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Abstract—Safe handling of heavy payloads in an
offshore environment requires careful planning and
depends on the interaction between a crane and
a vessel. This paper investigates the coupled dy-
namics between a multipurpose crane with payload,
and an offshore carrying vessel. A classical multi-
body model is derived using holonomic constraints
and Newton-Euler kinetics. The resulting index-3
system of differential-algebraic equation (DAE) is
transformed into an index-1 system and solved using
commonly used numerical ode solvers. Numerical
simulations are carried out to show that the proposed
models behave in a physically realistic manner.

Keywords-mathematical modeling, offshore cranes,
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I. Introduction
Vessel-mounted cranes are important for several off-

shore industries, e.g. offshore drilling and windmill
farms. The conventional knuckle-boom crane is mul-
tipurpose, and has remarkable lifting capabilities, but
requires experienced personnel and a lot of planning
when significantly heavy payloads are involved. In a
worst case scenario, a heavy lifting operation can impact
the vessel stability and dangerous situations and high-
cost failures may follow. On the contrary, marine craft
designers and regulatory decision makers may be con-
servative regarding allowable crane loads and weather
windows, which in turn lead to higher costs associated
with the size of the vessel and downtime due to bad
weather. Hence, there is a need to further investigate
the coupled dynamics between the crane and vessel, and
to seek more autonomy in a control setting.
Over the past decade, modeling and control of cranes
have been extensively studied. In [1], a Lagrangian-
based dynamic model of a ship-mounted boom crane
was derived about a vessel-fixed reference frame, and
appended inertial forces and moments using relative
accelerations of various points. This paper was further
developed with focus on offshore crane control in [2] and
[3]. In above papers, the ship was assumed to move only

in roll and heave, and furthermore to be sufficiently large
to not be affected by the crane-payload system
In [4], a moored crane-vessel with suspended load was
analyzed both analytically and experimentally. In this
study, a 4 degrees of freedom rigid-body model of the
ship was influenced by mooring forces, viscous drag and
frequency-dependent wave forces. The hydrodynamics
was included by introducing additional state space mod-
els based on pre-simulations using the software WAMIT.
The resulting time-domain model and a corresponding
frequency domain model were used to study nonlinear
dynamic phenomena affected by the mooring stiffness
in particular. This study was relevant for investigating
how wave excitation affect surge and payload swing
motion. The problem is that the crane itself remains
static and that the degree of freedom most sensitive to
disturbances, i.e. the roll, is not considered.
In [5] and [6], a fully coupled spatial knuckle-boom crane
on a marine craft was modelled using Kane’s method,
using a minimal set of coordinates and generalized
speeds. In above works, partial velocities needed for
Kane’s equations were defined as screws which enable
screw transformations as a means to project kinetics to
the inertial frame. Constraint forces/moments were can-
celled from the equations of motion using D’Alembert’s
principle and virtual work, and in [6], brought back into
evidence using screw transformations. In this work, the
crane was modelled as a serial link manipulator, thereby
avoiding the closed loops that arise by including cylinder
kinetics.
In this paper, we propose to use a classical multi-
body dynamics formulation with a full set of Cartesian
coordinates and Euler angles for each body to derive
a fully coupled model of vessel, crane and payload.
Equations of motion are derived using a Newton-Euler
formulation and appended with holonomic kinematic
constraints to reach the desired number of degrees of
freedom. Wave loads and hydrodynamic parameters for
the vessel are obtained from pre-simulations using the
hydrodynamic code VERES [7], implementing 2D strip



theory as described in [8]. Kinematic singularities asso-
ciated with Euler-angles are accounted for by specifying
suitable initial orientations of the body-frames. The
multi-body system consists of ten rigid bodies, including
the vessel and payload. Hence, the crane is built up
by eight moving bodies, where the base of the crane is
rigidly fixed to the deck of the vessel. Using the methods
proposed, we overcome the difficulties in including the
closed kinematic loops associated with the two cylinders
of the crane, and with the king, main jib and knuckle-
jib, the system makes up a typical multipurpose offshore
knuckle-boom crane. Constraint forces and moments
are expressed using Lagrange multipliers and included
in the formulation, which is numerically efficient and
convenient for in-depth analysis of forces acting between
individual members. The final model description yields
an index-1 DAE system which is simulated using MAT-
LAB’s ode solver package.

