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ABSTRACT Despite many studies already published on large intelligent surfaces (LIS), there are still some
gaps in mathematical models in the face of possible scenarios. In this work, we evaluate the performance of
a single-input single-output (SISO) system in which an LIS acts as a controllable scatterer. We consider
that the direct link between the transmitting and receiving devices is non-existent due to a blockage.
Quantization phase errors at the LIS are considered since a high precision configuration of the reflection
phases is not always feasible. We derive exact closed-form expressions for the spectral efficiencies, outage
probabilities, and average symbol error rate (SER) of different modulations schemes. We assume a more
comprehensive scenario in which b bits are dedicated to the phase adjustment of the LIS’ elements. Based
on Monte Carlo simulations, we prove the excellent accuracy of our approach and investigate the behavior
of the power scaling law and the power required to reach a specific capacity, depending on the number of
reflecting elements. We show that an LIS with approximately fifty elements and four dedicated bits for phase
quantization outperforms the conventional system without LIS.

INDEX TERMS Large intelligent surface, outage probability, quantization phase errors, spectral efficiency,
symbol error rate.

I. INTRODUCTION
There is no doubt that quantization errors are inevitable when
using analog-to-digital converters (ADCs). These converters
bridge the analog and the digital worlds, and the lower is their
resolution, the more distortions they can cause to the con-
version process. Since the rounding quantization introduces
error in the signal estimation stage, Hou et al. [1] propose
a quantization error reduction scheme for detection based
on orthogonal lattices. On the other hand, Kotera et al. [2]
proves that an efficient nonlinear Viterbi-like algorithm, used
as the equalization scheme, can estimate both inter-symbol
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interference in multi-path channel and quantization error in
ADC and improve the bit error rate (BER) performance.

For large intelligent surfaces (LIS) assisted systems, little
is known about the impact of quantization errors. Also known
as reconfigurable intelligent surfaces (RIS), this technology
is a strong candidate to be integrated into the sixth generation
(6G) of cellular networks. It comes with the promise to satisfy
the requirements of reliability, low latency, and high data rates
for heterogeneous devices, which the fifth generation (5G)
was not able to fully meet [3]. Its structure consists of many
electromagnetic elements acting individually as scatterers,
capable of jointly reflecting the incident signal to the desired
direction [4], [5]. Among its advantages, we can mention
the ideally passive nature that does not require any dedicated
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energy source. By not amplifying the incident signal, an LIS
provides an inherently full-duplex transmission scheme with-
out introducing noise, unlike relays. It can also be easily
installed onto facades of buildings or walls of rooms thanks
to its lightweight and conformal geometry. Two strategies
are possible due to the smart adjustment of the phase shifts;
the reflected signals can add coherently or destructively at
the receiver. The first strategy improves the received signal
power, while the second one avoids interference of unwanted
signals or transmitters and increases the security of the com-
munication system [6].

There are several questions still open regarding
LIS-assisted communications systems. One of them is which
frequency band is more suitable for its deployments? In fact,
there are theoretical and proofs-of-concept works for all of
these frequency bands [7]–[19]. In [20], Emil Björnson points
out that it might still be too early to say in which frequency
band LIS will be most useful, despite listing some points that
deserve our attention. At lower frequencies, existing relaying
technology is rather competitive, and the propagation condi-
tions are quite good. However, LIS-assisted systems present
some potential advantages over traditional relaying tech-
niques such as full-duplex communications, reduced power
consumption, and hardware cost for low and high-frequency
bands (since there is no need for power amplifiers) [7], [9],
[11]–[13], [19]. According to several works [20]–[25], LIS
technology can do something new for mmWave frequencies
and above such as (i) adding extra propagation paths to sparse
channels, (ii) replacing the need for large antenna arrays since
they are complicated to build and (iii) working as relay since
conventional relays might not be available.

Most studies have focused on optimizing the reflection
coefficients (i.e., amplitude and phase) of each LIS element.
For example, Zhang et al. believes that LIS can play critical
roles in beyond 5G networks [26]. Assuming deterministic
flat-fading channels and, so with a low-rank multiple-output
multiple-input (MIMO) channel, the authors show that sim-
ply deploying multiple optimal LIS elements can guarantee
performance gains due to spatial multiplexing. Still consid-
ering multiple users, Han et al. elaborate on two algorithms
to jointly optimize the transmit beamforming at the BS and
the phase shifts at the LIS under the quality of service (QoS)
constraints [27]. From derived lower bounds of the transmit
power concerning the number of BS antennas, the number of
LIS elements, and the number of mobile users, they show that
the transmit power at the BS is significantly lower than that
of a communications system without LIS.

However, it is worth mentioning that the reflection
phases’ high precision configuration is unfeasible. In prac-
tice, the number of bits is limited, and as a consequence,
the phase quantization errors arise. Before proposing tech-
niques to reduce them, we first need to know them and
estimate their effects as closely as possible to reality.

In this work, we deviate a little from this idea and look
for more precise mathematical models under more practical
scenarios. In our previous work [28], we employed the central

limit theorem (CLT) to derive the bit error rate when there are
phase estimation errors. However, it is known that the CLT is
inaccurate when the number of elements in LIS is small, and
the approximation error can be significant in the high signal-
to-noise ratio (SNR) regime.

Following the same reasoning, Badiu and Coon [29] do a
preliminary analysis based on a limited number of imperfect
reflectors. They conclude that the LIS- assisted SISO system
is equivalent to a point-to-point communication over a Nak-
agami fading channel, and the performance measured from
the error probability is robust against the phase errors. Abey-
wickrama et al. [30] was the pioneering work to consider a
practical phase-shift model in which the amplitude is depen-
dent on the phase in the re?ection coefficient. From [30], sim-
ulation results unveil a substantial performance gain achieved
by the joint beamforming optimization when compared to the
conventional ideal model. On the other hand, Han et al. [31]
propose an optimal phase shift design that achieves approxi-
mately the ergodic capacity and demonstrates that a quantizer
with two bits is sufficient for a capacity degradation below
1 bit/s/Hz. Themulti-user multi-input single-output downlink
LIS-assisted system harvests power from the received signals
in [32]. Hu et al. show that small bit-resolution discrete phase
shifters are sufficient to tightly approximate the sum-rate
of an ideal case with continuous phase shifters. In [33],
Wang et al. consider a SISO LIS-assisted system and derive
exact expressions for outage probability and diversity order
without employing a CLT approach. However, they assume
that each element of the LIS has only a one-bit phase shifter.
Based on this one-bit assumption, they derive the outage
probability, which only works in high SNR regimes.

From the works mentioned above, we can see that
LIS-assisted wireless systems’ performance has mainly been
assessed in terms of symbol error rate (SER) lower-bounds,
with perfect or very limited phase generation (e.g., one-bit
resolution shifters), besides employing CLT to approximate
SNR distributions. In this article, we present an in-depth
investigation of SISO systems in the presence of quantization
errors, which are introduced by the LIS’ reflecting elements.
Our focus is to demonstrate a theoretical framework that
quantifies the performance based on an accurate approxi-
mation of the SNR distribution when the LIS’s reflecting
elements can only generate phases out of a discrete set.
Additionally, an analytic comparison between LIS-assisted
and non-assisted systems in terms of spectral efficiency,
average SNR, and required transmit power is carried out.
Therefore, this paper’s contribution can be summarized as
follows.
• Novel and exact analytical expressions for the proba-
bility density function (PDF) and cumulative density
function (CDF) of the instantaneous SNR are derived,
considering the number of reflecting elements, a discrete
set of possible phases, and assuming that the Source-RIS
and RIS-Destination links experience Rayleigh fading.

• Considering the composite channel between source and
destination as the double (cascaded) Rayleigh fading
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channel [34]–[37], we derive the average SNR for the
LIS-assisted wireless system.

• In order to study the outage performance, we derive a
closed-form expression for the outage probability, which
provides useful insights and can be employed as a design
tool.

• We provide a closed-form expression for the average
SER of some modulation schemes for the LIS-assisted
system. Additionally, a tight approximation for the aver-
age SER in the high-SNR regime is derived.

• Based on high-SNR SER approximation, we derive a
closed-form expression for the diversity order of the
LIS-assisted system, which shows that the diversity
order increases with the number of reflecting elements.

• Exact analytical expressions for the ergodic spectral
efficiency of the LIS-assisted system are also found.
Additionally, tight high-SNR and lower/upper bounds
approximations are derived for the spectral efficiency.

• We present an analysis of the power scaling law and
the power required to achieve specific capacities. These
results show that the transmit power can be reduced
proportionally to 1/N 2 without compromising the spec-
tral efficiency. This power reduction is paramount
to power-constrained devices such as the internet of
things (IoT) ones.

