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Abstract

This Ph.D. thesis presents developments towards energy-optimized trajec-
tory planning and automatic docking for surface vessels. It comprises eight
peer-reviewed research papers, in addition to the introductory chapters
that provide context to the thesis’ main topics and a summary of the
contributions.

Autonomy can lead to safer and more energy-efficient maritime opera-
tions and enable new, low-cost opportunities within the maritime domain.
Commercial actors have already utilized autonomous technology for mar-
itime transportation, surveillance, and research operations. The Norwegian
government and several commercial actors are currently exerting efforts
to electrify and bring autonomy to car and passenger ferries. Through
the Norwegian Research Council’s project “Energy-optimized concept for
all-electric, emission-free and autonomous ferries in integrated transport
and energy systems,” this thesis focuses on motion control and planning
during the three phases of automatic crossing: undocking, transit, and
docking.

The methods developed in this thesis are focused on practical applica-
tions and are tested in full-scale experiments. The thesis contributes to
model-based, energy-optimized trajectory planning, a collision-avoidance
system compliant with the COLREGs (International Regulations for Pre-
venting Collisions at Sea), a method for automatic docking, and a system
for performing automatic crossing, which comprises the phases mentioned
above: undocking, transit, and docking. Additionally, the thesis contributes
to development and improvements for the experimental autonomous test
ferry milliAmpere.

As part of this thesis, a method for optimization-based model iden-
tification for milliAmpere has been developed. The result is a nonlinear
three-degree-of-freedom dynamic model, plus a set of models for thruster
dynamics, thruster force mapping, and wind effects. Additionally, the
Ph.D. work has contributed to a web-based graphical user interface for
milliAmpere and a software-in-the-loop simulator. These contributions
have helped lower the threshold for experimental testing of autonomous
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technology.
Most of the academic literature on trajectory planning is towards time-

and distance-optimized trajectories, with little focus on energy-optimization
and closed-loop results. This thesis presents four model-based, energy-
optimized trajectory planning methods for autonomous surface vehicles
(ASVs), with various warm-starting techniques, obstacle representations,
and solver designs. The most recently proposed method can consider
arbitrary maps and disturbances in the form of wind and has been shown
to produce dynamically feasible trajectories in validation experiments.

In order to consider moving obstacles in accordance with the COLREGs,
dynamic collision avoidance methods must recognize various situations
when encountering other vessels and produce behaviors that fulfill the rules
of those regulations. In this regard, a hierarchical collision-avoidance system
that complies with rules 8 and 13–17 of the COLREGs was developed
as part of this thesis. The collision-avoidance system is a three-layered
architecture that handles nominal, global trajectory planning, long-term
dynamic collision-avoidance that considers the COLREGs, and short-term,
safe maneuvering. The system has been tested in simulations, where it
safely handled a wide range of situations. This work is among the first
in academia that complies with the most critical parts of the COLREGs
regarding motion planning and control.

The literature on automatic docking in the maritime domain is mostly
limited to underwater vehicles. The few publications that deal with surface
vessels fail to consider obstacles and the harbor layout explicitly. This thesis
presents work on an optimization-based method for automatic docking
of ASVs, which takes into account harbor layouts and obstacles, using a
priori map information and information from exteroceptive sensors. The
method is successfully tested in several full-scale experiments.

While some commercial actors have performed sea trials with surface
ships crossing automatically from one dock to another, they do not publish
information about the methods used in such operations. There are also
few results from automatic crossing in the academic literature. In this
thesis, a framework for automatic crossing for a surface vessel is presented.
The framework combines different trajectory planners and control modules
to automate the three phases of undocking, transit, and docking. The
framework has been tested experimentally and has resulted in successful
automatic dock-to-dock crossing operations.

Development and improvement of technologies such as trajectory plan-
ning, COLREGs-compliant collision avoidance systems, and automated
docking methods are small steps towards an autonomous future at sea.



Preface

I have worked with the material in this thesis since I started on my
master’s thesis in 2017, until the end of my Ph.D. in 2020. During this
time at the Department of Engineering Cybernetics (ITK) at the Norwegian
University of Science and Technology (NTNU), I have been supervised
by Dr. Morten Breivik and Prof. Anastasios “Tasos” M. Lekkas. My
Ph.D. was a part of the Norwegian Research Council (NRC) project
“Energioptimalisert konsept for hel-elektriske, utslippsfrie og autonome ferjer
i integrerte transport og energisystemer,” which translates to “Energy-
optimized concept for fully electric, emission-free, and autonomous ferries
in integrated transport and energy systems,” henceforth known as the
Autonomous Ferry project (project number 269116). The Autonomous
Ferry project was an innovation project that was part of the NRC’s Pilot-E
program, and had the industrial partners Kongsberg Maritime, Grenland
Energy, Fjellstrand, and Grønn Kontakt. I am grateful to have been a
part of the project. Furthermore, I have been affiliated with the Centre for
Autonomous Marine Operations and Systems (AMOS), which is an NRC
Centre of Excellence (project number 223254). AMOS has provided me
with many good networking opportunities.

Tired of school at 16, I would never have thought to end up doing
a Ph.D. in anything. Instead, I chose to attend a vocational school in
automation and to subsequently do an apprenticeship. Curiosity got the
better of me after that, which led me to pursue a bachelor’s degree in
computer science and industrial automation at Telemark University College
in Porsgrunn. Student life was delightful, which made continuing with a
master’s degree in cybernetics and robotics at NTNU in Trondheim an easy
decision. There I got in touch with Morten, who provided an opportunity
to begin a Ph.D. in autonomous ferries. Having practical experience has led
me to focus on applicable and practical solutions to the research challenges
I have encountered. I hope that this focus is reflected in the thesis and
the related publications. Right now, I am relieved to be at the end of 23
years of elementary, secondary, and higher education. Although I have
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just about sharing space, but also ideas, troubles, and joys.
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incredibly valuable to me and have given me that sorely needed motivation.
Thank you very much.

I appreciate having gotten to know all the members of the coffee-break
club during these years. Thanks for all the useless and hilarious discussions,
bouldering sessions, and ski trips. I really hope that we will keep in touch!
Gunhild, H̊akon, and Inger, I am very happy that I was placed in the office
next to yours when I started at ITK. You have been invaluable to me.

Erlend and Viggo, thanks for staying behind in Trondheim after the
master’s, and for being great friends and discussion partners.

Adrian, thanks for keeping me in touch with real life. I really wish
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Mom and dad, obviously, without you, there would be no me. And I
believe you deserve much more credit than that. Credit for giving me so
many opportunities—many times by making personal sacrifices, and many
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Chapter 1

Introduction

1.1 Motivation

Automation and robotics are increasingly a part of our daily lives. Com-
puter-controlled robotic systems have automated dull, dirty, and dangerous
tasks across many industries. As computers and algorithms increase in
power and sensors and data are becoming more available, autonomy is
increasing in prevalence. The automotive industry might be the most
available example that has seen massive leaps towards autonomy in recent
years, with large, visible players such as Waymo and Tesla working hard to
develop completely autonomous cars and trucks. The maritime industry
is also increasingly developing automated and autonomous systems to
perform transportation, surveillance, and marine operations.

The distinction between automated and autonomous systems is blurred,
and many actors have different definitions. The definitions are also depen-
dent on the context of the domain and if the topic is communicated to the
general public or to an expert audience. In the automotive domain, SAE
International calls self-driving cars automated vehicles and has published
a scale of levels of automation [1]. In the maritime domain, Rødseth and
Vagia [2] provide a useful survey and discussion on distinguishing the terms.
In this thesis, the distinction is made as follows: In contrast to automated
systems, which can handle simple tasks with limited scope, autonomous
systems can plan, schedule, and execute tasks to complete a general goal
without human intervention.

The motivation for increased autonomy at sea is threefold. First, the
potential for safer maritime operations is considerable, as some reports
state that human errors cause more than 75% of maritime accidents
[3, 4]. Implementing safe and robust autonomous systems for motion
control and navigation at sea, compliant with the International Regulations
for Preventing Collisions at Sea (COLREGs)1 [5], can make maritime
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Figure 1.1: Illustration of an autonomous passenger ferry in an urban setting, which is a
novel concept enabled by autonomous technology. © 2020, Zeabuz.

operations more reliable, repeatable, and safe.

Second, automation and autonomy can make maritime operations more
energy-efficient and reduce environmental impact. Automation can, e.g.,
make the operations more consistent, and optimization-based methods can
reduce energy consumption. The CO2 footprint of the world’s maritime
industry is significant. For example, 9% of the Norwegian domestic CO2

emissions are caused by ships [6], and the maritime industry is responsible
for 2.5% of global greenhouse gas emissions.2 Therefore, a reduction in
general energy consumption for ships will have an immense impact on the
environment.

Third, in addition to improvements in safety and energy consumption
in existing maritime industries, autonomy can also enable new opportu-
nities. For example, unmanned surface vehicles (USVs) and autonomous
underwater vehicles (AUVs) have been used to increase ocean floor surveys’
efficiency and range.3 Another example is low-cost, autonomous passenger
ferries that can revitalize hard-to-access areas in cities divided by water-

1The COLREGs convention document is available at
https://www.imo.org/en/About/Conventions/Pages/COLREG.aspx (accessed
November 3, 2020).

2European Commission policy on reducing emissions from the shipping sector:
https://ec.europa.eu/clima/policies/transport/shipping_en (accessed
November 3, 2020).

3Unmanned Systems Technology article on automated mapping of ocean floors:
https://www.unmannedsystemstechnology.com/2018/01/combined-usv-auv-system-

maps-ocean-floor (accessed November 3, 2020).
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ways. A company called Zeabuz, based in Trondheim, Norway is working
to deliver services for such ferries, which are a novel concept enabled by
autonomy, see Figure 1.1.4

Commercial actors have already utilized autonomous technology for
maritime transportation. NYK is a Japanese shipping company that
completed autonomous surface ship trials in 2019.5 The transportation
ship Iris Leader navigated autonomously between Xinsha in China to
Nagoya in Japan, which was a big step towards NYK’s goal of manned
autonomous shipping operations. In the Nordic countries, several actors
have contributed to automating car and passenger ferries. In 2018, both
Wärtsilä and Rolls-Royce Marine (later acquired by Kongsberg Maritime)
demonstrated autonomous capabilities with the ferries Folgefonn and Falco,
respectively.6 Both tests included automatic transit and docking.

This Ph.D. thesis fits into the efforts made by the Norwegian government
and several commercial actors to automate car ferries. It is a part of the
Norwegian Research Council (NRC) Autonomous Ferry project,7 which
has focused on exploring, researching, and developing energy-optimized
solutions for electric, autonomous car ferries. Autonomous ships must safely
handle planning and maneuvering during the following phases without
human intervention:

Undocking: Moving at slow speeds from a docked position along a quay
to more open waters.

Transit: Moving at higher speeds towards the destination while adhering
to the COLREGs.

Docking: Moving at slow speeds in the proximity of the destination to a
docked position along a quay.

Enabling technologies include path or trajectory planning, COLREGs-
compliant collision avoidance, and automated docking, which are the main
topics of this thesis. Since the Autonomous Ferry project focuses on energy-
optimized solutions, this thesis’ objective has been to develop methods

4CNN Travel article on Zeabuz and self-driving ferries:
https://edition.cnn.com/travel/article/norway-self-driving-ferries-zeabuz-

spc-intl/index.html (accessed November 3, 2020).
5NYK press release on their autonomous surface ship trial:

https://www.nyk.com/english/news/2019/20190930_01.html (accessed August 31,
2020).

6Maritime Executive article on Rolls-Royce and Wärtsilä autonomous ferry trials:
https://www.maritime-executive.com/article/rolls-royce-and-wartsila-in-

close-race-with-autonomous-ferries (accessed September 14, 2020).
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that produce energy-optimized maneuvers.

1.2 Contributions at a glance

The main contributions in this thesis are towards energy-optimized tra-
jectory planning for autonomous surface vehicles (ASVs) and automatic
docking. Work has also been done towards combining these elements in a
system for automatic crossing. Also, there are contributions to COLREGs-
compliant collision avoidance. Lastly, significant work has been put into
further developing the experimental platform milliAmpere. The contribu-
tions can be summarized as follows, with references to papers listed in
Section 1.3:

• Identification of model parameters for milliAmpere using a data-
driven, optimization-based method.

• Development of a software-in-the-loop simulator, a user interface,
and safety functions for milliAmpere.

• Development of a model-based energy-optimized path planner using
pseudospectral optimal control. This method is presented in Paper A
and takes into account ocean currents and static obstacles in the
form of ellipses.

• Development of three warm-started model-based energy-optimized
trajectory planners that use multiple-shooting approaches. The
planners use various methods for warm starting and obstacle repre-
sentation. The methods are presented in Paper C, [7], and Paper F.

• Development of a three-layered hierarchical collision avoidance ar-
chitecture that takes into account the COLREGs rules 8 and 13–17.
A two-layered implementation is presented in Paper B, while the
three-layered implementation that takes into account said rules is
presented in Paper D.

• Development and experimental validation of a method for automatic
docking of an ASV. The method comprises a trajectory planner that
takes into account static obstacles and replans at a set interval, and
a trajectory-tracking controller. It is developed and implemented in
Paper E and extended with exteroceptive sensors in Paper G.

7This Ph.D. is part of the NRC project “Energioptimalisert konsept for
hel-elektriske, utslippsfrie og autonome ferjer i integrerte transport og energisystemer,”
which translates to “Energy-optimized concept for fully electric, emission-free, and
autonomous ferries in integrated transport and energy systems.” It has the NRC project
number 269116. The project is here abbreviated as the Autonomous Ferry project.
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• Development and experimental validation of an architecture for au-
tomatic crossing. The architecture combines trajectory planning
and docking to perform the three phases of a crossing operation
automatically: undocking, transit, and docking. The architecture is
presented in Paper H.

A more in-depth discussion of these contributions is provided in Chapter 3.

1.3 Publications

This thesis is based on eight peer-reviewed papers enumerated as Paper A
through Paper H in chronological order of publication. Paper H is currently
under review for presentation at the European Control Conference in 2021.
Additionally, the Ph.D. work has involved co-supervision of three master
students who have worked on model identification, path and trajectory
planning, and automatic docking. Lastly, the thesis presents contributions
from an unpublished paper that represents improvements upon the work
in Paper C. The contributions of the research papers and M.Sc. theses can
be illustrated in a control system block diagram as seen in Figure 1.2.

Peer-reviewed papers

Paper A [8]
G. Bitar, M. Breivik, and A. M. Lekkas. “Energy-optimized path
planning for autonomous ferries”. In: Proceedings of the 11th IFAC
Conference on Control Applications in Marine Systems, Robotics,
and Vehicles (CAMS). Opatija, Croatia, 2018, pp. 389–394. doi:
10.1016/j.ifacol.2018.09.456.

Paper B [9]
G. Bitar, B.-O. H. Eriksen, A. M. Lekkas, and M. Breivik. “Energy-
optimized hybrid collision avoidance for ASVs”. In: Proceedings of
the 18th European Control Conference (ECC). Naples, Italy, 2019,
pp. 2522–2529. doi: 10.23919/ECC.2019.8795645.

Paper C [10]
G. Bitar, V. N. Vestad, A. M. Lekkas, and M. Breivik. “Warm-
started optimized trajectory planning for ASVs”. In: Proceedings
of the 12th IFAC Conference on Control Applications in Marine
Systems, Robotics, and Vehicles (CAMS). Daejeon, South Korea,
2019, pp. 308–314. doi: 10.1016/j.ifacol.2019.12.325. arXiv:
1907.02696 [eess.SY].

Paper D [11]
B.-O. H. Eriksen, G. Bitar, M. Breivik, and A. M. Lekkas. “Hybrid
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collision avoidance for ASVs compliant with COLREGs rules 8 and
13–17”. In: Frontiers in Robotics and AI 7 (2020). doi: 10.3389/
frobt.2020.00011. arXiv: 1907.00198 [eess.SY].

Paper E [12]
G. Bitar, A. B. Martinsen, A. M. Lekkas, and M. Breivik. “Tra-
jectory planning and control for automatic docking of ASVs with
full-scale experiments”. In: Proceedings of the 1st Virtual IFAC
World Congress. 2020. arXiv: 2004.07793 [eess.SY].

Paper F [13]
G. Bitar, A. B. Martinsen, A. M. Lekkas, and M. Breivik. “Two-
stage optimized trajectory planning for ASVs under polygonal obsta-
cle constraints: theory and experiments”. In: IEEE Access 8 (2020),
pp. 199953–199969. doi: 10.1109/ACCESS.2020.3035256.

Paper G [14]
A. B. Martinsen, G. Bitar, A. M. Lekkas, and S. Gros.
“Optimization-based automatic docking and berthing of ASVs us-
ing exteroceptive sensors: theory and experiments”. In: IEEE Access
8 (2020), pp. 204974–204986. doi: 10.1109/ACCESS.2020.3037171.

Paper H [15]
G. Bitar, B.-O. H. Eriksen, A. M. Lekkas, and M. Breivik. Three-
phase automatic crossing for a passenger ferry with field trials. Sub-
mitted for publication.

Master theses co-supervised

• A. A. Pedersen. “Optimization based system identification for the
milliAmpere ferry”. MA thesis. Norwegian University of Science and
Technology, 2019. url: http://hdl.handle.net/11250/2625699
[16].

• V. N. Vestad. “Automatic and practical route planning for ships”.
MA thesis. Norwegian University of Science and Technology, 2019.
url: http://hdl.handle.net/11250/2625697 [17].

• E. D. Molven. “Optimal control-based docking for autonomous
ferries”. MA thesis. Norwegian University of Science and Technology,
2020 [18].

Unpublished

• G. Bitar, A. M. Lekkas, and M. Breivik. Improvements to warm-
started optimized trajectory planning for ASVs. arXiv: 1908.07311



7

Trajectory-
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controller

State
estimation

Hybrid collision-
avoidance
system

Mid-level
collision
avoidance

Low-level
collision
avoidance

Situational
awareness

Trajectory
planning for

docking

Vessel model
Autonomy
framework

• Paper H: Three-phase
automatic crossing for a
passenger ferry with field trials

• M.Sc. thesis (Pedersen, 2019):
Optimization based system
identification for the
milliAmpere ferry

• Paper B: Energy-optimized
hybrid collision avoidance for
ASVs

• Paper D: Hybrid collision
avoidance for ASVs compliant
with COLREGs rules 8 and
13–17

High-level
trajectory
planner

• Paper A: Energy-optimized
path planning for autonomous
ferries

• Paper C: Warm-started
optimized trajectory planning
for ASVs

• Paper F: Two-stage optimized
trajectory planning for ASVs
under polygonal obstacle
constraints: theory and
experiments

• Unpublished paper:
Improvements to warm-started
optimized trajectory planning
for ASVs

• M.Sc. thesis (Vestad, 2019):
Automatic and practical route
planning for ships

• Paper E: Trajectory planning and control for
automatic docking of ASVs with full-scale
experiments

• Paper G: Optimization-based automatic docking
and berthing of ASVs using exteroceptive sensors:
theory and experiments

• M.Sc. thesis (Molven, 2020): Optimal control-based
docking for autonomous ferries

Figure 1.2: The research papers and M.Sc. theses arranged by topic in a control system
block diagram for automatic docking and transit. The highlighted blocks are topics
within which this Ph.D. thesis has significant contributions.

[eess.SY] [7].

1.4 Outline

The rest of this thesis is structured as follows: Background material on
experimental platforms, vessel modeling, collision avoidance, trajectory
planning, and automatic docking is presented in Chapter 2. A more
detailed presentation of the thesis’ contributions is provided in Chapter 3.
Chapter 4 provides concluding remarks and recommendations for further
work. The publications written as part of the Ph.D. work are reprinted in
Chapter 5.
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Chapter 2

Background

2.1 Experimental platform: milliAmpere

Several simulations and full-scale experiments have been performed as part
of this thesis. Most of the simulations and all of the full-scale experiments
have used milliAmpere as the experimental platform. Figure 2.1 shows
milliAmpere, which is an experimental autonomous passenger ferry devel-
oped at the Norwegian University of Science and Technology (NTNU). Its
specifications are listed in Table 2.1.

The milliAmpere is controlled by an onboard computer running Linux
Ubuntu, and its control system software is built around the Robot Op-
erating System (ROS), a software framework that enables inter-process
communication and logging.1 The milliAmpere’s two azimuth thrusters
are controlled using the optimization-based thrust-allocation algorithm
from [19]. That algorithm receives force and moment commands from a
trajectory-tracking DP controller. The control setup is shown in Figure 2.2.

1See https://www.ros.org for information about ROS.

Table 2.1: milliAmpere specifications.

Dimensions 5m by 2.8m symmetric footprint

Position and heading
reference system

Vector VS330 dual GNSS with RTK
capabilities

Thrusters Two azimuth thrusters on the center line,
1.8m aft and fore of center

Existing control
modules

Trajectory-tracking DP controller and thrust
allocation system

9



10

Figure 2.1: The experimental electric autonomous passenger ferry milliAmpere.

Desired force Thruster commands

Vessel state feedback

Pose,
velocity and
acceleration
trajectory

Thrust
allocation

Vessel
Tracking
controller

Figure 2.2: The control setup of milliAmpere, with the trajectory-tracking dynamic
positioning (DP) controller and thrust allocation algorithm.

The milliAmpere is a part of the Autoferry research project at NTNU.2

The project aims to develop concepts and methods to enable autonomous
passenger ferries for transport in urban waterways. The project is also
building a larger version of milliAmpere, named milliAmpere 2, which is
intended to be in public traffic in a canal in Trondheim, Norway. A spin-off
company from NTNU called Zeabuz is related to Autoferry and is working
to commercialize the idea of small, urban passenger ferries.3

2.2 Vessel modeling and model identification

Many control approaches for maritime vessels are model-based. So are
all the planners that are developed as part of this thesis. Model-based
methods are beneficial for control and planning since inherent damping can

2Read more about Autoferry at https://www.ntnu.edu/autoferry.
3Read about Zeabuz at https://zeabuz.com.
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Figure 2.3: Illustration of the NED and body coordinate frames.

Table 2.2: Notation used for forces, positions, and velocities.

Symbol Description

x Distance North from NED origin to the CO
y Distance East from NED origin to the CO
ψ Heading angle relative to North (yaw angle)
u Surge velocity
v Sway velocity
r Yaw rate
X Surge force
Y Sway force
N Yaw moment

be exploited, and the necessary compensation needed to reach the control
target can be provided in a feed-forward manner. Conversely, inaccurate
models can lead to poorly performing controllers and may cause more harm
than good. These benefits and drawbacks emphasize the need for accurate
model identification.

Notation from [20] is used in this thesis and its associated papers. A
three-degree-of-freedom (DOF) model that describes motion in the North-
East plane is considered sufficient for trajectory planning and docking.
Heave, pitch, and roll motion are out of scope for the applications presented
here. The coordinate frame used for positional coordinates is called North-
East-Down (NED), which is Earth-tangential and has its origin at a point
on the Earth’s surface. Vessel poses are denoted η = [x, y, ψ]> ∈ R2 × S,
where x and y are distances North and East from the NED origin to the
vessel’s control origin (CO) (often its center of gravity (CG)), and ψ is the
vessel’s heading (also called yaw angle), where ψ = 0° points to North, and
is increasing with clockwise rotation, seen from above. An illustration of
these coordinates is provided in Figure 2.3. Table 2.2 lists the variables
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that are used in the model.
A vessel’s 3-DOF velocity vector is denoted ν = [u, v, r]> ∈ R3 and

describes the body-fixed velocity in surge (along the vessel’s longitudinal
axis), sway (across that axis), and yaw rate (angular velocity), respectively.
See Figure 2.3 for an illustration of the surge and sway velocities. The
kinematic relationship between the velocity and pose vectors is described
with a transformation matrix, in this 3-DOF case, the rotational matrix
R : S 7→ SO(3):

η̇(t) = R(ψ(t))ν(t) . (2.1)

The rotational matrix is

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 . (2.2)

The time dependence is often omitted for brevity.
Vessel kinetics can be described with the following set of ordinary

differential equations (ODEs):

Mν̇ +C(ν)ν +D(ν)ν = τ + τenv . (2.3)

The system inertia matrix M ∈ R3×3 is positive definite and determines
mass, hydrodynamically added mass, and coupling effects. The Coriolis
and centripetal effects are captured in C(ν) ∈ R3×3, and the linear and
nonlinear hydrodynamic damping effects are captured in D(ν) ∈ R3×3.
The control forces are τ = [X,Y,N ]> ∈ R3, collected in a vector composed
of the force in surge and sway, and the moment in yaw, respectively. The
disturbances caused by environmental effects, such as waves, currents, and
wind, are captured in τenv ∈ R3, which has the same composition as τ .

The Coriolis and centripetal matrix C(ν) is dependent on the elements
of the system inertia matrix

M =



m11 0 0
0 m22 m23

0 m32 m33


 , (2.4)

so that

C(ν) =




0 0 −c1(ν)
0 0 c2(ν)

c1(ν) −c2(ν) 0


 , (2.5)

where

c1(ν) = m22v +
1

2
(m23 +m32)r (2.6a)

c2(ν) = m11u . (2.6b)
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This is one of several possible parametrizations of C(ν). Alternative
parametrizations can be found in, e.g., [20].

The damping matrix D(ν) can be parametrized in many ways, with one
possible parametrization being the one used in simulations of milliAmpere:

D(ν) =



d11(ν) 0 0

0 d22(ν) d23(ν)
0 d32(ν) d33(ν)


 , (2.7)

where

d11(ν) = −Xu −X|u|u|u| −Xuuuu
2 (2.8a)

d22(ν) = −Yv − Y|v|v|v| − Y|r|v|r| − Yvvvv
2 (2.8b)

d23(ν) = −Yr − Y|v|r|v| − Y|r|r|r| (2.8c)

d32(ν) = −Nv −N|v|v|v| −N|r|v|r| (2.8d)

d33(ν) = −Nr −N|v|r|v| −N|r|r|r| −Nrrrr
2 . (2.8e)

The identification of these model parameters is not trivial. The Marine
Systems Simulator toolbox4 for Matlab has models and parameters for
some specific vessel hulls, but an effort to identify such parameters must
generally be undertaken. Model identification procedures for dynamical
systems are available in [21].

To identify the diagonal damping parameters, one can use the steady-
state version of (2.3) and perform linear regression to measured velocity
and force. The steady-state model becomes

D(ν)ν = τ (2.9)

if we assume no disturbances and uncoupled motion, i.e., clean surge, sway,
or yaw motion. If ν and τ are measured, we must only fit the parameters
of D(ν), which are linear in the resulting equation.

Identifying coupling and inertia parameters is more complicated. Pa-
rameter fitting by optimization is a feasible approach. If ỹ(·) is a time-
parametrized trajectory of measurements, and y(·) is the trajectory result-
ing from the propagation of

ẋ = f(x, ũ,p) (2.10a)

y = h(x) , (2.10b)

where

4The Marine Systems Simulator toolbox is developed by T. I. Fossen and T. Perez,
and is available at https://github.com/cybergalactic/MSS.
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• x are system states,

• ũ are the input commands used to get the measurements,

• and f and h are model and measurement functions,

we can find the model parameters p by solving

min
p

∫ tf

0
L(y(t), ỹ(t),p) dt . (2.11)

Here, L is a loss function designed to minimize the difference between
simulated and measured data, y and ỹ.

2.3 The optimal control problem

Much of the work in this thesis revolves around the optimal control problem
(OCP). An OCP is an optimization problem that attempts to minimize
an objective functional by finding an optimal system input trajectory, i.e.,
an optimal control trajectory, while maintaining dynamic and algebraic
constraints. A general formulation of the OCP is

min
x(·),u(·),tf

∫ tf

0
L(x(t),u(t), t) dt+ E(x(tf ), tf ) (2.12a)

subject to

ẋ = f(x(t),u(t), t) ∀t ∈ [0, tf ] (2.12b)

h(x(t),u(t), t) ≤ 0 ∀t ∈ [0, tf ] (2.12c)

g(x(t),u(t), t) = 0 ∀t ∈ [0, tf ] (2.12d)

e(x(0),x(tf ), tf ) = 0. (2.12e)

Symbol definitions are found in Table 2.3.
The OCP can be designed to solve many practical problems, including

path and trajectory planning, by designing the functions in (2.12) to suit
the problem. However, this is a continuous OCP and is, in general, not
possible to solve analytically. Transcribing the continuous OCP into a
discrete problem and subsequently solving the resulting nonlinear program
(NLP) is the most common way to find a solution to the OCP in practice.
There are several ways to do this, including single shooting and multiple
shooting.

In single shooting, the state trajectory is entirely defined by its initial
conditions and the input trajectory, and thus, the variables that define the
state trajectory are not a part of the solution space:

min
u[0:N−1]

N−1∑

i=0

L̂(xi,ui, ti) + E(xN , tN ) (2.13a)
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Table 2.3: Nomenclature for the OCP in (2.12).

Symbol Description

x(·) Time-parametrized trajectory of states.
u(·) Time-parametrized trajectory of inputs.
tf End time.

L(x,u, t) Cost-to-go function.
E(x, t) Cost of terminal state.

f(x,u, t) Right-hand side of ODEs representing dynamic
model.

h(x,u, t) Function representing inequality constraints.
g(x,u, t) Function representing equality constraints.

e(x(0),x(tf ), tf ) Function representing initial and terminal
constraints.

subject to

xi+1 = f̂(xi,ui, ti) i = 0, . . . , N − 1 (2.13b)

h(xi,ui, ti) ≤ 0 i = 0, . . . , N − 1 (2.13c)

g(xi,ui, ti) = 0 i = 0, . . . , N − 1 (2.13d)

ê(xN , tN ) = 0 (2.13e)

ti = h · i. (2.13f)

Here, functions denoted with a hat (̂·) are discretized versions of the
functions from (2.12), and h denotes the temporal discretization step length.
In this example, the discrete states xi, i = 1, . . . , N are propagated from the
provided initial condition x0 with the discretized dynamic function f̂ . The
decision variables are, therefore, only the input series ui, i = 0, . . . , N − 1.
This can cause sensitivity issues when propagating, as the cost function
and its gradient are highly sensitive to the inputs at the beginning of the
time series. Detailed symbol descriptions are available in Table 2.4.

To address the sensitivity issues apparent in single shooting methods,
it is possible to split the state and input trajectories into segments. A
set of decision variables represents each segment, and equality constraints
connect neighboring segments. This approach is called multiple shooting:

min
x[0:N ],u[0:N ]

N∑

i=0

L̂(xi,ui, ti) + E(xN , tN ) (2.14a)
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Table 2.4: Nomenclature for the single shooting problem in (2.13).

Symbol Description

xi States at discrete points in time, for i = 1, . . . , N . These
are not part of the decision space, but values propagated
from the provided initial state x0 by discrete integration.

ui Inputs at discrete points in time for i = 0, . . . , N − 1.
These are part of the decision space.

ti Points in time for i = 0, . . . , N . Separated by h.
h Discretization interval length.

L̂(x,u, t) Stage cost—discrete version of L in Table 2.3.
E(x, t) Cost of terminal state. Same as in Table 2.3.

f̂(x,u, t) Discrete integration function of ODEs.
h(x,u, t) Function representing inequality constraints.
g(x,u, t) Function representing equality constraints.
ê(xN , tN ) Discrete version of terminal constraints.

x0
x0

f(x0)

x1

f(x1)

x2

f(x2)x3
f(x3)

Shooting
gap

Figure 2.4: Multiple shooting of a scalar state trajectory. During multiple shooting
optimization, the solver attempts to close the gaps between where a shooting interval
ends f̂(xi) and the beginning of the next interval xi+1. These are called shooting gaps.

subject to

x0 = x?0 (2.14b)

xi+1 = f̂(xi,ui, ti) i = 0, . . . , N − 1 (2.14c)

h(xi,ui, ti) ≤ 0 i = 0, . . . , N (2.14d)

g(xi,ui, ti) = 0 i = 0, . . . , N (2.14e)

ê(xN , tN ) = 0 (2.14f)

ti = h · i. (2.14g)

This problem is almost equivalent to (2.13). The critical difference is that
each of the state trajectory points is included in the decision variables.
Equation (2.14c) is, in this case, not a propagation of numerical values,
but an equality constraint that attempts to close shooting gaps, i.e., a
connection of each segment start xi+1 to the endpoint of the previous
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Table 2.5: Nomenclature for the multiple shooting problem in (2.14).

Symbol Description

xi States at discrete points in time, for i = 0, . . . , N . These
are part of the decision space.

ui Inputs at discrete points in time for i = 0, . . . , N . These
are part of the decision space.

ti Points in time for i = 0, . . . , N . Separated by h.
h Discretization interval length.

L̂(x,u, t) As in Table 2.4.
E(x, t) As in Table 2.4.
x?0 Numerical value of initial conditions.

f̂(x,u, t) As in Table 2.4.
h(x,u, t) As in Table 2.4.
g(x,u, t) As in Table 2.4.
ê(xN , tN ) As in Table 2.4.

segment f̂(xi,ui, ti). Equation (2.14b) is a lifting of the initial condition
x?0. The multiple shooting concept is illustrated in Figure 2.4, and symbol
descriptions are found in Table 2.5.

The integration method in the regular multiple shooting concept (2.14c)
can be simple, e.g., a forward-Euler method. Direct collocation methods for
integration can be more efficient for the solver [22]. The direct collocation
method involves representing the state and input intervals using, e.g.,
Lagrange polynomials and discretizing them in turn at Legendre collocation
points. This representation introduces more variables to represent states
and inputs per shooting interval, but the resulting NLP benefits from
sparse, stable structures.

2.4 Path and trajectory planning

In robotics, the word “path” is used to describe a curve in the workspace or
configuration space that connects a starting point with the desired endpoint,
i.e., the goal. A path carries no information about time or velocity and
can not say much about dynamic feasibility or energy consumption. On
the other hand, a trajectory is a path with a velocity profile, i.e., a time-
parametrized path. Numerous methods for path and trajectory planning
are available in the robotics literature. LaValle [23] has written a general
introduction to path planning in robotics from the perspective of computer
science. In his work, he introduces widespread notation and nomenclature.

A useful categorization of planning methods is by the continuity of the
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Figure 2.5: An illustration of two different discretization techniques. The map to the
left is uniformly discretized, and each node is connected to its eight Moore-neighbors.
The map to the right is discretized using a Voronoi diagram, and the set of available
routes between the regions is sparse compared to the uniform discretization on the left.

resulting paths. Discrete methods explore points in the configuration space
that lead to a piecewise linear path from start to goal when connected. A
subsequent smoothing process is often necessary to ensure that a robot or
vehicle can follow this path without large deviations. Discrete methods
include combinatorial methods that accurately capture the continuous con-
figuration space and subsequently search the resulting graph; approximate
methods that discretize the configuration space in a practical manner and
similarly search the resulting graph; and sampling-based methods, where
points in the continuous configuration space are randomly sampled, with
connections to their closest neighbors.

Some combinatorial path planning methods are covered in, e.g., [24,
Chapter 6]. A? is a graph search algorithm commonly used in path planning
to search discretized configuration spaces [25]. The configuration space
can be uniformly discretized or more sparsely discretized using, e.g., a
Voronoi diagram [26]. A Voronoi diagram is a partitioning of a space into
regions where all points in each region are closer to the region’s generator
point than any other generator point. If generator points are placed along
obstacle edges, the boundaries between the Voronoi regions can be used to
build a roadmap for path planning. An illustration of the difference between
uniform discretization and a Voronoi-diagram approach is illustrated in
Figure 2.5. Implementations of Voronoi diagrams for path planning are
found in, e.g., [27, 28].

A discretized configuration space may also be searched by genetic
algorithms [29–31], which may be better if the configuration space’s dimen-
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Iteration: 7 Iteration: 35

Figure 2.6: An illustration of an RRT for a simple, holonomic agent, at the beginning
and end of its development. Each new node is randomly generated and connected to its
closest neighbor in the tree. The blue node indicates the starting point, the pink node is
the goal, and the green curve is the path found between start and goal.

sionality is high. Genetic algorithms in path planning is an optimization
technique that produces and searches among candidate solutions encoded
by sequences in the discretized configuration space. These algorithms use
genetic operators to combine candidate solutions and produce mutations
to evolve the solution space towards an optimized path.

Fast marching methods can also be classified as discrete since they
operate on a discretized grid in the configuration space [32, 33]. The fast
marching method was developed to solve the eikonal equation; a partial
differential equation (PDE) encountered in wave-propagation problems. It
can also be used to generate shortest-time paths in a map of obstacles by
using the fast marching solution map for a gradient-descent search. It is
advantageous compared to a uniform-grid graph search since the solution
does not have a directional bias defined by the grid connectivity.

Sampling-based methods include the probabilistic roadmap (PRM) [34]
and the rapidly-exploring random tree (RRT) [35]. These types of methods
are known to be beneficial when searching in high-dimensional configuration
spaces. PRM consists of the two phases learning and query. During the
learning phase, nodes are placed randomly in the free configuration space
with a given distribution. These are connected, and the corresponding edges
in the resulting tree are feasible paths. During the query phase, the start
and end configurations are connected to the tree, which is subsequently
searched for an optimized path. Various PRM implementations are studied
in [36].

RRT is a method that grows a tree in a configuration space by randomly
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Figure 2.7: Example of a right-straight-left Dubins path.

adding new nodes and connecting them to their nearest existing neighbor.
Collision checking is performed during sampling and connection, and the
connection process may be quite involved, depending on the model used
for path planning. Once the RRT can connect to the goal configuration,
the process is terminated. An illustration of the development of an RRT
for a simple two-dimensional holonomic agent is shown in Figure 2.6. An
overview of RRT variations is available in [37].

Continuous methods work directly with the continuous configuration
space and return paths that are at least continuous in its parametrization.
These methods are either used to smooth the result of a discrete method
or used directly to generate a path. Analytical methods can find solutions
to a limited class of problems, e.g., the obstacle-free shortest path for a
Dubins car [38] and a Reeds-Shepp car [39]. These are models of cars that
travel by unit speed and constrained curvature on a plane. The Dubins
path gives the shortest path for a Dubins car between two points in a
plane and consists of straight segments and right and left circular arcs. An
example is illustrated in Figure 2.7. The Reeds-Shepp car model is similar
to the Dubins car but includes reversing.

Approximate optimization methods can be developed by specifying
an OCP to formulate a path or trajectory planning problem and solve
it by direct or indirect methods. Variations of these methods can take
into account dynamical models, constraints, and obstacles. Arbitrary
objective functions can be implemented to give, e.g., energy or time-
optimal paths or trajectories. Two challenges with optimization methods
are providing a good initial guess, i.e., warm starting, and representing
obstacles accurately and efficiently. Gong et al. [40] present an approximate
continuous planning method based on pseudospectral optimal control.
They use simple obstacle representations such as rectangles and ellipses.
Zhang et al. [41] present another approximate continuous optimization
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Figure 2.8: Illustration of an APF. The color contours show the potential, and the
arrows show the gradient descent directions. The pink node indicates the goal.

method, where they are able to use exact polygonal constraints with the
help of auxiliary optimization variables. Another approximate continuous
optimization method is developed by Bergman et al. [42], where the authors
produce sequences of convex areas to represent obstacles. In that paper, the
authors also use a discrete search to warm-start the optimization method,
which efficiently solves the warm-starting issue.

Another type of continuous method is the artificial potential field (APF),
developed by Khatib [43]. A potential field is generated in the configuration
space by adding an attractive potential to the goal and repulsive potentials
to the obstacles. A path is then generated by iteratively following the
gradient descent directions from the start. An illustration of an APF is
shown in Figure 2.8. An issue with APF methods is the possibility of getting
stuck in cyclic behavior caused by equilibria near obstacle boundaries [44].

Some methods fall outside the two categories. E.g., the hybrid A?

method [45] performs a graph search in a discretized configuration space,
however, with continuous motion primitives. Other examples include meth-
ods that combine graph searches and approximate optimization techniques,
such as the one presented in [41], where the result of the hybrid A? algo-
rithm warm-starts an optimization algorithm. Other examples are found
in, e.g., [42, 46].

2.5 Collision avoidance at sea

The methods presented in Section 2.4 are all long-term, global planning
methods. These can ensure collision avoidance in a known, static map of
the world. Most of them can also be used to take into account moving
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obstacles by adding a temporal dimension and including their projected
positions. However, some approaches are developed explicitly with moving
or initially unknown obstacles in mind. They are often local methods that
plan on shorter-term horizons.

Fox et al. [47] introduce the dynamic window (DW) method for collision
avoidance. The method avoids collision with obstacles by first generating
a finite set of the agent’s possible velocities. This set is then pruned for
unsafe velocities, i.e., velocities that cause collisions with obstacles, and
for velocities that are unreachable with admissible accelerations within
the allotted time interval, i.e., the dynamic window. The velocities are
then searched for the ones that generate optimal trajectories based on a
blend of optimization criteria, e.g., path following, clearance to obstacles,
and desired velocities. Since this is a finite set of velocities, searching
among them is fast, and thus the method can be used to avoid collision
by immediately reacting to new sensor information about obstacles. An
application of the DW method to ASVs with moving obstacles is found in
[48].

Velocity obstacles (VOs) is a collision-avoidance method introduced by
Fiorini and Shiller [49] for robots in a non-static environment. The method
calculates the sets of relative velocities between the agent and obstacles
that avoid collisions when projected ahead in time. This set of non-colliding
velocities is intersected with the set of the agent’s reachable velocities,
taking into account the agent’s dynamics. A tree is built from successive
applications of this operation and searched for an optimal maneuver based
on some objective criterion.

Other collision avoidance methods for static and moving obstacles are,
e.g., the branching-course MPC (BC-MPC) method [50, 51], which handles
vessel dynamics and parts of the COLREGs, and the scenario-based MPC
(SB-MPC) method [52, 53], which has similar properties.

The COLREGs is a set of maritime regulations, also called “rules of
the road,” published by the International Maritime Organization (IMO).
Cockroft and Lameijer [5] provide a guide to the regulations. In addition
to rules that regulate navigation lights, visibility, and other aspects of
maritime operations, the part of the COLREGs that is most relevant to
motion control is Part B, where rules 8 and 13 to 17 are of particular
interest:

Rule 8: Action to avoid collision
Any action taken to avoid collision should be positive and readily
observable for other vessels. This rule implies that, e.g., large, abrupt
course changes should be preferred to small, smooth changes.

Rule 13: Overtaking
Overtaking is initiated when a vessel approaches another vessel from
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behind and requires the overtaking vessel to stay clear of the overtaken
vessel.