II. Modeling of Crane and Marine Craft
A. Crane Model
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Figure 1: Lumped Rigid Bodies and Points of Interest

Large conventional knuckle-boom cranes are highly
complex and consist of many moving parts. For our
case study, we care mostly about the gross rigid-body
dynamics, and hence are willing to make a lot of
simplifications. In particular, the winch, sheaves, etc are
considered to be statically fixed to relevant bodies. The
simplified crane consists of eight bodies, as shown in
figure 1. There are two heavy-duty hydraulic cylinders,
which eventually require inclusion of pressure-volumes
and valve control, but for this case, we consider their
kinetics only and neglect the means of power supply.
Likewise for the base revolute joint A, we assume that
torque is supplied in an ideal manner.

The pose of each body is described by six coordinates,
where three are along cartesian axes (x, y, z), and three
are the rotations about these axes, (φx, φy, φz).Any set
of such rotations will be associated with a singularity.
Using XY Z order of rotation, this singularity will occur

if φy = (2n + 1)π/2, so we have placed all local y-
axes accordingly (see figures 1 and 2). The crane (not
considering payload or marine craft) should have three
degrees of freedom. For a cartesian formulation, each
body requires six coordinates for the pose to be fully
defined. The system must satisfy

ncoord − ncon = ndof

where ncoord, ncon, ndof are the number of coordinates,
constraints and degrees of freedom, respectively - or
equivalently, we must find 8 · 6 − 3 = 45 independent
constraint equations. These are systematically found by
defining joints as follows:
• Revolute joints at A, C and F
• Prismatic joints between bodies 3, 4 and 6, 7
• Infinitely strong weld between the deck and body-1
• Spherical joints at D and G
• Universal joints at B and E

Methods of describing such joints are given in [9], [10]. In
total, going from the first to last item, these constraints
form 3·5+2·5+1·6+2·3+2·4 = 45 equations, which is our
target number for the crane. The payload is attached to
the crane-tip using a so-called spherical-spherical joint,
which can be regarded as a constant-distance constraint.
It requires only one scalar equation, and therefore, the
payload will have five degrees of freedom. Another way
to interpret this is that we have a rigid link with no
mass connected to a spherical joint at the payload via a
spherical joint at the crane-tip.

B. Mathematical Model
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Figure 2: Appended model

The system kinematics is described by holonomic
constraints of the form

Φ(q) = 0 (1)

where Φ ∈ Rncon is a vector function of the coordi-
nate vector q ∈ Rncoord . Using Cartesian coordinates,
rT = (x, y, z) and Euler angles, ϕT = (φx, φy, φz), we



have ncon = 46 and ncoord = 60 for the fully coupled
system (45 constraints for the crane-vessel and 1 for the
payload). By differentiating eq. (1) wrt time t, assuming
Φ does not depend explicitly on t, we get

dΦ
dt

= ∂Φ
∂q

dq
dt

+ ∂Φ
∂t

= Φqq̇ = 0 (2)

which can be rewritten as

Φqq̇ = D(q)


ṙ0
ω0
...

ṙ9
ω9

 = 0 (3)

where D(q) is a manipulated Jacobian matrix and ri

and ωi, i = 0, ..., 9 are the global position vectors and
angular velocities of each body i. The step going from
Φqq̇ to D

[
ṙT

0 · · ·ωT
9
]T in eq. (3) is based on the fact

that spatial angular velocities are different from the rates
of change of Euler angles. Rather, we must implement a
transformation, i.e. ϕ̇ = T(ϕ)ω. A representative single-
body version is illuminated by

Φq

[
ṙ
ϕ̇

]
= Φq

[
I 0
0 T

] [
ṙ
ω

]
= D

[
ṙ
ω

]
(4)

where I is the identity matrix and T(ϕ) depends on the
chosen order of Euler-angle rotations. The form used in
this paper is derived in eq. (20).

The dynamics of the system is described using the
Newton-Euler formulation. The general model for one
constrained rigid body for center-of-mass acceleration is[

mI 0
0 J

] [
r̈
ω̇

]
+
[

0
ω̃Jω

]
=
[
f ext

next

]
+
[
f c

nc

]
(5)

where m is the mass, r is the position vector of the
body-frame, J is the inertia matrix relative to the same
frame for which we express the angular velocity ω. The
tilde-operator denotes the skew-symmetric form of the
vector-argument. Hence a matrix equation, ãb, yields
an algebraic form of the cross product, ~a × ~b. Finally,
the right-hand side forces/moments, f/n, are split into
an external part and a part that represents the reaction
forces between the bodies.

