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Abstract

Clustering of inertial spheres in a statistically unsteady flow field is believed to be different

from particle clustering observed in statistically steady flows. The continuously evolving three-

dimensional Taylor-Green vortex (TGV) flow exhibits time-varying length- and time-scales, which

are likely to alter the resonance of a given particle with the evolving flow structures. The tendency

of homogeneously introduced spherical point-particles to cluster preferentially in the TGV flow is

observed to depend on the particle inertia, parameterized in terms of the particle response time

τp. The degree of the inhomogeneity of the particle distribution is measured by the variance σ2 of

Voronöı volumes. The time evolution of the particle-laden TGV-flow is characterized by a viscous

dissipation time scale τd and the effective Stokes number Steff = τp/τd. Particles with low/little

inertia do not cluster in the early stage when the TGV-flow only consists of large-scale and almost

inviscid structures and Steff < 1. Later, when the large structures have been broken down to

smaller vortices, the least inertial particles exhibit a stronger preferential concentration than the

more inertial spheres. At this stage, when the viscous energy dissipation has reached its maximum

level, the effective Stokes number of these particles have reached the order of one. Particles are

generally seen to cluster preferentially at strain-rate dominated locations, i.e. where the second

invariant Q of the velocity gradient tensor is negative. However, a memory effect can be observed

in the course of the flow evolution where high σ2-values do not always correlate with Q < 0.

I. INTRODUCTION

The Taylor-Green vortex (TGV) flow first considered by Taylor and Green [1] is one of

the classic flow systems used to study vortex dynamics, transition, energy dissipation and

decay processes [2, 3], including excitations at smaller scales and the resulting decaying

turbulence [4]. The TGV flow starts as a regular array of large-scale vortices, which are

scrambled, i.e. bended and stretched, by non-linear inertia, and eventually turned into

quasi-homogeneous small-scale turbulence subjected to viscous dissipation; see e.g. Brachet

[4] and Sharma and Sengupta [5]. Besides being an appreciated flow system for studies of

intricate unsteady vortex dynamics and decaying turbulence, the TGV flow also represents

an attractive benchmark for testing and verification of numerical schemes [2, 6].
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Dilute suspensions of particles in turbulent flows have been extensively studied with

the view to better understand particle transport, dispersion and preferential concentration.

Different flow systems are adopted, notably homogenous isotropic turbulence (HIT) and

turbulent channel flows. By means of a point-particle approach, Squires and Eaton [7] and

Calzavarini et al. [8] studied clustering of spherical particles in HIT. Similarly, Marchioli

and Soldati [9], Nilsen et al. [10] and Yuan et al. [11] examined particle clustering in channel

flow turbulence. A common feature of these flows is the statistical steadiness, which implies

that the characteristic length and time scales are independent of time. Nevertheless, the

flow scales seen by a particle along its trajectory do change in the wall-normal direction.

The Kolmogorov scale for time, for instance, increases fivefold from the near-wall region to

the channel center at a friction Reynolds number 180 [12]. However, an inertial particle

is primarily driven in the direction of the bulk flow, whereas major wall-normal excursions

are rare. Therefore, the vast majority of particles takes a long time to drift across different

regions of the flow and to interact with different length and time scales. In the evolving

TGV-flow, however, the characteristic scales of the flow constantly change with time and

particles all over the flow are immediately exposed to the varying time scales. This variation

is likely to alter the resonance of a given inertial particle with the gradually evolving flow

structures.

Steady-state TGV flows have been considered in several earlier studies to explore various

aspects of particle additives in vortical flows, of which the papers by Maxey [13], Wang et al.

[14], Durham et al. [15], Yao and Capecelatro [16] and Ruan et al. [17] are representative

examples. Bergougnoux et al. [18] set up a model experiment using electro-convection to

mimic such a two-dimensional array of steady vortices. Initially, however, Stommel [19]

used the two-dimensional TGV flow as a model for cellular vortex flow to study plankton

behavior in Langmuir circulations [20] in oceans and lakes. The investigation by Durham et

al. [15] on gyrotactic motility in steady TGV flow suggested that the vortical flow might be

able of efficiently separating species with different motility characteristics. Phytoplankton

is an essential ingredient in aquatic ecosystems and their motion in the oceanic environment

affects their feeding abilities and thus the potential for phytoplankton blooming; see e.g.

the review articles by Durham and Stocker [21] and Guasto et al. [22]. Another marine

occurrence of particle-laden flows is microplastic pollution, which has recently grown to

become of major environmental concern, as address for instance by Hidalgo-Ruz et al. [23]
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and Barboza and Gimenez [24]. Microplastics are transported by currents and tides, which

are turbulent on the relevant scales of the microplastic particles (Galloway et al. [25]). The

density of microplastics, which is affected by weathering and biofouling, determines whether

the microplastics will float near the sea surface or sediment at the seabed [26–28].

