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ABSTRACT 

Reliable models are necessary for optimization of building energy systems. However, artificial 

neural network (ANN) models developed by measured data is hard to accurately reflect 

physical characteristics of systems due to uncertainties and unpredicted errors during the 

measuring process. This study proposes an ANN-based optimization approach. The case study 

of using the proposed heating system for a typical swimming pool of Hong Kong is depicted 

to clarify this approach. The ANN model is developed using 1,000 sets of data generated from 

the established simulation platform. Minimizing thermal uncomfortable ratio, total electricity 

consumption, and lifecycle cost are regarded as the objectives. The Pareto optimal solutions 

(POSs) are determined by conducting multi-objective optimization using non-dominated 

sorting genetic algorithm II. The final optimal solutions are gained from POSs using decision-

making approaches. Triple-objective optimization results of the case study indicate that final 

optimal storage tank volume and air-source heat pumps heating capacity, determined using 

technique for order of preference by similarity to ideal solution, are 77.4 m3 and 273.6 kW, 

respectively. The corresponding thermal uncomfortable ratio, total electricity consumption, and 

lifecycle cost are 1.84%, 1.40×1010 kJ, and €492,491, respectively. Hence, this study provides 

a meaningful guideline for the field of ANN-based optimization of building energy systems. 

 

Keywords: Artificial neural network; Multi-objective optimization; Building energy systems; 
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Nomenclature  𝑞𝑟𝑑 radiative heat loss (W) 

  𝑞𝑟𝑤 heat loss caused by refilling 

fresh water (W) 

Abbreviations 𝑞𝑠𝑟  heat acquired from sun (W) 

ANN artificial neural network 𝑇𝑎𝑏 ambient temperature (oC) 

ASHP air-source heat pump 𝑇𝑐𝑣𝑟 temperature of cover (oC) 

BS building energy system 𝑇𝑚  PCM melting temperature (oC) 

FOS final optimal solution 𝑇𝑝 PCM temperature (oC) 

LP linear programming technique for 

multidimensional analysis of preferences 

𝑇𝑝𝑙 pool water temperature (oC) 

NSGA-II non-dominated sorting genetic algorithm II 𝑇𝑝𝑡 maximum water temperature 

ASHP offers (oC) 

PCM phase change material 𝑇𝑝𝑤 pool water temperature setpoint 

(oC) 

POS Pareto optimal solutions 𝑇𝑠𝑙 

 

soil temperature (oC) 

PT PCM storage tank 𝑇𝑠𝑦 sky temperature (oC) 

TS technique for order of preference by 

similarity to ideal solution 

𝑇𝑤 water temperature (oC) 

  𝑡 moment (-) 

  𝑢𝑡𝑝 thermal uncomfortable ratio (%) 

Symbols 𝑉𝑝𝑙 pool volume (m3) 
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𝐴𝑐𝑑 heat transfer area for conduction (m2) 𝑉𝑝𝑡 PT volume (m3) 

𝐴𝑝𝑙 surface area of pool (m2) 𝑥 distance (m) 

𝑐𝑙𝑐 lifecycle cost (€)   

𝑐𝑙𝑑  PCM liquid specific heat (kJ/(kg·K))   

𝑐𝑝  PCM specific heat (kJ/(kg·K)) Greek symbols 

𝑐𝑠𝑑 PCM solid specific heat (kJ/(kg·K)) 𝛽1 first coefficient in Eqn. (12) (1/s) 

𝑐𝑤   water specific heat (kJ/(kg·K)) 𝛽2 second coefficient in Eqn. (12) 

(1/s) 

𝐸𝑠 maximum daily heat amount during open 

period (kJ) 

𝛽3 third coefficient in Eqn. (12) 

(1/s) 

𝑒𝑡𝑢 total electricity consumption (kJ) 𝛽4 fourth coefficient in Eqn. (12) 

(1/s) 

𝐻𝑚 PCM specific enthalpy (kJ/kg) 𝜀  water fraction (-) 

𝐻𝑝 PCM enthalpy (kJ/kg) ∅1 a constant in Eqn. (18) (oC/s) 

ℎ𝑐𝑣 heat transfer coefficient for convection 

(W/(m2·K)) 

∅2 a constant in Eqn. (23) (oC/s) 

ℎ𝑐𝑣𝑟 heat transfer coefficient for conduction 

(W/(m2·K)) 

∅3 a constant in Eqn. (20) (oC/s) 

ℎ𝑟𝑑 radiative heat transfer coefficient 

(W/(m2·K)) 

𝜌𝑝  PCM density (kg/m3) 

ℎ𝑤𝑝 volumetric heat transfer coefficient 

(W/(m3·K)) 

𝜌𝑤 water density (kg/m3) 
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𝑘𝑠𝑙  soil thermal conductivity (W/(m·K)) 𝜃1 a constant in Eqn. (17) (oC/s) 

𝑘𝑤 water thermal conductivity (W/(m·K)) 𝜃2 a constant in Eqn. (22) (oC/s) 

𝐿𝑐𝑑  pool characteristic length (m) 𝜃3 a constant for calculating ∅3  

(oC/s) 

𝑚𝑝 PCM mass (kg) 𝜏 time (s) 

𝑚𝑤 water mass (kg) 𝛾1 first coefficient in Eqn. (10) (-) 

𝑞𝑎𝑝 ASHPs heating capacity (W) 𝛾2 second coefficient in Eqn. (10) 

(-) 

𝑞𝑐𝑑 conductive heat loss (W) 𝛾3 third coefficient in Eqn. (10) (-) 

𝑞𝑐ℎ 𝑞𝑎𝑝 for charging (W) 𝑢𝑤 average water velocity (m/s) 

𝑞𝑐𝑣 convective heat loss (W) 𝜑1 length of the period (𝑡0 → 𝑡3) (s) 

𝑞𝑐𝑣𝑟 heat loss from cover (W) 𝜑2 length of the period (𝑡3 → 𝑡4) (s) 

𝑞𝑑𝑐  dimensionless conductive heat flux (-) 𝜑3  length of the period (𝑡4 → 𝑡5) (s) 

𝑞𝑒𝑎 evaporative heat loss (W) ∆𝑙𝑤 lower temperature difference (K) 

𝑞𝑝𝑟 𝑞𝑎𝑝 for preheating (W) ∆𝑢𝑤 upper temperature difference (K) 

𝑞𝑝𝑡 heat acquired from PT (W)   
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1. Introduction 

Due to rapid increase of population, demand of energy for satisfying a variety of requirements 

in life (e.g. transportation, manufacturing, and farming), is continually increasing (Moussa et 

al., 2020). This causes severe energy crisis, leading to increasing utilization of fossil fuels and 

environmental problems (e.g. global warming) (Du et al., 2020; 2018). Thus, enhancing 

renewable energy utilization and energy efficiency, and reducing greenhouse gas emission have 

gained attentions from governments in different countries. For instance, Chinese government 

declares that energy use in each unit of GDP will be reduced by 15% during the period of next 

five years (Kennedy and Johnson, 2016). EU government declares that energy efficiency will 

be increased by more than 32.5% by 2030 (Abd Alla et al., 2020). In addition, South Korean 

government declares that 12.2% energy use will be from renewable energy source by 2030 

(Sinha et al., 2018). 