Rule 14: Head on
If two power-driven vessels are traveling towards each other with
opposite or nearly-opposite courses, they are in a head-on situation,
and both vessels should maneuver to starboard.

Rule 15: Crossing
When two vessels approach each other in other ways than described
in rules 13 and 14, they are in a crossing situation. The vessel having
the other vessel on its starboard side is deemed the give-way vessel.
The other is the stand-on vessel.

Rule 16: Action by the give-way vessel
The give-way vessel must take early and substantial action to avoid
collision, preferably by maneuvering towards starboard, to pass be-
hind the stand-on vessel.

Rule 17: Action by the stand-on vessel
The stand-on vessel is required to keep its current speed and course.
However, if the give-way vessel does not take appropriate action, the
stand-on vessel must avoid the collision, preferably by maneuvering
towards starboard, slowing down, or both.

Illustrations of overtaking, head-on, and crossing situations are provided
in Figure 2.9.

Collision-avoidance methods must comply with these rules. Some of
the methods mentioned so far are partly compliant; however, it is difficult
for a single method to take all of the COLREGs into account. Much
of the COLREGs is derived from practical seamanship and is hard to
quantify in a computer algorithm. Combinations of long-term and short-
term collision-avoidance methods may be a more appropriate paradigm for
solving COLREGs-compliance. Hierarchical approaches, also called hybrid
approaches, allow for flexibility when designing collision-avoidance systems
[55–57]. Eriksen and Breivik [58] present a three-layered collision-avoidance
architecture where the top-level layer deals with nominal path planning, the
mid-level layer performs long-term, COLREGs-compliant trajectory plan-
ning, and the bottom-level layer performs short-term collision-avoidance
that ensures safe maneuvering also in fast-paced, close-range encounters.

2.6 Automatic docking

Docking a vessel to a quay in a confined harbor area requires precisely
planned and executed movements and careful consideration of how the
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(a) Overtaking. Vessel A can overtake Vessel B on either side.

(b) Head on. Vessels A and B encounter each other head on, and both have to maneuver towards
starboard before resuming to their course.

(c) Crossing. In this encounter, Vessel A’s original path would cause a collision with Vessel B.
Since Vessel A has Vessel B on its starboard side, Vessel A is the give-way vessel and should
manever towards starboard and pass behind Vessel B. Vessel B is the stand-on vessel and should
maintain its course.

Figure 2.9: The three main types of COLREGs situations, with maneuvers that correctly
solve the encounters. © 2019, B. O.-H. Eriksen [54].

ship is affected by wind and hydrodynamic effects [59]. There is a limited
amount of academic literature that presents practical, automatic docking
for surface vessels. Most of the literature comes from the AUV domain,
where the scenario is often to dock to an underwater docking station in the
absence of obstacles. Rae and Smith [60] and Teo et al. [61] present fuzzy
rule-based docking methods for AUVs. In these methods, obstacles are
not handled explicitly or automatically, but manually constructed regions
that define the AUV’s guidance actions. Hong et al. [62] present a docking
procedure for an AUV that combines optimization-based path generation,
sensor information from an acoustic positioning system, and a camera that
tracks the position of the docking station. This method also does not
consider obstacles.

There has been some research on automatic docking methods for surface
vessels, but no prominent examples that explicitly handle obstacles. Tran
and Im [63] have developed a docking method for a surface vessel supported
by a tug, which uses an artificial neural network (ANN) trained on data
from manual docking operations. Other methods based on ANNs are
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developed by Hasegawa and Fukutomi [64] and by Ahmed and Hasegawa
[65]. Alternative methodologies include a method based on fuzzy logic by
Nguyen and Im [66] and one based on APFs by Woo and Kim [67]. None of
these handle obstacles explicitly or automatically. However, the APF-based
method has a manually constructed potential field based on the specific
harbor area the vessel operates in, which should result in collision-free
maneuvers.

Optimal control-based methods may be more flexible in that it is
possible to include obstacle constraints directly; however, most of the
research on these types of methods do not do so. Djouani and Hamam
[68] present an optimization-based trajectory planner for docking a surface
vessel that takes into account vessel dynamics. A tracking controller
tracks the trajectory, and the method is tested in simulations. A similar
method is developed by Mizuno et al. [69]. These methods do not perform
explicit obstacle handling. A promising optimization-based method is also
presented by Li et al. [70], who develop a multi-objective nonlinear model
predictive control (MPC) method for the docking of a surface vessel. The
vessel’s actuators are included in the MPC, and the inputs are used directly.
This method also does not take into account obstacles explicitly but uses
a reference path manually designed to avoid collision with the harbor and
other vessels.

In optimization-based techniques, representing obstacles efficiently
seems to be a challenge. Ideas from, e.g., [40–42] can be used to generate
constraints that represent obstacles in optimization problems. Martinsen
et al. [71] have developed an MPC-based docking method for a surface
vessel that represents obstacles by automatically forming an obstacle-free,
convex area around the vessel’s position in a map of polygonal obstacles.
The method also considers the vessel’s dynamical model, thruster mapping,
and limitations on the actuators’ dynamics.

Of the methods mentioned so far, only [69] has been through experi-
mental validation. Automatic docking is clearly a topic where the potential
is high for practical methods that can be tested in full-scale experiments.

Commercial solutions for automatic from the maritime industry do exist.
The technology companies Wärtsilä and Rolls-Royce Marine (acquired by
Kongsberg Maritime in 2019) have both performed automatic docking with
car ferries.5 The details of their solutions are not publicly available, but
both claim to have performed full crossing operations, including docking,
automatically. Figure 2.10 depicts a docking operation by Bastø Fosen’s
ferry Bastø VI using technology from Kongsberg Maritime.

In addition to the industrial docking solutions, both Raymarine and

5See https://www.maritime-executive.com/article/rolls-royce-and-

wartsila-in-close-race-with-autonomous-ferries (accessed September 14, 2020).



26

Figure 2.10: Bastø VI docking automatically in Horten, Norway in 2019 by using
technology from Kongsberg Maritime.

Volvo Penta have developed solutions for leisure boats to assist with
or automatically handle docking, which is often stressful for the boat
operator.6 Raymarine’s solution uses infrared cameras to create a map of
the harbor area, while Volvo Penta’s solution uses an onshore reference
system.

6See Raymarine’s product website https://www.raymarine.com/assisted-docking

and Volvo Penta’s press release
https://www.volvopenta.com/about-us/news-media/press-releases/2018/jun/

volvo-penta-unveils-pioneering-self-docking-yacht-technology (accessed
December 4, 2020).



Chapter 3

Contributions

In the Autonomous Ferry project presented in Chapter 1, the objective
was to develop solutions for energy-efficient, electrical autonomous car
ferries. A plethora of solutions must be in place; this includes ticketing,
passenger registration, docking, automatic charger connections, navigation,
target detection, identification and tracking, motion control, and motion
planning. As it is impossible to work on all subjects in the course of one
Ph.D. thesis, an early decision was made to work on motion planning
and docking. During the research, it was found that significant work
on auxiliary topics must be performed in order to perform experimental
testing. These topics include model identification, development of a user
interface for the experimental platform milliAmpere, and development
of a software-in-the-loop simulator. Additionally, structural and safety-
related improvements to the experimental platform were necessary. The
contributions, including the auxiliary work, are summarized in this chapter.

3.1 Development and improvements on
milliAmpere

As stated in Section 2.1, milliAmpere has been the platform used for
experimental testing during the Ph.D. work. This platform, built around
ROS, had its software, control systems, and navigation solutions developed
by many master and Ph.D. students. To facilitate planning, control, and
experiments, substantial work in this thesis has gone into model identifica-
tion, development of a user interface, a software-in-the-loop simulator, and
safety functions.

A method for optimization-based model identification for milliAmpere
was developed in collaboration with Pedersen [16], who provided models for
kinetics, thruster dynamics, thruster-to-force mapping, and wind effects.
The propeller dynamics were modeled with linear models from the desired

27
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Figure 3.1: Screenshot of the user interface developed for milliAmpere. In this view, the
user sees a map of the surroundings including a planned trajectory, and various input
controls. Plots of velocities, and information and visualization of thruster information is
also available.

rotational velocity to the actual velocity. The dynamics of the azimuth
angles were modeled with saturated terms from the desired to the actual
angle. The mapping from propeller rotational velocity was a polynomial
fitted to data gathered by measuring force with a bollard pull experiment.
For the kinetic model, an OCP was designed to fit the model described
in Section 2.2 to data recorded during identification experiments. The
OCP was transcribed using a multiple-shooting approach and solved using
Casadi and Ipopt [72, 73]. These models have since been used in numerous
master theses and research papers [12–14, 74, 75].

A web-based graphical user interface for milliAmpere was also developed
in this thesis, in cooperation with Andreas B. Martinsen. The interface is
shown in Figure 3.1. It provides access to milliAmpere’s position, heading,
and velocity, a map of its surroundings, and the thruster states. It is
also possible to set waypoints and change control modes. The graphical
user interface has made debugging and monitoring easy to perform during
experimental testing.
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Figure 3.2: Block diagram of the developed software-in-the-loop simulator formilliAmpere.
For the full-scale experimental tests, the vessel itself replaces the components in the
simulator, with equivalent interfaces.

In order to facilitate rapid development on milliAmpere, a software-
in-the-loop simulator was developed as part of this thesis. It is based
on the models of [16]. As with the milliAmpere itself, the simulator was
developed using ROS and provides the same interfaces as the physical vessel,
illustrated in Figure 3.2. It simulates kinetics, wind, thruster dynamics,
and navigation. The simulator makes it possible to use the same code for
planning and control in both simulation and experimental tests and is in
daily use by students and researchers involved with milliAmpere.

A fail-safe emergency stop feature was lacking on milliAmpere, which
is critical when performing full-scale experiments. As part of this thesis, a
fail-safe holding circuit for emergencies, which cuts power to the actuators,
was designed and developed. The installation was done in cooperation
with Alexander B. Holmen, who was an automation apprentice with the
Department of Engineering Cybernetics at NTNU at the time.

3.2 Energy-optimized trajectory planning

Using pseudospectral optimal control

Work in optimization-based path and trajectory planning for ASVs is mostly
limited to time and distance-optimized trajectories, with few attempts
towards energy-optimization. Furthermore, there are few results from
trajectory planning for ASVs with disturbances and closed-loop simulations.
Pseudospectral optimal control has been used for motion planning on
several classes of vehicles in [40], but without closed-loop simulations
and with a generic quadratic cost functional. Practical minimum-time
implementations for spacecraft are also presented in [76], and for an ASV
in [77], but closed-loop minimum-energy implementations for ASVs are
not available.
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The development of a model-based energy-optimized planner for ASVs
using pseudospectral optimal control is presented in Paper A. This was a
continuation of the work in [78]. It is titled a path planner in the paper, but
it is really a trajectory planner since it includes a velocity profile. Inspired
by work in [77, 79], the pseudospectral planner was developed to include a
full-state ASV model and an energy-optimization objective.

Pseudospectral optimal control is a computational method for solving
OCPs [76]. It is similar to a direct collocation method in that it uses
Lagrange polynomials to represent states and inputs, with Legendre collo-
cation points [40]. In the method from Paper A, the software framework
Dido for Matlab by Elissar Global was used.1 Dido has been efficient at
solving some OCPs, but can be hard to work with due to the inherent
opacity of proprietary software, which makes the code difficult to debug.2

For a gradient-based OCP solver to be efficient, it is helpful that the
constraint functions are continuously differentiable. In Paper A, obsta-
cles were approximated by ellipses, which can be represented by smooth
functions. The drawback is that complex maps, which are often polygonal,
cannot be accurately represented by ellipses. Additionally, providing the
solver with a feasible initial guess, i.e., a warm start, is not trivial, and
without it, the solver is slow and will likely lead to undesired solutions due
to the inherent nonconvexity of trajectory planning.

The method from Paper A took ocean currents into account by formu-
lating the dynamical model in terms of relative velocity. For simulation
results, the guidance system from [80] was implemented to track the opti-
mal trajectory. Simulations showed that the generated trajectories were
dynamically feasible and that the guidance and control system could track
them well. Additionally, the use of accurate information about ocean
currents significantly reduced energy usage. In practice, however, ocean
current velocities are not uniform, and the effect of ocean currents on
the vessel requires accurate measurements and models, which are hard to
obtain.

Warm-starting techniques

As stated above, optimization-based planners benefit significantly from a
feasible initial guess. If the planning occurs in a complex map, finding
a good initial guess is completely necessary. A good initial guess has a
geometry close to the global optimum and guides the OCP solver away from

1See http://www.elissarglobal.com/academic/products/ for more information
(accessed October 15, 2020).

2Open-source implementations of pseudospectral optimal control do exist. See, e.g.,
https://github.com/danielrherber/basic-multiple-interval-pseudospectral or
https://github.com/mpopt/mpopt (accessed October 15, 2020).
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Figure 3.3: The map used for planning trajectories in Paper C. It shows that when the
OCP solver is not provided with a feasible initial guess, it converges to an undesired
trajectory.

undesired routings. In the literature, approaches to providing optimization-
based trajectory planners with initial guesses found using discrete searches
are found for vehicles [41, 46], but not for energy-optimized trajectory
planning for ASVs. In Paper C, a practical, three-step process to generate
such an initial guess was developed to solve an OCP for trajectory planning.
Figure 3.3 shows how the OCP benefits from an initial guess. The three-step
process can be summarized as:

1. Generate the shortest path on a uniformly discretized grid with the
A? search algorithm.

2. Convert the shortest path into a trajectory by performing a waypoint
reduction, connecting the waypoints with circle arcs, and adding
artificial dynamic information.

3. Solve the energy-optimizing trajectory-planning OCP using the tra-
jectory from Step 2 as an initial guess.

The OCP solver in Paper C is built using Casadi [72] with Ipopt [73]
for Matlab, and the transcription is formed using multiple shooting with
Runge-Kutta integration, rather than with a pseudospectral method. By
exploiting the speed of an A? search, the results showed significant run-time
improvements when using the initial guess, compared to cold-starting the
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OCP solver. The optimality is also much improved since the global A?

method guides the OCP solver to the shortest routing in the discrete search
space.

Further improvements to this method were developed in [7], the un-
published paper discussed in Section 1.3. In that paper, the uniform
discretization in Step 1 was replaced with one based on Voronoi diagrams.
The waypoint reduction and trajectory generation algorithms from Step 2
were also improved. For the example presented in the paper, the Voronoi
discretization resulted in the discrete search having 95% fewer discrete
nodes available to explore than the uniform discretization, which reduced
the run time of Step 1 by 80%. The improvements to the waypoint reduc-
tion and trajectory generation algorithms caused Step 2’s run time to drop
by 95%. Step 3 was equivalent in the two approaches and accounted for
most of the run time, so the overall improvement in run time was 35%.

While the methods from Paper C and [7] are promising, they are still
limited by using simple elliptic obstacle representations. For the method to
be practical, that limitation needs to be addressed. In Paper F, a similar
trajectory planning algorithm was developed, with two significant changes:

• The discrete search was replaced with a hybrid A? implementation
that 1) inherently results in a time-parametrized, feasible trajectory,
since it is propagated by motion primitives, and 2) supports arbitrary
cost functions so that the optimality criterion for this search is
equivalent to the optimality criterion in the OCP.

• Instead of representing obstacles as ellipses in the OCP, a sequence
of convex permissible areas is generated along the hybrid A? search
solution, wherein the OCP can freely move the positional states. This
representation is smooth, which is beneficial for the gradient-based
optimization solver.

• The transcription of the OCP was changed to use direct collocation
with Legendre collocation points.

This development resulted in a flexible planner that can consider arbitrary
maps, i.e., maps with polygonal obstacle descriptions. Experimental vali-
dation of the method was presented in Paper F. These experiments showed
that milliAmpere was able to track the resulting trajectory and that proper
distance was kept from obstacles. The method can be further improved by,
e.g.,

• including surge velocity in the discrete search space, which would
allow the hybrid A? search to look for variations in the speed profile
which can improve energy efficiency;
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• increasing computational efficiency by improving the software imple-
mentation;

• including other types of external disturbances, such as waves or ocean
currents;

• and by including aspects of the COLREGs relevant to trajectory
planning.

Pros and cons of model-based trajectory planning

So far the thesis has presented four model-based trajectory planning
methods for ASVs. These types of methods are advantageous for three
main reasons:

Dynamic feasibility The resulting trajectory will be dynamically fea-
sible. Geometrical paths generated by discrete methods do not
explicitly consider dynamical models, making them overly conser-
vative or not dynamically feasible, meaning that they cannot be
followed tightly by the physical vehicle. Model-based trajectory plan-
ning methods are constrained by dynamical models, which inherently
produces such feasibility.

Energy optimization Energy consumption is tightly connected to vessel
speed or actuator input, which requires a temporal dimension to
characterize accurately. Using model-based optimization to generate
trajectories gives a straight-forward way of including energy terms
in the objective function.

Environmental disturbances Environmental effects, such as winds or
ocean currents, can be included. Using dynamical models makes it
possible to include effects caused by winds and ocean currents to
consider both for energy consumption and dynamical feasibility.

Since this thesis focuses on energy-optimized planning and control, trajec-
tory planning is preferred to path planning for these reasons. However,
model-based methods also have some disadvantages that must be consid-
ered:

Model dependency Amodel-based method is dependent on a sufficiently
accurate dynamical model. Such a model is not trivial to produce,
and since the performance of model-based methods is dependent
on the model’s accuracy, using inaccurate models can lead to poor
results.
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Fading accuracy Including, e.g., environmental effects to make the tra-
jectory more energy efficient will only be accurate over a limited
temporal horizon. This limitation implies that the trajectory re-
quires regular replanning with updated information to maintain its
optimality.

Long running times Running times of optimization-based trajectory
planning methods are significantly longer than discrete methods.

In conclusion, it is helpful to utilize model-based methods when performing
energy-optimized planning, but it places significant requirements for the
accuracy of the dynamical ship model and the data and measurements
used for planning.

3.3 Hybrid collision-avoidance architecture

A path or trajectory planner is not the only necessary part of a collision-
avoidance solution for ASVs. In addition to low-level control, navigation,
and support functions, the motion control system must consider moving
obstacles in compliance with the COLREGs. Several collision-avoidance
approaches attempt to consider the COLREGs by using a single method
to capture all relevant rules [52, 81, 82]. As an alternative, a hierarchical
or hybrid approach is suggested in, e.g., [55–57]. In these works, the
authors present two and three-layered collision-avoidance architectures,
where the high-level layers perform nominal, long-term planning among
static obstacles, and lower levels deal with short-term planning while
including moving obstacles. Eriksen and Breivik [58] present a three-
level hybrid architecture, where the high-level layer deals with nominal
planning, the mid-level layer deals with protocol-based dynamic collision
avoidance, making efforts to adhere to the COLREGs, and the low-level
layer deals with short-term emergency handling. This architecture was
further developed in Paper B and Paper D. A block diagram showing the
architecture is available in Figure 3.4.

In Paper B, the main contribution was to combine a high-level planner,
which was the pseudospectral trajectory planner from Paper A, with a
mid-level dynamic collision-avoidance method, which was the MPC-based
trajectory planner from [58]. The high-level planner planned a collision-free
trajectory in a static map, taking into account ocean currents, which the
mid-level method attempted to follow while taking into account detected
moving obstacles, and adhering to Rule 8 of the COLREGs. Rule 8 requires
that maneuvers are positive and readily observable for other vessels, which
disallows slow course changes. The paper’s simulations showed that this
type of architecture enabled the ASV to avoid static and moving obstacles
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Figure 3.4: The hybrid, or hierarchical, collision-avoidance architecture from Paper B
and Paper D.

in accordance with Rule 8 and otherwise tracked the energy-optimized
trajectory. However, that work did not include the low-level layer, which
deals with short-term emergency handling.

In Paper D, the three-layered hierarchy was completed by including the
branching-course model-predictive controller from [50, 51] as the low-level
layer. In addition to Rule 8, the architecture complies with the COLREGs
rules 13 to 17. These rules describe how to act during overtaking, head-
on, and crossing situations. They also describe what to do if another
vessel does not comply with the maneuvering part of the COLREGs. This
compliance was achieved by designing a classifier that determined the active
COLREGs situation, with respect to each of the other detected vessels,
and by designing cost functions in the mid-level MPC that elicit behavior
following the COLREGs. Moreover, the pseudospectral planner used in
Paper B and Paper A was replaced with the one developed in Paper C.
Simulations showed that this hybrid collision-avoidance architecture could
handle a wide range of situations while maintaining energy-efficiency.

3.4 Automatic docking

While the contributions presented so far have been focused on planning
and collision avoidance during transit, this thesis also includes work on
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(a) Block diagram of the docking control system setup.
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(b) Planned and measured positions for milliAmpere during a dock-
ing experiment. The measured and planned poses are shown in
two-second intervals along with the permissible convex set.

Figure 3.5: Block diagram and experiment plot from Paper E.

automatic docking for ASVs. As touched upon in Section 2.6, academic
work on this topic lacks explicit handling of obstacles and experimental
validation.

Martinsen et al. [71] developed an MPC-based method for automatic
docking of ASVs. The method takes into account the vessel’s dynamic
model, thruster mapping, and limited thruster dynamics. It also takes into
account obstacles by forming a permissible convex set that encapsulates
the vessel and the docking target location, which allows the MPC to plan
collision-free trajectories. This convex set excludes static obstacles that
are defined by a polygonal map of the harbor area. The method has been
tested in simulations.

As part of this thesis’ work, the method from [71] has been further
developed to turn it into a practical implementation that works in full-scale
experiments with the milliAmpere autonomous ferry from Section 2.1. That
work is presented in Paper E, which has the following key contributions:

• In the traditional sense, an MPC controller feeds its generated input
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FIGURE 13. Visualisation of the docking motion during the experiments
on September 11th 2020 (E2).

measurements were not used due to technical problems with
the sensors at the time, meaning that only lidar and mapping
data was used for computing the spatial constraints during the
tests.

FIGURE 14. Planned and executed trajectory during the experiments on
September 11th 2020 (E2).

The experiments E1were performed at the end of a floating
dock, while E2 at the center of the floating dock, due to to
space availability on each day of the experiments. The differ-
ence in final docking pose had an influence on the complexity
of the constraint sets, which can be seen in Figure 11 and 13.
The full constraints pertain to the full set of constraints
generated by the constraint generation method (25), while the
reduced constraints were chosen as the 8 closest constraints
eventually used in the optimization problem. This was done
since the optimization problem needs a fixed number of
constraints, and 8 gives a good balance between accuracy and
computational cost when solving the OCP. For E1, shown
in Figure 11, we see that the reduced constraints are much
closer to the full constraints, compared to E2 Figure 13.
This indicates that more potential obstacles were present in
E2. The results show that the proposed constraint generation
method is able to construct a good convex inner approxima-
tion of the free region, within which the vessel is allowed
to operate, and that by choosing the number of constraints
to reduce the full constraints to, we can achieve a good
balance in terms of computation and constraint accuracy.
We should however note the unexpected set of constraints
at 25.8 seconds, in Figure 11, which was caused by rain

VOLUME 8, 2020 204983

Figure 3.6: Plot of an experiment from Paper G. The plot shows measured and planned
poses of the vessel during docking, a point cloud from the on-board lidar sensor, and
the resulting permissible convex set.

directly to the ASV’s actuators. However, in this method, the
state trajectory is sent to a trajectory-tracking DP controller. This
separation is done to account for external disturbances and model
errors, and the concept is illustrated in Figure 3.5a.

• The optimization problem is modified with slack variables to deal
with feasibility issues when implementing the method in a real-world
scenario.

• The method is validated through full-scale experiments with mil-
liAmpere.

Additionally, the method uses an algorithm that dynamically updates the
convex set based on milliAmpere’s current location every 10 s, although it
is not detailed in Paper E. That algorithm is presented subsequently in
Paper G.

The automatic docking method was tested in experiments performed
with the milliAmpere, in which the method produced collision-free docking
maneuvers. A snapshot of one of the experiments is shown in Figure 3.5b,
where measured and planned vessel poses are plotted inside the permissible
convex set. The method is general and can interface with any vessel capable
of tracking a time-parametrized trajectory. It requires a mathematical
vessel model and a geographical map of the harbor area of sufficient
resolution. The method may be extended with exteroceptive sensors such
as cameras, lidars, radars, and ranging systems.
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Figure 3.7: UML-SD and control setup from Paper H.

In Paper G, the docking method is improved by including data from
a lidar sensor and ultrasonic range sensors. These sensors provide points
representing obstacles in the area around the vessel, which are used to
further constrain the permissible convex set. The integration of extero-
ceptive sensors allows the method to consider data about the physical
environment in real-time. Improvements are also made to the optimization
problem’s cost function and the interplay between the tracking controller
and trajectory planner. The improved method was successfully tested in
full-scale experiments, which showed that it generated collision-free docking
maneuvers.3 The method avoids collision both with static obstacles known
a priori and with obstacles not included in the static map, observed with
the exteroceptive sensors. A plot of an experiment is provided in Figure 3.6,
including planned and measured poses, the point cloud generated by the
lidar sensor, and the resulting permissible convex set.

These contributions are among the first academic literature results
demonstrating experimental validation of collision-free automatic docking.



39

−10 0 10 20 30
East [m]

40

50

60

70

80

90
No

rth
 [m

]
Measured
Reference
Land

(a) Undocking phase.

−400 −300 −200 −100 0
East [m]

−300

−200

−100

0

100

No
rth

 [m
]

(b) First transit phase.
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(c) Second transit phase.
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Figure 3.8: Maps and trajectories during the main phases of the experiment in Paper H.
For practical reasons, this experiment had two transit phases.

3.5 Framework for automatic crossing

The prominent examples of automatic or autonomous crossing from one
dock to another are commercial. As mentioned in Section 1.1, Wärtsilä and
Rolls-Royce Marine performed autonomous crossings in 2019. There are
few results for such implementations in the academic literature, however.
Some long-term model-based trajectory planners may be suitable for the
task, such as [42, 83]. These types of methods can plan a single trajectory
that handles the undocking, transit, and docking phases as a single process.
An approach that gives more flexibility and modularity is to handle the

3A video of one of the experiments is available at https://youtu.be/AyaWlJvI6K8.
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phases with separate, fit-for-purpose planners and controllers.
The automatic docking method from Paper G was combined with

the trajectory planner from Paper F to create a system for three-phase
automatic crossing in Paper H. The three phases are undocking, transit,
and docking. The methods are combined in an architecture designed
as a Unified Modeling Language state diagram (UML-SD) [84], which
switches between the methods depending on the active phase. In the
undocking and docking phases, the automatic docking method is used,
and in the transit phase, the trajectory planner is used. In all phases, the
trajectories generated by the active method are fed to a trajectory-tracking
DP controller. The UML-SD and control setup are illustrated in Figure 3.7.
In Paper H, experiments with milliAmpere show that the architecture
is a simple and effective way to achieve automatic crossing. Maps and
trajectories for an experiment are shown in Figure 3.8.

While this method for automatic crossing does not include the COL-
REGs, the results are an important stepping stone towards fully au-
tonomous crossing operations for ASVs. By integrating the transit control
module with a hybrid collision-avoidance system, proposed in, e.g., Paper D,
the method would comply with the COLREGs.

Using an UML-SD to design a sequential switching control architecture
is advantageous since it is an open standard and several open-source li-
braries are available for implementation. This type of explicit programming
to produce automatic behavior is useful in many scenarios, but has limita-
tions when it comes to autonomous systems. For unsupervised operations,
explicit programming might not be sufficient, since it is impossible to
account for all types of unforeseen incidents. Other methodologies could
allow for unsupervised operations, such as T-REX from the Monterey Bay
Aquarium Research Institute [85], HAL from the Norwegian Defence Re-
search Establishment [86], CARACaS from the US Office of Naval Research
[87], GenoM from the Laboratory for Analysis and Architecture of Systems
[88], and MOOS-IvP from the Massachusetts Institute of Technology [89].
These methodologies have advanced capabilities such as replanning and
deliberative task-level planning, which could take us closer to unsupervised,
autonomous operations.



Chapter 4

Conclusions and further
work

To make maritime operations safer, more energy-efficient, and to provide
low-cost commercial and social opportunities, substantial effort is being
put into increasing the level of automatic control and autonomy at sea.
This thesis represents an effort to develop and improve energy-efficient
planning and motion control methods, which again enable autonomy. The
contributions are towards several topics:

• The development of models and auxiliary functions for the experi-
mental vessel milliAmpere, which are used in subsequent simulations
and experiments, and by other researchers and students.

• The development and experimental validation of several model-based,
energy-optimized trajectory planning methods that take into account
external disturbances and complex static maps.

• The development of a hierarchical, hybrid collision-avoidance archi-
tecture that takes into account the International Regulations for
Preventing Collisions at Sea (COLREGs).

• The development and experimental validation of methods for auto-
matic docking.

• The combination of purpose-fit methods for the three phases of auto-
matic crossing for autonomous surface vehicles (ASVs): undocking,
transit, and docking.

It is easy to underestimate the amount of work required to perform
experimental validation. Auxiliary topics, such as visualization and model
identification, are necessary prerequisites. This realization has incited

41
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much of the work presented in this thesis. The result is an ecosystem
around milliAmpere, where the threshold for performing experiments has
been lowered. This ecosystem has allowed for experimental validation of
the methods developed in this thesis.

The model-based trajectory planning methods in this thesis have been
developed incrementally. All of them consider static obstacles and are
based on the optimal control problem with various solving processes, warm-
starting techniques, and obstacle representations. The first method from
Paper A is based on pseudospectral optimal control, has no warm-start
technique, and represents obstacles with ellipses. The most recent method
from Paper E is based on multiple shooting with direct collocation, is warm-
started with a hybrid A? search, and represents obstacles with arbitrary
polygonal shapes. This method has been experimentally validated to
produce collision-free, dynamically feasible trajectories.

A global trajectory planning method that only considers static obstacles
is insufficient to avoid collisions and travel safely in practical applications
of ASVs—the ASV must also consider moving obstacles, adhere to the
COLREGs, and perform safe maneuvers. The development of a hybrid or
hierarchical collision-avoidance system has been presented in this thesis.
In this system, the global trajectory planning method constitutes the
top layer and gives a nominal trajectory that is tracked in the absence
of moving obstacles. The middle layer tracks the nominal trajectory
and takes into account moving obstacles as well. It plans COLREGs-
compliant trajectories on a medium temporal horizon. The bottom layer
tracks the COLREGs-compliant trajectories on a short temporal horizon
and ensures that the ASV performs safe, collision-free, and dynamically
feasible maneuvers. In Paper D, the collision-avoidance system is tested in
simulations and is shown to produce collision-free, COLREGs-compliant
maneuvers that track the nominal trajectory in the absence of moving
obstacles.

The methods presented so far have been focused on the transit-phase
of a crossing operation. Work on methods for automatic docking of ASVs
is also presented in this thesis. The docking methods from Paper E and
Paper G are based on periodic trajectory generation within collision-free
convex sets. They consider a static polygonal obstacle map and real-time
exteroceptive data using lidar and ultrasonic sensors. The methods are
tested experimentally and produce collision-free trajectories that success-
fully dock the ASV.

With methods developed for trajectory planning for transit and au-
tomatic docking in place, the final contribution presented in this thesis,
Paper H, is an architecture for combining the undocking, transit, and
docking phases. The architecture combines the docking method from
Paper G to handle the undocking and docking phases with the trajectory
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planning method from Paper F to handle the transit phase. The methods
are combined using an architecture based on Unified Modeling Language
state diagrams (UML-SDs), and the architecture has been experimentally
validated through successful full-scale experiments in the Trondheim harbor
area.

Further work

While we are getting closer to autonomous maritime operations, there is
still substantial room for further work on several related topics. Some of
the topics within maritime autonomy that require more attention are:

Situational awareness This is a prerequisite to, e.g., collision avoid-
ance and trajectory planning. Detection, classification, and tracking of
other objects in an autonomous vessel’s vicinity are necessary to avoid
collision and adhere to the COLREGs. So is the inference of other vessels’
intentions, which is regularly done by humans.

Natural language processing Vessels operating in the vicinity of
other vessels are, in many cases, dependent on verbal radio communication.
For an autonomous, unmanned vessel to operate alongside manned vessels
in a busy area, transmission and comprehension of verbal information may
be necessary.

COLREGs-compliant collision avoidance Very few available col-
lision-avoidance methods can take into account all relevant parts of the COL-
REGs. Consideration of the COLREGs is necessary when autonomous ves-
sels encounter other vessels at sea. Continued work on collision-avoidance
methods that can interpret COLREGs encounters and handle them ac-
cording to the regulations is necessary.

Robust, redundant, and real-time capable planning and col-
lision-avoidance methods In addition to having collision-avoidance
capabilities taking the COLREGs into account, methods that enable au-
tonomous operations must be reliable in all situations. Most methods in
the literature and in this thesis do not have these capabilities, which are
essential to real-world implementations.

Autonomy engines While for simple operations, explicitly program-
ming automatic behavior may be sufficient, it is not possible to account
for all conceivable scenarios, which may be necessary for unmanned, au-
tonomous vessels. The use of autonomy engines can enable dynamic
replanning at the task level, which adds flexibility, and can handle a
broader range of scenarios without explicit programming.

Thanks to entrepreneurs, researchers, and commercial institutions’
significant efforts, we are well on our way to close the gap to autonomy at
sea.
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Chapter 5

Publications

This chapter contains reprints of the publications that are a part of this
thesis.
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1. INTRODUCTION

Being a coastal country with a large prevalence of moun-
tains and fjords, transportation has always been a chal-
lenge in Norway. Ferries are commonly used across large
bodies of water, where construction of bridges is not cost
effective or even possible. In 2017, Norway had around
150 ferry connections, where most of these are marked
in Fig. 1. Approximately 9% of the Norwegian domestic
CO2 emissions are caused by ships, where a significant
portion is caused by passenger ships (DNV GL, 2014).
As the focus on emission-free transportation increases,
so does the need for energy-efficient solutions. Battery-
powered ferries are low-emission solutions tested in Nor-
wegian waters, and will be an important factor towards
emission-free transportation, since the country’s goal is to
have a zero-emission maritime industry by 2050 (Criscione,
2017). However, battery-powered vessels are more limited
in range than those powered by fossil fuel. This is due
to challenges related to cost and weight of the energy
storage (Kongsberg Maritime et al., 2017). Optimizing
motion control may increase the operation envelope for
battery solutions. Increasing the autonomy level of motion
control systems will to a greater extent facilitate energy
optimization. Rolls-Royce are among the industrial initia-
tors for autonomy in ferries with their “Auto-Crossing”
system, aimed to make energy consumption predictable
(Rolls-Royce, 2016). Furthermore, the work presented in
this paper is part of another industrial initiative for
energy-optimized autonomous ferries, with project part-
ners Kongsberg Maritime, Fjellstrand, Grenland Energy,

Fig. 1. Overview of Norwegian ferry connections.
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freedom (DOF) ship model affected by external distur-
bances in the form of ocean currents is used in both plan-
ning and simulation. The planner finds an optimized path
using an energy-based cost function, which is then used by
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Fig. 2. Hierarchy of path-planning methods.

the three pose states, namely north and east position and
heading, and on three velocity states, namely surge, sway
and yaw rate. The work is a continuation of the master’s
thesis (Bitar, 2017), where several aspects of autonomy in
ferries are considered, including path-planning methods,
collision avoidance (COLAV), automatic docking and in-
dustrial control systems. Although the method presented
in this work is designed for use with ferries, it can also
be applied to other underactuated ships. The purpose of
this paper is a show of concept, and not an extensive
study of the method, therefore aspects such as failure
handling, actuator limitations and state estimation are not
considered.

Extensive research has been performed on path planning
and motion planning in robotics literature. Useful refer-
ences include (Wolek and Woolsey, 2017), where several
model-based methods are reviewed. These methods in-
clude optimal control, level set methods, roadmap methods
and others which are suitable for marine vehicles. Two
distinct categories of path-planning methods are roadmap
methods and complete path methods. Roadmap methods
produce waypoints which form a feasible path if con-
nected. Complete path methods generate a continuous
parametrized path, often by optimization or optimal con-
trol. Figure 2 classifies some of the most important path-
planning methods in a hierarchical manner.

Roadmap methods may be further divided by computa-
tional complexity. The two main subcategories are com-
binatorial and sampling-based methods. Combinatorial
planning is also called exact planning, and considers
the whole continuous space for roadmap vertices, which
is inherently computationally expensive. Sampling-based
methods are probabilistic and consider only an amount
of sampled points in the continuous space, and thus have
shorter running times for high-dimensional problems.

Optimization-based complete path methods are usually
based on optimal control. A state-trajectory is found by
using a solver, e.g. dynamic programming, which involves
solving the Hamilton-Jacobi-Bellman (HJB) partial differ-
ential equation (PDE), or by using a pseudospectral algo-
rithm, which is the solution presented in this paper. Other
optimization-based methods include e.g. model predictive
control (MPC).

Several researchers demonstrate the use of pseudospectral
methods for motion planning and path planning. Lekkas
et al. (2016) use pseudospectral optimal control to perform
time-optimized path planning for a 3-DOF ship model.
Re-planning at set intervals is also performed, such that
updated estimates of environmental forces are taken into
account. However, the authors use a reduced-order model,
assume zero sideslip, while yaw-rate is treated as an in-
put. Gong et al. (2009) perform motion planning on sev-
eral kinds of vehicles using pseudospectral optimal con-
trol. These experiments involve complex environments and
models, but no guidance simulations with disturbances
are performed. Ross and Karpenko (2012) mention several
successful demonstrations of the use of pseudospectral
methods, among them a minimum-time rotational maneu-
ver of a space telescope in orbit, and a zero-propellant
maneuver of the International Space Station.

The main contribution of this paper is a method for
performing model-based energy-optimized path planning
using pseudospectral optimal control with an energy-based
cost function. While pseudospectral optimal control has
been used to generate motion trajectories in other refer-
ences, the use of an energy-based cost function to create
the path is novel. Path feasibility is shown by performing
simulations with a curved-path guidance algorithm. The
simulations indicate that energy can indeed be saved by
performing path planning with up-to-date ocean current
information.

The paper is organized as follows: Section 2 proposes a
control system architecture for transit operations, includ-
ing blocks for path planning, guidance, COLAV, low-level
control and sensors; Section 3 treats ship modeling and
control; Section 4 introduces the optimization-based path
planning method; Section 5 discusses the planning and
simulation results, while Section 6 concludes the paper.

2. MOTION CONTROL ARCHITECTURE

Motion control in ferry operations consist of undocking,
a controlled maneuver away from the dock area, transit
towards the destination dock, and docking. A proposed
control system architecture for transit is illustrated in
Fig. 3, where the highlighted block is the path planner
which is the focus of this paper. Other important blocks
are the mid-level and reactive COLAV subsystems, as
defined by Eriksen and Breivik (2017).

COLAV is the task of avoiding collisions with static
and moving obstacles. The task may be split into three
levels: High-level global path planning, mid-level protocol-
based COLAV, and low-level reactive COLAV. Low-level
COLAV is responsible for avoiding immediate collision,
and does not care about e.g. the International Regulations
for Preventing Collisions at Sea (COLREG). Mid-level
COLAV is intended to prevent collisions by following a
set of rules, e.g. the COLREG. Methods at this level
should also perform distinct maneuvers that communicate
intended actions to onlookers and other vessels. High-level
planning is responsible for creating paths that avoid known
static obstacles such as land and reefs.

The low-level and mid-level methods rely upon local sensor
information about dynamic and static obstacles. Target
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Fig. 3. Block diagram of motion control architecture during transit.

tracking and related sensory technology are key to re-
trieving this information. Wilthil et al. (2017) present
a method for tracking targets with radar based on the
probabilistic data association filter (PDAF). More refer-
ences to target tracking methods are found therein. Erik-
sen and Breivik (2017) use nonlinear MPC to perform
mid-level COLAV which is partly COLREG compliant.
A cost function penalizing gentle turns and small speed
changes is implemented to conform to the COLREG rule
8, which states that “action taken to avoid collision should
be positive, obvious and made in good time.” The high-
level planner relies on static information about the area,
such as a map. Various techniques may be implemented
to provide a two-dimensional feasible path for the ship
to follow using a guidance system. One such technique is
explored in Section 4.

3. SHIP MODELING AND CONTROL

3.1 Modeling

We use an underactuated 3-DOF nonlinear ship model for
path planning and simulation. The modeling techniques
and notation are retrieved from (Fossen, 2011). The ship
is called Cybership II, and is a 1:70 scale replica of a
supply ship, with a length of L = 1.255m and mass
m = 23.8 kg. Information about this model ship and its
physical parameters is found in (Skjetne et al., 2005).
To scale velocities and other variables up to its full-scale
equivalent, one may use the bis scaling system, described in
e.g. (Fossen, 2011). The scaling factor for linear velocities

for this ship is
√

Lf

L , where Lf is the length of the full-scale

ship, resulting in a factor of
√
70. The model is written on

the following form, with the time dependency omitted for
notational brevity:

η̇ = R(ψ)ν (1a)

Mν̇r +C(νr)νr +D(νr)νr = τ . (1b)

Here η = [x, y, ψ]� is the ship’s pose, where x and y are the
north and east position, respectively, and ψ is the ship’s
heading. The rotation matrix R(ψ) is defined as

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 . (2)

The ship’s velocity over ground in BODY coordinates
{b} is ν = [u, v, r]�, where u is surge speed, v is sway
speed, and r is the yaw rate. The ship’s velocity relative
to water is used to model currents: νr = [ur, vr, r]

� = ν−
νc. We have denoted the current velocity in BODY as
νc = [uc, vc, 0]

�. The current velocity in NED coordinates
{n} is νn

c = [Vx, Vy, 0]
�, and the relationship between

those is νc = R�(ψ)νn
c .

In (1), M ∈ R3×3 is the symmetric, positive definite
system inertia matrix. We denote the Coriolis and cen-
tripetal matrix C(νr) ∈ R3×3, and the damping matrix
D(νr) ∈ R3×3. The vector τ = [X,Y,N ]� contains the
control forces. We use an actuator model with two input
signals u = [F, δ]�, where F is the force produced by a
rear-mounted azimuth thruster, and δ is its angle:

τ (u) =
[
F cos δ, 0, −lthF sin δ

]�
, (3)

where lth is the length from the BODY origin to the
azimuth thruster. The second element τ2 = Y is set to zero,
because it is possible to do a coordinate transformation on
any ship model to achieve this property (Fredriksen and
Pettersen, 2004).