• Based on the tight approximation of the instantaneous
SNR’ PDF, we can evaluate the system performance as
the number of bits and reflectors increases. We con-
clude that a LIS with approximately fifty elements and
four bits dedicated to phase quantization outperforms a
conventional SISO system’s performance without a LIS.
To the best of our knowledge, no similar results have
been found in the literature.

Several works in the literature [27], [31], [38]–[42] con-
sider cases where it is possible to position a LIS so that there
is a line-of-sight (LoS) link, at least, between the BS and the
LIS itself. However, we envision indoor environments where
there might not be LoS links at all. Therefore, we analyze
and compare the performance of an LIS-assisted system to a
conventional SISO one with no LoS link. Our results demon-
strate that a LIS equipped with enough reflecting elements
can improve a wireless system’s performance even though
there are no LoS links between any of the involved entities
(i.e., Source, Destination, and LIS).

The remainder of this article is organized as follows:
Section II presents the adopted model and the preliminary
assumptions. In Section III, we derive exact closed-form
expressions for some important performance metrics and
evaluate the quantization error effects. Section IV shows our
setup and the results obtained from simulations with that.
Finally, Section V summarizes the main conclusions.
Notations: Scalars are denoted by italic letters while

vectors and matrices, by bold-face lower-case and upper-
case letters, respectively. For a complex-valued vector x,
|x| denotes its Euclidean norm and diag(x) represents the
diagonal matrix. The distribution of a circularly symmetric

complex Gaussian (CSCG) random vector with mean fx and
covariance4 is denoted by CN (x, 4); and∼ stands for ‘‘dis-
tributed as’’. For any general vector x, xi denote its ith element
while E is the statistical expectation. Finally, Pr(.) represents
the probability of a specific event occurring.

II. SYSTEM MODEL
The system model of the adopted LIS-assisted communica-
tions scheme is typical of indoor environments and can be
seen in Figure 1. Here, the fading channels gn and hn between
the single-antenna source (S) and the n-th antenna (or reflect-
ing) element of the LIS, and the nth antenna element of the
LIS and the single-antenna destination (D), respectively, are
assumed to be independent, identical, slowly varying, flat,
and their envelopes follow Rayleigh distributions, i.e., gn ∼
CN (0, βg) and hn ∼ CN (0, βh). This assumption, used in
several previous works including [43]–[47] and references
therein, originates from the fact that even if the LoS links
between S and D, between S and the LIS, and between the
LIS and D are blocked, there still exist extensive number
of scatters. Also, the direct signal path between S and D
is neglected due to unfavorable propagation conditions that
might be caused by an obstacle, for example.

FIGURE 1. System model of the LIS-assisted wireless system.

The parameters βg and βh model the shadow and
geometric attenuation fading (i.e., the large-scale fading coef-
ficients), which are assumed to be independent over the ele-
ments of LIS and change very slowly over time. They are
constant over several coherence-time intervals [48], since the
distance between devices and LIS is much larger than the dis-
tance between the LIS’ elements. In this far-field regime [4],
the intelligent surface is better modeled as a scatterer and the
scaling law that governs the intensity of its electric field is
a function of the distances’ product, as proved in [49] and
shown later.

We assume that the LIS is a reflect-array composed of N
simple and re-configurable reflector elements connected to
a controller. Additionally, we assume that the phase-shifts
produced by the channels are estimated perfectly [15]. How-
ever, the desired phases cannot be accurately generated by
the LIS once it has a discrete set of phases. Practical LISs
have a limited number of phase shifts, i.e., a discrete set of
phase-shifts constrained by the number of quantization bits
(also known as phase resolution) of the LIS. The number of
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quantization bits is denoted by b. Therefore, the set of phase
shifts produced by each one of the elements of the LIS is
defined as

φn =

{
0,

2π
2b
,
4π
2b
, · · · ,

2π (2b − 1)
2b

}
. (1)

Therefore, we model the deviation from the correct/ideal
phase-shift as a phase-noise, δn, which is uniformly dis-
tributed in the range [−π/Q, π/Q], where Q = 2b is the
number of discrete phases the LIS can generate [50] dictated
by the hardware complexity and power consumption of LIS.

III. INTELLIGENT TRANSMISSION THROUGH LIS
In slowly varying flat fading channels, the signal received at
the destination after being reflected through an LIS composed
of N passive elements can be written as

y =
√
ρ

[
N∑
n=1

gne−jφnhn

]
s+ w, (2)

where ρ is the average SNR, φn is the adjustable phase-shift
produced by the nth LIS reflector, s is the modulation data
symbol with zero mean, E[|s|2] = 1, and w ∼ CN (0, 1) is
the additive white Gaussian noise (AWGN) term. Then, (2)
can be re-written in the matrix-form as

y =
√
ρhT8gs+ w, (3)

where g = [g1, · · · , gN ]T and h = [h1, · · · , hN ]T are the
channel coefficient vectors between the BS and the RIS and
between the RIS and the terminal, respectively, while 8 =
diag

([
e−jφ1 , · · · , e−jφN

])
is the diagonal matrix containing

the phase-shifts applied by the elements of the LIS.
It can be noticed that (3) is similar to the equa-

tion of conventional MIMO systems employing precod-
ing/beamforming for transmission. However, differently from
those systems, where precoding/beamforming is carried out
at the transmitter side, here it is carried out over the transmis-
sion medium (i.e., the environment) [15].

The complex channels can be written in polar represen-
tation (i.e., with magnitude and phase) as hn = αnejθn and
gn = ξnejψn , therefore, (2) can be re-written as

y =
√
ρ

[
N∑
n=1

αnξnej(θn+ψn−φn)
]
s+ w

=
√
ρ

[
N∑
n=1

αnξnejδn
]
s+ w, (4)

where the second line is obtained from the assumption that the
LIS only generates discrete phases and consequently, there
is a phase-noise, δn = θn + ψn − φn. The term inside the
square brackets represents the composite channel coefficient
and gives clues that the system diversity gain depends on the
number of LIS’ reflecting elements, N .

Considering the phase-noise, then the instantaneous SNR
at the destination is given by

γ = ρ

∣∣∣∣∣
N∑
n=1

αnξnejδn

∣∣∣∣∣
2

. (5)

Note that the instantaneous SNR is maximized when
δn = 0, i.e., the channels are correctly estimated, and the LIS
can accurately generate the phases induced by the channels
(meaning that Q→∞) [51].
Lemma 1: From empirical comparisons between the

normalised histogram of the random variable given by

r =
√
ρ

∣∣∣∣∣
N∑
n=1

αnξnejδn

∣∣∣∣∣ = √ρ
∣∣∣∣∣
N∑
n=1

|gn||hn|ejδn

∣∣∣∣∣ , (6)

and the theoretical PDF of a Gamma random variable, it is
possible to say that the PDF of r can be accurately approxi-
mated by the Gamma PDF with shape and scale parameters
given by κ and θ , respectively as

κ

=
−
(
E
[
γ 2
]
−5E[γ]2

)
+

√
E
[
γ 2
]2
−34E

[
γ 2
]
E[γ]2+49E[γ]4

2
(
E
[
γ 2
]
− E [γ ]2

) >0,

(7)

θ

=

√√√√−√E
[
γ 2
]2
+14E

[
γ 2
]
E[γ]2+E[γ]4+2E

[
γ 2
]
+2E[γ]2

6E [γ ]
>0,

(8)

where E [γ ] and E
[
γ 2
]
are given by (9) and (10), as shown

at the bottom of the next page, respectively.
Some examples of this comparison are shown in Section IV.

The parameters κ and θ are found following the rationale pre-
sented in Appendix A. Therefore, the PDF of γ can be found
following the standard transformation of random variables,
γ = r2, and is defined as

fγ (γ ) =
1

20(κ)θκ
γ

(
κ−2
2

)
e−
√
γ

θ , γ ≥ 0. (11)

In its turn, the CDF of the SNR random variable, γ ,
is defined as

Fγ (γ ) =
∫ γ

0
fγ (x)dx = 1−

0
(
κ,
√
γ

θ

)
0(κ)

, γ ≥ 0, (12)

where 0(.) is the Euler gamma function while 0(., .) is the
upper incomplete gamma function. The integral result is
obtained by directly applying (Eq. 2.33.10, [52]).