 

Cities consume at least 67% of the world’s total energy use (Fichera et al., 2018). To enhance 

cities’ energy efficiency, scholars have conducted different investigations of urban energy 

systems. For example, Volpe et al. (2016) investigated the effect of energy systems on the 

energy networks performance in cities, and they found that the increase of the radius of 

proximity could enhance the performance of urban energy networks. Evola et al. (2016) 

proposed a mapping tool used in a neighborhood of Catania, Italy. It was concluded that this 

tool could effectively offer polices with high energy-saving potential. In addition, buildings 

consume 31% (Schwarz et al., 2020) to 42% (Mavromatidis, 2015; 2016) of the world’s gross 

energy use and emit 35% of the world’s gross greenhouse gas (Mavromatidis, 2015; 2016). 

Hence, advanced approaches are urgently needed for enhancing energy efficiency and reducing 

greenhouse gas emission of building energy systems (BSs). One efficient approach is to 

perform the optimal design of BSs. For instance, Li et al. (2019) presented the optimization of 

photovoltaic shading systems. The optimal installation tilt angle was determined for gaining 

better energy-saving potential. Liu et al. (2019) presented the optimization of a photovoltaic 

zero-energy building system. The system performance in different locations of China were 

compared, and it was discovered that southwest regions in China was the optimal site to achieve 

the best energy performance. Gang et al. (2016) performed the optimization of district cooling 

systems. Minimizing total expense by determining optimal cooling capacity of the system was 

considered as optimization objective. 
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Artificial neural network (ANN) is a data-driven tool that develops surrogated models with 

high accuracy (von Grabe, 2016), and it has been extensively used in BSs. For instance, Turhan 

et al. (2014) applied the ANN for predicting relationships between the heating load and 

configuration parameters of buildings (e.g. external surface area). The data collected from 148 

residential buildings in Izmir, Turkey, were used. Deng and Chen (2018) utilized the ANN for 

establishing the thermal comfort model in buildings, on the basis of data collected from ten 

houses or apartments and ten offices in Indiana, USA. The relationships between thermal 

comfort and affecting parameters (e.g. indoor temperature) were predicted. In addition, using 

the data collected from an office building with the floor area of 5,700 m2, Ding et al. (2018) 

compared the performance of the established ANN models in eight combinations of input 

variables (e.g. solar irradiance and ambient temperature), and the optimal combination was 

identified. Current studies (e.g. above-mentioned studies) focused on the development of ANN 

models directly based on the measured or field data. However, the measured or field data cannot 

well reflect physical characteristics of investigated BSs due to uncertainties and unpredicted 

errors.    

 

As described in the study of Bejan (2015), physical characteristics are important for 

investigated systems including BSs. Recently, based on the “construal law”, Mavromatidis 

(2019) developed an urban greenhouse model, which considers thermodynamic properties of 

buildings (e.g. convective and radiative heat fluxes). It was concluded that the method used by 

this author effectively combined the aspects of “physics” and “sustainability” in the field of 

architecture, which played the instructive role in future optimal design problems of BSs 

(Mavromatidis, 2018). Hence, it is meaningful to consider physical characteristics during the 

investigation process of BSs, especially developing ANN models of BSs. 

 

Optimal design problems are usually based on only one optimization objective. However, 

practical engineering problems should consider multiple aspects, meaning that multiple 

optimization objectives should be used in optimal design problems. Hence, multi-objective 

optimization of many systems is widely conducted. For instance, Zhou and Zeng (2020) 

presented the multi-objective optimization of an aerogel glazing system. Maximizing indoor 

illuminance transmitted and minimizing indoor heat harvest were regarded as optimization 

objectives. Ya et al. (2019) presented the multi-objective optimization of the power system 

combining cooling, heating, and power. The optimization objectives comprised minimizing 
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total cost and size of the system. Tang and Zhang (2019) conducted the multi-objective 

optimization of the combustion systems, where minimizing NOx emission and maximizing 

combustion efficiency were regarded as the objectives. Chen et al. (2018) presented the multi-

objective optimization of a desalination system with the objectives of minimizing initial cost, 

greenhouse gas emission, and energy use. Although multi-objective optimal design has been 

conducted in a few systems, a systematic and comprehensive multi-objective optimal design 

method based on high-accuracy surrogated models (e.g. ANN models) is still lacking. It should 

be noted that although some scholars have conducted the optimal design combining the ANN 

and optimization algorithm (e.g. Nasruddin et al. (2019)), a general method that can be used to 

well guide engineers and researchers to conduct the optimal design is urgently needed. 

 

Recently, designing superior heating systems for outdoor swimming pools is still a research 

hotspot. Outdoor swimming pool is closed in cold seasons in subtropical climates, since 

weather conditions cannot provide enough thermal energy to satisfy thermal comfort 

requirement (Li et al., 2018b). The energy use is very high when traditional heating systems 

(e.g. electric or gas boilers) are applied to extend the availability of pools (Mousia and Dimoudi, 

2015). Thus, advanced heating systems are proposed to deal with this issue. One popular 

system is to use solar collectors. Dang (1986) utilized solar collectors to offer heat to a 

swimming pool in India. The system energy efficiency was reported to be 53.3%. Another 

popular system is to utilize heat pumps. Lam and Chan (2003; 2001) utilized air-source heat 

pumps (ASHPs) for warming a swimming pool with the volume of 52 m3. It was discovered 

that ten-year energy cost of the proposed system was decreased by HK$275,700 (i.e. 

approximately €33,084, note: HK$1 = €0.12) in comparison with that of the conventional 

system. Following their studies, Li et al. (2018a) designed a system with a tank having phase 

change material (PCM) (i.e. PCM storage tank (PT)), which had merit of high storage density 

(Xu et al., 2017; 2018). The PT was applied to shift the energy consumption of ASHPs from 

electric on-peak to off-peak periods. This could cut down not only system operating cost, but 

also designed ASHPs heating capacity (𝑞𝑎𝑝 ). Although a few studies have presented the 

investigations of swimming pool heating systems, an efficient optimization approach, 

especially an ANN-based multi-objective optimization approach for swimming pool heating 

applications, is needed. 

