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ABSTRACT

Accurate polyp detection during the colonoscopy procedure
impacts colorectal cancer prevention and early detection. In
this paper, we investigate the influence of skip connections as
the main component of encoder-decoder based convolutional
neural network (CNN) architectures for colorectal polyp de-
tection. We conduct experiments on long and short skip
connections and further extend the existing architecture by
introducing dense lateral skip connections. The proposed seg-
mentation architecture utilizes short skip connections in the
contracting path, moreover it utilizes dense long and lateral
skip connections in between the contracting and expanding
path. Results obtained from the MICCAI 2015 Challenge
dataset show progressive improvement of the segmentation
result with expanded utilization of skip connections. Our
proposed colorectal polyp segmentation architecture achieves
near state-of-the-art results with significantly reduced number
of model parameters.

Index Terms— Colorectal polyps, encoder-decoder
methods, polyp segmentation, skip connections, U-Net++.

1. INTRODUCTION

Colorectal cancer is the third most common cancer in the
world [1]. Patients with a localized stage of the in vivo colon
cancer have survival rate up to 90%, though patients with dis-
tant stages have survival rate up to 14% [2]. Therefore, de-
tection at early stages is of high importance. Colonoscopy
is considered as the main screening procedure by allowing
complete colon examination as well as removing precancer-
ous polyps. It was demonstrated that there is a consider-
able miss-rate of non-neoplastic polyps and adenomas as 28
% and 20 % respectively [3]. Multiple factors contribute to
missed polyps during colonoscopy, such as endoscopist expe-
rience and bowel preparation [4]. Furthermore, endoscopists
over or under-estimate size of polyps, causing inappropriate
surveillance time in 10% of the cases [5]. Different meth-
ods are dedicated to automated polyp detection [6], however
encoder-decoder based methods have recently shown supe-
rior performance [7] [8] [9] [10]. In encoder-decoder based

Fig. 1: Variability in appearance of polyps. Polyps appear in
different size, shape, color, texture and location within colon
and rectum walls.

convolutional neural network (CNN) architectures colorec-
tal polyp segmentation is conducted by employing traditional
CNNs structures in the contracting path with repeated down-
sampling layers (such as pooling layers) [11] [12]. Down-
sampling layers provide local translation invariance, reduce
spatial size of the representation and extract low-level fea-
ture maps. This squanders important localization information
crucial to construct pixel-wise predictions in the expanding
path. To address this issue, skip connections are introduced
to recover the full spatial resolution by consolidating fine-
grain, low-level feature maps from the contracting path with
semantic, coarse-grain feature maps in the expanding path
[11] [12]. In the Fully Connected Network (FCN) [11] skip
connections are utilized to build high-resolution feature maps
by merging contracting and expanding path feature maps on
each scale. In Seg-Net [13] they are utilized to up-sample
low-level feature maps by carrying pooling indices to the ex-
panding path. U-Net [12] utilizes skip connections to recover
spatial information similar as in [11], but employs convolu-
tions and non-linearities after merging. This results in bet-
ter information retain, making U-Net [12] widely used for
biomedical image segmentation. In Mask-RCNN [14] skip
connections are utilized in a similar approach, enabling seg-
mentation of occluded objects. In Dense-Net [15] skip con-
nections merge feature maps from each layer to every other



Fig. 2: Our proposed segmentation architecture: Dense U-Net++. It consists of contracting and expanding path filled with
dense skip pathways, blocks of convolutions and activation functions in between. Three types of skip connections are utilized,
long skip connections (shown in blue), lateral skip connections (shown in green) and short skip connections comprehended in
the backbone structure.

