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A B S T R A C T   

This paper investigates sector coupling between the central power system and local energy communities, in
cluding heat supply for buildings and charging of electric vehicles. We propose a stochastic linear programming 
framework to study long-term investments under uncertain short-term operations of nationally aggregated as
sets. We apply the model to a case study assuming European power sector decarbonization towards 2060 ac
cording to a 1.5 degree scenario, and we investigate the impact of coupling building heat systems and electric 
vehicle charging in Norway with the European power market. The case study focuses on the role of Norway in a 
European perspective because: (1) Norwegian electricity production is mainly based on flexible and renewable 
hydropower, (2) Norwegian building heating systems are currently mainly electric, and (3) Norway is already 
introducing electric vehicles at large. We focus on the European power market to test our hypothesis that it is 
more cost-efficient to decarbonize when the central power system is coordinated with building heat systems and 
electric vehicle charging. For Europe as a whole, results show that the average European electricity cost reduces 
by 3% and transmission expansion decreases by 0.4% when Norwegian heat systems are developed in co
ordination with the European power system. The average Norwegian electricity cost decreases by 19%. The 
strategy includes supplying up to 20% of Norwegian buildings with district heating fueled by waste and biomass, 
and the remaining electric heating supply is dominated by heat pumps.   

1. Introduction 

European energy policy pursue the growth of variable renewable 
energy sources (VRES), however, targets for the needed degree of re
structuring of the power system are not clearly stated [1]. Integration of 
VRES will require grid infrastructure, energy storage, flexibility, sector 
coupling, and short-term fuel switching [2,3], with corresponding 
changes in market structure and business models [4]. The interest in 
Zero Energy Buildings [5] is strengthened as buildings in Zero Emission 
Neighbourhoods [6] are developing towards networks of energy re
sponsive building envelopes [7]. The European Commission highlights 
the need to facilitate active demand-side participation in future Eur
opean power markets [8]. This paper studies how the short-term in
teraction between buildings, electric vehicles (EV), and the central 
power system affects the long-term energy decarbonization pathway. 

Research has demonstrated that the residential sector has an important 
impact on the aggregated peak load in the European power system [9], 
and buildings [10] and EVs [11] can facilitate more efficient operation 
of the power system. However, it is still unclear how the link between 
the building-, transport-, and power sector can impact European dec
arbonization. 

Several power system models study decarbonization [12] and sector 
coupling [13]; however, to the authors’ knowledge, existing models do 
not reconcile the following four aspects: (1) multiple long-term in
vestment periods, (2) chronological operational periods, (3) uncertain 
short-term operations, and (4) short-term sector coupling between the 
power system, building heat systems, and charging of electric vehicles 
(EVs). In this context, we propose an extension of The European Model 
for Power System Investment with (high shares of) Renewable Energy 
(EMPIRE) [14–16]. 
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We apply the extended EMPIRE model on a European case study 
focusing on how heat systems in buildings and charging of EVs are 
developed and operated when integrated with the European power 
system. In [17], an assessment of space heating flexibility has been 
performed, and they call for further work on how identified flexibility 
can be utilized in a larger context. In [18], they find that EV charging 
load could exceed available electricity capacity in some European 
countries and that flexible EV charging could limit some capacity in
adequacy. In this paper, we focus on how sector coupling affects the 
development of conventional flexibility assets, e.g. hydropower, and 
flexibility from heat systems in buildings and smart charging of EVs. 
Norway is in focus because its electricity supply is dominated by flex
ible hydropower, building heat systems are mainly electric, and EVs are 
phased in by favorable policies. Our hypothesis is that increasing the 
flexibility of building heat systems and EV charging in Norway will 
benefit the European power system as a whole because flexible Nor
wegian hydropower can be utilized as a ‘green battery’ in Europe  
[19,20]. Essentially, we test whether adding more flexibility to an al
ready flexible region of the power system can benefit the whole system. 
The case study analyzes how sector coupling affects the development 
of: generation assets for building heat and electricity, power transmis
sion assets, and storage and flexibility assets, including hydropower, 
building heat, and EVs. 

The structure of the paper is as follows: Section 2 presents related 
research to identify the novelty of our modelling framework and our 
case study. Section 3 presents the modelling framework including the 
new sector coupling features of EMPIRE, and Section 4 presents the 
European case study. Finally, Section 5 presents and discusses the case 
study results, before the paper is concluded in Section 6. 

2. Background 

This section discusses several techno-economic energy system 
models that have been used for analyses of European decarbonization 
towards 2050. 

A comprehensive multi-scale analysis is presented in [21] in
vestigating transition pathways towards the EU low carbon economy  
[22] without considering endogenous uncertainty within the modeling 
frameworks. In [23], short-term uncertainty in long-term energy system 
models is shown to be important when considering VRES like wind. The 
E2M2 model considers short-term uncertainty of VRES in [24], but 
storage and demand response technologies are not considered. Flex
ibility in a VRES dominated power system, including transmission, has 
been studied in The North Sea region using the PowerGIM model in  
[25] without considering sector coupling. The Balmorel model has been 
used to analyze sector coupling between the heat and electricity sectors  
[26–28], but does not consider short-term uncertainty of VRES. 