 

This study puts forward an ANN-based multi-objective optimization approach of BSs. As a 
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typical BS, outdoor swimming pool heating system is regarded as a case study to clarify the 

proposed approach. Database of the system is developed, based on huge amount of operation 

results from established simulation platform. ANN is utilized to establish the system model. 

The non-dominated sorting genetic algorithm II (NSGA-II) (Deb et al., 2002) is applied for 

performing the multi-objective optimization. Linear programming technique for 

multidimensional analysis of preferences (LP) (Srinivasan and Shocker, 1973) and technique 

for order of preference by similarity to ideal solution (TS) (Etghani et al., 2013) are applied to 

conduct the decision-making for determining final optimal solutions (FOSs). Finally, the 

system performance analysis of FOSs is presented. 

 

The novelties or contributions of this investigation are depicted below: (a) development of a 

general optimal design method combining the use of ANN model and NSGA-II, and its 

application to an outdoor swimming pool heating system; (b) development of the ANN model 

based on a database composed by 1,000 sets of data, generated by the established simulation 

platform using MATLAB and TRNSYS; (c) use of NSGA-II for multi-objective optimizations 

to determines the POSs; (d) implementation of LP and TS on the POSs to effectively determine 

the FOSs; (e) demonstration of the reliability of proposed approach on the basis of a case study 

of an outdoor swimming pool heating system. 

 

The rest of the paper is presented below. The proposed ANN-based multi-objective optimal 

design method is presented in Section 2. The case study is described in Section 3. The ANN 

model is given in Section 4. The establishment of database is shown in Section 5. Section 6 

introduces optimization and decision-making methods. Section 7 shows the results and analysis. 

Section 8 depicts conclusions. 

 

2. ANN-based multi-objective optimization approach 

Fig. 1 presents the schematic for proposed ANN-based multi-objective optimization approach 

of BSs consisting of five steps. Step 1 is conducting the database construction. According to 

the characteristics of investigated systems, the maximum and minimum of design variables 

should be identified. Ranges of design variables are used to formulate combinations of design 

variables. These combinations are input into constructed simulation platform of the system, 

which generally comprises heat transfer models, weather conditions, and control strategies. 

The corresponding values of output variables are acquired for each combination of design 
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variables. Thus, the database of input and output variables is constructed. Step 2 is conducting 

the ANN training. On the basis of constructed database, input, hidden, and output layers of 

ANN structure are established. The training algorithm and parameters are set for training the 

ANN. Training, testing, and validation performance of different ANN structures are compared, 

and the optimal structure is determined. Consequently, the validated ANN models are obtained. 

Step 3 is conducting the multi-objective optimal design. ANN models and identified multiple 

optimization objectives are used to conduct the multi-objective optimal design by advanced 

algorithm. The POSs are gained. Step 4 is conducting the decision-making. Quantitative 

approaches are utilized to perform the decision-making for obtaining FOSs. Step 5 is 

conducting the performance analysis. System performance analysis for FOSs are conducted 

by using typical performance indicators. 
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Fig. 1. Schematic of ANN-based multi-objective optimization approach. 

 

3. Case study  

Fig. 2 (a) presents the schematic of a heating system for outdoor swimming pools, which 

includes PT, ASHPs, insulation cover, heat exchangers, pumps, valves, etc. ASHPs are utilized 

to realize charging of PT and preheating of the pool water. PT stores heat in electric off-peak 

period and releases stored heat in electric on-peak period. This contributes to enhancing 

economic benefits. Insulation cover is covered in pool surface when it is not used. This 

contributes to preventing heat loss. It should be noted that this system can be used for space 

heating purpose as well. In that case, the outdoor swimming pool will be replaced by radiators, 
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which heat the air of the room. The control strategies depicted in the study of Li et al. (2020a) 

are used to achieve the desired temperature profile of the pool water, depicted in Fig. 2 (b). 

 

 

Fig. 2. (a) Schematic of the system; and (b) pool water temperature profile. 

 

The system is applied in an outdoor swimming pool of Hong Kong. Its volume and surface 

area are 1963.5 m3 and 1100 m2, respectively. It is closed during the cold season on account of 

the cold weather. This leads to space and facility waste. Therefore, the system is applied for 

extending the availability of the pool. The values of corresponding moments in Fig. 2 (b) are 

shown as follows. 𝑡0, 𝑡1, 𝑡2, 𝑡3, 𝑡4, and 𝑡5 are 20:00, 21:00, 24:00, 05:00, 09:00, and 12:00, 

respectively. 

 

4. Artificial neural network model 
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In the established ANN model, two design variables (i.e. Volume of PT (𝑉𝑝𝑡) and 𝑞𝑎𝑝) are 

selected as input variables. Thermal uncomfortable ratio (𝑢𝑡𝑝), total electricity consumption 

(𝑒𝑡𝑢), and lifecycle cost (𝑐𝑙𝑐) are selected as output variables. The schematic of ANN structure 

is depicted in Fig. 3 (a). The definitions for these three output variables are depicted in the 

study of Li et al. (2020b), and information about unit expenses of core components are shown 

in the study of Li et al. (2020a). A feedforward neural network with the training function of 

“trainlm”, which uses the Levenberg-Marquardt algorithm, is used in this study. The values of 

maximum number of training epochs, maximum mu, performance goal, and maximum 

validation failures are 5,000, 1×10100, 1×10-10, and 3,000, respectively. The values of other 

parameters are default. 70%, 15%, and 15% of the data are selected for the training, testing, 

and validation purpose, respectively. The selection for data is random. An early-stopping 

principle is used to identify the optimal epoch for identifying the trained model. The epoch is 

considered as optimal one when the validation error achieves minimum. As depicted in Fig. 3 

(b), during training process, the training error reduces with the increase of the epoch; while the 

validation error firstly reduces with the increase of the epoch, and then increases as the epoch 

increases.  
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Fig. 3. (a) Schematic for ANN structure; and (b) early-stopping principle for training ANN 

model. 

 

5. Database establishment 

One hundred design cases (i.e. combinations of design variables) are performed in accordance 

with maximum and minimum sizing of core components. They are input into established 

simulation platform of the system to obtain corresponding output values. Ten-winter Hong 

Kong weather data (from 2003 to 2012) are used in these design cases. Hence, 1,000 sets of 

data are utilized to establish the database for the ANN model.  

 

5.1. Maximum sizing for core components 
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The proposed maximum sizing approach of core components of the system is shown in Fig. 4, 

which utilizes three factors (i.e. worst-case scenario, weather conditions, and pool water 

temperature setpoint (𝑇𝑝𝑤 )). The weather conditions that significantly influence the heat 

transfer process are essential requirement during sizing process. The worst-case scenario is 

utilized to identify the meteorological condition that causes the maximum heat loss of pool. 