layer in a feed-forward fashion. Similarly, [16] utilizes hy-
brid densely connected U-Net for the segmentation of tumor
and liver. U-Net++ [10] utilizes dense long skip connections
along with lateral skip connections in a deeply-supervised
encoder-decoder network. It uses blocks of convolutions on
each scale in between contracting and expanding path, hence
combining semantically similar feature maps and improving
performance [10]. To all the above varieties, we will refer
to as long (lateral) skip connections [17]. As CNN archi-
tectures become deeper with increasingly more layers, the
problem of vanishing gradients appears when training with
back-propagation. This issue is treated by various architec-
tures through skip connections [18] [19] [20]. Employing
the so-called identity connections in parallel with the acti-
vation function blocks [18] [19] enables the gradient to pass
through layers uninterruptedly, resulting in higher derivative
of the block. In [17] short skip connections were employed
in the contracting path of the FCN architecture. We will refer
to this variety of skip connections as short skip connections
[17]. Generally all these approaches resulted in high per-
formance in natural images segmentation, however their uti-
lization in medical domain still requires further assessments.
Given that polyps have large appearance variability, causes
more challenge in redeeming fine-grain information. We have
depicted colorectal polyp appearance varieties in Figure 1.
Skip connections directly influence colorectal polyp segmen-
tation result, hence further investigating their impact is essen-
tial. The contributions of the paper can be summarized as:
(1) we propose a new colorectal polyp segmentation archi-
tecture: Dense U-Net++ introducing dense lateral skip con-

nections in between the contracting and expanding path, (2)
we show that the new segmentation architecture achieves per-
formance comparable to the state-of-the-art on the MICCAI
Challenge 2015 dataset under significantly reduced number
of parameters, (3) we demonstrate the substantial influence of
skip connections in the encoder-decoder CNN architectures
for colorectal polyp segmentation.

2. OUR METHOD

As demonstrated in U-Net++ [10] and Dense-Net [15],
skip connections improve the segmentation and classifica-
tion performance. In this work, we further enhance the
colorectal polyp segmentation result by introducing the
dense lateral skip connections. Figure 2 shows a high-
level overview of the proposed architecture. Sidelong blocks
in the contracting path are gained from the Res-Net [19]
backbone structure. Sidelong blocks in the expanding path
contain layers of CONV-BatchNorm(BN)-RELU-Dropout.
Analogously, nested blocks contain two sub-blocks with
CONV-BatchNorm(BN)-RELU and a dropout layer (only
in the second sub-block). Concatenation is performed to
all feature maps gathered from skip connections to each
nested block. To improve the localization accuracy in the
expanding path, we perform data depended up-sampling
[21] at the final scale. A composite function H(·) repre-
sents a block with layers of CONV-BatchNorm(BN)-RELU-
Dropout. For any composite function H(·), [ ] concatena-
tion operation and U( ) up-sampling operation, based in
Figure 3, the input-output correlation xi, j in i scale and j



Fig. 3: First scale of the proposed segmentation architecture.
It contains three nested blocks (X0,1, X0,2, X0,3) with dense
skip connections along the path and two side-long blocks
(X0,0, X0,4). The three bottom arrows depict the information
conveyed from dense lateral skip connections.

block can be denoted as: X(0,1) = H[X(0,0), U(X(1,0))],
X(0,2) = H[X(0,0), X(0,1), U(X(1,1)), U(X(2,0))] and
X(0,3) = H[X(0,0), X(0,1), X(0,2), U(X(1,2)), U(X(2,1)), U(X(3,0))].
By employing short skip connections [19], each block has di-
rect access to gradients of the original input providing an
implicit deep supervision in the contracting path. This way,
eluding blocks of H(·) with the identity functions, the output
is gained by summing the weights of two previous paths as
xi = Hi(xi−1) + xi−1. The expanding path does not utilize
skip connections, hence the output of the ith layer in the
expanding path is actually the input of the (i + 1)th layer as
xi = Hi(xi−1). Finally, we can depict the output xlo(i,j)
in i scale and j block acquiring as input all feature maps
from long skip connections as xlo(i,j) = H([xi,l]

j−1
l=0 ), j > 0,

where l is the positioning index. All feature maps from the
preceding blocks are first merged with the concatenation op-
eration, then passed into the H(·) block. Through long skip
connections every block is connected to every other block on
same scale in horizontal orientation.

