William O'Brien*	Department of Civil and Environmental Engineering	Carleton University	Canada	liam.obrien@carleton.ca, 3432 Mackenzie Building, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S5B6. 613-520-2600x8037
Farhang Tahmasebi	UCL Institute for Environmental Design and Engineering	University College London	UK	f.tahmasebi@ucl.ac.uk
Rune Korsholm Andersen ¹	International Centre for Indoor Environment and Energy, Department of Civil Engineering	Technical University of Denmark	Denmark	rva@byg.dtu.dk
Elie Azar ¹	Department of Industrial and Systems Engineering	Khalifa University	UAE	elie.azar@ku.ac.ae
Verena Barthelmes ¹	School of Architecture, Civil and Environmental Engineering (ENAC)	Thermal Engineering for the Built Environment Laboratory (TEBEL)	Switzerland	verena.barthelmes@epfl.ch
Zsofia Deme Belafi ¹	Department of Building Services and Process Engineering	Budapest University of Technology and Economics	Hungary	belafi.zsofia@gmail.com
Christiane Berger ¹	Department of Building Physics and Building Ecology	TU Wien	Austria	christiane.berger@tuwien.ac.at
Dong Chen ¹	CSIRO Energy	Commonwealth Scientific and Industrial Research Organisation, Australia	Australia	Dong.Chen@csiro.au
Marilena De Simone ¹	Department of Environmental Engineering (DIAm)	University of Calabria	Italy	marilena.desimone@unical.it
Simona d'Oca ¹	Huygen Engineers & Consultants BV		Netherlands	s.doca@huygen.net
Tianzhen Hong¹	Building Technologies and Urban Systems Division	Lawrence Berkeley National Laboratory	USA	thong@lbl.gov
Quan Jin ¹	Department of Architecture and Civil Engineering	Chalmers University of Technology	Sweden	quan.jin@chalmers.se
Dolaana Khovalyg ¹	School of Architecture, Civil and Environmental Engineering (ENAC)	Thermal Engineering for the Built Environment Laboratory (TEBEL)	Switzerland	dolaana.khovalyg@epfl.ch
Roberto Lamberts ¹	Department of Civil Engineering	Federal University of Santa Catarina	Brazil	roberto.lamberts@ufsc.br
Vojislav Novakovic¹	Department of Energy and Process Engineering	Norwegian University of Science and Technology	Norway	vojislav.novakovic@ntnu.no
June Young Park ¹	Department of Civil, Architectural and Environmental Engineering	The University of Texas at Austin	USA	juneyoungpark@utexas.edu
Manfred Plagmann ¹		BRANZ	New Zealand	Manfred.Plagmann@branz.co.nz
Vinu Subashini Rajus¹	Department of Systems and Computer Engineering	Carleton University	Canada	vinusubashinirajus@cunet.carleton.ca
Marika Vellei1	LaSIE (UMR CNRS 7356)	La Rochelle University	France	marika.vellei@univ-lr.fr
Silke Verbruggen ¹	Department Architecture and Urban Planning, Research Group Building Physics	Ghent University	Belgium	silke.verbruggen@ugent.be
Andreas Wagner ¹	Building Science Group	Karlsruhe Institute of Technology	Germany	wagner@kit.edu
Eric Willems ¹	Huygen Engineers & Consultants BV		Netherlands	
Da Yan ¹	School of Architecture	Tsinghua University	China	yanda@tsinghua.edu.cn
Jin Zhou ¹	Department of Civil Engineering	Monash University, Australia	Australia	jenny.zhou@monash.edu

2 Abstract

3 In light of recent research, it is evident that occupants are playing an increasingly important role in

4 building energy performance. Despite the important role of building energy codes and standards in

- 5 design, the occupant-related aspects are typically simple and have not kept up with the leading
- 6 research. This paper reviews 23 regions' building energy codes and standards by first comparing
- 7 their quantitative aspects and then analyzing their mandated rules and approaches. While the
- 8 present paper focuses on offices, general recommendations are applicable to other building types as
- 9 well. The review revealed a wide range of occupant-related values, approaches, and attitudes. For
- 10 example, code-specified occupant density varies by nearly a factor of three between different codes.

- 11 This underlines the need for development of advancement in occupant behavior modeling
- 12 approaches for future occupant-centric building performance codes and standards. Moreover,
- 13 occupants are often referred to only implicitly; underlying expectations about energy-saving
- 14 occupant behavior from building occupants varies greatly; and, only a few codes address occupant
- 15 feedback and system usability. Based on the findings of the review, a set of initial recommendations
- 16 for future building energy codes is proposed.

17 1 Introduction and literature review

18 It is becoming widely accepted that building performance is increasingly sensitive to occupant

- 19 behavior as the efficiency of building materials and systems improves and plug loads become an
- 20 increasing part of energy end uses [1-3]. In commercial/institutional and residential buildings alike,
- 21 occupants have been shown to affect the energy use in architecturally-identical offices and homes
- by a factor of three or more [4-6]. These differences largely result from use of operable windows,
- 23 plug-in equipment, lighting, shading devices, thermostats, and occupant presence itself. Accordingly,
- 24 the topic of occupant behavior in buildings has received a surge of research interest [7, 8], with
- 25 several international projects coordinating the effort (IEA EBC Annex 66 and 79) [9, 10]. Yet, since
- 26 much of the research is rather fundamental and academic in nature, significant knowledge transfer
- efforts are needed to have an impact on the architecture, engineering, and construction industry.
- 28 One of the most impactful ways to improve the energy performance of buildings is through
- advancement of building codes [11]. Building energy codes can be used to enforce a minimum set of
- 30 building energy efficiency requirements, such as envelope, HVAC, DHW, and lighting. Numerous
- 31 studies have shown that building energy codes can achieve on the order of 5 to 20% energy savings
- 32 for the building stock [11-13].
- 33 Before proceeding, it is important to define building energy codes and standards separately (though
- 34 they are largely treated the same in the context of this paper). Building energy codes are legal
- 35 requirements mandated by government as the minimum acceptable performance level, whereas
- 36 standards are recommendations that are not legally-binding [14]. Some standards (e.g. ASHRAE
- 37 Standard 90.1) have been widely adopted in part or entirety by energy codes, as will become evident
- in this paper. Herein, codes and standards are used synonymously unless a specific country is
- 39 discussed. A third category of document, rating standards (e.g. LEED, BREEAM), are used primarily
- 40 for marketing purposes (e.g., to command higher rent), though some regions adopt these as
- 41 requirements that are additional to the building code.
- 42 There are two main paths in most building codes: prescriptive- and performance-based. Many codes 43 and standards (e.g., ASHRAE Standard 90.1 [15]) allow users to choose one compliance path to 44 follow. The prescriptive path is a list of rigid requirements that is relatively straightforward to follow 45 and enforce, but it lacks flexibility. For instance, it may not give credit for new technologies or novel 46 design and operating strategies. The performance-based path on the other hand does not 47 necessarily enforce individual requirements (e.g., R-value or HVAC equipment efficiency), but rather 48 places the responsibility on the building owner to demonstrate that the overall energy performance 49 will be better than an equivalent building (referred to as notional or reference building) with the 50 minimum requirements of the prescriptive path. This improvement is normally verified through a 51 detailed building energy model and annual simulations for the proposed and code-minimum 52 equivalent (reference) building models. The flexibility of the performance path, combined with 53 advances in building performance simulation (BPS), have increased its popularity. For instance, it 54 enables buildings to have architecturally desirable features (e.g., very large windows with a window-
- to-wall area ratio approaching 60 to 70%) that may not be allowed by the prescriptive path. There is

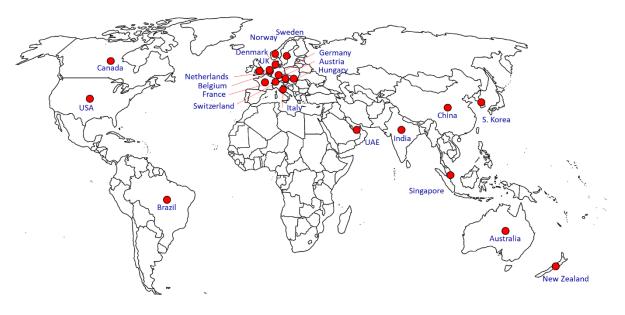
- a general international transition towards performance-based codes [11]. A third path is available in
- 57 many codes; the trade-off path is a model-less way to deviate somewhat from the prescriptive
- requirements through equivalent measures. As stated by Canada's National Energy Code of Canada
- 59 for Buildings (NECB) [16], "The trade-off options present an easy way to make small adjustments to
- 60 the characteristics of the building without having to follow the whole-building performance route."

61 The benefits of building energy codes are undeniable and widespread (lower environmental impact,

- 62 lower energy bills, occupant health and comfort, energy resilience, safety, building longevity, etc.).
- 63 However, building energy codes must ultimately be enforced by officials to fully realize these
- 64 benefits [13, 17]. Non-compliance may be a result of designer negligence or be intentional, knowing
- 65 that officials are unlikely to enforce requirements [18]. Methods of enforcement, stringency, and
- consequences of violations vary widely between jurisdictions [11, 19]. The current paper does not
 cover enforcement in depth, but it is ultimately a consideration for codifying requirements.
- 68 Accordingly, balancing stringency and level of detail with ease of use by designer and code officials
- 69 alike is critical. Performance-based energy codes are particularly challenging to enforce because of
- the number of inputs in building performance simulation (BPS) tools. For example, the National
- 71 Energy Code of Canada for Buildings [16] states the following question as a consideration for
- amendments in its preamble: "Will enforcement agencies be able to enforce the requirement?"
- 73 Consideration of enforcement is particularly important regarding the way occupants are treated in
- 54 building energy codes, relative to the state-of-the-art in occupant modeling research. For instance,
- vhat is the responsibility of a building designer if an occupant behaves unexpectedly?
- 76 As noted by Evans, Roshchanka and Graham [11], few studies have comprehensively reviewed
- 57 building codes at the international level. Even fewer have examined specific aspects of buildings
- codes, with few exceptions such as Pérez-Lombard, Ortiz, Coronel and Maestre [20], which is
- 79 focused on HVAC-related requirements in building codes. And notably, none of the reviews have
- 80 focused on occupant-related aspects, perhaps due to the relatively recent interest in the topic.
- 81 In contrast to wall assemblies, lighting technology, and HVAC systems, which can be specified in a
- 82 quantitative way and later enforced by code officials often using tangible evidence (e.g., drawings,
- 83 specifications and product labels), occupant-related aspects of the building codes are significantly
- 84 more complex. Future occupants and space uses are often unknown during the building design and
- 85 permitting process. Thus, it is typically not appropriate or possible to specify occupant behavior the
- 86 same way as other building requirements are specified. Nevertheless, occupants play an ever-
- 87 growing role in building performance. Thus, they can no longer be neglected or otherwise treated
- 88 simplistically by building codes.
- To date the occupant-related aspects of building codes are quite simplistic and treated more as a boundary condition (much like weather) rather than as active agents in buildings [21, 22]. However,
- 91 in contrast to weather, building design can influence how buildings behave [23]. The most common
- 92 way to specify occupants in the performance-based path of building codes is through hourly
- schedules. O'Brien, Gaetani, Gilani, Carlucci, Hoes and Hensen [24] found that many modelers use
- 94 code-based occupant-related schedules for lack of better information at the time of design, even if
- 95 the code allows flexibility. Through a workshop of building energy modelers, Abuimara, O'Brien,
- 96 Gunay, Abdelalim, Ouf and Gilani [25] reported that modelers tend to use defaults/code
- 97 assumptions about occupants to avoid liability, even if they know these values are unrealistic.
- 98 Modelers seem to have doubts over the current approach to require occupants to be modeled
 99 identically in the reference and proposed building models. However, few papers have looked at
 100 building codes with focus on occupants. O'Brien and Gunay [26] showed that the current occupancy

101 schedules for offices in North American codes – which are near-full capacity during weekdays – may 102 cause design teams to overlook the benefit of occupancy-adaptive building controls (namely, 103 demand-controlled ventilation and occupancy-controlled lighting with small lighting control zones). 104 Gilani, O'Brien, Gunay and Carrizo [27] showed that optimal window area is significantly affected by 105 the assumptions made about occupants, thus demonstrating the importance of modelling 106 appropriate and realistic occupant behavior. Sun and Hong [28] conducted a simulation case study to 107 demonstrate assumptions of occupant activities and behaviors have strong influences on the energy 108 savings potential of energy conservation measures. Besides, an overestimated level of occupancy 109 may also lead to an overestimation of occupant actions, since occupants are necessarily required for 110 adaptive actions to be made. Three methodologies are proposed in Mora, Carpino and De Simone 111 [29] to represent the occupants' activities in residential buildings located in Southern Italy: using 112 surveys and interviews, applying the National Standards, and elaborating statistical data. The 113 analysis showed that different approaches to modeling occupancy can lead to considerable 114 variations in building performance. In particular, the data provided by the Standards produces a 115 significant underestimation of heating energy consumption if compared to the current-use scenario. 116 Furthermore, Carpino, Mora, Arcuri and De Simone [30] investigated the influence of housing 117 occupancy patterns on the definition of net-zero energy buildings. The analysis was conducted 118 considering a case study building designed according to the Italian Standards. Successively, different 119 building usage scenarios were analyzed and the results indicate that "nearly" zero energy building is 120 dependent on occupant related factors.