Using the theorem of Lagrange multipliers from linear
algebra, we can express the constraint forces as a linear
combination of the rows of the constraint Jacobian
matrix, D, or equivalently, as the linear combination of
the columns of it’s transpose:[

f c

nc

]
= DTλ (6)

where λ is a column vector of Lagrange multipliers.
Furthermore, since the kinematic constraints are linear
in velocity and acceleration, we can derive an equation

D
[

r̈
ω̇

]
+ Ḋ

[
ṙ
ω

]
= 0 ⇒ D

[
r̈
ω̇

]
= γ (7)

where γ takes the form

γ = −Ḋ
[

ṙ
ω

]
(8)

Hence, we have a system of equations[mI 0
0 J

]
−DT

D 0

[ r̈
ω̇

]
λ

 =

[ f ext

next − ω̃Jω

]
γ

 (9)

For multi-body systems, the form of eq. (9) remains
the same, and the majority of the workload lies in
forming the kinematic equations that describe the
interaction between the bodies, and differentiating these
to get the constraint Jacobian and forming eq. (7). Note
that this form is valid for mass center accelerations,
with the angular velocity expressed relative to the
inertial frame. This means that the inertia matrix J is
expressed globally and is configuration-dependent, as in
J = RIRT , where the matrix I is the (constant) inertia
matrix relative to the body-fixed frame, and R ∈ SO(3)
is the rotation matrix relating the two frames.

C. Marine Craft Hydrodynamics

The marine craft model is based on parameters
obtained from hydrodynamic pre-simulations using
VERES/ShipX of a typical crane-carrying supply vessel.
From the VERES theory manual, the linear coupled
equations of motion for a marine craft can be written

6∑
k=1

((Mjk +Ajk) η̈k +Bjkη̇k + Cjkηk) = Fjeiωt (10)

where j = 1, ..., 6 is the coordinate (surge, sway, heave,
roll, pitch, yaw)

In eq. (10), the terms Mjk and Ajk represent mass
and added mass, the term Bjk represent hydrodynamic
damping and Cjk represents the restoring terms that
involve the interaction between gravity and buoyancy.
The right-hand side represents wave exciting forces/mo-
ments, for which the real part is physical. The frequency
ω is the encounter frequency, but for a ship with zero ve-
locity that frequency is the same as the wave frequency.



D. Kinematic Transformations
The vessel equations, as given in eq. (10), can be

written in matrix form as

(M + MA) η̈ + Bη̇ + Cη =
[
fw

nw

]
(11)

where M is the generalized mass matrix, MA and
B is the hydrodynamic added mass and damping, C
is a hydrostatic restoring matrix, and the right-hand
side consists of wave loads. The underlying theory that
VERES uses assumes symmetry about the xz-plane, and
a center-of-mass location (0, 0, zG) relative to the body-
frame of the ship. It follows that the generalized mass
matrix has the form

M =


m 0 0 0 mzG 0
0 m 0 −mzG 0 0
0 0 m 0 0 0
0 −mzG 0 Ix 0 −Ixz

mzG 0 0 0 Iy 0
0 0 0 −Ixz 0 Iz

 (12)

where m is the mass of the vessel. If the location of the
body-frame is at zG = 0, then the terms mzG vanish.
The added mass and damping matrices, MA, B are
really frequency dependent, but this dependency will
be dealt with in later sections, and the remaining parts
are those that correspond to the highest wave frequency
supplied to VERES. The hydrostatic matrix C has only
five nonzero entries:

C33 = ρgAwp (13)

C35 = C53 = −ρg
ˆ

L

bx dx (14)

C44 = ρg∇GMT (15)
C55 = ρg∇GML (16)

where ρ is the fluid density, g is the gravitational
constant, b is the breadth of the vessel, Awp is the
waterplane area, ∇ is the displaced water volume and
GMT and GML are the metacentric heights for the
transversal and longitudal directions. If we write the
coordinate vector η as [rT ,ϕT ]T where ϕ are Euler-
rotation angles, then, for consistency in our formulation,
we should transform the leading term of eq (11) to have
the form Mv̇ where vT = [ṙT ,ωT ]. We start by writing