3.2 Guidance controller

The guidance controller used in simulation is a curved-
path line-of-sight (LOS) controller developed by Breivik
and Fossen (2004). The key geometric variables are illus-
trated in Fig. 4. The particle pd(θ) is the origin of the
path-parallel frame {p}. This particle exists on the path
P = {p ∈ R2|p = pd(θ) ∀ θ ∈ [0, θmax]}. The path variable
θ is interpreted as some distance along the path, and
is the time variable from the path planner, as discussed
in Section 4. The along-track error s(t) is the tangential
distance from the path particle, whereas e(t) is the cross-
track error. The relationship between the ship’s position
p(t) = [x(t), y(t)]� and the error variables is

ε(t) =
[
s(t), e(t)

]�
= R�

t (χt(θ))(p(t)− pd(θ)) , (4)

where Rt ∈ R2×2 is equivalent to the upper-left block in
(2).
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trieving this information. Wilthil et al. (2017) present
a method for tracking targets with radar based on the
probabilistic data association filter (PDAF). More refer-
ences to target tracking methods are found therein. Erik-
sen and Breivik (2017) use nonlinear MPC to perform
mid-level COLAV which is partly COLREG compliant.
A cost function penalizing gentle turns and small speed
changes is implemented to conform to the COLREG rule
8, which states that “action taken to avoid collision should
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The ship’s velocity over ground in BODY coordinates
{b} is ν = [u, v, r]�, where u is surge speed, v is sway
speed, and r is the yaw rate. The ship’s velocity relative
to water is used to model currents: νr = [ur, vr, r]

� = ν−
νc. We have denoted the current velocity in BODY as
νc = [uc, vc, 0]

�. The current velocity in NED coordinates
{n} is νn

c = [Vx, Vy, 0]
�, and the relationship between

those is νc = R�(ψ)νn
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In (1), M ∈ R3×3 is the symmetric, positive definite
system inertia matrix. We denote the Coriolis and cen-
tripetal matrix C(νr) ∈ R3×3, and the damping matrix
D(νr) ∈ R3×3. The vector τ = [X,Y,N ]� contains the
control forces. We use an actuator model with two input
signals u = [F, δ]�, where F is the force produced by a
rear-mounted azimuth thruster, and δ is its angle:

τ (u) =
[
F cos δ, 0, −lthF sin δ

]�
, (3)

where lth is the length from the BODY origin to the
azimuth thruster. The second element τ2 = Y is set to zero,
because it is possible to do a coordinate transformation on
any ship model to achieve this property (Fredriksen and
Pettersen, 2004).

3.2 Guidance controller

The guidance controller used in simulation is a curved-
path line-of-sight (LOS) controller developed by Breivik
and Fossen (2004). The key geometric variables are illus-
trated in Fig. 4. The particle pd(θ) is the origin of the
path-parallel frame {p}. This particle exists on the path
P = {p ∈ R2|p = pd(θ) ∀ θ ∈ [0, θmax]}. The path variable
θ is interpreted as some distance along the path, and
is the time variable from the path planner, as discussed
in Section 4. The along-track error s(t) is the tangential
distance from the path particle, whereas e(t) is the cross-
track error. The relationship between the ship’s position
p(t) = [x(t), y(t)]� and the error variables is

ε(t) =
[
s(t), e(t)

]�
= R�

t (χt(θ))(p(t)− pd(θ)) , (4)

where Rt ∈ R2×2 is equivalent to the upper-left block in
(2).
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Fig. 4. Geometric variables used in guidance.

The path-tangential angle is χt(θ), and the ship’s course is
χ(t). A control law is applied to drive e(t) asymptotically
to 0: χd(t) = χt(θ)+χr(t), where χd(t) is the desired course

angle, and χr(t) = arctan
(
− e(t)

∆

)
. The tuning parameter

∆ > 0 may be interpreted as the ship’s lookahead distance.
Finally, dynamics are added to the path parameter to drive
it forwards:

θ̇ =
U(t) cos(χ(t)− χt(θ)) + γs(t)√

x′
d(θ)

2 + y′d(θ)
2

, (5)

where U(t) =
√
u(t)2 + v(t)2 and γ > 0 is a tuning

parameter deciding the particle’s convergence speed to
the ship’s position. Prime notation for derivatives is used:
x′
d(θ) =

dxd

dθ (θ).

3.3 Surge and heading controller

The low-level controller is also retrieved from Breivik and
Fossen (2004). A short summary of the control law follows:

τ = Mα̇+N(ν)α−R(ψ)�b̂− hz1 −K2z2, (6)

where

N(ν) = C(ν) +D(ν)

α = [ud, α2,−k1z1 + rd]
�

˙̂
b = ΓR(ψ)z2

h = [0, 0, 1]�

z1 = ψ − ψd

z2 = ν −α .

The variable α2 is determined by a differential equa-
tion generated by the dynamic constraint τ2 = Y =
0. The constant parameter k1 > 0 and matrix K2 =
diag{k21, k22, k23} > 0 are tuning parameters of the con-
troller. The constant matrix Γ > 0 tunes the convergence

rate of the estimator b̂, which estimates disturbances in
the NED frame.

The reference signal for surge speed is uref(θ(t)), which
is the planned surge speed at the path parameter θ(t)
mentioned in Section 4. A reference model is used to
generate smooth derivatives:

(ud/uref)(s) = ω2
n,u/(s

2 + 2ζuωn,us+ ω2
n,u), (8)

which is converted to a state-space representation, with
saturation on the acceleration u̇d(t).

The reference signal for heading is retrieved from the
guidance controller: ψref = χd(t) − β(t), where β(t) is

the ship’s sideslip angle β(t) = arcsin v(t)
U(t) . The reference

model in yaw is defined by the transfer function

ψd

ψref
(s) =

ω3
n,ψ

(s+ ωn,ψ)(s2 + 2ζψωn,ψs+ ω2
n,ψ)

, (9)

which is converted to a state-space representation, with
saturation on angular acceleration and velocity ṙd(t) and
rd(t).

4. PATH PLANNING BY PSEUDOSPECTRAL
OPTIMAL CONTROL

PS methods may be used for solving the HJB equation,
but for optimal control, a different approach is commonly
used. The PS method discussed in this paper instead
approximates the states and inputs as Lagrange poly-
nomials, which are subsequently discretized. A discrete
representation of the dynamics is applied as constraints,
in addition to the equality and inequality constraints. The
new optimization problem is then solved using a spectral
algorithm (Gong et al., 2009).

Optimization-based complete path methods are based on
the OCP:

Minimize
J(x(·),u(·), tf ) =

E(x(tf ), tf ) +

∫ tf

t0

F (x(t),u(t), tf ) dt
(10a)

subject to

ẋ(t) = f(x(t),u(t), t) (10b)

g(x(t),u(t), t) ≤ 0 (10c)

h(x(t),u(t), t) = 0 (10d)

e(x(t0),x(tf ), t0, tf ) = 0 , (10e)

where x(t) is the full state vector of the dynamic system,
and u(t) is the control vector. The sense of optimality is
defined in the cost function (10a), and the dynamics of the
vehicle are included in the OCP as (10b). Path constraints
(static obstacles), velocity and control constraints may be
represented as (10c). Equality constraints may be included
as (10d), and start and end conditions may be represented
as (10e).

The cost function used in path planning is energy-based,
and is defined as the work done by the actuators on the
water:

J(x,u, tf ) =

∫ tf

t0

(
|Xur|+|Y vr|+|Nr|

)
dt . (11)

Since this energy function contains the non-smooth ab-
solute value function, an approximation of this function
is used for numerical efficiency:

∣∣(·)
∣∣ =

√
(·)2 + c , where

c > 0 is a small constant, in our case c = 0.001.

The map where we perform path planning is defined by
path constraints. For this we use elliptic shapes for virtual
obstacles. Obstacle i is represented as

ci(η) = ((x− xi)/xs,i)
2 + ((y − yi)/ys,i)

2 ≥ 1 . (12)

The center of the ellipse is xi and yi, and the latitudinal
and longitudinal radii are xs,i and ys,i. To avoid large
numbers which may lead to numerical issues when the
ship is far away from the obstacle, we take the logarithm
of both sides of the inequality (12). The planning is in
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Fig. 5. Map used in path planning. The map shows virtual
obstacles as dotted lines enclosing the actual obstacle
with a safety margin.

this paper performed with two elliptic obstacles, with the
parameters x1 = 35m, y1 = 20m, xs,1 = 25m, ys,1 = 6m;
and x2 = 0m, y2 = 40m, xs,2 = 25m, ys,2 = 6m. These
virtual obstacles should enclose actual obstacles in the map
with a safety margin.

In addition to the elliptic obstacles, the search space is
limited to the box x ∈ [0, 35]m, y ∈ [0, 60]m. This gives
the map depicted in Fig. 5. The figure also shows the
ship’s start and goal locations as a blue diamond and red
cross, respectively. Their positions are: p0 = [30, 5]� m
and pf = [5, 55]� m. The actuator values are limited to
Fmin ≤ F (t) ≤ Fmax where Fmin = 0 and Fmax = 8N, and
−δmax ≤ δ(t) ≤ δmax where δmax = 30◦. The start time is
t0 = 0, and the final time tf is limited to 0 ≤ tf ≤ 150 s.

To generate a path with this method, the ship’s pose η(t)
and speed ν(t) from (1) are changed to desired states,
ηd(θ) and νd(θ), respectively. Additionally, the time vari-
able t in the OCP is changed to the path parameter θ. All
related information retrieved from the planning will have
the subscript (·)d, except for the planned course, which will
be called the tangential course angle and have the notation
χt(θ), and the reference surge speed, which will have the
notation uref(θ). The planning information used in simula-
tion is the desired position pd(θ) = [xd(θ), yd(θ)]

� and its
derivative, the path-tangential angle χt(θ) and the desired
surge speed uref(θ).

The resulting OCP is solved using a software package for
MATLAB: DIDO for PS optimal control by Elissar Global,
on a computer with an Intel Core i7-7700HQ processor.

5. PLANNING AND SIMULATION RESULTS

Two different scenarios are explored in the results:

Scenario 1: (S1) Path planned using no current informa-
tion.

Scenario 2: (S2) Path planned using correct current in-
formation.

After planning, both scenarios are simulated using a south-
to-north current: Vx = 0.1m s−1 and Vy = 0, equivalent
to 0.84m s−1 for the full-scale ship. The ocean current

Fig. 6. Planned (PL) and closed-loop simulated (CL) paths
from the two scenarios. The red arrow shows the
resultant current direction.

Fig. 7. Differences in speed between S1 and S2.

magnitude is a significant perturbation to the ship, and
the direction is selected to be perpendicular to the main
direction of travel. This is to demonstrate that using ocean
current information in planning reduces the energy spent
in transit. Closed-loop simulations are performed with the
controllers detailed in Section 3. The results from planning
are labeled PL, while the closed-loop simulation results are
labeled CL.

The scenarios take place in the map shown in Fig. 5. The
initial velocity is set to ν0 = [0.2, 0, 0]� ms−1 (1.7m s−1

for the full-scale ship). The initial and final headings are
free, but otherwise, the start and end conditions are set as
mentioned in Section 4. The OCP solutions of S1 and S2
were found in 25 s and 21 s, respectively.

Figure 6 shows both the planned and simulated paths of
S1 and S2. The planned paths are quite similar, however,
especially when the ship maneuvers along the current
direction, the path differs. This is also evident from Fig. 7,
which shows significant speed differences between the
scenarios after 50 s. These differences lead to significant
changes in energy consumption between the two scenarios.
An 8% reduction of consumed energy is seen in Table 1,
with the same time to completion tf .

Table 1. Scenario results.

Scenario 1 Scenario 2

PL J 124 J 153 J
CL J 164 J 151 J
PL tf 150 s 150 s
CL tf 152 s 152 s

Figure 8 shows performance metrics for the two scenarios:
On top is shown the cross-track error e(t) from (4), while
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Fig. 5. Map used in path planning. The map shows virtual
obstacles as dotted lines enclosing the actual obstacle
with a safety margin.
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and pf = [5, 55]� m. The actuator values are limited to
Fmin ≤ F (t) ≤ Fmax where Fmin = 0 and Fmax = 8N, and
−δmax ≤ δ(t) ≤ δmax where δmax = 30◦. The start time is
t0 = 0, and the final time tf is limited to 0 ≤ tf ≤ 150 s.
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ηd(θ) and νd(θ), respectively. Additionally, the time vari-
able t in the OCP is changed to the path parameter θ. All
related information retrieved from the planning will have
the subscript (·)d, except for the planned course, which will
be called the tangential course angle and have the notation
χt(θ), and the reference surge speed, which will have the
notation uref(θ). The planning information used in simula-
tion is the desired position pd(θ) = [xd(θ), yd(θ)]

� and its
derivative, the path-tangential angle χt(θ) and the desired
surge speed uref(θ).

The resulting OCP is solved using a software package for
MATLAB: DIDO for PS optimal control by Elissar Global,
on a computer with an Intel Core i7-7700HQ processor.

5. PLANNING AND SIMULATION RESULTS

Two different scenarios are explored in the results:

Scenario 1: (S1) Path planned using no current informa-
tion.

Scenario 2: (S2) Path planned using correct current in-
formation.

After planning, both scenarios are simulated using a south-
to-north current: Vx = 0.1m s−1 and Vy = 0, equivalent
to 0.84m s−1 for the full-scale ship. The ocean current
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from the two scenarios. The red arrow shows the
resultant current direction.

Fig. 7. Differences in speed between S1 and S2.
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the direction is selected to be perpendicular to the main
direction of travel. This is to demonstrate that using ocean
current information in planning reduces the energy spent
in transit. Closed-loop simulations are performed with the
controllers detailed in Section 3. The results from planning
are labeled PL, while the closed-loop simulation results are
labeled CL.

The scenarios take place in the map shown in Fig. 5. The
initial velocity is set to ν0 = [0.2, 0, 0]� ms−1 (1.7m s−1

for the full-scale ship). The initial and final headings are
free, but otherwise, the start and end conditions are set as
mentioned in Section 4. The OCP solutions of S1 and S2
were found in 25 s and 21 s, respectively.

Figure 6 shows both the planned and simulated paths of
S1 and S2. The planned paths are quite similar, however,
especially when the ship maneuvers along the current
direction, the path differs. This is also evident from Fig. 7,
which shows significant speed differences between the
scenarios after 50 s. These differences lead to significant
changes in energy consumption between the two scenarios.
An 8% reduction of consumed energy is seen in Table 1,
with the same time to completion tf .

Table 1. Scenario results.

Scenario 1 Scenario 2

PL J 124 J 153 J
CL J 164 J 151 J
PL tf 150 s 150 s
CL tf 152 s 152 s

Figure 8 shows performance metrics for the two scenarios:
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Fig. 8. Performance for both scenarios, both planned and
simulated.

the accumulated energy consumption J(t) from (11) is
shown below. The cross-track error stays within 0.2m for
both scenarios, which is satisfactory and corresponds to
1.7m for a full-scale ship. The simulated energy consump-
tion in S1 surpasses the planned consumption, however,
since this scenario is planned with no current information,
the discrepancy is to be expected. In S2, the simulated
energy consumption stays close to the planned consump-
tion, and is significantly lower than in S1. An explanation
to why the simulated consumption is slightly lower than
planned may be that the integration method used in the
PS algorithm differs from the simulation.

A notable observation from the resulting paths seen in
Fig. 6 is that the planned (and the simulated) paths
cross the obstacle boundaries. This is common with the
PS method because the method only enforces constraints
at the collocation points, of which there are only 30 in
this case. One solution to avoid this is to increase the
number of nodes at the expense of computational time,
while another is to create the obstacle boundary with a
safety margin outside the actual obstacle. The latter is
preferable, because these are areas that are not desirable
to enter.

6. CONCLUSIONS AND FUTURE WORK

Amethod for finding an energy-optimized path using pseu-
dospectral optimal control has been proposed. Through
closed-loop simulation with a guidance controller, this
method has been verified to produce feasible and energy-
efficient paths for a given underactuated 3-DOF ship
model. Additionally, using up-to-date ocean current in-
formation helps to reduce energy spent. The method is
suitable to use in combination with arbitrary curved-
path guidance algorithms and low-level controllers. Several
COLAV methods are also suitable to use with the path-
planning method. Moreover, an overview of several path-
planning methods is provided.

Exploring how the results from the PS path-planning
method compares to other traditional roadmap planners
is suggested for further work. Integrating the method
with a complete COLAV system is also desirable, both in

simulation and in real-world testing. Combining a COLAV
system with regular re-planning might be necessary to
retain optimality when the ship strays off course.
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1. INTRODUCTION

Motivated by potential for reduced costs, as well as safer
and more environmentally friendly operations, technol-
ogy for autonomous surface vehicles (ASVs) is being de-
veloped at a rapid pace. Several commercial actors are
spearheading the search for solutions for safe, collision-
free and reliable autonomous operations. Rolls-Royce and
Finferries demonstrated the world’s first autonomous car
ferry “Falco” in 2018 (Jallal, 2018), which navigated au-
tonomously between two ports in Finland by combining
advanced sensor technology and collision avoidance algo-
rithms.

A prerequisite for safe and efficient operation is a well-
functioning path or trajectory planning method. Such
a method is responsible for providing the ASV with a
safe trajectory that avoids static obstacles such as land
and shallow waters. Depending on the type of operation,
one might want to optimize the trajectory for various
objectives, such as energy efficiency, speed or trajectory
length.

Numerous path and trajectory planning algorithms have
been researched and are available for marine applications.
One may categorize these planning algorithms as being
roadmap-based or optimization-based. Figure 1 gives an
overview of the categorization of some planning algorithm
types. Roadmap methods are based on exploring points
in the geometric space in order to build a path between
the start and goal positions. There are two subcategories
in roadmap methods. Combinatorial methods decompose
an obstacle map using a preferred strategy, and perform a
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search in the resulting graph. The decomposition strategies
include e.g. uniform grids, Voronoi diagrams and visibility
graphs. The combinatorial methods explore the entire ge-
ometric space. The graph search is often performed using
A�, which is an efficient and well-known search algorithm
widely used to solve path planning problems (Hart et al.,
1968). A� guarantees to find the shortest path when using
an admissible heuristic function. Hybrid A� extends the A�

algorithm by generating dynamic trajectories to connect
nodes, thus adding dynamic information to the search
(Dolgov et al., 2010). As opposed to combinatorial meth-
ods, sampling-based methods randomly explores points in
the map to build a path towards the goal. Probabilistic
roadmap (PRM) is a sampling-based planning method
that draws samples from the configuration space and con-
nects them using a local planner (Kavraki et al., 1996). A
graph search algorithm is applied to find the minimum cost
path from start to goal in the resulting graph. Rapidly-
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exploring random tree (RRT) is another sampling-based
method which calculates input trajectories between ran-
domly sampled points and connects them in a tree until
the start and goal positions are connected (LaValle, 1998).
Although RRT uses a cost function, the method is not
optimal and will lock into the first connection between
start and goal. Various flavors of RRT are developed to
amend this, e.g. RRT� (Karaman and Frazzoli, 2011).
This method continuously performs tree rewiring and has
probabilistic completeness, but converges slowly.

The other group of planning methods contains algorithms
based on optimal control. This group may further be
divided into analytical and approximate methods. Ana-
lytical methods such as Pontryagin’s principle are only
able to find solutions in very simple cases and are gener-
ally unpractical. Approximate methods such as e.g. pseu-
dospectral optimal control (Bitar et al., 2018; Ross and
Karpenko, 2012) are highly sensitive to initial guesses of
the solution and will converge to a local optimum close
to this guess. Without a good initial guess, they also
experience long run times and are sensitive to problem
dimensionality.

Zhang et al. (2018) plan trajectories for parking au-
tonomous cars by combining hybrid A� with an optimal
control-based method. Motivated by the same goals of
exploiting the strengths and mitigate the weaknesses of
optimal control-based algorithms, we here attempt to solve
the long-term trajectory planning problem for ASVs as
a transcribed optimal control problem (OCP), and warm
start the solver using the smoothed solution of an A�

geometric planner. In this three-step pipelined approach,
the A� planner swiftly provides a set of waypoints repre-
senting the shortest path as Step 1. This path is converted
into a full state trajectory by adding artificial and nearly
feasible temporal information as Step 2. Step 3 takes this
trajectory and uses it as the initial guess for an OCP
solver, which finds an optimized trajectory near the glob-
ally shortest path. The structure of this pipelined concept
is illustrated in Figure 2. The method is an off-line global
planner, which assumes that information about the map
and environment is known a priori.

The rest of this paper is organized as follows: Section 2
presents the mathematical model of the ASV used in sim-
ulations and planning. Finding the waypoints describing
the shortest path with A� is described in Section 3, and
Section 4 explains how the A� solution is converted to a
trajectory. Section 5 shows how the OCP is transcribed to
an nonlinear program (NLP), which yields an optimized
trajectory when solved. Simulation scenarios and results
are presented in Section 6, while Section 7 concludes the
paper.

2. ASV MODELING AND OBSTACLES

In (Loe, 2008), a simple nonlinear 3-degree-of-freedom ship
model is identified to approximate the dynamics of the
ASV Viknes 830. Without loss of generality for the method
described in this paper, we use that model to perform
trajectory planning. The model has the form

η̇ = R(ψ)ν (1a)

Mν̇ +C(ν)ν +D(ν)ν = τ (u) . (1b)

The pose vector η = [x, y, ψ]� ∈ R2×S contains the ASV’s
position and heading angle in the Earth-fixed North East
Down (NED) frame. The velocity vector ν = [u, v, r]� ∈
R3 contains the ASV’s body-fixed velocities: surge, sway
and yaw rate, respectively. The rotation matrix R(ψ)
transforms the body-fixed velocities to NED:

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 . (2)

The matrix M ∈ R3×3 represents system inertia, C(ν) ∈
R3×3 Coriolis and centripetal effects, and D(ν) ∈ R3×3

represents damping effects. The ASV is controlled by the
control vector u = [X,N ]� ∈ R2, which contains surge
force and yaw moment. The control vector is mapped to
a force vector τ (u) = [X, 0, N ]�. The ASV’s states are
collected in the vector x = [x, y, ψ, u, v, r]�, and we collect
the dynamic model (1) in the following compact form for
notational ease in the remainder of the paper:

ẋ = f(x,u) =

[
R(ψ)ν

M−1
(
−C(ν)ν −D(ν)ν + τ (u)

)
]
. (3)

3. STEP 1: A� PATH PLANNER

To quickly find the global shortest collision-free path be-
tween a start and goal position, we use an A� implemen-
tation on a uniformly decomposed grid. The A� imple-
mentation is standard, and details may be found in e.g.
(Hart et al., 1968). The search algorithm looks for collision-
free paths between nodes in the uniform grid, and uses
Euclidean distance as cost and heuristic functions.

The decomposition of the map affects the solution space
and the run time for Step 1. Using a uniform grid with grid
size ∆d > 0 too large will take paths going through narrow
passages away from the solution space, and the desired
shortest path may not be found. A smaller grid size will
explore more options, but requires more evaluation, giving
a longer run time. This uniform grid is in our case chosen
for simplicity, however exploring other decompositions
such as Voronoi diagrams or a non-uniform grid might be
desirable for performance reasons.

4. STEP 2: TRAJECTORY GENERATION

In order to use the shortest path generated by Step 1 as
an initial guess for the OCP, we convert it to a trajectory
based on straight segments and circle arcs using a nominal
forward velocity unom > 0. The trajectory generation
consists of three sub-steps: waypoint reduction, waypoint
connection, and adding dynamic information.
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exploring random tree (RRT) is another sampling-based
method which calculates input trajectories between ran-
domly sampled points and connects them in a tree until
the start and goal positions are connected (LaValle, 1998).
Although RRT uses a cost function, the method is not
optimal and will lock into the first connection between
start and goal. Various flavors of RRT are developed to
amend this, e.g. RRT� (Karaman and Frazzoli, 2011).
This method continuously performs tree rewiring and has
probabilistic completeness, but converges slowly.

The other group of planning methods contains algorithms
based on optimal control. This group may further be
divided into analytical and approximate methods. Ana-
lytical methods such as Pontryagin’s principle are only
able to find solutions in very simple cases and are gener-
ally unpractical. Approximate methods such as e.g. pseu-
dospectral optimal control (Bitar et al., 2018; Ross and
Karpenko, 2012) are highly sensitive to initial guesses of
the solution and will converge to a local optimum close
to this guess. Without a good initial guess, they also
experience long run times and are sensitive to problem
dimensionality.

Zhang et al. (2018) plan trajectories for parking au-
tonomous cars by combining hybrid A� with an optimal
control-based method. Motivated by the same goals of
exploiting the strengths and mitigate the weaknesses of
optimal control-based algorithms, we here attempt to solve
the long-term trajectory planning problem for ASVs as
a transcribed optimal control problem (OCP), and warm
start the solver using the smoothed solution of an A�

geometric planner. In this three-step pipelined approach,
the A� planner swiftly provides a set of waypoints repre-
senting the shortest path as Step 1. This path is converted
into a full state trajectory by adding artificial and nearly
feasible temporal information as Step 2. Step 3 takes this
trajectory and uses it as the initial guess for an OCP
solver, which finds an optimized trajectory near the glob-
ally shortest path. The structure of this pipelined concept
is illustrated in Figure 2. The method is an off-line global
planner, which assumes that information about the map
and environment is known a priori.

The rest of this paper is organized as follows: Section 2
presents the mathematical model of the ASV used in sim-
ulations and planning. Finding the waypoints describing
the shortest path with A� is described in Section 3, and
Section 4 explains how the A� solution is converted to a
trajectory. Section 5 shows how the OCP is transcribed to
an nonlinear program (NLP), which yields an optimized
trajectory when solved. Simulation scenarios and results
are presented in Section 6, while Section 7 concludes the
paper.

2. ASV MODELING AND OBSTACLES

In (Loe, 2008), a simple nonlinear 3-degree-of-freedom ship
model is identified to approximate the dynamics of the
ASV Viknes 830. Without loss of generality for the method
described in this paper, we use that model to perform
trajectory planning. The model has the form

η̇ = R(ψ)ν (1a)

Mν̇ +C(ν)ν +D(ν)ν = τ (u) . (1b)

The pose vector η = [x, y, ψ]� ∈ R2×S contains the ASV’s
position and heading angle in the Earth-fixed North East
Down (NED) frame. The velocity vector ν = [u, v, r]� ∈
R3 contains the ASV’s body-fixed velocities: surge, sway
and yaw rate, respectively. The rotation matrix R(ψ)
transforms the body-fixed velocities to NED:

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 . (2)

The matrix M ∈ R3×3 represents system inertia, C(ν) ∈
R3×3 Coriolis and centripetal effects, and D(ν) ∈ R3×3

represents damping effects. The ASV is controlled by the
control vector u = [X,N ]� ∈ R2, which contains surge
force and yaw moment. The control vector is mapped to
a force vector τ (u) = [X, 0, N ]�. The ASV’s states are
collected in the vector x = [x, y, ψ, u, v, r]�, and we collect
the dynamic model (1) in the following compact form for
notational ease in the remainder of the paper:

ẋ = f(x,u) =

[
R(ψ)ν

M−1
(
−C(ν)ν −D(ν)ν + τ (u)

)
]
. (3)

3. STEP 1: A� PATH PLANNER

To quickly find the global shortest collision-free path be-
tween a start and goal position, we use an A� implemen-
tation on a uniformly decomposed grid. The A� imple-
mentation is standard, and details may be found in e.g.
(Hart et al., 1968). The search algorithm looks for collision-
free paths between nodes in the uniform grid, and uses
Euclidean distance as cost and heuristic functions.

The decomposition of the map affects the solution space
and the run time for Step 1. Using a uniform grid with grid
size ∆d > 0 too large will take paths going through narrow
passages away from the solution space, and the desired
shortest path may not be found. A smaller grid size will
explore more options, but requires more evaluation, giving
a longer run time. This uniform grid is in our case chosen
for simplicity, however exploring other decompositions
such as Voronoi diagrams or a non-uniform grid might be
desirable for performance reasons.

4. STEP 2: TRAJECTORY GENERATION

In order to use the shortest path generated by Step 1 as
an initial guess for the OCP, we convert it to a trajectory
based on straight segments and circle arcs using a nominal
forward velocity unom > 0. The trajectory generation
consists of three sub-steps: waypoint reduction, waypoint
connection, and adding dynamic information.
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4.1 Waypoint reduction

Algorithm 1 is employed to reduce the A� path from
Step 1 to a minimum number of waypoints. The algorithm
outputs a reduced path as an ordered set of waypoints
P =

{
pk ∈ R2 | k = 1, . . . , Nr

}
where Nr is the number

of waypoints. The A� waypoints are denoted p�
k for k =

1, . . . , N�, ordered from start to goal, where N� is the
number of waypoints.

Algorithm 1 Waypoint reduction algorithm.

1: procedure Reduce
2: i ← N�; P ← InitializePath(p�

i )
3: do
4: for j = 1 to i− 1 do
5: if ¬Collision(p�

i ,p
�
j ) then

6: AddPoint(P,p�
j )

7: i ← j
8: break
9: while i > 1

4.2 Waypoint connection

The waypoints in the reduced path pk ∈ P are connected
with straight segments and circle arcs to increase geomet-
ric feasibility. This is done by calculating the parameters
of a circle based on a radius of acceptance Racc > 0. The
result is a path with discontinuous turn rate since the turn
rate of such a curve will experience jumps at the beginning
and end of the circle arcs. However, if the circle arcs have a
turning radius Rturn > 0 larger than the minimum turning
radius of the ASV Rturn,min > 0, the resulting geometry of
the path can be followed tightly. Additional information
about such a path waypoint connection is available in
(Fossen, 2011).

For each straight segment, the turn rate is 0. For the circle
arcs, the turn rate is unom/Rturn,k, where Rturn,k > 0 is the
turning radius for arc k. The tangent angles for the straight
segments are γk ∈ S, and for the circle arcs, the tangent
angles move between γk and γk+1, depending on how far
along the curve it is evaluated.

Using this information, we can concatenate a path con-
sisting of alternations of straights and circle arcs, and
construct a path function parametrized by length with
position

pg : [0, Lpath] → R2 , (4a)

where Lpath > 0 is the total length of the path. Func-
tions for path tangential angle and turn rate are also
constructed:

γg : [0, Lpath] → S , and (4b)

rg : [0, Lpath] → R , (4c)

respectively. These functions are subscripted by (·)g to
indicate that they are based on the path geometry.

4.3 Adding temporal information

After obtaining an arc-length parametrized path we add
temporal information by assuming a constant surge veloc-
ity unom, a sway velocity v of zero, and piecewise constant
yaw rate r. The nominal surge velocity is determined by

unom =
Lpath

tmax
, where tmax > 0 is the tunable time to

complete the trajectory, which is valid on t ∈ [0, tmax]. The
distance traveled will be L(t) = unom ·t, and the states will
then have trajectories

[
xw(t) yw(t)

]�
= pg(L(t)) (5a)

ψw(t) = γg(L(t)) (5b)

uw(t) = unom (5c)

vw(t) = 0 (5d)

rw(t) = rg(L(t)) . (5e)

The input trajectory is set to the constant values

τX,w(t) = τX,ss, τN,w(t) = 0 (6)

where τX,ss ∈ R is calculated as the steady-state value
required to maintain nominal forward velocity unom. The
trajectories are subscripted by (·)w to indicate that they
will be used for warm-starting the OCP in Step 3.

The resulting trajectory is not dynamically feasible ac-
cording to (1) but will be used as an initial guess for the
OCP solver, described in the next section. The trajectory
is collected in the following vectors:

xw(t) =




xw(t)
yw(t)
ψw(t)
uw(t)
vw(t)
rw(t)




uw(t) =

[
τX,w(t)
τN,w(t)

]
∀ t ∈ [0, tmax] . (7)

The goal of the method described in this paper is to find
a trajectory of states and inputs that minimizes a cost
functional J(x(·),u(·)):

J(x(·),u(·)) =
∫ tmax

0

F (x(τ),u(τ)) dτ , (8)

which is dependent on a cost-to-go function F (x,u). This
function may be selected to find e.g. the trajectory that
minimizes energy usage. The initial guess for the cost
trajectory Jw(·) at time t is determined by

Jw(t) =

∫ t

0

F (xw(τ),uw(τ)) dτ . (9)

5. STEP 3: OPTIMAL CONTROL

Optimal control is used to make feasible and optimize the
trajectory provided by Step 2. An OCP is formulated as

min
x(·),u(·)

∫ tmax

0

F (x(τ),u(τ)) dτ (10a)

subject to

ẋ(t) = f(x(t),u(t)) ∀t ∈ [0, tmax] (10b)

h(x(t),u(t)) ≤ 0 ∀t ∈ [0, tmax] (10c)

e(x(0),x(tmax)) = 0 . (10d)

The solution of this OCP gives a trajectory of states x(·)
and inputs u(·) that minimizes (8).

5.1 Cost functional

The cost functional described in (8) is dependent on the
cost-to-go function F (x,u). This function may be adjusted
and structured according to the desired sense of optimality.
Our aim is a trajectory which is optimized for energy
usage, as well as performing readily observable maneuvers,
as is required by International Regulations for Preventing

Collisions at Sea (COLREGs) Rule 8. This results in a
two-part cost-to-go function:

F (x,u) = KeFe(x,u) +KtFt(x) , (11)

with tuning parameters Ke,Kt > 0. The first term penal-
izes energy usage and describes work done by the actua-
tors:

Fe(x,u) = |u · τX |+|r · τN | . (12)

The second term is a disproportionate penalization on
turn-rate r, which prefers readily observable turns per-
formed with high turn-rate. The function has the form

Ft(x) =

(
atr

2 + (1− e−
r2

bt )

)
1

Ft,max
, (13)

where

Ft,max = atr
2
max + (1− e−

r2max
bt ) , (14)

and rmax > 0 is the ASV’s maximum yaw rate. The tuning
parameters at > 0 and bt > 0 shape the penalization to
prefer higher or lower turn-rate, which is an idea obtained
from (Eriksen and Breivik, 2017).

5.2 Obstacles

Obstacles are encoded as elliptic inequalities in (10c). The
basis for one elliptic obstacle is

(
x− xc

xa

)2

+

(
y − yc
ya

)2

≥ 1 , (15)

where xc and yc describe the ellipse center and xa and ya
describe the sizes of the two elliptic axes. The ellipses are
rotated by α, which is the angle between the global x-axis
and the direction of xa. The resulting inequality becomes

go(x, y, xc, yc, xa, ya, α) =

− log

[(
(x− xc) cosα+ (y − yc) sinα

xa

)2

+

(−(x− xc) sinα+ (y − yc) cosα

ya

)2

+ ε

]

+ log(1 + ε) ≤ 0 , (16)

where a small value ε > 0 is added to deal with feasibility
issues as x → xc and y → yc, and the logarithmic function
is used to reduce numerical sizes, without changing the
inequality. The same function is used in (Bitar et al., 2019).

5.3 NLP transcription

A multiple-shooting approach is used to transcribe the
OCP into an NLP:

min
w

φ(w) (17a)

subject to

glb ≤ g(w) ≤ gub (17b)

wlb ≤ w ≤ wub . (17c)

The dynamics are discretized into Nocp steps in time, with
step length h = tmax/Nocp. The decision variables w consist
of the state variables xk = x(tk), k = 0, 1, . . . , Nocp, the
accumulated costs Jk = J(tk), k = 0, 1, . . . , Nocp, where

J(t) =

∫ t

0

F (x(τ),u(τ)) dτ , (18)

and the control inputs uk = u(tk), k = 0, 1, . . . , Nocp − 1:

w =
[
z�
0 u�

0 z�
1 . . . u�

Nocp−1 z�
Nocp

]�
, (19)

where zk = [x�
k , Jk]

�.

The cost function (17a) approximates (10a) and is

φ(w) = JNocp
. (20)

The constraints (17b) are used to satisfy shooting con-
straints, as well as the collision avoidance constraints. For
the shooting constraints, we construct a discrete repre-
sentation of the dynamics (10b) as well as the integral
(18) using a RK4 scheme with Kocp steps. We define
the discrete version of (10b) augmented with the time
derivative of (18) as

zk+1 = F (zk,uk) , (21)

and construct the shooting constraints

gs(w) =




z1 − F (z0,u0)
...

zNocp
− F (zNocp−1,uNocp−1)


 , (22)

with associated lower and upper bounds

gs,lb = gs,ub = 0(n+1)·Nocp
. (23)

For obstacles i = 1, 2, . . . , No, we avoid collisions by
satisfying the inequality constraint

go(xk, yk, xc,i, yc,i, ai, bi, αi) ≤ 0 , (24)

where xk = x(tk) and yk = y(tk) for k = 1, 2, . . . , Nocp.
We create a vector for all our obstacles in a single time
step:

ḡo(xk) =


go(xk, yk, xc,1, yc,1, a1, b1, α1)
go(xk, yk, xc,2, yc,2, a2, b2, α2)

...
go(xk, yk, xc,No

, yc,No
, aNo

, bNo
, αNo

)


 .

(25)

Obstacle constraints for all time steps are gathered in

go(w) =




ḡo(x0)
ḡo(x1)

...
ḡo(xNocp−1)


 (26)

with associated lower and upper bounds

go,lb = −∞No·Nocp
and go,ub = 0No·Nocp

. (27)

The nonlinear inequality constraints (17b) are completed
as

glb =

[
gs,lb
go,lb

]
, g(w) =

[
gs(w)
go(w)

]
, gub =

[
gs,ub
go,ub

]
. (28)

The decision variable bounds (17c) are used to satisfy
constant state and input constraints, as well as boundary
conditions (10d). The bounds are

w�
lb =[

z�
s,lb u�

lb z�
lb u�

lb . . . u�
lb z�

f,lb

] (29a)

w�
ub =[

z�
s,ub u�

ub z�
ub u�

ub . . . u�
ub z�

f,ub

]
,

(29b)
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Collisions at Sea (COLREGs) Rule 8. This results in a
two-part cost-to-go function:

F (x,u) = KeFe(x,u) +KtFt(x) , (11)

with tuning parameters Ke,Kt > 0. The first term penal-
izes energy usage and describes work done by the actua-
tors:

Fe(x,u) = |u · τX |+|r · τN | . (12)

The second term is a disproportionate penalization on
turn-rate r, which prefers readily observable turns per-
formed with high turn-rate. The function has the form

Ft(x) =

(
atr

2 + (1− e−
r2

bt )

)
1

Ft,max
, (13)

where

Ft,max = atr
2
max + (1− e−

r2max
bt ) , (14)

and rmax > 0 is the ASV’s maximum yaw rate. The tuning
parameters at > 0 and bt > 0 shape the penalization to
prefer higher or lower turn-rate, which is an idea obtained
from (Eriksen and Breivik, 2017).

5.2 Obstacles

Obstacles are encoded as elliptic inequalities in (10c). The
basis for one elliptic obstacle is

(
x− xc

xa

)2

+

(
y − yc
ya

)2

≥ 1 , (15)

where xc and yc describe the ellipse center and xa and ya
describe the sizes of the two elliptic axes. The ellipses are
rotated by α, which is the angle between the global x-axis
and the direction of xa. The resulting inequality becomes

go(x, y, xc, yc, xa, ya, α) =

− log

[(
(x− xc) cosα+ (y − yc) sinα

xa

)2

+

(−(x− xc) sinα+ (y − yc) cosα

ya

)2

+ ε

]

+ log(1 + ε) ≤ 0 , (16)

where a small value ε > 0 is added to deal with feasibility
issues as x → xc and y → yc, and the logarithmic function
is used to reduce numerical sizes, without changing the
inequality. The same function is used in (Bitar et al., 2019).

5.3 NLP transcription

A multiple-shooting approach is used to transcribe the
OCP into an NLP:

min
w

φ(w) (17a)

subject to

glb ≤ g(w) ≤ gub (17b)

wlb ≤ w ≤ wub . (17c)

The dynamics are discretized into Nocp steps in time, with
step length h = tmax/Nocp. The decision variables w consist
of the state variables xk = x(tk), k = 0, 1, . . . , Nocp, the
accumulated costs Jk = J(tk), k = 0, 1, . . . , Nocp, where

J(t) =

∫ t

0

F (x(τ),u(τ)) dτ , (18)

and the control inputs uk = u(tk), k = 0, 1, . . . , Nocp − 1:

w =
[
z�
0 u�

0 z�
1 . . . u�

Nocp−1 z�
Nocp

]�
, (19)

where zk = [x�
k , Jk]

�.

The cost function (17a) approximates (10a) and is

φ(w) = JNocp
. (20)

The constraints (17b) are used to satisfy shooting con-
straints, as well as the collision avoidance constraints. For
the shooting constraints, we construct a discrete repre-
sentation of the dynamics (10b) as well as the integral
(18) using a RK4 scheme with Kocp steps. We define
the discrete version of (10b) augmented with the time
derivative of (18) as

zk+1 = F (zk,uk) , (21)

and construct the shooting constraints

gs(w) =




z1 − F (z0,u0)
...

zNocp
− F (zNocp−1,uNocp−1)


 , (22)

with associated lower and upper bounds

gs,lb = gs,ub = 0(n+1)·Nocp
. (23)

For obstacles i = 1, 2, . . . , No, we avoid collisions by
satisfying the inequality constraint

go(xk, yk, xc,i, yc,i, ai, bi, αi) ≤ 0 , (24)

where xk = x(tk) and yk = y(tk) for k = 1, 2, . . . , Nocp.
We create a vector for all our obstacles in a single time
step:

ḡo(xk) =


go(xk, yk, xc,1, yc,1, a1, b1, α1)
go(xk, yk, xc,2, yc,2, a2, b2, α2)

...
go(xk, yk, xc,No

, yc,No
, aNo

, bNo
, αNo

)


 .

(25)

Obstacle constraints for all time steps are gathered in

go(w) =




ḡo(x0)
ḡo(x1)

...
ḡo(xNocp−1)


 (26)

with associated lower and upper bounds

go,lb = −∞No·Nocp
and go,ub = 0No·Nocp

. (27)

The nonlinear inequality constraints (17b) are completed
as

glb =

[
gs,lb
go,lb

]
, g(w) =

[
gs(w)
go(w)

]
, gub =

[
gs,ub
go,ub

]
. (28)

The decision variable bounds (17c) are used to satisfy
constant state and input constraints, as well as boundary
conditions (10d). The bounds are

w�
lb =[

z�
s,lb u�

lb z�
lb u�

lb . . . u�
lb z�

f,lb

] (29a)

w�
ub =[

z�
s,ub u�

ub z�
ub u�

ub . . . u�
ub z�

f,ub

]
,

(29b)
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Table 1. Algorithm step explanation.

