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Abstract—This work considers the design of linear minimum
mean square error (MMSE) precoders and combiners for the
estimation of an unknown vector parameter in a coherent
multiple access channel (MAC)-based multiple-input multiple-
output (MIMO) wireless sensor network. The proposed designs
that minimize the mean squared error (MSE) of the param-
eter estimate at the fusion center are based on majorization
theory, which leads to non-iterative closed-form solutions for
the precoders and combiners. Various scenarios are considered
for parameter estimation such as networks with ideal high
precision sensors as well as noisy non-ideal sensors. More-
over, inter parameter correlation is also incorporated, which
makes the analysis comprehensive. The Bayesian Cramer-Rao
bound (BCRB) and centralized MMSE bound are determined
to characterize the estimation performance. Simulation results
demonstrate the improved performance and also corroborate our
analytical formulations.

Index Terms—Wireless sensor networks, precoder-combiner
design, linear decentralized estimation, majorization theory.

I. INTRODUCTION

The advances in wireless communication technologies, cou-
pled with the lower fabrication cost of smart sensors, have
led to the development of large networks of miniature sensor
nodes connected over wireless links, termed wireless sensor
networks (WSNs) [1]. More recently, this has enabled the
deployment of the Internet of Things (IoT) that integrates a
large number of sensor equipped devices with the 5G network.
A commonly used WSN comprises of a group of spatially co-
located sensors that continuously sense physical phenomena,
followed by the transmission of suitably pre-processed data
to the fusion center for subsequent signal processing and
analysis. Since the sensors often are bandwidth and power
constrained, it is imperative to design optimal pre-processing
or precoding strategies at the sensors for efficient transmis-
sion of the observations, and also efficient post-processing
or combining techniques at the fusion center to maximize
the accuracy of parameter estimation. Furthermore, multiple-
input multiple-output (MIMO) technology that enables the
simultaneous transmission of multiple observations, can play
a significant role in enhancing the bandwidth efficiency of

the sensor network. Naturally, the design of precoding and
combining schemes for parameter estimation in MIMO sensor
networks has attracted significant research interest. A brief
review of related works in the existing literature is presented
next.

A. Review of existing works

The pioneering work in [2] first introduced a general model
for the decentralized estimation of scalar as well as vector
parameters in a sensor network. For transmission of the
measurements from the sensors to the fusion center (FC), the
research therein considered an orthogonal MAC, in which the
sensor transmissions are over parallel orthogonal channels, as
well as a coherent (additive) MAC, in which all the trans-
missions are over a single channel. Thus, the transmissions
in the latter channel are superimposed at the fusion center.
The authors demonstrated the fundamental result that the
coherent MAC, with optimal power allocation, can lead to a
similar performance of decentralized estimation as that of an
orthogonal MAC. This renders the former scheme bandwidth
efficient, while not compromising on the performance of
parameter estimation. However, to simplify the pertinent anal-
ysis, the authors in [2] assumed the channel matrix between
each sensor and the fusion center to be diagonal in nature.
This restricts the applicability of the framework proposed
therein. To overcome this shortcoming, iterative algorithms
were developed using the block coordinate descent framework
in [3] and [4], by considering a general non-diagonal MIMO
channel matrix between each sensor and the fusion center.
However, due to their iterative nature, the algorithms described
therein require significant computational resources and time.
In [5], the authors present precoder design that eliminates
the need of a combiner, but such design can potentially lead
to noise enhancement due to the zero-forcing nature of the
distortionless constraint. Authors in [6], [7] propose schemes
for the sequential LMMSE estimation of time varying scalar
and vector parameters, respectively. The algorithms developed
therein are once again iterative in nature. The problem of linear



decentralized estimation has been extended to massive MIMO
5G systems in [8], with a very large antenna array at the fusion
center and only single antenna sensor nodes. In a paradigm
shift, sensor collaboration schemes wherein the constituent
sensors exchange and pre-process their observations prior to
transmission in order to reduce the communication cost and
improve estimation efficiency are presented in [9]–[11]. How-
ever, they can lead to a significant communication overhead
due to the inter-sensor communication that is necessitated by
such schemes. To overcome the various shortcomings of the
works reviewed above, this paper develops linear processing
schemes for decentralized vector parameter estimation in a
MIMO sensor network.