η̇ =
[

ṙ
ϕ̇

]
=
[

ṙ
T(ϕ)ω

]
=
[
I 0
0 T(ϕ)

] [
ṙ
ω

]
(17)

where T(ϕ) is a transformation relating the rates of
change of the Euler angles, ϕ̇, to the angular veloc-
ity vector ω. The matrix T(ϕ) is easily obtained by
deriving it’s inverse, by writing the angular velocity
as a summation of simple rotations. Using an XYZ

rotation sequence, where the individual rotations are
about current body-axes, we can write

ω = AωB + BωC + CωD (18)

where the notation indicates rotation from the left
superscript-frame and to the right superscript-frame,
and the frames A and D are the inertial and body
frames, and the frames B and C are intermediate frames.
We then can write

ω = φ̇xâx + φ̇yb̂y + φ̇z ĉz (19)

where we understand that the unit vectors belong to the
matching frames. The result will give

ω =

1 0 0
0 cos(φx) − sin(φx) cos(φy)
0 sin(φx) cos(φx) cos(φy)

φ̇x

φ̇y

φ̇z

 = T−1ϕ̇

(20)
Then, the time derivative gives

ω̇ = T−1ϕ̈+ dT−1

dt
ϕ̇ (21)

where

dT−1

dt
= Ṫ−1 =

0 0 0
0 −sxφ̇x −cxcyφ̇x + sxsyφ̇y

0 cxφ̇x −sxcyφ̇x − cxsyφ̇y


(22)

and furthermore, we can write

ϕ̈ = Tω̇ −TṪ−1ϕ̇ (23)

and rewrite eq. (11) as

M0

[
r̈
ω̇

]
+ B0

[
ṙ
ω

]
+ Cη − b0 = Feiωt (24)

where

M0 = (M + MA)
[
I 0
0 T

]
(25)

B0 = B
[
I 0
0 T

]
(26)

b0 = (M + MA)
[

0
TṪ−1ϕ̇

]
(27)

E. Fluid Memory - Radiation Forces
The hydrodynamic loads acting on a structure in a

seaway is classicly split into two parts; loads acting from
wave excitations, or diffraction loads, and loads that
result in fluid radiation as the moving structure displaces
the surrounding water. Note that the equations (10) are
only valid in steady state sinusoidal motions, and a more
accurate simulation should include memory effects which
incorporate transient dynamics. These fluid memory
effects, µ, are related to the frequency dependence of



added mass and damping, and can be written as a
convolution term

µj =
6∑

k=1
µjk =

6∑
k=1

ˆ t

−∞
Kjk(t− τ)η̇k(τ)dτ (28)

where j = 1, ..., 6 and the convolution kernel, Kjk is
regarded as the impulse response of η̇k. This convolution
is impractical for numeric simulations, and Kristiansen,
et.al [11] proposed to represent µjk as a state space
model

µjk = Cjkxjk +Djkη̇k (29)

by introducing states xjk governed by

ẋjk = Ajkxjk + Bjkη̇k (30)

The system matrices, Ajk,Bjk,Cjk, Djk, should be such
that the frequency dependent added mass, Ajk(ω) and
damping, Bjk(ω) can be replaced by the state space
models. The procedure of obtaining these from the
output files of VERES are automated by a MATLAB
toolbox for frequency-domain identification, [12], and is
used here. The vessel model then gets the form

M0

[
r̈
ω̇

]
+ B0

[
ṙ
ω

]
+ Cη + µ− b0 =

[
fw

nw

]
(31)

The fluid memory has a large impact on the vessel
behaviour, as can be seen in figure 3, where the ma-
rine craft, i.e. body 0, is simulated with and without
the fluid memory term. Hence, even though we require
additional states (for our FDI process, we found seven
4th order models and six 3rd order models to represent
the frequency variation in added mass and damping)
which increases the simulation time significantly, we
should always include it when analyzing vessel response
in waves.

F. Wave Loads
The wave loads output files calculated by VERES are

given in terms of force transfer functions, or response
amplitude operators (RAOs). They are given as a ratio
between forces and wave amplitudes, and cannot be used
directly. In fact, considerable code is needed, so we rather
rely on work done by others, and use the MSS toolbox
[13], and in particular, the wave model and wave loads
block written by Fossen and Smogeli. This toolbox is
convenient for simulating marine crafts, and includes
interface for working with data generated by VERES.
In this toolbox, Fossen uses a differently defined body-
frame than we do, so we restrict its use to generate
wave loads. The wave models in MSS are stochastic and
formulated as a wave spectrum S(ω, ψ), where ω is the
wave frequency and ψ is the encounter angle of the waves
relative to the ship. The well known frequency spectrum
JONSWAP is used in this paper, with significant wave

height of 2 m, and peak wave period 8 sec. The wave
loads for all vessel coordinates are then interpolated to
fit with the crane-vessel simulation.