- 121 The objective of this paper is to first present a comprehensive international review of the occupant-
- related aspects and considerations of building energy codes, and then to make initial
- 123 recommendations to code committees and other policymakers around the world. While occupants
- are quite central in comfort-related building standards (e.g., ASHRAE Std. 55, EN 16798-1:2019, ISO
- 125 7730), this paper is restricted to energy codes and standards. Moreover, the focus is on office
- buildings, though the general conclusions can be extrapolated to other types of buildings.
- 127 First this paper provides a methodology, which summarizes the reviewed codes as well as the two-
- 128 phase framework for analyzing the codes. Next, the results are presented whereby quantitative and
- 129 qualitative aspects of the codes are compared and analyzed. The discussion section is forward
- 130 looking and focuses on innovative code requirements found through the review and potential
- 131 methods to enhance current codes.


132 2 Methodology

The review process was initiated by contacting participants of IEA EBC Annex 79 to request their
assistance in providing information about their national building codes. Annex 79, "Occupant-centric
building design and operation", is an international collaboration project (2018-2023) under the
International Energy Agency's Energy in Buildings and Communities Programme. Among

- 137 participants' contacts in other countries, 22 participating countries provided information on 23
- regions' (mostly whole countries except United Arab Emirates (UAE)) building energy codes and/or
- 139 standards. The countries/regions and corresponding documents are listed in Table 1. The countries
- 140 that participated are shown in Figure 1. While there is a mix of codes, standards, and rating systems
- 141 in the review (refer to definitions in the previous section), the documents are directly or indirectly
- 142 legally binding. For example, the national rating schemes of Singapore and the UAE require a certain
- 143 number of points (somewhat like a trade-off path of building codes).

Data were collected using a template on an online spreadsheet tool such that all participants could
enter data and see all results. The participants were required to translate the collected data into
English; this is justified on the basis that they generally perform research in English and have

- advanced technical knowledge of buildings and energy codes. The data collection was formalized
- 148 into two phases described next, after which the data was analyzed both through a quantitative and
- 149 qualitative lens.

151 Figure 1: Map of countries included in the building energy code review

Table 1: The participating countries/regions and the corresponding building code or standard and corresponding documents
 that were reviewed in this paper

Country	Reviewed code/standard name in local language	Reviewed code/standa rd name translated into English	Docume nt type (code, standard , or rating system) ¹	Purpose of document	Referen ce
Australia (AUS)	National Construction Code (NCC) 2016 Volume One	same	Code	Legally required for permit	[31]
	AS/NZS 1680.2.2:2008: Interior and workplace lighting - Specific applications - Office and screen- based tasks	same	Standard	Legally required for permit	[32]
	AS1668.2 2012 The use of ventilation and air- conditioning in buildings, Part 2:	same	Standard	Legally required for permit	[33]

¹ Contributors were asked to categorize their reviewed document(s); however, the context for how the document is used/enforced should also be considered (column to right)

	Mechanical ventilation in buildings				
Austria (AUT)	ÖNORM B 8110-6-1 - Wärmeschutz im Hochbau - Teil 6-1: Grundlagen und Nachweisverfahren - Heizwärmebedarf und Kühlbedarf	ÖNORM B 8110-6-1 - Thermal insulation in building construction - Part 6-1: Principles and verification methods - Heating demand and cooling demand	Standard	Legally required design guideline	[34]
	ÖNORM B 8110-5 - Wärmeschutz im Hochbau - Teil 5: Klimamodell und Nutzungsprofile	ÖNORM B 8110-5 - Thermal insulation in building construction - Part 5: Model of climate and user profiles	Standard	Legally required design guideline	[35]
	ÖNORM H 5059-1 - Gesamtenergieeffizienz von Gebäuden - Teil 1: Beleuchtungsenergiebe darf	ÖNORM H 5059-1 - Energy performance of building - Part 1: Energy use of lighting	Standard	Legally required design guideline	[36]
Belgium (BEL)	Energiebesluit	Energy Decree	Code	Legally required for permit	[37]
Brazil (BRA)	Requisitos Técnicos da Qualidade para o Nível de Eficiência Energética de Edifícios Comerciais, de Serviços e Públicos (RTQ-C) will change to - Instrução normativa Inmetro- Método para	Technical Requiremen ts for the determinati on of the level of energy efficiency of	Rating system	Required for rating, but not legally required	[38]

	a avaliação da eficiência energética com base em energia primária de edificações comerciais, de serviços e públicas (INI-C) in 2020	commercial, services and public buildings (RTQ-C) will change to - Normative Instruction Inmetro - Method for energy efficiency determinati on based on primary energy for commercial, services and public buildings (INI-C) in 2020			
Canada (CAN)	National Energy Code of Canada for Buildings	same	Code	Legally required for construction/per mit	[16]
China (CHN)	公共建筑节能设计标 准(GB50189-2015)	Design standard for energy efficiency of public buildings (GB50189- 2015)	Standard	Legally required for construction/per mit	[39]
Denmark (DNK)	Bygningsreglementet 2018.dk BR18 4/7 2019	Building regulations 2018.dk BR18 4/7 2019	Code	Legally required for construction/per mit	[40]
England (ENG)	National Calculation Methodology (NCM) Modelling Guide in support of the 2013 Edition of the Building Regulations Approved	same	Guidelin e in support of Building Regulati		[41]

	Document L2A (Conservation of fuel and power in new buildings other than dwellings)		on Approve d Docume nt		
France (FRA)	Réglementation thermique 2012	2012 Building Regulation	Code	Legally required for construction/per mit	[42]
	Méthode de calcul de la réglementation thermique 2012	Calculation Methodolog y in support of the 2012 Building Regulation	Code	Legally required for construction/per mit	[43]
Germany (DEU)	Verordnung über energiesparenden Wärmschutz und energiesparende Anlagentechnik bei Gebäuden (Energieeinsparverordn ung - EnEV)	Ordinance on energy saving insulation and energy saving technical services in buildings (Energy saving ordinance)	Code	Legally required for construction/per mit	[44]
	DIN V 18599-10 Energetische Bewertung von Gebäuden - Berechnung des Nutz-, End- und Primärenergiebedarfs für Heizung, Kühlung, Lüftung, Trinkwarmwass er und Beleuchtung - Teil 10: Nutzungsrandbedingun gen, Klimadaten	DIN V 18599-10 Energy efficiency of buildings - Calculation of net, final, and primary energy demand for heating, cooling, ventilation, domestic hot water and lighting - Part 10: Boundary	Standard	Legally required for construction/per mit	[45]

		conditions of use, climatic data			
Hungary (HUN)	7/2006. (V. 24.) TNM rendelet az épületek energetikai jellemzőinek meghatározásáról	Ministerial Decree No. 7/2006. (V. 24.) TNM on the establishme nt of energy characteristi cs of buildings	Code	Legally required for construction/per mit	[46]
India (IND)	Energy Conservation Building Code 2017	same	Code	Legally required for construction/per mit in select states	[47]
	National Building Code of India 2016 Volume 2	same	Code	Legally required for high-rise buildings	[48]
Italy (ITA)	UNI/TS 11300-1 Prestazioni energetiche degli edifici, Parte 1: Determinazione del fabbisogno di energia termica dell'edificio per la climatizzazione estiva ed invernale	UNI/TS 11300-1 Energy performance of buildings, Part 1: Evaluation of energy need for space heating and cooling	Standard	Legally required for construction/per mit	[49]
Netherlands (NDL)	Energieprestatie van gebouwen - Bepalingsmethode	Energy performance of buildings - methodolog Y	Standard	Legally required for construction/per mit	[50]
New Zealand	New Zealand Building	same	Code	Legally required	[51]

Norway (NOR)	SN/TS 3031:2016 Bygningers energiytelse Beregning av energibehov og energiforsyning	SN/TS 3031:2016 Energy performance of buildings Calculation of energy needs and energy supply	Standard	Legally required for construction/per mit	[52]
Singapore (SGP)	Green Mark for Non- residential Buildings	same	Rating system	Point-based; but legally required	[53]
	Code for Environmental Sustainability for Buildings	same	Code	Legally required for construction/per mit	[54]
South Korea (KOR)	건축물의 에너지절약설계기준	Building Design Criteria for Energy Saving (BDCES)	Code	Legally required for construction/per mit	[55]
Sweden (SWE)	BFS 2017:6 - BEN 2 Boverkets föreskrifter om ändring av verkets föreskrifter och allmänna råd (2016:12) om fastställande av byggnadens energianvändning vid normalt brukande och ett normalår	BFS 2017:6 - BEN 2 The Swedish National Board of Housing, Building and Planning's regulations on amendment s to the regulations and general advice (2016:12) on the determinati on of the building's energy use during normal use	Code	Legally required for construction/per mit	[56]

		and a normal year			
	Sveby brukarindata kontor	Sveby standard for the energy use in buildings - occupant input data for offices	Voluntar y guideline	Design guideline, but not legally required	[57]
Switzerland (CHE)	SIA 2024:2015 Raumnutzungsdaten fuer die Energie- und Gebaeudetechnik	SIA 2024:2015 Space usage data for energy and building installations	Standard	Legally required for construction/per mit	[58]
	SIA 380:2015 Grundlagen für energetische Berechnungen von Gebäuden	SIA 380:2015 Basics for energetic calculations of buildings	Code	Legally required for construction/per mit	[59]
	SIA 380/1:2016 - Heizwaermebedarf	SIA 380/1:2016 Requiremen ts for heating	Code	Legally required for construction/per mit	[60]
	SIA 385/2:2015 Anlagen für Trinkwarmwasser in Gebäuden - Warmwasserbedarf, Gesamtanforderungen und Auslegung	SIA 385/2:2015 Installations for domestic hot water in buildings - Hot water demand, overall requirement s and design	Code	Legally required for construction/per mit	[61]
United Arab Emirates/Ab u Dhabi (UAE-1)	Pearl Building Rating System: Design & Construction	same	Rating system	Point-based; but legally required	[62]

United Arab Emirates/Du bai (UAE-2)	Al Sa'fat Dubai Green Building Evaluation System	same	Rating system	Point-based; but legally required	[63]
United States of America (USA)	Standard 90.1: Energy Standard for Buildings Except Low-Rise Residential Buildings	same	Standard	Standard that can be locally adopted as legally-binding code	[64]

2.1 Data collection 155

156 Phase 1 involved collecting quantitative data focused on schedules and densities for occupancy,

157 lighting, equipment, and other internal heat gains. Further information was collected on workplane

158 illuminance requirements, ventilation requirements, heating and cooling setpoints and nighttime

159 setbacks, operable windows, and window shades. Together these represent the common

160 specifications in model/performance-oriented paths of the reviewed building codes.

161 Phase 2 focused on both prescriptive and modelling requirements of building codes that were

provided in the form of sentences. First, contributors were asked specific questions about 162

163 requirements for automation and occupant sensing. These results were analyzed in light of the

164 Phase 1 results to help explain trends and anomalies. Next, contributors were asked to both

165 extensively search for keywords (e.g., occupant, user, occupancy) and read their respective code to

identify implicit references to occupants (e.g., how window shades should be assumed to be used 166

167 and requirements for manual modes of building systems). Contributors were required to provide at

least five instances of occupant-related code requirements (many provided 10 or more to yield a 168

169 total of 167 items); thus, collected data is not exhaustive but provides a wide spectrum of the sorts

170 of occupant-related code requirements and the nature of their specification.

171 2.2 Purpose of the codes

172 All the studied codes are indented to be used for energy performance compliance or rating. Most of 173 the codes' performance target is based on secondary or primary energy use. However, the codes of 174 Italy and Austria are based on heating and cooling energy demand. England's code uses a defined 175 target emission rate and the French code exploits a maximum operative temperature target for a 176 summer day in addition to the energy targets. The UAE documents introduce both energy and water 177 performance targets. The Swedish code requires that measured energy performance be verified

178 against predicted performance 24 months into operations.

2.3 Data analysis 179

180 Phase 1 is focused on a direct comparison of occupant-related design values and schedules. It 181 compares the codes in terms of the magnitude of the values and the granularity of assumptions and

182 modeling methods.

183 Because the open-endedness of Phase 2 is not as comprehensive but rather based on examples, the 184 analysis is primarily qualitative. When analyzing the data, the following questions were considered:

- 185 What building systems are required to be controlled based on occupant presence? 186
 - What aspects of buildings are considered in the context of occupants (e.g., lights)? •
- 187 What terms do building codes use to refer to occupants?
- 188 How simple or complex are occupants treated?

What do building codes assume about occupant behavior and its ability to reduce energy use or improve comfort?