B. Contributions of the work
This paper considers a MIMO WSN with multiple antennas

at the sensor nodes as well as at the fusion center for
the transmission and estimation of a vector parameter. The
proposed linear MMSE processing techniques are based on
majorization theory [12], which leads to closed form solutions
for the design of precoders and combiners, unlike the iterative
schemes in the existing works [3], [4].
• The proposed precoding/ combining strategies to mini-

mize the MSE of parameter estimation at the fusion center
under different power constraints are first developed for
a general scenario with ideal noiseless sensors.

• These are subsequently extended to a more general sce-
nario with non-ideal noisy sensors as well as parameter
correlation. The design for the case of an uncorrelated
white parameter process is presented as a special case.

• The BCRB and centralized MMSE bounds are also
determined to benchmark the performance of the pro-
posed communication and estimation paradigms for the
scenarios with ideal and non-ideal sensors, respectively.

• Simulation results demonstrate the efficacy of the pro-
posed designs and a performance close to the bench-
marks.

The remainder of the paper is organized as follows: Section
II describes the MIMO WSN system model, while Section III
presents linear precoder and combiner designs that minimize
the MSE for scenario with ideal high precision sensors. In
Section IV precoder and combiner designs are developed for a
general scenario with non-ideal noisy sensor observations, first
for the general case of correlated parameters followed by the
special case of uncorrelated parameter estimation. Simulation
results are provided in Section V, followed by the conclusion
in Section VI and proof of the optimality of the proposed
precoder design is given in the Appendix A.

II. SYSTEM MODEL

Consider L wireless sensors communicating with the fusion
center over a coherent MAC [2]. Let Nt and Nr denote the
number of antennas at each sensor node and the fusion center,
respectively. The observation vector xi ∈ Cli×1 of the ith
sensor can be modeled as

xi = Giθ + vi, (1)

where θ ∼ CN (0,Rθ) is the m dimensional parameter vector
of interest, Gi ∈ Cli×m represents the corresponding obser-
vation matrix, and vi ∈ Cli×1 denotes the observation noise
that is distributed as CN (0,Ri). The observation vector xi at
sensor i is initially processed employing the whitening filter
Wi ∈ Cli×li to yield the output Wixi = WiGiθ + Wivi.
Subsequently, the whitened vector is precoded with the matrix
Bi ∈ CNt×li , prior to transmission. Let Hi ∈ CNr×Nt denote
the channel between the ith sensor and the fusion center.
Hence, the received vector y ∈ CNr×1at the fusion center
over the coherent MAC can be modeled as

y =

L∑
i=1

HiBiWiGiθ +

L∑
i=1

HiBiWivi + n,

= HBWGθ + HBWv + n, (2)

where the quantities H ∈ CNr×LNt , W ∈ Cl×l, B ∈ CLNt×l
and Rv ∈ Cl×l, denote the concatenated channel matrix
H = [H1,H2, . . . ,HL], block diagonal whitening matrix
W = diag (W1,W2, . . . ,WL), block diagonal precoding
matrix B = diag (B1,B2, . . . ,BL), and observation noise
covariance matrix Rv = diag (R1,R2, . . . ,RL), respectively.
The stacked observation matrix G ∈ Cl×m for the network
is defined as G = [GH

1 ,G
H
2 , . . . ,G

H
L ]H . Furthermore, v =

[vH1 ,v
H
2 , . . . ,v

H
L ]H ∈ Cl×1 denotes the stacked observation

noise vector, n ∼ CN (0,Rn) represents the Nr dimensional
receiver noise and l =

∑L
i=1 li.

Subsequently, the linear minimum mean square error
(LMMSE) combiner is used to generate the estimate θ̂ of the
parameter vector θ at the fusion center. The error covariance
matrix E ∈ Cm×m of the estimate θ̂ is defined as

E = E
{(

θ̂ − θ
)(

θ̂ − θ
)H}

. (3)

In order to constrain the transmit power of the sensor network,
the transmit power of the ith sensor can be derived as

E
{
||Bixi||22

}
= Tr

(
BiE

{
xix

H
i }
)
BH
i

)
= Tr

(
Bi

(
WiGiRθG

H
i WH

i + WiRiW
H
i

)
Bi

H
)
. (4)

From (4), the total transmit power of the WSN can be
evaluated as

L∑
i=1

E
{
||Bixi||22

}
= Tr

(
B
(
WGRθG

HWH + WRvW
H
)
BH
)
. (5)

From (3) and (5), the optimization problem for the design
of the sensor precoding matrices Bi, i = 1, 2, . . . , L, and
the combiner at the fusion center, to minimize the MSE of
estimation with the total power constrained to PT , can be
formulated as

min
{B}Li=1

Tr (E)

s.t. Tr
(
B
(
WGRθG

HWH + WRvW
H
)
BH
)
≤ PT .

