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A B S T R A C T

The hydrodynamic loads on two-dimensional perforated plates are investigated experimentally and numerically.
Two single perforated plate configurations, consisting of rows of either circular or square cylinders, are studied.
Experiments and simulations are performed for oscillating flow, orbital flow and waves. The Keulegan–Carpenter
(KC) number and period of oscillation are varied. The hydrodynamic forces and coefficients are highly KC
number dependent. There is in general small dependence on the period of oscillation. An exception is in wave
tests where the normalized force on the structures depend on both the wave length-to-plate diameter ratios and
the submergence. Added mass and damping coefficients are presented for oscillating and orbital flow conditions.
The hydrodynamic force on both configurations is dominated by damping. We find in general good agreement
between the experimental and numerical results.

We highlight some aspects of the influence from plate-end flow separation on the forces of the plates. A
considerable reduction in the hydrodynamic forces is found in orbital motion compared to oscillating flow,
increasingly so as the KC number is increased. Asymmetric flow patterns, where the vortex generation at the
plate-ends occurs only on one side at a time, are observed in orbital flow, whereas the plate-end vortices from the
two sides of the plate are generated simultaneously in oscillating flow. Streamline plots indicate that the relative
importance of vortex generation from the plate-ends increases with increasing KC number.

1. Introduction

1.1. Structure

This is the first part of a study on the hydrodynamic loads on per-
forated plates in waves and oscillating and orbital flows. The focus in
the first part is on the hydrodynamic forces of single perforated plates
in waves compared to oscillating and orbital flows. The second part of
the study is on the hydrodynamic interaction between two parallel
perforated plates in oscillating and orbital flows [1]. The two parts are
closely related. However, the introduction, theory and method sections
are included in both parts, such that they can be read separately.

This part of the study is organized in six main sections. The first
covers the present introduction with motivational background. In
Sections 2–4 we present definitions of hydrodynamic coefficients, the
experimental setup and the numerical methods. Results are presented
and discussed in Section 5. Finally, conclusions are drawn in the last
section.

1.2. Background

Safe and cost-efficient marine operations are essential for the de-
velopment of subsea fields. Typically, the structures and modules of
subsea fields are lifted by cranes on vessels, lowered through the water,
and installed on the seabed. Operations include installation of new
modules, as well as maintenance and modification of existing ones.

There is an industrial demand to perform such operations on an all-
year basis. The goal is to increase the operational weather window, and
thereby decrease the risk of costly delays. All-year operability implies
more demanding conditions, and must be achieved together with, and
not at the expense of, safe operations. Unsafe conditions can lead to
drop accidents, risk for personnel and damages to the structure, crane
or vessel. Consequently, there is a need for accurate estimates of the
hydrodynamic forces that subsea structures are exposed to during the
lifting and lowering phases in harsh environments.

Perforated plates share direct similarities with main structural ele-
ments found on complex subsea modules, e.g. hatch covers and mud-
mats. In particular, the perforated plate model is relevant when the
structure parts are relatively wide compared to their thickness, and
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consist of many openings. The hydrodynamic forces on these structural
components are likely to be dominant for the total force on the mod-
ules. In previous experimental studies within the same project, simpli-
fied subsea structures consisting of perforated plates in combination
with other structural components has been studied. The total hydro-
dynamic force on these simplified subsea structures are typically
dominated by the perforated plates; for example, we found almost no
difference in the hydrodynamic coefficients of two perforated plates in
parallel compared to two perforated plates in parallel with five cylin-
ders in between [2]. Later, we developed a numerical tool for esti-
mating the hydrodynamic forces on two-dimensional perforated struc-
tures [3], and utilized the tool to study the importance of perforation
ratio and amplitude of motion on the hydrodynamic forces of perfo-
rated plates [4]. Furthermore, various mudmat configurations were
investigated experimentally and numerically in a separate study [5].

In addition to protection structures found on subsea modules, per-
forated plates are relevant in several industrial applications; perforated
structures are used as heave plates, wave absorbers, swash bulkheads
and other damping plates. Consequently, there has been a great deal of
work concerned with the hydrodynamics of perforated structures. A
presentation was given by Molin in 2011 [6], where he summarizes
relevant work on perforated structures in oscillatory flow (waves).
Additionally, Molin presents the background for his semi-analytical
method for calculating the hydrodynamic coefficients of perforated
structures. The semi-analytical method is based on the assumption of a
quadratic pressure-drop condition for the flow through the openings of
the perforated structure, combined with potential flow conditions in the
fluid domain. A consequence of the quadratic pressure drop condition is
that the hydrodynamic coefficients of perforated structures are func-
tions of the amplitude of motion. The method has been applied to
various problems and several cases are presented and discussed, in-
cluding the relevance for protection structures of subsea modules.