The dynamical behavior of pollutant microplastics and aquatic micro-organisms in the

ocean can be modelled as a dilute suspension of microparticles in a vortical flow field. The

steady-state TGV flow [1], which appears as an array of counterrotating vortices, represents

a tractable starting point. However, the unsteady TGV flow [2–6], which rapidly develops

into a three-dimensional and time-varying flow field, represents a far more realistic model

of oceanic turbulence characterized by constantly varying vortex structures. In spite of the

abundant interest in the time-dependent TGV flow as a benchmark case [29], for instance at

the 1st International Workshop on High-Order CFD Methods at the 50th AIAA Aerospace

Science Meeting in 2012, particle behavior in unsteady TGV flows has apparently not been

dealt with before.

Similarly as the turbulent Kolmogorov flow, e.g. De Lillo et al. [30], the evolving TGV

flow appears as an attractive flow field in which one can assess whether or not the well-

established knowledge on particle clustering in steady-state flows carries over to flow fields

in which the flow scales change continuously with time. Unlike the periodic Kolmogorov

flow, however, the characteristic length and time scales vary aperiodically throughout the

evolution of the TGV flow. One can therefore anticipate that a particle with given inertia will

respond differently to the typical vortical flow structures during the flow evolution since the

characteristic time scale of the unsteady TGV-flow gradually changes with time. Moreover,

even though the viscous drag force on a particle at a given time is determined by the local

flow conditions at that time, particle inertia may give rise to a certain memory effect, which

in turn may induce a decorrelation of the particle clustering from the vortical structures.

In order to explore particle clustering in the evolving TGV-flow, we adopt an Eulerian-

Lagrangian approach, in which the unsteady flow field is obtained by integration of the three-

dimensional Navier-Stokes equations. Tiny equal-sized spherical particles are subjected only

to Stokes-drag when tracked in the evolving flow field. In order to examine the influence of

inertia on particle clustering, a wide range of particle densities is considered.

The Voronöı-volume approach will be employed to quantify the particle clustering. This

method was first used to describe the clustering of galaxies by van de Weygaert and Icke [31].
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Monchaux et al. [32] described the Voronöı-volume approach to quantify particle clustering

in turbulent flows and also discussed its advantages over other methods. This approach

has recently received wide usage in particle-laden flows. One Voronöı-cell is defined as

the ensemble of points that are closer to a particular particle than to any other particle

[32]. From the very definition, the inverse of the Voronöı-cell represents the local particle

concentration. Monchaux et al. [33] used this approach to quantify the clustering of inertial

particles in HIT. Many recent works, such as Nilsen et al. [10], Yuan et al. [11], and

Garcia-Villalba et al. [34], have used this approach in different flow systems.

The local topology of the flow field can be categorized by means of the second invariant of

the velocity gradient tensor, as suggested by Hunt et al. [35]. More specifically, the sign of the

invariant distinguishes between rotation-rate and strain-rate dominance. Inertial particles

seem to have an inclination to reside in strain-rate dominated regions; e.g. Balachandar

and Eaton [36], Sundaram and Collins [37], and Bec et al. [38]. In the present study, the

second invariant will be examined along with the concentration field (i.e. the reciprocal

Voronöı-volume) in order to explain the preferential clustering.

The article is organized as follows. Section 2 presents the governing flow and particle

equations along with a brief account of Voronöı-tessellation. Section 3 provides a series of

global and local results aimed to elucidate particle clustering from different perspectives,

before the conclusions are summarized in Section 4.

II. METHODOLOGY

A. Eulerian fluid dynamics

We consider the unsteady TGV flow in a cubical box with sides 2πL, similarly as in the

studies by DeBonis [2] and Brachet et al. [3]. The three-dimensional and incompressible

fluid motion is governed by the conservation equations for mass and momentum:

∂ui
∂xi

= 0 (1)

ρ(
∂ui
∂t

+ uj
∂ui
∂uj

) = − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

, (2)

where p is the pressure and ui denotes the velocity component in the xi-direction of a

Cartesian coordinate system. The Newtonian fluid has density ρ and dynamic viscosity µ.
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Gravity is not included in our study. It should be noticed that the flow field is unaffected

by the presence of particle additives. The assumption of one-way coupling between the fluid

and particle phases is justified for sufficiently dilute suspensions.

Initial conditions for the three components of the velocity vector at t = 0 are set in

accordance with DeBonis [2] as:

u = V0sin(
x

L
)cos(

y

L
)cos(

z

L
) (3)

v = 0 (4)

w = −V0cos(
x

L
)cos(

y

L
)sin(

z

L
), (5)

where V0 and L are initial scales of velocity and length. The vorticity vector of the two-

componential flow field in equations (3 - 5) is entirely in the y-direction and illustrated in

figure 1.

FIG. 1: The initial flow field illustrated by means of iso-surfaces of ωy = ∂u/∂z − ∂w/∂z in

the cubic domain. The colors distinguish between positive (red) and negative (blue) values

of ωy.