G. System Equations
Now we have consistent acceleration terms for all our

bodies, and can append the marine craft to the crane
model.

M0
M1

. . .
M9




v̇0
v̇1
...

v̇9

+ b(v,q) = g (32)

where the index denotes the body, v denotes all velocities
and q denotes all coordinates, both stacked in tall
column vectors. Also, b includes all terms that are not
acceleration dependent and the right-hand side, g is a
tall column vector of all external forces and moments
and all reaction forces and moments. The form of the
two are illustrated by

b =



B0v0 + Cη + µ− b0[
0

ω̃1J1ω1

]
...[
0

ω̃9J9ω9

]


,g =



[
f0
n0

]
...[
f9
n9

]
 (33)

The appended system (32) is written in compact form
as

Mv̇ + b(v,q) = gext + gc (34)

and, as we did for the single constrained body, in equa-
tions (6, 7, 9), we can express the constraint forces in
terms of the constraint Jacobian and append kinematical
relationships to obtain[

M −DT

D 0

] [
v̇
λ

]
=
[
gext − b
γ

]
(35)

III. Simulations
A. Numerical Simulations

The geometry and overall inertia properties of the
crane is based on a 250 ton, active heave compensated
knuckle boom crane. To obtain representative moments
of inertia for the individual bodies, 3D models of each
body were made and given accurate measurements
according to 2D drawings, and given the same total
mass. The moments of inertia were then calculated
by our CAD software, based on a defined center of
mass and on the assumption of homogeneous material
density. The total weight of the crane is approximately
390 tons.

The ship geometry and displacement is also based on
representative data and matches a real-case scenario



of a crane-carrying vessel. The vessel mass is about
14,000 tons, with a length, breadth and draught of 115,
25, and 6.4 meters, respectively. The hydrodynamic
and hydrostatic parameters for the vessel are taken
from pre-simulations using VERES. The fluid memory
approximation and wave loads are all based on VERES
calculations, but have been post-processed by the
MSS toolbox to be directly applicable for a multibody
simulation. The wave model is entirely due to MSS.

The payload is chosen as a (6 × 6 × 4) meter box,
with uniform density resulting in a mass of 10 tons.
The attachment point of the payload is at the centroid
of the top side, through a spherical joint. This leads to
additional rotational motions of the payload, and hence
makes the stabilization more challenging.

The cylinder control forces and the control torque for
the revolute joint between the tower (body-1) and the
king (body-2) are supplied by state feedback control.
For the cylinders, the references are cylinder stroke and
stroke velocity. For the revolute joint, the references are
relative angle between bodies 1 and 2, and the relative
rate of change of that angle.

To avoid excessive initial oscillations of the vessel due
to the impact from gravitational forces from the crane
and payload, we supply initial forces and moments to
the vessel, thereby balancing the weight of the crane
and the moment from that weight. Similarly, we supply
initial forces to the cylinders and torque to the joint
at point A, to avoid unnecessary computation time to
stabilize the simulation from initial accelerations due
to gravity. One of the advantages of the Newton-Euler
method is that any force can easily be obtained by
defining driver constraints which can be appended
to the kinematic constraints to give a fully actuated
model. This enables us to solve the kinetics using pure
algebraic relations, and initial forces corresponding to
any pose is easily found.

B. Results

The results section will include three cases to show the
success of the simulation platform. In describing these,
the parameters θ, s1 and s2 are the rotation angle of the
crane base, and the strokes of the cylinders:
• Case 1: Crane without payload
θ = −90◦, s1 = 2m, s2 = 2m

• Case 2: Crane with payload
θ = −90◦, s1 = 2m, s2 = 2m

• Case 3: Crane without payload
θ = −90◦, s1 = s2 = 3 + sin(2π/5t)

The wave model used here is stochastic, but the same
response and hence the same wave loads are used for all
simulations. As a reference, these waveloads are applied
to a single-body model of the marine craft. The figure
3 shows the vessel response in all coordinates - with
and without the fluid memory model. Note that the
inertial frame, {i} is located at the point that initially
is coincident with the point V . The body-fixed vessel
frame, {0}, is initially located at (33, 10,−10)m.
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Figure 3: Vessel response - with and without µ
From top to bottom: Surge, sway, heave, roll, pitch, yaw.
The units on the x-axis is seconds. The units on the y-
axes are meters and degrees.