191 3 Results and analysis

192 3.1 Phase 1: Results of quantitative code requirement analysis

193 This section summarizes and compares the quantitative occupant-related assumptions and 194 recommendations obtained from the 23 regions' building energy codes. While some of the reviewed 195 values (e.g., lighting power density) are used for both prescriptive and performance paths of the

196 code, schedules and densities are generally specified because they are intended to be used in the

simulation-based performance path. Note that regions missing from the tables in this section

198 indicates that their code does not specify these values.

- As part of the data collection process, the contributors of this paper provided or paraphrased thecode text specifying the intended application of the densities and schedules. In general, there are a
- few common threads and some disagreements about the details. Of the reviewed codes, it is widely

202 understood and often explicitly stated that the values are not intended/expected to hold true in the

- 203 occupied building, but serve as a standard upon which to make fair comparisons. However, flexibility
- to adjust the schedules varies greatly be country, as discussed in more detail in Section 3.2.4.

205 3.1.1 Occupancy density and use of lights, equipment, and hot water

Assumptions concerning people density, lights and equipment power, and hot water use are the key elements that implicitly represent occupant energy-related behavior in the studied codes. In most of the codes these time-varying parameters are defined with a maximum design value (addressed in the present section) and an associated schedule (see Section 3.1.2).

210 The results, above all, reveal that the design values for the aforementioned aspects of occupant

behavior, which are given in Table 2, differ considerably across the codes. Figure 2 and Figure 3

212 demonstrate that occupancy and lighting power density vary by nearly a factor of three between

213 countries. The variation is more significant for equipment use. This wide range can be seen in Figure

4, as Singapore's code considers 16 W/m² for equipment power density, while Austrian code defines

- $215 \qquad \text{an equipment load of not more than } 2.6 \text{ W/m}^2.$
- 216 Once all data were plotted, the contributors were asked to try to justify the specified occupant
- 217 density of their reviewed code(s) particularly if their region's value is particularly high or low
- 218 compared to the others. The main insight from this retrospective analysis are that two of the highest
- 219 values from Australia and Singapore– originate from egress requirements. These are likely to be
- 220 conservative (i.e., high) given the relative importance of safety and egress. This finding, albeit
- anecdotal, indicates a need for further research for whether it is appropriate to use the same
- 222 occupancy density values for heat gains, ventilation requirements, egress, and other application
- 223 areas.
- 224 Besides the variations in terms of the magnitude of these parameters, the studied codes also reveal 225 different approaches to establish the assumptions with regard to lighting power. While the majority
- different approaches to establish the assumptions with regard to lighting power. While the majorit
- of codes have tried to provide a "reasonable" single value for the lighting power density in office
- buildings, the Swedish code explicitly provides two different values for "efficient" and "very
- efficient" lighting. It also provides different equipment power density values at different occupancy
 levels. The codes used in England and Germany deploy simplified calculation procedures to derive
- the lighting power density based on zone geometry and luminaire efficacy. Hungary's code also
- explicitly considers a reduction factor of 0.7 in case daylight or occupancy sensors are installed.

- 232 ASHRAE Standard 90.1 also reflects the requirement for occupancy sensors by a modification in
- 233 lighting profiles such that the hourly fraction of lighting density reaches 0.65 at maximum. In this
- regard, there seems to be a need for further explicit considerations of manual and automated 234
- 235 control modes and emerging lighting technologies.
- As for hot water use, the codes use several different units, which limits the possibility of a 236
- 237 straightforward comparison. More precisely, occupant use of hot water has been estimated in terms
- 238 of the volume of water or heating energy and has been normalized by floor area or number of
- occupants. It is worth mentioning that, as opposed to occupant use of lights and equipment that is 239
- 240 commonly represented with a power value and an accompanying hourly schedule, hot water use is
- 241 mainly given as an aggregated value of energy or volume over a day or a year.
- 242
- 243
- Table 2: Occupant-related assumptions concerning presence, use of lights, equipment and hot water in office buildings 244 found in the national/regional building energy codes. The units are as specified in the headers unless stated otherwise.

Country	People density or heat gain [person/m ²]	Lighting power density [W/m ²]	Equipment power density [W/m ²]	Hot water consumption [l/(d.m ²)]
AUS	0.10	$9.0, 7.0^2$	15.0	4.0 l/(d.person)
AUT	1.7, 3.3 W/m ²	25.76 kWh/(m ² .a)	1.3, 2.6 ³	9.0 Wh/(m ² .d)
BEL	0.07	6.0	3.0	5.0 MJ/(m ² .a)
BRA	0.10	14.1	9.7	-
CAN	0.04	8.5	7.5	90 W/person
CHE	0.07	15.9	7.0	3.0 l/(d.person)
CHN	0.10	9.0	15.0	5-10 l/(shift.person)
DEU	0.07	n/a ⁴	7.1	0.70
DNK	0.0445	11.0	6.0	0.27
ENG	0.11	n/a ⁶	11.8	0.20
FRA	0.10	-	16.0	0.18
HUN	n/a ⁷	11.0 kWh/(m ² .a) ⁸	n/a	9.0 kWh/(m ² .a)
IND	0.05	10.0	-	-
ITA	1, 0.4, 0.18, 0.07, 0.05 ⁹	-	15.0	0.2
KOR	0.05	15.810	12.910	0.23710
NLD	0.06	-	4.0	65 l/(m ² .d)
NOR	50 Wh/(m ² .d)	9.6	13.1	19.22 Wh/(m ² .d)
NZL	0.07	12.0	8.1	-
SGP	0.1, 0.06 ¹¹	12.0	16.0, 22.0 ¹²	-
SWE	0.05	7.6, 3.2 ¹³	9.0, 6.3 ¹⁴	2/n kWh/(m ² .a) ¹⁵

² Respectively for spaces that require more and less than 200 lux.

⁸ It can be multiplied by 0.7 in case daylight, occupancy or movement sensors are installed. ⁹ The code offers five classes of occupant density for non-residential buildings.

- 12 22 W/m2 for computer-intensive areas

³ Note that the power density values for Austria are considered for 24 hours (not related to occupancy profiles). They are based on the consumption of the ⁴ Lighting power is calculated based on office geometry and other parameters according to a simplified calculation routine referred to as efficiency procedure.
 ⁵ Derived based on stated values of 4 W/m² for internal heat gain by occupants and 90 W/person for metabolic rate.
 ⁶ Power density is calculated based on lighting with efficacy of 60 luminaire lumens per circuit-watt and a regression-based function for zone geometry.

⁷ Internal heat gains from people, lighting and equipment are not specified, only a single value of 7 W/m² is given for all internal heat gains

 ¹⁰ Based on a research effort on reference building energy models for South Korea (Kim et al. 2017).
 ¹¹ 0.1 for admin/general office room, 0.06 for director/manager room.

¹³ 7.6 for efficient lighting, 3.2 for very efficient lighting.

¹⁴ The given value is based on estimated average power of medium level. 9.0 and 6.3 is for 100% and 70% occupancy respectively. ¹⁵ η is the annual efficiency of hot water production.

UAE-1	0.05	8.7	8.1	-
UAE-2	0.05	10.0	-	-
USA	0.054	11.06	8.1	4.16 l/(d.person)

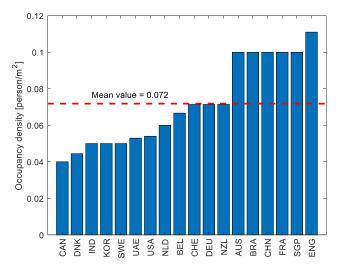


Figure 2: The values of occupancy density for offices given in national building energy codes

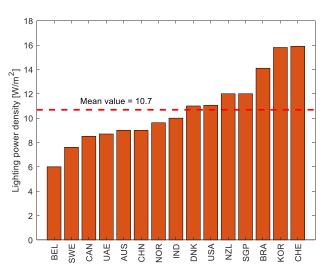


Figure 3: The values of lighting power density for offices given in national building energy codes

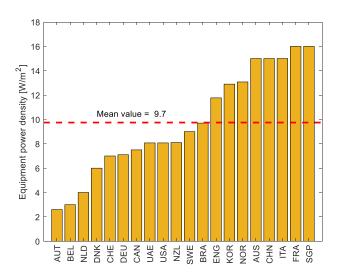
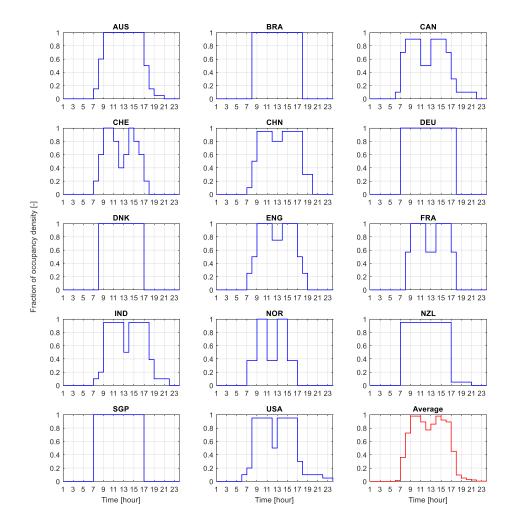
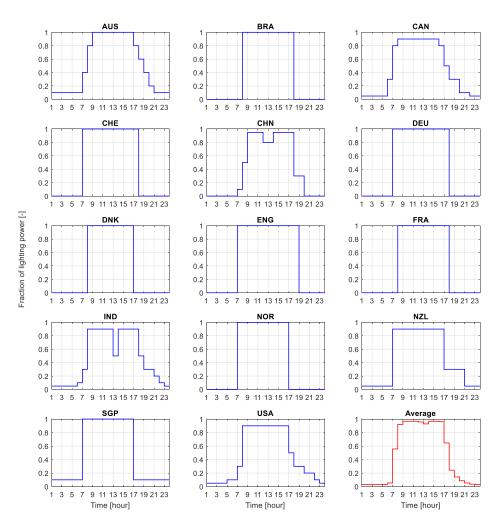


Figure 4: The values of equipment power density for offices given in national building energy codes

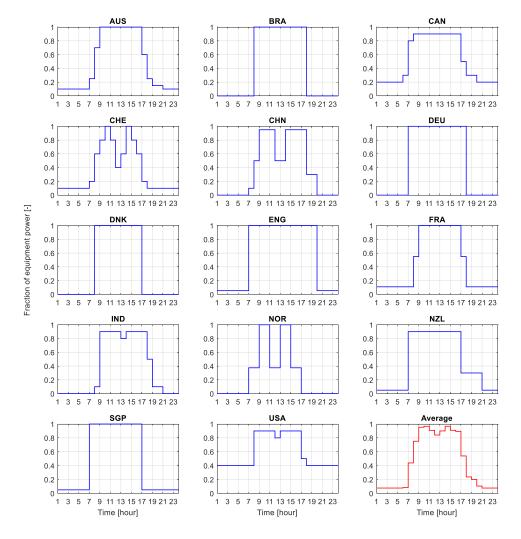

253 3.1.2 Hourly schedules for occupancy and use of lights and equipment

254 Among the 23 regions' reviewed codes, 11 (i.e., Australia, Brazil, Canada, China, England, France, 255 India, Norway, New Zealand, Singapore, Sweden, and USA) are based on dynamic performance 256 simulation – or at least have the option to use it for compliance. These codes require –and in most 257 cases provide-hourly schedules for occupancy, use of lights and equipment (and in some cases for 258 service hot water). Switzerland and Norway also provide such hourly profiles, even though they use 259 monthly heat balance calculations. The other codes, which are based on a monthly calculation 260 frequency (e.g., Germany and Denmark), only consider a Boolean pattern for nominal working hours 261 and otherwise. Figure 5 to Figure 7 illustrate the weekday schedules for occupancy density, lighting 262 and equipment obtained from those codes, which either offer a dynamic simulation path or explicitly 263 consider hourly patterns on working days. Tables A.1, A.2 and A.3 provide the hourly values of these 264 schedules.


265 The collected hourly profiles suggest that the cross-country variety in schedules is not as 266 considerable as design values. Nonetheless, there are still a number of notable differences between 267 the codes in terms of the hourly profiles associated with occupants, which are likely to result from 268 different working cultures in the countries. For example, as illustrated in Figure 7, one can see the 269 variety in view of the equipment base load outside nominal working hours. As it can be seen in Table 270 A.3, this can vary from zero in case of Brazil to 40 percent of design value in case of USA. Notably, 271 the transition to and from nominal working hours is also different among the codes. While in the 272 majority of simulation-based codes, it takes one to two hour to reach maximum occupancy in the 273 morning, the codes of Brazil, New Zealand and Singapore jump from fully vacant to fully occupied, 274 which has implications for heating and cooling demand estimations. Similarly, while in a number of 275 codes there is a clear separation between the nominal working time and following hours, in other 276 codes the occupancy and associated load lasts until late evening. In a rather odd case, England's 277 equipment schedule used in this study (referred to as Office OpenOff Equip Wkdy in NCM 278 database) suggests 100 percent equipment load from 17:00 to 19:00, while according to the 279 corresponding occupancy profile (referred to as Office_OpenOff_Occ_Wkdy in NCM database) 280 people density is assumed to be 50 and 25 percent in this period.