Among other relevant studies are the works by Sandvik et al. [7],
Tao and Dray [8], An and Faltinsen [9], Li et al. [10], and Tian et al.
[11]. These studies agree that experimentally obtained hydrodynamic
coefficients of perforated plates depend on both the KC number and the
perforation ratio, τ. In the study by Sandvik et al. [7], experimental
investigations of five hatch cover models with perforation ratios

= 0.15, = 0.25, = 0.27, = 0.38 and = 0.47 were performed for
0.1<KC<1.7. Tao and Dray [8] performed experiments for
0.2≤KC≤1.2 of four similar circular disks with varying perforation
ratios, = 0, = 0.05, = 0.1 and = 0.2. An and Faltinsen [9] in-
vestigated two similar perforated rectangular plates of = 0.08 and

= 0.16 for 0.17≤KC≤1.7. The experimental study by Li et al. [10]
included perforated rectangular plates of = 0.01, = 0.05 and = 0.10
for 0.2≤KC≤1.0. The perforated disks in the study by Tian et al. [11]
have perforation ratios = 0.05, = 0.10 and = 0.20 and were tested
for 0.15≤KC≤3.15. The following two observations are highlighted
in all these studies: 1) For a given perforation ratio, increasing the KC
number increase, in general, the hydrodynamic coefficients. 2) For a
given KC number, increasing the perforation ratio decreases, in general,
the hydrodynamic coefficients. An exception to 2) is reported by Tao
and Dray [8], where the damping coefficients for small KC numbers for
(relatively dense) perforated plates can be higher than corresponding
solid plates. This has also been found in studies using semi-analytical
[12] and numerical [4] methods.

The aim of the present study is to increase our understanding of the
hydrodynamic behavior and forces on perforated structures of subsea
modules in waves. In this first part of the study, single perforated plates,
consisting of rows of closely spaced cylinders, with high length-to-
diameter ratios, are studied. Experimental and numerical investigations
of the plates in waves and oscillating conditions are performed.
Additionally, orbital flow conditions in an infinite fluid domain are
studied numerically. Hydrodynamic forces and coefficients are pre-
sented for a range of Keulegan–Carpenter (KC) numbers and periods of
oscillation. Moreover, we include flow visualizations from our

numerical simulations to highlight important physical phenomena, in
particular flow separation from the plate ends.

2. Hydrodynamic forces and coefficients

Three flow conditions are considered: 1) oscillating flow, 2) orbital
flow, 3) incident waves. In oscillating flow, the horizontal velocity
component is zero, whereas the vertical velocity component oscillates
harmonically. Note that there is a difference between the oscillating
flow experiments—in which the models are forced to oscillate in
otherwise calm water—and the oscillating flow numerical simula-
tions—in which the models are fixed and the ambient velocity, set on
the boundaries of the numerical domains, oscillates. In orbital flow
(only numerical), both the horizontal and vertical ambient velocities
oscillate harmonically. In incident waves (both experimental and nu-
merical), the models are fixed and subjected to waves generated by a
wave flap. Results are, typically, presented as functions of the
Keulegan–Carpenter (KC) number. The KC numbers are based on the
amplitude of the velocity in oscillating and orbital flows, and on the
amplitude of the incident waves in the incident wave tests. For oscil-
lating and orbital flows, hydrodynamic coefficients (added mass and
damping) are presented. For incident wave tests, the normalized force
amplitude on the models is presented. In the following, the relevant
parameters are presented.

The results of the present study are presented as functions of the
Keulegan–Carpenter (KC) number. For oscillating and orbital flow
conditions, this is taken as

= WT
D

KC , (1)

with W being the amplitude of the first harmonic of the prescribed
(numerical results) or measured (experimental results) velocity, T being
the oscillation period and D the characteristic dimension of the struc-
ture (width of the plate). In the present wave tests, the KC number is
estimated based on the measured incident wave amplitude and the
vertical distance from the mean free-surface to the structure, using
linear wave theory [13],

= +
D

k z h
kh

KC 2 sinh ( )
sinh

a m
(2)

with ζa being the incident wave amplitude, zm the z-coordinate of the
center plane of the model, and h the water depth in the wave flume.

=z 0 coincides with the still waterline. The wave number, =k ,2 is a
function of the wave period and the water depth, according to the linear
wave dispersion relation = gk khtanh ,2 with = T

2 being the oscil-
lation frequency. =g 9.81ms 2.

