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Abstract: Photo- and video-realistic generation techniques have become a reality following the ad-
vent of deep neural networks. Consequently, there are immense concerns regarding the difficulty in
differentiating what content is real from what is synthetic. An example of video-realistic generation
techniques is the infamous Deepfakes, which exploit the main modality by which humans identify
each other. Deepfakes are a category of synthetic face generation methods and are commonly based
on generative adversarial networks. In this article, we propose a novel two-step synthetic face im-
age detection method in which general-purpose features are extracted in a first step, trivializing the
task of detecting synthetic images. The anomaly detector predicts the conditional probabilities for
observing every individual pixel in the image and is trained on pristine data only. The extracted
anomaly features demonstrate true generalization capacity across widely different unknown synthe-
sis methods while showing a minimal loss in performance with regard to the detection of known
synthetic samples.

Keywords: Deepfake, Video Forensics, Generative Adversarial Networks, PixelCNN, Universal
Background Model.

1 Introduction

Advancements in the computational capacity of modern graphical processing units (GPUs)
in the past decades allowed the realization of deep neural network models. Deep learn-
ing, among other contributions, provided solutions for the synthesis of photo- and video-
realistic content, challenging the existing manipulation detection methods in video foren-
sics. An especial case of such synthetic signals is “Deepfakes”, which are typically gener-
ated by generative adversarial networks (GANs). Deepfakes in combination with obfusca-
tion in various forms have shown to be effective at fooling human subjects [Ro19].

The research community has responded to this threat by developing various detection
methods. Yu et al. in [YDF18] made use of unique GAN fingerprints for the detection
of fake images generated by these models. RNNs have been used for temporal-aware de-
tection of Deepfakes by Guera et al. in [GD18]. The spectrum domain is used by Zhang et
al. [ZKC19] for the detection of GAN generated images.

Most of the existing detection methods are, however, complex and have narrow appli-
cability as they are trained to detect specific types of synthetic signals and fail to gen-
eralize [Kh18]. Few publications try to address the detection of synthetic samples from
unknown generation models. In [St19], Stehouwer et al. used attention mechanisms and
achieved remarkable performance over various generation techniques. Nataraj et al. [Na19]
used pixel co-occurrence matrices for generalized detection across different GAN archi-
tectures. In [Ma19], Marra et al. utilized multi-task learning incrementally for detecting
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synthetic images coming from unknown GAN models. Zhou et al. [Zh17] proposed a
two-stream classification network architecture based on steganalysis features. Afchar et
al. [Af18] utilized mesoscopic features along with shallow networks gaining robustness
against unknown synthetic images. Rossler et al. [Ro19] evaluated different detection sys-
tems on a large dataset of diverse synthetic samples and achieved the best performance
with a pretrained XceptionNet neural network. For an extensive review on the related lit-
erature, please refer to [Ve20].

Despite major progress in the detection of synthetic face images, the generalization prob-
lem across widely different generation techniques remains a major issue. In this article, we
propose a novel general-purpose feature. The subsequent trivialization enables a simple de-
tector to reliably detect unknown attacks form widely different generation techniques. The
proposed method achieves this by suppressing the content of the input signal while faith-
fully conserving the detection-relevant information. The rest of this article is organized as
follows: Section 2 explains the proposed two-step method along with the rationale behind
it. Section 3 explains the experimental setup used for showcasing the performance of the
method, and Section 4 discusses the findings of the article. Finally, Section 5 concludes
the article.

2 Methodology
Synthetic images contain artefacts that can be used for detection and can act like fin-
gerprints for identification of their generation process. These traces, however, are often
minuscule and can be severely obscured by the actual content of the images to the extent
of becoming imperceptible to the eyes of the viewer as well as the automated detection
systems. We hypothesize that in the synthetic face detection task, the actual content of
images acts as a strong noise, and removing them would unveil these traces and greatly
simplify the task of synthetic face detection. However, this approach requires knowledge
of the actual content of the image for reference.

In the absence of a reference to be subtracted from the image, the likelihood of the image
to an accurate probability distribution of pristine face images would serve as a suitable
proxy. To make the accurate modeling of the probability distribution over the face image
space practical, the image can be broken down into smaller segments, and the probability
distribution over individual segments of the image conditioned on the previous segments
can be modeled.