Another noteworthy difference is the way in which the codes treat lunch break. A number of
 countries' codes (such as Australia, Brazil, New Zealand and Singapore) do not suggest any reduction

- in terms of occupancy density and associated light and plug loads for this period of the day.
- However, USA and India codes, for example, suggest a reduction of 45 percent of maximum
- 285 occupancy density during lunch break. India code maintains this reduction for the lighting load as
- well. The contributor of the French code noted that a formal lunch time (out of the office) is a
- widespread practice in France, though notably eight of the 11 schedules suggest that this practice isprevalent.
- Aside from the abovementioned differences, it is important to note that all the occupancy profiles
- reach 90 to 100 percent of the maximum occupancy density. While previous studies [65, 66]
- 291 underlined this as an overestimation of actual occupant patterns, the codes unanimously adopt this
- 292 conservative (perhaps system-sizing oriented) approach.
- 293 Despite the diversity of schedule shapes, the daily sums (which can be interpreted as the daily
- number of people-hours, equipment-hours, and light-hours) are relatively consistent across the
- reviewed codes. The means and standard deviations for occupancy, lighting, and equipment are 9.0
- \pm 1.1 hours, 10.6 \pm 0.8 hours, and 10.4 \pm 1.9 hours, respectively. It might be expected that the daily
- 297 hours and corresponding densities would be negatively correlated to yield consistent values for
- 298 occupant-hours/m² and Wh/m² for lighting and equipment. However, this was not found to be the
- 299 case (the R² values for these correlations are near-zero). Thus, the schedules and densities would
- 300 appear to be derived separately without a daily target in mind.
- 301


303 Figure 5: The schedules of weekday occupancy for offices given in national building energy codes and the average schedule

304

305

Figure 6: The schedules of weekday lighting power for offices given in national building energy codes and the average schedule

307

Figure 7: The schedules of weekday equipment power for offices given in national building energy codes and the average
 schedule

310 3.1.3 Lighting level, ventilation rate, setpoint and setback temperatures

While the studied building energy codes, above all, treat occupants as sources of internal heat gain
for the heat balance calculations, to some degree they consider the occupant needs in terms of
indoor environmental conditions. The main examples are recommendations with regard to
ventilation rate and the workplane illuminance along with the heating and cooling setpoint and
setback temperatures, which implicitly consider occupant thermal preferences (see Table 3). This,
however, does not constitute a consideration of the interactions between occupant and control
system as a result of different environmental conditions.

The 22 countries considered in the study mainly recommend a desk illuminance of 300 to 500 lux. In the French building code, the lighting power is not a conventional input value but it is decided by the modeler and needs to meet the minimum requirements set in the French Labour Code [67], which prescribes 120 lux as the minimum desk level illuminance. Such a value, given the current screenbased nature of office activities, can potentially reduce electrical energy use without compromising occupant visual comfort. Among the codes that recommend a ventilation rate per person, this varies from 6 l/(s.person) in Belgium to 11 l/(s.person) in Italy.

- 325 While none of the codes explicitly considers occupants interactions with thermostats, cooling
- 326 setpoint temperature varies from 23°C in Sweden to 28°C in South Korea and heating setpoint

- 327 ranges from 18°C in Australia (as the allowed minimum) and India to 22°C in Austria, Canada and 328 England. Many codes do not consider a setback temperature (no value in the corresponding columns 329 in Table 3), while others represent an automated adjustment of the setpoint for some degrees or do not assume any heating or cooling outside working hours (specified as off in the corresponding 330 331 columns in Table 3).
- 332 A number of countries have further considerations for setpoint and setback temperatures. For
- 333 example, Belgium code considers a temperature setback only in low inertia buildings. The French
- code offers two heating setback temperatures, namely 16°C for off-periods shorter than 48 hours 334
- 335 and 7°C for off-periods longer than 48 hours. Singapore code also considers two cooling setpoints,
- 336 23°C for zones with solar gain and 25°C otherwise.
- 337
- 338
- 339

Table 3: Occupant-related recommendations and assumptions concerning lighting level, ventilation rate, heating and cooling setpoint and setback temperatures. The units are as specified in the headers unless stated otherwise.

Country	Recommended desk illuminance [lux]	Recommended ventilation rate [l/(s.person)]	Cooling setpoint [°C]	Heating setpoint [°C]	Cooling setback [°C] ¹⁶	Heating setback [°C]
AUS	320	10	26.017	18.0	off	off
AUT	380	1.05 1/h	26.0	22.0	off	off
BEL	500	6	25.0	21.0	2818	1518
BRA	500	7.5	24.0	-	off	-
CAN	400	8.5	24.0	22.0	off	18.0
CHE	500	10	26.0	21.0	off	off
CHN	300	8.33	26.0	20.0	off	off
DEU	500	1.8 l/(s.m ²)	24.0	21.0	off	17.0
DNK	300	7	25.0	20.0	off	-
ENG	400	10	24.0	22.0	off	12.0
FRA	12019	7 ²⁰	26.0	19.0	30	16, 7 ²¹
HUN	-	7	26.0	20.0	-	-
IND	300-500	8.5	26.0	18.0	-	12
ITA	300	11	26.0	20.0	-	-
KOR	-	8.05	28.0	20.0	-	-
NLD	-	1.3 l/(s.m ²)	24.0	20.0	off	18.0
NOR	-	1.94 l/(s.m ²)	24.0	21.0	-	19.0
NZL	400	10	24.0	20.0	-	-
SGP	500	0.6 l/(s.m ²) ²²	$23.90, 25.0^{23}$	-	off	-
SWE	300-600	1.3 l/(s.m ²)	23.024	21.0	-	-
UAE-1	250	8.5	23.9	-	26.7	-
UAE-2	400	8.5	24.0	-	-	-
USA	300-500	8.5	23.9	21.1	26.7	15.6

¹⁶ Off indicates that the mechanical cooling system is turned off and the setpoint is effectively ignored.

 ¹⁷ The temperature must be between the heating and cooling setpoint for 98% of operation time.
 ¹⁸ The given value is for low inertia buildings. For high inertia buildings no heating or cooling setback temperature is assumed.

¹⁹ This is the minimum desk illuminance prescribed by the French Labour Code.

 ²⁰ This is the minimum ventilation rate prescribed by the French Labour Code.
 ²¹ 16 for off periods less than 48 hours, 7 for off periods more than 48 hours.
 ²² Maximum of 0.6 l/(s.m²) and 5.5 l/(s.person).

²³ 23 for zones with solar gain, 25 for other zones.

^{24 23} and 21 are the minimum setpoints

341 3.2 Phase 2: Results of qualitative code requirements

342 This section compares and contrasts the countries' codes regarding how occupant-related

343 requirements are specified and the underlying philosophies. The results are presented according to

344 the questions in the methodology section. For readability, the country is named rather than the

- 345 specific building code name as per Table 1. For the first question below, contributors were asked to
- 346 choose from a list of options (or specify) their code requirements for occupancy, plug-in equipment,
- 347 HVAC, and operable window control. For the open-ended question that asked contributors to
- 348 provide any occupant-related specifications, 167 examples were provided. Because these examples
- 349 are non-exhaustive, quantitative analysis could not be performed.
- 350 3.2.1 What building systems are required to be controlled based on occupant presence?

The closed-ended survey for Phase 2 yielded the results that are summarized in Table 4. Note that 351 352 the current focus is on categorizing the codes requirements into broad categories, while the 353 following sections analyze the details in greater depth. The results do not appear to strongly correlate to the values from Phase 1. For example, the countries with the highest allowable lighting 354 355 power density (e.g., Brazil, South Korea, and Switzerland are all above 14 W/m²) do not typically 356 have more stringent lighting control requirements than the others. The situation is similar for demand-controlled ventilation, where the codes requiring the highest ventilation rates are not 357 358 necessarily more likely to require demand-controlled ventilation (DCV). Correlations aside, Table 4 359 shows significant room for improvement with regards to mandating occupancy-based controls to 360 help reduce energy wastage when occupants are not present. While contributors were asked about 361 occupancy-based receptacle control (e.g., smart plugs), only the American codes was reported to 362 require this (further details in Section 4.1).

Table 4: Summary of code requirements for the occupancy-related automation of lighting, plug-in equipment, HVAC, and
operable windows

Country	Occupancy-based lighting controls requirement	Occupancy-based HVAC controls	Operable window automation or sensing
AUS	Vacancy-off /daylight-controlled	Vacancy-off	Allowed; not controlled
AUT	Vacancy-off/daylight-controlled	DCV is credited	For mechanical ventilation,
BEL	Vacancy-off /daylight-controlled	DCV is credited	None
BRA	Vacancy-off /daylight-controlled lighting is credited, but not required	DCV is credited	None
CAN	Vacancy-off /daylight-controlled	DCV is credited	None
CHE	Vacancy-off /daylight-controlled	None	None
CHN	Vacancy-off /daylight-controlled	None	None
DEU	Daylight-controlled in the reference building	DCV in reference building	None
DNK	Daylight-controlled	None	None
ENG	Vacancy-off /daylight-controlled lighting is credited, but not required	DCV is credited	None
FRA	Vacancy-off /daylight-controlled		pancy sensors or window sensors as a olo input
HUN	None	None	None
IND	Vacancy-off /daylight-controlled	DCV required for large densely- occupied spaces	None
ITA	Vacancy-off /daylight-controlled	DCV is credited	None
KOR	Vacancy-off /daylight-controlled	DCV is credited	None
NLD	Vacancy-off /daylight-controlled	DCV is credited	None
NOR	None	DCV is credited	None
NZL	Manual, automated, or both	DCV is credited	None
SGP	Vacancy-off /daylight-controlled	DCV is credited	None
SWE	Vacancy-off /daylight-controlled	DCV is credited	None

UAE-1	Vacancy-off	DCV is credited	None
UAE-2	Vacancy-off	DCV required for large densely- occupied spaces	None
USA	Vacancy-off /daylight-controlled	DCV is credited	None

366 3.2.2 What aspects of buildings are considered in the context of occupants?

The vast majority of the collected occupant-related code requirements involve HVAC equipment,
lights, and window blinds/shades. Other occasional mentions include escalators and moving
sidewalks, water use, and plug/receptacles loads. Very few requirements address details of manual
systems, such as usability, nature of interface, and required feedback to occupants (e.g. energy
dashboard).

372 3.2.3 What terms do building codes use to refer to, or imply, occupants?

Overall, there is minimal explicit mention of occupants in the building codes reviewed. Numerous 373 374 contributors stated that they struggled to find just five mentions of occupants in their respective 375 building energy code. Most of the occupant-related requirements relate to whether the building is 376 occupied or not, occupancy sensors, and the degree to which building systems (HVAC and lighting, 377 primarily) should be manual or automated. For example, many countries' codes specify that certain 378 HVAC equipment (e.g., air conditioners) or lighting must be capable of being manually turned off or 379 adjusted. The lack of explicit mention of occupants is likely rooted in the fact that building codes 380 specify design and technology requirements rather than occupant requirements.

- 381 3.2.4 How simple or complex are occupants treated?
- 382 In contrast to recent international collaborative efforts [e.g., 9], all reviewed building energy codes
- 383 treat occupants in very simplistic ways though to varying degrees. The predominant methods are
- 384 listed below, followed by examples and discussion.

Assume the system (e.g., window shade) is not used at all. This method is particularly common for 385 386 window blinds/shades; according to some building codes (e.g., Canada, India, New Zealand), blinds 387 shall not be modeled (i.e., they are modeled as fully open). This may either because shade use is 388 considered too uncertain or reliant on occupants or because shade system selection is not 389 considered part of the code – both of which are unfortunate considering their impact on energy and 390 comfort. It may also be aimed at providing a conservative assumption for cooling-dominated 391 climates. Models to predict shade use are relatively mature and shade fabric selection is important 392 for solar gains control and visual comfort [68, 69].

393 Assume the system is partially used. Recognizing that the above assumption is unrealistic as per 394 numerous field studies [70, 71], several codes use a more typical and moderate approach. In the 395 French code, shades and windows can be either automated or manually controlled. When they are 396 automated, during occupied hours, occupants can override the automatic operation of shades and 397 windows. Hence, it is assumed that a given percentage of windows and shades are always manually 398 operated. In the code it is written that this percentage depends on behavioral and building 399 contextual factors (such as accessibility of the windows). Hungary requires that the mean properties 400 for shades open and closed be used to model windows. The USA does the same for manually-401 controlled dynamic glazing (e.g., electrochromic windows). In Austria, the code allows users to 402 decide whether occupants predictively or reactively adjust shades to address thermal discomfort. In

403 the former case, the shade is assumed to be 50% closed, whereas the latter is 25% closed.

Furthermore, instead of assuming the shades open or closed, the Swedish codes introduce the factorof the shade to be 0.71 for the manually controlled condition related to the user behavior.