Figure 4 shows the initial and final configuration of
the crane/vessel/payload for Case 2.

Figure 4: Figure showing initial and final pose of crane

The simulation is carried out for 100 sec, and the
crane finishes its relative motion within 50 sec. The
vessel is gently impacted by the payload in translational
directions. Figure 5 shows the surge, sway and heave
for cases 1 and 2.

By comparing the results with and without the crane,
i.e. by looking at figure 6 vs figure 3, we see that the
crane affects the vessel in the roll angle in particular.
Also, the roll angle is significantly impacted by the
payload, as expected. We also see that the yaw angle is
affected by the reaction moment from the crane as the
crane decelerates approaching the −90◦ point around
40 seconds of simulation time.



Figure 5: Surge, sway and heave for cases 1 and 2.
Units are meters vs seconds.

Figure 6: Roll, pitch and yaw for cases 1 and 2.
Units are degrees vs seconds.

During the first 50 seconds of simulation time for the
third case, we perform the same 0 → −90◦ rotation
of the base, and simultaneously extract both cylinders
0m → 4m. During the next 50 seconds, both cylinders
start to follow a sinusoidal reference, s = cos(2πt/5) m,
about the s = 3 m point. The sinusoidal motion
references for the cylinders are included in order to
generate distinctive crane kinetics that will be coupled
to the vessel response, and hence be visually identifiable
in the motion response of the vessel.
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Figure 7: Cylinder strokes and crane orientation, case 3

The upper two rows of figure 7 show the norm of

Figure 8: Surge, sway and heave for cases 1 and 3.
Units are meters vs seconds.

Figure 9: Roll, pitch and yaw for cases 1 and 3.
Units are degrees vs seconds.

the vectors r4 − r3 and r7 − r6, i.e. the strokes of
the cylinders, and the lower row shows the difference
between the Euler angles about the local z-axes of
bodies 1 and 2, φz,2 − φz,1, during the simulation of
case 3.

Figures 8 and 9 show the translational and rotational
coordinates for the vessel during cases 1 and 3. By
comparing these figures against the relative crane
motions shown in figure 7, we can visually see how
each individual degree of freedom of the vessel is
impacted by the crane dynamics. For the translational
coordinates, the sinusoidal crane kinetics is coupled the
strongest with the sway direction. This is physically
feasible since the crane is oriented towards the port
side, and the reaction forces between the crane and
vessel should have only minor components in the surge
direction. Furthermore, although less visually obvious,
the heave direction is also impacted by the sinusoidal
crane kinetics. This can be seen more clearly in figure
10, where the difference in heave motions, z3 − z1 is
plotted in meters. For the rotational coordinates, we
expect a strong coupling of the sinusoidal crane kinetics
in the roll direction - which is evident from the top row
of figure 9.
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Figure 10: Difference in heave motion for cases 1 and 3.
Units are meters vs seconds.

Finally, our simulation study has shown that even
relatively small payloads, e.g. 10 metric tons compared
to the max load 250 tons, will have an impact on the
vessel stability when no further stabilization measures
for the vessel are initiated.

IV. Conclusion
In this paper, we have derived and simulated a fully

coupled rigid-body model of a knuckle-boom crane with
payload and a marine craft. The final model consists of
ten rigid bodies, including the payload. Hydrodynamic
parameters and force RAOs based on the vessels
geometry and inertia properties are included, and the
applied wave loads are generated by a stochastic wave
model using the JONSWAP wave spectrum. Frequency
dependencies on hydrodynamic parameters of the vessel
are accounted for by representing radiation forces by
state space models, approximating the fluid memory
term in the vessel equations of motion. The simulation
results verify the effectiveness of the proposed methods.

The model can be used to determine reaction forces
between individual members, e.g. to find the required
cylinder forces to attain a certain trajectory, or to
find the reaction forces between the crane and vessel
operating in wave motion. Furthermore, it can readily
be extended to include more dynamics, e.g. winch/wire
and hydraulic actuation systems.
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