The German heat and electricity sector has been studied with the 
REMod-D model [29] and results show that 100% renewable supply is 
feasible [30]. The Nordic and Baltic region is analyzed with Balmorel in  
[27] where they find that electricity-to-heat converters and hot water 
storage tanks (HWST) are important assets. Increased flexibility in 
electricity systems dominated by combined heat- and power (CHP) 
plants through HWST and electric boilers are shown to decrease wind 
curtailment in [31]. Integrated operation of electricity and district 
heating systems has been analyzed in [32] demonstrating reduced op
erational costs, and the theoretical maximum of flexibility from CHP 
systems coupled with HWST have been analyzed in [33]. Price effects 
on electricity based heating in Norway are analyzed with Balmorel in  
[28] where they find that fuel switching in heat systems have growing 
importance with more VRES in the power system. Both heat and elec
tricity is considered in a stochastic version of TIMES in [34] studying 
the impact of net Zero Energy Buildings in the Scandinavian energy 
system. In [34], they find that such buildings will (1) partly replace 

investments in non-flexible hydropower, wind power and (CHP) and (2) 
trigger investments in more electricity based heating systems. Europe as 
a whole has been studied in [35] focusing on the utilization of excess 
production by VRES for building heating, and they find that heat pumps 
are a preferred technology to perform the sector coupling. In [36], the 
PyPSA [37] framework has been used to study sector coupling between 
the European power system, the heat sector, and the transport sector in 
2050, and they find that transmission exchange combined with energy 
flexibility through sector coupling can reduce total system costs of 
decarbonization by 37%. 

The EMPIRE model has been used to analyze decarbonization of the 
European power system considering uncertainty [14]. An updated 
version of EMPIRE is presented in [15] explaining the multi-horizon 
stochastic programming structure [38], and a case study of the Eur
opean power system decarbonization shows large wind power expan
sion and major net transfer capacity (NTC) expansion between Eur
opean countries [15]. Demand response features have also been 
developed in EMPIRE [16] and tested in a European case study. EM
PIRE has been linked with the model ZENIT in [39] to analyze how 
energy resources in neighbourhoods integrate into the Nordic power 
system, but only considers contributions of electricity production from 
neighbourhoods. 

In summary, we identify two research gaps: (1) The lack of a 
modeling framework consolidating long-term energy system planning, 
short-term uncertainty, and sector coupling, and (2) the lack of a pre
vious study focusing on the Norwegian sector coupling with a European 
perspective. To cover these gaps, the continuation of this paper pro
poses a modeling framework (Section 3) and a case study (Section 4). 

3. Method 

This section presents the stochastic programming model EMPIRE  
[14–16] which has been re-implemented in the open-source Python- 
based optimization suite Pyomo [40]. 

3.1. Model structure 

EMPIRE [14–16] is a techno-economic capacity expansion model  
[41] applied to the European energy system represented by a network. 
An open version of EMPIRE can be downloaded from [42]. The nodes in 
the network represent auction zones for clearing energy supply and 
demand, and the arcs represent exchange of electricity between these 
zones. The model supports investment decisions in generation, storage, 
and transmission assets on a country/zonal level made subject to the 
need to meet energy demand on an hourly basis without exceeding a 
European-wide emission cap. Energy demand, as well as asset options, 
their related costs and operational characteristics, are input to the 
model. The output supports decisions regarding technology choices, 
investment volume and timing, as well as hourly operations assuming 
perfect competition. Investments and operations related to generation 
and storage capacity happen in the nodes, cross-border exports and 
imports are described by arcs, whereas investments in transmission are 
described by a pair of unidirectional arcs between the same two nodes. 

EMPIRE forms a linear two-stage stochastic program [43] where the 
first-stage decisions represent investments in period i, and the second- 
stage decisions represent operations in period i and scenario . The 
stochastic scenarios consider uncertainty in the availability of wind-, 
solar-, hydropower generation; electric specific and building heat load; 
coefficient of performance (COP) for heat pumps; and required energy 
for flexible demand, e.g. EV charging. EMPIRE uses a multi-horizon 
structure [38] illustrated in Fig. 1. Each scenario x y z, , represents time 
series, and scenario z represents one realization of season y in invest
ment period x. 
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3.2. Sector coupling features 

3.2.1. Building heat 
One of the contributions of this paper is the development of EMPIRE 

to include sector coupling of building heat systems with the central 
power system. This feature is developed by categorizing energy demand 
into electric specific demand and building heat demand as described in  
[44]. Electric specific demand includes all electricity demand that must 
be met with electricity, while building heat demand includes space and 
hot water demand in buildings that can be met with either electricity or 
other heat producing technologies, e.g. district heating. The model 
supports investments in technologies that can generate and store heat 
and electricity, including CHP plants. In addition, the model supports 
investment in technologies converting electricity to heat, e.g. heat 
pumps. Through the electricity-to-heat converters, it is feasible to sa
tisfying building heat demand with 100% electricity. 

Fig. 2 represents the link between operations in a specific node, 
operational period, investment period, and stochastic scenario. Supply 
by generators is either electricity, heat, or both (CHP). Converters 
transform electricity to heat but not heat to electricity. Generators and 
converters must satisfy electric specific and building heat demand. 
More electricity and heat in one operational time step can be supplied 
or converted to be stored for later within the same season and stochastic 
scenario. If there is less supply than demand for electricity or heat, 
storage must be discharged or load must be shed. Heat, naturally, 

cannot be exchanged between countries. 
Fig. 2 also illustrates how the model considers flexibility from 

supply-, converter-, and storage assets. For every hour, the model has 
flexibility to cover electricity demand by producing electricity in that 
hour or discharging stored electricity. Similarly for heat, there is flex
ibility to produce or discharge stored heat to cover heat demand, and 
additionally an option of converting electricity to heat with either 
produced or stored electricity. Note that demand is not considered 
flexible. However, the model can consider demand flexibility if parts of 
the demand is considered as a storage. Charging the storage is 
equivalent to the net addition of demand in an hour, while discharging 
the storage is equivalent to net removal of demand in an hour. 