406 Provide fixed credit depending on the level of manual or automation of systems (e.g. lighting). 407 Numerous codes (e.g. Australia, Norway, Singapore, USA, Canada) give credit through prescriptive 408 and/or performance paths to motion sensors that control lighting. Such credit is normally assigned 409 as a decrement to the full lighting energy or power density. Belgium gives credit to annual lighting 410 energy if a control system is present; however, it gives four times as much credit for automatic 411 control (40%) versus manual switching (10%). Australia allows a 30% reduction in modeled lighting 412 power density if a motion detector is linked to a zone of three to six luminaires and 45% reduction if 413 it is one or two luminaires. Norway gives 20% credit if lighting is automatically controlled by daylight or occupancy. Singapore defines a power saving factor of 15% for lighting system with occupant

414 or occupancy. Singapore defines a power415 sensing control.

416 Schedules and densities for the performance path. As evident from Phase 1, schedules and 417 densities are a common approach to specify occupancy and behavior for performance paths of 418 codes. However, the flexibility of modifying schedules varies widely. For example, for Canada, India, 419 and the US, the schedules can be modified if better information is available, but all values must be 420 equal for the reference and design buildings. In fact, NECB states the default schedules should only 421 be used if "more accurate information is not available". In contrast, New Zealand's code requires 422 that default values be used unless a different schedule can be justified as being likely for the 423 building's life. NECB also states "the reference building's operating schedules shall be modeled as 424 being identical to those determined for the proposed building". For the American and Canadian

425 codes, the schedules of the proposed building can only differ from the reference building schedules
426 if used to model efficiency measures (e.g., automated lighting controls)

427 Rule-based operation of equipment. Relatively few codes have this more advanced form of 428 occupant modeling, where occupant behavior depends on indoor or outdoor conditions. For the 429 French code, occupants are assumed to keep the windows open even if the outdoor air temperature 430 is higher than the indoor air temperature. Interestingly (and quite realistically [72]), window opening 431 is assumed to be affected by noise, depending on the nature of, distance to, and obstruction of the 432 noise source. In the American code's building envelope trade-off option, shades are assumed to be 433 closed when the transmitted luminous intensity is exceeds 2000 cd/m^2 or the direct solar transmitted energy exceeds 95 W/m²; they then remain closed for the rest of the day (which 434 435 incidentally corresponds to the Lightswitch-2002 model [69]). In contrast, for the French code, 436 manual shade positions are assumed to vary linearly with the incident light and depending on the 437 type of shade (shutter, roller blind, venetian blind), on the season (winter, mid-season and summer), 438 on the indoor air temperature in the previous time step and on the wind speed (for the case of 439 venetian blinds). France also assumes lights are controlled linearly with daylight levels. The English 440 code requires the reference building to have natural ventilation modeled such as to yield up to five 441 air changes per hour if the indoor temperature exceeds the heating setpoint by 1°C. This 442 requirement is intended to produce a neutral effect that is neither overly adverse nor beneficial.

3.2.5 What do building codes assume about occupant behavior and its ability to reduceenergy use or improve comfort?

445 The degree to which the reviewed codes imply an expectation that occupants will behave to save 446 energy varies greatly between countries. Some countries credit occupants for behaving in ways that 447 improve comfort or energy performance, while others assume occupants cannot be relied upon. To 448 some extent, this range is appropriate considering the severity of the climates they cover. 449 Several codes provide explicit statements on their philosophy regarding occupants. For example, the 450 National Energy Code of Canada for Buildings (NECB) takes a strict stance that occupants cannot be relied upon to improve energy performance: "provided it...is not dependent on occupant behavior". 451 452 In a less direct way, the American code gives a similar message: "In no case shall schedules differ 453 where the controls are manual (e.g., manual operation of light switches or manual operation of 454 windows)." The North American approach has a tendency to reward greater levels of automation 455 rather than providing features such as manual operable windows and blinds that are understood to 456 improve perceived control and comfort [e.g., 73]. The German code states that boundary conditions 457 related to occupants and the associated operations are aimed at neutral evaluation for the sole 458 purpose of determining energy demand. The Swedish code states that energy calculation should be 459 carried out based on the actual conditions and be verified with the measurement during user stage. 460 Similarly, the Indian code acknowledges that actual energy use depends on occupant behavior and 461 other factors that cannot be controlled for during design. France's code states that the provided 462 schedules are as close as possible to average conditions, but that they cannot be expected to predict 463 energy consumption during the operating phase of the building.

464

The English code also indirectly provides some hints at the underlying philosophy: "A centralised switch would be more reliable than depending on each individual occupant to, for example, switch off their computer." In a more specific example, for the performance path, the Canadian, Australian, and American codes alike do not allow window shading devices to be modeled favorably (or at all) unless they are automated. This stance may be as a result of the concern that building owners are motivated to inflate predicted performance [74]; occupants are not only uncertain but their positive behavior is difficult to disprove. For other codes, the target appears to be more realistic (e.g.

- 472 partially closed shades discussed in the previous section).
- 473 France's code credits occupants with saving energy, as it assumes manual systems are allowed to be 474 controlled quite effectively. For instance, it assumes window shades are controlled linearly with 475 respect to indoor illuminance, which is quite optimistic considering that shades often remain closed 476 for days or weeks after they are initially closed (O'Brien et al. 2014). It also mandates that operable 477 windows be closed below 8°C outdoor air temperature and increased open opening linearly till 16°C, 478 when the windows are fully open. Windows are only to be opened when mechanical cooling is off, 479 whereas in reality occupants may leave windows open regardless of the mechanical system status. 480 However, for heating systems, a window contact sensor must be provided (presumably to ensure that heating is deactivated or turned down if a window is open). 481

482 Numerous reviewed building energy codes (e.g., China, India, USA) require occupancy sensing to 483 turn off devices, thus implying a certain level of distrust (though realism) that occupants will turn it 484 off prior to departure. Similarly, Brazil, Canada, the UAE, and the USA require motion sensors that 485 turn lights off if a space is unoccupied. Canada's code gives some credit to occupants exploiting 486 daylight, but still favours automation: "Research shows that, where a manual control is installed, the 487 human eye acts as the photosensor and occupants take it upon themselves to lower electric lighting 488 levels if sufficient daylight is available. However, manual controls are not as effective a means to 489 save energy as automatic ones."

490

To require or disallow occupants to override automation systems indicates whether the code expects occupants to behave in such a way to save energy. For example, the Indian code does not allow daylight-based lighting controls to be overridden by occupants. In contrast, the Danish code requires that occupants be able to override automated motorized windows. Similarly, the French code requires occupants to be able to override automated window shade controls. The Canadian and American codes allow overrides for various scheduled HVAC and lighting control modes, but the 497 overrides are limited to one or two hours (after which they must be reset), depending on the498 instance.

499 4 Discussion

500 In general, the results of both phases of the research above indicate that occupant-related code 501 requirements are quite simplistic. However, they vary greatly with regards to magnitudes (e.g. 502 occupant density and schedule), simplicity (e.g. fixed schedule vs. dynamic models), crediting 503 occupant for energy savings, and scope. In this regard, it is important to note that one does not 504 expect identical assumptions and modeling approaches with regard to occupants. On the contrary, 505 from the authors' view, it would be ideal if each code reflects the unique culture in its country, while 506 improving standardization and consistency where such differences are not merited. This could, for 507 example, be achieved through an international committee (e.g. the IEA EBC Working Group on 508 Building Energy Codes) as a follow-up to this paper. For some of the current codes' quantitative 509 assumptions such as occupancy density or working hours, it is not surprising to see a large degree of 510 variation across the codes commensurate with cultural, technological, and other contextual factors. 511 However, without knowledge of the empirical basis behind the codes, the present study does not 512 aim to explain the differences between the codes, but to put to the codes' approaches and 513 assumptions in an international context to identify possibilities for improvements in future efforts.

514 The remainder of this section is forward looking and provides broader insights by reviewing some 515 innovative code requirements, and also providing a series of potential areas for improvement to all 516 codes.

517 4.1 Unique occupant-related code requirements

As an extension to Phase 2, this section highlights code requirements that were found to be unique and relatively demanding regarding occupants – and could be considered for future codes. The authors do not claim these are effective or more important than more fundamental requirements (e.g., schedules).

522 Personal or high-resolution day/lighting and HVAC control. Several of the codes restrict the control 523 zone size or area affected by HVAC and day/lighting systems to: 1) reduce the impact that one 524 occupant has on another and 2) reduce energy wastage in partially or unevenly occupied buildings. 525 Many codes (e.g., Australia, Canada, France, USA, and Brazil) restrict lighting control zones to reduce 526 the frequency of having partial or low occupancy but lights on. A seemingly unique requirement to 527 UAE-1 is the requirement that internal window shades be no wider than four meters and directly 528 controllable by occupants. This helps to ensure that occupants can somewhat personalize the level 529 of daylight and glare they are subjected to. China requires that dissimilarly occupied spaces not be 530 served by the same constant air volume (CAV) system. In Denmark, the compliance documentation 531 must explain how individuals are provided with control via readjustment of diffusers for personal 532 ventilation, temperature setpoint, operable windows, and the size of control zones and potential 533 impact on other occupants. The Canadian code offers interesting insights: "Furthermore, occupants 534 are much more likely to use manual controls if they have sole responsibility for a space than if they 535 share a space: the [daylighting credit given for manual lighting controls in daylit spaces] for private 536 enclosed offices is therefore [five times] higher than for other space types with manual controls." 537 These requirements about spatial scope of controllability are particularly critical as we begin to 538 recognize the diverse nature of individual occupant's schedules and preferences for indoor 539 conditions [75, 76].

- 540 Usability. There is a limited mention of usability among the reviewed code requirements. A recurring
- requirement for numerous countries (Canada, US, and New Zealand) is that lights be visible from
- 542 where they are controlled (e.g., from the light switch) unless safety would be at risk. This ensures
- that occupants are aware of the lights that they are controlling and are also more cognisant of
- leaving them on upon departure. In Denmark, indoor thermal conditions are required to be
- 545 controlled in a simple way. Moreover, if one occupant can negatively affect another's thermal
- 546 comfort, the range of controllability must be limited.
- Demand controlled ventilation. Numerous codes (e.g., Canada, Germany, UAE, USA, Austria) require 547 548 demand-controlled ventilation, though it is often limited to high-density and relatively large spaces 549 (see Section 3.2.1). For instance, the American code requires DCV in spaces larger than 50 m² and 550 occupant densities above 0.25 person/ m^2 (much higher than offices). In light of higher occupancy 551 variations than the code schedules (see Section 3.1) imply, DCV is often much more effective than 552 predicted [26]. In Switzerland, the regular occupancy schedule in private and shared offices is to be reduced by 20%. This is sensible (and perhaps not enough), considering various monitoring studies, 553 554 showing private offices are typically occupied only 50% as much as office building schedules would
- 555 suggest [77].
- 556 **Occupancy-controlled lighting.** Several of the codes (e.g., Canada, USA) have strict rules against
- 557 occupancy-on lighting controls (i.e., motion sensors tied to automatically turning on lights). This is
- 558 particularly important for daylit spaces. Significant evidence [e.g., 78] shows that occupants are
- unlikely to turn on lights even if there is daylight illuminance that is an order of magnitude lower
 typical recommended levels. Gilani and O'Brien [79] measured 62% energy savings when occupancy-
- typical recommended levels. Gilani and O'Brien [79] measured 62% energy savings when occupancy-on lighting controls were replaced with manual-on lighting controls in perimeter offices. These same
- 562 codes require lights to be automatically turned off after 20 minutes of absence.
- 563 Receptacle control. Unique to the reviewed code requirements, the USA code requires centralized 564 receptacle control. The requirement requires that at least half of receptacles in offices be turned off 565 on a schedule or occupancy basis. Considering the growing share of plug loads in building energy 566 end-use breakdowns, this appears to be an appropriate requirement. However, future research is 567 required regarding occupants requiring remote desktop access and their ability to simply plug 568 equipment into uncontrolled receptacles [80].
- 569 Occupant engagement. Several of the reviewed codes are quite progressive regarding occupant engagement and feedback. In the case of UAE-1, designers can earn credits for demonstrating 570 "sustainability communication" actions. These include developing a guide for how to use and 571 572 maintain the building, which covers: description of energy and water efficiency features and how 573 occupants affect them; information on the building's indoor environmental quality (IEQ) and how it 574 is measured and managed; materials and their environmental and social considerations; waste 575 management strategy; recommendations for tenant fit-ups (e.g., lighting) and, details on availability of public transportation and bicycle facilities. Moreover, they must also provide a written plan for 576 577 distributing the handbook to occupants. Additional credits can be earned by demonstrating the use 578 of digital dashboards, or the equivalent, to provide feedback to occupants about building energy use 579 and how they affect it. Documentation must be submitted at the time of code compliance to show 580 such digital interfaces and how they affect user experience. As for the UAE-2 code, the highest 581 certification level (gold) requires the building operator to develop and provide a clear mechanism for 582 promoting sustainability awareness among building users and rationalize the consumption of energy and water in the building. A similar approach is proposed by the Singapore Green Mark Scheme. A 583 584 total of three points are allocated to the User Engagement indicator, which refers to the provision of 585 building user guide, sustainability awareness and education program, and other related information.