From (9), it is clear that the diversity gain of the
LIS-assisted system can be calculated as

GLIS = βgβhA1, (13)

which can be improved by increasing the number of LIS’
reflecting elements, N , and/or the number of quantization
levels, Q.
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Remark 1: When Q→∞, i.e., the LIS is able to generate
any phase-shift, the phase-noise is zero, δn = 0,∀n, and
consequently, (9) and (10) can be simplified to (14) and (15),
as shown at the bottom of the next page, respectively, and
whose derivations are presented in Appendix B.

A. EXACT ERGODIC SPECTRAL EFFICIENCY
The ergodic spectral efficiency of the LIS-assisted system is
defined as

C = E
[
log2 (1+ γ )

]
=

∫
∞

0
log2 (1+ γ ) fγ (γ )dγ, (16)

whose exact closed-form expression obtained through an
integral solver [53] is given by (17), as shown at the bottom
of the next page. Here, pFq (a1, · · · , ap; b1, · · · , bq; z

)
is

the generalized hypergeometric function [54] and 9(n)(z) is
the nth derivative of the digamma function, also known as the
polygamma function [55].
Remark 2: In high SNR regime, the ergodic spectral effi-

ciency in (17) can be approximated as in (18), as shown at
the bottom of the next page.
Remark 3: When ρ →∞, then (17) becomes

lim
ρ→∞

C =
4 log(θ)
log(4)

. (19)

Remark 4: In high SNR and large N regimes, the ergodic
spectral efficiency can be approximated as

Chigh-SNR, N≈
2

θ2(κ − 1)(κ − 2) log(4)
+
4(log(θ )+ψ (0)(κ))

log(4)
.

(20)
The proofs for Remarks 2, 3 and 4 are presented in Appen-
dices C, D and E, respectively.
Remark 5: For large N , the ergodic spectral efficiency can

be approximated as

CN ≈
2

log(4)

[
1

θ2(κ − 1)(κ − 2)
+ 2ψ (0)(κ)

]
. (21)

This remark is obtained after comparing (19) and (20). This
way, we obtain the improvement achieved by increasing the
value of N because (19) corresponds to the case where the
SNR goes to infinity and (20) corresponds to the case when
both SNR and N go to infinity.

Other alternative to find the expectation in (16) is using the
PDF of the random variable given by Cinst. = log2(1 + γ ),

i.e., the instantaneous spectral efficiency, which can be found
after applying standard transformation of random variables
to (11) giving rise to

fCinst. (c) =
log (2)
0(κ)θκ

2c−1(2c − 1)

(
κ−2
2

)
e−
√
2c−1
θ , c ≥ 0.

(22)

Then, the CDF of the instantaneous spectral capacity random
variable is expressed by

FCinst. (c) =
∫ c

0
fCinst. (x) dx = 1−

0
(
κ,
√
2c−1
θ

)
0(κ)

, (23)

whose integral is also found by directly applying
(Eq. 2.33.10, [52]).

B. UPPER AND LOWER-BOUNDS FOR THE ERGODIC
SPECTRAL EFFICIENCY
As it can be seen, (17) is quite complex. Therefore, here we
aim at finding simpler but yet tight bounds for the ergodic
spectral efficiency of the LIS-assisted system. According to
Jensen’s inequality [48], it holds that

E
[
log2 (1+ γ )

]
≤ log2 (1+ E [γ ]) . (24)

Then, by using E [γ ], which is given by (9), a possible
upper-bound for the ergodic capacity of the LIS-assisted
system can be given by (25), as shown at the bottom of the
next page. As it is tight for high SNR scenarios, it can be
assumed as a good approximation. Additionally, it is seen that
the ergodic spectral efficiency is an increasing function of ρ,
N andQ. By looking at (25), we see thatQ can be canceled out
due to the fact that sin(π/Q) ≈ π/Q when Q is large enough
(e.g., Q ≥ 16). Therefore, when Q is sufficiently large,
further increasing the number of quantization levels, Q, does
not have any noticeable impact on the systems’ performance.
This is also evidenced by the results shown in Figures 5 and 6.
Instead, whenQ is large enough, the upper-performance limit
improvement poses a better than the linear relationship with
N , which is better seen in (28), as shown at the bottom of page
7.

On the other hand, again according to Jensen’s inequal-
ity [48], it holds that

E
[
log2 (1+ γ )

]
≥ log2

(
1+

[
E
[
1
γ

]]−1)
. (26)

E[γ]=E
[
r2
]
= ρβgβhA1 = ρβgβhN

[
1+

1
16

(N − 1)Q2 sin2
(
π

Q

)]
. (9)

E
[
γ 2
]
=E

[
r4
]
=
(
ρβgβh

)2A2 =
(
ρβgβh

)2 N
256512(N+1)+ 32(N−1)Q2

π2 +

(N−1)Q2
[
π sin2

(
π
Q

)(
(N−2)Q

(
π(N−3)Q sin2

(
π
Q

)
+16 sin

(
2π
Q

))
+16π(4N+1)

)
−32 cos

(
4π
Q

)]
π2

.
(10)
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Consequently, by using a tight approximation of E [1/γ ]
(see Appendix F), a lower-bound for the ergodic capacity of
the LIS-assisted system can be derived and given as (27), as
shown at the bottom of the page.

Like the SNR, the spectral efficiency is also maximized
when Q→∞, meaning that the LIS has infinite phase-shift
precision and can generate any phase-shift. In this case,
the maximum ergodic spectral efficiency with the upper and
lower bounds are given by (28) and (29), as shown at the
bottom of the next page, respectively.

C. IMPACT OF BIT QUANTIZATION IN THE SPECTRAL
EFFICIENCY
In practical communication systems, the set of phase-shifts is
limited by the number of quantization bits of the LIS, influ-
encing the achieved spectral efficiency directly. Therefore,
in this section, we propose a criterion for selecting the number
of quantization levels Q = 2b so that the ergodic spectral
efficiency is optimized up to a specific spectral degradation
in bits/s/Hz. In order to quantify this degradation, we define
the error ε brought about by a limited number of phase-shifts
as

Cmax.
upper − Cupper ≤ ε. (30)

Remark 6: From (30), we see that when the number of
LIS elements tends to∞, then the ergodic spectral efficiency
degradation, ε, becomes

lim
N→∞

ε = log2

(
π2

Q2 sin2 (π/Q)

)
bits/s/Hz. (31)

Remark 7: From (30), we see that when ρ →∞, then the
ergodic spectral efficiency degradation, ε, is given by

lim
ρ→∞

ε = log2

(
16+ (N − 1)π2

16+ (N − 1)Q2 sin2 (π/Q)

)
bits/s/Hz.

(32)
Proposition 1: In order to guarantee an suitable ergodic

spectral efficiency degradation of ε bits/s/Hz compared to an
LIS with full-resolution phase-shift, the number of quantiza-
tion levels, Q, of the LIS should satisfy

Q sin(π/Q)≥

√
16
(
2−ε−1

)
Nρβgβh(N − 1)

+
16
(
2−ε−1

)
N − 1

+ π22−ε .

(33)
Remark 8: From (33), we see that when N →∞, the num-

ber of quantization levels, Q, should satisfy

lim
N→∞

Q sin (π/Q) ≥
√

2−επ. (34)

lim
Q→∞

E [γ ] = ρβgβhN
[
1+

(N − 1)π2

16

]
. (14)

lim
Q→∞

E
[
γ 2
]
=
(
ρβgβh

)2 N
256

[
256+ 768N + π4(N − 3)(N − 2)(N − 1)+ 48π2(2N − 1)(N − 1)

]
. (15)

C =
2 2F3

(
1, 1; 2, 32 −

κ
2 , 2−

κ
2 ;−

1
4θ2

)
θ2(κ − 1)(κ − 2) log(4)

−

2π sec
(
πκ
2

)
1F2

(
κ
2 +

1
2 ;

3
2 ,

κ
2 +

3
2 ;−

1
4θ2

)
(κ + 1)θκ+10(κ) log(4)

+

2π csc
(
πκ
2

)
1F2

(
κ
2 ;

1
2 ,

κ
2 + 1;− 1

4θ2

)
κθκ0(κ) log(4)

+
4(log(θ)+ ψ (0)(κ))

log(4)
. (17)

Chigh-SNR ≈
2

θ2(κ − 1)(κ − 2) log(4)
−

2π sec
(
πκ
2

)
(κ + 1)θκ+10(κ) log(4)

+
2π csc

(
πκ
2

)
κθκ0(κ) log(4)

+
4(log(θ)+ ψ (0)(κ))

log(4)
. (18)

C ≤ Cupper = log2

(
1+ Nρβgβh

[
1+

1
16

(N − 1)Q2 sin2
(
π

Q

)])
. (25)

C ≥ Clower

≈ log2

(
1+

E [γ ]3

E
[
γ 2
])

= log2

1+ 256N 2ρβgβh

(
1
16 (N − 1)Q2 sin2

(
π
Q

)
+1
)3

32(N−1)Q2

π2 +
(N−1)Q2

(
π sin2

(
π
Q

)(
(N−2)Q

(
π (N−3)Q sin2

(
π
Q

)
+16 sin

(
2π
Q

))
+16π(4N+1)

)
−32 cos

(
4π
Q

))
π2 + 512(N + 1)

. (27)
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Remark 9: From (33) we see that when ε → ∞, then the
number of quantization levels, Q, should satisfy

lim
ε→∞

Q sin (π/Q) ≤ π. (35)
After analyzing Remark 9, we notice that the first term

in (35) is equal toπ onlywhenQ→∞. Therefore, in order to
have no degradation at all, an infinite number of quantization
levels is necessary, which demonstrates the correctness of
Remark 9.
Summing up, these results can be used to select the pre-

cision necessary for an LIS-assisted system to achieve a
pre-defined and acceptable degradation in its ergodic spectral
efficiency.