𝑇𝑝𝑤 is an important design variable that directly affects the required heat amount. Heat transfer 

model of pool without cover is applied to calculate maximum daily heat amount during the 

open period (𝑡5 → 𝑡0) (𝐸𝑠). According to this value, the 𝑉𝑝𝑡 and required 𝑞𝑎𝑝 for charging 

(𝑞𝑐ℎ) are calculated by using Eqns. (3) and (25), respectively. Heat transfer model of pool with 

cover is utilized to calculate the temperature difference ∆𝑢𝑤 and ∆𝑙𝑤 shown in Fig. 5, by 

using Eqns. (20) and (19), respectively. These two values are used to calculate the required 

𝑞𝑎𝑝 for preheating (𝑞𝑝𝑟) by using Eqn. (24). The final required 𝑞𝑎𝑝 should satisfy two goals 

(i.e. ensuring the completion of preheating and charging). Thus, the maximum between 𝑞𝑐ℎ 

and 𝑞𝑝𝑟 is estimated as the final 𝑞𝑎𝑝. The detailed calculations during the maximum sizing 

process are presented as follows. 

 

 

Fig. 4. Maximum sizing approach of core components. 

 

 Calculation of 𝑽𝒑𝒕 

Heat transfer model of pool without cover is applied for calculating the 𝐸𝑠. The pool water 

temperature variation is expressed as Eqn. (1) (Buonomano et al., 2015; Somwanshi et al., 
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2013): 

𝜌𝑤𝑐𝑤𝑉𝑝𝑙
𝑑𝑇𝑝𝑙

𝑑𝜏
= 𝑞𝑠𝑟 − 𝑞𝑒𝑎 − 𝑞𝑟𝑑 − 𝑞𝑐𝑣 − 𝑞𝑐𝑑 − 𝑞𝑟𝑤              (1) 

where 𝜌𝑤  and 𝑐𝑤  are the water density and specific heat, respectively;  𝑉𝑝𝑙  is the pool 

volume; 𝑇𝑝𝑙 is the pool water temperature; 𝜏 is the time; 𝑞𝑠𝑟 is the heat acquired from sun; 

and 𝑞𝑒𝑎, 𝑞𝑟𝑤, 𝑞𝑐𝑣, 𝑞𝑐𝑑, and 𝑞𝑟𝑑 are the evaporative, refilling water, convective, conductive, 

and radiative heat loss, respectively. Equations for calculating 𝑞𝑠𝑟, 𝑞𝑒𝑎, 𝑞𝑟𝑤, 𝑞𝑐𝑣, 𝑞𝑐𝑑, and 

𝑞𝑟𝑑 refer to the study of Lam and Chan (2001), Smith et al. (Buonomano et al., 2015; Ruiz 

and Martínez, 2010), Lam and Chan (2001), Buonomano et al. (2015), Incropera et al. (2007), 

and Woolley et al. (2011), respectively. 

 

𝐸𝑠  should be equal to the heat amount stored in PT, which is calculated by the difference 

between 𝑇𝑝𝑤 and 𝑇𝑝𝑡, expressed as Eqn. (2): 

𝐸𝑠 = (𝑐𝑝𝑚𝑝 + 𝑐𝑤𝑚𝑤)(𝑇𝑝𝑡 − 𝑇𝑝𝑤) + 𝑚𝑝𝐻𝑚                    (2) 

where 𝑚𝑤 represents the water mass; 𝑐𝑝 and 𝑚𝑝 represent the PCM specific heat and mass, 

respectively; and 𝐻𝑚 represents the PCM specific enthalpy. Considering thermal properties 

of PCM, Eqn. (2) is reformulated as Eqn. (3): 

𝑉𝑝𝑡 =
𝐸𝑠

𝑐𝑙𝑑𝜌𝑝(1−𝜀)(𝑇𝑝𝑡−𝑇𝑚)+𝐻𝑚𝜌𝑝(1−𝜀)+𝑐𝑠𝑑𝜌𝑝(1−𝜀)(𝑇𝑚−𝑇𝑝𝑤)+𝑐𝑤𝜌𝑤𝜀(𝑇𝑝𝑡−𝑇𝑝𝑤)
         (3) 

where 𝑐𝑙𝑑  and 𝑐𝑠𝑑  represent the PCM liquid and solid specific heat, respectively;  𝑇𝑚 

represents the PCM melting temperature; 𝜌𝑝 represents the PCM density; and 𝜀 represents 

the water fraction.  

 

The design goal for ∆𝑢𝑤  and ∆𝑙𝑤  is to ensure that the 𝑇𝑝𝑙  can reach to 𝑇𝑝𝑤  at 𝑡5 . To 

facilitate the calculation, 𝜑1, 𝜑2, and 𝜑3 are utilized to represent the length of the periods 

(𝑡0 → 𝑡3), (𝑡3 → 𝑡4), and (𝑡4 → 𝑡5), respectively, as depicted in Fig. 5 (a). Fig. 5 (b) depicts the 

heat fluxes in heat transfer model with cover during the close period (𝑡0 → 𝑡5). It should be 

noted that the influence of the solar irradiation on the temperature of the cover (𝑇𝑐𝑣𝑟) is not 

considered. 
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Fig. 5. (a) Partition of 𝜑1, 𝜑2, and 𝜑3; and (b) heat fluxes during the period (𝑡0 → 𝑡5). 

 

 Calculation of ∆𝒍𝒘 

During the period (𝑡0 → 𝑡3), 𝑇𝑝𝑙 should satisfy Eqn. (4): 

𝜌𝑤𝑐𝑤𝑉𝑝𝑙
𝑑𝑇𝑝𝑙

𝑑𝜏
= −𝑞𝑐𝑣𝑟 − 𝑞𝑐𝑑                     (4) 

where 𝑞𝑐𝑣𝑟 is the heat loss from the cover. 