(6)



Majorization theory is employed next to determine precoder
and combiner designs for different scenarios in the sensor
network.

III. PRECODER COMBINER DESIGN WITH IDEAL SENSORS

To begin with, this section considers a scenario with ideal
high-precision sensors where the observation noise can be
ignored. A more general scenario with non-ideal noisy sensors,
and also incorporating correlation among the phenomena being
sensed, is analyzed in later sections. The received signal y in
(2) with ideal sensors is given by

y = HBGθ + n = HFθ + n, (7)

where the matrix F ∈ CLNt×m is defined as F =
BG = [FH1 ,F

H
2 , . . . ,F

H
L ]H and Fi = BiGi ∈ CNt×li .

Subsequently, employing the LMMSE combiner A =(
HFRθF

HHH + Rn

)−1
HFRθ ∈ CNr×m, the LMMSE

estimate is obtained as θ̂ = AHy. The corresponding error
covariance matrix E and the resulting MSE are obtained as
[13]

E =
(
R−1
θ + FHHHR−1

n HF
)−1

(8)

MSE = Tr (E) = Tr
((

R−1
θ + FHHHR−1

n HF
)−1

)
. (9)

The transmit power constraint reduces to Tr
(
FRθF

H
)
≤ PT .

Hence, the optimization problem in (6) for MSE minimization
reduces to

minimize
F

Tr
((

R−1
θ + FHHHR−1

n HF
)−1

)
subject to Tr

(
FRθF

H
)
≤ PT .

(10)

Majorization theory [12] presents a mathematically tractable
framework for precoder design via diagonalization of the error
covariance matrix. Substituting the eigenvalue decompositions
of the different matrices as Rθ=UθΛθU

H
θ and HHR−1

n H =
QΛQH in (9) above, one obtains the equivalent expression
for the MSE as

MSE = Tr

(
Uθ

(
Λ−1
θ + UH

θ FHQΛQHFUθ

)−1

︸ ︷︷ ︸
Ē

UH
θ

)
.

(11)
Let the matrix F be chosen to have the structure F =

QΩUH
θ , where Ω is the LNt ×m matrix given by

Ω =

[
(diag (p))

1
2
m×m

0(LNt−m)×m

]
, (12)

where the vector p = [p(1), p(2), · · · , p(m)]
T ∈ Rm×1, p(j)

denoting the jth element of p and 0(LNt−m)×m denotes a
(LNt − m) × m matrix with all its elements equal to zero.
Furthermore, diag (p) denotes a m × m diagonal matrix,
with the elements of vector p on its principal diagonal. It
is demonstrated in Appendix A that such a precoder structure,
which diagonalizes the effective error covariance matrix Ē

above, is optimal due to the Schur concave nature of the MSE
cost function [12]. Note that the MSEs corresponding to E and
Ē are identical since Tr (E) = Tr(Ē). Employing the above
substitution, the resulting MSE can be simplified as

MSE = Tr
((

Λ−1
θ + ΩHΛΩ

)−1
)

=

m∑
j=1

1
1

λj(Rθ) + p(j)λj(HHR−1
n H)

, (13)

where the quantities λj(Rθ) and λj(H
HR−1

n H) denote the
jth eigenvalue of the matrices Rθ and HHR−1

n H, respec-
tively. Further, the total transmit power constraint in (10) can
be simplified as

Tr
(
FRθF

H
)

= Tr
(
ΩΛθΩ

H
)

=

m∑
j=1

p(j)λj(Rθ). (14)

Hence, form (13) and (14) the optimization problem in (10)
to minimize the MSE can be equivalently formulated as

minimize
p

m∑
j=1

1
1

λj(Rθ) + p(j)λj(HHR−1
n H)

subject to
m∑
j=1

p(j)λj(Rθ) ≤ PT

p(j) ≥ 0, j = 1, 2 . . . ,m.