Step Parametrized
by

Dynamic
feasibility

Optimality

1 Length None, piecewise
linear

Shortest piecewise
linear path

2 Time Discontinuous
yaw rate r

None

3 Time Adheres to (1) Energy and
COLREGs Rule 8

where

zs,lb =
[
xs ys ψlb ur,s 0 0 0

]�
(30a)

zs,ub =
[
xs ys ψub ur,s 0 0 0

]�
(30b)

zf,lb =
[
xf yf ψlb ur,lb 0 0 0

]�
(30c)

zf,ub =
[
xf yf ψub ur,ub 0 0 ∞

]�
(30d)

zlb =
[
xlb ylb ψlb ur,lb vlb rlb 0

]�
(30e)

zub =
[
xub yub ψub ur,ub vub rub ∞

]�
(30f)

ulb =
[
Xlb Nlb

]�
(30g)

uub =
[
Xub Nub

]�
, (30h)

and where values subscripted with (·)s represent initial
conditions, (·)f the final conditions, and (·)lb and (·)ub
represent lower and upper bounds, respectively.

5.4 Initial guess and solver

The trajectories xw(·), uw(·) and Jw(·) from Section 5.4
are used as an initial guess to warm-start the NLP.
These trajectories are sampled at the time steps tk, k =
0, . . . , Nocp using interpolation, and shaped into the form
of the decision vector w (19), providing the initial guess
w0.

The NLP as defined by (17) is solved by the interior-point
method Ipopt (Wächter and Biegler, 2005) using Casadi
(Andersson et al., 2018) for Matlab.

5.5 Algorithm summary

The pipelined algorithm is summarized by the steps in
Table 1, where the properties of each step are highlighted
in terms of parametrization, feasibility according to (1)
and optimality.

While Step 1 gives the shortest piecewise linear path, it is
parametrized by length, and will not be dynamically feasi-
ble for warm-starting the OCP in Step 3. Step 2 connects
the waypoints with circle arcs and adds artificial dynamics,
which moves us closer to a dynamically feasible trajectory.
However, we lose the optimality of the shortest path with
this modification, and the yaw rate is discontinuous, which
is not possible according to (1). This trajectory is usable as
an initial guess for Step 3, which converges to a trajectory
that adheres to (1), and adds optimality according to
(10a).

6. SIMULATION SCENARIOS AND RESULTS

The scenario selected for testing our planning method is
Sjernarøy north of Stavanger, Norway, near 59.25◦N and

Table 2. Parameter values.

Param. Val. Param. Val.

∆d 50 [m] tmax 2200 [s]
Nocp 1000 Kocp 1
Ke 3.5 · 10−4 [J−1] Kt 800
at 112 [s2/rad2] bt 6.25 · 10−5 [rad2/s2]

Racc 10 [m] Rturn,min 24.5 [m]
rmax 40 [◦/s]

Fig. 3. Map showing the scenario used for planning, with
multiple elliptical obstacle boundaries surrounding
the small islands. Trajectories after steps 2 and 3 are
plotted. A cold-started solution is also included.

5.83◦E. A map of this scenario is shown in Figure 3.
The scenario has many possible routes between the start
and goal positions, including routes that go outside the
islands, and the narrow passage between the islands.
The narrow passage is the shortest path, and one could
claim that in the absence of disturbances, this shortest
path is also the most energy efficient. However, since the
problem of finding this path is non-convex and resembles
an integer problem, the OCP alone would struggle to
find the shortest path. We use the algorithm parameters
presented in Table 2.

To benchmark our planning algorithm, we apply it to the
scenario illustrated in Figure 3 in Matlab on a laptop
with an Intel Core i7-7700HQ processor. For comparison,
we also apply the OCP to the same scenario without
an initial guess, i.e. cold starting Step 3. Solutions from
these two methods will be dynamically feasible trajectories
with different routings to reach the goal position. We
use metrics of total cost and run times to compare the
algorithms. These metrics will also be applied to the
trajectory after Step 2. This trajectory is not dynamically
feasible according to (1) but can tell us how the smoothed
A� trajectory performs without optimization.

The resulting trajectories are plotted on top of the scenario
in Figure 3. We see that the initial guess goes through the
narrow passage between the islands and that the warm-

Fig. 4. Cost functional development along both the opti-
mized trajectory and the initial guess. The optimized
trajectory shows the cost split into contributions from
energy optimization and observable maneuvers. Also,
the cost of the cold-started OCP is denoted Jc.

started OCP finds a solution along the same route. As
expected, the cold-started OCP goes outside the passage
and finds a longer solution. A zoomed inset in Figure 3
shows how the OCP is able to produce readily observable
maneuvers by making sharp turns around the obstacle
boundaries. The inset also includes the grid used by Step 1.

Figure 4 shows us the cost functional develops along the
trajectories of the warm-started OCP (Ke ·Je+Kt ·Jt), the
initial guess (Jw) and the cold-started OCP (Jc). Table 3
shows the results at t = tmax for the three methods. We
see the scaled total cost as calculated by (10a) and (11), as
well as the energy cost calculated by (12). An improvement
of 30% is obtained by warm-starting the OCP compared
to cold starting it, explained by the shorter route selection.
The warm-started OCP is also able to improve on the
dynamically infeasible initial guess by 4%.

Table 3 also shows the run times of the three methods.
Since the initial guess alone does not perform any iterative
optimization, it has the lowest run time. The warm-started
method spends 27 s in total to find an optimized solution
to the path planning problem, including 21 s spent solving
the OCP. This is an improvement of 84% compared
to the cold-started OCP which spends approximately
three minutes. The run-time cost of obtaining a feasible
trajectory via optimal control is significant compared to
performing A� and dynamic generation alone.

The state trajectories for the initial guess and warm-
started OCP are shown in Figure 5. From the heading
angle plot, we see that ψ performs jumps of more than
30◦, which is a clear indication of intent to other vessels,
even in situations with restricted visibility (Cockcroft and
Lameijer, 2004). This is further observed in the yaw rate
state r, where instead of having long turns with low yaw
rate magnitude, we have abrupt turns with high-valued r.
This is shown more clearly in Figure 6, which zooms in on
a selected time interval.

7. CONCLUSION

We have developed and demonstrated a pipelined tra-
jectory planning algorithm that exploits the speed and
global properties of an A� search with the optimality of an
OCP solver. The results from Section 6 show that using
the initial guess provided by a smoothed A� path in an
OCP significantly improves both run time and optimal-
ity compared to a cold-started OCP alone. Performing

Table 3. Scenario results.
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Cold started
Step 3
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Feasible Yes Yes No
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(J)
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cost (Je)
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Total run time 26.7 [s] 174 [s] 5.7 [s]
Step 1 run time 3.4 [s] - 3.4 [s]
Step 2 run time 2.2 [s] - 2.2 [s]
Step 3 run time 21.1 [s] 174 [s] -
Step 3 iterations 58 549 -

Fig. 5. State values for heading, velocities and yaw rate for
both the optimized trajectory and the initial guess.

Fig. 6. Zoomed-in section of Figure 5.

optimization on the A� path significantly increases run
time but will find a feasible locally optimal trajectory, as
opposed to A� alone.

Qualitatively, the developed method is complete in terms
of the shortest path, since this is the geometric objective
of the A� implementation. This is dependent on the dis-
cretization of the map, since using larger grid spacing to
reduce run time removes narrow passages from the solu-
tion space. Using a different discretization scheme such as
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e.g. Voronoi diagrams may guarantee a complete solution
space. The developed method is also locally optimal in the
sense of the provided objective, which is a combination of
energy consumption and readily observable maneuvers in
our case. The optimality is provided by the implemented
OCP which alone is not able to find the global optimum,
demonstrated by the cold-started result in Figure 3. How-
ever, the OCP warm-started by the shortest path found
by the A� method is at least locally optimal and may
be close to the global optimum, since, in the absence of
disturbances, the shortest path is also the one that requires
the least energy. In addition to improving optimality of
the A� result, the OCP adds feasibility, unlike the A�

consideration which is purely geometric. Using this warm-
starting scheme is that the OCP will lock into one routing
alternative. Depending on the desired sense of optimality,
this may not be the desired solution, which is a disadvan-
tage to some use cases.

The algorithm presented here has been used in a hybrid
collision avoidance architecture in (Eriksen et al., 2019),
where it is extended to include disturbances in the form of
ocean currents.

Further work on this topic includes:

• Implementing a more general obstacle representation
to handle a wider range of map representations.
E.g. the obstacle representation in (Zhang et al.,
2018) handles convex polygons as smooth inequality
conditions.

• Improvements on the map discretization scheme are
also desirable to reduce computational time of the
A� algorithm while preserving completeness of the
solution space.

• Additionally, an OCP representation that is paramet-
rized by straight lines between waypoints in combi-
nation with full-state dynamics may be advantageous
to inherently produce COLREGs-compliant trajecto-
ries.
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This paper presents a three-layered hybrid collision avoidance (COLAV) system

for autonomous surface vehicles, compliant with rules 8 and 13–17 of the

International Regulations for Preventing Collisions at Sea (COLREGs). The COLAV

system consists of a high-level planner producing an energy-optimized trajectory,

a model-predictive-control-based mid-level COLAV algorithm considering moving

obstacles and the COLREGs, and the branching-course model predictive control

algorithm for short-term COLAV handling emergency situations in accordance with the

COLREGs. Previously developed algorithms by the authors are used for the high-level

planner and short-term COLAV, while we in this paper further develop the mid-level

algorithm to make it comply with COLREGs rules 13–17. This includes developing a

state machine for classifying obstacle vessels using a combination of the geometrical

situation, the distance and time to the closest point of approach (CPA) and a newCPA-like

measure. The performance of the hybrid COLAV system is tested through numerical

simulations for three scenarios representing a range of different challenges, including

multi-obstacle situations with multiple simultaneously active COLREGs rules, and also

obstacles ignoring the COLREGs. The COLAV system avoids collision in all the scenarios,

and follows the energy-optimized trajectory when the obstacles do not interfere with it.

Keywords: hybrid collision avoidance, autonomous surface vehicle (ASV), COLREGs, COLREGs compliant, model

predictive control (MPC), energy-optimized control

1. INTRODUCTION

Motivated by the potential for reduced costs and increased safety, the maritime industry is rapidly
moving toward autonomous operations. Following groundbreaking advances in the automotive
industry, many sectors within the maritime industry are considering the benefits of autonomy,
which includes more environmentally friendly operations. For instance, the agricultural chemical
company Yara together with the maritime technology supplier Kongsberg Maritime are developing
the electrical autonomous container vessel Yara Birkeland, which aims to replace 40,000 yearly
truck journeys in urban eastern Norway1. Another example is the world’s first autonomous car
ferry, Falco, developed by Rolls-Royce (recently bought by Kongsberg Maritime) and Finferries. In

1https://www.wsj.com/articles/norway-takes-lead-in-race-to-build-autonomous-cargo-ships-1500721202 (accessed May
22, 2019).
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2018, Falco navigated autonomously between two ports in
Finland2. Reports state that in excess of 75% of maritime
accidents are due to human errors (Chauvin, 2011; Levander,
2017), indicating that there is also a potential for increased safety
in addition to the economical and environmental benefits.

An obvious prerequisite for autonomous ship operations is
the development of robust andwell-functioning COLAV systems.
In addition to generating collision-free maneuvers, a COLAV
system must adhere to the “rules of the road” of the oceans,
i.e., the COLREGs (Cockcroft and Lameijer, 2004). These rules
are written for human ship operators and include qualitative
requirements on how to perform safe and readily observable
maneuvers. Part B of the COLREGs concern steering and sailing,
and includes the following rules that are the most relevant to a
motion control system:

Rule 8 Requiresmaneuvers to be readily observable and
to be done in ample time.

Rules 13–15 Describe the maneuvers to perform in cases
of overtaking, head-on and crossing situations.
Participants in crossing situations are defined by
the terms give-way and stand-on vessels.

Rule 16 Requires that a give-way vessel must take early
and substantial action to keep clear of the stand-
on vessel.

Rule 17 Consists of two main parts. The first part
requires a stand-on vessel to maintain its
course and speed, while the second part
allows/requires3 a stand-on vessel to take action
to avoid collision if the give-way vessel is not
taking action.

Since the rules are written for humans, with few quantitative
figures, a challenge for autonomous operation is to quantify
them into behaviors that can be executed algorithmically. The
focus of the work in this paper is to do that, and to design
a hybrid COLAV system that performs motion planning and
generates maneuvers in compliance to rules 8 and 13–17 of
the COLREGs.

A number of COLAV approaches considering the COLREGs
have been proposed in the past. This includes algorithms using
simulation-based model predictive control (Hagen et al., 2018),
velocity obstacles (Kuwata et al., 2014), rule-based repairing A*
(Campbell et al., 2014), and interval programming (Benjamin
et al., 2006). All these approaches are single-layer approaches,
where one algorithm solves the complete COLAV problem.

Another approach to the COLAV problem is to use a hybrid
architecture, where the task of planning an obstacle-free path
or trajectory, complying with the COLREGs and ultimately

2https://www.marinemec.com/news/view,rollsroyce-and-finferries-demonstrate-
worlds-first-fully-autonomous-ferry_56102.htm (accessed April 11, 2019).
3Rule 17 allows the stand-on vessel to maneuver when it becomes apparent that
the give-way vessel does maneuver to avoid collision. If the vessels are so close that
the give-way vessel cannot avoid collision by itself, Rule 17 requires the stand-on
vessel to maneuver.

FIGURE 1 | Hybrid architecture with three COLAV layers, where the

highlighted functions mark the areas of interest in this article. The COLAV

system consists of a high-level planner, a mid-level COLAV algorithm and a

short-term COLAV algorithm. The COLAV system is supported by data from

electronic nautical charts, represented in a suitable manner for the algorithms,

as well as situational awareness functions that track and predict obstacles,

interpret the COLREGs and perform risk assessment.

performing safe maneuvers is divided into layers in a control
hierarchy. The idea of hybrid architectures is to divide the
subtasks of the COLAV problem into multiple algorithms,
exploiting their complementary strengths. This also has the side
effect of making it easier for human operators or supervisors to
understand the system. Most single-layer algorithms use sample-
based approaches that consider a finite number of discrete
control inputs, as opposed to conventional gradient-based search
algorithms. The reason for this is that many gradient-based
algorithms are not sufficiently numerically robust, not allowing
a COLAV system to solely rely on such an algorithm. This
issue can be handled in hybrid architectures, constrained by
the bottom-level algorithm being numerically robust and able
to handle extraordinary situations where the other algorithms
fail. Hence, hybrid architectures also allows using gradient-
based algorithms, which are able to solve problems with large
search spaces more efficiently than sample-based algorithms.
The works by Loe (2008) and Švec et al. (2013) are examples
of two-layered hybrid COLAV architectures. The top layers
perform trajectory planning among static obstacles, while the
bottom layers perform moving obstacle avoidance in compliance
with COLREGs rules 13–16. Casalino et al. (2009) presents
a three-layered hybrid COLAV system where the top layer
also performs trajectory planning amongst static obstacles. The
middle layer avoids moving obstacles, while the bottom layer
implements safety functions for handling cases where the two

Frontiers in Robotics and AI | www.frontiersin.org 2 February 2020 | Volume 7 | Article 11
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other layers fail. This approach does, however, not consider
the COLREGs.

Figure 1 shows a three-layered hybrid COLAV system for an
autonomous surface vehicle (ASV). The authors have previously
worked extensively on different components of this architecture.
Examples include high-level COLAV algorithms (Bitar et al.,
2018, 2019b), a mid-level algorithm (Eriksen and Breivik, 2017b;
Bitar et al., 2019a), short-term algorithms (Eriksen et al., 2018,
2019; Eriksen and Breivik, 2019) and the development of high-
performance vessel controllers (Eriksen and Breivik, 2017a,
2018).

In this paper, we demonstrate the three-layered hybrid
COLAV shown in Figure 1 by combining and extending
the COLAV algorithms developed in Eriksen and Breivik
(2017b, 2019), Bitar et al. (2019a,b), Eriksen et al. (2019).
The high-level planner has a long temporal horizon, and
finds an energy-optimized nominal trajectory from an initial
to a goal position. It considers static obstacles, which may
include bathymetric constraints. Since the high-level planner
only considers static information, it is intended to be run
offline, but it can also be run online, for instance if new
static obstacles are detected. The mid-level algorithm attempts
to follow the nominal trajectory, while performing COLAV
of static and moving obstacles in compliance with COLREGs
rules 8, 13–16, and the first part of Rule 17. The mid-
level algorithm is run periodically with a shorter temporal
horizon than the high-level algorithm, and produces a modified
trajectory which is passed to the short-term layer. Both
the high-level and mid-level algorithms use gradient-based
optimization. The short-term algorithm attempts to follow the
modified trajectory, while it in compliance with the second
part of Rule 17 handles situations where obstacles ignore
the COLREGs. This algorithm also handles other emergency
situations, and uses sample-based optimization to achieve a high
level of robustness, ensuring safe operation if the mid-level
algorithm fails to find a solution. The following list summarizes
our contributions:

• The high-level planner from Bitar et al. (2019b) is modified
to include the mathematical model of the Telemetron ASV in
Bitar et al. (2019a), including ocean currents.

• The development of a state-machine-based COLREGs
interpretation scheme.

• The mid-level COLAV from Bitar et al. (2019a) is modified to
include rules 13–16 and the first part of Rule 17.

• The branching-course model predictive control (BC-MPC)
algorithm for short-term COLAV is modified to reduce
oscillatory behavior in turns.

• The three-layered COLAV system is verified in simulations
and shown to be compliant with rules 8 and 13–17.

The rest of the paper has the following structure: The
mathematical model of the ASV Telemetron is described
in section 2. The high-level planner, mid-level and short-
term COLAV algorithms are described in sections 3–5,
respectively. In section 6 we present and discuss the
simulation scenarios and results, and we conclude the paper
in section 7.

FIGURE 2 | The Telemetron ASV, designed for both manned and unmanned

operations. Courtesy of Maritime Robotics.

2. ASV MODELING

The vessel of interest in this article is the Telemetron ASV, which
is owned and operated by the Norwegian company Maritime
Robotics and shown in Figure 2. The Telemetron ASV is a high-
speed dual-use vessel propelled by a steerable outboard engine,
capable of speeds up to 18 m/s.

Eriksen and Breivik (2017a) presents a model of the
Telemetron ASV, which is extended to include ocean currents in
Bitar et al. (2019a). The model has the form

η̇ = R(ψ)xr +
[

V⊤
c 0

]⊤

M(xr)ẋr + σ (xr) = τ ,
(1)

where η = [x, y,ψ]⊤ ∈ R2 × S is the vessel pose and Vc =
[Vx,Vy]⊤ describes the ocean current, both in the Earth-fixed
North-East-Down frame {n}. The vector xr = [ur , r]⊤ ∈ Xr ⊂
R2 is the vessel velocity under the assumption of zero relative
sway motion (Bitar et al., 2019a), where the set Xr describes
the vessel-feasible steady-state velocities where (1) is valid. The
transformation matrix R(ψ) is given by the heading ψ ∈ S as

R(ψ) =





cosψ 0
sinψ 0
0 1



 , (2)

while r ∈ R describes the vessel yaw-rate. The matrix M(xr) is a
state-dependent inertia matrix, while σ (xr) and τ = [τm, τδ]⊤ ∈
U ⊂ R2 describe the vessel damping and control input,
respectively. The set U describes the control inputs where (1)
is valid.

In this work, we assume that the ocean current Vc is constant
and known. For practical applications, the ocean current can
be measured via appropriate instrumentation, estimated via
sensor fusion methods, or predicted based on e.g., tide tables or
sensor networks, such as the European marine observation and
data network4.

4http://www.emodnet.eu/ (accessed December 11, 2019).
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3. HIGH-LEVEL PLANNER

To plan the ASV’s nominal trajectory, we use a high-level
trajectory planner developed in Bitar et al. (2019b). This
trajectory planner uses the ASV model described in section 2
to generate an energy-optimized trajectory between the start
and goal positions. The planning algorithm combines an A⋆

implementation and an optimal control problem (OCP) solver
to generate a feasible and optimized trajectory.

The high-level planning algorithm consists of three steps: First
the A⋆ implementation finds the shortest piecewise linear path
between the start and goal position. Secondly, artificial temporal
information is added to the path, converting it to a trajectory
of states and inputs. Finally, the trajectory is used as an initial
guess for an OCP solver, which finds a locally energy-optimized
trajectory near the shortest path. All steps account for static
obstacles in the form of elliptical boundaries.

3.1. Static Obstacles
The elliptical boundaries are described with the inequality:

(
x− xc

xa

)2

+
(
y− yc

ya

)2

≥ 1 , (3)

where xc and yc is the ellipsis center, and xa, ya > 0 are the
ellipsis major and minor axes, respectively. To allow for angled
obstacles, the ellipses are rotated clockwise by an angle α. We add
a small constant ǫ > 0 to each side of the inequality, and take the
logarithm to arrive at the following obstacle representation:

ho(x, y, xc, yc, xa, ya,α) = − log

[ (
(x− xc) cosα + (y− yc) sinα

xa

)2

+
(
−(x− xc) sinα + (y− yc) cosα

ya

)2

+ ǫ
]

+ log(1+ ǫ) ≤ 0 . (4)

The logarithm operation is applied to reduce the numerical range
of the inequality, which helps with numerical stability of the
subsequently described solver, and the constant ǫ is included to
avoid singularities when (4) is evaluated for (x, y) → (xc, yc)
(Bitar et al., 2019a).

Modeling static obstacles as ellipses poses a challenge for
handling obstacles of various shapes, from e.g., electronic
nautical charts (ENCs). Generic obstacle shapes can be
approximated as a set of elliptical obstacles (Wu, 2019), although
this may require a large number of constraints for complex
environments. Alternatively, the obstacle modeling can be
modified to allow for generic shapes. Zhang et al. (2018) present
an interesting solution to handle polygon-shaped obstacles by
introducing a signed distance function in the optimization
problem. Unfortunately, this approach introduces a large number
of slack variables and constraints, limiting feasibility for more
than a few static obstacles.

3.2. Trajectory Generation and
Optimization
From a scenario consisting of static obstacles, as mentioned
in section 3.1, we find the piecewise linear shortest path by

performing an A⋆ search on a uniformly decomposed grid.
The resulting path is converted to a time-parameterized full-
state trajectory by assuming a constant forward velocity, and
connecting the shortest path with straight segments and circle
arcs. The constant forward velocity is

unom =
Lpath

tmax
, (5)

where Lpath is the length of the connected path, and tmax is the
maximum allowed time to complete the trajectory. This full-state
trajectory is then used as an initial guess to solve the OCP that
gives the energy-optimized trajectory:

min
z(·),τ (·)

∫ tmax

0
Fhi(z(t), τ (t))dt (6a)

subject to

ż(t) = f (z(t), τ (t)) ∀t ∈ [0, tmax] (6b)

hhi(z(t), τ (t)) ≤ 0 ∀t ∈ [0, tmax] (6c)

ehi(z(0), z(tmax)) = 0 . (6d)

The solution of this OCP is a trajectory of states z(·) and inputs
τ (·) that minimizes the cost functional in (6a). The ASV model
from section 2 is rewritten as ż = f (z, τ ), where z = [η⊤, x⊤r ]

⊤

and f (z, τ ) represents (1).
The cost functional (6a) is chosen to minimize energy. The

cost-to-go function is

Fhi(z, τ ) = KeFe(z, τ )+ Kδτ
2
δ , (7)

with tuning parameters Ke,Kδ > 0. The first term consists of a
function that is proportional to mechanical work performed by
the ASV:

Fe(z, τ ) = |n(τm)2 · cos δ(τδ)
︸ ︷︷ ︸

∝ surge force

·ur| + |n(τm)2 · sin δ(τδ) · Lm
︸ ︷︷ ︸

∝ yaw moment

·r| .

(8)
The function n :R+ → R+ maps the control input τm to
propeller angular velocity. The function δ :R → S maps the
control input τδ to outboard motor angle. The second term in (8)
is a quadratic cost to yaw control, included to avoid issues with
singularity when solving the OCP.

The inequality constraints (6c) observe state boundaries as
well as the static obstacles as represented in section 3.1. The
boundary conditions (6d) denote initial and final constraints, i.e.,
start and end states.

A detailed description of the transcription of the OCP (6) to
a non-linear program (NLP) using multiple shooting with Nhi
shooting intervals is found in Bitar et al. (2019b).

4. MID-LEVEL COLAV

The mid-level algorithm, initially presented in Eriksen and
Breivik (2017b) and further developed in Bitar et al. (2019a),
is a model predictive control (MPC)-based algorithm intended
for long-term COLAV. The algorithm utilizes gradient-based
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optimization, and takes both static and moving obstacles into
account while attempting to follow an energy-optimized nominal
trajectory from the high-level planner. The algorithm produces
maneuvers complying with Rule 8 of the COLREGs, which
requires maneuvers to be made in ample time and be readily
observable for other vessels. The optimization problem is
formulated as a NLP, which gives flexibility in designing the
optimization problem.

In this section, the algorithm is extended to also consider
COLREGs rules 13–16 and the first part of Rule 17.

4.1. The International Regulations for
Preventing Collisions at Sea (COLREGs)
The COLREGs consists of a total of 37 rules and is divided into
five parts (Cockcroft and Lameijer, 2004), where part B (rules 4–
19) contains relevant rules on the conduct of vessels in proximity
of each other. The most relevant rules for designing COLAV
systems in part B are rules 8 and 13–17:

Rule 8 Action to avoid collision. This rule states that
actions taken to avoid collision should be large
enough to be readily observable of other ships,
implying that series of small alternations in speed
and/or course should not be applied. The rule
also recommends that course changes should be
prioritized over speed changes if there is enough free
space available, and that maneuvers must be made in
ample time.

Rule 13 Overtaking. This rule states that a vessel is
overtaking another if it approaches the other vessel
with a course more than 22.5° abaft her beam. The
overtaking vessel has to stay clear of the overtaken
vessel, but there is no statements on which side of the
vessel one should pass.

Rule 14 Head on. When two power-driven vessels approach
each other on reciprocal, or nearly reciprocal,
courses, they are in a head-on situation. In such a
situation, both vessels should change their course to
starboard, passing each other port-to-port, as shown
in Figure 3A. This rule states no explicit definition
on what should be considered to be reciprocal,
or nearly reciprocal, courses, but court decisions
indicate head-on situations exist for opposing
courses ±6°. Notice that the rule does not include
sailing vessels, which are covered by Rule 12.

Rule 15 Crossing. When two vessels approach each other
such that the situation is not a head on or an
overtaking, it is a crossing situation. The vessel with
the other one to her starboard side is deemed the
give-way vessel, while the other vessel is deemed the
stand-on vessel. As shown in Figure 3B, the give-way
vessel should maneuver to avoid collision, preferably
by passing behind the stand-on vessel, while the
stand-on vessel should keep her speed and course.

A

B

FIGURE 3 | Illustration of head-on (A) and crossing (B) situations, and how

they should be resolved.

Rule 16 Action by the give-way vessel. Every vessel which
is required to keep out of the way of another vessel
should take early and large enough action to safely
avoid collision.

Rule 17 Action by the stand-on vessel.This rule requires that
a stand-on vessel should keep its current speed and
course. The stand-on vessel may, however, maneuver
to avoid collision if it becomes apparent that the give-
way vessel is not taking appropriate actions to avoid
collision. Furthermore, if the stand-on vessel finds
itself so close to the obstacle that collision can not
be avoided by the give-way vessel alone, the stand-
on vessel should take such action which best aids
to avoid collision. In a crossing situation, the stand-
on vessel should avoid maneuvering to port, since
this could lead to a collision if the give-way vessel
maneuvers to starboard.

In the hybrid architecture illustrated in Figure 1, the mid-level
algorithm is given the task of strictly enforcing COLREGs rules
13–16 and the stand-on requirement of Rule 17, while also
complying with Rule 8.

In addition, we want the mid-level algorithm to comply with
the first part of Rule 17, by not maneuvering to avoid collision
in crossing situations if the ownship is the stand-on vessel.
The hybrid COLAV system is inherently capable of adhering
to the remaining requirement of Rule 17, where the stand-on
vessel is allowed or required to maneuver, by having different
prediction horizons and safety margins in the mid-level and
short-term layers. The BC-MPC algorithm does not have any
limitations of not maneuvering in stand-on situations, and will
hence maneuver in stand-on situations if we come sufficiently
close to the obstacle.

The mid-level algorithm as presented in Bitar et al. (2019a)
only complies with Rule 8. Further in this section, we therefore
present improvements to the mid-level algorithm to make it
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comply with rules 13–16 and the stand-on requirement of
Rule 17.

4.2. COLREGs Interpretation
A commonly used concept for interpreting obstacles in COLAV
algorithms is to assign a spatial region to obstacles, which
the ownship should not enter. This approach is commonly
referred to as a domain-based approach. Specially designed ship
domains are commonly used for interpreting the COLREGs in
COLAV algorithms, where the required clearance to an obstacle
is significantly larger if the maneuver violates the COLREGs
(Szlapczynski and Szlapczynska, 2017; Eriksen et al., 2019). This
approach is attractive since it continuously captures multiple
COLREGs rules, and does not require logic or discrete decisions.
However, such an approach does not strictly enforce the
COLREGs rules, since it will allow maneuvers violating the rules
if they are large enough. In addition, a ship-domain approach will
not be able to strictly enforce the stand-on requirement of Rule
17, since a domain-based approach will avoid collision with all
obstacles. One could ignore obstacles with give-way obligations,
but this would require an explicit COLREGs interpretation which
conflicts with domain-based approaches’ core idea of implicit
COLREGs interpretation. Therefore, we pursue an alternative
approach to handling the COLREGs in the mid-level algorithm.

To simplify the COLREGs interpretation task, we look at the
situation from a static perspective, assuming that the current
COLREGs situations are valid throughout the entire prediction
horizon of the mid-level algorithm. In reality, the COLREGs
situations may, however, change during the prediction horizon
depending on both the ownship’s and obstacles future trajectory.
For instance, an obstacle approaching from head on, but far
enough away to not be considered as a danger may be put in a
safe state. Hence, the mid-level algorithm will (for the current
iteration) act like no COLREGs rule applies to this vessel for
the entire prediction horizon, while the obstacle may get close
enough during the prediction horizon to be considered as a head-
on situation. An MPC scheme of only implementing a small part
of the prediction horizon will reduce the implications of this,
since the situation is reassessed each time mid-level algorithm is
run, which justifies the assumption of considering the COLREGs
from a static perspective. Investigating the possibilities for
dynamically predicted future COLREGs situations as part of the
MPC prediction will be considered as future work.

4.2.1. State Machine
We propose to utilize a state machine in order to decide which
COLREGs rule is active with respect to each obstacle in the
vicinity of the ownship. The state machine contains the states:

SF Safe state. This implies that the COLREGs do not enforce
any rule with respect to this obstacle.

OT Overtaking state. This implies that COLREGs Rule
13 applies with respect to this obstacle. The state
machine does not discriminate on whether the ownship
is overtaking another vessel or is being overtaken, but
this can be done by looking at which vessel has the higher
speed (Tam and Bucknall, 2010).

FIGURE 4 | COLREGs state machine. The abbreviations “GSF,” “GSO,” “GOT,”

“GGW,” and “GHO” denote geometrical situations, while “entryxx” and “exitxx”

denote additional state-dependent entry and exit criterias.

HO Head-on state. This implies that COLREGs Rule 14
applies with respect to this obstacle.

GW Give-way state. This implies that COLREGs Rule 15
applies with respect to this obstacle, and the ownship has
to give way.

SO Stand-on state. This implies that COLREGs Rule 15
applies with respect to this obstacle, and the ownship has
to stand on.

EM Emergency state. This implies that the obstacle is so
close and/or behaves unpredictably, such that special
considerations must be made.

As shown in Figure 4, all transitions have to go either from or to
the safe state.

This implies that when the state machine decides that a
COLREGs (or emergency) situation exists with respect to an
obstacle, it will not allow switching to another state without the
situation being considered as safe first. One could argue that
it should be able to transition between specific states, like e.g.,
from head-on, give-way and overtaking to emergency. This is an
interesting topic, which should receive attention in the future. To
control the transitions between the different states, we combine
the time to and distance at the CPA, a CPA-like measure of the
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time until a critical point and a geometrical interpretation of
the situation.

4.2.2. Entry and Exit Criteria
CPA is a common concept in maritime risk assessment. Given
the current speed and course of the ownship and an obstacle,
CPA describes the time to the point where the two vessels are the
closest, and the distance to the obstacle at this point. Given the
position and velocity vector of the ownship p, v and an obstacle
po, vo, the time to CPA is calculated as (Kufoalor et al., 2018)

tCPA =
{

0 if ‖v − v0‖2 ≤ ǫ
(p−po)·(v−vo)

‖v−vo‖22
else,

(9)

where ǫ > 0 is a small constant in order to avoid division by zero
in the case where the relative velocity between the ownship and
obstacle is zero. Given tCPA, we calculate the distance between the
vessels at CPA as

dCPA = ‖(p+ tCPAv)− (po + tCPAvo)‖2. (10)

While the CPA is the point where the distance to an obstacle
is at its minimum, the critical point is where the distance to an
obstacle crosses underneath a critical distance dcrit. This critical
distance describes a minimum obstacle distance that the mid-
level algorithm is designed for. The time to the critical point tcrit
can be calculated by solving the equation

‖(p+ tcritv)− (po + tcritvo)‖2 = dcrit . (11)

In the cases where the distance between the ships does not fall
below dcrit, tcrit is undefined. Otherwise, there are generally two
solutions. The interesting solution is the one with the lowest tcrit
value, as this is when the obstacle enters the dcrit boundary.

The state-machine entry criteria in Figure 4 are defined as

entryi =
{

true if dCPA < d
i,enter
CPA ∧ tCPA ∈ [ti,enterCPA , ti,enterCPA ],

false otherwise

∀i ∈ {SO,OT,GW,HO}

entryEM =
{

true if tcrit < t
EM,enter
crit ∧ tCPA > 0

false otherwise,

(12)

where d
i,enter
CPA , ti,enterCPA , and t

i,enter
CPA for i ∈ {SO,OT,GW,HO} are

tuning parameters denoting thresholds on dCPA and tCPA in order
to satisfy the entry criteria for the stand-on, overtaking, give-

way and head-on states. The tuning parameter tEM,enter
crit denotes

an upper limit on tcrit in order to enter the emergency state.
The idea behind the stand-on, overtaking, give-way and head-on
entry criterias are that in order for the obstacle to represent a risk,
both tCPA and dCPA need to be within some tunable thresholds.
Situations with a very low dCPA, but with a high tCPA, will not
trigger the entry criteria, since the situations will not occur in the
near future. Similarly, if tCPA is within the thresholds, but dCPA is
large, this indicates a safe passing where risk of collision does not
exist. The lower bound on tCPA will typically be selected as zero,

and is useful to distinguish between obstacles moving toward
of away from the ownship. For the emergency state, the entry
criteria is based on the critical point, at which we are so close that
the mid-level algorithm may struggle with providing meaningful

maneuvers. In addition to tcrit being under the threshold t
EM,enter
crit ,

we require that tCPA is positive, indicating that we are getting
closer to the obstacle. Currently, we only allow entering the
emergency state if the situation is a geometrical give-way or head-
on, since an overtaking situation represents a smaller danger and
has less requirement for special consideration.

The state-machine exit criterias in Figure 4 are defined as

exiti =
{

true if dCPA ≥ di,exitCPA ∨ tCPA /∈ [ti,exitCPA , t
i,exit
CPA ],

false otherwise

∀i ∈ {SO,OT,GW,HO}

exitEM =
{

true if tcrit ≥ tEM,exit
crit ∨ tCPA ≤ 0

false otherwise,

(13)

where di,exitCPA , t
i,exit
CPA , and t

i,exit
CPA for i ∈ {SO,OT,GW,HO} are tuning

parameters denoting thresholds on dCPA and tCPA in order to
satisfy the exit criteria for the stand-on, overtaking, give-way
and head-on states. The exit criteria for the emergency state is

satisfied if tcrit is larger than the tuning parameter tEM,enter
exit , or

tCPA is negative, implying that the obstacle is moving further
away from the ownship. Note that the exit criterias are obtained
by negating the entry criterias, but with other thresholds in order
to implement hysteresis to avoid shattering. In general, we allow
for different tuning parameters for the different states, but in our
simulations we see that selecting the same tuning parameters for
all states provides good results. Therefore, we define:

d
i,enter
CPA = d

enter
CPA

ti,enterCPA = tenterCPA

t
i,enter
CPA = t

enter
CPA ,

(14)

and

di,exitCPA = dexitCPA

ti,exitCPA = texitCPA

t
i,exit
CPA = t

exit
CPA

(15)

for all i ∈ {SO,OT,GW,HO}.

4.2.3. Geometrical Situation Interpretation
Tam and Bucknall (2010) present a geometrical interpretation
scheme for deciding COLREGs situations based on the relative
position, bearing and course of the obstacle with respect to the
ownship. We base our geometrical interpretation on a slightly
modified version of this scheme, where we include the sign
of tCPA to distinguish between situations where the obstacle
moves closer toward or farther away from the ownship. The
geometrical interpretation is shown in Figure 5, where the
geometrical situation is obtained by finding which region the
obstacle position and course resides in.

Notice that the head-on region is larger than the threshold of
±6° as described by the COLREGs. The reason for this is that
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FIGURE 5 | Illustration of the geometrical COLREGs interpretation, where the ownship course is denoted as χ and θ1, θ2, θ3 denote symmetrical regions given as

[22.5, 90, 112.5°] offset from ahead. The circles illustrate obstacles in different relative bearing regions, and have a fixed orientation with respect to the ownship. The

geometrical situations are color-coded and denoted as Gi , i ∈ {SF, SO, OT, GW, HO} for safe, stand-on, overtaking, give-way and head-on situations, respectively.

When two situations are given, like e.g., GSF/SO, we use the former (SF) if tCPA < 0 and the latter (SO) if tCPA ≥ 0, analogous to the obstacle moving away or toward the

ownship. To decide the geometrical situation, we first find which relative bearing region the obstacle resides in, before finding which obstacle region the obstacle’s

course resides in. The figure is inspired by Tam and Bucknall (2010).

Tam and Bucknall recommend using a larger region of 22.5° in
order to increase the robustness of the geometrical COLREGs
interpretation scheme.

4.3. Interface to the High-Level Planner
The high-level planner produces an energy-optimized nominal
trajectory for the ownship to follow. However, since the high-
level planner does not consider moving obstacles, the speed
is the only time-relevant factor of the desired trajectory. In
a case where the ownship for some reason, e.g., avoiding
moving obstacles, lag behind the nominal trajectory, following
the nominal trajectory in absolute time would cause a speed
increase in order to catch up with it. Therefore, the mid-
level algorithm performs relative trajectory tracking, where it
tracks the nominal trajectory with a time offset tb ∈ R.
This results in a relative nominal trajectory for the mid-level

algorithm:

p̄d(t) = pd(t + tb), (16)

where pd = [Nd(t),Ed(t)]
⊤ is the nominal trajectory from

the high-level planner. The time offset tb is calculated each
time the mid-level algorithm is run by solving a separate
optimization problem, and is selected such that p̄d(t0) is
the point on the nominal trajectory closest to the ownship.
See Bitar et al. (2019a) for a detailed description of this
concept.

4.4. Optimization Problem Formulation
The mid-level algorithm is formalized as an OCP:

min
η(·),xr(·)

φ(η(·), xr(·)) (17a)
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subject to

η̇(t) = R(ψ(t))xr(t)+
[

Vc

0

]

∀t ∈ [t0, t0 + Th] (17b)

hmid(η(t), xr(t), t) ≤ 0 ∀t ∈ [t0, t0 + Th] (17c)

emid(η(t0)) = 0 , (17d)

where Th > 0 is the prediction horizon, φ(·, ·) is the
objective functional, (17b) contains a kinematic vessel model,
(17c) contains inequality constraints and (17d) contains
boundary constraints.

Analytical solutions of OCPs are in general not possible to
find. A more common approach is to transcribe the OCP to an
NLP, and solve that using a gradient optimization scheme. In
our case, we transcribe (17) into an NLP with Np samples using
multiple shooting, where the vessel model is discretized using 4th
order Runge Kutta and the cost functional is discretized using
forward Euler. The resulting NLP is given as

min
w,ω,µ,ξ

φp(w,ω,µ)+ φc(w)+ φCOLREGs(w)+ φξ (ξ )

subject to

g(w, η(t0)) = 0

h(w, ξ ) ≤ 0

h̄k(ηk,ωk,µk, p̄d,k) ≤ 0 ∀k ∈ {1, . . . ,Np}
ξ ≥ 0 ,

(18)

where w = [η⊤0 , x
⊤
r,0, . . . , η

⊤
Np−1, x

⊤
r,Np−1, η

⊤
Np
]⊤ ∈ R5Np+3

is a vector of 5Np + 3 decision variables and p̄d,1 :Np
=

[p̄d,1, p̄d,2, . . . , p̄d,Np
] is a sequence of desired positions. The

vectors ω ∈ R2Np , µ ∈ R2Np and ξ ∈ RMNp contain slack
variables, where M is the number of moving obstacles to be
included in the constraints.

The vector g(w, η(t0)) ∈ R3Np+3 contains shooting and
boundary constraints, while h(w) ∈ R(M+D+4)Np , where D is
the number of static obstacles, contain inequality constraints
ensuring COLAV and steady-state vessel velocity feasibility. The
vectors h̄k(ηk,ωk,µk, p̄d,k) ∈ R6, k ∈ {1,Np} contain constraints
on the slack variables ω and µ.

In the following subsections, we describe the terms in (18) in
more detail.

4.4.1. Objective Function
The objective function contains four functions, where φp(w,ω,µ)
introduces cost on deviating from the relative nominal trajectory
p̄d(t), φc(w) introduces cost on using control input, φCOLREGs(w)
is a COLREGs-specific function and φξ (ξ ) introduces slack
variable cost.

To avoid that the NLP changes behavior when moving away
from the nominal trajectory, we wish to have linear growth
in the position error function φp(w,ω,µ). This is achieved by
instead of using quadratic terms in the position error function,
we use the Huber loss function which is quadratic around the

origin and resembles the absolute value function above a given
threshold σ > 0:

H(ρ) =
{

1
2ρ

2 |ρ| ≤ σ

σ (|ρ| − 1
2σ ) |ρ| > σ .