 

𝑞𝑐𝑑 is calculated by Eqn. (5) (Incropera et al., 2007): 

𝑞𝑐𝑑 =
1

2𝐿𝑐𝑑
𝑞𝑑𝑐𝑘𝑠𝑙𝐴𝑐𝑑(𝑇𝑝𝑙 − 𝑇𝑠𝑙)                   (5) 

where 𝐿𝑐𝑑 denotes the pool characteristic length; 𝑞𝑑𝑐 denotes the dimensionless conductive 

heat flux; 𝑘𝑠𝑙 denotes the soil thermal conductivity, equal to 0.52 W/(m·K) (Incropera et al., 

2007); 𝐴𝑐𝑑 denotes the heat transfer area for conduction; and 𝑇𝑠𝑙 denotes the soil temperature. 
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𝑞𝑐𝑣𝑟 is equal to the sum of 𝑞𝑟𝑑 and 𝑞𝑐𝑣, expressed as Eqn. (6): 

𝑞𝑐𝑣𝑟 = 𝑞𝑟𝑑 + 𝑞𝑐𝑣                         (6) 

𝑞𝑐𝑣𝑟 is calculated by Eqn. (7): 

𝑞𝑐𝑣𝑟 = ℎ𝑐𝑣𝑟𝐴𝑝𝑙(𝑇𝑝𝑙 − 𝑇𝑐𝑣𝑟)                    (7) 

𝑞𝑟𝑑 is calculated by Eqn. (8): 

𝑞𝑟𝑑 = ℎ𝑟𝑑𝐴𝑝𝑙(𝑇𝑐𝑣𝑟 − 𝑇𝑠𝑦)                    (8) 

where 𝑇𝑠𝑦 is the sky temperature.  

𝑞𝑐𝑣 is calculated by Eqn. (9): 

𝑞𝑐𝑣 = ℎ𝑐𝑣𝐴𝑝𝑙(𝑇𝑐𝑣𝑟 − 𝑇𝑎𝑏)                    (9) 

where 𝑇𝑎𝑏 is the ambient temperature. 

 

According to Eqns. (6) to (9), 𝑇𝑐𝑣𝑟 is calculated by Eqn. (10): 

𝑇𝑐𝑣𝑟 = 𝛾1𝑇𝑝𝑙 + 𝛾2𝑇𝑠𝑦 + 𝛾3𝑇𝑎𝑏                  (10) 

where 

𝛾1 =
ℎ𝑐𝑣𝑟

ℎ𝑐𝑣𝑟+ℎ𝑟𝑑+ℎ𝑐𝑣
, 𝛾2 =

ℎ𝑟𝑑

ℎ𝑐𝑣𝑟+ℎ𝑟𝑑+ℎ𝑐𝑣
, 𝛾3 =

ℎ𝑐𝑣

ℎ𝑐𝑣𝑟+ℎ𝑟𝑑+ℎ𝑐𝑣
           (11) 

 

According to Eqns. (5) and (6), Eqn. (4) is reformulated as Eqn. (12):  

𝑑𝑇𝑝𝑙

𝑑𝜏
= 𝛽1𝑇𝑝𝑙 + 𝛽2𝑇𝑠𝑦 + 𝛽3𝑇𝑎𝑏 + 𝛽4𝑇𝑠𝑙                 (12) 

where the coefficients 𝛽1, 𝛽2, 𝛽3, and 𝛽4 are calculated by Eqns. (13), (14), (15), and (16), 

respectively: 

𝛽1 = − [ℎ𝑐𝑣𝑟𝐴𝑝𝑙(1 − 𝛾1) +
1

2𝐿𝑐𝑑
𝑞𝑑𝑐𝑘𝑠𝑙𝐴𝑐𝑑] /(𝜌𝑤𝑐𝑤𝑉𝑝𝑙)           (13) 

𝛽2 =
ℎ𝑐𝑣𝑟𝐴𝑝𝑙𝛾2

𝜌𝑤𝑐𝑤𝑉𝑝𝑙
                          (14) 

𝛽3 =
ℎ𝑐𝑣𝑟𝐴𝑝𝑙𝛾3

𝜌𝑤𝑐𝑤𝑉𝑝𝑙
                          (15) 

 𝛽4 =
1

2𝜌𝑤𝑐𝑤𝑉𝑝𝑙𝐿𝑐𝑑
𝑞𝑑𝑐𝑘𝑠𝑙𝐴𝑐𝑑                    (16) 
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Assuming that 𝑇𝑠𝑦, 𝑇𝑎𝑏, and 𝑇𝑠𝑙 are constants during this period, Eqn. (12) is reformulated 

as Eqn. (17): 

𝑑𝑇𝑝𝑙

𝑑𝜏
= 𝛽1𝑇𝑝𝑙 + 𝜃1                         (17) 

where 𝜃1 = 𝛽2𝑇𝑠𝑦 + 𝛽3𝑇𝑎𝑏 + 𝛽4𝑇𝑠𝑙. Hence, 𝑇𝑝𝑙 at the time 𝑡 is calculated by Eqn. (18): 

𝑇𝑝𝑙 (𝑡) =
∅1

𝛽1
𝑒𝛽1𝑡 −

𝜃1

𝛽1
                        (18) 

where ∅1 is a constant. At the beginning of this period (𝑡 = 0), 𝑇𝑝𝑙 (0) = 𝑇𝑝𝑤; and at the end 

of this period (𝑡 = 𝜑1), 𝑇𝑝𝑙 (𝜑1) = 𝑇𝑝𝑤 − ∆𝑙𝑤. Hence, ∆𝑙𝑤 is calculated by Eqn. (19): 

∆𝑙𝑤=
∅1

𝛼1
(1 − 𝑒𝛽1𝜑1)                        (19) 

where ∅1 = 𝛽1𝑇𝑝𝑤 + 𝜃1. 

 

 Calculation of ∆𝑢𝑤 

During the period (𝑡4 → 𝑡5), the 𝑇𝑝𝑙 should also satisfy Eqn. (4). Thus, the solution during 

this period is expressed as the same format with Eqn. (18). At the beginning of this period (𝑡 =

0), 𝑇𝑝𝑙 (0) = 𝑇𝑝𝑤 + ∆𝑢𝑤 , and at the end of this period (𝑡 = 𝜑3), 𝑇𝑝𝑙 (𝜑3) = 𝑇𝑝𝑤 . Hence, 

∆𝑢𝑤 is calculated by Eqn. (20): 

∆𝑢𝑤=
∅3

𝛽1
(1 − 𝑒𝛽1𝜑3)                      (20) 

where ∅3 = (𝛽1𝑇𝑠𝑡 + 𝜃3)𝑒−𝛽1𝜑3. 