(15)

Using the Karush-Kuhn-Tucker (KKT) framework [14], the
optimal values of p(j) are derived as

p(j) =

(
µ

√
1

λj(Rθ)λj(HHR−1
n H)

− 1

λj(Rθ)λj(HHR−1
n H)

)+

, (16)

and the Lagrange multiplier µ that satisfies the power con-
straint with equality is determined as

µ =
PT +

∑m
j=1

1
λj(HHR−1

n H)∑m
j=1

√
λj(Rθ)

λj(HHR−1
n H)

. (17)

The optimal values p(j) upon substitution in the expression
for Ω in (12) yield the matrix F. The individual precoders
Bi can be determined as Bi = FiG

†
i , where G†i denotes

the pseudo-inverse of Gi. One can also solve the MSE min-
imization problem with individual sensor power constraints
as follows. Let Pi denote the maximum power of the ith
sensor. The power constraint for the ith sensor in (4) reduces to
Tr
(
FiRθF

H
i

)
≤ Pi. Let Fi = QiΩUH

θ , where Qi denotes
the sub-matrix of Q corresponding to rows (i − 1)Nt + 1
to iNt and all the columns. The power of the ith sensor
is
∑m
j=1 p(j)λj(Rθ)[Q

H
i Qi]jj . Replacing the total power

budget in (15) with L power constraints corresponding to the
individual sensors, one can determine the optimal precoders
for this scenario using convex solvers such as CVX [15].



MSE = Tr

((
VH

G̃
R−1
θ VG̃ + ΣH

G̃
UH

G̃
F̃HUn

(
UH
n F̃F̃HUn + Λn

)−1

UH
n F̃UG̃ΣG̃

)−1
)
. (19)

IV. PRECODER COMBINER DESIGN WITH NON-IDEAL
SENSORS

This section now considers precoder design and pa-
rameter estimation at the fusion center for a general
scenario with non-ideal noisy sensors, and also incor-
porates parameter correlation. As described in the sys-
tem model in Section II, the LMMSE combiner A =(
F̃G̃RθG̃

HF̃H + F̃F̃H + Rn

)−1

F̃G̃Rθ ∈ CNr×m, is used
to generate the estimate of the underlying parameter θ from
the received vector y in (2). The resulting MSE is given as
[13]

MSE = Tr

((
R−1
θ + G̃HF̃H

(
F̃F̃H + Rn

)−1

F̃G̃

)−1
)
,

(18)

where the matrices F̃ = HB = [F̃1, F̃2, . . . , F̃L] ∈ CNr×l,
G̃ = WG = [(W1G1)

T
(W2G2)

T
, . . . , (WLGL)

T
]T ∈

Cl×m and F̃i = HiBi ∈ CNr×li .
Let the singular value decomposition of G̃ = UG̃ΣG̃VH

G̃
and the eigenvalue decomposition of Rn = UnΛnUH

n .
Substituting these in the expression for the MSE in (18),
the resulting expression can be simplified to the one shown
in (19). Defining Γ = VH

G̃
R−1
θ VG̃ and setting the precoder

F̃ = UnΩ̃UH
G̃

, where Ω̃ ∈ CNr×l is defined as

Ω̃ =

[
(diag (p))

1
2
m×m 0m×(l−m)

0(Nr−m)×l

]
, (20)

the MSE in (19) becomes

MSE = Tr
(

(Γ + D)
−1
)
, (21)

where D = ΣH
G̃

Ω̃H
(
Ω̃Ω̃H + Λn

)−1

Ω̃ΣG̃. Since the matrix
Γ is not necessarily diagonal, the following result from [16],
is employed to simplify the precoder design problem.

Theorem 1 (Weyl’s Theorem). Let X, Y ∈ Cn×n denote
Hermitian symmetric matrices. Further, let the eigenvalues of
X, Y and X + Y be arranged in increasing order. Then

λj+k−1(X + Y) ≥ λk(X) + λj(Y),

for every pair of integers j, k such that 1 ≤ j, k ≤ n and
j + k ≤ n+ 1.