3.2.2. Electric vehicle charging 
To consider flexible EV charging, the demand response features of 

EMPIRE presented in [16] are used. More specifically, EV demand is 
considered to be a shiftable volume load [16], i.e. energy demand that 
must be met by a certain time period with any charging pattern given it 
meets the energy demand and satisfies some charging constraints. The 
input of EV demand affects the total EV charging flexibility, and it is the 
minimum cumulative charging to be made within a node and period, 
e.g. every 24 h. We consider uncertainty of EV flexibility by allowing 
EV demand to vary across different stochastic scenarios. The charging 
constraints also affect the EV charging flexibility for every node and 
investment period, and they include a maximum charging limit 

Fig. 1. Illustration of the stochastic structure of the EMPIRE model. The blue circles represent investment periods with first-stage decisions, and each period contains 
seasons and stochastic scenarios with second-stage decisions. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 2. Illustration of the sector coupling between the electricity and the building heat sector in the EMPIRE model. The sector coupling is on an hourly time 
resolution in the model. 
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dependent on the endogenous EV charging capacity expansion. We also 
consider vehicle-to-grid (V2G) through the possibility of discharging 
EVs. 

3.3. Mathematical formulation 

The following section presents in detail the mathematical formula
tion of EMPIRE used in this paper including the developments pre
sented in Section 3.2. It is best read assisted by the full nomenclature of 
EMPIRE found in Appendix A. 

3.3.1. Objective function 
The objective function in EMPIRE quantifies costs of investing and 

operating the respective energy system, and it is formulated in the 
following way: 
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The objective function (1) discounts all costs at an annual rate of r, 
and the investment periods are given as five-year blocks. The first three 
terms of (1) relates to investment costs in additional capacity of gen
eration, storage, and transmission. The last three terms relate to op
erational- and load shedding costs. The terms for operational costs are 
scaled with the scenario probability , the seasonal scaling factor s
annualizing the seasonal costs, and the five-year scale factor 
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0
4 scaling and discounting the annual operational costs 

to the five-year investment periods. 

3.3.2. Investment constraints 
Installed capacity of assets in each period is defined in the following 

way: 
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Constraints (2) make sure installed capacity is defined as initial 
capacity plus capacity expansion up until the period of consideration 
for every generator, storage, and electricity-to-heat converter. Note that 
constraints (2) consider the asset lifetime. Equivalent constraints also 
apply for transmission lines and charging/discharging capacity of sto
rage. 

Capacity expansion of storage is separate for charging/discharging 
capacity and energy storage capacity. However, some storage tech
nology types b † cannot expand charging/discharging capacity 
without also expanding energy storage capacity. A fixed capacity ex
pansion ratio, b

stor, is defined for b †, and constraints (3) apply: 

=v v b n i, , , .b n i b b n i n, ,
storCH stor

, ,
node † (3)  

3.3.3. Operational constraints 
There are two main groups of equations in EMPIRE that ensure the 

operational balance between supply and demand of electric specific and 
building heat load: 
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Constraints (4) ensure the balance of electric specific load, which 
means that total supply from electric generators and storage units, as 
well as imports and electric load shedding, must be balanced with 
electric load, exports, and charging. Note that = 1g

CHP for all 
G Gg EL HT, that is all non-CHP electric generators. For CHP gen

erators ( G Gg EL HT), g
CHP represents how much electricity is being 

produced per unit of heat output. 
Similarly, constraints (5) make sure the building heat load is ba

lanced such that total supply from building heat generators and storage 
units, as well as conversions of electricity to heat and heat load shed
ding, must be balanced with heat load and charging. Note that con
version of electricity to heat links constraints (4) and (5) together, and 
that hourly scenario dependent converter efficiency is ensured in con
straints (5). 

Annual CO2eq. emissions from energy production for every invest
ment period are restricted with an emission cap: 
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Constraints (6) ensure that no operational scenario can produce more 
annual CO2eq. emissions than the cap allows. These constraints ensure 
that the optimal solution of EMPIRE represents an energy system with 
the needed emission reductions, while the objective (1) is focusing on 
minimizing total system costs. The alternative to including the carbon 
cap constraints (6) is to include carbon pricing as part of the operational 
costs of carbon emitting generators. However, future carbon prices are 
harder to forecast than future carbon caps, so we include constraints  
(6). Note that the dual variables of constraints (6) represent the shadow 
prices of meeting the carbon cap which makes carbon prices an output 
of EMPIRE. 

Generators are subject to the following operational constraints: 
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Constraints (7) ensure that generator type g cannot produce more 
than what is installed in node n and period i and what is available in 
hour h and scenario . Thus, constraints (7) allow for the consideration 
of uncertain availability of e.g. VRES. Constraints (8) ensure that some 
generators are subject to up-ramping restrictions, i.e. increasing gen
erator output between two consecutive hours is limited by a share of 
installed capacity. 

Hydroelectric generators are subject to additional constraints: 
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Generation by regulated hydro plants is restricted by season and 
node through constraints (9), while expected annual production for all 
hydro plants in a node are constrained by (10) 

Storage assets are subject to the following operational constraints: 
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Storage assets start with an initial energy level available as a per
centage of installed capacity ensured by constraints (11), and their state 
of charge considering losses is ensured by constraints (12). Normal 
storage assets run a full cycle over each representative time period in 
each season through (13), while flexible demand, b FX, is re
presented as storage that needs to be filled by specified hours within 
representative periods through constraints (14). 