 Calculation of 𝒒𝒑𝒓 

During the period (𝑡3 → 𝑡4), 𝑇𝑝𝑙 should satisfy Eqn. (21): 

𝜌𝑤𝑐𝑤𝑉𝑝𝑙
𝑑𝑇𝑝𝑙

𝑑𝜏
= 𝑞𝑝𝑟 − 𝑞𝑐𝑣𝑟 − 𝑞𝑐𝑑                 (21) 

𝑞𝑝𝑟 is a constant during the preheating period, and thus Eqn. (21) is reformulated as Eqn. (22): 

𝑑𝑇𝑝𝑙

𝑑𝜏
= 𝛽1𝑇𝑝𝑙 + 𝜃2 +

𝑞𝑝𝑟

𝜌𝑤𝑐𝑤𝑉𝑝𝑙
                    (22) 

The solution of Eqn. (22) is expressed as Eqn. (23): 

𝑇𝑝𝑙(𝑡) =
∅2

𝛽1
𝑒𝛽1𝑡 −

𝜃2

𝛽1
−

𝑞𝑝𝑟

𝛽1𝜌𝑤𝑐𝑤𝑉𝑝𝑙
                 (23) 

At the beginning of this period (𝑡 = 0), 𝑇𝑝𝑙 (0) = 𝑇𝑝𝑤 − ∆𝑙𝑤, and at the end of this period 
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(𝑡 = 𝜑2), 𝑇𝑝𝑙 (𝜑2) = 𝑇𝑝𝑤 + ∆𝑢𝑤. Thus, 𝑞𝑝𝑟 is calculated by Eqn. (24): 

𝑞𝑝𝑟 =
𝜌𝑤𝑐𝑤𝑉𝑝𝑙[(𝛽1𝑇𝑝𝑤−𝛽1∆𝑙𝑤+𝜃2)𝑒𝛽1𝜑2−(𝛽1𝑇𝑝𝑤+𝛽1∆𝑢𝑤+𝜃2)]

1−𝑒𝛽1𝜑2
            (24) 

 

 Calculation of 𝒒𝒄𝒉 

𝑞𝑐ℎ is calculated by Eqn. (25): 

𝑞𝑐ℎ =
𝐸𝑠

(𝑡3−𝑡1)
                            (25) 

 

5.2. Minimum sizing of core components  

The minimum values of 𝑉𝑝𝑡 and 𝑞𝑎𝑝 are identified in accordance with 10% of maximum 

heating demands. According to calculations in Section 5.1, the maximum values of 𝑉𝑝𝑡 and 

𝑞𝑎𝑝 are 278 m3 and 601.7 kW, respectively; while the minimum values of 𝑉𝑝𝑡 and 𝑞𝑎𝑝 are 

27.8 m3 and 60.2 kW, respectively. 

 

5.3. Constructed simulation platform 

The simulation platform is constructed by MATLAB and TRNSYS. The TRNSYS 17 is applied 

for providing the simulation environment for operation of the system (Klein et al., 2011). Type 

647, 649, 3b, 23, 91, and 941 in TRNSYS are utilized to simulate the diverting valves, mixing 

valves, circulation pumps, PID controllers, heat exchangers, and ASHPs, respectively. The PID 

controller is applied to maintain the water temperature within thermal comfortable scope. The 

trial & error method is used to tune the values of gain constant, integral time, and derivative 

time (TrialandErrorMethod, 2020). In this study, the values of gain constant, integral time, and 

derivative time are 0.5, 5, and 0, respectively. The time step for the simulation process is 5 

minutes. The MATLAB is applied to solve and code swimming pool and PT models. They are 

linked into the TRNSYS by Type 155. The models of pool with and without cover are presented 

in Section 5.1. It should be noted that during the open period (𝑡5 → 𝑡0), the heat acquired from 

the PT (𝑞𝑝𝑡) should be added in right-hand side of Eqn. (1).  

 

PT model is established based on several assumptions: (1) no internal heat source exists inside 

PCM tubes; (2) no heat exchanges between PT and ambient; (3) temperature of water and PCM 
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cannot affect their thermal properties; (4) 𝑇𝑝 is constant during the phase change process; (5) 

temperature only varies along water-flow direction. The governing equation for water side is 

expressed as Eqn. (26): 

𝜌𝑤𝑐𝑤𝜀(
𝜕𝑇𝑤

𝜕𝜏
+ 𝑢𝑤

𝜕𝑇𝑤

𝜕𝑥
) = 𝑘𝑤𝜀

𝜕2𝑇𝑤

𝜕2𝑥
+ ℎ𝑤𝑝(𝑇𝑝 − 𝑇𝑤)            (26) 

where 𝑢𝑤  represents the average water velocity; 𝑘𝑤  represents the water thermal 

conductivity; and 𝑥  represents the distance. The governing equation for PCM side is 

expressed as Eqn. (27): 

𝜌𝑝(1 − 𝜀)
𝜕𝐻𝑝

𝜕𝜏
= ℎ𝑤𝑝(𝑇𝑤 − 𝑇𝑝)                      (27) 

Eqns. (26) and (27) are discretized using finite difference method (Wu and Fang, 2011), and 

discrete equations are solved and programed by MATLAB. Paraffin wax is considered as PCM 

in the PT (Li et al., 2020c). It is worth noting that the validations of pool and PT models have 

been depicted in the study of Li et al. (2020b). The calculated average relative error of pool 

and PT models were 0.65% and 3.97%, respectively, and thus they were accurate and reliable.  

 

6. Multi-objective optimization and decision-making methods 

NSGA-II is utilized for performing the multi-objective optimal design. Two double-objective 

and one triple-objective optimal design are considered in this study. The design variables are 

𝑉𝑝𝑡 and 𝑞𝑎𝑝. PT and ASHPs are core components of the heating system, which referred to the 

study of Li et al. (2018a), and thus the 𝑉𝑝𝑡 and 𝑞𝑎𝑝 that can reflect their characteristics in the 

system are also regarded as design variables in the multi-objective optimization problem. The 

objectives of two double-objective optimal design are minimizing 𝑒𝑡𝑢  and 𝑢𝑡𝑝 , and 

minimizing 𝑐𝑙𝑐  and 𝑢𝑡𝑝 . The objective of triple-objective optimal design is minimizing 

𝑒𝑡𝑢, 𝑐𝑙𝑐, and 𝑢𝑡𝑝. It should be noted that 15 years is considered as the period of a life cycle in 

this study. LP and TS are used for performing final decision-making based on the POSs. The 

detailed descriptions of NSGA-II, LP, and TS are depicted in the study of Li et al. (2020b). 

 

7. Results and analysis  

7.1. Training and validation of ANN model 

To obtain optimal ANN structure, different ANN structures with different hidden layers are 

compared. The number of neurons varies from one to ten when one hidden layer is utilized; 
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and it varies from one to six when two hidden layers are utilized. The ANN structure is 

considered as the optimal one when the mean square error is minimum. The results indicate 

that optimal ANN structure has two hidden layers. There are six and six neurons in first and 

second hidden layers, respectively. Mean square error of this ANN model is 1.66×10-4. In this 

training model, the transient state of the ANN model when the epoch is 761 is selected as the 

final model. Fig. 6 shows the regressions of ANN: (a) training; (b) validation; (c) testing; and 

(d) all data. It is worth noting that before conducting the training of ANN model, the decimal 

places of output variables are unified. Hence, the ranges of both abscissa and ordinate are from 

0 to 25. It can be seen that the predicted values match the target values very well. The values 

of R for training, validation, testing, and all data are 1, 1, 0.99997, and 0.99999, respectively. 