(19)

The Huber loss function has a discontinuous gradient, making
it slightly complicated to implement in gradient-based
optimization problems. It can, however, be implemented in
a continuous fashion by utilizing lifting, where slack variables are
introduced to create a problem of a higher dimensionality which
is easier to solve. Using this technique, φ̄p(w,ω,µ) is defined as

φ̄p(w,ω,µ) = Kp

Np
∑

k = 1

σ1⊤ωk +
1

2
µ⊤
k µk, (20)

where Kp > 0 is a tuning parameter, and ωk ∈ R2 and µk ∈ R2

are slack variables constrained by

h̄k(w,ω,µ, p̄d,k) =





vk + µk + pk − p̄d,k
vk + µk − (pk − p̄d,k)

−ωk



 ≤ 0

∀k ∈ {1, . . . ,Np}, (21)

where pk is the predicted vessel position at time step k, i.e., ηk =
[p⊤

k
,ψk]

⊤. See Bitar et al. (2019a) for more details.
Rule 8 of the COLREGs requires that maneuvers are readily

observable for other vessels, implying that speed and course
changes should have a sufficiently large magnitude, and not be
performed as a sequence of small changes. In order to enforce
this in the optimization problem, the control cost function φc(w)
introduces a non-linear cost on the change in speed and course,
which makes the algorithm favor readily observable maneuvers.
The function is defined as

φc(w) =
Np−1
∑

k = 0

KU̇qU̇(U̇k)+ Kχ̇qχ̇ (χ̇k), (22)

where KU̇ ,Kχ̇ > 0 are tuning parameters, while qU̇(U̇k) and
qχ̇ (χ̇k) are the non-linear cost functions. Notice that neither
the speed over ground (SOG) U nor the course χ are elements
of the search space, but they can be computed as U =√
u2 + v2 and χ = ψ + arcsin v

U . Their derivatives are
then calculated by finite differencing. See Eriksen and Breivik
(2017a) and Bitar et al. (2019a) for more details on the control
cost function.

The φCOLREGs(w) function introduces a COLREGs-specific
cost with respect to obstacles based on the rule currently
applicable as defined by the state machine. We hence tailor the
NLP to the current situation. The function is defined as

φCOLREGs(w) =
Np
∑

k=1





∑

i∈OHO

KHOVHO,i,k(pk)+
∑

i∈OGW

KGWVGW,i,k(pk)

+
∑

i∈OSO

KSOVSO,k(w)+
∑

i∈OEM

KEMVEM,k(w)



 , (23)
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where OHO,OGW,OSO, and OEM contain obstacles which are
in the head-on, give-way, stand-on and emergency states,
respectively, and KHO,KGW,KSO,KEM > 0 are tuning
parameters. The functions VHO,i,k(pk),VGW,i,k(pk),VSO,k(w), and
VEM,k(w) describe functions capturing head-on, give-way,
stand-on and emergency behavior with respect to obstacle i,
respectively. Notice that the head-on and give-way functions vary
with both the obstacle number and time step number, which is
due to the functions depending on the given obstacles position
and course at time step k.

For head-on situations, we define a potential function with
a positive value on the obstacle’s starboard side, and a negative
value on its port side. When used in the objective function,
this will favor trajectories passing a head-on obstacle on its
port side, in compliance with Rule 14 of the COLREGs.
In addition, the potential function has an attenuation term,
reducing the impact of the function when far away from
an obstacle:

VHO,i,k(p) =
tanh

(

αx,HO(x0,HO − x{i,k})
)

2
tanh(αy,HOy

{i,k}) ∈ (−1, 1),

(24)

where αx,HO,αy,HO > 0 are tuning parameters controlling the
steepness of the head-on potential function and x̄0,HO > 0 is
a tuning parameter controlling the influence of the attenuating
potential. The coordinate (x{i,k}, y{i,k}) is p given in obstacles i’s
course-fixed frame (in which the x-axis points along the obstacle’s
course) at time step k, computed as

[

x{i,k}

y{i,k}

]

= R(χi,k)
⊤ (

p− po,k,i
)

, (25)

where po,k,i and χi,k are the position and course of obstacle i
at time step k. The head-on potential function with parameters
αx,HO = 1/500,αy,HO = 1/400 and x0,HO = 1, 000 m is shown in
Figure 6A.

For give-way situations, we define a similar potential function,
but rotated such that the function is positive in front of an
obstacle and negative behind it. This will favor trajectories
passing behind an obstacle, as desirable with respect to Rule
15 when a give-way obligation is active. The give-way potential
function is defined as

VGW,i,k(p) =
tanh

(

αy,GW(y{i,k} − y0,GW)
)

2
tanh(αx,GWx{i,k}) ∈ (−1, 1),

(26)

where αx,GW,αy,GW > 0 control the steepness of the give-way
potential function and ȳ0,GW < 0 control the attenuation on the
port side of an obstacle. The give-way potential function with
parameters αx,GW = 1/400,αy,GW = 1/500 and y0,GW = −500 m
is shown in Figure 6B.

In stand-on situations, we want the mid-level algorithm to
disregard the obstacle and keep the current speed and course

A

B

FIGURE 6 | Potential functions ensuring passing on the correct side in

head-on and give-way situations. Yellow indicates a positive value, blue

indicates a negative value, while the yellow patch and axis cross show the

obstacle location and course-fixed coordinate system. Used in a minimization

scheme, this will favor starboard maneuvers in head-on situations, and

passing behind obstacles in give-way situations. Note that the obstacle here

has zero sideslip, resulting in the heading and course pointing in the same

direction. (A) Head-on potential function. (B) Give-way potential function.

in order to comply with the first part of Rule 17. One could
simply constrain the algorithm to not maneuver, but this would
be perilous in situations where the ownship simultaneously finds
itself in a head-on or give-way situation. In such a situation
it would be of extra importance to choose readily observable
maneuvers, and we therefore design the stand-on cost with the
same terms as used in the control cost (22) to amplify the effect:

VSO,k(w) = KU̇qU̇(U̇k)+ Kχ̇qχ̇ (χ̇k). (27)

If an obstacle is in an emergency state, the obstacle is disregarded
in the mid-level algorithm and left for the short-term algorithm
to handle. In such a situation, it is important that the mid-level
algorithm behaves predictable, andwe therefore use the same cost
function as for stand-on situations:

VEM,k(w) = VSO,k(w). (28)
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The slack variable ξ is used in a homotopy scheme, which
we introduce to avoid getting trapped in local minima around
moving obstacles. The homotopy scheme is described in further
detail in section 4.5. The homotopy cost function φξ (ξ )
introduces slack cost on ξ :

φξ (ξ ) = Kξ1
⊤ξ , (29)

where Kξ > 0 is iteratively increased as part of the
homotopy scheme.

4.5. Obstacle Handling and Steady-State
Feasibility
The inequality constraint h(w, ξ ) ≤ 0 ensures COLAV and
steady-state feasibility with respect to actuator limitations.

Static obstacles are handled similarly as in the high-level
algorithm, with (4) representing an elliptical obstacle with center
(xc, yc), angle α andmajor and minor axes xa and ya, respectively.
The constraint (4) needs to be enforced at each time step. Hence,
for the i-th static obstacle, we define the constraint

hsi (w) =








ho(x1, y1, xc,i, yc,i, xa,i, ya,i,αi)
ho(x2, y2, xc,i, yc,i, xa,i, ya,i,αi)

...
ho(xNp , yNp , xc,i, yc,i, xa,i, ya,i,αi)








≤ 0. (30)

Moving obstacles are handled in a similar fashion, but letting
the ellipsis center position and angle be time varying. Obstacles
in stand-on situations should, however, not be included in the
constraints, since the mid-level algorithm is supposed to stand
on in such situations. Moreover, if an obstacle has entered
an emergency state, the obstacle is so close and behaving
unpredictably that the mid-level algorithm should disregard it
and leave it for the short-term layer. Hence, for the i-th moving
obstacle not in a stand-on or an emergency situation, we define
the constraint

hmi (w) =






ho(x1, y1, xc,i,1, yc,i,1, xa,i, ya,i,αi,1)
...

ho(xNp , yNp , xc,i,Np , yc,i,Np , xa,i, ya,i,αi,Np )




 ≤ 0, (31)

where xc,i,k, yc,i,k, and αi,k denote the position and course of the
i-th moving obstacle at time step k.

Given D static obstacles and M obstacles not in stand-on or
emergency situations, we define the constraint

ho(w, ξ ) =













hs1 (w)
...

hsD (w)
hm1 (w)

...
hmM (w)













+
[

0

ξ

]

, (32)

where we include slack variables ξ ≥ 0 on the moving obstacle
constraints as part of a homotopy scheme. The reason for using

homotopy is that NLP solvers in general only finds local minima,
and can have issues with moving an initial guess “through”
obstacles. Normally, this is not an issue, but for the mid-level
algorithm the optimal solution can change drastically from one
iteration to another. This can for instance happen if an obstacle
enters a head-on or give-way state, where the solution can be
trapped on the wrong side of an obstacle. In general, homotopy
describes introducing an extra parameter which is iteratively
adjusted in order to iteratively move a local solution toward
a global solution (Deuflhard, 2011). In our homotopy scheme,
we introduce slack variables on the moving obstacle constraints,
which will allow solutions to travel through obstacles at the cost
of a homotopy cost (29) scaled by the homotopy parameter Kξ .
Initially, this is selected as a low value to have a high amount
of slack on the moving obstacles, while it is iteratively increased
toward Kξ → ∞, which results in ξ = 0 and hence no slack on
moving obstacles. Currently, we only introduce slack on moving
obstacles, but slack should also be introduced to static obstacles if
they are small enough for the algorithm to be able to pass on both
sides, like e.g., rocks, navigational marks, etc.

Similarly as in Eriksen and Breivik (2017b) and Bitar et al.
(2019a), we ensure steady-state feasible trajectories at each time
step through a constraint hxr,k (xr,k) ≤ 0 ∈ R4, which captures
the state constraint xr ∈ Xr at time step k. To ensure stead-
state feasibility for the entire prediction horizon, we define
the constraint

hxr (w) =








hxr,k (xr,0)
hxr,k (xr,1)

...
hxr,k (xr,Np−1)








≤ 0. (33)

Finally, the inequality constraints are combined as.

h(w, ξ ) =
[

ho(w, ξ )
hxr (w)

]

∈ R(M+D+4)Np . (34)

5. SHORT-TERM COLAV

For the short-term layer, the branching-course model predictive
control (BC-MPC) algorithm is used, which is a sample-based
MPC algorithm intended for short-term ASV COLAV. The
BC-MPC algorithm was initially developed in Eriksen et al.
(2019), extended to also consider static obstacles in Eriksen and
Breivik (2019) and is experimentally validated in several full-
scale experiments using a radar-based system for detecting and
tracking obstacles. The algorithm complies with COLREGs rules
8, 13, and the second part of Rule 17, while favoring maneuvers
complying with the maneuvering aspects of rules 14 and 15.
Notice that Rule 17 allows a ship to ignore the maneuvering
aspects of rules 14 and 15 in situations where the give-way
vessel does not maneuver. The obstacle clearance will be larger
if the algorithm ignores the maneuvering aspects of rules 14
and 15, like e.g., passing in front of an obstacle in a crossing
situation where the ownship is the give-way vessel. Moving
obstacles are in general handled by the mid-level algorithm,
making this applicable only in emergency situations and for
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obstacles detected so late that the mid-level algorithm is unable
to avoid them.

The algorithm constructs a search space consisting of a
finite number of trajectories, which each contain a sequence of
maneuvers. The maneuvers are constructed using a dynamic
model of the ownship and a set of accelerationmotion primitives,
resulting in feasible trajectories being specified to the vessel
controller. For each maneuver, a discrete set of SOG and course
accelerations are created as

U̇samples =
{

U̇1, U̇2, . . . , U̇NU

}

χ̈ samples =
{

χ̈1, χ̈2, . . . , χ̈Nχ
}

,
(35)

where U̇i, i ∈ [1,NU] and χ̈i, i ∈ [1,Nχ ] denote NU ∈ N
and Nχ ∈ N vessel-feasible speed and course accelerations.
Given the acceleration samples (35) and motion primitives for
each maneuver in a trajectory, we create a set of desired SOG
and course trajectories Ud. These trajectories have continuous
acceleration, and is designed in an open-loop fashion by
using the current reference tracked by the vessel controller for
initialization, rather than the current vessel SOG and course.
The reason for this is that the reference to the vessel controller
should be continuous in order to avoid jumps in the actuator
commands. To include feedback in the trajectory prediction, a set
of feedback-corrected SOG and course trajectories Ūd is predicted
using a simplified error model of the vessel and vessel controller.
Finally, the feedback-corrected SOG and course trajectories are
used to compute a set of feedback-corrected pose trajectories:

H̄ =
{

η̄(·)
∣
∣(Ū(·), χ̄(·)) ∈ Ū

}

, (36)

where η̄(·) denotes a kinematic simulation procedure that given
SOG and course trajectories, Ū(·) and χ̄(·), in Ūd computes the
vessel pose. See Eriksen and Breivik (2019) and Eriksen et al.
(2019) for more details on the trajectory generation procedure.

In order to converge toward the trajectory specified by the
mid-level algorithm, a desired acceleration is computed based on
a line-of-sight guidance scheme. In Eriksen and Breivik (2019)
and Eriksen et al. (2019), the samples closest to the desired
acceleration in (35) are replaced with the desired acceleration,
given that this is vessel-feasible. A problem with this, is that
when operating at high speeds, the possible acceleration may not
be symmetric, resulting in that zero acceleration (hence keeping
a constant speed and course), may not be part of the search
space. This can cause undesirable behavior, since the BC-MPC
algorithm will be unable to keep the speed and course constant,
which can cause oscillatory behavior. In this paper, we therefore
propose to move the acceleration samples closest to zero, and
adding the desired acceleration as a separate sample, given that
it is vessel feasible. This will make sure that keeping a constant
speed and course, as well as a trajectory converging toward the
desired trajectory is included in the search space.

Given the predicted trajectories, the algorithm finds the
optimal desired SOG and course trajectory for the vessel
controller u∗

d
(·) = [Ud(·)∗,χd(·)∗] as

u∗d(·) = argmin
(η̄k(·),ud,k(·))∈(H̄,Ud)

G(η̄k(·), ud,k(·); pmid
d (·)), (37)

where the objective function is given as

G(η̄(·), ud(·); pmid
d (·)) = walalign(η̄(·); pmid

d (·))
+ wav,mavoidm(η̄(·))+ wav,savoids(η̄(·))
+ wt,U tranU(ud(·))+ wt,χ tranχ (ud(·)).

(38)

The variables wal,wav,m,wav,s,wt,U ,wt,χ > 0 are tuning
parameters, while align(η̄(·); pmid

d
(·)) measures the alignment

between a candidate trajectory η̄(·) and the desired trajectory
from the mid-level algorithm pmid

d
(·). The function avoidm(η̄(·))

ensures COLAV of moving obstacles by penalizing trajectories
close to obstacles, using a non-symmetric obstacle ship domain
designed with the COLREGs in mind. The function avoids(η̄(·))
ensures COLAV of static obstacles by introducing an occupancy
grid, while tranU(ud(·)) and tranχ (ud(·)) introduces transitional
costs to avoid shattering. The transitional terms penalize
deviations from the planned trajectory of the previous iteration,
unless changing to the trajectory corresponding by the desired
acceleration. See Eriksen and Breivik (2019) and Eriksen et al.
(2019) for more details and descriptions of the terms.

6. SIMULATION RESULTS

The hybrid COLAV system is verified through simulations,
which are present in this section. The simulations include ocean
current and both static andmoving obstacles.We includemoving
obstacles both acting in compliance with the COLREGs, and
violating the COLREGs.

6.1. Simulation Setup
The simulations are performed in MATLAB on a computer with
an 2.8 GHz Intel Core i7 processor running macOS Mojave,
using CasADi (Andersson et al., 2019) and IPOPT (Wächter
and Biegler, 2005) for implementing the high-level and mid-level
algorithms. The simulator is built upon the mathematical model
of the Telemetron ASV described in section 2, and the model-
based speed and course controller in Eriksen and Breivik (2018)
is used as the vessel controller.

The parameters of the high-level algorithm are listed in
Table 1. The number of prediction steps Nhi is chosen to achieve
a time step length h = tmax/Nhi < 1.5 s, which seems to be a good
compromise between capturing the relevant system dynamics
and having a feasible computational requirement.

The mid-level algorithm is implemented using the parameters
in Table 2.

The slack variable cost Kξ has five elements, implying that
we use five steps in our homotopy scheme. The mid-level NLP
is initially warm started with the solution from the previous
iteration, while each step in the homotopy scheme is warm
started with the solution from the previous step of the homotopy
scheme, converging toward the solution without slack on the
constraints. To reduce the computational load and increase the
predictability of the mid-level algorithm, we utilize six steps of
each planned mid-level trajectory, only running the mid-level
algorithm every 60 s. This implies that six steps of the predicted
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TABLE 1 | Tuning parameters for the high-level algorithm.

Param. Value Comment

tmax Maximum trajectory time

Scenario 1 1420 s

Scenario 2 1420 s

Scenario 3 725 s

Nhi 1000 Number of prediction steps

Ke 1.0 s3/m Energy penalty gain

Kδ 1.0 Quadratic yaw control penalty gain

Lm 4.0 m Length between control origin and outboard motor

TABLE 2 | Tuning parameters for the mid-level algorithm.

Param. Value Comment

d
enter
CPA 900 m State machine dCPA entry criteria

dexit
CPA 2000 m State machine dCPA exit criteria

[tenter
CPA , t

enter
CPA ] [0, 270] s State machine tCPA entry criteria

[texit
CPA, t

exit
CPA] [-20, 290] s State machine tCPA exit criteria

t
EM,enter
crit 20 s Emergency state tcrit entry criteria

t
EM,exit
crit 25 s Emergency state tcrit exit criteria

h 10 s Step size

Np 36 Number of prediction steps

Kp 0.02 Position error scaling

σ 1 Huber loss function threshold

KU̇ 0.3 SOG-derivative penalty term scaling

Kχ̇ 2.5 Course-derivative penalty term scaling

KHO 40 Head-on potential function scaling

[αx,HO,αy,HO] [1/500, 1/400] Head-on potential function steepness

parameters

x0,HO 1000 m Head-on potential function attenuation

parameter

KGW 40 Give-way potential function scaling

[αx,GW,αy,GW] [1/400, 1/500] Give-way potential function steepness

parameters

y0,GW −500 m Give-way potential function attenuation

parameter

KSO 3 Stand-on function scaling

KEM 3 Emergency function scaling

Kξ [0.1, 1, 10, 100,∞] Iterative slack variable cost

xa 600 m Moving obstacle ellipsis major axis size

ya 225 m Moving obstacle ellipsis minor axis size

solution will be implemented before computing a new solution,
which further implies that the state machine is also only run
every 60 s. If the mid-level algorithm fails in finding a feasible
solution, the algorithm will re-use the solution from the last
iteration. This may for instance happen if the algorithm tries
to compute a solution while being inside a moving obstacle
ellipse, which sometimes can be the case when an obstacle is
exiting an emergency or stand-on state. The BC-MPC algorithm
is run every 5 s, with parameters as described in Eriksen and

Breivik (2019). An update rate of 5 s is considered sufficient due
the typically large maneuvering margins at sea. It is also worth
noting that the detection and tracking system can represent a
significant time delay, especially for radar-based systems (Eriksen
et al., 2019). For confined and congested areas the BC-MPC
algorithm may need to be run at a higher rate, which also
imposes requirements for high-bandwidth obstacle estimates.
Static obstacles are padded with a safety margin of 150 m for
the high-level and mid-level algorithms, while the BC-MPC
algorithm uses a safety margin of 100 m for static obstacles.
The reason for having a smaller static obstacle safety margin
for the BC-MPC algorithm is that it tends to struggle with
following trajectories on the static obstacle boundaries. The BC-
MPC algorithm would hence not be able to follow the nominal
trajectory if the static obstacle safety margin was the same as for
the mid-level and high-level algorithms.

The simulations are performed without any noise on
the obstacle estimates, providing the algorithms with exact
information about the obstacles position, course, and speed.
The BC-MPC algorithm has previously been shown to perform
well with noisy and uncertain obstacle estimates in full-
scale experiments using radar-based detection and tracking of
obstacles (Eriksen and Breivik, 2019; Eriksen et al., 2019). The
mid-level algorithm is likely to have a larger requirement to low
noise levels on the obstacle estimates, since the state machine in
the mid-level algorithm depends on logic and discrete switching.
However, the algorithm is also run less frequently, reducing the
required bandwidth of the obstacle estimates, possibly allowing
using smoothing or tracking filters with a lower process noise
if necessary. It may also be feasible to make the mid-level
algorithm depend on data from the automatic identification
system, which typically have much lower noise levels than radar-
based tracking systems, while being subject to robustness issues
(Harati-Mokhtari et al., 2007).

We present three scenarios, which demonstrate different
important properties of the hybrid COLAV system:

Scenario 1 This scenario contains two static obstacles, and
four moving obstacles of which all comply with
the COLREGs. Themoving obstacles demonstrate
stand-on, give-way and head-on situations.

Scenario 2 This scenario contains one static and five moving
obstacles. The moving obstacles demonstrate
stand-on with an obstacle ignoring the COLREGs,
an overtaking and a simultaneous head-on,
give-way and stand-on situation with obstacles
complying with the COLREGs.

Scenario 3 This scenario contains two moving obstacles,
which suddenly perform dangerous maneuvers
close to the ownship, displaying the use of the
emergency state.

6.2. Scenario 1
Scenario 1 contains two static obstacles, four moving obstacles,
an ocean current of [−2, 0]⊤ m/s and is shown in Figure 7.
The high-level planner plans a nominal trajectory between the
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A

B

FIGURE 7 | Scenario 1: trajectory and COLREGs interpretation. The text

marks denote the time steps [150, 600, 1100] s. (A) Trajectory plot. The initial

position of the ownship and obstacles are shown with circles, with the blue

ellipses illustrating the moving obstacle ellipse size. The vessel patches, which

are overexaggerated for visualization, mark the ownship and obstacle poses at

given time stamps. The static obstacles are shown in yellow, with the BC-MPC

and mid-level safety margins enclosed around. The black arrow indicates the

ocean current direction. (B) Output from the state machine for each obstacle.

The asterisks mark time stamps, and the colors correspond to the obstacle

patch colors in the trajectory plot.

initial and goal positions at [7000, 200]⊤ m and [0, 7900]⊤ m,
respectively. The first obstacle is in a stand-on situation, where
it is required to maneuver in order to avoid collision with the
ownship, which is required to stand on. As shown in Figure 7B,
the first obstacle is quickly considered as a stand-on situation,
at which the mid-level algorithm disregards the obstacle and
continues with the current speed and course. Following this,
the obstacle maneuvers in accordance to the COLREGs, and we
avoid collision. After the first static obstacle, we encounter two
crossing vessels where the ownship is deemed the give-way vessel.
In accordance with the COLREGs, we maneuver to starboard in
order to pass behind both obstacles. Notice that the second give-
way obstacle is detected as a give-way situation later than the
first, since the entry criteria in the state machine includes the
time to CPA, which is higher for the second give-way obstacle.

A

B

FIGURE 8 | Scenario 1: speed and angular trajectories. The asterisks mark

the same time samples as in Figure 7. (A) Speed trajectories. (B) Angular

trajectories.

After avoiding the two give-way obstacles, we converge toward
the nominal trajectory and encounter a head-on situation. This
is correctly identified by the state machine as head on, and we
maneuver to starboard in order to avoid collision. Notice that
even though the obstacle maneuvers, we keep the obstacle in the
head-on state until we have passed it.

Figure 8 shows the speed and angular trajectories during
Scenario 1, where the desired speed is calculated as the nominal
speed at the closest point on the nominal trajectory given the
ownship position. From this, we see that the mid-level and BC-
MPC algorithms manage to track the desired nominal speed
before and after the first static obstacle, where no obstacles
require maneuvering away from the nominal trajectory. Notice
that when encountering the two crossing obstacles, the mid-level
algorithm chooses to slowly change the course, which is due to
the attenuation of the give-way potential function and the large
distance between the vessels. It would be better to make a clear
course change, which is a subject of tuning. After passing the two
crossing obstacles, the mid-level algorithm increases the speed in
order to get back to the nominal trajectory, which is due to the
algorithm attempting to keep the speed projected on the nominal
trajectory equal as the desired nominal speed. Furthermore,
notice that the mid-level algorithm actively controls the relative
surge speed in order achieve the desired SOG, which is clearly
seen when passing the first static obstacle.

6.3. Scenario 2
Scenario 2, shown in Figure 9, is more complex than Scenario 1,
with a total of five moving obstacles, and has an ocean current of
[−1, 1]⊤ m/s. The high-level planner plans a nominal trajectory
between the initial and goal positions at [200, 200]⊤ m and
[5500, 7000]⊤ m, respectively. The first obstacle is a crossing
vessel, which similarly as in Scenario 1 is deemed to give way for
the ownship, which should keep the current speed and course.
However, in this scenario, the obstacle violates the COLREGs by
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A

B

FIGURE 9 | Scenario 2: trajectory and COLREGs interpretation. The text

marks denote the time steps [140, 550, 900] s. (A) Trajectory plot. The initial

position of the ownship and obstacles are shown with circles, with the blue

ellipses illustrating the moving obstacle ellipse size. The vessel patches, which

are overexaggerated for visualization, mark the ownship and obstacle poses at

given time stamps. The static obstacles are shown in yellow, with the BC-MPC

and mid-level safety margins enclosed around. The black arrow indicates the

ocean current direction. (B) Output from the state machine for each obstacle.

The asterisks mark time stamps, and the colors correspond to the obstacle

patch colors in the trajectory plot.

not maneuvering in order to avoid collision. Therefore, the BC-
MPC algorithm maneuvers to avoid collision when the obstacle
gets so close that the safety margins of the BC-MPC algorithms is
violated. The BC-MPC algorithm maneuvers to port, as advised
by COLREGs Rule 17 for crossing situations where the stand-
on vessel has to maneuver, and safely avoid the first obstacle.
The second obstacle is overtaken by the ownship, and correctly
considered as an overtaking situation by the state machine. For
such an situation, there is no requirement on how the ownship
should maneuver, except keeping clear from the overtaken vessel.
After passing the second obstacle, we encounter a complex
situation with simultaneous head-on, give-way and stand-on
obligations. In this situation, each vessel, including the ownship,
finds itself in a situation where a head-on and a give-way situation
require starboard maneuvers, while a stand-on situation requires
the vessel to keep the current speed and course. However, head-
on and give-way obligations should be prioritized higher than
stand-on situations, and the situation is quite easily solved by
each vessel maneuvering to starboard and passing behind the

A

B

FIGURE 10 | Scenario 2: speed and angular trajectories. The asterisks mark

the same time samples as in Figure 9. (A) Speed trajectories. (B) Angular

trajectories.

vessel crossing from starboard. The mid-level algorithm solves
this situation with the desirable behavior, and converges toward
the nominal trajectory after the situation is resolved. As shown in
Figure 9B, the state machine interprets the situations correctly.

From the speed trajectory in Figure 10 it is clear that the
mid-level algorithm follows the desired nominal speed also when
overtaking the second obstacle.

6.4. Scenario 3
Scenario 3, shown in Figure 11, contains two moving obstacles
on parallel courses with the ownship, and has an ocean current of
[−1, 1]⊤ m/s. The high-level planner plans a nominal trajectory
between the initial and goal positions at [500, 500]⊤ m and
[3328, 5399]⊤ m, respectively, which results in a straight line
trajectory with a course angle of 60°. The first obstacle travels at
a higher speed than the ownship, while the second one travels
at a lower speed and will be overtaken by the ownship. Since
the obstacles are on parallel paths with the obstacle, the time
to CPA is sufficiently high such that the obstacles are in the
safe state, even though the vessels are quite close. However,
both obstacles make sudden maneuvers to port dangerously
close to the ownship and enters on a crossing course with
the ownship. With respect to the COLREGs, the ownship is
required to give way to both obstacles since they are crossing
from the ownship’s starboard side. One can, however, argue that
the maneuvers displayed by the obstacles are dangerous and
displays poor seamanship, such that the ownship should not be
held accountable if a collision occurred. Nevertheless, the hybrid
COLAV system manages to avoid both obstacles. As seen in
Figure 11B, the first obstacle is sufficiently far away from the
ownship to be considered as a give-way situation when the state
machine interprets the situation, and the mid-level algorithm
plans a trajectory passing behind the first obstacle. The second
obstacle maneuvers to port even closer to the ownship, resulting
in the distance to the critical point being within the threshold
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A

B

FIGURE 11 | Scenario 3: trajectory and COLREGs interpretation. The text

marks denote the time steps [170, 480] s. (A) Trajectory plot. The initial

position of the ownship and obstacles are shown with circles, with the blue

ellipses illustrating the moving obstacle ellipse size. The vessel patches, which

are overexaggerated for visualization, mark the ownship and obstacle poses at

given time stamps. The static obstacles are shown in yellow, with the BC-MPC

and mid-level safety margins enclosed around. The black arrow indicates the

ocean current direction. (B) Output from the state machine for each obstacle.

The asterisks mark time stamps, and the colors correspond to the obstacle

patch colors in the trajectory plot.

for entering the emergency situation when the state machine
interprets the situation. In this situation, the mid-level algorithm
disregards the obstacle and leaves it to the BC-MPC algorithm to
avoid collision.

As seen in Figure 12, the mid-level algorithm both reduces
the speed and changes the course to avoid the first obstacle.
When approaching the second obstacle, the BC-MPC algorithm
initiates a speed reduction, and after some time also maneuver
to starboard in order to pass behind the obstacle and resolve
the situation.

6.5. Simulation Summary
The simulation results show that the hybrid COLAV system is
able to handle a wide range of situations, while also behaving in
an energy-optimal way whenmoving obstacles are not interfering
with the ownship trajectory. Table 3 shows the minimum
distance to static and moving obstacles for the scenarios.

A

B

FIGURE 12 | Scenario 3: speed and angular trajectories. The asterisks mark

the same time samples as in Figure 11. (A) Speed trajectories. (B) Angular

trajectories.

TABLE 3 | Minimum distance to static and moving obstacles for the

simulation scenarios.

Scenario
Minimum distance to

static obstacles (m)

Minimum distance to moving

obstacle number (m)

1 2 3 4 5

Scenario 1 93.7 634.3 596.3 522.7 726.8 –

Scenario 2 118.2 185.5 228.3 1,097.2 575.6 842.3

Scenario 3 1123.8 326.4 106.6 – – –

The minimum distance to static obstacles is in Scenario 1
below the safety region size of the BC-MPC algorithm, which
is intentional and caused by the algorithm using a smooth
penalty function for interpreting static obstacles. The penalty
function value increases linearly when moving further into the
safety region, see Eriksen and Breivik (2019) for more details.
The minimum distance to moving obstacles is a bit difficult
to interpret, since the obstacle ship domains are non-circular,
implying that the required clearance depends on relative position
of the ownship with respect to the moving obstacles. However,
we see that we have a larger clearance in head-on, give-way
and stand-on situations where the obstacles comply with the
COLREGs, and do not perform dangerous maneuvers (as in
Scenario 3), compared to overtaking situations. The reason for
this is that when overtaking (obstacle 2 in Scenario 2), we pass
the obstacle on a parallel course, resulting in the minor axis of
the moving obstacle ellipsis indicating the required clearance.
Furthermore, we see that obstacle 1 in Scenario 2, which ignores
its give-way obligation, comes significantly closer than other
crossing obstacles except for those in Scenario 3. The reason for
this is that the BC-MPC algorithm, which handles this situation,
has a lower clearance requirement than the mid-level algorithm,
which still should be considered as safe. In Scenario 3, the
two obstacles display poor seamanship, and behave dangerously.
Obstacle 1 is handled by the mid-level algorithm and passed
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with a clearance lower than the major axis of the mid-level
algorithm, which is caused by the BC-MPC algorithm “cutting
the corner.” The clearance should still be considered safe since
we are behind the obstacle, and the clearance requirements of
the BC-MPC algorithm is enforced. Obstacle 2, which is placed
in the emergency state and handled by the BC-MPC algorithm,
is passed with a clearance of only 106.6 m. This is lower than
the clearance to Obstacle 1 in Scenario 2 (which violated its
stand-on requirement), and is due to the BC-MPC algorithm
having a non-symmetric obstacle ship domain function allowing
for a smaller clearance when passing behind an obstacle than
in front.

For the three scenarios, the high-level planner used an average
of 67 s with a maximum of 93 s to compute the solution.
Since the high-level planner is intended to be run off-line,
this is well within reasonable limits. The mid-level algorithm
used 0.60 s on average, and a maximum of 2.1 s, which we
consider to be computationally feasible since the mid-level
algorithm only is run every 60 s. The BC-MPC algorithm
used 0.29 s on average, and a maximum of 0.63 s, which
we also consider to be real-time feasible when the BC-MPC
algorithm is run every 5 s. The BC-MPC algorithm is highly
parallelizable, which could reduce the BC-MPC runtime by a
large magnitude if required. The mid- and high-level algorithms
may not return solutions as they are non-convex optimization
problems, but the BC-MPC algorithm makes the hybrid COLAV
system real-time feasible since it always will find a (potentially
sub-optimal) solution.

7. CONCLUSION

In this paper, we have presented a three-layered hybrid COLAV
system, compliant with COLREGs rules 8 and 13–17. As part
of this, we have further developed the MPC-based mid-level
COLAV algorithm in Eriksen and Breivik (2017b) and Bitar
et al. (2019a) to comply with COLREGs rules 13–16 and parts
of Rule 17, which includes developing a state machine for
COLREGs interpretation. The hybrid COLAV system has a well-
defined division of labor, including an inherent understanding of
COLREGs Rule 17, where the mid-level algorithm obeys stand-
on situations, while the BC-MPC algorithm handles situations
where give-way vessels do not maneuver.

The hybrid COLAV system is verified through simulations,
where we in three scenarios challenge the system with a number
of different situations. The scenarios include multi-obstacle
situations with multiple simultaneously active COLREGs rules,
and situations where obstacles violate the COLREGs. Collision
is avoided in all the scenarios, and we show that the

ownship follows an energy-optimized trajectory generated by the
high-level planner when moving obstacles do not interfere with
this trajectory.

For further work, we suggest to:

• Investigate if using situation-dependent entry and exit criteria
parameters in the state machine improves the performance.

• Expand the state machine with the possibility of transitioning
from head-on, give-way and overtaking states to the
emergency state for situations where obstacles behave
dangerously or hostile.

• Develop a methodology for deciding tuning parameters.
• Perform simulations with noisy obstacle estimates to

investigate how the state machine and mid-level algorithm
respond to this.

• Explore the possibilities for integrating the COLREGs
interpretation in the mid-level NLP, relaxing the assumption
of the current COLREGs situation being valid for the entire
prediction horizon.

• Investigate the possibility of including static obstacles from
e.g., ENCs in the high- and mid-level algorithms.

• Simulate scenarios where multiple vessels running the hybrid
COLAV system interact with each other.

• Validate the hybrid COLAV system in full-scale experiments.
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Abstract: We propose a method for performing automatic docking of a small autonomous
surface vehicle (ASV) by interconnecting an optimization-based trajectory planner with a
dynamic positioning (DP) controller for trajectory tracking. The trajectory planner provides
collision-free trajectories by considering a map with static obstacles, and produces feasible
trajectories through inclusion of a mathematical model of the ASV and its actuators. The
DP controller tracks the time-parametrized position, velocity and acceleration produced by the
trajectory planner using proportional-integral-derivative feedback with velocity and acceleration
feed forward. The method’s performance is tested on a small ASV in confined waters in
Trondheim, Norway. The ASV performs collision-free docking maneuvers with respect to static
obstacles when tracking the generated reference trajectories and achieves successful docking.

Keywords: Autonomous surface vehicles, automatic docking, model predictive control, optimal
control, path planning.

1. INTRODUCTION

Autonomous surface vehicles (ASVs) constitute a topic of
significant research and commercial attention and effort.
Motivating factors are economy, flexibility, safety and
environmental advantages. Technology developments in
this field are rapid, and the use cases are many, e.g.
mapping of the ocean floor, military applications such as
surveillance, and transportation. In addition, the relatively
low cost of smaller ASVs enables novel concepts, for
example autonomous urban passenger ferries that are an
alternative to bridges in a city landscape.

To achieve autonomy in transportation operations the
following phases must be automated:

• Undocking – moving from the quay in a confined
harbor area to open waters,

• transit – crossing a canal or large body of water
towards the destination harbor,

• docking – moving from open waters towards the
docking position along the quay in a harbor area.

Since this paper focuses on the docking phase, we provide
a background on automatic docking methods. The number
of reported existing methods is limited in research litera-
ture and in commercial applications. Methods for docking
of autonomous underwater vehicles (AUVs) have been

? This work is supported by the Research Council of Norway
through the project number 269116 as well as through the Centres
of Excellence funding scheme with project number 223254.

introduced by e.g. Rae and Smith (1992), Teo et al. (2015)
and Hong et al. (2003), but they are of limited value for
use with surface vessels in a confined harbor area, due to
the lack of consideration of nearby obstacles. Tran and Im
(2012) propose a method for docking of a large ship based
on artificial neural networks to control the ship’s thrusters,
which has shown promising simulation results. However,
this method does not include the harbor layout for collision
avoidance. Mizuno et al. (2015) propose an optimization-
based approach taking into account known disturbances.
An optimal nominal path is generated once, and a lower-
level model predictive controller (MPC) attempts to follow
it. This method also does not include the harbor layout for
collision avoidance, and it is not very realistic to assume
known disturbances in such dynamic settings. Commercial
demonstrations of automatic docking have been performed
by Wärtsilä 1 and Rolls-Royce 2 (now Kongsberg Mar-
itime). Details about the methods used in these approaches
are unavailable to the public.

The docking method from (Martinsen et al., 2019) is a
nonlinear model predictive controller (NMPC) that takes
into account vessel dynamics in the form of its dynamic
model, as well as collision avoidance by planning trajec-

1 Wärtsilä press release: https://www.wartsila.com/

twentyfour7/innovation/look-ma-no-hands-auto-docking-

ferry-successfully-tested-in-norway.
2 Rolls-Royce press release: https://www.rolls-royce.com/

media/press-releases/2018/03-12-2018-rr-and-finferries-

demonstrate-worlds-first-fully-autonomous-ferry.aspx.



Fig. 1. The experimental autonomous urban passenger
ferry milliAmpere, developed at NTNU, moored near
Brattøra in Trondheim, Norway.

tories within a convex set, based on the harbor layout.
Advantages of that approach include explicit handling of
static obstacles, planning of dynamically feasible trajecto-
ries, and flexible behavior shaping via the nonlinear cost
function. The method does not handle moving obstacles
or account for external unknown disturbances. Addition-
ally, due to the non-convex shape of the optimal control
problem (OCP), guarantees on run time or feasibility are
not provided. In this paper, we build on (Martinsen et al.,
2019) and add the following contributions:

• Instead of running the trajectory planner as an MPC
controller by using the inputs directly, the state tra-
jectory is sent to a trajectory-tracking dynamic po-
sitioning (DP) controller to account for disturbances
and unmodeled dynamics.

• The thruster model is adjusted to improve run times
and convexity properties.

• The cost function is adjusted to deal with the wrap-
around problem in the heading variable, and to avoid
quadratic costs on large position deviations.

• Slack variables are added to deal with feasibility
issues that arise when implementing the method in
a real-world scenario.

• Although not detailed in this paper, we have imple-
mented an algorithm that dynamically updates the
convex set which represents the static obstacles. The
set is updated based on the vessel’s current position
in the map, which allows us to use convex constraints
in a non-convex map.

By modifying the method from (Martinsen et al., 2019), it
is shown to produce collision-free and successful maneuvers
in full-scale experiments on the experimental autonomous
urban passenger ferry milliAmpere, seen in Figure 1, in
Trondheim, Norway. Although the method is implemented
to solve the docking problem on an autonomous urban
passenger ferry, this is a generic approach that is suitable
also for other use cases and vessel types.

The rest of this paper is structured as follows: We intro-
duce the experimental platform milliAmpere in Section 2.
The trajectory planner used for generating docking trajec-
tories is presented in Section 3, along with the trajectory-
tracking DP controller. Section 4 presents the experimen-
tal results, and we conclude the paper in Section 5. We
present the mathematical models used in the paper in
Appendix A.

Table 1. milliAmpere specifications.

Dimensions 5m by 2.8m symmetric footprint

Position and heading
reference system

Vector VS330 dual GNSS with RTK
capabilities

Thrusters Two azimuth thrusters on the center
line, 1.8m aft and fore of center

Existing control
modules

Trajectory-tracking DP controller and
thrust allocation system

Docking planner
DP controller

milliAmpere
Thrust allocation

Planned
trajectory
xp(t), ẋp(t)

Thruster
commands

Measured states x(t)

Docking
pose

Thruster
commands

Fig. 2. Block diagram of the docking system setup. The DP
controller and thrust allocation are existing functions
on milliAmpere.

2. THE MILLIAMPERE AUTONOMOUS FERRY
PLATFORM

For the sea trials, we used the experimental autonomous
urban passenger ferry milliAmpere, depicted in Figure 1
and with specifications as listed in Table 1. Developed
at the Norwegian University of Science and Technology
(NTNU) since 2017, milliAmpere has been an experimen-
tal platform where many students have contributed with
control systems as well as hardware solutions. A larger
version is being designed and built by the research group
Autoferry. 3 Small passenger ferries for urban water trans-
port is a novel concept which is being made economically
feasible due to increased availability and advances in both
sensor systems and autonomous technology. Such a solu-
tion is anticipated to make areas that are separated by
waterways more accessible at a lower cost and with less
interfering infrastructure than building a bridge.

For simulation purposes, we have used a surge-decoupled
three-degree-of-freedom model, along with dynamic mod-
els for azimuth angles and propeller speeds of the
thrusters. Separate models are also used for planning and
trajectory tracking. Since we are using three different
models in the work described in this paper, we place the
model information in Appendix A to improve readability.
Parameters and information about the model identifica-
tion process are available in (Pedersen, 2019).