2.1. Dense lateral skip connections

Lateral skip connections are similar with long skip connec-
tions in terms of connectivity pattern, however fundamen-
tally different in position as they fuse semantically similar
feature maps in a diagonal approach. By introducing dense
lateral skip connections we employ diagonal association of
every sidelong block in the contracting path with every nested
block. In this regard, for each block feature maps of all pre-
ceding blocks are used as inputs and its own feature maps are
used as inputs to all consequent blocks in every scale of the
encoder-decoder structure. This approach improves the infor-
mation flow until it reaches the X(0,4) block in the expanding
path. Furthermore, it re-utilizes feature maps of all scales, in-
creasing variability in the information that is transferred to the
expanding path. Through scales with distinct resolution lev-
els, feature maps have different spatial dimensions. Hence,
before the concatenating operation we first up-sample feature
maps using bilinear up-sampling, then we pass them into the
H(·) block. The output xla(i,j) in i scale and j block acquir-
ing as input all the feature maps from lateral skip connections

can be defined as xla(i,j) = H([U(xk,l)]
n
k=i+1|0l=j−1), i < n,

where k and l are positioning indexes. Each block acquir-
ing as input feature maps from dense long and lateral skip
connections can be defined as xi,j = [xlo(i,j), xla(i,j)]. The
main characteristic of the three types of skip connections is
that they create shortcuts from early layers to later layers of
the architecture. With dense long and lateral skip connections
merging feature maps by concatenating, we provide great dis-
tinction of the information that is being added with the already
existing information in the proposed architecture.

3. EXPERIMENTS

Experiments are conducted on the ASU-Mayo clinic polyp
database [22] of MICCAI 2015 Challenge on polyp detection.
Dataset comprises of 20 training and 18 testing colonoscopy
videos. Each frame extracted from particular videos has pixel
level annotated mask. There are in total 4300 frames in test set
and 4278 frames containing polyps in the training set. Dataset
colonoscopy videos represent practical approach of the pro-
cedure, as some of them contain biopsy elements, some of
them represent rapid inspection and others more gradual ex-
amination. To increase robustness and reduce over-fitting, we
perform affine and perspective data augmentation techniques,
before and after training respectively. Initially, frames with
polyp we employ rotation (10 to 350 degrees), zoom (1 to
1.3), translation in x,y (-10 to 10) and shear (-25 to 25). Sec-
ondly, we apply random horizontal (P=0.3) and vertical flip
(P=0.4). Before feeding images to the contracting path, we
resize into fixed dimensions with spatial size of 224x224 and
normalize them to [0, 1]. Our model is implemented on Py-
Torch library with single NVIDIA GeForce GTX 1080 GPU.
We use Adam optimizer with batch size 8 and learning rate η
set to 10−4. We monitor Dice coefficient and use early-stop
criteria on the validation set error. We employ Dice loss func-
tion combined with weighted binary cross entropy to tackle
the imbalanced dataset problem. We employ the Sigmoid ac-
tivation function in the segmentation result to form the error
loss. Each pixel is categorized as positive, corresponding to
foreground if above the 0.5 threshold. For all positive pixels
as the bounding box, x denotes the ground truth bounding box
and y denotes segmentation result bounding box, N denotes
number of batches, pc denotes the positive weight value and
σ denotes the Sigmoid function, hence the error loss function
is formulated as Loss(x, y) = 1

N (
∑N
i=1 pc · x · logσ(y)) +

(1− 2·
∑N

i=1 x·y+ε∑N
i=1 x+

∑N
i=1 y+ε

). Model performance is based on over-
lap based metric as detection evaluation. In this regard, if the
intersection over union (IoU) between x and y is greater than
zero, the detection is considered as a true positive, otherwise
detection is considered as false positive. IoU can be formu-
lated as IoU = y·x∑

y+
∑
x+ε . We use the metrics of precision,

recall, F1-Score and F2-Score to evaluate our model perfor-
mance.



