Fig. 14 . We

an observe the unloading of the crack-like self-contact defect dur-

ng the first phase of the curve shown in Fig. 13 (b) from the im-

ges in Fig. 14 (a) and (b). The opening of such defect, that can be

orrelated to the abrupt increase of the normalised major principal

tress detected in Fig. 13 (b), can be seen in the image sequence

omprised by Fig. 14 (c), (d) and (e). 

To show the suitability of employing the bifurcation analy-

is as a fracture initiation criterion, the 70% compression case

as simulated eroding the elements when the volume fraction

eached f = 1 / q 1 , i.e. when the yield surface collapses. It should

e noted that this value is taken as an extreme case for mate-

ial failure. However, it should allow to estimate if the material

ully collapses shortly after the fracture initiation is detected with

et[ A ] = 0. Fig. 15 shows the evolution of the normalised major

rincipal stress σ I / σ 0 as well as the volume fraction f extracted

rom the tip of the self-contacting defect during the tensile strain-

ng phase. Once bifurcation was detected, the volume fraction in-

reased rapidly deleting the element shortly after. Further straining

aused the self-contacting defect to quickly open and caused the

eletion of the elements located in front of such a defect as it is

hown in Fig. 16 . This adds confidence in the use of the bifurcation

nalysis as a fracture criterion. 

. Conclusions 

The self-contacting defects created on the surface of largely

ompressed areas such as the compressive side on components

ubjected to bending actions in metals and their effect on the frac-

ure mechanisms have been investigated. The self-contacting de-

ects may evolve into creases when the former grow very rapidly

or small increments of compressive strain, this is, unsteadily. To

scertain if the creasing phenomenon is involved in the ductile-

o-brittle transition observed in metals that have been previously

ompressed, a finite element model of a half-space plane-strain
lock of material with an imperfection has been analysed. Experi-

entally validated associative J 2 and porous plasticity models have

een used to model the mechanical response of a X65 pipe steel,

hosen as the baseline material for this investigation. Addition-

lly, a classical bifurcation analysis has been implemented via an

ser defined material subroutine along with the porous plasticity

odel. The loss of ellipticity indicator det[ A ] = 0 has been used as

 fracture initiation criterion. 

The finite element model of the material block has been com-

ressed to 50%, 60%, 70% and 80% of its initial length and then ten-

ile straining has been applied until the global non-linear tensile

esponse has been amply surpassed. The onset of crease formation

as been detected at a critical compressive applied strain of around

0%. Regardless of the compression level attained, self-contacting

rack-like defects have been created. Of course, the defects vary in

ength being significantly larger for compressive strains above the

ritical strain. During the tensile phase, the bifurcation indicator

etected fracture initiation at the tip of the self-contacting crack-

ike defects formed during the compressive state while they were

till sharp for the cases compressed at 70% and 80%. However, for

he rest of the cases, fracture initiation has been detected when

he tip of the self-contacting crack-like defects have been rounded-

ff. Therefore, the crease formation seems to be closely linked to

he decrease of ductility, or even ductile-to-brittle transitions, ob-

erved when these types of structural steels are largely compressed

efore they are subjected to load reversal. As mentioned in the re-

ults analysis, the predictions of the onset of fracture have to be

aken cautiously since the Bauschinger effect was not explicitly ac-

ounted for in the material models employed in the finite element

nalyses. 
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