3. TRAJECTORY PLANNING AND CONTROL

The trajectory planner is an OCP that takes into account
the vessel dynamics via a mathematical model, as well
as the harbor layout by including a map as constraints.
The OCP is a modified version of the one developed in
(Martinsen et al., 2019). In our case, the OCP runs at a
set rate and provides pose, velocity and acceleration tra-
jectories for an existing trajectory-following DP controller,
as illustrated in Figure 2.

The OCP is described by the following equations:

3 Autoferry website: https://www.ntnu.edu/autoferry.



min
xp(·),up(·),s(·)

∫ t0+T

t0

(
F (xp(t),up(t)) + k>

s s(t)
)
dt (1a)

subject to

ẋp(t) = f(xp(t),up(t)) ∀t ∈ [t0, t0 + T ] (1b)

h(xp(t),up(t))− s(t) ≤ 0 ∀t ∈ [t0, t0 + T ] (1c)

s(t) ≥ 0 ∀t ∈ [t0, t0 + T ] (1d)

xp(t0) = x(t0). (1e)

The planned states are denoted xp = [η>
p ,ν

>
p ]>, where

ηp = [xp, yp, ψp]
> is the Earth-fixed pose, and νp =

[up, vp, rp]
> is the body-fixed velocity vector. The kine-

matic relationship between the pose and velocity vectors
is detailed in Appendix A. The goal of the OCP is to arrive
at the constant state vector xd = [η>

d ,0
>
3 ]

> while avoiding
collisions, where ηd = [xd, yd, ψd]

> is referred to as the
docking pose. The vector x(t0) is the vessel’s measured
state at time t0. The planning horizon is T = 120 s.

The input vector up = [fx1, fy1, fx2, fy2]
> is used to

denote the forces decomposed in surge and sway of mil-
liAmpere’s two actuators, where fx1 represents a force in
surge direction from thruster 1, fy2 represents a force in
sway direction from thruster 2, etc. Details on the mapping
from this input to control forces are found in Appendix A.
The cost functional and constraints are elaborated upon
in the following subsections. The OCP is discretized us-
ing direct collocation and solved as a nonlinear program
(NLP) with 60 control intervals.

3.1 Cost functional

The cost functional (1a) operates on the trajectories of
the states xp(·), inputs up(·) and slack variables s(·). It
consists of a cost-to-go function F (xp(t),up(t)), as well
as a cost-to-go on the slack variables k>

s s(t) with the
elements of ks having values large enough (1.0× 103) so
that the slack variables are active only when the problem
otherwise would be infeasible.

The cost-to-go function is

F (xp(t),up(t)) =

H

([
xp(t)− xd
yp(t)− yd

])
+

20 (1− cos(ψp(t)− ψd))+

10 vp(t)
2 + 10 rp(t)

2 +

up(t)
>up(t) /m

2
11 ,

(2)

where the terms are costs on position error, heading error,
quadratic sway velocity and yaw rate, and quadratic input,
respectively. The parameter m11 is the system inertia in
surge, detailed in Appendix A. The terms are scaled so
that the cost function becomes dimensionless. The pseudo-
Huber function

H(a) = δ2

(√
1 +

a>a

δ2
− 1

)
(3)

with δ = 10m provides a quadratic penalty when the
quadrature position errors are low and linear when they
are high.

The resulting cost functional encourages the planned tra-
jectories to converge to the docking pose ηd with zero

Sv

Ss

E

N

Fig. 3. Spatial constraints illustration.

velocity, while penalizing sway and yaw rates, as well
as the input forces. Including the docking pose in the
cost functional instead of as terminal constraints allows
us to use the planner far away from the dock, when the
docking pose is outside the reach of the planning horizon
T . Additionally, if the operator selects a docking pose that
is in violation of the collision constraints, the planner will
accept it and find a feasible pose close to the docking pose.

3.2 Vessel model

Equation (1b) is a simplified model of the vessel dynam-
ics. A diagonalized version of the surge-decoupled model
in (Pedersen, 2019) is used, with details found in Ap-
pendix A. The kinematic and kinetic models are concate-
nated to

ẋp = f(xp,up) =[
R(ψp)νp

(SMp)
−1(−Cp(νp)νp −Dp(νp)νp + τp(up))

]
, (4)

where the time argument is omitted for notational brevity.
This equation is included as dynamic constraints in the
OCP.

3.3 Inequality constraints

The inequality constraints (1c) encode collision avoidance
criteria as well as state and input limitations. These con-
straints are softened by using slack variables and lin-
ear slack costs that keep the optimization problem fea-
sible should disturbances push the vessel outside of these
boundaries.

To avoid collisions, we specify a set Sv ⊂ R2 representing
the footprint of the vessel, as well as a permissible convex
set Ss ⊂ R2. The collision avoidance constraint is to ensure
Sv ⊂ Ss, which can be controlled by checking that the
vertices of Sv are within Ss, as illustrated in Figure 3.
Since Ss is a convex polyhedron, we can describe it as

Ss =
{
p ∈ R2 | Asp ≤ bs

}
, (5)

where As ∈ Rk×2 and bs ∈ Rk and k is the number of
vertices in the convex set. This results in the collision
avoidance constraint being equivalent to

As

(
R2(ψp(t))v +

[
xp(t)
yp(t)

])
≤ bs

∀ v ∈ Vertex(Sv) . (6)

The rotation matrix R2(ψp(t)) is equal to the upper-left
R2×2 of (A.3) in Appendix A. The set Ss is generated



regularly and consists of the eight edges made up of
landmasses in the map that are closest to the vessel in
order to form a convex set. Including more edges increases
the accuracy of the inequality constraints, but negatively
affects run time, and we have found eight to be a good
compromise.

The thrusters on milliAmpere are each limited in the
amount of thrust they are able to produce, so we place
limits on the norms of each individual thruster output:

fxi(t)
2 + fyi(t)

2 ≤ f2max, i ∈ {1, 2} . (7)

There are also limits on the states xp, i.e.

xlb ≤ xp(t) ≤ xub , (8)

which ensure that the OCP does not plan trajectories with
out-of-bounds velocities. The limits are only in effect for
the velocities in surge and sway (±1.0m s−1) and the yaw
rate (±5 ◦ s−1).

As noted, all these constraints are softened with slack
variables to ensure feasibility when e.g. a disturbance
pushes the vessel’s state outside the velocity limits or the
collision avoidance criterion. The constraints are gathered
in a single vector, giving the inequality constraint vector
in (1c).

3.4 Trajectory-tracking DP controller

The planned state trajectory and its derivative from the
solution of (1) are used as reference values for a trajectory-
tracking DP controller, which was already implemented on
milliAmpere before we added the trajectory planner. There
are several reasons for preferring this approach instead of
directly using the thruster commands from the solution of
(1):

• The planner does not account for drift, disturbances
or modeling errors, while the tracking controller does
so through feedback.

• While the planner is iteration-based with no formal
performance guarantees, the tracking controller pro-
vides a robust bottom layer that acts also as a safety
measure.

• The sampling rate of the planner is too low to stabilize
the vessel on its own.

The tracking controller is based on proportional-integral-
derivative (PID) action with feed-forward terms from both
velocity and acceleration:

τc(t) = τff(t) + τfb(t) . (9)

The feed-forward term is

τff(t) = Mpν̇p(t) +Dp(νp(t))νp(t) , (10)

with details in Appendix A. An issue with this feed-
forward term is that it doesn’t include coupling Coriolis
or damping effects, which may degrade its performance.
This discrepancy is left for the feedback to handle. The
PID feedback is

τfb(t) = −R(ψ(t))>·(
Kpη̃(t) +

∫ t

0

Kiη̃(τ) dτ +Kd
˙̃η(t)

)
, (11)

with η̃(t) = η(t) − ηp(t). The controller gains are Kp =
diag{100, 100, 200}, Ki = diag{10, 10, 20} and Kd =

diag{1000, 1000, 1500} with units that transform the re-
spective elements to force and moment units. The integra-
tor term in (11) has an anti-windup condition, limiting its
contribution to ±[150N, 150N, 200Nm]>.

The control command τc(t) is sent to milliAmpere’s thrust
allocation system, detailed in (Torben et al., 2019), which
sends commanded actuator azimuth angles and propeller
speeds to the actuators.

3.5 Design tradeoffs

In designing the docking system, it has been necessary to
compromise between optimality, performance and robust-
ness. One of the compromises was to separate trajectory
planning and motion control. While it would be possible
to run the trajectory planner as an MPC and use the
inputs from its solution directly, separation gives several
advantages:

• A PID controller accounts for steady-state distur-
bances and corrects for modeling errors, as opposed
to the MPC approach.

• Using a high-rate feedback controller allows us to run
the planner at a low rate, even though the vessel’s
dynamics are quite fast. The planner has run-times
between 0.3 and 0.7 s, which would make it difficult
to stabilize the vessel.

• Having a trajectory-tracking controller as the bottom
control layer makes the docking system more robust
to situations where the solver fails to find a feasible
solution.

Choosing this hybrid structure, where we separate plan-
ning from motion control, we have achieved flexibility
in the trajectory planner, disturbance rejection through
feedback, and robustness to failures in the planning level.

4. EXPERIMENTAL RESULTS

Experiments were performed with the milliAmpere pas-
senger ferry in confined waters in Trondheim, Norway on
October 18, 2019. The weather conditions were calm with
winds of 2m s−1 to 3m s−1 and rare gusts of 5m s−1. The
vessel is highly susceptible to wind disturbances, due to
its large cross-sectional area above water and low under-
water profile. The confined waters protect against waves
and currents, however, the shallow depth of milliAmpere’s
thrusters causes the thrust wake to disturb the hull when
operating close to quay, as is the case in the final docking
stage.

To test the docking system, we piloted the ferry to an
initial pose around 40m away from the docking pose,
and activated the docking system once we came to a
standstill. The trajectory planner then calculated state
trajectories at a rate of 0.1Hz towards the docking pose. A
higher rate caused frequent resetting of the error between
the planned and measured poses, limiting the effect of
the feedback controller (11). A lower rate would limit
the trajectory planner’s ability to take into account new
information. Since the trajectory planner calculates a safe
trajectory towards the docking pose, a rate of 0.1Hz is
a well-functioning compromise. Before every run of the
planner, an algorithm quickly calculated a new convex area



Ss based on the vessel’s current position, which served
as collision-avoidance constraints in the OCP (5). State
measurements, the planned trajectory and its derivative
were fed to the DP controller at a rate of 10Hz. This is
sufficient for motion control, since the vessel’s dynamics
are much slower.

A bird’s eye view of the resulting trajectory is seen in
Figure 4, with full-state trajectories in Figure 8. As is
seen in Figure 4, milliAmpere is able to safely navigate
to the docking pose by the help of the docking system.
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Fig. 4. Overview of milliAmpere’s trajectory during a
docking experiment. The vessel’s pose is depicted at
5 s intervals with green rectangles. The measured posi-
tion is drawn in solid green, while the active planned
reference is in dash-dotted orange. The dotted gray
lines show the trajectory planner’s reference for the
entirety of each planning horizon, also after a new
solution is calculated. The docking pose is marked
with a rectangular bright green dashed outline.
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Fig. 5. Planned and measured positions from the first step
of the planner. In 2 s intervals, the plot shows the
entire planned pose trajectory as gray outlines, and
the first 10 s of the measured pose as green rectangles.
The black solid polyhedron shows the current convex
area that represents the spatial constraints from (6).
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Fig. 6. As Figure 5, but at the second planning step. In
this step we see that the tracking controller struggles
to follow the heading commands. We believe this
is due to milliAmpere’s lack of natural stability in
heading, as well as due to poor performance of the
DP controller at high velocities.
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Fig. 7. As Figure 5, but at the third planning step. At this
slow speed, the tracking controller is able to follow
the planned trajectory well.

The trajectory is collision-free and slows down nicely when
approaching the quay. In the course of the experiment
there were 13 re-planning steps. Figures 5 through 7 show
the planned trajectories at the first, second and third steps,
respectively. The figures also show the convex area that
the trajectory planner uses for spatial constraints. Due to
how the convex-set algorithm works, the first step does
not include the docking pose in its permissible set, so
the trajectory planner generates a trajectory towards the
edge of its constraints. The vessel is able to closely follow
this trajectory until the second step. Here we see that the
vessel’s heading angle is failing to track the planned one.
We believe this is due to milliAmpere’s lack of stability
in heading, and due to poor tuning of the DP controller,
which fails to handle tracking of heading and yaw rate at
high speeds. In the third step, the trajectory planner is
able to plan all the way towards the docking pose, and
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Fig. 8. Measured pose and velocity states during the
docking experiments, along with reference trajectories
and docking pose. As in Figure 4, we include the
full horizon of the planned trajectories in dotted gray
lines.

the vessel is able to track the commanded trajectory well,
since the speed has decreased.

Figure 8 shows the state trajectories for pose and velocities
over time. It can be seen that the planned trajectories
are tracked tightly for the linear positions and velocities.
A notable observation is that the first two plans do not
converge to the docking pose, due to the convex area not
including the docking pose. This is corrected as the vessel
approaches the harbor. The heading angle and yaw rate are
not converging as well as the linear velocities, especially
at high speeds, as seen from the figure. Additionally,
due to the periodic resetting of the planned trajectory
to the current vessel state, integration is slow in the DP
controller, causing steady-state disturbance rejection to be
poor towards the end of the trajectory.

From Figure 9, we see that the solution times of the
trajectory planner are in the 0.3 s to 0.7 s range, which
is fast enough to be considered real-time feasible when
run at a period of 10 s. These results are repeatable when
docking from and to the same pose, and similar results are
also seen when docking from other locations.

5. CONCLUSIONS AND FUTURE WORK

We have demonstrated the capabilities for docking an ASV
using an OCP-based trajectory planner in combination
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Fig. 9. Histogram of solution times of the trajectory
planner.

with a DP controller. The solution is tested experimentally
in confined waters in Trondheim, Norway, and produces
safe maneuvers. The maneuvers avoid collision with static
obstacles and complete the docking phase, ending up in
a position adjacent to the dock, ready to moor. We have
shown that the combination of an OCP-based trajectory
planner and a tracking controller is suitable for the docking
problem. The method is also general, requiring only a
geographic map of sufficient resolution of the harbor envi-
ronment. This map may be known a priori, but may also be
adjusted with exteroceptive sensors, enabling extensions
to the method with camera, lidar and radar systems, e.g.
using simultaneous localization and mapping techniques.

The experiments have uncovered several possibilities for
improvement which are points for future work. A main
conclusion is that although we are able to combine a
trajectory planner with an existing tracking controller, the
tracking controller must be well-designed and tuned for
the combination to function satisfactorily. The following
points are considered as future work:

• Improve the tuning of the existing DP controller in
order to better track the reference trajectory.

• Include coupling effects in the feed-forward term of
the DP controller.

• Investigate other trajectory-tracking controllers.
• Adjust the cost function so that the trajectory plan-

ner produces maneuvers that are more consistent with
a harbor pilot’s experience with docking.

• Adjust the trajectory planner to produce more con-
servative trajectories.

• Develop a disturbance estimator that can provide the
trajectory planner with valuable information.

Future work also includes integrating the docking system
in a control structure that handles all the phases of a ferry
transport. The next item in our research is to integrate
systems for the undocking and transit phases. For the
undocking phase, the approach presented in this paper is
well suited. For the transit phase, we look to integrate a
version of the method from (Bitar et al., 2019), which can
bring the vessel to a location suitable for docking.
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Appendix A. MATHEMATICAL VESSEL MODELS

In this work, we have used three separate models for the
milliAmpere vessel, respectively for simulation, planning
in the OCP, and for trajectory tracking with the DP
controller. All of them are based on the surge-decoupled
three-degree-of-freedom model from (Pedersen, 2019). The
models use the state vector

x =
[
η> ν>]> , (A.1)

with η = [x, y, ψ]> ∈ R2×S being the pose states position
north and east of an origin, and heading angle (yaw),
respectively. The velocity vector ν = [u, v, r]> contains
body-fixed surge velocity, sway velocity and yaw rate,
respectively. The kinematic relationship between the pose
and velocity is

η̇ = R(ψ)ν , (A.2)

where

R(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 (A.3)

is the kinematic rotation matrix. The kinetic equations
that describe the propagation of ν are different for the
three applications.

A.1 Simulation model

When we simulated the approach prior to running full-
scale experiments, we used the surge-decoupled three-
degree-of-freedom model from (Pedersen, 2019). That
model has the form

Mν̇ +C(ν)ν +D(ν)ν = τ (α,n) , (A.4)

where M ∈ R3×3 is the positive definite system inertia
matrix, C(ν) ∈ R3×3 is the skew symmetric Coriolis
and centripetal matrix, and D(ν) ∈ R3×3 is the positive
definite damping matrix. The force vector τ ∈ R3 is a
function of the thrusters’ azimuth angles α = [α1, α2]

>

and their propeller speeds n = [n1, n2]
>. These values are

modeled dynamically based on commanded values, with
details in (Pedersen, 2019).

A.2 Planning model

For the dynamic constraints in the OCP, we use a simpli-
fied version of (A.4):

SMpν̇p +Cp(νp)νp +Dp(νp)νp = τp(up) , (A.5)

where Mp, Cp and Dp are diagonalized versions of M, C
and D from (A.4), respectively. The matrices are

Mp = diag{m11,m22,m33} > 0 , (A.6)

Cp(νp) =




0 0 −m22vp
0 0 m11up

m22vp −m11up 0


 (A.7)

and

Dp(νp) = diag{d11(up), d22(vp), d33(rp)} > 0 , (A.8)

where

d11(up) = −Xu −X|u|u
∣∣up
∣∣−Xu3u2p (A.9a)

d22(vp) = −Yv − Y|v|v
∣∣vp
∣∣− Yv3v2p (A.9b)

d33(rp) = −Nr −N|r|r
∣∣rp
∣∣ . (A.9c)

The coefficient matrix

S = diag{2.5, 2.5, 5.0} (A.10)

is factored into (A.5) to amplify the inertia, making the
planned trajectories more sluggish.

The dynamic thruster model from (Pedersen, 2019) is
excluded from the OCP in order to keep the run times
down. Instead, forces from milliAmpere’s two thrusters are
decomposed in the surge and sway directions, and used
directly as inputs:

up =
[
fx1 fy1 fx2 fy2

]>
, (A.11)

where fx1 represents a force in surge direction from
thruster 1, fy2 represents a force in sway direction from
thruster 2, etc. This is mapped to forces and moments in
surge, sway and yaw by the function

τp(up) =



1 0 1 0
0 1 0 1
0 l1 0 l2


up . (A.12)

The parameters l1, l2 ∈ R are the distances from the
vessel’s origin to its thrusters.

A.3 Tracking controller model

For the feed-forward terms in the DP controller, we also
use a simplified version of the simulation model (A.4):

Mpνp +Dp(νp)νp = τff . (A.13)

The DP controller was originally developed for station
keeping, and does not contain the C matrix. Otherwise,
the matrix values in (A.13) are equal to those in the
planning model (A.5).
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ABSTRACT Wepropose amethod for energy-optimized trajectory planning for autonomous surface vehicles
(ASVs), which can handle arbitrary polygonal maps as obstacle constraints. The method comprises two
stages: The first is a hybrid A? search that finds a dynamically feasible trajectory in a polygonal map on a
discretized configuration space using optimal motion primitives. The second stage uses the resulting hybrid
A? trajectory as an initial guess to an optimal control problem (OCP) solver. In addition to providing the
OCP with a warm start, we use the initial guess to create convex regions encoded as halfspace descriptions,
which converts the inherent nonconvex obstacle constraints into a convex and smooth representation. The
OCP uses this representation in order to optimize the initial guess within a collision-free corridor. The OCP
solves the trajectory planning problem in continuous state space. Our approach solves two challenges related
to optimization-based trajectory planning: The need for a dynamically feasible initial guess that can guide the
solver away from undesirable local optima and the ability to represent arbitrary obstacle shapes as smooth
constraints. The method can take into account external disturbances such as wind or ocean currents. We
compare our method to two similar trajectory planning methods in simulation and have found significant
computation time improvements. Additionally, we have validated the method in full-scale experiments in
the Trondheim harbor area.

INDEX TERMS Autonomous vehicles, collision avoidance, marine vehicles, motion planning, polygonal
collision-avoidance constraints, trajectory optimization, trajectory planning.

I. INTRODUCTION
In marine applications, we see efforts to increase the level of
autonomy in research, defense, and commercial applications.
Motivated by benefits to costs, safety, and environmental
impact, many actors consider using autonomous vessels in
their operations. In 2018, both Wärtsilä and Rolls-Royce
Marine (acquired by Kongsberg Maritime) demonstrated
autonomous capabilities with the ferriesFolgefonn andFalco,
respectively.1 Both tests included automatic transit and
docking. Another example of commercial use of maritime
autonomous technology is when the Japanese shipping com-

The associate editor coordinating the review of this manuscript and

approving it for publication was Heng Wang .
1https://www.maritime-executive.com/article/rolls-royce-and-wartsila-

in-close-race-with-autonomous-ferries (accessed September 14, 2020).

pany NYK completed the world’s first maritime autonomous
surface ship trial in 2019.2

An essential part of an autonomous marine system is path
and trajectory planning, where the goal is to plan how the
vessel will move from its start location to the goal location.
Path planning finds a sequence of collision-free configura-
tions without temporal constraints, while trajectory planning
adds temporal constraints, often via a time-parametrized state
trajectory. Our interests lie within energy-optimized opera-
tions, and since energy consumption is highly sensitive to
velocity, we focus on trajectory planning.

2https://www.nyk.com/english/news/2019/20190930_01.html (accessed
August 31, 2020).
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A. BACKGROUND AND RELEVANT WORK
Maritime agencies and research institutions actively research
autonomous technology for, e.g., underwater operations for
ocean mapping and monitoring [1], and autonomous trans-
portation, focusing on the international regulations for pre-
venting collisions at sea (COLREGs) [2]. Seto [3] gives an
overview of autonomous technologies for maritime systems,
and Pendleton et al. [4] give an overview of autonomy in
vehicles in general. Pendleton Path and trajectory planning
is a crucial technology for enabling autonomy at sea.

In robotics, there are numerous methods developed for
path and trajectory planning. A general introduction to
path planning is written by LaValle [5], who looks at the
topic from the perspective of computer science while intro-
ducing widespread notation and nomenclature. Wolek and
Woolsey [6] give an overview of model-based approaches to
path planning for ground, surface, underwater, and air vehi-
cles. We can coarsely divide planning methods into roadmap
methods that explore points in the configuration space that,
when connected, build a path between start and goal, and
optimization-based methods that produce connected paths
or trajectories using analytical or approximate optimization.
Some advantages of roadmap methods include quickly find-
ing the global solution of a path planning problem, and they
allow for flexible obstacle representations, e.g., polygonal
constraints. On the other hand, roadmap methods are discrete
and are not generally able to find an optimal path or trajectory
in a continuous domain. Optimization-based methods are
often slower and subject to finding local optima. However,
they naturally search in the continuous domain. Additionally,
gradient-based methods for solving optimization problems
require continuously differentiable representations of con-
straints, restricting how we can represent obstacles.

A simple example of roadmap methods is the A? search
algorithm [7]. A? is a graph search algorithm commonly
used as a path planner by discretizing a continuous map,
often into a uniform, rectangular grid. A? quickly pro-
vides a piecewise linear path from start to goal. A more
involved roadmap method comes from Candeloro et al. [8],
where the authors discretize a map using a Voronoi dia-
gram, subsequently refining and smoothing the result to
give a curvature-continuous path. These methods are fast,
but lack dynamic feasibility3, and can only be optimal in
terms of the employed map discretization. Roadmap meth-
ods also include sampling-based methods. These methods
explore random points to build a roadmap between start
and goal. Examples include the probabilistic roadmap [9],
as well as rapidly-exploring random trees [10] and variations
of those. Sampling-based methods are shown to be useful
for planning in high-dimensional configuration spaces, where

3We use the term ‘‘dynamically feasible’’ to indicate that a trajectory sat-
isfies dynamic constraints in the form of model-based differential equations.
A path that consists of a smoothed roadmap is usually feasible in terms of
specified a turning radius. This turning radius is dependent on vessel speed,
and the path is thus not dynamically feasible since it is not based on a model
that includes speed.

combinatorial roadmap methods often run into the so-called
curse of dimensionality [11].

Model-based optimization-based methods are researched
in automotive, aerial, and marine applications to create
dynamically feasible paths or trajectories. Optimization-
based methods are sometimes used to refine the result of a
roadmap search or used as the primary tool to plan a tra-
jectory. In [12]–[14], the authors present optimization-based
trajectory planning methods that use smooth representations
of rectangles and ellipses to approximate the obstacle map.
This type of representation makes the optimization problem
feasible to solve using gradient-based methods. However,
there is an impractical tradeoff between the representa-
tion accuracy and number of constraints in the optimiza-
tion problem. Additionally, these shapes may not be generic
enough to represent detailed obstacle maps. By reformulat-
ing the obstacle avoidance constraint and introducing aux-
iliary optimization variables, Zhang et al. [15] have devel-
oped an alternative method for representing obstacles. This
method allows the encoding of arbitrary convex polygons
as smooth optimization constraints by introducing auxiliary
optimization variables. The method works well for a low
number of obstacles, but the optimization problem grows
significantly with the number of obstacles and the number
of polygon edges, to the point where it is not feasible to
use it for marine applications with detailed obstacle maps.
Bergman et al. [16] propose to bypass the inherent
non-convexity of static obstacle avoidance by calculat-
ing a series of convex polytopes where their vehicle
is allowed to move. The method gives smooth, convex
obstacle avoidance constraints for their optimization-based
planner, but lacks consideration of environmental distur-
bances. An optimization-based trajectory planning method
for autonomous driving developed by Chen et al. [17] can
represent polygonal obstacle constraints. Their method is
based on linear quadratic control with an iterative optimiza-
tion solver. A prerequisite for their method is an initial
dynamically feasible trajectory in order to perform the opti-
mization. However, their method does not provide a way of
determining such a trajectory. This issue is common with
optimization-based methods, and without an initial guess,
they are prone to locking into solutions that represent unde-
sirable local optima, i.e., solutions that may be far away from
the globally optimal solution, as demonstrated in, e.g., [14].
In that example, the optimization-based planner finds a poor
solution in the absence of a helpful initial guess. Depending
on the objective function, finding a good initial guess to
warm-start an optimization-based planner can be straight-
forward. In the case of finding a minimum-distance path,
simple roadmap-based methods may quickly find paths in the
discrete domain that lie close to the optimal solution in the
continuous domain. Optimization-based methods can use this
type of path as an initial guess. For energy-based objective
functions, for instance, or when introducing dynamic con-
straints, creating feasible trajectories to use as initial guesses
is more challenging, and suggests alternative approaches.
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Zhang et al. [15] propose using the hybrid A? algorithm [18]
to find such a trajectory for an optimization-based solver.
Their application is autonomous parking of a car, described
with a dynamical model, and using a cost function that blends
minimum time and control effort. A simplified dynamical
model and cost function is used in the hybrid A? search
stage, and the search solution is used as an initial guess
for the optimization-based planner. The method does not
take into account external disturbances. Bergman et al. [16]
have developed a receding-horizon optimization-based plan-
ner warm-started by using a graph search method. The graph
search method works on a lattice of a marine vessel’s dis-
cretized state space with optimal state transitions. To facili-
tate motion in confined harbor areas, the authors use a cost
function that blends distance to obstacles, minimum time,
control effort, and control smoothness. Zhang et al. [19]
and Meng et al. [20] propose optimization-based trajec-
tory planning methods for autonomous driving that utilize
roadmap methods to generate nominal trajectories for geo-
metrical paths and subsequently use optimization to improve
them. In both papers, speed profiles are handled separately
from the geometrical path planning.

B. CONTRIBUTIONS
We have developed a method that plans energy-optimized
trajectories in an environment defined by polygonal obsta-
cles for an autonomous surface vehicle (ASV) under the
influence of external disturbances. Our method is based on
continuous optimal control, and the optimal control problem
(OCP) solver is warm-started by the solution of a hybrid A?

search algorithm. The method’s proposed use case is to plan
an ASV voyage’s transit stage before the voyage starts. The
method handles only static obstacles, and is thus suitable for
use as the top layer in a hybrid collision avoidance scheme,
as proposed in [2], [21], [22]. Figure 1 shows a high-level
block diagram of the trajectory planning method. The main
differences between our method and the planner described
in [16] are that we use a hybrid A? search to calculate
the initial guess, which allows us to account for estimated
external disturbances, such as wind. Additionally, we use
an alternative method to calculate the convex envelopes in
preparation for the trajectory optimization stage. Like the
method in [15], we also use hybrid A? to generate an initial
guess before optimizing. However, we propose an alternative
obstacle representation, which scales more efficiently with
the number of polygons and polygon edges in the obsta-
cle map, in terms of the number of optimization variables.
Our method shares similarities with [23] as well, where the
workspace is decomposed into triangular cells to account for
static, polygonal obstacles, and an optimization-based search
finds sub-trajectories in each of the triangular cells. However,
that method does not include an initial guess to warm-start the
OCP solver.

Our contributions are as follows:

• We have extended the hybrid A? search developed by
Dolgov et al. [18] to the ASV application by using an

FIGURE 1. A block diagram of the high-level functionality of our
proposed trajectory planning method.

energy-based cost function that depends on the velocity
relative to external disturbances such as wind.

• We use a trajectory of pose, velocity, and force from
the hybrid A? solution as an initial guess to a general
OCP solver.

• In the OCP, we utilize a sequence of convex polygons to
generate a state corridor in a nonconvex obstacle map.
This representation of obstacles causes the OCP’s obsta-
cle avoidance constraint to be convex, rather than non-
convex. Additionally, it allows us to easily use polygonal
obstacle maps in the gradient-based OCP solver, which
is generally hard due to their piecewise linear and non-
convex nature.

• We have compared our method to similar trajectory
planning methods and found significant improvements
in terms of run time, with equivalent energy use.

• We have performed full-scale experiments that have
validated our method based on the experimental vessel’s
capability to track the resulting trajectory.

C. OUTLINE
In Section II we cover preliminary information about notation
and vessel modeling. Sections III and IV present the devel-
opment of our trajectory planning method. In Section III,
we describe the hybrid A? method that generates the initial
guess. The section covers the generation of motion primi-
tives, two different search heuristics, and the search algorithm
itself. In Section IV, we present the OCP, how we convert
the obstacle map to a sequence of convex polygons, the tran-
scription of the OCP to a nonlinear program (NLP), and
how we solve the NLP Section V contains simulations and
comparisons to other trajectory planningmethods. The results
are compared in quantitative measures of planning time and
energy-usage when tracking the trajectories. In Section VI,
we present results from full-scale experiments, which serve as
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validation of the method and show howwell the experimental
vessel can track the produced trajectories. Section VII gives
concluding remarks.

II. PRELIMINARIES
A. NOTATION
From LaValle [5], we have widely used notation related to
path planning. As opposed to trajectories, a path places no
temporal constraints on the following vehicle. Except for this,
the two topics of planning paths and trajectories are similar.
We let W := R2 denote the world that contains our vessel
and obstacles. The union of obstacles is O ⊂ W . The free
workspace is defined to beWfree :=W \O.

Our vessel lives in W , but its configuration is better
described in the configuration space

η =
[
x y ψ

]>
∈ C := R2

× S. (1)

Here, x and y are the vessel’s position coordinates North and
East of some origin, respectively, and ψ is its heading angle
relative toNorth. The position coordinates refer to the vessel’s
center of gravity, which is at its centroid. The vector η is
referred to as the vessel’s pose. We denote its footprint in the
workspace as a set of points A(η) ⊂ W , which defines the
vessel’s shape. The set of noncolliding configurations is thus

Cfree := {η ∈ C |A(η) ∩O = ∅} . (2)

Most path planning algorithms operate on a discretized
version of the configuration space, denoted by Cd ⊂ C.
In our work we uniformly discretize the configuration space
on a grid with resolution

rC :=
[
rp rp rh

]>
, (3)

where rp > 0 is the positional resolution and rh > 0 is
the angular heading resolution. Similarly, the discrete free
configuration space is denoted Cd,free. While points in the
continuous configuration space are denoted by η, we use a
tilde for points in the discrete configuration space: η̃. The
mapping from C to Cd is denoted KEY : C 7→ Cd and is done
by rounding η to its closest multiple of rC .

The formal goal of path planning is to find a continuous
path, entirely in Cfree, from a start pose η0 ∈ Cfree to a goal
pose ηf ∈ Cfree. In discrete algorithms, the paths are often
piecewise linear, with connections on Cd,free. Generally, this
problem has many solutions, however, we usually also asso-
ciate the problem with a definition of an optimal path, e.g.,
the shortest. In trajectory planning, the goal is similar, but
we have additional kinodynamic constraints to satisfy, e.g.,
a set of time-parametrized differential equations. Section II-
B introduces such constraints in the form of a mathematical
vessel model.

B. ASV MODELING
Our ASV is modeled as a surge-decoupled three-degree-of-
freedom displacement vessel, with the state vector

x :=
[
η> ν>

]>
∈ X := C × R3 (4)

with η being the pose described in (1), and ν := [u, v, r]>

the body-fixed velocity vector, where u is the surge velocity,
v sway velocity and r yaw rate. The state space is denoted X .
The kinematic relationship between the pose and velocity is
described by

η̇ = R(ψ)ν, (5)

where

R(ψ) :=

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 . (6)

The kinetics of the ASV is described by

Mν̇ + C(ν)ν + D(ν)ν = τ + τ env. (7)

This notation is widely used for vessel models in the mar-
itime control literature [24]. Here, M ∈ R3×3 is the pos-
itive definite system inertia matrix, C(ν) ∈ R3×3 is the
skew-symmetrix Coriolis and centripetal matrix, and D(ν) ∈
R3×3 is the positive definite dampingmatrix. The force vector
τ = [X ,Y ,N ]> ∈ T ⊂ R3 are the control forces produced
by the ASV’s actuators in surge, sway and yaw, respectively,
where T denotes the space of valid inputs. These are in turn
governed by dynamical models of the actuators. For simu-
lation purposes we include those models, but for planning
and control we have simplified the model to let τ be directly
controllable. The environmental forces τ env can come from
wind, ocean current and waves. We have only modeled wind
effects for our experimental vessel, and the environmental
forces are a function of relative wind velocity:

τ env = τ env(ψ, ν,Vw), (8)

where Vw ∈ R2 is the wind velocity in North and East
components. Matrices M, C and D, along with the actuator
models, as well as a wind model are defined in [25].

The model is concatenated to

ẋ = f (x, τ ,Vw)

:=

[
R(ψ)ν

M−1
[
−

(
C(ν)+ D(ν)

)
ν + τ + τ env(ψ, ν,Vw)

]]
(9)

for ease of reference when discussing OCPs later in the paper.

III. STAGE 1: GENERATING A DYNAMICALLY FEASIBLE
INITIAL GUESS
As we mention in the introduction, our trajectory planning
method comprises two stages. The entire method, its subcom-
ponents, and their interconnections are illustrated in Figure 2.
Each subcomponent will be described in this section and the
next. Stage 1 of our method is to find a dynamically feasible
trajectory using the hybrid A? search.
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FIGURE 2. Block diagram of the trajectory planning method. Stage 1 refers to the generation of the initial guess, described in Section III, and
Stage 2 refers to the trajectory optimization from Section IV.

FIGURE 3. Comparison of traditional A? search space to the hybrid A?
search space in a two-dimensional grid. To the left is the commonly found
eight-connected uniform grid associated with A?, where states are
associated with grid cell centers. To the right is the search space of
hybrid A?, where states can lie anywhere in the cells.

A. HYBRID A?

Dolgov et al. [18] developed the hybrid A? algorithm to
plan paths for autonomous cars. Hybrid A? is a variant of
the well-known A? algorithm that captures continuous-state
data in discrete search nodes. The search space is discretized,
but a continuous state is associated with each discrete node,
as illustrated in Figure 3. An advantage of the hybrid A?

search space is that it does not require the connections
between two states in different nodes to be exact, which
allows us to be flexible when using motion primitives in the
discrete search. A disadvantage is that the optimality from
traditional A? is no longer strictly guaranteed due to the
merging of continuous and discrete states.

Algorithm 1 is pseudocode for the hybrid A? search. Like
an A? search, it uses a priority queue to keep track of the open
set. In Algorithm 1, that functionality is maintained by the
PUSH and POP functions. PUSH adds a key with a priority value
to the open setO, while POP removes and returns the key with
the lowest associated priority. The mappings STATE, COST,
and PARENT keep track of continuous states, cost values, and
parents associated with discrete keys η̃ ∈ Cd . The mappings
are updated as the search progresses. The function PRIMITIVES

returns a set of motion primitives, COLLISION checks
whether there is a collision, and HEURISTICS returns heuris-
tic cost estimates. These functions are further described in
sections III-B, III-D, and III-E, respectively.

B. MOTION PRIMITIVES
In the hybrid A? search algorithm, new configurations are
discovered by propagatingmotion primitives from an existing
configuration. A motion primitive is a dynamically feasible
state trajectory between two configurations in C. Dynamic
feasibility, as discussed in Section II-A, is inherently satisfied
by using motion primitives with trajectories that satisfy (9).
While we search in C, the trajectories are in X , which means
that to feasibly connect two configurations with state trajec-
tories in X , they must start and end with the same velocities.

Motion primitives with varying lengths and turn angles are
precomputed using an OCP. During the search, the primitives
are translated and rotated to fit with the originating configu-
ration. The motion primitives used in our results are shown
in Figure 4.
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Algorithm 1 Hybrid A? Search Pseudocode
1: function HYBRID A?( η0, ηf ,Vw,O )
2: η̃0← KEY(η0), η̃f ← KEY(ηf )
3: O← ∅, C ← ∅
4: PUSH(O, η̃0, 0)
5: STATE(η̃0)← η0, COST(η̃0)← 0
6: while O 6= ∅ do
7: η̃← POP(O)
8: C ← C ∪ {η̃}
9: if η̃ = η̃f then

10: return sequence from η̃0 to η̃f
11: η← STATE(η̃)
12: for all P, c, ηn ∈ PRIMITIVES(η,Vw) do
13: η̃n← KEY(ηn)
14: if COLLISION(P,O) or η̃n ∈ C then
15: continue
16: f ← COST(η̃)+ c
17: if η̃n /∈ C ∪ O then
18: COST(η̃n)←∞
19: if f < COST(η̃n) then
20: COST(η̃n)← f
21: PARENT(η̃n)← η̃

22: STATE(η̃n)← ηn
23: O← O \

{
η̃n

}
24: h← f + HEURISTICS(ηn, ηf ,Vw)
25: PUSH(O, η̃n, h)
26: return error, no path found

FIGURE 4. Motion primitives used in our results.

The OCP used to generate motion primitives is

min
x(·),τ (·)

∫ tf

0
F(x(τ ), τ (τ ))dτ (10a)

subject to ẋ(t) = f (x(t), τ (t),02) t ∈ [0, tf ] (10b)

xlb ≤ x(t) ≤ xub t ∈ [0, tf ] (10c)

τ lb ≤ τ (t) ≤ τ ub t ∈ [0, tf ] (10d)

x(0) = x0 (10e)

x(tf ) = xf . (10f)

The OCP is equal for every primitive, except for the final
time tf , the state bounds (10c) and the final condition (10f),
all of which depend on the motion primitive length L > 0
and direction angle χ . The vessel is assumed to travel with
a nominal speed Unom, which in our results is 1.5m s−1. For
a specific primitive defined by (L, χ), the parameters of (10)
are

tf = L/Unom (11a)

xlb =


min(0,L cosχ )
min(0,L sinχ )

min(0, χ)
ulb
−vub
−rub

 (11b)

xub =


max(0,L cosχ )
max(0,L sinχ )

max(0, χ)
uub
vub
rub

 (11c)

τ lb =
[
Xlb −Yub −Nub

]> (11d)

τ ub =
[
Xub Yub Nub

]> (11e)

x0 =
[
0 0 0 Unom 0 0

]> (11f)

xf =
[
L cosχ L sinχ χ Unom 0 0

]>
. (11g)

The values ulb, uub, vub and rub are velocity bounds, and Xlb,
Xub, Yub, and Nub are bounds on surge force, sway force, and
yaw moment, respectively. Table 1 specifies the parameters
(L, χ) in our results, and Table 2 gives the boundary values.

TABLE 1. Motion primitive parameters.

The OCP (10) contains a cost-to-go function:

F(x, τ ) =

energy︷ ︸︸ ︷
|ν|> · |τ | +1000

(
(v/vub)2 + (r/rub)2

)
+ 100

(
(X/Xub)2+(Y/Yub)2+(N/Nub)2

)
. (12)

The cost’s main contributor is energy spent but includes
quadratic costs on velocity states and input forces. Without
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TABLE 2. OCP boundary values for motion primitives.

these quadratic costs, the OCP becomes significantly harder
to solve. The pure energy part of the cost function makes up
∼95% of the straight motion primitives’ costs and ∼80% of
the costs in turns.

The choice of length and direction parameters L and χ of
the primitives are tightly connected to the resolutions defined
in (3). At least one of the motion primitives must have a
length longer than the diagonal of the grid cells defined by the
positional resolution rp in order to be guaranteed to traverse
from one cell to another. We use a positional resolution of
rp = 10m, so we need at least one primitive longer than
√
2 · 10m ≈ 14.14m. Additionally, one of the primitives

should have a length equal to rp, so that the search does not
‘‘jump over’’ the goal cell. It will also ease the discrete search
if the motion primitives’ direction angles are multiples of the
angular resolution rh. The primitives in Table 1 include these
important properties.

The positional resolution greatly affects the performance
of the hybrid A? search. A smaller resolution rp makes the
search space denser, which increases the computational load
and time to find a solution, but improves the accuracy of the
search.

The OCPs are transcribed to NLPs using direct collocation,
and then solved using an interior point algorithm [26] offline
prior to performing any search. The details of the transcrip-
tion and solving are the same as in the main OCP-stage of our
planning method – those details are found in Section IV-B.

In Algorithm 1, motion primitives from a configuration
η ∈ C are returned by the function PRIMITIVES. This func-
tion returns a sequence of geometrical paths P ∈ W ,
the cost of the maneuver c whose calculation is described in
Section III-C, and the new neighboring state ηn ∈ C. The
cost is dependent on the wind velocity Vw. A mathematical
description of the function is

PRIMITIVES : C × R2
7→ [W × R+ × C]1,...,M , (13)

whereM is the number of motion primitives.