D. OUTAGE PROBABILITY
Based on the knowledge of the approximate PDF of the
instantaneous spectral efficiency given by (22), it is possible
to find its CDF and derive analytical expressions for the
outage probability. The outage probability is defined as the
probability that the achieved instantaneous spectral efficiency
falls below a given threshold Cout. and can be written as

Pout. = Pr{Cinst. < Cout.}

=

∫ Cout.

0
fCinst. (x) dx

= 1−
0

(
κ,

√
2Cout.−1
θ

)
0(κ)

, (36)

whose proof is provided in Appendix G. From (36), it is
possible to observe that, for a fixed outage capacity, Cout. the
outage probability, Pout., decreases as N and/or Q increases,
i.e., the outage performance improves by addingmore reflect-
ing elements and/or increasing the number of quantization
bits to the LIS. Conversely, for a constant N , the outage
performance decreases as Cout. increases.

Besides that way, the outage probability can also be defined
with regard to the instantaneous SNR. In this case,it is the
probability that the instantaneous SNR falls below a given
SNR threshold γout.. So, the outage probability is given by

Pout. = Pr{γ < γout.}

=

∫ γout.

0
fγ (x) dx

=
1
θκ/2

1− 0
(
κ,
√
γout.
θ

)
0(κ)

 , (37)

and found by using (94) in Appendix G. It can also be
expressed as

Pout. =
γ
κ
2

κθ
3κ
2

1F1

(
κ, κ + 1,−

√
γ

θ

)
. (38)

Remark 10: In high SNR regime, the outage probability
can be approximated as

Phigh-SNRout. =
γ
κ
2

κθ
3κ
2

. (39)

The proofs of (38) and (39) are provided in Appendix H.

E. AVERAGE SYMBOL ERROR RATE
According to [56], the average SER is defined as the expec-
tation of conditional error probability, Pe|γ , given the dis-
tribution of the SNR, γ . For a wide variety of modulation
schemes, Pe|γ is defined as Pe|γ = aQ

(√
bγ
)
, where a and

b are constant modulation dependent parameters and Q is
the Gaussian Q-function defined as

∫
∞

x e−t
2/2/
√
2πdt [56].

Therefore, the average SER is derived as

E
[
aQ

(√
bγ
)]
= a

∫
∞

0
Q
(√

bγ
)
fγ (γ )dγ, (40)

and can be analytically expressed by (41), as shown at the
bottom of the next page, whose proof is provided in
Appendix I. Note that, a and b are constants that depend
on the modulation scheme. For instance, the average SER of
the binary phase shift keying (BPSK) modulation is obtained
when a = 1 and b = 2, while that for the M -ary Pulse
Amplitude Modulation (M -PAM), a = 2(M − 1)/M and
b = 6/(M2

− 1). In the same way, a = b = 2 are applied for
the average SER of the quadrature phase shift keying (QPSK)
modulation. Finally, a = 2 and b = 2 sin2 (π/M ) for M -ary
phase shift keying (M-PSK) modulation, while a = 4(1 −
1/
√
M ) and b = 3/(M−1) for the average SER of theM -ary

quadrature amplitude modulation (M-QAM), whenM > 4.

Cmax.
upper = lim

Q→∞
Cupper

= lim
Q→∞

log2

(
1+ Nρβgβh

[
1+

1
16

(N − 1)Q2 sin2
(
π

Q

)])
= log2

(
1+ Nρβgβh

[
1+

(N − 1)π2

16

])
. (28)

Cmax.
lower = lim

Q→∞
Clower

= log2

(
1+

N 2ρβgβh
(
π2(N − 1)+ 16

)3
16
(
(N − 1)

(
π4
(
N 2 − 5N + 6

)
+ 48π2(2N − 1)+ 256

)
+ 512(N + 1)

)) . (29)

20774 VOLUME 9, 2021



F. A. P. de Figueiredo et al.: LISs With Discrete Set of Phase-Shifts Communicating Through Double-Rayleigh Fading Channels

Remark 11: In high SNR regime, the average SER can be
approximated as

Phigh-SNRe ≈a2−
κ
2−1b−

κ
2 θ−κ

 1

0
(
κ
2 + 1

) − κ
√
2bθ0

(
κ+3
2

)
,
(42)

whose proof is provided in Appendix J.
After analyzing (42), it is possible to observe that the first

term inside the parentheses is the dominant one. Otherwise,
the average SER would be a negative number since a, b, and
θ are values greater than zero. This direct insight results in
the following remark.
Remark 12: The average SER decreases when κ and/or b

increases and when a and/or θ decreases.
As shown in Section IV, this remark demonstrates that

the average SER decreases as the transmission power, ρ,
the number of reflecting elements, N , and/or the number of
quantization levels, Q, increase. On the other hand, the aver-
age SER increases as the modulation order increases.

F. DIVERSITY ORDER
The diversity order is a fundamental parameter of diversity-
based systems. It measures the number of independent paths
over which the data is received. The diversity order, D, is for-
mally defined as the negative slope of the average SER versus
the average SNR curve in a log-log scale and calculated
as by [57]

D = lim
ρ−∞
−
logPe
log ρ

. (43)

From the definition above, we can see that the diversity order
is a high-SNR concept.
Remark 13: The diversity order of the LIS-assisted system

is obtained as

D =
5A2

1 +

√
49A4

1 − 34A2
1A2 +A2

2 −A2

4
(
A2 −A2

1

) . (44)

The parameters and proof of (44) are detailed in Appendix K.
From them, we realize that the diversity order increases
with N .
Remark 14: Despite both source and destination being

equipped with a single antenna, the achievable diversity
order grows with the number of LIS reflecting elements.
It is worth noting that each reflecting element modifies the
incident waves’ phases to add at the destination coherently.
A direct SISO path between source and destination would
only allow for a unitary diversity order, once diversity gains
can only be obtained by employing multiple antennas at

transmission and/or receiving sides. However, LIS employ-
ment provides a substantial diversity order to the communi-
cation system just by adding passive reflecting elements with
adjustable phases to the system.

G. POWER-SCALING LAW
This subsection analyses the power-scaling law of the ergodic
spectral efficiency regarding the number of reflecting ele-
ments in an LIS-assisted system in which N →∞.

If N grows without limit and we consider that the transmit
power, ρ, can be scaled down with N 2 according ρ = P/N 2

and P is fixed, then (25) and (28) become, respectively

Cupper = log2

1+N P
N 2 βgβh

1+ (N − 1)Q2 sin2
(
π
Q

)
16


→

PβgβhQ2 sin2
(
π
Q

)
16

,N →∞ (45)

and

Cmax.
upper = log2

(
1+ N

P
N 2 βgβh

[
1+

(N − 1)π2

16

])
→

Pβgβhπ2

16
,N →∞. (46)

These results confirm that with many reflecting elements
and perfect channel information, the transmit power can be
reduced proportionally to 1/N 2 without compromising the
spectral efficiency.
Remark 15: From (25) and (45), it is possible to see that if

we decrease the transmit power proportionally to 1/Nα , with
α > 2, then the SNR goes to zero as N →∞. When α < 2,
the SNR grows without bound as N → ∞. This means that
1/N 2 (i.e., α = 2) is the fastest rate at which we can decrease
the transmit power and still maintain a fixed rate.

The Remark 15 shows that as N grows without bound,
the transmit power can be reduced proportionally to
1/N 2. The transmit power reduction is significant mainly
to power-constrained devices such as the Internet of
Things (IoT) devices [58], [59].