Flexibility in EMPIRE is related to an asset’s ability to adapt its 
operation to different operational scenarios, and it can be provided by 
all assets in EMPIRE, including generators, storage, transmission, and 
electricity-to-heat converters. The generators with more operational 
constraints, like generators subject to ramping constraints (8), have less 
flexibility than generators without ramping constraints, e.g. regulated 
hydropower. 

3.3.4. Other constraints 
In addition to the constraints presented in the previous section, all 

variables in EMPIRE are subject to non-negativity constraints. Capacity 
expansion is subject to upper bounds, and all asset operations are 
bounded by installed capacity. 

4. Case study 

This section describes our European case study and the input to the 
EMPIRE model. The main purpose of the case study is to study the 
impact of the sector coupling features presented in Section 3.2 with a 
European perspective. 

We consider eight five-year investment periods from 2020 to 2060, 
and we assume an annual discount rate of 5% following [14]. The in
stances contain 35 nodes1 and 85 bidirectional arcs representing ex
isting and potential European power exchanges. Norway is divided into 
five nodes representing the Norwegian Nord Pool price zones. No 
transmission expansion between the Norwegian zones is allowed. The 
CO2eq. cap is assumed to follow [45] from 1, 110 to 22 Mton CO2eq. 
per year from 2020 to 2060. Emission factors for stationary combustion 
are estimated according to [46], and we assume only operational 
emissions and no emissions related to VRES including biomass. Cost of 

load shedding is assumed to be €22, 000/MWh following [47]. 
We include 16 electricity generator types and two electricity storage 

types (see Appendix B), and we do not consider carbon capture and 
storage technologies. Additionally, we consider two electricity-to-heat 
converter types, two non-electric building heat generator types, two 
CHP generator types, and two heat storage types (see Table 1). Tech
nology costs for electricity generators come from [49], and fuel costs 
come from [50]. For building heat technologies, costs come from [48]. 
Costs for transmission expansion is according to [15]. 

Operational scenarios have an hourly resolution and consist of six 
seasons per investment period: four regular seasons and two peak 
seasons. The regular seasons have 168-h duration and the peak seasons 
have 24-h duration. We consider three stochastic scenarios for all sea
sons. The uncertain data input are: VRES availability, load, COP for 
heat pumps, and EV demand. 

Based on historical data, uncertainty related to VRES availability 
and load are produced by the scenario sampling routine described in  
[15]. The sampling routine is initiated by defining four partitions of a 
year containing hourly data that represents four regular seasons. The 
data set we sample from consist of several years of data for VRES 
availability from renewables.ninja [51,52] and load from ENTSO-E 
Transparency Platform. The sampling routine consist of the following 
steps: (1) selecting a random year, (2) selecting randomly the same 168 
consecutive hours for each stochastic process within a season, and (3) 
repeating the former step for all seasons. The sampling routine is per
formed for all scenarios, and it is repeated for any sampled scenario that 
deviates too much from the mean, variance, skewness, and kurtosis of 
the respective underlying full data set. To represent extreme situations, 
we also construct two peak seasons containing 24 consecutive hours of 
extreme load situations. The first peak day contains the highest load 
summed over all countries, and the second peak day contains the 
highest hourly load of a single country. For heat pumps, we sample 
temperatures in Norway for the same hours for the year 2016, and we 
perform a linear regression based on data for BOSCH BMS500-AAM018- 
1CSXXA [53] to estimate a temperature dependent time series for the 
COP assuming an indoor temperature of 22 degrees. 

As we consider the stochastic processes of load and VRES avail
ability across Europe to be complex and mutually dependent, we 
sample from historical observations chronologically to preserve auto
correlation. Additionally, the same historic hours are sampled for the 
different European countries to preserve spatial cross-correlation. We 
also sample the same hours of a year for the different stochastic input to 
further preserve cross-correlation between the stochastic processes. 

Table 1 
Heat technology capital costs gathered from [48]. All generators are assumed to 
supply a district heating grid. CHP  = Combined Heat and Power, HOP  = Heat 
Only Plant (no electricity generation).       

Capital cost [€/kW-heat] 

Technology ’20-’30 ’30-’45 ’45-’60  

Converter    

Convector 966.7 933.3 833.3 
Heat Pump (air-to-air) 440.0 514.3 485.7 

Generator    

Waste-to-Energy (CHP) 1870.0 1780.0 1610.0 
Waste-to-Energy (HOP) 1840.0 1750.0 1640.0 
Bio Wood Chip (CHP) 1000.0 950.0 880.0 
Bio Wood Chip (HOP) 790.0 750.0 680.0 

Storage    

Hot Water Storage Tank (small) 410.0 410.0 410.0 
Hot Water Storage Tank (large) 150.0 150.0 150.0 

1 The model includes nodes for all countries in the EU-27 minus Cyprus and 
Montenegro plus Bosnia Hercegovina, Great Britain, North Macedonia, Serbia, 
Switzerland, and five Norwegian nodes representing Nord Pool bidding zones. 
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Regarding uncertainty related to EV demand, we consider annual 
EV demand in Norway as projected in [54], from 2 TWh/year in 2020 
to 15 TWh/year by 2060. Note that EV demand includes not only cars, 
but also buses and ferries [55]. The annual EV demand is made into a 
constant 24-h demand with a ± 5% random variability across the three 
stochastic scenarios. 