Added mass and damping coefficients are extracted from forced
oscillations experiments. The models are forced to oscillate in otherwise
calm water. The plates are horizontal, while the vertical force is mea-
sured. The measured hydrodynamic radiation force is decomposed into
added mass and damping terms,

= +F A B¨ (3)

with F being the measured net hydrodynamic force, A the added mass
coefficient, ¨ the harmonically oscillating acceleration, B the damping
coefficient and the harmonically oscillating velocity. The measured
force from corresponding tests without any model in the experimental
rig is subtracted, time-step by time-step, in order to find the net hy-
drodynamic force on the models.

The added mass and damping coefficients are obtained by Fourier
averaging,

+ =A dt F dt¨ ¨ 0 ¨ ,
mT mT (4)

+ =B dt F dt0 .
mT mT (5)
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Here m indicates a selected oscillation period. The forced oscillation
experiments consist of 20 oscillation periods for each combination of
period and amplitude. The first five periods gradually ramp the signal
to its prescribed amplitude, then follows ten full cycles at the prescribed
amplitude, before the signal is gradually ramped out to zero during the
last five oscillations. The ramp is linear, hence the signal can be written

=

<

<

<

t
T

t t T

t T t T
t T

T
t T t T

5
sin ; 0 5 ,

sin ; 5 15 ,

(1 15
5

) sin ; 15 20 .

a

a

a (6)

Here ηa is the prescribed amplitude. The mean of the oscillation cycles
with the prescribed amplitude of motion, 5<m<15, are used to
calculate the coefficients. The variation during these 10 cycles is also
investigated.

Results from the numerical simulations of oscillating and orbital
flow are presented in a similar manner; coefficients and force ampli-
tudes are based on the mean of the vertical force from the oscillation
cycles with the prescribed amplitude of motion. In the numerical si-
mulations, 30 cycles are simulated including two cycles of ramp-in of
the signal. The mean of the last 25 oscillation cycles, 5<m<30, are
used to calculate the coefficients.

In the numerical simulations of oscillating and orbital flow, the
discretized models are fixed and experience an ambient sinusoidally
oscillating flow. Therefore, the total calculated force on the models
consists of the hydrodynamic diffraction force and the Froude–Krylov
force. In order to compare the experimental and numerical results, the
Froude–Krylov force is subtracted, and the diffraction force is decom-
posed in a damping term, proportional to the ambient velocity, and an
added mass term, proportional to the ambient acceleration, according
to Eq. (3).

The results of the present study are presented in terms of di-
mensionless hydrodynamic coefficients and forces. The added mass and
damping coefficients are made nondimensional by the corresponding
analytical solid flat plate added mass,

=A D L
4

,0
2

(7)

where ρ is the density and L is the length in the lateral direction of the
structure. End plates are used in the experimental investigations to
yield a near two-dimensional setup. Therefore, A0 is taken as the two-
dimensional analytical added mass times L. The numerical simulations
are two-dimensional and Eq. (7) is used without the multiplication of L.

From Eqs. (3) and (7), an expression for the normalized hydro-
dynamic force can be obtained for the case of a harmonically oscillating
plate velocity =w W tsin ,

= + +F
WA

A
A

B
A

tsin( ).
0 0

2

0

2

(8)

Here ϕ is the phase difference between the velocity and the normalized
force. If the plate is fixed and the water is oscillating, a corresponding
expression for the normalized force amplitude including the Frou-
de–Krylov contribution is

= + +F
WA

A V
A

B
A

.a

0 0

2

0

2

(9)

A similar expression can be obtained for the vertical force on a structure
fixed in waves,

=
+

F
WA

F
A

kh
k z h

sinh
sinh ( )

.a a

a m0
2

0 (10)

3. Experiments

Experimental investigations of two different types of structures,
consisting of rows of cylinders, are performed in a wave flume at the
Marine technology center in Trondheim, Norway. The tank is ap-
proximately 13.5 m long and 0.60 m wide. A rig is placed in the middle
of the tank. The rig consists of two acrylic glass plates, parallel to the
tank walls, fastened to a wooden box on the top end, that is connected
to a steel frame. The steel frame is connected to a 6 kN force transducer
connected to an actuator on the top. The acrylic glass plates act as end-
plates, which yields a near two-dimensional setup. The gap between the
acrylic glass plates and the tank walls are 9 mm. The tested models are
installed through screw holes in the acrylic glass plates. Yellow putty is
used to fill holes that are not used. The setup allows for testing a large
range of structures in different orientations and placements, and has
previously been used in experimental investigations of ideal perforated
plates, cylinders, simplified mudmats and subsea structures [2,3,5]. A
photo of the rig, with a perforated structure consisting of circular cy-
lindrical pipes fastened inside the acrylic glass plates, is presented in
Fig. 1.