IV. SIMULATION RESULTS
This section presents numerical results to validate the derived
expressions against Monte Carlo simulations obtained from
106 realizations. The setup in Figure 2 shows the geometric
placement adopted for the BS, LIS and UE, where rg and rh
are the distances between source (i.e., the BS) and LIS, and
between LIS and destination (i.e., the UE), respectively. Both
of them are set to 25 m.

Pe = E
[
aQ

(√
bγ
)]
= a2−

κ
2−1b−

κ
2 θ−κ

 2F2
(
κ
2 +

1
2 ,

κ
2 ;

1
2 ,

κ
2 + 1; 1

2bθ2

)
0
(
κ
2 + 1

) −

κ 2F2
(
κ
2 +

1
2 ,

κ
2 + 1; 32 ,

κ
2 +

3
2 ;

1
2bθ2

)
√
2bθ0

(
κ+3
2

)
 .
(41)
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FIGURE 2. Adopted simulation setup.

We assume that the large-scale fading coefficients aremod-
eled as βg = zg/(rg)ν and βh = zh/(rh)ν , in which zg and
zh are log-normal random variables with standard deviation
σshadow, while rg is the distance between the source and the
LIS and rh is the distance between the LIS and the destina-
tion. ν is the path-loss exponent. For all simulation results,
we adopt the typical suburban area parameters σshadow =
8 dB and ν = 3.67.

FIGURE 3. Comparison of the approximated PDF for the instantaneous
sum-capacity.

Figure 3 presents some comparisons of the normalized
histogram of the random variable given by the instantaneous
SNR (see (5)) against the theoretical PDF given by (11).

As can be noticed, even for a small number of reflecting
elements and quantization bits, the approximation is quite
tight.

Figure 4 shows the Kullback-Leibler Divergence [60]
between the approximated SNR PDF and the real distribution
of the SNR random variable over the variation of the number
of quantization bits and for several values of LIS elements,N .
In general, this is the most known technique to evaluate an
approximation in statistics. As can be seen, from b = 2
bits onward, the divergence remains constant regardless of
the number of elements. Additionally, the figure also shows
that as the number of elements increases, the divergence
decreases. These results reveal that only the number of LIS
reflecting elements can take the approximated PDF closer
to the real one and that the number of quantization bits has
a minimal impact on it. It is aligned to the theory since an
inspection of (6) reveals that only the number of reflecting
elements impact the summation in that equation.

FIGURE 4. Kullback-Leibler divergence between the approximated SNR
PDF and the real distribution.

From Figure 5, which shows the spectral efficiency as a
function of N for b ∈ {1, 4, 10}, we can see that the accuracy
of the approximation becomes better not only as N increases
but also when more bits are dedicated to phase quantization.
For comparison, we also present the simulated capacity curve
of a SISO system without the assistance of an LIS. When
b = 1, the aid provided by an LIS becomes advantageous for
N > 80. Otherwise, When b > 1, an LIS with N > 50 is
enough for the LIS-assisted system’s behavior to outperform
that of the system without an LIS.

We also verify the performance degradation when b varies.
As shown in Figure 6, the spectral efficiency decreases
when b is small. This is evident, especially for b = 1 and
b = 2. Therefore, the performance difference between the
spectral efficiency obtained when using perfect phase shifts
and quantized phase shifts decreases as b increases. More-
over, the degradation also tends to decrease as more reflective

20776 VOLUME 9, 2021



F. A. P. de Figueiredo et al.: LISs With Discrete Set of Phase-Shifts Communicating Through Double-Rayleigh Fading Channels

FIGURE 5. Spectral efficiency as a function of N for (a) b = 1 (b) b = 4 (c) b = 10.

FIGURE 6. Spectral efficiency as a function of b for different values of N .

elements are added to the LIS. That is, for an LIS with many
elements, a few bits (as few as 4 bits) are sufficient for
quantization with negligible performance degradation, which
is in accordance (28).

Regarding the distance between the source (i.e., the BS)
and the LIS, we compare the schemes’ spectral efficiencies
with N = 25, 50, 100, 250, 500. Figure 7 shows the results
obtained for b = 8. We can see that the performance
deteriorates as the distance increases. This phenomenon was
expected since the LIS is composed of only passive elements
and there is no direct path between the source and the user.
However, as alreadymentioned, it improves when the number
of elements on LIS increases.

In its turn, Figure 8 shows how the spectral efficiency
behaves as ρ = P/Nα varies for α = 3/2, 2, 5/2. We con-
sider P = 100 [dB] and b ∈ {1, 2, 4, 8, 10}. As expected

FIGURE 7. Spectral efficiency as a function of the distance between
source and LIS, considering b = 8.

and stated in Remark 15, for α = 2 and as N increases,
the capacity becomes constant no matter the number of
reflecting elements. However, when α = 3/2, the capacity
grows logarithmically fast with N when N → ∞ and tends
to 0 when α = 5/2 and N → ∞. These results confirm
that the transmit power can be reduced proportionally to N .
We can also see that, although the capacity increases with the
number of quantization bits, b, the performances for b = 4,
b = 8, and b = 10 are very close.
Figure 9 shows the required transmit power by the source

needed to achieve fixed capacities of 1 and 2 bits/s/Hz,
respectively. As expected and predicted by Remark 15,
the transmit power can be reduced by approximately 6 [dB]
by doubling the number of reflecting elements for both
fixed capacities. We can also confirm that, in general,
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FIGURE 8. Power scaling law for different α values.

FIGURE 9. Required power for C = 1 bit/s/Hz and C = 2 bits/s/Hz.

the LIS-assisted system outperforms the SISO system with-
out LIS when N is approximately greater than 80, regardless
of the number of quantization bits.

Figure 10 compares the average SNR as a function of the
transmitted power obtained from the simulations, (9), and
the SISO system without LIS. We consider ρ = 50 dB,
N ∈ {25, 100, 200} and b ∈ {1, 4, 8}. As can be confirmed,
the relationship between the two parameters is linear, i.e.,
between the average SNR and the transmitted power. Addi-
tionally, we can notice that, for a given ρ, the average SNR
improves as N increases. It is also worth mentioning that
the LIS-assisted system outperforms the conventional one the

FIGURE 10. Average SNR in function of transmission power for b = 1,
b = 4 and b = 8.

higher the number of reflecting elements N is. Moreover,
the influence of the number of quantization bits is insignif-
icant, as long as b > 1.

Figures 11 and 12 show the symbol error rate behavior for
BPSK and QPSK, and 16-QAM, and 64-QAM modulation
schemes considering N = 25, respectively. As expected,
the modulations present a decreasing level of robustness as
the number of symbols increases. The most important thing
to note here is the gap between the curves for 1, 2, and 4 bits.
It gets to be almost 5 dB when the SNR is high. Although this
gap exists, it is less pronounced when more bits are dedicated

FIGURE 11. Symbol Error Rate for BPSK and QPSK modulations for
N = 25.
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FIGURE 12. Symbol Error Rate for 16-QAM and 64-QAM modulations for
N = 25.

to phase quantization, and b = 4 is enough to guarantee a
good performance.

For computational simplicity, in Figure 13, we present
the simulated and analytical outage probabilities only for
N = 100. We notice that the probability of achieving higher
capacities increases with the number of quantization bits,
b. Moreover, when considering different b values, we can
confirm the previous insight; b = 4 is enough for a good
phase quantization.

FIGURE 13. Outage probability for N = 100 and b ∈ {1,2,4,8,10}.

Finally, Figure 14 shows the outage probability as we
vary the number of quantization bits. For this simulation,

FIGURE 14. Outage probability versus number of quantization bits, b, for
different values of N .

we assume ρ equal to 80 [dB] and the capacity of 1 bit/s/Hz.
By analyzing the results, it is possible to notice that the
outage probability decreases as the number of quantization
bits, b, increases and asymptotically approaches the lower
bound given by an optimal LIS with perfect phase shifts, i.e.,
an infinite number of bits used to represent the phases. For
all the three setups, N = 2, 4, and 8, the outage probability
reaches its largest value when b = 2.WhenN = 2, the outage
probability approaches the perfect phase bound as long as
b > 3. We also notice that the gap between the curves gets
larger as N increases. However, it reduces as the number of
quantization bits, b, increases. Therefore, we conclude that
the phase quantization errors do not significantly impact the
outage probability performance as long as the number of bits
is made large enough, which is an encouraging finding for the
deployment of LIS-assisted systems.