Setting k = 1 in the above result, one can determine an
upper bound on the MSE as

MSE = Tr
(

(Γ + D)
−1
)
≤

m∑
j=1

 1

λ1(Γ) +
p(j)σ2

j (G̃)

p(j)+λi(Rn)


=

m∑
j=1

(
p(j) + λj(Rn)

p(j)(λ1(Γ) + σ2
j (G̃)) + λ1(Γ)λj(Rn)

)
, (22)

where σj

(
G̃
)

is the jth diagonal element of the singular
value matrix ΣG̃. The total transmit power in (5), after
substituting Bi = H†i F̃i = H†iUnΩ̃UH

G̃i
and using the

property Tr (XY) = Tr (YX), can be simplified as

L∑
i=1

Tr
(
Bi

(
WiGiRθG

H
i WH

i + Ili
)
Bi

H
)

=

L∑
i=1

Tr
(
ΦiΩ̃ΨiΩ̃

H
)
≤

L∑
i=1

Tr(Ψi)

m∑
j=1

p(j)[Φi]jj , (23)

where the matrices Φi = UH
n

(
H†i

)H
H†iUn, Ψi =

UH
G̃i

UG̃i

(
ΣG̃VH

G̃
RθVG̃ΣH

G̃
+ Ili

)
UH

G̃i
UG̃i

, and UG̃i
is a

sub-matrix of UG̃ corresponding to the rows from
∑i−1
i=1 li+1

to
∑i
i=1 li and all the columns. The last step of the above

simplification is obtained using the property Tr(XY) ≤
Tr (X) Tr (Y) [16]. Therefore, the optimization problem for
MSE minimization can now be formulated using the results in
(22) and (23) as follows

minimize
p

m∑
j=1

p(j) + λj(Rn)

p(j)(λ1(Γ) + σ2
j (G̃)) + λ1(Γ)λj(Rn)

subject to
L∑
i=1

Tr(Ψi)

m∑
j=1

p(j)[Φi]jj ≤ PT

p(j) ≥ 0, j = 1, 2 . . . ,m.
(24)

The above optimization problem can once again be solved
using the KKT framework [14] to determine the optimal values
of p(j) as

p(j) =
1

αj

µ̃
√√√√ σ2

j (G̃)λj(Rn)∑L
i=1 Tr (Ψi) [Φi]jj

− λ1(Γ)λj(Rn)

+

,

(25)

where αj =
(
λ1(Γ) + σ2

j (G̃)
)

, and the Lagrange multiplier
µ̃ which satisfies the power constraint with equality is deter-
mined as

µ̃ =
PT +

∑L
i=1

∑m
j=1

Tr(Ψi)[Φi]jjλj(Rn)λ1(Γ)
αj∑m

j=1

√∑L
i=1 Tr(Ψi)[Φi]jjλj(Rn)σ2

j (G̃)

α2
j

. (26)

The values p(j) upon substitution in the expression for Ω̃ in
(20) yield F̃. The individual precoders Bi can be determined
as Bi = H†i F̃i, where H†i denotes the pseudo-inverse of Hi.
For the special case wherein the elements of the parameter
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Fig. 1: (a) MSE versus SNRFC for ideal sensors (b) MSE performance of the proposed scheme with the existing schemes in
[3] and [4] versus SNRFC for ideal sensors.

vector θ are uncorrelated, with Rθ = Im, the MSE of
estimation in (18) reduces to

MSE = Tr

((
Im + G̃HF̃H

(
F̃F̃H + Rn

)−1

F̃G̃

)−1
)
.

(27)
Upon substitution of the various quantities defined above, the
MSE expression simplifies to

MSE =

m∑
j=1

p(j) + λj(Rn)

p(j)
(

1 + σ2
j (G̃)

)
+ λj(Rn)

. (28)

Solving the MSE optimization problem using the KKT frame-
work, the closed form expression for p(j) is obtained similar
to (25) with λ1(Γ) replaced by 1. The optimal dual variable
µ̃ is given as

µ̃ =
PT +

∑m
j=1

1

(1+σ2
j (G̃))

∑L
i=1 λj(Rn)Tr(Ψi)[Φi]jj∑m

j=1
1

(1+σ2
j (G̃))

√
λj(Rn)σ2

j (G̃)
∑L
i=1 Tr(Ψi)[Φi]jj

.