The governing equations (1, 2) are integrated on a three-dimensional mesh with 1283

equally spaced grid points over the computational volume Vd = (2πL)3, starting from the

initial field in equations (3 - 5), using periodic boundary conditions in all three coordinate

directions. The Reynolds number Re = ρV0L/µ is set to 1600, just as in the study by

Brachet [4]. With Re� 1, non-linear inertia is essential in the flow development.

A pseudo-spectral method is used to compute spatial derivatives in x- and y-directions,

whereas second-order central-differences approximate the spatial derivatives in the z-
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direction. The time advancement is carried out by using an explicit second-order Adams-

Bashforth scheme. The velocity at the new time level is obtained by a standard projection

method in which the Poisson equation is solved using the Sherman-Morrison algorithm [39].

The resulting Navier-Stokes solver was verified in our recent article by Jayaram et al. [40].

B. Lagrangian particle dynamics

Spherical point-particles are suspended in the TGV flow and the individual particles are

tracked using a Lagrangian approach. The translational motion of an inertial sphere is

governed by Newton’s second law of motion:

m
dvi
dt

= Fi, (6)

where vi = dxi/dt is the translational particle velocity vector and Fi is the force acting on

the particle. The mass of a spherical particle with density ρp is m = 4πa3ρp/3, where a is

the particle radius. The inertial particles are assumed to be sufficiently small so that only

the Stokesian drag force

Fi = 6πµa(up,i − vi) (7)

is taken into account. Particles that satisfy neglection of other forces than viscous drag

are referred to as Heavy Inertial Particles (HIP), e.g. Mitra et al. [41]. This approxima-

tion can be justified for density ratios D � 1, where D is the ratio between the particle

density ρp and the fluid density ρ. According to equation (7), the viscous force on a par-

ticle from the surrounding fluid is proportional to the slip velocity ∆ui = up,i − vi, i.e. the

difference between the fluid velocity at the particle position up,i and the particle velocity

vi. The expression (7) is formally valid only in the creeping flow limit where the particle

Reynolds number Rep = 2a|∆ui|ρ/µ goes to zero. Several modifications exist for finite

particle Reynolds numbers. Here, we adopt a simple non-linear correction

Fi = 6πµa(up,i − vi)(1 + 0.15Re0.687p ) (8)

suggested by Schiller and Naumann [42]. The modified expression for the drag force in

equation (8) is accurate up to Rep ≈ 1000. We verified a posteriori that the volume-averaged
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particle Reynolds number Rep remained well below 10, except for the St = 100 particles for

which maximum value of about 11 was reached at t ≈ 4V0/L. Now, by combining (6) and

(8) we arrive at the final form of the governing equation for the translational motion of a

spherical particle

dvi
dt

=
1

τp
(up,i − vi)(1 + 0.15Re0.687p ), (9)

where τp = 2a2D/9ν is the particle response time which is a dimensional measure of how

effectively a particle adjusts to the local flow field. By means of the time scale τf = L/V0 of

the initial flow field, we define the nominal Stokes number St as the ratio τp/τf .

Ordinary differential equations (9) for each and every particle are integrated forward in

time by means of a second-order Adams-Bashforth scheme using the same time step as for

the fluid equations (1, 2). A second-order quadratic interpolation scheme is used to obtain

the fluid velocity at particle location. The same Lagrangian particle tracking algorithm has

been used in earlier papers by Mortensen et al. [43] and Zhao et al. [44, 45] on particle-laden

channel flow.

The aim of the present work is to investigate how inertial spheres cluster in the TGV

flow. The evolving TGV flow enables us to explore how the spheres are responding to the

non-monotonic variation of the relevant time scale of the vortical flow field. We consider a

wide range of inertial spheres with Stokes number St varying from 0.1 to 100, i.e. spanning

three decades. The equal-sized spheres with radius a = 0.005L have density ratios D in the

range from 11.25 at St = 0.1 to 11250 at St = 100. For each nominal Stokes number St,

Np = 105 particles are fed at random positions into the TGV flow at t = 0. The use of

periodic boundary conditions at all sides of the computational box assures that the number

of particles is maintained throughout the simulation.

C. Voronöı tessellation

Voronöı-diagrams represent a practical tool to quantify clustering of particles in a flow

field; see e.g. Monchaux et al. [32]. A Voronöı diagram is the unique decomposition of

a nD space into independent cells associated to each particle. One Voronöı cell includes

all the space that is closer to one particular particle than to any other [33]. The whole

computational domain can be divided into sub-volumes based on the Voronöı volumes. Any
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open Voronöı cells at the boundaries are taken care of by mirrored ghost particles which

ensure that all sub-volumes at the boundaries of the domain are closed [11]. An outcome of

2D Voronöı tessellation is illustrated in figure 2. St = 1 particles are dispersed in the TGV

flow and the distribution of Voronöı cells in the horizontal mid-plane at time t = 5τf gives

an indication of how the particles are unevenly distributed. Since the area of each individual

cell is a measure of the distance to the nearest neighbors, small Voronöı areas correspond to

high local concentrations and vice versa. The most densely populated areas appear as the

darkest in the plot. Notice the symmetric particle distributions about x = πL and about

y = πL in figure 2, which are leftovers from the symmetries of the initial flow field.