Thus, the training ANN model is very accurate as the objective function.  
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Fig. 6. Regressions of ANN: (a) training; (b) validation; (c) testing; and (d) all data. 

 

7.2. Multi-objective optimization 

In multi-objective optimization, all combinations of optimization objectives (i.e. POSs) are 

optimal. Fig. 7 presents the POSs for the optimal design with two optimization objectives, (i.e. 

minimizing 𝑒𝑡𝑢 and 𝑢𝑡𝑝). The values of 𝑒𝑡𝑢 reduce with the increase of 𝑢𝑡𝑝. The solution 

with a lower 𝑒𝑡𝑢 has a higher 𝑢𝑡𝑝; while the solution with a higher 𝑒𝑡𝑢 has a lower 𝑢𝑡𝑝. The 

values of 𝑒𝑡𝑢 are 1.51×1010 kJ and 1.26×1010 kJ when the values of 𝑢𝑡𝑝 are 0% and 8%, 

respectively. Thus, the values of 𝑒𝑡𝑢  can be decreased by 16.2% when the value of 𝑢𝑡𝑝 

increases from 0% to 8%. 

 

 

Fig. 7. POSs for double-objective optimization: minimizing 𝑒𝑡𝑢 and 𝑢𝑡𝑝. 

 

Fig. 8 presents the POSs for the optimal design with two optimization objectives (i.e. 

minimizing 𝑐𝑙𝑐 and 𝑢𝑡𝑝). The values of 𝑐𝑙𝑐 reduce with the increase of 𝑢𝑡𝑝. The solution 

with a lower 𝑐𝑙𝑐 has a higher 𝑢𝑡𝑝; while the solution with a higher 𝑐𝑙𝑐 has a lower 𝑢𝑡𝑝. The 

values of 𝑐𝑙𝑐 are €536,040 and €441,089 when the values of 𝑢𝑡𝑝 are 0% and 8%, respectively. 

Thus, the value of 𝑐𝑙𝑐 can be decreased by 17.7% when the value of 𝑢𝑡𝑝 increases from 0% 

to 8%.  
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Fig. 8. POSs for double-objective optimization: minimizing 𝑐𝑙𝑐 and 𝑢𝑡𝑝. 

 

Fig. 9 presents the POSs for the optimal design with triple optimization objectives (i.e. 

minimizing 𝑒𝑡𝑢, 𝑐𝑙𝑐, and 𝑢𝑡𝑝). The values of 𝑒𝑡𝑢 reduce with the increase of 𝑢𝑡𝑝, and the 

values of 𝑐𝑙𝑐 reduce with the increase of 𝑢𝑡𝑝. The solution with a lower 𝑒𝑡𝑢 and 𝑐𝑙𝑐 has a 

higher 𝑢𝑡𝑝; while the solution with a higher 𝑒𝑡𝑢 and 𝑐𝑙𝑐 has a lower 𝑢𝑡𝑝. The values of 𝑒𝑡𝑢 

are 1.51×1010 kJ and 1.26×1010 kJ, and the values of 𝑐𝑙𝑐 are €536,110 and €442,837, when the 

values of 𝑢𝑡𝑝 are 0% and 8%, respectively. Thus, the values of 𝑒𝑡𝑢 and 𝑐𝑙𝑐 can be decreased 

by 16.2% and 17.4%, respectively, when the value of 𝑢𝑡𝑝 increases from 0% to 8%.  
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Fig. 9. POSs for triple-objective optimization: minimizing 𝑒𝑡𝑢, 𝑐𝑙𝑐, and 𝑢𝑡𝑝. 

 

7.3. Final decision-making 

To conduct the final decision-making based on POSs by using LP and TS, non-ideal and ideal 

solutions are needed to be determined. As shown in Fig. 7, the non-ideal and ideal solutions 

for double-objective optimization of minimizing 𝑒𝑡𝑢 and 𝑢𝑡𝑝 are the solution with the values 

of 𝑒𝑡𝑢 and 𝑢𝑡𝑝 of 1.51×1010 kJ and 8%, and the solution with the values of 𝑒𝑡𝑢 and 𝑢𝑡𝑝 of 

1.26×1010 kJ and 0%, respectively. As shown in Fig. 8, the non-ideal and ideal solutions for 

double-objective optimization of minimizing 𝑐𝑙𝑐 and 𝑢𝑡𝑝 are the solution with the values of 

𝑐𝑙𝑐  and 𝑢𝑡𝑝  of €536,040 and 8%, and the solution with the values of 𝑒𝑡𝑢  and 𝑢𝑡𝑝  of 

€441,089 and 0%, respectively. As shown in Fig. 9, the non-ideal and ideal solutions for triple-

objective optimization of minimizing 𝑒𝑡𝑢, 𝑐𝑙𝑐, and 𝑢𝑡𝑝 are the solution with the values of 

𝑒𝑡𝑢, 𝑐𝑙𝑐, and 𝑢𝑡𝑝 of 1.51×1010 kJ, €536,110, and 8%, and the solution with the values of 𝑒𝑡𝑢, 

𝑐𝑙𝑐, and 𝑢𝑡𝑝 of 1.26×1010 kJ, €442,837, and 0%, respectively. Fig. 7, Fig. 8, and Fig. 9 also 

present the FOSs identified using LP and TS. Table 1 presents the FOSs after conducting 

decision-making for multi-objective optimal design. 

 

Table 1 FOSs after conducting decision-making 

Case FOSs 𝑉𝑝𝑡 (m
3) 𝑞𝑎𝑝 (kW) 𝑢𝑡𝑝 (%) 𝑒𝑡𝑢 (×1010 kJ) 𝑐𝑙𝑐 (€×105) 

1 LP-FOS for 𝑒𝑡𝑢 and 𝑢𝑡𝑝 71.7 264.2 3.01 1.36 4.78 

2 LP-FOS for 𝑐𝑙𝑐 and 𝑢𝑡𝑝 73.4 261.7 3.01 1.36 4.77 

3 LP-FOS for 𝑒𝑡𝑢, 𝑐𝑙𝑐, and 𝑢𝑡𝑝 75.6 270.5 2.17 1.39 4.88 

4 TS-FOS for 𝑒𝑡𝑢 and 𝑢𝑡𝑝 71.8 264.7 2.97 1.36 4.79 

5 TS-FOS for 𝑐𝑙𝑐 and 𝑢𝑡𝑝 74.5 263.6 2.76 1.37 4.80 

6 TS-FOS for 𝑒𝑡𝑢, 𝑐𝑙𝑐, and 𝑢𝑡𝑝 77.4 273.6 1.84 1.40 4.92 

 

7.4. Performance analysis of FOSs 

To analyze the system performance of FOSs shown in Table 1, the simulation of the system in 

winter in 2008 is conducted. Fig. 10 presents the 14-days (from February 3rd, 2009 to February 

16th, 2009) swimming pool water temperature variation in Case 1, in which the 𝑉𝑝𝑡 and 𝑞𝑎𝑝 

are 71.7 m3 and 264.2 kW, respectively. It can be seen that during the preheating period, the 

water temperature increases because the ASHPs offer heat for the water. During the period 

between the preheating and open periods, in some days the water temperature decreases and in 
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other days the water temperature increases. During this period, there is no extra heat from PT 

and ASHPs that is offered into the pool water. The water temperature variations are caused by 

the weather conditions. If the heat gained is less than the heat loss of the water, the water 

temperature will decrease, and vice visa. During the open period, due to PID controller the 

water temperature is higher than 27oC, suggesting that thermal comfort requirement is met.  