(29)

A. BCRB and Centralized MMSE Bounds

To benchmark the MSE performance, the BCRB and cen-
tralized MMSE bounds are derived next. For the scenario with
ideal sensors, the BCRB for the parameter θ, considering the
observation model y = HFθ + n, is obtained as [17]

MSEBCRB ≥ Tr
((

Rθ
−1 + FHHHR−1

n HF
)−1

)
. (30)

For the wireless network with non-ideal sensors, the best
performance is achieved when all the sensor observations
are directly available at the fusion center. This is termed as
the centralized MMSE benchmark. The corresponding con-
catenated observation vector at the fusion center is given as

x = Gθ + v. The centralized MMSE bound for this scenario
can be readily determined as

MSEMMSE = Tr
((

R−1
θ + GHR−1

v G
)−1

)
, (31)

where the overall observation vector x =
[xH1 ,x

H
2 , . . . ,x

H
L ]H ∈ Cl×1. Simulation results are presented

next to demonstrate the performance of parameter estimation
and verify the various analytical formulations.

V. SIMULATION RESULTS

This section presents simulation results to demonstrate the
performance of the proposed schemes. For the simulation
study, the elements of the channel and observation matrices
Hi and Gi, respectively, are generated as i.i.d. complex
Gaussian random variables with zero mean and variance equal
to unity. The parameter covariance matrix is set as Rθ = Im,
unless otherwise mentioned explicitly, with m = 3. The
number of transmit and receive antennas at each sensor i
and the fusion center are set as Nt = 3 and Nr = 3,
respectively, with the number of observations li = 3. The
observation noise and channel noise covariance matrices are
σ2
vINt and σ2

nINr respectively, with the SNR at each sensor
defined as SNRv = 1

σ2
v

and the fusion center SNR defined as
SNRFC = 1

σ2
n

. The value of SNRv is considered to be 20 dB.
Fig. 1(a) shows the plots of the resulting MSE for the

precoders and combiner determined using the framework
described in Section III for ideal sensors, versus the SNRFC for
different values of the number of sensors L ∈ {5, 10, 20} in the
network. It is seen that MSE monotonically decreases and also
coincides with the BCRB derived in (30) for the above setup,
which demonstrates the efficiency of the proposed scheme.
Moreover, as the number of sensors increases, the MSE is
seen to progressively decrease, as can be naturally expected
due to the availability of an increasing number of observations
at the fusion center. Fig. 1(b) shows the MSE performance of
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the scheme proposed in Section III and the existing schemes
in [3] and [4]. The total number of sensors in the WSN are set
equal to 10. It can be seen that the proposed design obtains
a lower MSE in comparison to the existing iterative schemes
due to the optimality of the proposed design.

Fig. 2 depicts the MSE performance of the scheme proposed
in Section IV for the scenario with non-ideal sensors, against
the SNR at the fusion center. It can once again be seen that
the MSE decreases as the number of sensors increases. Also,
the proposed scheme attains the centralized MMSE bound at
high SNR.

VI. CONCLUSION

This paper examined the problem of linear decentralized
estimation of an unknown vector parameter in a MIMO sensor
network over a coherent MAC. The precoder and combiner
designs are based on majorization theory and, therefore are,
non-iterative in nature, in contrast to competing schemes in
the existing literature. The decentralized estimation framework
was presented initially for a scenario with ideal sensors. This
was subsequently extended to non-ideal sensors, considering
also a general scenario with inter parameter correlation. Per-
formance benchmarks such as the BCRB and the centralized
MMSE bound were derived to characterize the best achievable
MSE performance for linear estimation in the sensor network.
Simulation results demonstrated the performance of the pro-
posed schemes and also the achievement of the respective
bounds.

APPENDIX A
OPTIMALITY OF PRECODER DESIGN

A real valued function f0 defined on a set A ⊆ Rn is Schur
concave on A if

x ≺ y on A ⇒ f0(x) ≥ f0(y).
Using the result from majorization theory [18], for a Hermitian
matrix R, d(R) ≺ λ(R), where d(R), λ(R) denote the

vectors comprising of the principal diagonal elements and the
eigenvalues of the matrix R, respectively. From the above
definition of a Schur concave function, it follows that

f0(d(E)) ≥ f0(λ(E)), (32)

for any arbitrary error covariance matrix E. Since the MSE
cost function chosen in this paper is Schur concave in nature
[12], the lower bound on the MSE is achieved when d(E) =
λ(E), which holds true for a diagonal matrix. Therefore, the
proposed schemes in Sections III for the ideal noiseless sensors
achieve the lower bound on the MSE, since the effective error
covariance matrix Ẽ is diagonalized. Hence, the precoders
designed is optimal.
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