V. CONCLUSION AND FUTURE WORK
In this article, we have done an in-depth analysis of a prac-
tical LIS-assisted SISO system. Since quantization errors are
unavoidable, we have evaluated the influence of bits number
dedicated to the phase quantization on spectral efficiency,
symbol error rate, and outage probability. We have compared
such a system performance with the conventional one without
LIS through accurate closed-form expressions derived for
each of these metrics. We have extended our analysis to
power scaling law and the power required to achieve specific
capacity. Not only is the influence of b verified, but also that
of the number of LIS elements.

We can conclude that the system’s performance improves
as the numbers of LIS elements and bits increase. With
approximately fifty reflecting elements and four dedicated
bits for phase quantization, the LIS-assisted system outper-
forms the conventional system performance without a LIS.
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Our study assumed that (i) there is no direct link between
S and D, and (ii) the intermediate channels (i.e., S to LIS
and LIS to D) are independent, flat, and Rayleigh distributed.
As future work, we intend to relax those assumptions and
study the performance of LIS-assisted systems with discrete
phase sets in correlated fading channels with the presence and
absence of direct links between the involved entities (i.e., S,
LIS, and D).

APPENDIX A
Tofind the parameters κ and θ for the approximated PDF of λ,
we first need to define the following Lemmas.
Lemma 2:∣∣∣∣∣
N∑
n=1

znejθn

∣∣∣∣∣
2

=

N∑
n=1

z2n + 2
N∑
m=1

N∑
n=m+1

zmzn cos(θm − θn).

(47)
Proof: This identity is straightforwardly found by

expanding the summation terms on its left side.
Lemma 3: If X ∼ CN (0M , σ 2

X IM ), then Y = |X | is a
Rayleigh random variable with PDF given by

fY (y) =
2y

σ 2
X

e
−

y2

σ2X , y ≥ 0. (48)

Proof: The proof for this Lemma is given in [61].
Lemma 4: If Y is a Rayleigh random variable with PDF

defined by (48), then, its 4 first moments are given by

E [Y ] =
∫
∞

0
yfY (y)dy =

σX
√
π

2
, (49)

E
[
Y 2
]
=

∫
∞

0
y2fY (y)dy = σ 2

X , (50)

E
[
Y 3
]
=

∫
∞

0
y3fY (y)dy =

3σ 3
X
√
π

4
, (51)

E
[
Y 4
]
=

∫
∞

0
y4fY (y)dy = 2σ 4

X . (52)

Lemma 5: If X is a uniform random variable with PDF
given by

fX (x) =

{ a
2π
, −

π

a
≤ x ≤

π

a
,

0, otherwise,
(53)

then Y = −X has the same PDF as X, which was defined
in (53).

Proof: This can be straightforwardly proved by noticing
that the PDF of X is symmetrical around 0.
Lemma 6: If θm and θn are independent and identi-

cally distributed uniform random variables with PDF given
by (53), then Y = θm + θn has the following PDF

fY (y) =


a
2π

(
1+

a
2π

y
)
, −

2π
a
≤ y ≤ 0,

a
2π

(
1−

a
2π

y
)
, 0 < y ≤

2π
a
,

0, otherwise.

(54)

Proof: From the theory, we know that the sum of two
random variables equals the convolution of fθm (θm) and fθn (θn)
is

fY (y) =
∫
∞

−∞

fθm (y− θn)fθn (θn)dθn. (55)

Therefore, fY (y) is defined as

fY (y) =



∫ π
a +y

−
π
a

a2

4π2 dθn, −
2π
a
≤ y < 0,

∫ π
a

−
π
a +y

βg

4π2 dθn, 0 ≤ y ≤
2π
a
,

0, otherwise,

(56)

which concludes the proof.
Lemma 7: If the PDF of the sum of two independent and

identically distributed uniform random variables is given
by (54), then

E [cos(θm − θn)] =
a2 sin2(πa )

π2 . (57)

Proof: By using Lemma 5, we can rewrite (57) as
E [cos(θm + θn)], then applying Lemma 6 we have

E [cos(θm + θn)] = E [cos(y)]

=

∫ 0

−
2π
a

cos(y)
a
2π

(
1+

a
2π

y
)
dy

+

∫ 0

−
2π
a

cos(y)
a
2π

(
1−

a
2π

y
)
dy. (58)

Solving the two integrals in (58) concludes the proof.
Lemma 8: If the PDF of the sum of two independent and

identically distributed uniform random variables is given
by (54), then

E
[
cos2(θm − θn)

]
=

8π2
+ a2 − a2 cos2( 4πa )

16π2 . (59)

Proof: By using Lemma 5 we can rewrite (57) as
E
[
cos2(θm + θn)

]
, then applying Lemma 6 we have

E
[
cos2(θm + θn)

]
= E

[
cos2(y)

]
=

∫ 0

−
2π
a

cos2(y)
a
2π

(
1+

a
2π

y
)
dy

+

∫ 0

−
2π
a

cos2(y)
a
2π

(
1−

a
2π

y
)
dy.

(60)

Solving the two integrals in (60) concludes the proof.
Lemma 9: If X is a uniform random variable with PDF

given by (53), then the PDF of Y = 2X is given by

fY (y) =
a
4π
,−

2π
a
≤ y ≤

2π
a
. (61)

Proof: This is proved by using the standard transforma-
tion of random variables.
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Lemma 10: If θl , θm and θn are independent and identi-
cally distributed uniform random variables with PDF given
by (53), then Y = 2θl − (θm + θn) has the following PDF

fY (y) =



a
2π
+

a2y
4π2 +

a3y2

32π3 , −
4π
a
≤ y ≤ −

2π
a
,

a
4π
−

a3y2

32π3 , −
2π
a
< y ≤ 0,

a
4π
−

a3y2

32π3 , 0 < y ≤
2π
a
,

a
2π
−

a2y
4π2 +

a3y2

32π3 ,
2π
a
< y ≤

4π
a
,

0, otherwise.

(62)

Proof: We start by remembering that we know the
PDF of W = 2θl and of Z = θm + θn, which are given
by (61) and (54), respectively. Next by applying Lemma 5,
we can re-write Y as Y = Z + W , which is the sum of two
independent random variables. Therefore, the PDF of Y is the
convolution between the PDFs ofW and Z , which is defined
as

fY (y) =
∫
∞

−∞

fW (y− z)fZ (z)dz. (63)

Therefore, fY (y) is defined as

fY (y)

=



∫ 2π
a +y

−
2π
a

a2

8π2

(
1+

a
2π

z
)
dz,

−
4π
a
≤ y < −

2π
a
,∫ 2π

a +y

0

a2

8π2

(
1−

a
2π

z
)
dz+

∫ π
a

−
π
a +y

a2

8π2

(
1+

a
2π

z
)
dz,

−
2π
a
≤ y < 0,∫ 0

−
2π
a +y

a2

8π2

(
1+

a
2π

z
)
dz+

∫ π
a

−
π
a +y

a2

8π2

(
1−

a
2π

z
)
dz,

0 ≤ y <
2π
a
,∫ 2π

a

−
2π
a +y

a2

8π2

(
1−

a
2π

z
)
dz,

2π
a
≤ y ≤

4π
a
,

0, otherwise,
(64)

which concludes the proof.
Lemma 11: If the PDF of the sum of three independent

random variables, Y = 2θl − (θm + θn), is given by (62),
then

E [cos(2θl − (θm + θn))] =
a3 cos(πa ) sin

3(πa )

π3 . (65)
Proof: By using Lemma 10 we have

E [cos(2θl − (θm + θn))]

= E [cos(y)]

=

∫
−

2π
a

−
4π
a

cos(y)
[
a
2π
+

a2y
4π2 +

a3y2

32π3

]
dy

+

∫ 2π
a

−
2π
a

cos(y)
[
a
4π
−

a3y2

32π3

]
dy

+

∫ 4π
a

2π
a

cos(y)
[
a
2π
−

a2y
4π2 +

a3y2

32π3

]
dy. (66)

Solving the three integrals in (66) concludes the proof.
Lemma 12: If θl , θm, and θn are independent and identi-

cally distributed uniform random variables with PDF given
by (53), then

E[cos(θl − θm) cos(θl − θn)]=
a2 sin2(πa )

[
2π+a sin( 2πa )

]
4π3 .

(67)
Proof: We start by applying the trigonometric identity

cos(a) cos(b) = cos(a−b)+cos(a+b)
2 to (68), which then can be

re-written as

E [cos(θl − θm) cos(θl − θn)] =
1
2
E [cos(θn − θm)]

+
1
2
E [cos(2θl − θn − θm)] .

(68)

Next, by applying Lemmas 7 and 11 to (68), we conclude
the proof.