C. COST FUNCTION
While the OCP that generates the motion primitives uses
the generic cost-to-go function (12), these OCPs are solved
offline and have no information about environmental distur-
bances. Therefore, we need an alternative method to quickly
calculate the energy usage of each maneuver online, when the

disturbances are known or estimated. For calculating energy
exerted to overcome environmental disturbances, we use the
definition of mechanical work:

Wr =

∫ tf

0
|τ r |
>
· |νr | dt, (14)

where we use the absolute values since there is no energy
regeneration in the ASV’s propulsion system. In this calcula-
tion, the subscript (·)r denotes relative values, e.g., the force
needed to overcome relative wind velocity. Thework required
to move through the wind is

Wwind =

∫ tf

0
|τw|

>
·

∣∣∣∣ν − R(ψ)>
[
Vw
0

]∣∣∣∣ dt, (15)

where τw is the force needed to overcome wind effects,
calculated with our windmodel.We have assumed zero ocean
currents for moving through the water since the vessel we are
working with has a very shallow and flat hull. Additionally,
we do not have access to accurate information about ocean
currents in our test areas. The work required to move through
the water is then

Wwater =

∫ tf

0
|D(ν)ν|> · |ν| dt. (16)

The total energy cost c = Wwind + Wwater is calculated
by propagating the integrands of (15) and (16) over the dis-
cretized solution trajectories from (10) with the appropriate
wind velocity. This relative energy formulation is inspired
by [27].

D. COLLISION CHECKING
For each solution trajectory generated by (10), the position
state trajectories x(·) and y(·) make up the vessel’s geometri-
cal footprint in W . After translating and rotating a motion
primitive, the geometrical footprint is checked for overlap
with O, and a collision is reported if that is the case. The
geometrical footprint is diluted by a clearance radius rc to
account for the shape of the vessel and additional clearance
to keep a proper distance from obstacles. The clearance radius
and footprint are illustrated in Figure 5. Our vessel is rectan-
gular with a shape of 5m by 2.8m, and we use a clearance

FIGURE 5. Vessel shape along with the clearance radius rc which defines
the footprint A used for collision checking.
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radius of rc = 10m. The COLLISION function in Algorithm 1
performs the collision checking:

COLLISION :W ×W 7→ {true, false} . (17)

E. SEARCH HEURISTICS
To guide the hybridA? search, we use heuristic cost functions.
These are functions that estimate the remaining cost from
a node in Cd to the goal node. The search will prioritize
exploring nodes with the lowest estimated total cost. In a
traditional A? search, using admissible heuristic functions,
i.e., functions that never overestimate the true cost, maintains
a Dijkstra search’s optimality guarantee. However, hybrid A?

does not have any optimality guarantees due to the merging
of continuous states in discrete ‘‘bins,’’ so the heuristic func-
tions’ admissibility is not as important.

Similar to [18], we combine two different heuristic func-
tions. We employ a holonomic with obstacles heuristic that
guides the search towards the two-dimensional cheapest
path, and a nonholonomic without obstacles heuristic that
avoids trajectories that the ASV cannot feasibly follow. Their
designs are described in the following, and they are combined
using the maximum of the two heuristics.

The description of the HEURISTICS function from
Algorithm 1 is

HEURISTICS : C × C × R2
7→ R+, (18)

where the function maps the current state η, the goal state ηf ,
and the wind velocity Vw to a positive scalar.

1) HOLONOMIC WITH OBSTACLES
The holonomic with obstacles heuristic uses a simple model
that can move in any direction without the nonholonomic
constraint of moving along the vessel’s heading angle. It con-
siders the obstacle map O and assigns costs to nodes using
a breadth-first search on a two-dimensional grid with res-
olution rp. Instead of the standard eight-connected graph
illustrated in Figure 3, we use a 16-connected graph, as seen
in Figure 6, to allowmore movement angles. We use the same
cost function described in Section III-C, which results in a
mapping from every node in Cd,free to a positive scalar that
estimates the remaining cost to navigate to the goal node.
Figure 7 shows an example of the mapping near a harbor.

The 16-connected breadth-first search is limiting since it
biases towards paths with the same directions as the graph

FIGURE 6. 16-connected graph. In this connectivity scheme, edges are
added to all nodes two layers from the center node, unless the travel
direction already exists in an inner layer.

FIGURE 7. Example of the holonomic with obstacles heuristic function
on a map. Brighter squares are more costly.

connectivity in Figure 6, i.e., on ∼22◦ increments. With-
out disturbances, the error between the real cost function
and the heuristic averages 1.8% in an obstacle-free map
of 1 km by 1 km.

Alternative heuristics include the fast marching method,
which can calculate a cost function in the presence of obsta-
cles without bias to particular directions. Standard implemen-
tations of the fast marching method [28] do not support the
inclusion of a directional component in the cost function,
on which we rely. Implementations of the fast marching
method subject to a vector field are available [29], [30]. Fur-
thermore, graph searches with simplifiedmodels can function
as guiding heuristics, demonstrated in [15].

Since the calculation of our holonomic-with-obstacle
heuristic requires information about the goal location and
disturbances, the mapping has to be calculated online.

2) NONHOLONOMIC WITHOUT OBSTACLES
The dual to the holonomic with obstacles heuristic is one
that considers nonholonomic movements without obstacles.
This heuristic places high costs on nodes that lead to trajec-
tories the ASV cannot feasibly follow. It utilizes the motion
primitives from Section III-B and performs a breadth-first
hybrid A? search from every node in a limited, rectangular,
collision-free grid around the origin of Cd . This results in a
mapping from the included nodes in Cd to a positive scalar
and is precomputed offline. The mapping is translated and
rotated to the desired goal node when used in the search.
Figure 8 shows the heuristic mapping for different initial
heading angles.

Since the environmental disturbances are unknown at the
time of precomputation, we cannot say anything about the
effects these disturbances have on the cost. However, this
heuristic is only active in the final part of the search, and
we argue that the energy-optimality criterion is less critical
in this stage. Additionally, the optimization stage described
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FIGURE 8. Plot of the nonholonomic without obstacles heuristic function
for initial heading angles 0◦, 45◦, 90◦ and 180◦. Brighter squares are
more costly.

in Section IV locally optimizes the trajectory accounting for
known or estimated disturbances.

F. SEARCH OUTPUT
A search is completed when the goal node is discovered by a
motion primitive. The result is a chain of nodes from the goal
node towards the start node by following their parents. This
chain is reversed, and the resulting sequence of motion prim-
itives are concatenated into forming the solution trajectories

x? : [0, t?f ] 7→ X (19a)

τ ? : [0, t?f ] 7→ T , (19b)

which are valid on the time interval [0, t?f ], where t
?
f is the

sum of the motion primitive durations. In practice, these
mappings are a discrete sequence of points in the state and
input spaces (X and T ), interpolated to form time-continuous
trajectories. The points’ density depends on the number of
shooting intervals used when solving (10).

To summarize Stage 1, it consists of a hybrid A? search
guided by two heuristics, propagating motion primitives that
lead from the start pose to the desired end pose. Since the
trajectory so far consists of only the motion primitive maneu-
vers, it must be improved to find an optimized trajectory in
the continuous search space.

IV. STAGE 2: TRAJECTORY OPTIMIZATION
The second stage of the trajectory planner is to solve an OCP
that describes the trajectory planning problem. Stage 2 in

Figure 2 shows the subcomponents of this trajectory opti-
mization. The OCP is similar to (10) in Section III-B.
The initial and final conditions are different, we include
external disturbances, and we have added obstacle avoid-
ance constraints. Additionally, the final time is a free opti-
mization variable. We restate the OCP, including the stated
changes:

min
x(·),τ (·),tf

∫ tf

0
F(x(τ ), τ (τ ))dτ (20a)

subject to ẋ(t) = f (x(t), τ (t),Vw) t ∈ [0, tf ] (20b)

xlb ≤ x(t) ≤ xub t ∈ [0, tf ] (20c)

τ lb ≤ τ (t) ≤ τ ub t ∈ [0, tf ] (20d)

x(0) = x0 (20e)

x(tf ) = xf (20f)

Ak ·
[
x(tk ) y(tk )

]>
≤bk−rc k=1, . . . ,N

(20g)

0 ≤ tf ≤ t?f . (20h)

The initial and final conditions are replaced with the ini-
tial and final desired pose, with zero velocities. The cost-
to-go function is the same, as are the velocity and force
bounds. Equation (20g) encodes obstacle avoidance con-
straints, which will be described in Section IV-A. Since
the final time is a free variable, we place bounds on it
in (20h). The transcription and solution process is described
in Section IV-B.

A. CONVEX COLLISION AVOIDANCE CONSTRAINTS
The OCP contains obstacle avoidance constraints in the form
of halfspaces in the matrix-vector form (20g). The halfspaces
are defined for the points in time tk , k = 1, . . . ,N , where N
is the number of shooting intervals used in the transcription
of (20). With h = tf /N being the shooting interval duration,
we have tk = h·k . The convex regions that define the obstacle
avoidance constraints are generated along the solution of the
hybrid A? trajectory, i.e., the initial guess. The positional part
of the state trajectory x?(·) from (19a) is denoted p?(·) =
[x?(·), y?(·)]>. For the points in time tk , k = 1, . . . ,N ,
the parameters Ak ∈ Rmk×2 and bk ∈ Rmk are generated
based on the obstacle map O with p?(tk ) being the generator
points.

To create the convex region constraints, we use an algo-
rithm that calculates an inner approximation of the obstacle
map based on the polygons’ edges in that map. The process is
summarized as follows: Given a generator point p?(tk ), grow
a circle centered at p?(tk ) until it reaches a point pc,k where
it touches an obstacle, and then create a constraint tangent
to the expansion circle at the point at pc,k . Continue growing
and create constraints until no further growth is possible. The
process is illustrated in Figure 9. The parameters Ak and bk
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FIGURE 9. Illustration of how to compute the convex spatial constraints.

are defined by

(pc,k,1 − p
?(tk ))>

||(pc,k,1 − p?(tk ))||2
(pc,k,2 − p

?(tk ))>

||(pc,k,2 − p?(tk ))||2
...

(pc,k,mk − p
?(tk ))>

||(pc,k,mk − p
?(tk )||2


︸ ︷︷ ︸

Ak

p≤



(pc,k,1 − p
?(tk ))>pc,k,1

||(pc,k,1 − p?(tk ))||2
(pc,k,2 − p

?(tk ))>pc,k,2
||(pc,k,2 − p?(tk ))||2

...

(pc,k,mk − p
?(tk ))>pc,k,mk

||(pc,k,mk − p
?(tk ))||2


︸ ︷︷ ︸

bk

.

(21)

A point p ∈ R2 is inside the convex region if the inequality
constraints are satisfied, which is (20g) in the OCP. The num-
ber of halfspaces that make up a specific region is denoted
mk , k = 1, . . . ,N , and has an upper limit, in our case 12. The
unit dimension of this inequality is distance, and a subtraction
of the right-hand side of (21) shrinks the convex regions,
implicitly increasing the clearance by, e.g., rc, which is the
clearance radius from Figure 5, used in (20g).

Figure 10 shows an example of convex regions using an
arbitrary path as the basis for generator points. For each point
in time tk , the OCP may freely adjust the ASV’s position
inside the respective convex region. With dense overlapping,
this allows the ASV to travel inside a corridor along the initial
guess.

The convex regions constrain only a discrete set of points
in the state trajectory (x(tk ), k = 1, . . . ,N ). This limita-
tion means that the points in between can violate the colli-
sion avoidance constraints. However, the vessel’s dynamics
restrict the trajectory’s velocity, thus limiting the movement
in a neighborhood around x(tk ). Having a short shooting

FIGURE 10. Example of convex regions along an arbitrary path with
generator points spaced by 100 m. In the OCP the spacing would be
∼1.5 m, causing dense overlapping, resulting in a corridor as depicted in
the figure.

interval duration h gives satisfactory collision avoidance
behavior. In our results, we use a density of h ≈ 1 s.

B. TRANSCRIPTION AND SOLVER
To solve the continuous OCP (20), we discretize it into an
NLP. We use direct collocation with three Legendre collo-
cation points per shooting interval to discretize the dynam-
ics (20b). Both the state and input trajectories are encoded
as polynomials over N shooting intervals. In our results,
the number of shooting intervals is determined by the esti-
mated final time t?f from the hybrid A? results in Section III-
F. An initial shooting interval duration of h? = 1 s determines
N = bt?f /h

?
c + 1, while since the final time tf is a free

variable with upper bound t?f , the actual shooting interval
duration can be shorter. The cost function is determined by
propagating the quadrature integral (20a) along the state and
input polynomials. The resulting NLP is

min
w
φ(w) (22a)

subject to wlb ≤ w ≤ wub (22b)

glb ≤ g(w) ≤ gub. (22c)

The decision variables w include states and inputs at all
collocation points, and the final time tf . The bounds (22b)
are box bounds on all the decision variables and encode the
state and input constraints (20c) through (20f), and (20h). The
function g and its bounds in (22c) encode the dynamics (20b)
in addition to the obstacle avoidance constraints (20g).

The NLP is solved using the interior point algorithm
‘‘Ipopt’’ by Wächter and Biegler [26]. Since the initial guess
provided by the hybrid A? algorithm results in minimal vio-
lations of the constraints, the initial value of the auxiliary
boundary parameter µ in Ipopt is set quite low to 1× 10−6,
compared to its default value of 1× 10−1. This reduction
causes fast convergence of the solution.
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Solving (22) provides the optimal decision variables w�.
These are converted to optimal trajectories

x� : [0, t�f ] 7→ X (23a)

τ� : [0, t�f ] 7→ T , (23b)

where t�f is the optimal final time. Accurate interpolation
of the discrete values returned from the solver is achieved
by using the polynomial definition of the state and input
trajectories.

C. METHOD SUMMARY
Figure 2 illustrates how all the subcomponents of our method
are connected. Stage 1 performs a discrete search with con-
tinuous states using the hybrid A? algorithm guided by two
heuristics and propagating the states with motion primitives.
This results in a dynamically feasible initial guess for an
energy-optimized trajectory between the start and goal poses.
The resulting trajectory consists of a sequence of the motion
primitives from Section III-B, limiting the search space to
only those maneuvers. Therefore the trajectory cannot be
optimal with respect to our cost functional. Stage 2 is a
trajectory optimization step that uses the initial guess for two
purposes: 1) To provide a sequence of convex and smooth
polygonal constraints that represent a collision-free corridor
from start to goal, and 2) to warm-start the OCP solver.
The convex polygonal constraints are constructed with the
process shown in Figure 9 and allow the OCP solver to handle
the inherently nonconvex obstacle avoidance problem easily.
Combined, this gives us a fast solution to (20), which is a
locally optimal and dynamically feasible trajectory between
the start and goal poses.

V. SIMULATION RESULTS
In this section, we describe the simulation and control setup
used to evaluate our planning method and present the evalu-
ation itself. We evaluate our method by performing planning
and simulation in various scenarios and wind conditions and
comparing our planner to other methods.

A. SIMULATOR AND CONTROL SYSTEM
The different trajectory planning methods are tested in a
software-in-the-loop vessel simulator. The simulator com-
prises dynamic models of the vessel, its actuators, and its
control systems. The vessel model is described in Section II-
B, and the simulator performs Runge-Kutta 4 integration to
propagate the differential equations. Additionally, the actua-
tors’ propeller and azimuth dynamics are simulated, whose
models are available in [25].

The vessel’s control system for trajectory tracking
is divided into two layers, as seen in Figure 11:
A trajectory-tracking dynamic positioning (DP) controller
and a thrust allocation algorithm. The DP controller consists
of a PID feedback term and a model-based feed-forward
term for velocity and acceleration. Its details are available
in [31, Section 3.4]. The controller sends the desired force

FIGURE 11. Vessel control system architecture.

output to the thrust allocation algorithm, which in turn sends
thruster commands to the vessel’s actuators. This thrust
allocation algorithm is described in [32].

For evaluation, energy use is measured by integrating the
simulated power output, similar to the energy-part of (12):

E =
∫ tf

t0
|ν(t)|> · |τ (t)| dt. (24)

B. EVALUATING THE EFFECT OF INCLUDING
DISTURBANCE INFORMATION
One of the goals while developing the method was the ability
to include known or estimated disturbance effects in both
planning stages. To magnify the effects of wind on planning,
we have designed a scenario where the starting point and
goal are far apart, and the vessel is under the influence of
crosswinds. Figure 12 shows the scenario where the plan is
to sail from south to north.

The scenario is planned twice. Once when no wind infor-
mation is included in the search, assuming that the wind
velocity is Vw = [0, 0] when it is, in fact, Vw = [0, 3] m s−1,
and once using the correct wind velocity. The warm start
solutions from the hybrid A? search differ significantly in
the two cases, as shown Figure 12. However, the optimized
trajectories of the two plans are nearly identical. Additionally,
the power outputs from the simulated trackings are not that
different – the total energy use for the two scenarios are
170Wh when not accounting for wind in the planning, com-
pared to 164Wh when including wind information, a mere
3.5% improvement, attributed mainly to a difference in head-
ing during transit.
In practice, models of how wind affects a ship are uncer-

tain. For such a low improvement, it might not be beneficial
to include wind effects when planning a long-term trajectory.
Adding this information may worsen the result if the wind
model or wind velocity estimates are erroneous. Including
environmental disturbances may be more appropriate for
other types of vessels or other types of disturbances, such as
waves and ocean currents.

C. COMPARISONS TO OTHER TRAJECTORY PLANNING
METHODS
Our method is compared to two other trajectory planning
methods by planning a trajectory in the same scenario with
all three methods. The two other planning methods are a
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FIGURE 12. Comparison of trajectories planned without and with
knowledge of simulated wind conditions. Described in Section V-B.

warm-started optimization scheme developed in [14], labeled
C1 in the plots, and an optimal control-based complete cell
decomposition method from [23] labeled C2. Our method is
labeled TP. These two methods are selected for comparison
because they are both optimization-based methods. C1 is
similar in terms of the warm-starting methodology, and C2 is
interesting because of the map discretization’s completeness.

FIGURE 13. Elliptic obstacles that approximately match our map. Used
when planning with the C1 method in Section V-C1.

1) C1: ALTERNATIVE WARM-STARTED OPTIMIZATION
METHOD
The method developed in [14] uses a similar approach to our
method. The main difference is how the warm start is gener-
ated and how the obstacles are represented in the optimization
stage. C1 uses a standard A? search on an 8-connected uni-
formly discretized grid to search for the shortest path. That
search results in a piecewise linear path which is converted
to a trajectory by smoothing the connections with circular
arcs and adding artificial dynamic information. The trajec-
tory is not dynamically feasible with respect to the ASV’s
model, but it is used as the initial guess for an OCP solver.
The OCP solver represents obstacles as inequalities in the
form of ellipses, which are smooth representations, suitable
for an optimization problem, but cannot accurately represent
polygonal maps.

To compare TP to C1, we adjust the cost-to-go function
in [14] to be equivalent to (12). Additionally, we have cre-
ated elliptic obstacles to approximately match the polygonal
obstacles which define our map, seen in Figure 13. We plan
and simulate with zero wind, and with the initial and final
poses, as shown in Figure 14. From the figure, we see that
the resulting trajectories differ only slightly, mainly due to the
different obstacle constraints. In the simulation, the trajecto-
ries give equal energy consumption, both at 52Wh. Figure 15
shows significant positional tracking error at the start and end
of the transit, for both TP and C1. The vessel and its control
system cannot track the acceleration that happens from and
to a standstill. The models used in trajectory planning do
not consider actuator dynamics or the control system, which
probably is the cause of these errors. The positional tracking
errors are comparable between TP and C1 for the remainder
of the transit, with an error of 1m around the turn and negligi-
ble error for the straights. Similar deviations are also evident
in the heading, due to the coupling between linear and angular
velocities. The positional error in Figure 15 is calculated
as ||[x(t), y(t)] − [x�(t), y�(t)]||2, while the heading error is
ψ(t)− ψ�(t).

2) C2: COMPLETE OPTIMIZATION-BASED CELL
DECOMPOSITION
Martinsen et al. [23] have developed an optimization-based
trajectory planner that searches for a trajectory by
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FIGURE 14. Comparison of trajectories planned with different methods
from Section V-C. Results from our method are labeled TP, while C1 and
C2 denote the other planning methods.

FIGURE 15. Tracking errors from the simulation comparisons. Results
from our method are labeled TP, while C1 and C2 denote the other
planning methods.

considering sequences of collision-free triangles from a con-
strained Delaunay triangulation of the workspace. C2 finds a
globally optimal trajectory for linear models regardless of the
inherent non-convex obstacles due to the cell decomposition
by triangulation.

A trajectory with the same initial and final positions,
as described in Section V-C1, is generated using a sim-
ilar cost-to-go function and a simplified dynamic model.
Figure 14 shows that also with C2, the trajectory difference
is minimal. The differing cost-to-go function and dynamic
model may cause the small differences we see. The slight
difference may be caused by the differing cost-to-go func-
tion and the dynamic model used. As TP and C1, C2 gives
an energy consumption of 52Wh. The tracking errors are
similar between TP and C2, with better performance at the
start of the trajectory for C2, as we see in Figure 15.

D. COMPLEX SCENARIO
The previous planning scenarios have been simple, with
obvious routing choices. Figure 16 shows a more complex

FIGURE 16. Planning in a map of Sjernarøyane, Norway – a more
complex scenario with multiple routing options. Described in Section V-D.

scenario with multiple routing options. Our method was able
to find the most direct and energy-efficient routing and opti-
mized a trajectory from start to goal in 75 s. The figure also
shows the corridor composed of the union of convex regions
that allow the OCP to optimize freely. The resulting trajectory
is dynamically feasible and adheres to the obstacle clearance
constraints.

E. CONCLUSION
Including available wind information when planning a sce-
nario yielded negligible improvements, shown
in Section V-B. Only minor differences are found in the
state trajectories. We conclude that there is no benefit to
energy consumption for our application and vessel model
when including wind estimates in trajectory planning. This
conclusion is supported by the fact that there will be sig-
nificant uncertainties in both wind estimates and wind force
models.

Compared to two other optimization-based trajectory plan-
ning methods in Section V-C, we have shown that our method
produced a similar trajectory with equal energy consumption.
This similarity verifies that our method can find a desirable
optimized trajectory with good energy performance. Signif-
icant improvements in runtime are achieved by using our
method in this scenario, highlighted in Table 3.

TABLE 3. Performance comparisons for simulated planning scenarios
in Section V-C.
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As we show in Section V-D, our method can find
the most reasonable trajectory in a complex routing envi-
ronment, which is a major challenge when using purely
optimization-based trajectory planning methods.

VI. EXPERIMENTAL VALIDATION
To validate that our method will produce collision-free,
dynamically feasible trajectories, we have applied it in a
full-scale experiment with milliAmpere, an experimental
autonomous ferry developed at NTNU, depicted in Figure 17.
The specifications of milliAmpere, its sensors, and control
systems are found in Table 4, and it uses the same control
setup as described in Section V. We tested the planning
method and tracking capabilities in the Trondheim harbor
area, using the same scenario as in Section V-C. On the day
of testing, we measured a light breeze from North-northeast,
but we were shielded by a breakwater for most of the route,
causing us to experience almost no wind. We tested plan-
ning with zero wind and with the measured wind, finding a
difference in measured energy use of 2%, which we deem
insignificant given the measurement uncertainties, and thus
we only present the results from planning with zero wind.
Energy use is measured by integrating power as determined
by the voltage and current measured on both the azimuth
thrusters’ propeller motors:

E =
∫ tf

t0
(|I1(t) · U1(t)| + |I2(t) · U2(t)|) dt, (25)

where Ii and Ui are motor current and voltage, respectively,
for i ∈ {1, 2}.

FIGURE 17. Picture of the experimental autonomous ferry milliAmpere.

TABLE 4. milliAmpere specifications.

FIGURE 18. Measured and planned trajectories from validation
experiment in Section VI.

FIGURE 19. Tracking errors from the validation experiment in Section VI.

Figure 18 shows an overview of the scenario, including
the measured and planned trajectories, and the warm start.
The planned trajectory was naturally equivalent to the one in
Section V-C, as nothing in the scenario was changed.

Figure 19 shows tracking errors for the tests. The positional
error stayed within 1.5m, with an exception at 160 s, which
stems from a jump in the GNSS measurement experienced
during the experiment. The positional tracking error was
large at the beginning of the experiment, where milliAmpere
and its control system struggled to follow the trajectory’s
acceleration. The unmodeled thruster dynamics and control
systems can explain this initial lag. Large positional errors
were also induced during the turn near the end of the exper-
iments, which can be explained by the control system’s poor
tracking performance. Heading errors also occurred during
the beginning of the experiment, as well as during the turn.
These errors can be attributed to the coupling between linear
and angular velocity, which is unaccounted for in the control
system. milliAmpere’s physical properties, with its shallow
and flat hull, make it hard to control its heading.

Figure 20 shows the distances from the measured and
planned positions to the nearest obstacle. Of course,

199966 VOLUME 8, 2020



G. Bitar et al.: Two-Stage Optimized Trajectory Planning for ASVs Under Polygonal Obstacle Constraints: Theory and Experiments

FIGURE 20. Measured and planned obstacle distances from the
validation experiments in Section VI.

FIGURE 21. Measured and planned state trajectories from the validation
experiment in Section VI.

the planned distance is more than the clearance of rc = 10m
away from obstacles at all times. The measured distance
was 9.9m from the closest obstacle at the nearest, which we
consider safe.

Figure 21 shows the measured and planned state trajecto-
ries. The referenced jump in GNSS measurement at 160 s is
clearly visible in this plot, where the error propagates into the
velocity estimates. While the plots show jumps in velocity,
no such jump was experienced during the experiment – this
is a measurement error. The sway velocity and yaw rate
measurements oscillate, making hard to determine tracking
error for these states. This oscillation may be due to the
ship’s natural frequency – it is not filtered out in the onboard
navigation system, but we can see that the measurements lie
around the planned trajectories.

During the experiment, the measured energy use was
245Wh, which is almost five times the simulated energy
estimate. This discrepancy is due to the completely different
approaches used to estimate the energy in simulation and
experiments.

VII. CONCLUSION
Solving the continuous optimal control problem for trajec-
tory planning is difficult and requires an initial guess close
to the globally optimal solution to be a feasible option.
Moreover, since the trajectory planning problem is inherently
nonconvex, some clever encoding of obstacles is needed to
reduce complexity, especially when dealing with polyhedral
shapes with discontinuous gradients. We propose a contin-
uous, model-based method for energy-optimized trajectory
planning for ASVs that leverages a discrete search’s desirable
advantages to generate a good initial guess and performs con-
vex encoding of obstacles to achieve collision avoidance. Our
method is based on continuous optimal control, and the warm
starting is provided by the hybridA? algorithm.We have com-
pared the method with an optimal control-based complete
cell decomposition method with a similar cost function to
find comparable performance in terms of optimality and sig-
nificantly improved computational time. A comparison with
a warm-started optimal control-based method from earlier
work by us has shown improved performance, in addition to
being able to use more general obstacle representations.

There are several areas where we can improve our method
in further work:

• The search space can be extended to include surge veloc-
ity. This extension would allow the hybrid A? search to
look for variations in the speed profile that could benefit
energy efficiency.

• Including velocity in the search space will require mod-
ifications to the heuristic functions. Additionally, to pre-
vent the search from always choosing the slowest veloc-
ity which would be energy optimal, we need to limit the
trajectory’s maximum duration. This constraint could be
introduced by computing a map with the shortest path,
similar to the holonomic with obstacles heuristic, and
constrain the search from selecting nodes that cannot
reach the goal within the time limit with the highest
velocity. The fast marching method is appropriate for
this distance map.

• The hybrid A? search is currently a naive Python imple-
mentation and contributes significantly to computa-
tion time. Improvements to this implementation would
increase the performance of our method. This issue is
also the case for the construction of the NLP.

• In our work, we have included external disturbances in
terms of wind velocity. We have found that it does not
affect the optimized trajectory or energy consumption in
a significant manner. Other environmental effects, such
as waves or ocean currents, can have more of an impact
on energy consumption and should be explored.
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• Including the COLREGs in trajectory planning for
marine vessels should also be a priority to further work
on this topic.
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ABSTRACT Docking of autonomous surface vehicles (ASVs) involves intricate maneuvering at low
speeds under the influence of unknown environmental forces, and is often a challenging operation even for
experienced helmsmen. In this paper, we propose an optimization-based trajectory planner for performing
automatic docking of a small ASV. The approach formulates the docking objective as a nonlinear optimal
control problem, which is used to plan collision-free trajectories. Compared to recent works, the main
contributions are the inclusion of a map of the harbor and additional measurements from range sensors, such
as LIDAR and ultrasonic distance sensors, to account for map inaccuracies as well as unmapped objects,
such as moored vessels. To use the map and sensor data, a set generation method is developed, which in
real-time computes a safe operating region, this is then used to ensure the planned trajectory is safe. To track
the planned trajectory, a trajectory-tracking dynamic positioning controller is used. The performance of the
method is tested experimentally on a small ASV in confined waters in Trondheim, Norway. The experiments
demonstrate that the proposed method is able to perform collision-free docking maneuvers with respect to
static obstacles, and achieves successful docking.

INDEX TERMS Autonomous surface vehicles, berthing, collision avoidance, docking, marine vehicles,
motion planning, optimal control, trajectory optimization.

I. INTRODUCTION
Autonomy, and autonomous systems is a rapidly grow-
ing area of interest in a wide variety of industries. This
includes the maritime industry, where autonomous surface
vehicles (ASVs) have been proposed for surveying and map-
ping, surveillance, and transportation, to name a few appli-
cation areas. With the motivation factors including lower
costs, higher availability and flexibility, better safety and
reliability, and reduced environmental impact. In the case of
transportation, autonomous operations can be roughly split
into the following three phases.
• Undocking – moving from the quay in a confined harbor
area to open waters,

• transit – crossing a body of water towards the destination
harbor,

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

• docking –moving from openwaters towards the docking
position along the quay in a harbor area.

In this paperwewill focus on docking of a vessel in a confined
harbor area.While themethodwe propose in this paper is able
to solve both the docking and undocking problem, the focus
is on docking, as it is the most challenging of the two and
requires very precise movements [1] when performing the
final controlled collision with the quay.

The problem of automatic docking and berthing is an
important part of performing autonomous transportation,
and hence the problem has seen a lot of interest, with a
variety of solutions. However, due to the complexity of
performing docking, most of the existing methods rely on
simplifying the docking problem, this has lead to a lack of
experimental results. The traditional approach for docking
large under-actuated vessels, requires the use of tug boats,
as support vessels, in order to push and pull the vessel to
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perform the docking maneuver. This has lead to research into
synchronizing the movement of multiple tugboats, in order
to perform the desired maneuvers [2]–[5]. With many newer
vessels being fully actuated, or even over-actuated, research
has shifted to seeking methods for automatically perform-
ing docking without the use of additional support vessels.
One such approach to solving the docking problem is via
fuzzy control. The control system is then based on fuzzy
logic, and its behaviour changes based on a set of prede-
termined rules [6]–[8]. An other approach for docking, that
has seen a lot of interest, is the use of Artificial Neural
Networks (ANNs) [2], [5], [9]–[15]. For these approaches,
an ANN is used as a function approximator for the policy, and
is tasked with learning to imitate pre-recorded docking trajec-
tories, and hence learning how to perform the dockingmaneu-
vers. More recent learning-based methods have expanded on
this by using advances in Deep Learning (DL) [16]–[18].
Additional approaches include docking using a rule-based
expert system [19], docking by target tracking [20], and dock-
ing using artificial potential fields [21]. Within industry, sev-
eral companies have developed methods for automatic dock-
ing [22]–[24], however details about the different approaches
remain sparse. The most promising approaches however, rely
on optimization-based planning [25]–[34], where trajectories
are planned using convex optimization. These methods are
often preferable, as they allow for explicitly including dynam-
ics and constraints when planning a trajectory.

When developing automatic docking systems to facilitate
berthing of vessels, it is important to have accurate and reli-
able positioning systems in place. This is required in order
accurately determine the position of the vessel hull relative to
the berth. While this is possible to do using satellite position-
ing systems, it requires high precision satellite positioning
and the position of the berth must be well known, which
may not always be the case. In order to overcome these
problems, the use of quay-mounted laser or radar ranging
systems [35]–[37] is often used in larger ports, in order to
independently identify the position and velocity of the vessel
relative to the quay.

The docking method from [32] is a nonlinear model pre-
dictive controller (NMPC) that takes into account vessel
dynamics in the form of its dynamic model, as well as col-
lision avoidance by planning trajectories within a convex
set, based on the harbor layout. Advantages of this approach
include the explicit handling of static obstacles, the planning
of dynamically feasible trajectories, and a flexible behavior
shaping via the nonlinear cost function. The method does not
handle moving obstacles or account for external unknown
disturbances. Additionally, due to the non-convexity of the
optimal control problem, guarantees on run time or feasibility
are not provided. In this paper, we build on [32], [33] and
propose a novel algorithm for dynamically creating a convex
safety set, based on a map of the environment. We also show
how this method can be combined with sensor data from
on board sensors such as LIDAR pointclouds, and ultrasonic
distance sensors, in order to account for missing or inaccurate

FIGURE 1. Experimental platform milliAmpere.

map data. This allows to plan and perform dockingmaneuvers
in harbors without the need for land-based sensor systems,
even if the harbor layout changes. We also propose some
modifications to the cost function, in order to generate more
efficient docking trajectories. Finally, we validate the method
in full-scale experiments on the experimental autonomous
urban passenger ferry milliAmpere, seen in Figure 1, and
show how the proposed approach is able to successfully plan
and perform safe and collision free docking maneuvers in
confined waters in Trondheim, Norway. The contributions
of this work can be split into two main categories, namely
methodology, and implementation.

1) Methodology builds on the work in [32], with the fol-
lowing improvements:
• A set generation method for identifying a safe
operating region in real-time (Section IV-A).

• Improvements to the cost function, which give
more refined docking maneuvers (Section III-B).

2) Implementation builds on the work in [33], with the
following improvements:
• Addition of exteroceptive sensor data to account
for map inaccuracies as well as unmapped objects
(Section IV-B).

• Improved interplay between the tracking con-
troller and planner for better tracking performance
(Section V-A).

• Improvements to the cost function, which gives
better tracking performance (Section III-B).

To the authors’ best knowledge, this is the first work to
demonstrate fully automatic docking using only on-board
sensors and map data, and use this data to plan a safe and
feasible trajectory in real-time.

II. VESSEL MODEL
This section presents the kinematic, dynamic and thruster
models of an ASV, which have to be taken into account when
planning a safe and feasible docking trajectory.

A. KINEMATICS AND DYNAMICS
When modeling vessels for the purpose of autonomous dock-
ing, we consider only the vessel movement on the ocean
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FIGURE 2. 3-DOF vessel centered at pc = [x, y ]>, with surge velocity u,
sway velocity v , heading ψ in a North-East-Down (NED) reference frame.

surface, neglecting the roll, pitch and heave motions. The
mathematical model used to describe the system can then be
kept reasonably simple as it is limited to the planar position
and orientation of the vessel. Given R as the set of real
numbers, S = [0, 2π ] as the set of angles, and SO(n) =
{R|R ∈ Rn×n, R>R = RR> = I, det(R) = 1} as the
special orthogonal group in n dimensions, the motion of a
surface vessel can be represented by the pose vector η =
[x, y, ψ]> ∈ R2

×S, and velocity vector ν = [u, v, r]> ∈ R3.
Here, pc = [x, y]> describe the Cartesian position in the
Earth-fixed reference frame,ψ is yaw angle, (u, v) is the body
fixed linear velocities, and r is the yaw rate, an illustration is
given in Figure 2. Using the notation in [38] we can describe
a 3-DOF vessel model as follows

η̇ = J(ψ)ν, (1)

M ν̇ + C(ν)ν + D(ν)ν = τ , (2)

where M ∈ R3×3, C(ν) ∈ R3×3, D(ν) ∈ R3×3, τ ∈ R3

and J(ψ) ∈ SO(3) are the inertia matrix, Coriolis matrix,
dampening matrix, control forces and moments, and transfor-
mation matrix, respectively. The transformation matrix J(ψ)
is given by

J(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3)

and represent the rotation from the body frame to the
Earth-fixed reference frame. For detailed information about
the milliAmpere model parameters used in this paper,
the reader is referred to [33].

B. THRUST CONFIGURATION
The control surfaces of the vessel are specified by the thrust
configuration matrix T ∈ R3,nthrusters , which maps the thrust
f ∈ Rnthrusters from each thruster into the surge, sway and yaw
forces and moments in the body frame of the vessel

τ = Tf . (4)

Each column T i in T gives the configuration of the forces and
moments of a thruster i as follows:

Tifi =

 Fx,i
Fy,i

Fy,i · lx,i − Fx,i · ly,i

 , (5)

where Fx,i and Fy,i are the forces in the body frame, and lx,i
and ly,i is the position of the thruster in the body frame. Given
a desired force vector τ , finding the individual thruster forces
that produce it, is called the thrust allocation problem. While
there are numerous ways of solving the thrust allocation
problem [39], in order to account for the thrust configuration
and individual thruster constraints, we want to include the
thrust allocation as part of the optimization and planning
for performing the docking operations. For the milliAmpere
vessel, illustrated in Figure 2, there are two thrusters mounted
along the center line of the vessel, giving the following con-
trol force and moments:

τ =

 Fx,1
Fy,1

Fy,1 · lx,1

+
 Fx,2

Fy,2
Fy,2 · lx,2

 . (6)

III. TRAJECTORY PLANNING AND CONTROL
Automatic docking is a complex problem, which includes
planning and performing maneuvers to control a vessel to
a desired orientation and position, while adhering to spatial
constraints in order to avoid collisions. In order to perform the
docking, we expand upon [32], [33], where we use a docking
trajectory planner, constructed as an Optimal Control Prob-
lem (OCP). This allows the planner to take into account the
vessel dynamics in terms of a mathematical model, as well as
the harbor layout in terms of a map of landmasses. Addition-
ally we include the use of ranging sensors, namely ultrasonic
distance sensors and LIDAR, in order to account for obstacles
not present in the map of the harbor layout.

A. OBSTACLE AVOIDANCE
Given a desired position xd , yd and a desired heading ψd ,
we define the docking problem as maneuvering a vessel
as close as possible to the desired docking pose ηd =
[xd , yd , ψd ]>, without running the vessel into obstacles, i.e.
adhering to spatial constraints. As proposed in [32], the safe
operation of the vessel can be formalised in terms of the
vessel boundary Sv being contained within a convex inner
approximation of the surrounding obstacles Ss, called the
spatial constraints, see Figure 3. Since the safe operating
region, given in terms of the spatial constraints Ss, is given
as a convex set, the region can be defined in terms of a set of
linear inequality constraints:

Ss = {p ∈ R2
| Asp ≤ bs},

where the matrix As ∈ Rnconstraints,2 and vector bs ∈ Rnconstraints

define the linear inequality constraints. Furthermore, we can
note that if both the vessel set Sv and spatial constraint Ss
are convex, then the vessel is contained within the spatial
constraints so long as all the vertices of the vessel boundary
are contained within the spatial constraints. This is useful as
it allows us to simplify the safety constraints to the following:

Sv ⊆ Ss ⇐⇒ Aspni ≤ bs ∀pni ∈ Vertex(Sv), (7)

where pni denotes the position of vertex i in the North-
East-Down (NED) reference frame. Since the vertices of the
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FIGURE 3. The gray convex polytope illustrates the vessel, whereas Sv is
the vessel boundary, and Ss are the spatial constraints. The vessel will
always lie within the spatial constraints Ss as long as all the vertices of
Sv lie within the spatial constraints.

vessel boundary are given in the body frame of the vessel,
we need to transform them from the body frame to the NED
frame, giving the following nonlinear constraints:

As
(
R(ψ)pbi + pc

)
≤ bs ∀pbi ∈ Vertex(Sv), (8)

where pbi denotes the position of vertex i in the body frame,
pc = [x, y]> is the vessel position and R is the rotation from
the body frame to NED.

R(ψ) =
[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
(9)

The constraints in (8) can be directly implemented as inequal-
ity constraints in an optimization problem, and ensures the
vessel is contained within a safe region given by the spatial
constraints.

While this constraint is easily implemented in a nonlinear
programming (NLP) problem, the constraint is not convex.
As a result, a feasible solution of the problem is guaranteed
to satisfy the spatial constraints, but we cannot guarantee that
the NLP will converge to a global optimum.

B. OPTIMAL CONTROL PROBLEM
In order to plan a safe trajectory for the vessel, we formu-
late the problem as the following continuous time nonlinear
optimal control problem:

min
xp(·),up(·),s(·)

∫ t0+T

t0

(
l(xp(t),up(t))+ k>s s(t)

)
dt (10a)

s.t. ẋp(t) = f (xp(t),up(t)) ∀t ∈ [t0, t0 + T ] (10b)

h(xp(t),up(t))− s(t) ≤ 0 ∀t ∈ [t0, t0 + T ] (10c)

s(t) ≥ 0 ∀t ∈ [t0, t0 + T ] (10d)

xp(t0) = x(t0), (10e)

where xp(t) = [ηp, νp]
> is the planned state trajectory of

the vessel, u(t) = [Fx,1,Fy,1,Fx,2,Fy,1]>, are the planned
thruster forces, and s(t) are slack variables. The constraint
relaxation (10c), is added in order to allow the planner to
plan a trajectory from a possibly infeasible initial pose. This
is useful, as it allows for re-planning the docking trajectory
in a model predictive control (MPC) like fashion, and use
low-level controllers to follow the planned trajectory.

The cost function (10a) includes a slack variable cost, and
a stage cost. For the slack variable cost k>s s(t), the gain ks is
chosen large enough such that the slack variables are active
only when the non-relaxed constraints are infeasible. The
following stage cost was chosen:

l(xp(t),up(t)) = qx,y · cx,y(ηp(t))+ qψ · cψ (ηp(t))

+ νp(t)>Qνp(t)+ up(t)>Rup(t). (11)

The velocity and control actions are penalized with a
quadratic penalty, with weight matricesQ andR. The position
cost cx,y(ηp(t)) is chosen as a pseudo-Huber function, penal-
izing the difference between the current pose and the docking
pose ηd , and is given as follows:

cx,y(ηp) = δ
2

√
1+

(xp(t)− xd )2 + (yp(t)− yd )2

δ2
− 1

 .

(12)

Using a pseudo-Huber cost, provides a quadratic penalty
when the quadrature position error is low and linear when
the position error is high. This helps with numerical stabil-
ity, as well as performance when large position errors are
observed [40], [41]. For the heading cost function cψ (ηp(t)),
the following was chosen:

cψ (ηp(t)) =
1− cos(ψp(t)− ψd ))

2
e−

(xp(t)−xd )
2
+(yp(t)−yd )

2

2δ2 .