The volume of each Voronöı cell is normalized by the mean computational volume per par-

ticle Vd/Np, where Vd is the volume of the cubic computational domain. The Voronöı volume

Vk associated with the kth particle is normalized as VkNp/Vd. Now, since
∑Np

k=1 Vk = Vd it fol-

lows that the average value of all the normalized Voronöı volumes is V̄ = 1
Np

∑Np

k=1 VkNp/Vd =

1. Similarly, in 2D cases, 2D Voronöı volumes are normalized with the corresponding com-

putational area and the number of particles in the slice.

FIG. 2: Illustration of Voronöı cells (i.e. 2D volumes) for St = 1 particles in the horizontal

(x,y)-midplane at z = πL at time t = 5. Hereinafter, t stands for the dimensionless time

t/τf = tV0/L.
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III. RESULTS AND DISCUSSION

A. Evolving Taylor-Green vortex flow simulation

The unsteady Navier-Stokes equations (1, 2) were integrated in time and three-dimensional

space, starting from the two-componential initial field (3 - 5) at Reynolds number Re = 1600

based on the initial velocity and length scales V0 and L. The time evolution of the volume-

averaged kinetic energy:

Ek =

∫
Vd

uiui
2
dV, (10)

is shown in figure 3(a). The corresponding volume-averaged energy dissipation rate can be

seen in figure 3(b), where the particular notation ε(Ek) emphasizes that ε is deduced from

the decay rate of the kinetic energy according to:

ε(Ek) = −dEk

dt
. (11)

The volume-averaged energy dissipation can alternatively be obtained as the local viscous

energy dissipation rate ν( ∂ui

∂xj
)( ∂ui

∂xj
) integrated over the computational domain Vd. However,

due to the persistent periodicity of the flow field over the computational domain, the volume-

averaged energy production and transport (i.e. convection and diffusion) terms vanish and

the volume-averaged kinetic energy equation simplifies to the balance equation (11).

The present results follow the same characteristic trends as already reported by DeBonis

[2] and Dairay et al. [6], namely a monotonic decay of the kinetic energy Ek, whereas

the energy dissipation rate ε(Ek) first increases until it peaks around t = 9 and thereafter

decays. The modest deviations between the present solution and the reference solutions are

comparable with the grid resolution effects observed when the grid size was increased from

1283 to 5123; see DeBonis [2]. Recall that the present computer code has spectral accuracy

only in two directions, whereas the finite-difference discretization in the z-direction is second-

order accurate [40].

The non-monotonic variation of the energy dissipation rate in figure 3(b) can be explained

in terms of the alterations of the vortex structures as the time evolves, as discussed for

instance by Brachet et al. [3], DeBonis [2] and Sharma and Sengupta [5]. Here, we follow

DeBonis [2] and show three-dimensional views of ωy at six distinct time levels from t = 3
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(a) (b)

FIG. 3: (a) Evolution of the volume-averaged kinetic energy Ek compared with DeBonis

[2] and (b) the energy dissipation rate ε(Ek) compared with Dairay et al. [6]. The

reference solutions are marked by circles.

to t = 15 in figure 4. The flow is essentially inviscid at t = 3 and the smooth iso-surfaces

reflect the regular vortex structures. Non-linear effects, e.g. vortex stretching and bending,

are altering the vortices in the early stages of the evolution of the flow. As the size of the

vortex structures gradually diminishes with time, the viscous energy dissipation increases

monotonically until t ≈ 9. However, since no energy is fed into the flow system, ε(Ek)

eventually starts to decay alongside with the decay of the volume-averaged kinetic energy Ek.

The monotonous decay of the turbulence-like vortices is primarily caused by viscous action

and the smaller-scale flow structures at t = 15 resemble homogeneous isotropic turbulence.

The time evolution of the TGV flow makes it tempting to explore how inertial particles

will disperse and cluster in this statistically unsteady flow field. The characteristic scales

of the TGV flow are continuously changing with time. The length scale of the vortical

flow structures reduces with time (see figure 4), whereas the viscous dissipation time scale

τd = (ν/ε)
1
2 shortens until t ≈ 9 (see figure 3b) and thereafter increases as time goes on.

The nominal Stokes number St, which is based on the initial flow time scale τf = L/V0,

is therefore believed to be of physical relevance only in the very early stage of the flow

evolution.
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(a) (b) (c)

(d) (e) (f)

FIG. 4: Perspective view of the time evolution of ωy iso-surfaces. The colors distinguish

between positive (red) and negative (blue) surfaces. (a) t = 3, almost inviscid vortices; (b)

t = 5, vortex roll-up; (c) t = 7, change of structure; (d) t = 9, coherence breakdown; (e)

t = 11, turbulence-like; (f) t = 15, decaying turbulence.