2.1 Pixel RNN

The probability distribution of intensity values in each pixel conditioned on pixels before
(in raster order) in pristine images can be modeled with a PixelRNN model [VDOKK16].
In this model, for each pixel i, the probability distribution (in the form of a Logistic
mixture model) of observing the current value given all previous pixel values is learned
by a recurrent or a masked convolutional neural network. This network would then be
able to predict the probability distribution of pixel values for each pixel location con-
ditioned on the pixel values before it. This probability distribution can then be used to
measure the likelihood of observing a specific pixel value in location xi given all pixel
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values before it (log(p(xi|x<i))). By repeating this operation over all the pixels in an
input image, one can calculate a likelihood matrix with the same size as the input im-
age. Consequently, the probability of observing the input image can be calculated as
log(p(x)) = ∑

n
i=0 log(p(xi|x<i)). For the purpose of this study, an improved variant of

PixelRNN named PixelCNN++ [Sa17] is used.

2.2 Classification

The probability of the input image is a feature that can spot anomalies and can directly
be used for classification. However, the conditional probability matrix corresponding to
the log-likelihood of observing every single pixel intensity can serve as a better feature for
classification as it contains additional information with respect to the location of anomalies
and the anomaly strength at each location. For achieving a higher detection rate, one can
use the model trained in the previous step as an anomaly feature extractor, or in more
precise terms a universal background model (UBM). The term UBM signifies that the
model is universally used regardless of the synthetic method in question in the detection
task. Furthermore, it signifies that the model is a background preprocessing step which
postpones the classification task to a second step. Consequently, a classifier can be trained
on the output of the UBM model which is in the form of a conditional probability matrix
in a supervised manner. Ideally, as the complexity of the detection problem is substantially
reduced following the feature extraction step, a simple classifier should be sufficient for
detection of synthetic faces. In this study, we use a very simple and small neural network
for classification.

2.3 Generalization Performance

To measure the generalization capacity of a model, a common practice is to split the gener-
ation techniques to known and unknown methods. Next, the model is trained on synthetic
data from the known methods and tested on the data from the unknown methods. To show
the generalization capacity of our proposed method, we follow the same convention and
do generalization tests in a leave-one-out (LOO) manner. For each generation method,
we consider all other methods to be known and measure the detection performance on
the single unknown method. The overall generalization performance is then measured by
aggregating them over all the leave-one-out runs.

3 Experiment Setup
For the purpose of this study, the FaceForensics dataset [Ro19] is selected as a large
dataset containing four manipulation techniques, namely Deepfakes3, Face2Face [Th16],
Faceswap4, and Neural Textures [TZN19]. This dataset contains 1000 pristine videos along
with 1000 from each manipulation technique, each split into three sets of training (with
700 videos), development (with 150 videos), and test (with 150 videos). The videos are
collected from YouTube and have a minimum quality of 480p (VGA). The videos are pro-
vided in three different quality levels to simulate the conditions of video processing in
3 https://github.com/deepfakes/faceswap
4 https://github.com/MarekKowalski/FaceSwap/
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social networks. For extraction of face images from the videos, the Dlib toolkit [Ki09] is
used, and the detected face images are resized to 64× 64. As the focus of this study is
generalizability across the four completely different generation techniques, we limit the
experiments to uncompressed data. Subsequently, the models are trained on individual
cropped face images from frames as shown in Figure 1, and the detection performance is
evaluated in terms of the frame-level detection accuracy.

Face Detection

Frame 64	×	64 PixelCNN++	UBM

(a) The pipeline for the training of the anomaly detection system. The model is trained on pristine
face images only.

Face Detection

Frame 64	×	64 Classifier Pristine	|	FakePixelCNN++	UBM 64	×	64

Front-end Back-end

(b) The training and evaluation pipeline of the classifier. The pre-trained anomaly detection model
is used as an anomaly feature extractor.

Fig. 1: The training and evaluation pipelines of the proposed method. UBM stands for
universal background model and represents the probability distribution based anomaly
extraction system.

The UBM model used for experiments is the Tensorflow implementation of PixelCNN++
[Sa17]. The default architecture, consisting of three blocks with five ResNet layers and
160 filters in each layer is used. A single model with 94 million parameters is trained for
five epochs on natural images only from the training set, with a learning rate of 0.0001 on
a single GPU in an end-to-end manner.

As the complexity of the detection problem is reduced in the anomaly feature extraction
step to an extent that the synthesis artifacts are visible in its output (see Figure 4), a very
simple classifier based on LeNet-5 [Le98] is used for detection of synthetic faces from
known and unknown generation methods. The modified architecture summarized in Figure
2 is small enough to be trained on a CPU and has less than one million parameters. For
each experiment, one classifier is trained on the available training data for 25 epochs with
a learning rate of 0.001. The activation function used is the ReLU function, and to improve
the convergence speed, batch normalization is used between the output of the layers and
the activation function. The overall detection pipeline is shown in Figure 1b.

4 Results and Discussion

In this section, we first discuss the characteristics of the anomaly extraction method and
then summarize the performance of the method on both known and unknown attack detec-
tion scenarios.
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Fig. 2: The diagram of the classifier architecture. Each convolution is followed by a 2x2
maxpooling layer and ReLU activation. The network has a total of 933,442 parameters.