(13)

The first factor of the heading cost function is the cost of
the heading error, in a form that avoids the wraparound of
the heading. The second part is a Gaussian function, which
discounts the heading error when far away from the docking
pose. This cost function has the effect of having the planner
chose an efficient heading when far away from the dock, and
then gradually rotate the vessel towards the desired heading
when closing in on the dock. It is worth noting that the cost
works similarly to a terminal cost, but is phased in more
gradually than a genuine terminal cost. This has the benefit of
making the OCP less sensitive to the length of the prediction
horizon.

The first constraint (10b) ensures that the planned trajec-
tory satisfies the kinematic and dynamic models of the vessel
described by (1) and (2). The inequality constraint (10c)
consists of the spatial constraints described in (8), as well as
constraints on the maximum and minimum velocity, angular
velocity, and thruster forces. The constraint in (10d) ensures
that the slack variables are positive, and (10e) sets the initial
state to that of the vessel.

In order to implement the continuous time problem given
in (10) we need to transcribe the problem into the standard
form.

min
w
φ(w)

s.t. g(w) = 0

h(w) ≤ 0
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This can be done in multiple ways, however the two main
classes of methods are sequential methods, such as direct
single shooting [42], and simultaneous methods such as
direct multiple shooting [43], and direct collocation [44]. For
this approach we chose to use direct collocation, in where
implicit numerical integration of the ordinary differential
equation (ODE) constraints (10b), as well as the objective
function (10a), is performed as part of the nonlinear opti-
mization. For the implementation of the docking planner,
we defined a planning horizon of T = 120s, with N = 60
shooting intervals, and degree d = 3 Legendre polynomi-
als. This was chosen as it gave a good trade-off in terms
of horizon length, integration accuracy and computational
complexity.

IV. AUTOMATIC CONSTRAINT GENERATION
Given the OCP formulation in the previous section, we are
faced with the problem of finding a convex set:

Ss = {p ∈ R2
| Asp ≤ bs},

within which the vessel must be contained. The set Ss must
be created in a way such that it does not intersect with
any constraints stemming from the environmental obstacles.
Ideally we would also like the set to be as large as possible,
in order to not unnecessarily restrict the vessel movement.
While a number of methods for performing constraint gen-
eration already exists [45]–[48], they can often be compu-
tationally expensive. In this section, we propose a method
similar to [45], [46], where a constraint set is generated as
a vessel-centered convex inner approximation of the environ-
mental constraints. We will also show how we can easily and
efficiently compute this set from known map data, as well
as from range sensor such as LIDAR and ultrasonic distance
sensors.

A. COMPUTING A CONVEX INNER APPROXIMATION
In this section, we show how to compute the safe set as a
vessel-centered convex inner approximation of the environ-
mental constraints, when the obstacles are represented by
line segments making up obstacle polygons. Intuitively the
method can be summarized as follows:

1) Given a center point pc, grow an ellipse centered
at pc, until it touches an environmental constraint
(Section IV-A1).

2) Create a linear constraint tangent to the expansion
ellipse at the contact point between the ellipse and the
environmental constraint (Section IV-A2).

3) Continue growing and creating linear constraints until
no further growth is possible, and combine the linear
constraints into the final convex inner approximation
of the environment (Section IV-A3)

In the next subsections we will show how to quickly and
efficiently perform the steps above in order to end up with
a simple closed form solution to generating the convex inner
approximation.

FIGURE 4. The contact point pab is given by the shortest non-Euclidean
distance from point pc to line segment (pa, pb).

1) COMPUTING THE CONTACT POINT BETWEEN ELLIPSE
AND ENVIRONMENTAL CONSTRAINT
Given a line segment (pa, pb) making up the environmental
constraints, we want to find the contact point pab between
the line segment and the expansion ellipse centered at pc,
this is illustrated in Figure 4. We can formulate this as an
optimization problem which minimizes the distance between
pc and the parametric line segment:

pab(ω) = pa(1− ω)+ pbω, (14)

where ω ∈ [0, 1]. For the optimization problem we wish to
find the parameterω that minimizes a non-Euclidean distance
from pab(ω) to pc, giving the following:

min
ω

f (ω) =
(
pab(ω)− pc

)>
6

(
pab(ω)− pc

)
(15)

s.t. 0 ≤ ω ≤ 1, (16)

where 6 is a positive definite symmetric projection matrix,
defining the expansion ellipse. Choosing 6 = I gives
the Euclidean distance, while choosing 6 as a different
positive definite symmetric matrix, allows prioritizing a
direction, when minimizing the distance. For the uncon-
strained optimization problem, the necessary conditions
give:

d f (ω)
dω

= (pa(1− ω)+ pbω − pc)
>6(pb − pa) = 0

⇒ ω = −
(pa − pc)

>6(pb − pa)
(pb − pa)>6(pb − pa)

. (17)

This gives the parameterized variable ω for the unconstrained
problem. The constrained ω ∈ [0, 1], due to the simplicity
of the constraints and convexity of the optimization problem,
can be found by simply clipping ω between 0 and 1:

ω = clip
(
−
(pa − pc)

>6(pb − pa)
(pb − pa)>6(pb − pa)

, 0, 1
)

(18)

The closest point pab, constrained to being on the line segment
(pa, pb) is then given by inserting the parameter w from (18)
into (14).We should note that this gives a closed form solution
for the contact point pab, which means it can be efficiently
computed.
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FIGURE 5. Finding the line Ax = b tangent to the expansion ellipse at pab,
i.e. normal line to the vector 6(pab − pc ) passing through pab.

2) FINDING THE TANGENT LINE TO THE EXPANSION ELLIPSE
Given the closest point pab on a line segment, the next step
is to find the line Ax = b which is tangent to the expansion
ellipse, and hence normal to the ellipse gradient 6(pab− pc),
as illustrated in Figure 5. Given the expansion ellipse gradient
for a point pab as:

6(pab − pc) (19)

we can note that any nonzero vector [x, y]> is orthogonal to
the expansion ellipse, if the inner product is zero.

(pab − pc)
>6

[
x
y

]
= 0 ⇒ Orthogonal. (20)

Using (20), the tangent line of the expansion ellipse, passing
through the point [x0, y0]> is given as the following.

(pab − pc)
>6

([
x
y

]
−

[
x0
y0

])
= 0 (21)

Since wewant the tangent line of the expansion ellipse to pass
through the point pab, the tangent line is given by all points
[x, y]> which fulfill the following equality.

(pab − pc)
>6︸ ︷︷ ︸

A

[
x
y

]
︸︷︷︸
x

= (pab − pc)
>6pab︸ ︷︷ ︸

b

(22)

3) LINEAR INEQUALITY CONSTRAINT GENERATION
In order to generate the convex constraints around a point
pc, our proposed method is based on finding the tangent
line to the expansion ellipse (see Section IV-A2) from
the point pc to the closest point pab,i (see Section IV-A1)
on each line segment i ∈ 1, 2, . . .N , making
up environmental constraints. By stacking the tangent
lines we get a half-space representation of the convex
inner approximation as the following linear inequality
constraints.

(pab,1 − pc)
>6

(pab,2 − pc)
>6

...

(pab,N − pc)
>6


︸ ︷︷ ︸

A

p ≤


(pab,1 − pc)

>6pab,1
(pab,2 − pc)

>6pab,2
...

(pab,N − pc)
>6pab,N


︸ ︷︷ ︸

b

(23)

We can note that since (18) is piecewise linear and smooth,
the constraints given above are continuous with respect to
the center point pc. This is a useful property, as this means
that the shape of the convex inner approximation will change
continuously with the center point pc.

While (23) gives a set of linear inequalities that may be
used directly in an OCP, it is worth noting that the rows of
the constraint may contain a large variance in magnitude.
Since the inequalities are linear however, we can multiply
each row of the inequalities by a normalizing factor. One such
convenient normalizing factor is:

1
||(pab,i − pc)6||2

(24)

The reason this normalizing factor is convenient, is the fact
that the resulting matrixA becomes dimensionless with every
row having unit length, and hence the the constraint will have
the same units as p. This has several benefits, including that
Ap−bwill have a physical meaning in terms of distance until
the constraint is reached. This allows for adding a back-off or
margin in order to shrink the constraints, andmake themmore
conservative. An other benefit is when using a slack variabels
in order to relax the constraints in the OCP, the slack variable
will have a physical meaning. Using this normalization factor
we get the linear inequality constraints given below.

(pab,1 − pc)
>6

||(pab,1 − pc)6||2
(pab,2 − pc)

>6

||(pab,2 − pc)6||2
...

(pab,N − pc)
>6

||(pab,N − pc)6||2


︸ ︷︷ ︸

A

p ≤



(pab,1 − pc)
>6pab,1

||(pab,1 − pc)6||2
(pab,2 − pc)

>6pab,2
||(pab,2 − pc)6||2

...

(pab,N − pc)
>6pab,N

||(pab,N − pc)6||2


︸ ︷︷ ︸

b

(25)

4) REMOVING REDUNDANT CONSTRAINTS
The inequality constraints in (25) can be further reduced
to M ≤ N constraints, by removing redundant constraints
(Figure 6). Given a system of linear inequalities,

Ap ≤ b (26)

a given row Ak , bk can be identified as being a redundant
constraint by solving the following Linear Programming (LP)
problem:

min
p

yk = bk − Akx

s.t. Aip ≤ bi ∀i 6= k, (27)

and checking if the above problem has a solution p for which
yk ≥ 0 [49]. For large numbers of constraints, solving an LP
to check if each constraint is redundant is however very ineffi-
cient. Fortunately, a number of other approaches exists, [50].
For our approach, we used the qhull library [51], which
efficiently perform constraint reduction for large numbers of
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FIGURE 6. Redundant constraints are constraints that don’t make up the
support of the intersecting half-plane {p ∈ R2 | Ap ≤ b}.

FIGURE 7. Illustration of how to compute the convex spatial constraints.

constraints. It does this by first computing the dual points of
the constraints as:

d i =
Ai

bi − Aip
, (28)

where p is an interior point of the constraints. Then computes
the convex hull of the dual points as:

D = Conv({d1, d2, . . . dN }). (29)

The support of the constraints are then given by the rows i
for which the dual points d i are extreme points of the convex
hull D, and redundant for dual points which are not extreme
points of D.

Given a set of line segments making up the boundary of
obstacles, we can use the method above to first compute the
closest points to all obstacles, then find the tangent line to the
expansion ellipse, and generate the final constraint as a set
of linear inequality constraints. This procedure is illustrated
in Figure 7.

B. COMPUTING SPATIAL CONSTRAINTS FROM MAP AND
SENSOR DATA
In order to compute the spatial constraints for the dock-
ing problem, it is possible to use a known map of the

FIGURE 8. Set generation is performed by growing a region (red polygon)
of water around pc (red dot), that does not intersect with land.

environment. Given a map where landmasses are represented
as polygons, we can use the proposed constraint genera-
tion method with the line segments making up the edges
of the polygons. This will give a convex inner approxi-
mation which can be used in the docking planner. This is
shown in Figure 8a, where we compute the safe region of
water, not intersecting polygonal landmasses around a certain
point.

In many real world applications however, relying only
on map data may not be sufficient, as the maps may be
inaccurate, out of date, or missing information. In order to
compensate for this we propose using additional sensory
information, in order to account for inaccurate map informa-
tion. For our proposed constraint generation method, point
cloud data–such as that generated by LIDAR, radar, or other
types of proximity sensors–can be easily incorporated. This
can be done by directly using the points in the point cloud as
the close points pab. An example of a map augmented with
LIDAR data can be seen in Figure 8b. For sensor data such
as short range ultrasonic distance measurements, where the
sensors are configured as in Figure 9, we can approximate the
constraints seen by the sensors as the line segment between
the measurement of each sensor. This line segment can then
be added to the constraint set similarly to the map data. Using
redundant and various exteroceptive sensors is beneficial,
as additional sensor may be used to improve coverage and
avoid blind spots, which will improve the accuracy of spatial
constraints.

When computing the constraint set, it is also possible to use
the projectionmatrix6 in order to create an axis for which we
prioritize the set generation. In the case of a vessel, it it can be
useful to prioritize constraint generation in the longitudinal
direction of the vessel’s body frame. This can be done by
using the following projection matrix:

6 = R(ψ)
[
σx 0
0 σy

]
R(ψ)>, (30)

where choosing σx < σy will prioritize set expansion in
the direction of the vessel heading. For docking or set point
tracking, it is alternatively possible to expand the spatial
constraints in the direction of the dock or set point, as this
is the direction that we ideally want the vessel to travel.
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FIGURE 9. Ultrasonic distance sensors attached to the front and rear of
the vessel, where the line segments (pa, pb) can be added to the spatial
constraints.

C. CONSIDERATIONS WHEN USING THE CONVEX SET
GENERATION FOR PLANNING
The set generation method we have detailed above, is a
computationally efficient way of computing a good inner
approximation of a set of non-convex constraints. The goal
of the method is not to maximize the area of the convex
inner approximation, as this is in general a computationally
expensive, and is not guaranteed to create a set which expands
in a desired direction. The goal of the method is rather to
create an inner approximation with a preferred expansion
direction, in our case this is controlled by the expansion
ellipse, which is efficient to compute even when handling
large numbers of constraints.

When using the constraints from the constraint generation
method in the docking planner, it is useful to be able to
guarantee recursive feasibility of the planner when it is run in
an MPC like fashion. By updating the constraints frequently,
and only choosing a new constraint set if it remains feasible
for the previous iteration, recursive feasibility of the planner
can be guaranteed. We can note that the set generation will
always remain feasible for the point pc, however since we
are considering all the vessel vertices when planning a safe
trajectory, we can not guarantee that the constraint generation
method will results in a feasible constraints for all the vessel
vertices.

In order to use the linear constraints in an optimization
problem, it is practical to have a fixed number of constraints,
such that the optimization problem does not need to be tran-
scribed, and built each time a new number of constraints
change. In order to do this we use the full constraints gen-
erated by the constraint generation method described above,
and create a reduced constraint as the K closest constraints in
terms of the distance pab − pc. This reduced constraint, will
then be an outer approximation of the full constraints.

V. EXPERIMENTS
A. EXPERIMENTAL PLATFORM
For the sea trials, we used the experimental autonomous
urban passenger ferry milliAmpere, as shown in Figure 1
with the specifications listed in Table 1, and the planning
parameters gien in Appendix. The milliAmpere platform has

TABLE 1. milliAmpere specifications.

FIGURE 10. Block diagram of the docking system setup. The DP controller
and thrust allocation are existing functions on milliAmpere.

been in constant development at the Norwegian University of
Science and Technology (NTNU) since 2017, and has served
as a platform for testing and developing autonomous technol-
ogy, including software, sensor arrays, as well as hardware
solutions. A larger version is currently being designed and
built by the research group Autoferry,1 and is planned to
operate as an on-demand ferry in the Trondheim harbor.

For the experiments, the docking planner (10) was run
with a sampling rate of 0.1Hz, with the output of the dock-
ing planner being used as the reference trajectory for a
Dynamic Positioning (DP) tracking controller, which was
already implemented on milliAmpere. The DP tracking con-
troller was a proportional-integral-derivative (PID) controller,
with velocity and acceleration feed-forward. Based on the
forces and torque computed by the DP controller, the force
and angles of the azimuth thrusters were calculated by an
optimization-based control allocation scheme [52]. The block
diagram in Figure 10 illustrates how the planner, DP con-
troller, and actuators were connected.

Instead of using the DP controller with control allocation,
it would have been possible to implement the docking plan-
ner (10) as a Nonlinear Model Predictive Control (NMPC)
scheme, where the thruster forces computed by the planner
are directly used as setpoints for the vessel thrusters. There
are however several practical reasons why we chose not to do
this:

• The planner does not account for drift, disturbances or
modeling errors, while the tracking controller does so
through feedback.

1Autoferry website: https://www.ntnu.edu/autoferry.
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FIGURE 11. Visualisation of the docking motion during the experiments
on September 7th 2020 (E1).

• While the planner is iteration-based with no formal per-
formance guarantees, the tracking controller provides a
robust bottom layer that acts also as a safety measure.

FIGURE 12. Planned and executed trajectory during the experiments on
September 7th 2020 (E1).

• Due to the computational demand of solving the plan-
ning problem, it is difficult to achieve a sampling rate
that is fast enough to stabilize the vessel through feed-
back from the planner.

• Using this multi-layer architecture separates the planner
from the vessel control systems, allowing the planner to
easily be retrofitted onto the existing implementation.

Choosing such a multi-layered structure, where planning
and motion control are separated, provides flexibility in the
trajectory planner, disturbance rejection through feedback,
robustness to failures in the planning level, and ease of imple-
mentation on platforms with existing motion control systems.

B. RESULTS
Experiments2 were performed with themilliAmpere platform
in confined waters in Trondheim, Norway on September 7th
(E1) and 11th (E2), 2020. The weather conditions were calm
with winds between 1m/s and 3 m/s. The results from E1 are
shown in Figure 11 and 12, and the results from the E2 are
shown in Figure 13 and 14, with photos from the experiments
in Figure 15. It should be noted that the ultrasonic distance

2Video of experiments is available at: https://youtu.be/AyaWlJvI6K8
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FIGURE 13. Visualisation of the docking motion during the experiments
on September 11th 2020 (E2).

measurements were not used due to technical problems with
the sensors at the time, meaning that only lidar and mapping
data was used for computing the spatial constraints during the
tests.

FIGURE 14. Planned and executed trajectory during the experiments on
September 11th 2020 (E2).

The experiments E1were performed at the end of a floating
dock, while E2 at the center of the floating dock, due to to
space availability on each day of the experiments. The differ-
ence in final docking pose had an influence on the complexity
of the constraint sets, which can be seen in Figure 11 and 13.
The full constraints pertain to the full set of constraints
generated by the constraint generation method (25), while the
reduced constraints were chosen as the 8 closest constraints
eventually used in the optimization problem. This was done
since the optimization problem needs a fixed number of
constraints, and 8 gives a good balance between accuracy and
computational cost when solving the OCP. For E1, shown
in Figure 11, we see that the reduced constraints are much
closer to the full constraints, compared to E2 Figure 13.
This indicates that more potential obstacles were present in
E2. The results show that the proposed constraint generation
method is able to construct a good convex inner approxima-
tion of the free region, within which the vessel is allowed
to operate, and that by choosing the number of constraints
to reduce the full constraints to, we can achieve a good
balance in terms of computation and constraint accuracy.
We should however note the unexpected set of constraints
at 25.8 seconds, in Figure 11, which was caused by rain
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FIGURE 15. The milliAmpere while performing the docking maneuver,
including closing in on the dock, and the final docking pose.

during the experiment, leading to the LIDARmisclassifying a
raindrop as a potential obstacle. This can be avoided by better
filtering the incoming LIDAR data before feeding them to the
set generation algorithm. It is also worth noting the LIDAR
point clouds in Figure 11 and 13, are not capturing the dock
itself when the vessel is close to the final docking pose. This
is due to limitations in the vertical transmitting angle of the
LIDAR causing the dock to end up in the LIDAR blind spot.
This problem can be solved by using the ultrasonic distance
sensors at close range, adding redundant LIDAR sensors to
improve coverage, or in this case relying on the map data,
as the ultrasonic distance sensors were unavailable.

Figures 11 and 13 also show how the LIDAR helps in
detecting unmapped static obstacles, in this case mostly
docked vessels, especially as the milliAmpere gets closer to
them. Accounting for these surrounding obstacles is of crit-
ical importance when planning and tracking a safe docking
trajectory, and would not have been possible if only map data
were used.

The results indicate that the planned trajectory does not
violate any of the spatial constraints, and ensures that the
vessel does not collide with surrounding obstacles. Also,
the generated trajectory is intuitive for a docking operation,
as the vessel initially moves in the surge direction towards
the dock with a reasonably high velocity, then it slows down
as it gets closer to the final docking pose, and finally rotates
in order to reach the desired docking heading. Figures 12
and 14, indicate that the final trajectory mostly converges
to the desired docking pose, with one exception being the
North direction in Figure 12. This discrepancy was due to
the docking pose overlapping with the dock, as can be seen
in Figure 11, and hence the desired docking pose is not pos-
sible to be reached without violating the spatial constraints.

In Figure 12 and 14, we see the executed trajectory given in
green, and the planned trajectory given in orange, where every
10 seconds the start of a replanned trajectory is marked with
a dot. The observed discontinuity in the planned trajectory
is due to the replanned trajectory being initialized to the
state of the vessel at the time of the replanning. For both
experiments we see that the tracking performance is very
good. The tracking performance is highly reliant on not only
the performance of the underlying DP controller and thrust
allocation algorithm, but also the accuracy of the model used
in the optimization-based planner. The most notable discrep-
ancies in the tracking performance are found in the heading.
We believe these are due to the the inherent heading insta-
bility of the vessel, as well as unmodeled thruster dynamics,
whichmay cause a slight delay between desired and produced
thrust.

VI. CONCLUSION
We have presented a method for planning and perform-
ing docking maneuvers in a confined harbor. The method
utilizes map data, which is known in advance, as well as
sensor data gathered in real time, to iteratively and safely
plan a trajectory that brings the vessel to a desired dock-
ing pose. To perform the docking maneuvers given by the
planner, we used an existing trajectory tracking DP con-
troller, which added robustness to disturbances, and helped
demonstrate that the planner is easy to retrofit on an existing
platform. In order to validate the proposed control scheme,
we conducted full-scale experiments in a confined harbor
area with the milliAmpere ferry developed at NTNU, and
demonstrated how the proposed method is able to plan and
well as execute safe and collision-free docking maneuvers.
To the best of our knowledge, there’s no existing pub-
lished work that involves field trials of docking operations
for autonomous surface vehicles using only exteroceptive
sensors.

For future work, we would like to look at the possi-
bility of integrating additional sensors, such as radar and
cameras, in order to generate an even better view of the
environment. Additionally, we would like to look at ways
of filtering the sensor data in order to get more reliable
sensor readings. We would also like to integrate the dock-
ing system in a control structure that handles transportation
phases autonomously. Since our proposed approach is able
to handle the docking and undocking phase, what remains to
achieve a fully autonomous operation with mission objective
"Navigate from Dock A to Dock B", is the development of
control and planning strategies for handling the transit phase
of the journey. This development will include additional work
on collision avoidance, situational awareness, and planning
methods that comply with the maritime navigation rules.

APPENDIX
LIST OF PARAMETER VALUES
A list of parameter values is given in Table 2, while details on
the vessel model can be found in [33].
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TABLE 2. List of parameters.
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Three-Phase Automatic Crossing for a Passenger Ferry With Field Trials

Glenn Bitar, Bjørn-Olav H. Eriksen, Anastasios M. Lekkas and Morten Breivik

Abstract— We propose and demonstrate a method for auto-
matic crossing with an autonomous surface vehicle by combin-
ing undocking, trajectory planning, transit, and docking capa-
bilities. The proposed method divides the crossing operation
into three phases and switches sequentially between previously
developed fit-for-purpose planners and controllers. The docking
and undocking phases are handled by a model-predictive local
planner, while a two-stage energy-optimized global trajectory
planner plans the transit phase. Both planners take into account
vessel dynamics, and a trajectory-tracking controller tracks
the resulting trajectories. We design and implement the phase
switching using Unified Modeling Language state diagrams,
facilitating architectures beyond what we have implemented in
this paper. We demonstrate our method in successful full-scale
experiments in the harbor area of Trondheim, Norway.

I. INTRODUCTION

Several types of marine operations are transitioning to
higher levels of autonomy. Among them are military surveil-
lance operations using unmanned surface vehicles, mine recon-
naissance and scientific surveys with autonomous underwater
vehicles [1, 2], and transportation with autonomous surface
vehicles (ASVs) [3]. Commercial cases of automatic crossing
with ships were demonstrated by Wärtsilä and Rolls-Royce
(later acquired by Kongsberg Maritime) in 2018, with limited
scope.1 Both tests included automatic transit and docking.
The shipping company NYK performed automatic crossing
trials in 2019,2 utilizing a proprietary action planning system,
which required manual verification by an operator before
actions were passed to the ship’s control system [3].

For automatic crossing operations, a vessel must consider
collision avoidance with static and moving obstacles, and
during transit, a real-world implementation should comply
with the International Regulations for Preventing Collisions at
Sea (COLREGs) [4]. Several methods for collision avoidance
at sea are available in the literature. There are local, short-term
methods such as dynamic window (DW), velocity obstacles
(VOs), and the branching-course model-predictive controller
(BC-MPC) [5, 6, 7, 8], and global methods, often employing
graph-search or optimization-based techniques [9, 10]. Some

This work was supported in part by the Research Council of Norway
through project number 269116, as well as through the Centres of Excellence
funding scheme with project number 223254.

The authors are with the Centre for Autonomous Marine Operations and
Systems and the Department of Engineering Cybernetics at the Norwegian
University of Science and Technology (NTNU), NO-7491 Trondheim,
Norway. Emails: glennbitar@outlook.com, bjorn-olav.h.eriksen@ieee.org,
anastasios.lekkas@ntnu.no, morten.breivik@ieee.org.

1https://www.maritime-executive.com/article/rolls-
royce-and-wartsila-in-close-race-with-autonomous-
ferries (accessed September 14, 2020).

2https://www.maritime-executive.com/article/nyk-
conducts-live-autonomous-navigation-test-with-pctc
(accessed October 12, 2020).

of these (often partially) take into account the COLREGs,
a set of regulations specified by the International Maritime
Organization, also called the maritime “rules of the road.”
Rules 8 and 13–17 of the COLREGs deal with how the
maneuvering should be performed generally and in cases
of overtaking, head-on, and crossing situations. Studies of
COLREGs-compliant collision avoidance methods include
[11, 12].

Simplified, we can divide automatic crossing with manned
and unmanned surface vessels into three phases:
Undocking: Moving at slow speeds from a docked position

along a quay to freer waters.
Transit: Moving at higher speeds towards the destination.
Docking: Moving at slow speeds at the destination to a

docked position along a quay.
One approach for handling automatic crossing is to use
a single planner and controller for all three phases, thus
treating the operation as a single process. Some motion
planners can handle both confined and open waters, which
make them suitable for the single-process approach [13, 14].
The downside to this approach is the lack of flexibility
and modularity. For instance, the transit phase may involve
high speeds and may require that the vessel abides by the
COLREGs, while the docking and undocking phases occur
at low speed and may have tighter tolerances for trajectory
tracking. Additionally, the aspects mentioned above of the
COLREGs can often be ignored during docking due to the low
speeds, absence of other vessels, and short distances involved.
Using different planning and controller modules for the three
phases is more flexible but requires some architecture to
switch between the active modules.

Unified Modeling Language state diagrams (UML-SDs)
[15] are a suitable tool for designing and implementing an
automatic switching architecture. Using UML-SDs, we can
explicitly program the desired behavior during automatic
crossing. The UML-SD is an open standard, and free,
open-source software is available for implementing these
diagrams. UML-SDs allow for hierarchical state machines
and support concurrency. Explicitly programming behavior
for the automatic architecture requires the design to consider
all possible events that may occur during operation or
have measures in place that ensure safe operation when
encountering unexpected situations. Since accounting for all
possible events is impossible, this type of architecture is best
suited for manned or supervised applications of automatic
crossing so that an operator can take over control if a situation
emerges.

This paper presents an architecture for automatic crossing
for ASVs that uses two different types of trajectory planners



Fig. 1: The experimental autonomous urban passenger ferry
milliAmpere.

TABLE I: milliAmpere specifications.

Dimensions 5m by 2.8m rectangular footprint
Position and
heading reference
system

Vector VS330 dual GNSS with RTK capabilities

Thrusters Two azimuth thrusters on the center line, 1.8m
aft and fore of center

Existing control
modules

Docking planner, transit planner,
trajectory-tracking DP controller, and a thrust
allocation system

for the docking, transit, and docking phases. The architecture
is designed with a UML-SD and implemented using a
state machine library on the experimental, autonomous ferry
milliAmpere, developed at the Norwegian University of
Science and Technology. The architecture is tested and shown
to work well in a full-scale experiment. We discuss where
such an explicit approach would fail and propose alternative
approaches that may be more suitable in unsupervised,
autonomous implementations. In summary, our contributions
are as follows:

• We develop an architecture for automatic dock-to-dock
transportation for ASVs that is designed with a UML-
SD.

• We demonstrate that this architecture successfully can
achieve its goal via a full-scale experiment.

• We discuss scenarios where explicit programming would
fail and suggest alternative approaches to come closer
to autonomous operations.

The rest of our paper is structured as follows: We present
our experimental platform and existing control and planning
modules in Section II. The automatic crossing architecture
is presented in Section III. Results from our validation
experiment are presented in Section IV. Section V contains
a discussion about our automatic crossing approach and
suggestions for alternative methods that can achieve higher
degrees of autonomy. In Section VI, we conclude the paper
and present some ideas on how we would like to extend our
method.

Trajectory

Vessel
Thrust

allocation

Transit
planner

Docking
planner

Vessel states

Initial &
final pose

Docking pose
Trajectory-
tracking DP
controller

Desired
force

Thruster
commands

Fig. 2: Control architecture for milliAmpere.

II. EXPERIMENTAL PLATFORM: MILLIAMPERE

We performed our experiments using the experimental
autonomous urban passenger ferry milliAmpere, developed
at the Norwegian University of Science and Technology
(NTNU). Figure 1 shows a picture of milliAmpere, and its
specifications are listed in Table I. The platform is under
continuous development and many students and researchers
have contributed with control systems as well as hardware
solutions. A larger version is currently being designed and
built by the research group Autoferry.3

The milliAmpere has an existing dynamic positioning (DP)
controller capable of tracking trajectories, a thrust allocation
algorithm providing thruster commands based on the desired
control force, and trajectory planners for both docking and
transit operations. Depending on the active phase (undocking,
transit, or docking), one of the planners feeds its trajectory
to the trajectory-tracking DP controller, which again feeds
desired force commands to the thrust allocation algorithm
[16]. The control architecture is illustrated in Figure 2.

A. Docking planner

The docking planner was first presented in [17], tested
experimentally with global navigation satellite system (GNSS)
measurements in [18] and further extended with exteroceptive
sensors in [19]. It consists of an optimal control problem
(OCP) solver that provides local collision-free trajectories
based on static map data as well as obstacles generated by
a lidar sensor. The trajectory is replanned periodically to
account for errors, and converges on a target docking pose.

B. Transit planner

The transit trajectory planner is a global planner based
on a discrete hybrid A? search as well as an OCP solver
[10]. It takes into account static obstacles in the form of a
map with polygons. It uses the hybrid A? search to find a
close-to-optimal dynamically feasible which is subsequently
used to generate a sequence of convex obstacle-avoidance
constraints and an initial guess to warm-start the OCP solver.
The objective function of the OCP solver is minimum energy
usage.

The transit planner only takes into account a known
and static map of obstacles. Hence, moving and unknown
obstacles are not handled when the transit mode is active.

3Autoferry website: https://www.ntnu.edu/autoferry.



Ready Undock
Initialize

Transit

At undock pose

Dock

At dock
pose

At transit
pose

Fig. 3: A UML-SD that describes the simplest possible
automatic crossing architecture. There is no error handling
or planning in this architecture.

This is of course not a sufficient approach for a practical
application, but provides a proof of concept for the sequential
control approach in the scope of this paper. One way to
handle both static and moving obstacles is to use a three-
level hierarchical, or hybrid, collision-avoidance approach
described and developed in, e.g., [11, 20, 21], together
with exteroceptive sensors such as radar and lidar, and
tracking algorithms. With such a hybrid collision-avoidance
approach, the trajectory planner would provide a nominal
trajectory which would be modified if required to generate
safe maneuvers. The trajectory planner described here fits
directly into the top-level layer of the architecture described
in [11].

III. AUTOMATIC CROSSING ARCHITECTURE

The simplest possible architecture for a three-phase cross-
ing operation is depicted in the UML-SD in Figure 3. In
this UML-SD, we assume that the transit trajectory is pre-
planned and collision-free. However, in our implementation,
the trajectory is planned after initialization, so we require
concurrence. For the undocking and docking phases, we use
the docking planner described in Section II-A. For safety,
we add a state for “safe mode,” which is activated by the
operator in case of unexpected situations. In addition, for
our experiments, we did not have access to two quays far
apart, so we add a secondary transit state to emulate a longer
transit journey. This also required a reorientation state, to
align the vessel with the secondary trajectory. The result is
the automatic crossing architecture described by the UML-SD
in Figure 4. A description of each state in the UML-SD is
shown in Table II. The transition criteria are that the vessel’s
pose is measured at the planned values while standing still,
within a specified tolerance.

IV. EXPERIMENTAL RESULTS

We performed the experiments using milliAmpere and an
implementation of the UML-SD from Figure 4 implemented
in ROS and Python with a state-machine library called
Smach.4 The experiments were done near the Brattøra harbor
area in Trondheim, Norway on September 30th 2020, with
calm weather conditions and little traffic. A map of the area
where we performed experiments is provided in Figure 5.
The map also shows the different operation poses, which are
described by η(·) ∈ R2×S. These poses consist of coordinates
North and East of the origin in an Earth-tangential plane,

Ready

Undock
Plan

transit 1

Reorient Transit 2 Dock

Safe
mode

Finished

Undock & plan

At undock
pose

Planning
successful

Transit 1
Plan

transit 2

Transit & plan

At transit
pose 1

Planning
successful

Safe mode
activated

Safe mode
deactivated

Initialized

Reoriented

At transit
pose 2

At dock pose

Automatic crossing

Fig. 4: The UML-SD that describes the automatic crossing
architecture implemented in this paper. The diagram uses
hierarchical state containers to generalize safe mode state
switching from every substate, and orthogonal regions to
enable concurrency when planning.

and the vessel’s heading angle. The operation starts at η0,
undocking towards ηu. The first transit is between ηu and ηt1,
where the vessel reorients itself to ηr before transiting back to
ηt2. Finally, the vessel docks at ηd. The pose descriptions are
found in Table III. Each transit leg is approximately 520m
in length.

Figure 6 shows the pose trajectories of the undocking
phase, the two transit phases, and the docking phase. The
pose trajectories show that milliAmpere manages to undock
from the start position to the appointed undock pose ηu. The
first transit phase then starts, where the vessel maneuvers
from within the harbor area, to just outside it, at ηt1. After
reorienting to ηr, milliAmpere continues to transit towards
ηt2, before successfully docking with its back towards the
quay at ηd.

Figure 7 shows the full state trajectories, including pose
and velocity, as well as indications at the times t of state
switches. We see jumps in velocity at, e.g., t ≈ 170 s and
t ≈ 660 s, which are caused by jumps in GNSS measurements.

4Robot Operating System (ROS) is a software framework for robots that
enables inter-process messaging, services and data logging. Client libraries
exist for the C++, Python, and Lisp programming languages. Smach is
an independent but affiliated Python library for building hierarchical state
machines. See https://wiki.ros.org/ and https://wiki.ros.
org/smach for more information.



TABLE II: Description of states and actions.

State Actions

Ready Loitering, ready for crossing
Undock Use docking planner to move to undock pose
Plan transit 1 Use global transit planner to plan a trajectory from the

undock pose to the first transit pose
Transit 1 Use trajectory-tracking DP controller to track the

planned trajectory towards the first transit pose
Plan transit 2 Use global transit planner to plan a trajectory from the

reorientation pose to the secondary transit pose
Reorient Use DP controller to change vessel heading to align to

the second trajectory
Transit 2 Use trajectory-tracking DP controller to track the

planned trajectory towards the secondary transit pose
Dock Use docking planner to move to docking pose
Safe mode Set vessel in manual control mode
Finished Crossing completed, loitering
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Fig. 5: Map of the experiment area with markers at key
positions. The positions are listed in Table III.

The velocity estimates are naively calculated using finite
differencing between positional estimates, so these jumps
cause large velocity estimation errors.

The experiment shows that this approach to automatic
transportation operations works well. Obviously, practical
applications require that complex scenarios are accounted for,
such as fault handling, collision avoidance, and replanning.
For automatic or autonomous operations that are supervised
by humans, our approach is sufficiently flexible and simple.
In Section V we discuss the limitations of our approach and
possible solutions.

V. LIMITATIONS OF THE AUTOMATIC CROSSING
ARCHITECTURE

In the previous section we showed a proof of concept for an
automatic crossing architecture with experimental validation.
The experiment showed that the proof of concept works for a

TABLE III: Poses involved in the experiment.

Name Symbol Value (m,m, °)

Start η0 (24, 31,−80)
Undock ηu (80,−10,−135)
Transit 1 ηt1 (−155,−430, 0)
Reorient ηr (−155,−430, 180)
Transit 2 ηt2 (30,−70, 45)
Dock ηd (51.71,−74.60, 138.7)

simple automatic operation. In this section we discuss some
of the limitations and highlight two issues.

A. Zero-velocity switching condition

The trajectory planners produce trajectories that arrive at the
destination pose with zero velocity. This makes it possible to
design switching conditions for the UML-SD that are trivial to
reach. The underlying tracking controller can easily converge
to the desired poses and slow down to zero velocity, within
the provided tolerances. However, this might be too strict a
requirement, since it might be unnecessary and unnatural to
stop between these phases—a human operator would certainly
not make these intermediate stops unless an unexpected
situation emerged. Tighter integration between the planning
modules would be necessary to achieve switching with non-
zero velocity, e.g., by planning an undocking trajectory that
ended with the starting velocity of the transit trajectory. This
takes away some of the simplicity provided by the modular
approach, but is still achievable with the right interface
between the modules.

B. Explicit programming of automatic behavior

Using UML-SDs or other types of explicit programming to
produce automatic behavior is a simple solution that would
work in many cases, especially manned, automatic operations.
However, for unsupervised operations, these approaches
might not be sufficient. Explicit programming implies that a
supervisory agent handles unforeseen incidents, e.g., by a safe
mode, as implemented in Figure 4. Otherwise, the design
would have to take into account all types of unforeseen
incidents, which is impossible. It is possible to take into
account the specific incidents we can foresee, by explicitly
handling them in the UML-SD. An example of this could be
that the undocking pose is occupied by another vessel, making
the docking planner unable to reach it. The ASV would in
this case loiter while waiting for the space to clear, which
would be an undesired behavior. In this case, if the transit
planner has successfully finished, a module could provide an
intermediate trajectory between the current vessel state and a
state along the transit trajectory. A proposed change to our
UML-SD that would handle this specific scenario is provided
in Figure 8.

There are however many other incidents to take into
account, e.g.:

• Blocked switching poses
• Sensor failures
• Actuator failures
• Trajectory planners unable to find solutions
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Fig. 6: Maps and trajectories during the main phases of our experiment.

Other methodologies that enable increased autonomy are
available in the scientific literature. This includes T-REX
from the Monterey Bay Aquarium Research Institute [2],
HAL from the Norwegian Defence Research Establishment
[22], CARACaS by the US Office of Naval Research
[23], GenoM by Laboratory for Analysis and Architecture
of Systems [24], and MOOS-IvP from the Massachusetts
Institute of Technology [25]. These modules have advanced
capabilities such as replanning, negotiating competing goals,
and deliberative task-level planning, which would take us
closer to unsupervised, autonomous operation.

VI. CONCLUSION

Crossing with a surface vessel is a process that can be
divided into three phases: undocking, transit, and docking.
Automatically performing this process requires a control
system that can handle all three phases safely. We suggest a
modular approach that handles these phases with different fit-
for-purpose planning and control modules. We have designed
such a control architecture with a UML-SD, and show that it

is a simple and effective way to achieve automatic crossing.
The experimental results demonstrate that our implementation
successfully achieves automatic crossing between two quays.
This is done by combining two planning and control modules
and by conditionally switching between them. We have also
shown that the UML-SD approach is flexible and general
enough to include complex situations, but we emphasize that
explicit programming cannot take into account unforeseen
incidents. For unsupervised autonomous systems, we suggest
alternative approaches based on autonomy frameworks.

We wish to expand our architecture to handle moving
obstacles and the COLREGs. This expansion can be achieved
by integrating the transit control module with a hybrid
collision-avoidance system, proposed in, e.g., [11, 20, 21].
Additionally, our implementation’s only safety-action is when
the operator activates a safety condition, which places the
vessel in manual control mode. We want to implement
automatic failure detection with flexible safety modes to
improve upon this limitation. E.g., if a failure is detected
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Fig. 7: Complete state trajectory during our experiment. The vertical lines signify the sequential phase changes.

(problems with exteroceptive sensors such as the lidar, for
instance), the vessel could initiate loitering and restart the
interrupted procedure once the problem is fixed.

ACKNOWLEDGMENT

The authors thank Simen K. Knudsen for his help with
the experiments.

REFERENCES

[1] M. S. Wiig, “Decisional autonomy for the HUGIN
autonomous underwater vehicle,” in Proc. SCI-202
Symposium on Intelligent Uninhabited Vehicle Guidance
Systems, 2009.

[2] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn,
and R. McEwen, “A deliberative architecture for AUV
control,” in Proc. 2008 IEEE International Conference
on Robotics and Automation, Pasadena, CA, USA, 2008.

[3] K. Kutsuna, H. Ando, T. Nakashima, S. Kuwahara,
and S. Nakamura, “NYK’s approach for autonomous
navigation – structure of action planning system and
demonstration experiments,” Journal of Physics: Con-
ference Series, vol. 1357, 2019.

[4] A. N. Cockroft and J. N. F. Lameijer, A Guide to
the Collision Avoidance Rules, 7th ed. Butterworth-
Heinemann, 2011.

[5] B.-O. H. Eriksen, E. F. Wilthil, A. L. Flaten, E. F.
Brekke, and M. Breivik, “Radar-based maritime collision

avoidance using dynamic window,” in 2018 IEEE
Aerospace Conference, 2018.

[6] D. K. M. Kufoalor, E. F. Brekke, and T. A. Johansen,
“Proactive collision avoidance for ASVs using a dynamic
reciprocal velocity obstacles method,” in Proc. IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), Madrid, Spain, 2018.

[7] Y. Kuwata, M. T. Wolf, D. Zarzhitsky, and T. L. Hunts-
berger, “Safe maritime autonomous navigation with
COLREGS, using velocity obstacles,” IEEE Journal
of Oceanic Engineering, vol. 39, no. 1, pp. 110–119,
2014.

[8] B.-O. H. Eriksen, M. Breivik, E. F. Wilthil, A. L.
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