B. Clustering of particles

Eight swarms of different particles were initialized at random positions throughout the

computational domain at the start of the flow computation at t = 0. The initially homoge-

neously distributed particles were tracked in the gradually evolving flow field and experienced

an unmixing depending crucially on particle inertia.
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1. Unmixing

The variance σ2 of the Voronöı-volumes Vk is adopted as a measure of the inhomogeneity

of the particle distribution in the computational box. The time evolution of σ2 presented

in figure 5 shows the effect of particle inertia on the tendency of the particles to unmix, i.e.

the different inhomogeneities of the particle distributions reflect the particles’ tendency to

concentrate preferentially in the flow field. The qualitatively different trends observed in

figure 5 may suggest that the particles can be categorized in three different groups, each

with their own characteristic response to the evolving flow field.

(a) (b)

FIG. 5: Time evolution of the variance σ2 of the Voronöı-volumes for different nominal

Stokes numbers St. The Voronöı volumes Vk are normalized by the volume Vd of the

computational box and the number of particles Np. (a) St = 0.1, 1, 10, 100 and (b)

St = 0.3, 0.5, 3, 5. The vertical lines indicate the particular time levels t = 3, 9 and 15,

which correspond to panels a, d and f in figure 4.

Particles having nominal Stokes number St ≤ 1 exhibit only modest inhomogeneities

in the early stages of the flow and σ2 is lower than for any of the more inertial particles

St > 1 at t = 3, i.e. as long as the flow is almost inviscid. As time goes on, however,

σ2 increases for the St ≤ 1 particles and reaches a maximum level around t = 9. These

particles with modest inertia are strongly clustered when the kinetic energy dissipation rate

is maximized, contrary to the more inertial particles (St > 1) which homogenize as the time
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FIG. 6: Dependence of the variance σ2 as a function of nominal Stokes number St at three

qualitatively different stages of the flow development, namely t = 3 (see figure 4a); t = 9

(see figure 4d); t = 15 (see figure 4f). The three qualitatively different Stokes number

groups are demarcated by vertical bands.

increases from t = 3 to 9. The St ≤ 1 particles are seen to mix after the energy dissipation

has reached its maximum level, whereas particles with intermediate inertia (St = 3 and 5)

are seen to unmix, i.e. σ2 increases with time. In contrast, the most inertial spheres with

St ≥ 10 exhibit stronger clustering than particles with lower inertia at t = 3, but maintain

only a modest degree of preferential concentration from t = 9 and further throughout the

simulation.

The results in figure 5 seem to suggest that the time evolution of the particle clustering

can be divided into three qualitatively different stages. The variance σ2 has therefore been

plotted in figure 6 at the three distinct time levels t = 3 (almost inviscid flow), t = 9

(maximum energy dissipation), and t = 15 (turbulence-like eddies). Along with the variance

σ2 of the Voronöı volumes, the corresponding probability density function (p.d.f.) of the

Voronöı-volumes at the same three time levels are shown in figure 7.

The flow is still essentially inviscid at t = 3 and the p.d.f.s in figure 7(a, b) show beyond

any doubt that the St = 0.1 particles are almost randomly distributed in the flow field

since their p.d.f. closely matches a Poisson distribution, which is the signature of evenly

distributed particles. Even though the p.d.f.s of the other particles with St ≤ 1 deviate

from the Poisson distribution, these particles are yet less clustered than the more inertial
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particles. This is consistent with the finding that σ2 is lower for St ≤ 1 than for St > 1

particles in the early stages of the simulation, as concluded from figures 5 and 6.

The TGV flow has undergone substantial changes due to non-linear vortex bending and

stretching and viscous stresses act to promote the energy dissipation at t = 9. All particles

now exhibit preferential concentration, as shown by the p.d.f.s in figure 7 (c, d), which all

deviate from the Poisson distribution. The largest deviations are observed for the St ≤ 1

particles, which reflect a stronger clustering of the least inertial particles.

The situation has changed at time t = 15 when a turbulence-like dissipative flow prevails.

The p.d.f.s in figures 7(e, f) show that the most inertial particles now are closest to the

Poisson distribution, i.e. to a random distribution. This is indeed consistent with the

relatively low variance σ2 for St = 10 and 100 seen in figures 5(a) and 6.

2. The effective Stokes number

The velocity and length scale of the initial flow field, V0 and L, have physical relevance

only in the early stages of the flow development. Also the corresponding time scale τf = L/V0

soon loses its relevance. It is evident from the snapshots in figure 4 that the characteristic

scales of the TGV flow are varying as the flow is evolving. We therefore introduce the viscous

dissipation time scale τd = (ν/ε)
1
2 , where ε is the local energy dissipation rate. τd has the

same form as the so-called Kolmogorov time scale characteristic of small-scale turbulence.