 

 

Fig. 10. 14-days (from February 3rd, 2009 to February 16th, 2009) temperature variation of 

the pool water in Case 1. 

 

Fig. 11 presents the energy and operating cost saving ratio, and simple payback period of six 

different FOSs. Energy or operating cost saving ratio are equal to difference between electricity 

consumption or operating expense for proposed and conventional systems, dividing those of 

conventional systems. Simple payback period is equal to difference between operating expense 

of proposed and conventional systems, dividing initial expense of conventional systems. It is 

found that energy saving ratio of Case 1, 2, 3, 4, 5, and 6 are 76.2%, 76.1%, 75.8%, 76.1%, 

76.1%, and 75.6%, respectively; operating cost saving ratio of Case 1, 2, 3, 4, 5, and 6 are 

84.3%, 84.3%, 84.1%, 84.3%, 84.3%, and 84.0%, respectively; and simple payback period of 

Case 1, 2, 3, 4, 5, and 6 are 1.14, 1.13, 1.17, 1.14, 1.14, and 1.18 years, respectively. Hence, 

Case 1 has better energy performance than others because it has the highest energy saving ratio; 

and Case 2 has better economic performance than others because it has the highest operating 

cost saving ratio and shortest payback period.  
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Fig. 11. (a) Energy and operating cost saving ratio; and (b) simple payback period in cases 

with different FOSs. 

 

8. Conclusions and future prospects 

An ANN-based multi-objective optimization approach was presented in this study. To well 

clarify this approach, a case study of a heating system for outdoor swimming pools was 

conducted. This heating system was utilized to extend the availability of a swimming pool in 

Hong Kong. NSGA-II was applied for conducting the multi-objective optimal design. The LP 

and TS were applied for conducting the decision-making to identify the FOSs from POSs. 𝑉𝑝𝑡 

and 𝑞𝑎𝑝 were considered as design variables. The performance of the system with the FOSs 

was analyzed. The system energy and economic performance in these FOSs were considerable. 

The key conclusions were presented as follows: 

 The ANN model was developed based on the constructed database, where 1,000 sets of 

data were obtained from the established simulation platform. Regression results of the 

developed ANN model showed that the values of R for training, validation, testing, and all 

data were 1, 1, 0.99997, and 0.99999, respectively. Thus, the ANN model was very reliable 

and accurate to be used for the multi-objective optimal design. 

 Two double-objective optimizations in which the objectives were minimizing the 𝑢𝑡𝑝 and 

𝑒𝑡𝑢, and minimizing the 𝑢𝑡𝑝 and 𝑐𝑙𝑐, respectively, were conducted. In the former double-

objective optimization, optimal combinations of 𝑉𝑝𝑡 and 𝑞𝑎𝑝 in the LP-FOS and TS-FOS 

were 71.7 m3 and 264.2 kW, and 71.8 m3 and 264.7 kW, respectively. The corresponding 

𝑢𝑡𝑝, 𝑒𝑡𝑢, and 𝑐𝑙𝑐 in the LP-FOS and TS-FOS were 3.01%, 1.36×1010 kJ, and €477,965, 

and 2.97%, 1.36×1010 kJ, and €478,559, respectively. In the latter double-objective 

optimization, optimal combinations of 𝑉𝑝𝑡  and 𝑞𝑎𝑝  in the LP-FOS and TS-FOS were 
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73.4 m3 and 261.7 kW, and 74.5 m3 and 263.6 kW, respectively. The corresponding 𝑢𝑡𝑝, 

𝑒𝑡𝑢, and 𝑐𝑙𝑐 in the LP-FOS and TS-FOS were 3.01%, 1.36×1010 kJ, and €477,206, and 

2.76%, 1.37×1010 kJ, and €480,038, respectively. 

 Triple-objective optimization in which the objective was minimizing the 𝑢𝑡𝑝, 𝑐𝑙𝑐, and 𝑒𝑡𝑢, 

was conducted. The optimal combinations of the 𝑉𝑝𝑡 and 𝑞𝑎𝑝 in the LP-FOS and TS-

FOS were 75.6 m3 and 270.5 kW, and 77.4 m3 and 273.6 kW, respectively. The 

corresponding 𝑢𝑡𝑝, 𝑒𝑡𝑢, and 𝑐𝑙𝑐 in the LP-FOS and TS-FOS were 2.17%, 1.39×1010 kJ, 

and €487,812, and 1.84%, 1.40×1010 kJ, and €492,491, respectively. 

 

Hence, the results indicated that proposed approach could effectively guide optimization for 

the heating system. This method used data generated by simulation platform to develop the 

ANN model, which well reflected the physical characteristics of the system. This made the 

results of multi-objective optimal design more meaningful. Therefore, it provided a useful and 

instructive guideline of optimal design for other BSs. However, there were some works that 

could be conducted in the future, shown below: 

 Evaporative heat transfer coefficient calculated by empirical formula, and pressure 

difference between water-surface saturated and ambient partial vapor were used for 

calculating the evaporative heat loss during the open period. In fact, the number and 

activities of swimmers might affect the evaporative heat loss. The evaporative heat loss 

might be expressed as the functions of the number and activities of swimmers. The heat 

generated from the bodies of swimmers might affect the water evaporation and heat gained 

by water, which might affect the temperature variation of the pool water. These factors 

should be considered in future works. 

 The temperature of the pool water in different places was assumed to be equal. However, 

in real conditions it was different. The shading area of the pool might be different in a sunny 

day, and thus the heat obtained from the sun might be different in different period of the 

day. The effect of different heat obtained from the sun on the temperature variation of the 

pool water should be considered in future works. 

 The “trainlm” was selected as the training function to develop the ANN model. Other 

training functions (e.g. “trainrp” and “trainbfg”) should be considered, and the performance 

of the ANN models using different training functions should be compared in future works. 
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