3.1. Ablation Study

This section depicts the results of the ablation study con-
ducted, whereat different architectures with distinct ap-
proaches of skip connections are investigated. The results
shown in Table 1 demonstrate progressive improvement of
the segmentation result with expanded utilization of skip con-
nections. The proposed segmentation architecture is highly
parameter efficient as it reduces the number of model param-
eters in comparison with the state-of-the-art (SOTA) shown
in Table 2. Furthermore, our proposed segmentation archi-
tecture outperforms previous methods for colorectal polyp
detection, based on hand-crafted features or 2-D/3-D CNNs.
With the re-designed skip connections, our model skips entire
blocks, hence does not need to learn redundant parameters.
Requiring lower memory, parameter efficiency is a substan-
tial advantage which makes our model more practical in real
time inference. In addition, the proposed segmentation ar-
chitecture can be utilized for different image segmentation
purposes, besides the colorectal use case.

Architecture Acc. Prec. Rec. F1 F2

U-Net [12] 83.54 89.85 32.23 47.44 36.97

U-Net++ [10] 86.44 90.97 49.55 64.14 54.51

Dense U-Net++ (Ours) 90.42 87.46 70.99 78.37 73.77

Table 1: Results of our proposed architecture Dense U-Net++
in comparison with the U-Net [12] and U-Net++ [10]. All the
experiments were conducted under common hyper parameter
settings.

Architecture Params TP FP FN Prec. Rec. F1 F2

PLS 1594 10103 2719 13.6 36.9 19.9 27.5

CVC-CLINIC 1578 3456 2735 31.3 36.6 33.8 35.4

OUS 2222 229 2091 90.6 51.5 65.7 56.4

ASU 2636 184 1677 93.5 61.1 73.9 65.7

CUMED 3081 769 1232 80.0 71.4 75.5 73.0

Fusion 3062 414 1251 88.1 71.0 78.6 73.9

Y-Net [8] (SOTA) 75M 3582 513 662 87.40 84.40 85.90 85.00

Dense U-Net++ (Ours) 52M 3062 439 1251 87.46 70.99 78.37 73.77

Table 2: Results of our proposed architecture Dense U-
Net++ in comparison with different polyp detection methods
on ASU-MAYO dataset. All the methods are published in [6],
model parameters were not available.

By employing dense long and lateral skip connections, we
fuse semantically similar feature maps in two different orien-
tations (horizontal and diagonal), thus we further decrease the
semantic gap between feature maps, consistent with the litera-
ture [10]. Besides the proposed skip pathways, additional dif-
ference with the U-Net++ [10] is that we up-sample feature

(a) (b) (c) (d)

Fig. 4: Figure displays visual colorectal polyp segmentation
result: (a) original image, (b) label, (c) U-Net++ result and
(d) Dense U-Net++ result. We can observe that the number of
true positives detected in the figures, increases along with the
recall rate.

maps with data depended up-sampling [21] only in the last
scale of the expanding path. In this regard, from bottom to
top, sidelong blocks in the expanding path decrease the num-
ber of channels, but keep the same spatial dimension. The
stack of feature maps gathered in block x(0,4) (see Figure 2) is
collected by incoming feature maps gathered from dense skip
pathways and up-sampled feature maps from sidelong blocks
of the expanding path. Thereby, fine-grain information is bet-
ter preserved while assisting in better localization accuracy.
We investigate the learning behaviour of the model with em-
phasis to parameter update, by monitoring the gradient flow
through layers during first few epochs of training. We em-
pirically validate that layers closer to the center of the model
can not be effectively updated with the U-Net in Figure 5(a)
and U-Net++ in Figure 5(b). With our proposed segmentation
architecture, Figure 5(c), deep center parts of the network get
updated better than with preserved usage of skip connections
as in U-Net. In the three architectures early shallow layers are
not updated maximally (marked with dark blue color).

(a) (b) (c)

Fig. 5: Gradient flow visualization: (a) U-Net [12] utilizing
only long skip connections, (b) U-Net++ [10] utilizing short,
lateral skip connections and dense long skip connections, (c)
Dense U-Net++ (Ours) utilizing short skip connections, dense
long and dense lateral skip connections.

4. CONCLUSIONS

Skip connections demonstrated to be the key factor for
enhanced colorectal polyp segmentation performance in
encoder-decoder CNN architectures. They encourage fea-
ture re-use, improve information and gradient flow. Dense
skip connections strongly reduce the number of model pa-
rameters, achieving near state-of-the-art results for colorectal
polyp detection.
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