We now claim that the same time scale can be employed even at intermediate stages of

the flow development, e.g. around t = 9, although the TGV flow is far from being fully

turbulent. Since the TGV flow appears as quasi-homogeneous in space, we rely on the

volume-averaged dissipation rate ε(Ek) defined in equation (11). We are now in the position

to define an effective Stokes number

Steff = τp/τd = St · τf/τd. (12)

While the nominal Stokes number St is constant, the time scale ratio τf/τd varies continu-

ously due to the time variation of the viscous energy dissipation ε(EK) in figure 3(b). The

time-varying effective Stokes number defined in equation (12) is believed to be of better

physical relevance with respect to clustering of inertial particles than the nominal Stokes

number St used to classify the different particles.
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(a) (b)

(c) (d)

(e) (f)

FIG. 7: Probability density functions of normalized Voronöı volumes at (a, b) t = 3; (c, d)

t = 9; and (e, f) t = 15, cf figure 6. The broken line is the Poisson distribution given by

Ferenc and Néda [46].
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The time evolution of the effective Stokes number Steff is shown in figure 8, from which

it can be observed that Steff first increases until t ≈ 9 and thereafter decreases with time.

These trends are the same for all nominal Stokes numbers St and are a direct consequence

of the flow time scale τd being inversely proportional with ε
1
2 .

In the earliest stages of the simulation, the TGV flow remains essentially inviscid and

the large-scale TG vortices are clearly recognizable at t = 3 in figure 4(a). The least inertial

particles with nominal Stokes number St = 0.1 are almost randomly distributed (see figure

7a), whereas the amount of clustering increases monotonically with St, as shown in figure

6. The changeover from almost negligible to more distinct clustering occurs around St ≈ 1.

This indicates that the time scale τf = L/V0 of the initial flow field is of physical relevance

also at the early time t = 3. We anticipate, however, that τf will lose its significance as the

TGV flow evolves further in time.

When the coherence of the initial large-scale TG-vortices has been broken down and the

viscous energy dissipation peaks at t ≈ 9, particles with nominal Stokes numbers St ≤ 1

have effective Stokes numbers of order unity, except St = 0.1 particles for which Steff ≈ 0.3.

This implies that τp ≈ τd, which suggests substantial clustering. Particles with St > 1,

however, have effective Stokes numbers & O(10), which implies that these particles respond

more slowly to the local field since τp � τd, such that the clustering diminishes. Maximum

particle clustering can be observed when the effective Stokes number is of order unity, or

more specifically in the range 2 . Steff . 5. This is consistent with results reported by

Balachandar et al. [36], Monchaux et al. [32] and Hogan et al. [47] who claimed that

maximum particle clustering in HIT was observed for effective Stokes numbers of the order

of 1.

In the second half of the simulation, i.e. beyond the peak of the energy dissipation

rate at t = 9, the effective Stokes numbers in figure 8 decrease with time. Steff becomes

lower than 1 for the least inertial particles (St . 1), whereas Steff . 10 for particles with

intermediate inertia (St = 3 and 5). One should therefore anticipate that these particles

are more clustered than those with even lower St. This is, however, not the case, as one

can see from figure 5(b) where the particles with least inertia exhibit a higher variance σ2.

We believe that this is due to a memory effect: the finite particle response time τp prevents

the particles to respond immediately to the new flow conditions. Inspection of figure 5(b)

shows that σ2 slowly increases beyond t = 9 for the particles with intermediate inertia. This
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FIG. 8: Time evolution of the effective Stokes number Steff defined in equation (12). The

broken horizontal line Steff = 1 corresponds to situations in which the particle response

time τp equals the dissipation time scale τd of the flow.

suggests that although the effective Stokes number is decreasing with time, the anticipated

increased clustering is somewhat delayed.

Generally, the most inertial particles (St = 10 and 100) exhibit only a modest tendency

to cluster, especially at the later stages t ≥ 5. The effective Stokes number is consistently

much larger than 1, which indicates that these particles are sufficiently inertial to behave

ballistically.

3. Local clustering and voids

We have seen that volume-averaged particle clustering, measured in terms of the variance

σ2 of three-dimensional Voronöı volumes, can be understood in terms of an effective Stokes

number defined by means of the volume-averaged dissipation rate time scale τd. Let us finally

look at how inertial particles concentrate in the vicinity of localized vortical structures in

the TGV flow.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 9: Time evolution of particle and fluid fields from t = 3 to t = 7 in a (x, y)-plane.

Left column: concentration of St = 0.5 particles; Middle column: Q-field; Right column:

concentration of St = 3 particles.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 10: Time evolution of particle and fluid fields from t = 9 to t = 15 in a (x, y)-plane.

Left column: concentration of St = 0.5 particles; Middle column: Q-field; Right column:

concentration of St = 3 particles.
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To this end we consider the flow field and particle distributions in the (x, y)-plane at

z = πL, i.e. the horizontal mid-plane. Only particles with nominal Stokes numbers 0.5 and

3 are considered first and flow and concentration fields at early times t = 3, 5 and 7 are

shown in figure 9 and the results at later times t = 9, 11 and 15 are shown in figure 10. The

second invariant of the velocity gradient tensor

Q =
1

2
[‖ Ωij ‖2 − ‖ Sij ‖2] (13)

is adopted as the most relevant scalar flow characteristic. Here, Ωij = (∂ui/∂xj−∂uj/∂xi)/2

and Sij = (∂ui/∂xj + ∂uj/∂xi)/2 are the rotation rate and strain rate tensors, respectively.