587 4.2 Approaches to advance building codes

588 This section proposes six categories of methods to improve the occupant-related aspects of building

589 codes, building upon work of O'Brien, Ouf, Gunay, Gilani, Abuimara and Abdelalim [81]. As

590 previously discussed, the benefit of new code requirements must outweigh the costs. Key

considerations include ability for code users to meet requirements, ability to enforce requirements,
 cost to comply, and potential negative impacts on policy and other unintended consequences. The

following approaches are approximately in the order of simplest to more complex.

594 4.2.1 Add prescriptive requirements based on the literature

595 Prescriptive requirements, such as Canada and the USA's requirement that occupants can see the 596 luminaire(s) that light switch control, are most suitably added as prescriptive requirements. Such 597 subtleties are difficult to model in building simulation. Additional areas that would be suitable for 598 prescriptive requirements include usability of buildings and interfaces, occupant feedback, control 599 zone sizes, requirements for window shades and operable windows, etc. To a large extent evidence 600 and justification for new code requirements could be obtained from the literature, though likely 601 focused studies are required as well.

602 4.2.2 Add prescriptive requirements based on occupant simulation studies

603 Similar to the point above, new prescriptive requirements could be added on the basis of simulation 604 studies. For example, maximum lighting and HVAC control zone size requirements could be re-605 evaluated on the basis of more realistic contemporary office occupancy scenarios. These 606 requirements should include both system (lighting, HVAC, envelope, etc.) parameters as well as the 607 technologies and configurations enabling them to be operated efficiently (e.g., demand-controlled 608 ventilation, occupancy-based lighting). For instance, O'Brien and Gunay [26] used stochastic 609 occupancy modelling to evaluate the impact of lighting control zone size, and consequently 610 recommended that lighting control zones be reduced by a factor of five. Given the relatively 611 advanced nature of stochastic occupant models, additional prescriptive requirements could be 612 added to cover other domains, such as lighting, window shades, operable windows, receptacles, 613 thermostats, etc.

614 4.2.3 Update schedules based on new field studies

615 While advanced occupant modelling may be beyond the comfort of code committees, schedules 616 already exist in the majority of building codes (as indicated by Phase 1). Accordingly, schedules are a 617 relatively low-risk/low-effort way to update building codes. It is widely accepted that existing 618 schedules are generally not very realistic and quite outdated (e.g., by three or more decades [82]). 619 For example, occupancy is typically much lower than schedules indicate [77]. Societal trends, such as 620 remote working, are expected to further increase this discrepancy, though this may be somewhat 621 balanced by hotelling-style office management [83]. Similarly, plug loads tend to be lower during the 622 day (perhaps because of lower occupancy) and higher during the night than schedules would 623 indicate [84]. While some extensive field studies have been performed to yield new schedules, 624 further studies [e.g., 85] should be performed in different building types and climates to build 625 confidence in these schedules. Moreover, new building automation and sensing technologies (some 626 of which are conveniently required by code, e.g., ASHRAE [15]) should be employed for such studies

627 to reduce costs and improve study size and duration.

4.2.4 Develop schedules that cover a greater scope of occupant behavior based on detailedsimulation studies

630 Existing schedules tend to focus on non-adaptive occupant domains (e.g. occupancy, plug loads) and 631 water, thermostat setpoints, and general lighting. However, window shades, operable windows, and 632 other adaptive opportunities are generally absent by means of schedules. It would be feasible to 633 build climate and building-specific schedules by running simulation studies that involve advanced 634 occupant models. For example, Ouf, O'Brien and Gunay [86] showed that semi-customized lighting 635 and window shade schedules could be built by running numerous annual simulations. They used a 636 decision tree and clustering to reduce simulation results to three different schedules: low, medium, 637 and high.

4.2.5 Require multiple occupant scenarios to be simulated to better represent a range ofpossibilities

An argument for using fixed and mandated schedules in building energy codes to model occupants is
that while there is uncertainty about occupants, at least this approach can offer consistency [24].
However, this approach risks causing designers to optimize buildings for one set of occupant
assumptions, while neglecting other scenarios (e.g., low and partial occupancy) [26]. Moreover,
occupants and tenants may change over the course of a building, given that buildings often outlast

- the life of a company, its employees, and the technologies they use. One approach to address thisuncertainty is to mandate that several occupancy and occupant-related scenarios be modeled and
- 647 then set constraints on the aggregate performance (e.g., the proposed building model must perform
- 648 better than the reference building model for three different occupancy scenarios).
- 649 4.2.6 Specify the occupant modeling approach required

650 Finally, occupant-related requirements could be updated by mandating more advanced occupant modelling approaches. In particular, we recommend modelling approaches that demonstrate the 651 652 adaptive nature of occupants and that recognize that better building design can positively affect 653 energy-related occupant behaviors. This could be particularly applied for key adaptive behaviors, 654 such as operable windows, window shades, lighting, and thermostats. While not covered by the 655 reviewed codes and standards, a notable example IES LM 83-2012 [68], which mandates that 656 window shades be closed whenever a point on the workplane exceeds 1000 lux. Such rules would 657 reward buildings with appropriately-sized windows and strategically-designed fixed shading that 658 transmits comfortable levels of daylight.

659 While much of the recent scientific literature is focused on stochastic occupant models [e.g., 87, 88], 660 we argue that they are not suitable for building energy code purposes – at least for the foreseeable future. Stochastic occupant models yield a different result every time a simulation is run, which 661 662 causes complexity when performance paths of building codes rely on single simulations. Moreover, the definition of these models (which usually involves a model form and coefficients) are not 663 664 particularly transparent or easy to enforce, unlike basic rules-based models. Despite the trend 665 towards agent-based stochastic models, the collected data that was used to build those models 666 could also be re-used to develop simple rule-based models.

667

668 4.3 Adding requirements for building usability

669 One of the most notable omissions is requirements for occupant usability of buildings and their

- 670 systems. In particular, this topic includes usability of interfaces (e.g., occupant instructions,
- 671 feedback, location of interface, nature of interfaces). Usability may not appear to be energy-related,
- but it plays an important role in how occupants use energy in buildings [89]. While this is a gap in

building energy codes, several rating systems (e.g., WELL, LEED) have addressed usability to some
extent. These requirements could be incorporated into building energy codes, as they certainly

- 675 indirectly affect energy. Some example requirements or items for credit in these standards include:
- "Indicator lights at windows and/or online notifications signal to regular building occupants when outdoor air allows for open windows (with various IAQ and temperature conditions)"
 [90]. This requirement improves usability by providing cues to occupants about
- 679advantageous window opening actions, while still providing individual control to occupants680[91].
- "All operable windows in regularly occupied spaces comply with the following requirements:
 - Provide enough space to permit occupants to approach and operate them (from both a standing and seated position).
 - Are operable with one hand and with a closed fist and do not require tight grasping, pinching or twisting of the wrist.
 - Require less than 22 N [5 lbs] of force to open [90]."
- 687This requirement ensures that operable windows are not only provided to meet conditions688but that they are usable even by occupants who are constrained to wheelchairs [92].
- "All regular building occupants have control over temperature through either:
- 690

682

683

684

685

686

691

692

- Thermostats present within the thermal zone.
- Digital interface available on a computer or phone [90]."
 This requirement acknowledges the importance of personal control over temperature due to
- 693both the value of perceived control and the inter-occupant differences in preferences for694thermal conditions [93]. Note that many of field implementations of occupant-centric695building control studies are focused on bringing occupants back in the control loop [94].
- "In all regularly occupied and shared spaces within the same heating or cooling zone, regular 696 • 697 building occupants have access upon request to personal thermal comfort devices (e.g., 698 personalized fans, heated/cooled chairs, and others, except combustion-based space 699 heaters) that provide individual user control of air speed, air temperature and/or mean 700 radiant temperature" [90]. Similar to the point above, this requirement recognizes the value 701 of perceived control and the ability to customize thermal conditions for individual 702 occupants. Moreover, these devices tend to be lower in energy-intensity than centralized 703 HVAC systems.
- Similar to above, "Thermal comfort controls allow occupants, whether in individual spaces or shared multi-occupant spaces, to adjust at least one of the following in their local environment: air temperature, radiant temperature, air speed, and humidity" [95].
- It is noteworthy that the above example requirements not only go into significantly more detail than
 the building energy codes, but they are also supported by an extensive body of literature and
 ergonomics standards. However, we do not suggest that all requirements of WELL and LEED should
 be adopted by building energy codes, as they have a different objective.

711 5 Conclusion

- 712 Considering the impact of building energy codes and the corresponding simplicity of the way
- occupants are handled by them, this paper sought to provide an international review of occupant-
- related requirements in building energy codes and standards. Ultimately misguided occupant-
- 715 related code requirements for prescriptive and performance paths alike may mislead designers
- 716 towards suboptimal building designs.

717 The 23 regions' codes or standards were reviewed in two phases. Phase 1 focused on quantitative 718 requirements relating to schedules, densities, and setpoints, as well as the general code objective, 719 which revealed a wide range of occupant-related values concerning people density, lights, 720 equipment and hot water use to standardize occupants in the path to meet performance targets 721 such as secondary or primary energy use, emission rate or water consumption. The review showed 722 considerable variations across the codes with regard to the occupancy, lighting and equipment 723 power density values. While these can likely be partly assigned to cultural and contextual 724 differences, the study put the occupant-related assumptions in an international context to facilitate 725 the future efforts to develop occupant-centric building energy codes. In particular, the study results 726 suggest that the efforts to explicitly address occupant behavior in the codes cannot overlook the 727 implications of local contextual factors. An obvious next step in research is to carefully trace the 728 roots of each occupant-related code-requirement to understand their origin. For example, if the 729 same schedule values have been used for the past several decades, updates based on more recent 730 measured data should be considered.

731 Phase 2 was focused on written code requirements. These code requirements were compared with 732 the objective of identifying similarities, differences, and exemplary and noteworthy features. The 733 review concluded that while code requirements and underlying philosophies about occupants are 734 diverse, they are generally quite simplistic and have not kept up with the scientific literature. For 735 example, the majority of performance path (i.e. modelling-based) requirements do not adequately 736 acknowledge design as a way to positively influence occupant behavior because they assume that 737 behavior is the same in reference and design buildings (e.g., through schedules). Moreover, there is 738 a lack of requirements for usability of buildings and their systems. Aside from perceived control for 739 occupants and comfort implications, lack of usability could also have energy implications because 740 occupants who cannot use buildings as they were intended are more likely to take energy-adverse 741 actions to restore their comfort.

- 742 For future research, we recommend the following foci:
- More field studies to collect long-term data in a variety of contexts (countries, building types) to improve confidence of both schedules (and densities) and potentially more advanced occupant models (e.g., agent based and dynamic).
- More field and simulation studies to support the updating of prescriptive requirements –
 especially regarding control zone sizes, control algorithms, and building system usability.
- An international committee to review all aspects of building energy codes, including
 occupant-related aspects. While there are some inherent differences between different
 regions' cultures and climates, a more consistent approach whereby the best alternatives
 are used, would be beneficial. In fact, International Energy Agency's Energy in Buildings and
 Communities Programme has started a standing committee that is tasked with reviewing
 national building energy codes.

754 6 Acknowledgements

The authors acknowledge IEA EBC Annex 79. William O'Brien and Vinu Subashini Rajus acknowledge
support from NSERC. Elie Azar's work was supported by the Abu Dhabi Department of Education and
Knowledge (ADEK), under Grant AARE18-063. Z. Deme Belafi was supported by the Hungarian
National Research, Development and Innovation Fund (TUDFO/51757/2019-ITM, Thematic
Excellence Program (EP) & research project K 128199) and by the Higher Education EP of the
Hungarian Ministry of Human Capacities in the frame of Artificial Intelligence research area of BME
(BME FIKP-MI). Dong Chen acknowledges the help from Alex Zeller at Australian Building Codes

- Board. Simona d'Oca and Eric Willems's work on Annex 79 activities is supported by the Rijksdienst
- voor Ondernemend Nederland (RVO). Tianzhen Hong's research was supported by the Assistant
- 764 Secretary for Energy Efficiency and Renewable Energy of the United States Department of Energy,
- vinder Contract No. DE-AC02-05CH11231. Quan Jin acknowledges the Fund support from Formas and
- 766 Chalmers AoA Energy, and the colleague Magnus Österbring from NCC. Roberto Lamberts
- acknowledges to CNPq. Marika Vellei's work is supported by the French National Research Agency
- under the project ANR CLEF (ANR-17-CE22-0005-01). Silke Verbruggen's work is supported by the
 Fund for Scientific Research (FWO) SBO project NEPBC (S009617N). Andreas Wagner's work is
- 770 supported by the German Federal Ministry of Economical Affairs and Energy. Da Yan's work is
- 771 support by the National Natural Science Foundation of China under Grant Number 51778321.