We define two European instances in EMPIRE for comparison:  

• BASE: All load in Europe is electric specific (see Fig. 3a) without 
defining building heat load. All load can only be met with electricity 
generation.  

• HEAT: Part of Norwegian total load is defined as building heat load 
(see Fig. 3b). Heat load can be met with electricity-to-heat con
verters, including heat pumps and convectors, or non-electric heat 
generation and heat storage (see Table 1). 

We only consider building heat load in Norway because we hypothesize 
that flexible Norwegian hydropower is more valuable for other pur
poses in the coming decades than meeting building heat load. 
Norwegian building heat supply is currently largely electric, while 
Norwegian electricity generation is dominated by flexible hydropower. 
Statistics from [56,54] show that 60% of electricity demand in build
ings is for heating purposes and buildings make up about half of the 
total Norwegian electricity demand. Thus, the heat load in HEAT is 
estimated as 40% and 20% of the hourly electricity load from BASE for 
the Norwegian nodes for winter and summer seasons, respectively (see  
Fig. 3b). To make a fair comparison, the sum of heat and electricity 
demand is equal for BASE and HEAT if building heat load is met with 
existing building heat systems. Note in Fig. 3 that the total hourly load 
is higher in HEAT compared to BASE as the building heat load is ad
justed by the COP of heat pumps. Defining building heat load as a share 
of historic electricity load can be used for Norway as heat supply to 
buildings is mainly electric [56], however, other approaches for pro
jecting building heat load should be used for countries where building 
heat is not mainly covered with electricity, see e.g. [29,44]. 

To project future load profiles, we shift historic load profiles ac
cording to energy demand forecasts. This is done by calculating two 
averages: (1) the average load in node n in the first investment period 
( =i 1) based on the historic load profile for one stochastic scenario 
( n,1,

load,avg) and (2) the average demand in one hour based on the annual 
demand estimate from the EU reference scenario [50] for investment 
period i ( n i,

dem,avg). The load n h i, , ,
load in hour h in node n, investment period 

i, and scenario is then calculated h : 

= + .n h i n h n n i, , ,
load

, ,1,
load

,1,
load,avg

,
dem,avg

Electricity load data are based on historic load from ENTSO-E and 
shifted according to the annual demand growth anticipated in the EU 
decarbonization scenario 2016 presented in [50] towards 2050 and a 
linear interpolation towards 2060. For Norway, we estimate the annual 
electricity demand towards 2040 according to [54] and a linear inter
polation for following investment periods in BASE. In HEAT, we cate
gorize the annual electricity demand into electric specific demand for 
all sectors and building heat demand according to [54,56] adjusted by 
the COP of heat pumps (see Fig. 4). We allocate the annual demand 
within Norway according to the historical share of the total annual 
electricity use of the five Nord Pool zones, and this allocation method is 
used for any data related to Norway unless otherwise stated. 

In both BASE and HEAT, investment costs for EV charging infra
structure are estimated according to Table 5.5 in [57]. We estimate 
initial charging capacity in Norway to be 300 MW assuming 15, 000
charging stations with an average capacity of 20 kW based on [58]. We 
assume existing charging capacity is retired by 2030 and allocate the 
initial capacity according to the share of publicly available car charging 
stations in each Norwegian zone in 2018 presented in [59]. We assume 
no losses related to EV charging. We also allow 20% of EV charging 
capacity to be used for V2G without costs or losses. 

Initial electricity generation capacity per country is estimated ac
cording to [60]. We also assume only initial electricity-to-heat con
verters in buildings in Norway estimated as a share of peak heat load in 
each node as presented in [61]: 28% for heat pumps adjusted by the 
COP and 72% for convectors. We assume no fuel costs for Waste-to- 
Energy (WtE) generators. Because of waste treatment constraints, we 
also assume output from WtE generators must remain constant in each 
season with no intra-weekly up-ramping. The maximum installed ca
pacity of WtE in Norway is estimated to be 1, 140 MW2. Emissions from 
burning waste are assumed to be 37.0 kgCOeq/GJ according to [48]. For 
the bio-based heat generation, fuel costs are chosen according to [50]. 
For initial capacity of HWSTs in Norway, we assume a Norwegian po
pulation of 5.3 million according to [63] and 1 kWh energy and char
ging capacity of small HWST capacity per person3, and we assume no 
retirement of initial HWST capacity. 

The energy community flexibility in our case study is related to 
HWST and charging/discharging of EVs, and we do not consider 

Fig. 3. A winter week for NO1 in BASE (a) and HEAT (b). All load is defined as electric specific load based on historic load profiles in BASE, whereas 40% and 20% of 
this load is defined as building heat load in HEAT for Norwegian winter and summer seasons, respectively. 

2 According to [62], Norway produces 3.6 million tons of burnable waste 
annually, and an energy value of 2.78 MWh/ton [48] can at maximum produce 
10, 000 GWh/year, or 1, 140 MWh/h. 

3 One tank has 3 kWh energy capacity on average [48], and we assume two 
persons per tank and that two thirds of the tank is available for flexibility 
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flexibility in the thermal mass of buildings or other controllable loads in 
the communities. 

5. Results and discussion 

This section presents the results from our case study described in 
Section 4. BASE is solved in 9, 000 seconds, while HEAT is solved in 
11, 000 seconds using interior point method (barrier algorithm) [64] 
without crossover with the FICO® Xpress Solver v8.8.1 [65] running on 
a computer cluster with CPU 2x 4 GHz Intel E5-2643v3 (6 core) and 
512 Gb RAM. 