A. APPROXIMATED PDF OF THE INSTANTANEOUS SNR
Let the random variable Z = r , where r is defined in (6),
therefore, the PDF of Z can be accurately approximated by a
Gamma distribution with parameters κ and θ , defined by (7)
and (8), respectively. This is empirically proven by comparing
the normalized histogram of Z against the theoretical PDF of
a Gamma random variable, Y , with the parameters defined
earlier.

In order to approximate Z as a Gamma random vari-
able, Y , we have to find the parameters shape and scale
(i.e., κ and θ ) based on statistical information of Z . Therefore,
we approximate Z as a Gamma random variable, Y , by using
two different moments of Y and then assuming that E

[
Y 2
]
=

E
[
Z2
]
and E

[
Y 4
]
= E

[
Z4
]
.

Those two moments of the Gamma distribution Y are
defined as

E
[
Y 2
]
= κ(κ + 1)θ2, (69)

and

E
[
Y 4
]
= κ(κ + 1)(κ + 2)(κ + 3)θ4. (70)

Based on (69), the assumption that E
[
Y 2
]
= E

[
Z2
]
and

then isolating θ we find

θ =

√
E
[
Z2
]

κ(κ + 1)
. (71)
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Next, plugging (71) back into (70) and assuming that
E
[
Y 4
]
= E

[
Z4
]
, we find κ as(

E
[
Z4
]
−E

[
Z2
]2)
κ2+

(
E
[
Z4
]
−5E

[
Z2
]2)

κ−6E
[
Z2
]2
=0,

(72)

which is a quadratic equation with the following two roots

κ0

=

−

(
E
[
Z4
]
−5E

[
Z2
]2)
+

√
E
[
Z4
]2
−34E

[
Z4
]
E
[
Z2
]2
+49E

[
Z2
]4

2
(
E
[
Z4
]
−E

[
Z2
]2) ,

(73)

κ1

=

−

(
E
[
Z4
]
−5E

[
Z2
]2)
−

√
E
[
Z4
]2
−34E

[
Z4
]
E
[
Z2
]2
+49E

[
Z2
]4

2
(
E
[
Z4
]
−E

[
Z2
]2) ,

(74)

where out of the two roots, only is useful, i.e., only one root
has a positive value. Since κ ought to be a real and positive
number, we assume that the value within the square root is a
positive one. Next, assuming that 5E

[
Z2
]2
≥ E

[
Z4
]
, then

only κ0 results in a positive value.
Next, in order to find the moment E

[
Z2
]
, we first expand

E
[
Z2
]
as

E
[
Z2
]
= E [γ ]

=E

ρ ∣∣∣∣∣
N∑
n=1

|hn||gn|ejδn

∣∣∣∣∣
2

= E

ρ N∑
n=1

d2n + 2ρ
N∑
m=1

N∑
n=m+1

dmdn cos(δm − δn)

,
(75)

where dk = |hk ||gk | and the last line is found by applying
Lemma 2. Thus, using the fact that |hn|, |gn|, and δn, ∀n are
mutually independent random variables and that hm and hn,
and gm and gn, ∀m, n are identically distributed, then (75),
can be re-written as

E
[
Z2
]
= ρ

N∑
n=1

E
[
|hn|2

]
E
[
|gn|2

]
+ 2ρ

N∑
m=1

N∑
n=m+1

E [|hm|]2 E [|gm|]2 E [cos(δm−δn)].

(76)

Then, by applying Lemmas 4 and 7 to (76), we find (9).
Next, in order to find the moment E

[
Z4
]
, we initially

expand it as

E
[
Z4
]
= E

[
γ 2
]

= E

( N∑
l=1

d2l

)2
+ 4

N∑
l=1

N∑
m=1

N∑
n=m+1

E
[
d2l dmdn cos(δm − δn)

]

+ 4E


 N∑
m=1

N∑
n=m+1

dmdn cos(δm − δn)

2
 ,
(77)

where dk = |hk ||gk |. The first term of (77) can be expressed
as

E

( N∑
l=1

d2l

)2 = E

 N∑
n=1

d4n +
N∑
m=1

N∑
n=1,n6=m

d2md
2
n


= NE

[
|gm|4

]
E
[
|hm|4

]
+N (N − 1)E

[
|gm|2

]2
E
[
|hm|2

]2
= N (N + 3)

(
βgβh

)2
, (78)

where the last line of (78) is found by applying Lemma 4.
Next, the second term of (77) can be expressed as (79), as
shown at the bottom of the next page, where the last line is
found by applying Lemmas 4 and 7. Then, the third term
of (77) can be expressed as (80), as shown at the bottom
of the next page, where the last line is found after applying
Lemmas 4, 7, 8, and 12. Finally, after plugging (78), (79), and
(80) back into (77) and several simplifications, we find (10).
The proof is concluded by replacing Equations (9) and (10)

into the definitions of κ and θ , given by (73) and (71),
respectively.

APPENDIX B
For the derivation of Remark 1, we need to define the follow-
ing Lemma.
Lemma 13:

lim
x→0

sin (x)
x
= 1. (81)

Proof: We prove Lemma 13 by applying L’Hôpital’s
rule to (81) as shown next

lim
x→0

∂ sin(x)
∂x
∂x
∂x

= lim
x→0

cos(x) = 1. (82)

Lemma 14:

lim
x→∞

(
x sin

(a
x

))n
= an,∀a, n ∈ R. (83)

Proof: We start by re-writing (83) as(
lim
x→∞

a
a

sin
( a
x

)
1
x

)n
=

(
lim
x→∞

a
sin
( a
x

)
a
x

)n
, (84)

where we also used the power rule of limits to re-write it.
Next, we apply the following change of variables θ = a

x
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to (84), resulting in(
lim
θ→0

a
sin (θ)
θ

)n
= an

(
lim
θ→0

sin (θ)
θ

)n
, (85)

where we used the constant multiple rule of limits to find the
last part. Next, by using Lemma 13, we conclude the proof.

A. DERIVATION OF REMARK 1
The results (14) and (15) are found after expand-
ing (9) and (10), using Lemma 14 and the fact that
limx→∞ cos(1/x) = 1.

APPENDIX C
For the proof of (18) we should notice that when limρ→∞ θ =
∞ then, consequently, limρ→∞− 1

4θ2
= 0. Therefore,

lim
ρ→∞

2F3

(
1, 1; 2,

3
2
−
κ

2
, 2−

κ

2
;−

1
4θ2

)
= 1. (86)

lim
ρ→∞

1F2

(
κ

2
+

1
2
;
3
2
,
κ

2
+

3
2
;−

1
4θ2

)
= 1. (87)

lim
ρ→∞

1F2

(
κ

2
;
1
2
,
κ

2
+ 1;−

1
4θ2

)
= 1. (88)

Hence, in high SNR regime (17) can be tightly approxi-
mated as (18), which concludes the proof.

APPENDIX D
The proof of (19) is straightforwardly found by noticing that
the first three terms of (18) tend to 0 when ρ → ∞, since
θ →∞ when ρ →∞, which concludes this proof.

APPENDIX E
In high SNR regime, as N → ∞ and κ → ∞, 0(κ) grows
even faster. Therefore,

lim
N→∞

2π sec
(
πκ
2

)
(κ + 1)θκ+10(κ) log(4)

= 0. (89)

lim
N→∞

2π csc
(
πκ
2

)
κθκ0(κ) log(4)

= 0. (90)

4
N∑
l=1

N∑
m=1

N∑
n=m+1

E
[
d2l dmdn cos(δm − δn)

]

= 4
N∑
m=1

N∑
n=1,n6=m

E
[
d3mdn cos(δm − δn)

]

+ 4
N∑
l=1

N∑
m=1,m6=l

N∑
n=m+1,n6=l

E
[
d2l dmdn cos(δm − δn)

]
= 4N (N − 1)E

[
|gm|3

]
E
[
|hm|3

]
E [|gm|]E [|hm|]E [cos(δl − δm)]

+ 2N (N − 1)(N − 2)E
[
|gl |2

]
E
[
|hl |2

]
E [|gm|]E [|hm|]E [|gn|]E [|hn|] cos(δm − δn)

=
1
16
N (N − 1)(2N + 5)

(
βgβh

)2 Q2 sin2
(
π

Q

)
. (79)

4E


 N∑
m=1

N∑
n=m+1

dmdn cos(δm − δn)

2


= 4
N∑
j=1

N∑
l=j+1

N∑
m=1

N∑
n=m+1

E
[
djdldmdn cos(δj − δl) cos(δm − δn)

]
= 4

N∑
j=1

N∑
l=j+1

N∑
m=1,m=j

N∑
n=m+1,n=l

E
[
d2j d

2
l cos

2(δj − δl)
]

+ 8
N∑
l=1

N∑
m=1,m6=l

N∑
n=m+1,n6=l

E
[
d2l dmdn cos(δl − δm) cos(δl − δn)

]

+ 4
N∑
j=1

N∑
l=1,l 6=j6=m6=n

N∑
m=1,l 6=j6=m6=n

N∑
n=1,l 6=j6=m6=n

E
[
djdldmdn cos(δj − δl) cos(δm − δn)

]

=

N (N−1)
(
βgβh

)2{Q2
[
π (N−2) sin2

(
π
Q

)(
π
(
(N−3)Q2 sin2

(
π
Q

)
+32

)
+16Q sin

(
2π
Q

))
−32 cos

(
4π
Q

)]
+32

(
Q2
+8π2

)}
256π2 . (80)
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These two terms tend to 0 faster than the other two terms,
concluding the proof.