A Schedules of occupancy, light and equipment use

773

Table A.1: The schedules of weekday occupancy for offices given in national building energy codes together with the
 average schedule (AVG)

Hour						Fractio	on of max	imum oc	cupancy	density					
of day	AUS	BRA	CAN	CHE	CHN	DEU	DNK	ENG	FRA	IND	NOR	NZL	SGP	USA	AVG
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0.1	0	0	0	0	0	0	0	0	0	0	0.1	0.01
8	0.15	0	0.7	0.2	0.1	1	0	0.25	0	0.1	0.38	0.95	1	0.2	0.36
9	0.6	1	0.9	0.6	0.5	1	1	0.5	0.57	0.2	0.38	0.95	1	0.95	0.72
10	1	1	0.9	1	0.95	1	1	1	1	0.95	1	0.95	1	0.95	0.98
11	1	1	0.9	1	0.95	1	1	1	1	0.95	1	0.95	1	0.95	0.98
12	1	1	0.5	0.8	0.95	1	1	1	1	0.95	0.38	0.95	1	0.95	0.89
13	1	1	0.5	0.4	0.8	1	1	0.75	0.57	0.95	0.38	0.95	1	0.5	0.77
14	1	1	0.9	0.6	0.8	1	1	0.75	0.57	0.5	1	0.95	1	0.95	0.86
15	1	1	0.9	1	0.95	1	1	1	1	0.95	1	0.95	1	0.95	0.98
16	1	1	0.9	0.8	0.95	1	1	1	1	0.95	0.38	0.95	1	0.95	0.92
17	1	1	0.7	0.6	0.95	1	1	1	1	0.95	0.38	0.95	1	0.95	0.89
18	0.5	1	0.3	0.2	0.95	1	0	0.5	0.57	0.95	0	0.05	0	0.3	0.45
19	0.15	0	0.1	0	0.3	0	0	0.25	0	0.39	0	0.05	0	0.1	0.09
20	0.05	0	0.1	0	0.3	0	0	0	0	0.1	0	0.05	0	0.1	0.05
21	0.05	0	0.1	0	0	0	0	0	0	0.1	0	0.05	0	0.1	0.03
22	0	0	0.1	0	0	0	0	0	0	0.1	0	0	0	0.1	0.02
23	0	0	0	0	0	0	0	0	0	0	0	0	0	0.05	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0.05	0
Sum	9.50	10.00	8.60	7.20	9.45	11.00	9.00	9.00	8.28	9.09	6.28	9.70	10.00	9.20	9.00

777 778

Table A.2: The schedules of weekday lighting power for offices given in national building energy codes together with the average schedule (AVG)

Hour of day						Frac	tion of m	aximum l	ighting p	ower					
	AUS	BRA	CAN	CHE	CHN	DEU	DNK	ENG	FRA	IND	NOR	NZL	SGP	USA	AVG
1	0.1	0	0.05	0	0	0	0	0	0	0.05	0	0.05	0.1	0.05	0.03
2	0.1	0	0.05	0	0	0	0	0	0	0.05	0	0.05	0.1	0.05	0.03
3	0.1	0	0.05	0	0	0	0	0	0	0.05	0	0.05	0.1	0.05	0.03
4	0.1	0	0.05	0	0	0	0	0	0	0.05	0	0.05	0.1	0.05	0.03

5	0.1	0	0.05	0	0	0	0	0	0	0.05	0	0.05	0.1	0.05	0.03
6	0.1	0	0.05	0	0	0	0	0	0	0.05	0	0.05	0.1	0.1	0.03
7	0.1	0	0.3	0	0	0	0	0	0	0.1	0	0.05	0.1	0.1	0.05
8	0.4	0	0.8	1	0.1	1	0	1	0	0.3	1	0.9	1	0.3	0.56
9	0.8	1	0.9	1	0.5	1	1	1	1	0.9	1	0.9	1	0.9	0.92
10	1	1	0.9	1	0.95	1	1	1	1	0.9	1	0.9	1	0.9	0.97
11	1	1	0.9	1	0.95	1	1	1	1	0.9	1	0.9	1	0.9	0.97
12	1	1	0.9	1	0.95	1	1	1	1	0.9	1	0.9	1	0.9	0.97
13	1	1	0.9	1	0.8	1	1	1	1	0.9	1	0.9	1	0.9	0.96
14	1	1	0.9	1	0.8	1	1	1	1	0.5	1	0.9	1	0.9	0.93
15	1	1	0.9	1	0.95	1	1	1	1	0.9	1	0.9	1	0.9	0.97
16	1	1	0.9	1	0.95	1	1	1	1	0.9	1	0.9	1	0.9	0.97
17	1	1	0.8	1	0.95	1	1	1	1	0.9	1	0.9	1	0.9	0.96
18	0.8	1	0.5	1	0.95	1	0	1	1	0.9	0	0.3	0.1	0.5	0.65
19	0.6	0	0.3	0	0.3	0	0	1	0	0.5	0	0.3	0.1	0.3	0.24
20	0.4	0	0.3	0	0.3	0	0	0	0	0.3	0	0.3	0.1	0.3	0.14
21	0.2	0	0.1	0	0	0	0	0	0	0.3	0	0.3	0.1	0.2	0.09
22	0.1	0	0.1	0	0	0	0	0	0	0.2	0	0.05	0.1	0.2	0.05
23	0.1	0	0.05	0	0	0	0	0	0	0.1	0	0.05	0.1	0.1	0.04
24	0.1	0	0.05	0	0	0	0	0	0	0.05	0	0.05	0.1	0.05	0.03
Sum	12.20	10.00	10.80	11.00	9.45	11.00	9.00	12.00	10.00	10.75	10.00	10.70	11.40	10.50	10.65

Table A.3: The schedules of weekday equipment power for offices given in national building energy codes together with the average schedule (AVG)

Hour						Fracti	on of ma	ximum ec	uipment	power					
of day	AUS	BRA	CAN	CHE	CHN	DEU	DNK	ENG	FRA	IND	NOR	NZL	SGP	USA	AVG
1	0.1	0	0.2	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
2	0.1	0	0.2	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
3	0.1	0	0.2	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
4	0.1	0	0.2	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
5	0.1	0	0.2	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
6	0.1	0	0.2	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
7	0.1	0	0.3	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
8	0.25	0	0.8	0.2	0.1	1	0	1	0.11	0	0.38	0.9	1	0.4	0.44
9	0.7	1	0.9	0.6	0.5	1	1	1	0.55	0.1	0.38	0.9	1	0.9	0.75
10	1	1	0.9	0.8	0.95	1	1	1	1	0.9	1	0.9	1	0.9	0.95
11	1	1	0.9	1	0.95	1	1	1	1	0.9	1	0.9	1	0.9	0.97
12	1	1	0.9	0.8	0.95	1	1	1	1	0.9	0.38	0.9	1	0.9	0.91
13	1	1	0.9	0.4	0.5	1	1	1	1	0.9	0.38	0.9	1	0.8	0.84
14	1	1	0.9	0.6	0.5	1	1	1	1	0.8	1	0.9	1	0.9	0.90
15	1	1	0.9	1	0.95	1	1	1	1	0.9	1	0.9	1	0.9	0.97
16	1	1	0.9	0.8	0.95	1	1	1	1	0.9	0.38	0.9	1	0.9	0.91
17	1	1	0.9	0.6	0.95	1	1	1	1	0.9	0.38	0.9	1	0.9	0.90
18	0.6	1	0.5	0.2	0.95	1	0	1	0.55	0.9	0	0.3	0.05	0.5	0.54
19	0.25	0	0.3	0.1	0.3	0	0	1	0.11	0.5	0	0.3	0.05	0.4	0.24
20	0.15	0	0.3	0.1	0.3	0	0	1	0.11	0.1	0	0.3	0.05	0.4	0.20
21	0.15	0	0.2	0.1	0	0	0	0.05	0.11	0.1	0	0.3	0.05	0.4	0.10
22	0.1	0	0.2	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
23	0.1	0	0.2	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
24	0.1	0	0.2	0.1	0	0	0	0.05	0.11	0	0	0.05	0.05	0.4	0.08
Sum	11.10	10.00	12.30	8.30	8.85	11.00	9.00	13.55	10.64	8.80	6.28	10.70	10.70	14.10	10.42

783 7 References

- [1] P. Hoes, J.L.M. Hensen, M.G.L.C. Loomans, B. de Vries, D. Bourgeois, User behavior in whole
 building simulation, Energy and Buildings 41(3) (2009) 295-302.
- 786 [2] R. Fouquet, P.J. Pearson, The long run demand for lighting: elasticities and rebound effects in
- 787 different phases of economic development, Economics of Energy & Environmental Policy 1(1) (2012)
 788 83-100.
- [3] M. Hafer, Quantity and electricity consumption of plug load equipment on a university campus,
 Energy Efficiency 10(4) (2017) 1013-1039.
- [4] K. Gram-Hanssen, Residential heat comfort practices: understanding users, Building Research &
 Information 38(2) (2010) 175-186.
- [5] F. Haldi, D. Robinson, The impact of occupants' behaviour on building energy demand, Journal of
 Building Performance Simulation 4(4) (2011) 323-338.
- [6] T. Hong, H.-W. Lin, Occupant behavior: impact on energy use of private offices, Ernest Orlando
 Lawrence Berkeley National Laboratory, Berkeley, CA (US), 2013.
- 797 [7] J.Y. Park, Z. Nagy, Comprehensive analysis of the relationship between thermal comfort and
- building control research A data-driven literature review, Renewable and Sustainable Energy
 Reviews 82 (2018) 2664-2679.
- 800 [8] D. Yan, T. Hong, B. Dong, A. Mahdavi, S. D'Oca, I. Gaetani, X. Feng, IEA EBC Annex 66: Definition
- and simulation of occupant behavior in buildings, Energy and Buildings 156 (2017) 258-270.
- 802 [9] D. Yan, T. Hong, EBC Annex 66 Final Report Definition and simulation of occupant behavior in803 buildings, 2018.
- 804 [10] A. Wagner, L. O'Brien, Proposal: IEA EBC Annex 79: Occupant behaviour-centric building design805 and operation, Proposal, 2018.
- [11] M. Evans, V. Roshchanka, P. Graham, An international survey of building energy codes and their
 implementation, Journal of Cleaner Production 158 (2017) 382-389.
- 808 [12] S. Chirarattananon, P. Chaiwiwatworakul, V.D. Hien, P. Rakkwamsuk, K. Kubaha, Assessment of
- energy savings from the revised building energy code of Thailand, Energy 35(4) (2010) 1741-1753.
- 810 [13] G.D. Jacobsen, M.J. Kotchen, Are building codes effective at saving energy? Evidence from
- residential billing data in Florida, Review of Economics and Statistics 95(1) (2013) 34-49.
- 812 [14] R. Bartlett, M.A. Halverson, D.L. Shankle, Understanding building energy codes and standards,
- 813 Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2003.
- 814 [15] American Society of Heating Refrigerating and Air-conditioning Engineers (ASHRAE),
- ANSI/ASHRAE/IESNA Standard 90.1-2016: Energy standard for buildings except for low-rise
 residential buildings, 2016.
- 817 [16] National Research Council Canada (NRC), National Energy Code of Canada for Buildings 2017,
- 818 Canada, Ottawa, Canada, 2017.
- 819 [17] A. Aroonruengsawat, M. Auffhammer, A.H. Sanstad, The impact of state level building codes on 820 residential electricity consumption, Energy Journal-Cleveland 33(1) (2012) 31.
- 821 [18] H. Misuriello, S. Penney, M. Eldridge, B. Foster, Lessons learned from building energy code
- compliance and enforcement evaluation studies, Proceedings of the 2010 ACEEE Summer Study on
 Energy Efficiency in Buildings 8 (2010) 245-255.
- [19] J. Laustsen, Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New
 Buildings: IEA Information Paper, Support of the G8 Plan of Action (2008).
- 826 [20] L. Pérez-Lombard, J. Ortiz, J.F. Coronel, I.R. Maestre, A review of HVAC systems requirements in 827 building energy regulations, Energy and Buildings 43(2) (2011) 255-268.
- 828 [21] X. Feng, D. Yan, T. Hong, Simulation of occupancy in buildings, Energy and Buildings 87 (2015)
 829 348-359.
- 830 [22] M. Deru, K. Field, D. Studer, K. Benne, B. Griffith, P. Torcellini, B. Liu, M. Halverson, D. Winiarski,
- 831 M. Rosenberg, Commercial Reference Building Models of the National Building Stock, US
- 832 Department of Energy, 2011.