5.1. Total system costs and emissions 

The total discounted system costs for Europe from 2020 to 2060 for 

BASE is €2.47 trillion or an average undiscounted cost of European 
electricity of €100/MWh. In HEAT, 1% of total European electricity 
demand is identified as building heat demand in Norway. In BASE, all 
demand is assumed to be electric specific, so the main difference be
tween BASE and HEAT is that building heat demand can be met by non- 
electric heat supply or more efficient electricity-to-heat converters in 
HEAT. This opportunity reduces the total system cost for Europe by 
€7.14 billion ( 0.29%) in HEAT, which means discounted savings of 
€3.2/MWh of building heat demand. The average undiscounted cost of 
European electricity reduces to €96/MWh ( 4%) in HEAT. The total 
number of hours with electricity prices > €1, 000/MWh reduces by 19% 
and the number of hours with prices < €1/MWh reduces by 5% in HEAT 
compared to BASE. The undiscounted average cost of electricity in 
Norway is €86/MWh in BASE and reduces to €70/MWh ( 19%) in 
HEAT. 

Fig. 4. Assumed development of annual electric specific and heat demand in Norway in HEAT.  

Fig. 5. Expected annual electricity generation from all Norwegian zones (NO1-NO5) from 2020 to 2060.  
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Total expected European emissions are capped for all generators, 
including heat generators, according to [45] and binding for all in
vestment periods in BASE and HEAT. This is because of the emission 
cap constraints (6) in Section 3.3 which ensure that the scenarios with 
the highest emissions in all investment periods have the same emissions 
in BASE and HEAT. Note that both instances satisfy the emission targets 
in [45] for all investment periods. The undiscounted CO2eq. price 
ranges between €40/ton and €60/ton until 2040, and increases beyond 
€100/ton after 2040. The highest indicated CO2eq. price is €974/ton 
from 2055 to 2060 in BASE. 

5.2. Expected annual heat and electricity generation 

Hydropower dominates Norwegian electricity generation for both 
instances (see Fig. 5), while onshore- and offshore wind grows towards 
2060 in both instances (see Fig. 5). Total electricity production in 
Norway, mainly from wind, is decreased in HEAT compared to BASE 
(see Table 2), while total expected hydropower output is the same. 

Decreased electricity production in HEAT compared to BASE is be
cause of two reasons: (1) building heat supply is met by CHP plants 
incinerating waste and biomass and (2) energy efficiency is increased 
through increased use of heat pumps. Up to 20% of building heat supply 
comes from CHP plants in HEAT, while the remaining building heat 

demand is met with electricity mainly used in heat pumps (see Fig. 6). 
The CHP plants are fueled solely by municipal waste until 2035, while 
emission constraints ensure an increasing amount of biomass is burned 
towards 2060. For the European power system as a whole, onshore- and 
offshore wind is decreased in HEAT compared to BASE compensated by 
energy from CHP plants and efficiency gains through heat pump use in 
Norway (see Fig. 7). 

5.3. Transmission 

Norwegian expected annual electricity imports decrease by 4% and 
exports increase by 8% in HEAT compared to BASE (see Fig. 8). The 
increased Norwegian electricity exports in HEAT compared to BASE 
does not lead to increased NTC expansion. On the contrary, there is 
500 MW less NTC expansion between NO1 and Sweden in HEAT 
compared to BASE. This is because Sweden develops 8 GW less wind 
power, or an average decrease of 8 TWh/year, towards 2060 in HEAT 
compared to BASE, while wind power capacity in NO1 is the same. 
Consequently, electricity exports from Sweden are reduced in HEAT 
compared to BASE, and the required transmission capacity between 
Sweden and NO1 is reduced. Note that Norway as a whole develops 11 
GW less wind in HEAT, or an average decrease of 13 TWh/year. 

5.4. Flexibility in local energy communities 

5.4.1. Heat converter and storage flexibility 
There is significant capacity expansion of HWST in Norway in 

HEAT, where most expansion happen between 2030 and 2050. The heat 
storage is mostly utilized to balance the electricity use of electricity-to- 
heat converters. HWST are generally charged when Norwegian exports 
are decreased because that means electricity is available for heat con
version. The vice versa is also the case: HWST are generally discharged 
when exports are high because less electricity is available for heat 
conversion. In such a way, the central power system and the building 
heat systems are operated more cost efficiently through the flexibility 
provided by regulated hydropower, electricity-to-heat converters, and 
HWST. There is only capacity expansion of the ‘large’ HWST as it is a 
cheaper investment alternative (see Table 1). The new HWST storage 
capacity reaches 106 GWh for Norway in total by 2060, which would 

Table 2 
Total expected demand and generation in Norway for BASE and HEAT from 
year 2020 to 2060.     

Instance BASE HEAT  

Electric specific demand, Norway [TWh] 6,200 4,700 
Building heat demand, Norway [TWh] – 2,200  

Expected electricity generation, Norway [TWh] 7,800 7,400 
– of which hydro [TWh] 6,000 6,000 
– of which wind [TWh] 1,800 1,200 
– of which CHP [TWh] – 100  

Expected non-electric heat generation, Norway [TWh] – 400 
Expected electric heat generation, Norway [TWh] – 1,900 
– of which convector [TWh] – 300 
– of which heat pump [TWh] – 1,600 

Fig. 6. Share of annual heat supply by technology in all Norwegian zones (NO1-NO5) from 2020 to 2060.  
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require a total area4 of 32, 000-133, 000 m2 [48]. 