APPENDIX F
Here we outline the derivation of Clower in (27). We start by
applying the Taylor series expansion of 1/γ around E [γ ]
[52], the term E [1/γ ] in (26) can be approximated as [62]

E
[
1
γ

]
≈

1
E [γ ]

+
var (γ )

E [γ ]3
=

E
[
γ 2
]

E [γ ]3
. (91)

After replacing E [γ ] and E
[
γ 2
]
in (91) via (9) and (10),

respectively, and then by substituting the resultant expression
into (26), Clower can be approximated as shown in the second
part of (27).

APPENDIX G
Here we describe the derivation of the outage probability
given by (36). Using the PDF of the instantaneous capacity
given by (22), the outage probability can be written as

Pout. = Pr{Cinst. < Cout.}

=
log (2)
0(κ)θκ

∫ Cout.

0
2u−1(2u − 1)

(
κ−2
2

)
e−
√
2u−1
θ du.

(92)

Next, using the following change of variable x = 2u − 1,
then (92) becomes

Pout. =
1

20(κ)θκ

∫ 2Cout.−1

0
x

(
κ−2
2

)
e−
√
x
θ dx. (93)

Finally, using (2.33.10) from [52]

∫
xme−βx

n
dx = −

0
(
m+1
n , βxn

)
nβ

m+1
n

, (94)

we find a solution for the integral in (93), which concludes
the proof.

APPENDIX H
For the proofs of (38) and (39), we first to define the following
Lemmas.
Lemma 15: According to (Eq. 8.2.5, [54])

1−
0(a, b)
0(a)

=
γ (a, b)
0(a)

, (95)

where γ (a, b) is the lower incomplete gamma function.
Lemma 16: According to (Eq. 8.5.1, [54])

γ (a, b) = a−1ba 1F1 (a, a+ 1,−b) . (96)
Lemma 17: According to (07.20.03.0001.01) of [63]

1F1 (a, b, 0) = 1. (97)
Therefore, applying Lemmas 15 and 16, defined above,
to (37) we end up with (38), which concludes the proof. Now,
(39) is found by applying Lemma 17 to (38) and remembering
that limρ→∞ θ = ∞, then limρ→∞ 1/θ = 0.

APPENDIX I
In this Appendix, we derive the average symbol error rate
expression given by (41), but first, we need to establish some
Lemmas.
Lemma 18:

Q(x) =
1
2

[
1− erf

(
x
√
2

)]
. (98)

This relation is given by (Eq. B.111, [64]).
Lemma 19: ∫

∞

0
xme−βx

n
dx =

0
(
m+1
n

)
nβ

m+1
n

. (99)

This relation is given by (Eq. 3.326.2, [52]).
Lemma 20: If erf(.) is the Gauss error function, and a, b,

and c > 0, then the integral
∫
∞

0 erf (ax) xbe−cxdx is given
by (100). The integral in (100) is found by using an integral
solver [65].∫
∞

0
erf (ax) xbe−cxdx = c−b−10(b+ 1)

+

ca−b−20
(
b+3
2

)
2F2

(
b
2 + 1, b2 +

3
2 ;

3
2 ,

b
2 + 2; c

2

4a2

)
√
π (b+ 2)

−

a−b−10
( b
2 + 1

)
2F2

(
b
2 +

1
2 ,

b
2 + 1; 12 ,

b
2 +

3
2 ;

c2

4a2

)
√
π(b+ 1)

.

(100)

A. PROOF OF THE AVERAGE SYMBOL ERROR RATE
By using the fact that γ = r2 (see (6)), the expectation of the
conditional symbol error probability given the distribution of
the SNR can be written as

Pe = E
[
aQ

(√
bγ
)]
= E

[
aQ

(√
br
)]

=

∫
∞

0
Pe|γ (x)fR(x)dx, (101)

where fR(r) is the PDF of the Gamma distribution, which
tightly approximates the exact PDF of the random variable, r .

By plugging Pe|γ = aQ
(√

bγ
)
and the Gamma PDF back

into (101), the average SER is rewritten as

Pe =
a

0(κ)θκ

∫
∞

0
Q
(√

bx
)
xκ−1e−x/θdx. (102)

By using Lemma 18, (102) can be equivalently rewritten as

Pe =
a

0(κ)θκ

[∫
∞

0
xκ−1e−x/θdx

−

∫
∞

0
erf

(√
b
2
x

)
xκ−1e−x/θdx

]
. (103)

The first integral inside the square brackets of (103) is
found by applying Lemma 19 to it, which results in∫

∞

0
xκ−1e−x/θdx = 0(κ)θκ . (104)
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The second integral inside the square brackets of (103) is
found by applying Lemma 20 to it, which results in∫
∞

0
erf

(√
b
2
x

)
xκ−1e−x/θdx

= θκ0(κ)−
2κ/2b−

κ
20
(
κ+1
2

)
2F2

(
κ
2 +

1
2 ,

κ
2 ;

1
2 ,

κ
2 + 1; 1

2bθ2

)
√
πκ

+

2
κ
2+

1
2 b−

κ
2−

1
20
(
κ
2+1

)
2F2

(
κ
2+

1
2 ,

κ
2+1;

3
2 ,

κ
2+

3
2 ;

1
2bθ2

)
√
πθ(κ + 1)

.

(105)

Finally, by substituting (104) and (105) back into (103),
we conclude the proof.

APPENDIX J
For the proof of (42) we should notice that when limρ→∞ θ =
∞ then, consequently, limρ→∞ 1

2θ2
= 0. Therefore,

lim
ρ→∞

2F2

(
κ

2
+

1
2
,
κ

2
;
1
2
,
κ

2
+ 1;

1
2bθ2

)
= 1. (106)

lim
ρ→∞

2F2

(
κ

2
+

1
2
,
κ

2
+ 1;

3
2
,
κ

2
+

3
2
;

1
2bθ2

)
= 1. (107)

Hence, in high SNR regime (41) can be tightly approximated
as (42), which concludes the proof.

APPENDIX K
In order to derive the diversity order, we first need to rewrite
(9) and (10) as

E [γ ] = ρβgβhA1, (108)

and

E
[
γ 2
]
=
(
ρβgβh

)2A2, (109)

respectively, where A1 and A2 do not depend on the average
SNR, ρ. By plugging these two equation back into (7) and (8),
we find

κ =
5A2

1 +

√
49A4

1 − 34A2
1A2 +A2

2 −A2

2
(
A2 −A2

1

) > 0, (110)

which also does not depend on the average SNR, and

θ = ρ
1
2

√√√√√βgβh

(
2A2

1 −

√
A4

1 + 14A2
1A2 +A2

2 + 2A2

)
6A1

= ρ
1
2 θ ′ > 0, (111)

which depends on the average SNR. Therefore, in high-SNR
regime, (42) can be written as

Phigh-SNRe ≈ B1ρ
−
κ
2 − B2ρ

−
(κ+1)

2 , (112)

where

B1 =
a2−

(κ+2)
2 b−

κ
2 θ
′
−κ

0
(
κ
2 + 1

) , (113)

and

B2 =
κa2−

(κ+3)
2 b−

(κ+1)
2 θ

′
−(κ+1)

0
(
κ+3
2

) . (114)

Note that B1 and B2 do not depend on the average SNR,
i.e., they are independent from it. Furthermore, from (112),
we realise that the terms ρ−

κ
2 and ρ−

(κ+1)
2 contribute with

diversity order of κ
2 and (κ+1)

2 , respectively. Therefore,
the diversity order is calculated as

D = min
(
κ

2
,
(κ + 1)

2

)
. (115)

Since κ > 0, then (115) is simplified as

D =
κ

2
. (116)

The proof is concluded after plugging (110) into (116).
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