The sign of Q distinguishes between strain-rate dominated (Q < 0) and rotation-rate dom-

inated (Q > 0) regions, see e.g. Hunt et al. [35].

Visual inspection of the plots in figures 9 and 10 shows a distinctly different behavior of

particles with modest (St = 0.5) and intermediate (St = 3) inertia. The St = 0.5 particles

are well mixed at the earliest stage at t = 3, but gradually start to unmix until t = 9, when

maximum clustering can be seen. Thereafter the particles again start to mix until a fairly

homogeneous particle distribution can be seen at t = 15. A completely different trend is seen

for the St = 3 particles, which are clustered already at t = 3, in keeping with figure 5(b).

The subsequent plots in figures 9 and 10 give the impression that these particles gradually

become more evenly distributed as the flow evolves, at least up to t = 9.

The time evolution of the TGV flow has already been visualized in figure 4. Now the

Q-field in the (x, y)-plane is plotted in the middle column of figures 9 and 10 at the same

instants of time. The Q-contours exhibit a relatively close resemblance with the concen-

tration contours for the St = 3 particles at t = 3 and for the St = 0.5 particles at the

later times from t = 5 to 11. The St = 0.5 particles tend to concentrate in high strain-rate

regions, i.e. Q < 0 (blue) and the correlation between the Q-field and the concentration

field is particularly high at t = 5, but also at t = 9. These particles have an effective Stokes

number close to unity during the major part of the flow development, which justifies why

the particle pattern is closely linked to the vortex topology.

It is also noteworthy that the eight void areas in figure 9(d) coincide with the eight

rotation-rate dominated regions, i.e. Q > 0 (red) in figure 9(e). Although the void areas

persist for quite some time, the eight vortical structures (red) in figure 9(h) exhibit shear-

rate dominated cores (blue). These Q < 0 zones are totally empty and demonstrate that
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negative Q-values do not automatically imply high particle concentrations. Although the

inertial particles are welcome to reside within these vortex cores, they are unable to penetrate

through the circular Q > 0 barrier.

The more inertial particles with St = 3 behave rather differently and the concentration

contours are close to the Q-field topology at t = 3, after which a tendency towards homog-

enization can be observed. At t = 9, for instance, the particles seem to be fairly unaffected

by the Q-field. This behavior can readily be explained by the time variation of the effec-

tive Stokes number, which is around unity in the earliest stage of the flow evolvement and

becomes of order 10 at time t = 9.

The behavior of even more inertial particles is illustrated by plots of the particle con-

centration in figure 11. The most inertial particles (right column) exhibit only a modest

tendency to cluster, especially at the later stages t ≥ 5, since their effective Stokes number

remains consistently much larger than 1 (see figure 8 where Steff ≥ 100). The St = 10

particles (left column), on the other hand, exhibit characteristic clustering, which is more

pronounced than that seen for the St = 3 particles in figure 9. At t = 5, for instance, the

clustering pattern in figure 11(c) reveals dense clustering along the four nearly horizontal

bands that correspond to Q < 0 in figure 9(e). Surprisingly, however, only moderate clus-

tering can be observed along the vertical Q < 0 band through the center of the domain.

Densely clustered particles are instead observed in an elliptical band around the center. This

shows beyond any doubt that a memory effect gives rise to a major mismatch between the

local Q-field and the concentration field. This is believed to be a particular feature that

occurs when a particle-laden flow evolves in time.

A memory effect associated with inertial particles in an inhomogeneous flow field was

discussed by Reeks [48]. He claimed that at any point the particles have some memory of

their previous history – their velocity has more to do with where they came from than what

is happening to the fluid motion locally. Similarly, Zhao et al. [49] argued that particles in

a channel flow that are driven by turbophoresis to the near-wall region tend to concentrate

in regions with locally low fluid velocity. This is understood since inertial particles do not

adjust to local flow conditions, but retain their higher streamwise momentum from the

channel core. These studies were both concerned with spatially inhomogeneous flows. The

memory effect observed in the present study, however, is a result of the inhomogeneity in

time of the evolving TGV-flow.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 11: Time evolution of particle fields from t = 3 to t = 9 in a (x, y)-plane. Left column:

concentration of St = 10 particles; Right column: concentration of St = 100 particles.

23



IV. CONCLUDING REMARKS

Preferential concentration of inertial spherical particles has been studied in a continuously

evolving TGV flow, in which the characteristic scales of the flow vary substantially in time.

The time evolution of the flow field makes this case fundamentally different from that of

particle dynamics in statistically steady flow fields, like HIT and turbulent channel flows.

Although the nominal time scale τf = L/V0 of the initial flow field is representative in the

earliest stage of the flow development, the statistical unsteadiness of the TGV flow also

called for an alternative time scale. To this end we introduced the viscous dissipation time

scale τd = (ν/ε)
1
2 , inspired by the Kolmogorov time scale, by means of which the effective

Stokes number Steff was defined.