5.4.2. Electric vehicle charging 
The total capacity expansion of EV charging capacity in Norway 

sums up to 4.3 GW in BASE, and there is 3% less capacity expansion in 
HEAT compared to BASE. After 2040, there is less EV charging capacity 
developed in NO1 and NO2 in HEAT compared to BASE indicating that 
building heat flexibility can partly substitute the need for EV charging 
infrastructure used for flexibility purposes. In other words, increased 

building heat flexibility increases the opportunity for peak shaving of 
EV charging profiles. 

Load shifting, or optimal timing, of EV charging is increasingly 
valuable towards 2060 in both BASE and HEAT. Fig. 9 shows an ex
ample of one scenario for net charging of EVs in NO2 in a fall week in 
2040–2045, and there is less variability in the EV charging in HEAT as 
the flexibility need is also met through smart building heating. Fig. 9 
also shows a net V2G for NO2 in BASE, however, there is no net V2G for 
all Norwegian nodes in BASE or HEAT. 

5.5. Discussion 

The EMPIRE model’s objective is to minimize total system costs subject 

Fig. 7. Difference in total energy output from 2020 to 2060 by technology for all European countries in HEAT compared to BASE.  

Fig. 8. Net hourly electricity export from Norway in the same fall week scenario for BASE and HEAT between 2030 and 2035. Negative values means net import to 
Norway. 

4 Assuming the space requirement for ‘large’ hot water tanks ranges from 0.3
m2/MWh to 1.25 m2/MWh [48] 
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to an ambitious European emission cap towards 2060. The output thus 
represents a simulation of the most cost-efficient decarbonization pathway 
for Europe as a whole, and does not represent the pathway of minimized 
emissions nor maximized energy efficiency. As emissions are capped, the 
difference in expected emissions from HEAT compared to BASE is small for 
Europe as a whole. However, there is a small increase in Norwegian emis
sions from WtE plants in HEAT compared to BASE, and this is fully com
pensated by a decrease in emissions for the rest of Europe in the critical 
scenarios. Although the increase in Norwegian emissions is small, these 
results demonstrate an important insight from our analysis: European 
emissions can cost-efficiently decrease even if national emissions for single 
European countries increase. This is especially relevant for Norway since 
Norwegian hydropower is valuable for VRES integration [19,20]. 

The case study of this paper is conducted within the European 
power market as we only analyze the development of Norwegian heat 
systems that are electric today. This is done to compare Norwegian heat 
system development when it is assumed to be an inflexible load (BASE) 
and when it can develop freely as building heating assets (HEAT). 
However, the whole heating market, as well as the gas market, is re
levant to consider in multi-sector energy system analyses, especially 
when considering countries with less electric heating than Norway. 
Future work includes using the EMPIRE modeling framework to ac
commodate a larger share of the heating market and thus a larger op
portunity for sector coupling. 

The EMPIRE modeling framework assumes perfect coordination and 
resource aggregation within European countries and perfect competi
tion between European countries. Therefore, the EMPIRE model in
herently assumes that all energy resources within one node are co
ordinated, and that all flexibility assets in local energy communities can 
be provided on a national level within an hour, e.g. through an ag
gregator role [66]. This poses both technical, regulatory, and even so
cial challenges [67]. Large-scale resource coordination calls for so
phisticated metering and a close link between end-users and flexibility 
markets. Our modeling results indicate that if such coordination can be 

successful, the utilization of flexible resources at the end-user level 
could impact the central power system, including capacity expansion of 
transmission and generation [68]. 

6. Conclusion 

This paper extends the stochastic linear programming model EMPIRE 
to study sector coupling between the central power system, heat systems 
in buildings, and flexible charging of EVs under uncertainty of VRES 
availability, heat pump COP, load, and EV demand. We apply the updated 
model to a European case study where we analyze decarbonization under 
uncertainty with and without sector coupling between the central power 
system and Norwegian building heat systems. Results from our case study 
indicate that a growth in non-electric heat supply to buildings in Norway 
is attractive for Europe towards 2060, and that the greatest share of 
building heat demand should be met with electric building heat solutions 
dominated by heat pumps coupled with heat storage. The integrated 
development of the European power system and Norwegian building heat 
systems increase export of hydropower from Norway to neighbouring 
countries. More work is needed to realistically represent the uncertain 
availability and costs related to aggregated local resources like heat sys
tems and EVs. Future work also includes considering building heat and 
EVs for several European countries to study cost-efficient interactions 
between building heat systems, electric mobility systems, and the central 
power system while meeting decarbonization targets. 
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Appendix A. Nomenclature of EMPIRE 

A.1. Sets 
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×
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n
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h h s

n
n

:Set of possible generator types,
:Set of possible storage types,
:Set of possible electricity-to-heat converter types,

{1, 2, , }:Set of investment periods,
{1, 2, , }:Set of operational periods,

:Set of seasons,
:Set of nodes,
:Set of unidirectional interconnectors,
:Set of bidirectional interconnectors,
:Set of scenarios,
:Set of possible electricity generator types,
:Set of possible building heat generator types,
:Set of possible generator types in node ,
:Set of generator types limited by ramping,
:Set of regulated hydro generator types,
:Set of all hydro generator types,
:Set of possible electricity storage types,
:Set of possible heat storage types,
:Set of flexible electricity demand,
:Set of possible storage types in node ,
:Set of storage types with fixed energy and charging ratio,
:Set of available electricity-to-heat converters in node ,

{ , , , } :Set of operational periods in season ,
:Set of arcs flowing into node ,
:Set of arcs flowing out from node .

n

n

n

s s s s

n

n
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Ramp
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A.2. Input data 