4.1 Features

Figure 3 shows the histogram of log-likelihoods for images in the validation data for pris-
tine images as well as the synthetic images. The log-likelihood values for the pristine im-
ages are higher than the synthetic images, however, there is a significant overlap between
the distributions. Deepfakes show higher log-likelihood values compared to the other syn-
thesis methods. These results show the discrimination power of the observation probability
of the images for synthetic face image detection. However, the image probability distribu-
tions have significant overlap, and cannot be relied on as a high-performance detection
score.

Fig. 3: The image log-likelihood probability for pristine images and synthetic images in
the development data.

To achieve a better performance, we can rely on the pixel log-likelihood images extracted
by the UBM model as anomaly features. Figure 4 visualizes examples of these images
from the pristine data as well as the four generation techniques. In this figure, a dras-
tic difference is observable between the pristine images and the synthetic images. The
traces of the synthesis process are visible as low likelihood points in yellow and red on
the image. Furthermore, each generation method shows a unique footprint in all exam-
ples. The Deepfakes have artifacts in the shape of the spliced synthetic face area over the
background image. The Face2Face technique results in low likelihood pixel values on the
edges of the 3D facial features such as nose and jawline. FaceSwap technique results in low
likelihood areas around the eyes and the mouth. Lastly, NeuralTextures inhibits individual
low-likelihood pixels on the nose and eye regions.
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(a) Pristine (b) Deepfake (c) Face2Face (d) FaceSwap (e) NeuralTextures

Fig. 4: Examples of the log-likelihood output matrix of the universal background model
on pristine and synthetic face images. The name of the generation method is mentioned
below each column. As shown in the color bar, red signifies low log-likelihood probability,
while blue signifies high.

4.2 Known Synthetic Face Detection

To measure the discriminative power of the likelihood images, we used the simple classifier
explained in the previous section for synthetic face detection on each individual method.
The results are reported in Table 1 along with the performance of the baseline methods
from [Ro19]. The proposed method performs on par with the baseline methods despite
having a smaller input image size and a much smaller number of parameters. These results
confirm that the log-likelihood images conserve the information valuable for detection
faithfully while reducing the detection complexity by removing the unhelpful information.

4.3 Unknown Synthetic Face Detection

The performance of the proposed method in the unknown synthetic face detection scenario
is summarized in Table 2. The proposed method shows an acceptable detection rates for
all four synthesis methods while showing above 96% on three out of four in LOO general-
ization experiments. The performance of Face2Face method gets slight improvement over
the known case due to the larger training data available in the LOO scenario.

5 Conclusion
In this article, we introduced a truly generalizable synthetic face image detection method
which achieves an outstanding average detection accuracy of 95.73% on unknown syn-
thetic methods. The synthetic methods are from widely different synthesis mechanisms
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Tab. 1: The performance of the proposed method in terms of detection accuracy in known
synthetic face image detection scenario in comparison with existing methods adapted from
[Ro19]. (DF: DeepFakes, F2F: Face2Face, FS:FaceSwap, NT:NeuralTextures)

Input Size DF [%] F2F [%] FS [%] NT [%]
Steg. Features+SVM [FK12] 128×128 99.03 99.13 98.27 99.88
Cozzolinoet al. [CPV17] 128×128 98.83 98.56 98.89 99.88
Bayar and Stamm [BS16] 128×128 99.28 98.79 98.98 98.78
Rahmouniet al. [Ra17] 100×100 98.03 98.96 98.94 96.06
MesoNet [Af18] 256×256 98.41 97.96 96.07 97.05
XceptionNet [Ch17] 299×299 99.59 99.61 99.14 99.36
Proposed Method 64×64 99.30 98.25 99.11 98.46

Tab. 2: The performance of the proposed method on unknown synthetic samples in terms
of detection accuracy. For each method, the system is trained on the other three synthesis
data and did not observe a single sample of the method in question during training. The av-
erage detection accuracy is also reported. (DF: DeepFakes, F2F: Face2Face, FS:FaceSwap,
NT:NeuralTextures)

DF [%] F2F [%] FS [%] NT [%] Avg [%]
LOO Detection Accuracy 89.26 98.41 96.80 98.44 95.73

ranging from Deepfakes from generative adversarial networks to FaceSwap. The proposed
method consists of a preprocessing step where the content of the image is suppressed,
and the anomaly locations and anomaly strengths are extracted. The classification is then
done by a simple classifier. The anomaly extraction step is trained on natural images only
and preserves the detection-relevant information faithfully in the form of observation log-
likelihood probability. The detectors’ success provides new hopes for addressing the gen-
eralization problem over widely different generation processes.
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