- [23] W. O'Brien, H.B. Gunay, Mitigating office performance uncertainty of occupant use of window
 blinds and lighting using robust design, Building Simulation 8(6) (2015) 621-636.
- [24] W. O'Brien, I. Gaetani, S. Gilani, S. Carlucci, P.-J. Hoes, J. Hensen, International survey on current
- occupant modelling approaches in building performance simulation, Journal of Building Performance
 Simulation (2016) 1-19.
- 838 [25] T. Abuimara, W. O'Brien, B. Gunay, A. Abdelalim, M. Ouf, S. Gilani, Modelling Occupants in
- Buildings: Stakeholders' Workshop on Current Barriers, Challenges and Needs, eSim 2018, Montreal,
 QC May 8-9, 2018.
- [26] W. O'Brien, H.B. Gunay, Do building energy codes adequately reward buildings that adapt to
 partial occupancy?, Science and Technology for the Built Environment (2019) 1-14.
- 843 [27] S. Gilani, W. O'Brien, H.B. Gunay, J.S. Carrizo, Use of dynamic occupant behavior models in the
- building design and code compliance processes, Energy and Buildings 117(1) (2016) 260–271.
- [28] K. Sun, T. Hong, A framework for quantifying the impact of occupant behavior on energy savings
 of energy conservation measures, Energy and Buildings 146 (2017) 383-396.
- [29] D. Mora, C. Carpino, M. De Simone, Energy consumption of residential buildings and occupancy
- profiles. A case study in Mediterranean climatic conditions, Energy Efficiency 11(1) (2018) 121-145.
- [30] C. Carpino, D. Mora, N. Arcuri, M. De Simone, Behavioral variables and occupancy patterns in
- the design and modeling of Nearly Zero Energy Buildings, Building Simulation, Springer, 2017, pp.875-888.
- 852 [31] Australia Building Codes Board (ABCB), National Construction Code (NCC) 2016 Volume One,
- 853 Canberra, Australia, 2016.
- 854 [32] Standards Australia and Standards New Zealand, AS/NZS 1680.2.2:2008 : Interior and workplace
- 855 lighting Specific applications Office and screen-based tasks, Sydney/Wellington, 2016.
- 856 [33] Standards Australia and Standards New Zealand, AS1668.2 2012 The use of ventilation and air-
- conditioning in buildings, Part 2: Mechanical ventilation in buildings, Sydney/Wellington, 2008, p.112.
- 859 [34] Austrian Standards, ÖNORM B 8110-6-1 Thermal insulation in building construction Part 6-1:
- 860 Principles and verification methods Heating demand and cooling demand, Vienna, Austria, 2019.
- 861 [35] Austrian Standards, ÖNORM B 8110-5 Thermal insulation in building construction Part 5:
- 862 Model of climate and user profiles, Vienna, Austria, 2019, p. 51.
- [36] Austrian Standards, ÖNORM H 5059-1 Energy performance of building Part 1: Energy use of
 lighting, Vienna, Austria, 2019.
- 865 [37] Vlaamse regering, Energy Decree, Brussels, Belgium, 2018.
- 866 [38] Inmetro Nacional Institute for Metrology Normalization and Industrial Quality, Technical
- 867 Requirements for the determination of the level of energy efficiency of commercial, services and
- 868 public buildings (RTQ-C) will change to Normative Instruction Inmetro Method for energy
- 869 efficiency determination based on primary energy for comercial, services and public buildings (INI-C)870 in 2020, 2014.
- [39] China Academy of Building Research, Design standard for energy efficiency of public buildings(GB50189-2015), Beijing, China, 2015.
- [40] B.a.H. Ministry of Transport, Building regulations 2018, Copenhagen, 2018.
- 874 [41] The Ministry of Housing Communities and Local Government, National Calculation Methodology
- 875 (NCM) Modelling Guide in support of the 2013 Edition of the Building Regulations Approved
- Document L2A (Conservation of fuel and power in new buildings other than dwellings), (2017).
- 877 [42] Ministry of Ecology Sustainable Development and Energy, Building Regulation 2012 2013.
- 878 [43] S.D.a.E. Scientific and Technical Center for Building (CSTB) for the Ministry of Ecology,
- 879 Calculation Methodology in support of the 2012 Building Regulation, 2013.
- 880 [44] Federal Government of Germany, Ordinance on energy saving insulation and energy saving
- technical services in buildings (Energy saving ordinance), 2007.

- 882 [45] German Institute for Standardisation (DIN), DIN V 18599-10 Energy efficiency of buildings -
- Calculation of net, final, and primary energy demand for heating, cooling, ventilation, domestic hot
 water and lighting Part 10: Boundary conditions of use, climatic data, 2018.
- 885 [46] Minister without portfolio (Tárca nélküli miniszter TNM), Ministerial Decree No. 7/2006. (V. 24.)
- TNM on the establishment of energy characteristics of buildings Budapest, Hungary, 2006.
- [47] Bureau of Energy Efficiency, Energy Conservation Building Code 2017, New Delhi, India, 2017.
- [48] Bureau of Indian Standards, National Building code of India 2016 Volume 2, Uttar Pradesh,India, 2016.
- 890 [49] Italian Standardization Body, UNI/TS 11300-1. Energy performance of buildings, Part 1:
- 891 Evaluation of energy need for space heating and cooling, Milan and Rome, 2014.
- 892 [50] NEN Nederlands Normalisatie Instituut, Energy performance of buildings methodology, Delft,893 2012.
- [51] Ministry of Business Innovation and Employment, New Zealand Building Code Clause H1 Energy
 Efficiency, 4th Edition, Wellington, NZ, 2019.
- 896 [52] Standard Norge, Energy performance of buildings Calculation of energy needs and energy897 supply SN/TS 3031:2016, Oslo, 2016.
- 898 [53] Building and Construction Authority Singapore, Green Mark for Non-residential Buildings,899 Singapore, 2015.
- 900 [54] Building and Construction Authority Singapore, Code for Environmental Sustainability for901 Buildings, Singapore, 2012.
- 902 [55] Ministry of Land Infrastructure and Transport, Building Design Criteria for Energy Saving903 (BDCES), Sejong, S. Korea, 2018.
- 904 [56] The Swedish National Board of Housing Building and Planning Boverket, BFS 2017:6 BEN 2
- 905 The Swedish National Board of Housing, Building and Planning's regulations on amendments to the
- 906 regulations and general advice (2016:12) on the determination of the building's energy use during907 normal use and a normal year, 2017.
- 908 [57] Sveby, Sveby standard for the energy use in buildings occupant input data for offices, 2013.
- 909 [58] Schweizerische Ingenieur- und Architektenverein SIA, SIA 2024:2015 Space usage data for 910 energy and building installations, Zurich, 2016.
- 911 [59] Schweizerische Ingenieur- und Architektenverein SIA, SIA 380:2015 Basics for energetic
- 912 calculations of buildings, Zurich, 2015.
- 913 [60] Schweizerische Ingenieur- und Architektenverein SIA, SIA 380/1:2016 Requirements for heating,
 914 Zurich, 2015.
- 915 [61] Schweizerische Ingenieur- und Architektenverein SIA, SIA 385/2:2015 Installations for domestic
- 916 hot water in buildings Hot water demand, overall requirements and design, Zurich, 2015.
- 917 [62] Abu Dhabi Urban Planning Council, Pearl Building Rating System: Design & Construction, (2010).
- 918 [63] Dubai Municipality, Al Sa'fat Dubai Green Building Evaluation System, Dubai, 2016.
- 919 [64] ANSI/ASHRAE/IES, Standard 90.1: Energy Standard for Buildings Except Low-Rise Residential920 Buildings, Atlanta, 2016.
- 921 [65] W. O'Brien, H.B. Gunay, F. Tahmasebi, A. Mahdavi, A preliminary study of representing the
- 922 inter-occupant diversity in occupant modelling, Journal of Building Performance Simulation 10(5-6)923 (2017) 509-526.
- 924 [66] F. Tahmasebi, A. Mahdavi, The sensitivity of building performance simulation results to the
- 925 choice of occupants' presence models: a case study, Journal of Building Performance Simulation
 926 10(5-6) (2017) 625-635.
- 927 [67] Le service public de la diffusion du droit, French Labour Code (Code du travail), 2019.
- 928 [68] IESNA, LM-83-12 IES Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE),
- 929 IESNA Lighting Measurement, New York, NY, 2012.
- 930 [69] C.F. Reinhart, Lightswitch-2002: a model for manual and automated control of electric lighting
- 931 and blinds, Solar Energy 77(1) (2004) 15-28.

- 932 [70] K. Van Den Wymelenberg, Patterns of occupant interaction with window blinds: A literature
- 933 review, Energy and Buildings 51 (2012) 165-176.
- 934 [71] V. Fabi, R.V. Andersen, S. Corgnati, B.W. Olesen, Occupants' window opening behaviour: A
- 935 literature review of factors influencing occupant behaviour and models, Building and Environment936 58(December) (2012) 188-198.
- 937 [72] J. Goins, C. Chun, H. Zhang, User perspectives on outdoor noise in open-plan offices with
 938 operable windows, Architectural Science Review 56(1) (2013) 42-47.
- 939 [73] R. de Dear, G.S. Brager, D. Cooper, Developing an Adaptive Model of Thermal Comfort and
- 940 Preference, Final Report on ASHRAE Research Project 884, Macquarie University, Sydney, 1997.
- [74] M. Ouf, W. O'Brien, Occupant modeling for code compliance and incentive programs, ASHRAEJournal, 2018.
- 943 [75] R.J. De Dear, G.S. Brager, Thermal comfort in naturally ventilated buildings: revisions to ASHRAE
 944 Standard 55, Energy and buildings 34(6) (2002) 549-561.
- [76] Z. Wang, R. de Dear, M. Luo, B. Lin, Y. He, A. Ghahramani, Y. Zhu, Individual difference in
 thermal comfort: A literature review, Building and Environment 138 (2018) 181-193.
- 947 [77] C. Duarte, K. Van Den Wymelenberg, C. Rieger, Revealing occupancy patterns in an office
- 948 building through the use of occupancy sensor data, Energy and Buildings 67 (2013) 587-595.
- [78] C.F. Reinhart, K. Voss, Monitoring manual control of electric lighting and blinds, Lighting
- 950 Research & Technology 35(3) (2003) 243-260.
- [79] S. Gilani, W. O'Brien, A preliminary study of occupants' use of manual lighting controls in private
 offices: A case study, Energy and Buildings 159 (2018) 572-586.
- 953 [80] D. Kaneda, B. Jacobson, P. Rumsey, R. Engineers, Plug load reduction: The next big hurdle for
- 954 net zero energy building design, ACEEE Summer Study on Energy Efficiency in Buildings, Pacific955 Grove, CA, 2010, pp. 120-130.
- 956 [81] W. O'Brien, M. Ouf, B. Gunay, S. Gilani, T. Abuimara, A. Abdelalim, Roadmap for the
- 957 advancement of occupant modelling for building codes, standards, and design practice, (2018).
- 958 [82] B. Abushakra, J.S. Haberl, D.E. Claridge, Overview of Existing Literature on Diversity Factors and
- 959 Schedules for Energy and Cooling Load Calculations, ASHRAE Transactions 110(1) (2004).
- [83] A. Dwyer, With hot-desking, not all employees are sitting pretty, The Globe and Mail, Toronto,2016.
- [84] H.B. Gunay, W. O'Brien, I. Beausoleil-Morrison, S. Gilani, Modeling plug-in equipment load
 patterns in private office spaces, Energy and Buildings 121 (2016) 234-249.
- 964 [85] B. Abushakra, D. Claridge, Accounting for the occupancy variable in inverse building energy 965 baselining models, Energy Systems Laboratory, Texas A&M University, 2001.
- 966 [86] M. Ouf, W. O'Brien, B. Gunay, A method to generate design-sensitive occupant-related
- schedules for building performance simulations, Science and Technology for the Built Environment
 25(2) (2019) 221-232.
- 969 [87] S. D'Oca, H.B. Gunay, S. Gilani, W. O'Brien, Critical review and illustrative examples of office
- 970 occupant modelling formalisms, Building Services Engineering Research and Technology 0(0) (2019)971 0143624419827468.
- 972 [88] Y. Chen, T. Hong, X. Luo, An agent-based stochastic occupancy simulator, Building Simulation,
- 973 Springer, 2018, pp. 37-49.
- 974 [89] H.S. Alavi, E.F. Churchill, M. Wiberg, D. Lalanne, P. Dalsgaard, A.F.G. Schieck, Y. Rogers,
- 975 Introduction to human-building interaction (HBI): Interfacing HCI with architecture and urban design,
- 976 ACM Transactions on Computer-Human Interaction (TOCHI) 26(2) (2019) 6.
- 977 [90] Delos Living, WELL Building Standard v2, New York, NC, 2018.
- 978 [91] K.C. Ackerly, G. Brager, Occupant response to window control signaling systems, Center for the
- 979 Built Environment, University of California, Berkeley, 2011.
- 980 [92] American National Standards Institute, Accessible and usable buildings and facilities ICC
- 981 1111.1-2009 International Code Council2009.

- 982 [93] S. Karjalainen, Thermal comfort and use of thermostats in Finnish homes and offices, Building983 and Environment 44(6) (2009) 1237-1245.
- 984 [94] J.Y. Park, M.M. Ouf, B. Gunay, Y. Peng, W. O'Brien, M.B. Kjærgaard, Z. Nagy, A critical review of
- 985 field implementations of occupant-centric building controls, Building and Environment 165 (2019)986 106351.
- 987 [95] U.S. Green Building Council, LEED v4.1 Building Design and Construciton, 2019.