A.2.1. Costs 

c i
c b i
c n n i

q g i

q g i

q n i

q n i

Q i

:Investment cost of asset a in period ,
:Investment cost of charging of storage in period ,
:Investment cost of bidirectional interconnection ( , ) in period ,
:Operational cost of generator type in period ,

:CO2 emission factor of generator type in period ,

:Value of lost electric specific load in node in period ,

:Value of lost building heat load in node in period ,

:CO2 emission ceiling for all generators in period .

a i

b i

n n i

g i

g i

n i

n i

i

,
node

,
storCH

, ,
tran

1 2

,
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,
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,
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,
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A.2.2. Technology limitations 

B
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i a
g
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b
b

b
b

g

g

b
b

n
x a n i

x b n i
x n n i
X a n i

X b n i
X n n i

V a n i
V b n i
V n n i

:Lifetime of investment in asset ,
:Ramping factor for generator type ,
:Efficiency factor for transmission losses along arc ( , ) , (0, 1),

:Efficiency factor for charge losses with storage type , (0, 1),
:Efficiency factor for discharge losses with storage type , (0, 1),
:Efficiency factor for bleed losses with storage , (0, 1),
:Capacity ratio between charge/discharge speed for storage type ,
:Share of electric output per heat output from CHP generator ,

: 1,

:Ratio between charging and energy capacity for storage type ,
:Share of installed energy capacity initially available in storage type
in each representative time period,
:Max expected annual output from total hydro in node ,

¯ :Initial capacity of nodal asset in node in period ,
¯ :Initial capacity of charging of storage in node and period ,
¯ :Initial capacity of bidirectional interconnection ( , ) in period ,
¯ :Max investments in nodal asset in node and period ,

¯ :Max investments in charging of storage in node and period ,
:Max investments in bidirectional interconnection ( , ) in period ,

¯ :Max installed capacity of asset in node and period ,
¯ :Max installed capacity of storage of charging in node and period ,

:Max installed capacity of bidirectional interconnection ( , ) in period .
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A.2.3. Scenario input 
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b n h i

:Probability of scenario ,
:Availability of generator type in node in period ,
and scenario ,
:Electric specific load in node in period , and scenario ,

:Building heat load in node in period , and scenario ,

:Max output from regulated hydro in node , and ,

:Efficiency factor for electricity-to-heat converter in node
in period , and scenario ,
:Energy required by in by hour in and .

( is subtracted by the hourly average requirement for each season).
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A.3. Variables 

A.3.1. Investment decision variables 
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x X b n i

x X n n i
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v V b n i
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0 ¯ :Investments in asset in node in period ,
0 ¯ :Investments in charging of storage in node in period ,

0 ¯ :Investments in bidirectional interconnection ( , ) in period ,
0 ¯ :Capacity of asset in node in period ,

0 ¯ :Capacity of charging of storage in node in period ,
0 ¯ :Capacity of bidirectional interconnection ( , ) in period .

a n i a n i n n n

b n i b n i n

n n i n n i

a n i a n i n n n

b n i b n i n

n n i n n i

, ,
node

, ,
node

, ,
storCH

, ,
storCH

, ,
tran

, ,
tran

1 2

, ,
node

, ,
node

, ,
storCH

, ,
storCH

, ,
tran

, ,
tran

1 2

1 2 1 2

1 2 1 2

S. Backe, et al.   Electrical Power and Energy Systems 125 (2021) 106479

12



A.3.2. Operational decision variables 
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0 :Output by generator type in node in period ,
and scenario ,

0 :Electricity transmission from node in period ,
and scenario , ( , ) ,

0 :Charging of storage type in node in period , ,
and scenario ,

0 :Discharging of storage type in node in period , ,
and scenario ,

0 :Energy content of storage type in node in period ,
and scenario ,

0 :Electricity-to-heat conversion by converter type in node
in period , and scenario ,

0 :Electric specific load shed in node in period ,
and scenario ,

0 :Building heat load shed in node in period ,
and scenario .
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Appendix B. Technology input data 

Tables 3 and 4  

Table 3 
Electricity generator investment options and their assumed capital costs (in €/kW) for future periods. Source: [49].      

Technology Capital cost [€/kW]  

’20-’30 ’35-’40 ’45-’60  

Lignite (conventional) 1800 1800 1800 
Oil (conventional)a – – – 
Coal (conventional) 1600 1600 1600 
Coal (10% bio co-fire) 1600 1600 1600 
Combined Cycle Gas 720 690 660 
Open Cycle Gas 400 400 400 
Nuclear 6000 6000 6000 
Bio (conventional) 2000 1800 1700 
Geothermal 4970 4586 3749 
Hydro (regulated) 3000 3000 3000 
Hydro (run-of-river) 2450 2400 2350 
Solar Photovoltaic 710 663 519 
Waste (electricity-only) 2030 2013 2005 
Wave 6100 3100 2025 
Wind (offshore) 2778 2048 1929 
Wind (onshore) 1295 1161 1010 

a ‘Oil (conventional)’ is not considered an investment option, only an existing power generator.  

Table 4 
Electricity storage investment options and their assumed capital costs for future periods. Source:  
[69,70].     

Technology Capital cost [€/kW]  

Charge Storage  

Hydro (pumped storage) 1000 100 
Lithium-ion Battery 198 a 0 b 

a Capital charge cost is €246/kW for the first investment period (2020 to 2025). 
b Charge and storage capacity are developed together for lithium-ion batteries, hence no ca

pital storage costs.  
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