In order to study how the clustering depended on the particle inertia, parameterized by

means of the nominal Stokes number, a wide range of equal-sized inertial point-particles was

considered. Voronöı tessellation was adopted to quantify the varying degree of preferential

particle concentration. More specifically, the variance σ2 of the Voronöı volumes measured

the clustering.

Particles with intermediate and substantial inertia (St > 1) were clustered most at t =

3τf , whereas particles with only modest inertia (St ≤ 1) were most clustered at t = 9τf .

These findings based on σ2 were also supported by how p.d.f.s of the Voronöı volumes

compared with randomly distributed particles. This changeover from maximum clustering

of St > 1 particles to St ≤ 1 particles can be explained by the time variation of the

characteristic flow time scale from τf to τd. Indeed, particles with nominal Stokes numbers

St ≤ 1 have attained an effective Stokes number Steff of order unity at t = 9τf and such

particles are substantially affected by the flow. This demonstrates beyond any doubt that a

sound interpretation has to be based on a physically relevant time scale and its corresponding

Stokes number.

Instantaneous particle concentration fields in the horizontal mid-plane at two representa-

tive Stokes numbers (0.5 and 3) showed how the particle clustering evolved in time. These

planar snapshots were fully consistent with the volume-averaged σ2. Moreover, comparisons

between these particle concentrations and the corresponding Q-field contours showed that

inertial particles most often tend to cluster in shear-rate dominated zones identified by neg-

ative Q-values. Maximum clustering, i.e. largest σ2-values, corresponds to time instants
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when the concentration pattern closely resembles the Q-field contours.

Finally, we also observed a memory effect, i.e. the particle concentration did not always

match with the co-existing Q field. This is a consequence of the finite particle time scale τp,

which is a measure of how efficiently a particle responds to changes in the flow field. We also

observed localized strain-rate dominated areas with Q < 0 totally void of particles. This

mismatch was ascribed to the presence of a surrounding Q > 0 barrier.

In summary, the observations of clustering of inertial particles in the time-evolving TGV

flow are basically consistent with earlier findings in statistically steady flow fields. However,

the viscous dissipation time scale changes appreciably over a few initial-flow time units L/V0.

This gives rise to a memory effect or delayed response of the particles with intermediate

inertia to adapt to the scales of the surrounding flow.
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[34] M. Garćıa-Villalba, A. G. Kidanemariam and M. Uhlmann, DNS of vertical plane channel

flow with finite-size particles: Voronoi analysis, acceleration statistics and particle-conditioned

averaging, Int. J. Multiphase Flow 46, 54-74 (2012).

[35] J. C. R. Hunt, A. A. Wray and P. Moin, Eddies, streams, and convergence zones in turbulent

flows, Center Turbul. Res. Rep. CTR-S88, 193-208 (1988).

[36] S. Balachandar and J. K. Eaton, Turbulent dispersed multiphase flow, Annu. Rev. Fluid Mech.

42, 111-133 (2010).

[37] S. Sundaram and L. R. Collins, Collision statistics in an isotropic particle-laden turbulent

suspension. Part 1. Direct numerical simulations, J. Fluid Mech. 335, 75-109 (1997).

[38] J. Bec, L. Biferale, G. Boffetta, A. Celani, M. Cencini, A. Lanotte, S. Musacchio and F.

Toschi, Acceleration statistics of heavy particles in turbulence, J. Fluid Mech. 550, 349-358

(2006).

[39] N. Egidi and P. Maponi, A Sherman-Morrison approach to the solution of linear equations, J.

Comput. Appl. Math. 189, 703-718 (2006).

[40] R. Jayaram, J. J. J. Gillissen, L. Zhao and H. I. Andersson, Numerical solution of Poisson

equation using Sherman-Morrison algorithm in Taylor-Green vortex flow, In Proceedings of

10th National Conference on Computational Mechanics, Trondheim, Norway, CIMNE, 197-210

(2019).

[41] D. Mitra, N. E. L. Haugen and I. Rogachevskii, Turbophoresis in forced inhomogeneous tur-

bulence, Eur. Phys. J. Plus 133, 35 (2018).

[42] L. Schiller and A. Z. Naumann, Über due grundlegenden Berechnungen bei der Schwerkraft

aufereitung, Z. Ver. Deutch. Ing. 77, 318-320 (1933).

[43] P. H. Mortensen, H. I. Andersson, J. J. J. Gillissen and B. J. Boersma, Particle spin in a

turbulent shear flow, Phys. Fluids 19, 078109 (2007).

[44] L. Zhao, H. I. Andersson and J. J. J. Gillissen, Turbulence modulation and drag reduction by

spherical particles, Phys. Fluids 22, 081702 (2010).

[45] L. Zhao, C. Marchioli and H. I. Andersson, Stokes number effects on particle slip velocity

in wall-bounded turbulence and implications for dispersion models, Phys. Fluids 24, 021705

(2012).
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