The software package Catman Easy by HBM is used for data ac-
quisition of the experimental measurements. Measurements of the
vertical force, motions and wave elevations are sampled at 200 Hz with
Butterworth filtering at 20 Hz. The measurements are band-pass filtered
around the basic harmonic of the oscillation when calculating the wave
elevations, hydrodynamic coefficients and normalized hydrodynamic
force amplitude. The applied instrumental setup was carefully set up to
achieve zero phase delay between the different signals, in order to

Fig. 1. Photo of the present experimental test setup. Perforated structure con-
sisting of circular cylindrical pipes (C19) placed inside the acrylic glass plates of
the experimental rig.
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obtain reliable hydrodynamic force coefficients.
Two types of experiments are conducted: 1) Forced oscillation tests

where the models are forced to oscillate in otherwise calm water. 2)
Regular wave tests where the models are fixed and experience forces
due to incident waves. Descriptions of the tested models and experi-
mental conditions are given in the following sections.

3.1. Configurations

Two perforated plates are experimentally investigated. We use the
abbreviations C19 (circular cylinders, perforation ratio = 0.19) and
S28 (square cylinders, perforation ratio = 0.28) when referring to the
two structures throughout the text. C19 is D= 298 mm wide and
consists of 24 equal circular cylinders of 10 mm diameters. The circular
cylinders are made from aluminum and have wall-thicknesses of 2 mm.
S28 is D= 360 mm wide and consists of 26 equal cylinders with square
cross-section of 10 mm × 10 mm. The square cylinders are made from
aluminum and have wall-thicknesses of 1 mm. 24 (C19) and 26 (S28)
cylinders are used, hence, the two perforated plates consist of 23 (C19)
and 25 (S28) openings. The perforation ratios are calculated as

= = nd
D

Open area
Total area

1 , (11)

with n being the number of cylinders, d being the diameter of each
cylinder and D being the width of the structure. The width-to-thickness
ratios are = 30D

t (C19) and = 36D
t (S28). All structure parts are

=L 0.57 m long, such that they fit inside the acrylic glass plates of the
experimental rig. Photos of C19 and S28 are presented in Fig. 2.
Schematic descriptions are presented in Fig. 3; details are given in
Table 1.

3.2. Forced oscillation tests

In the first part of the experimental investigations, the perforated
plates are forced to oscillate harmonically in otherwise calm water.
Forced heave motion (vertical oscillations) is considered. A sketch of
the setup is presented in Fig. 4. The models are placed in the middle of
the tank in the forced oscillation tests; the center of the model is 0.5 m
from the free surface and the bottom of the tank, and approximately
6.5 m from the end walls of the wave flume. The water depth is

=h 1.0 m. Parabolic beaches, to damp out radiated waves, are placed
on both ends of the tank. The top of the beaches are set 2 mm below the
free surface.

We measure the vertical motions, vertical force and wave elevations
during the forced oscillation tests. The test series include five oscillation
periods, T = 1.00 s, 1.25 s, 1.50 s, 1.75 s and 2.00 s, and a range of

amplitudes from 1.7 cm to 13 cm, corresponding to 0.3≲ KC≲ 3, de-
pending on the structure. The experimental results are presented with
different markers for the five forcing periods, diamonds (T = 1.00 s),
pentagons (1.25 s), hexagons (1.50 s), circles (1.75 s) and stars (2.00 s).
Several accelerometers are used to monitor both the (wanted) vertical
and (possible) horizontal motions of the configurations.

The present experimental setup yields conditions that are close to an
infinite fluid domain. Nevertheless, since the water depth is limited to

=h 1.0 m, some influence from the boundaries should be expected. The
increase in added mass coefficient for a circular cylinder close to the
free-surface or a wall is discussed by Faltinsen [13, p. 54]. When the
distance to the boundary is larger than the diameter of the cylinder, the
increase in the added mass of the cylinder is rather small, around 10%
and decreasing for increasing distance [13, Fig. 3.11]. In the present
experimental investigations, the distance to the boundaries (50 cm) is
larger than the width of the largest plate (36 cm). Further, the added
mass of perforated plates is small at small KC numbers since the
openings allow water to flow without circumventing the plate. How-
ever, for larger KC numbers, the added mass increases rapidly due to
blocking of flow through the perforated openings. Moreover, the os-
cillating plate will generate waves that have some influence on the
hydrodynamic coefficients. The radiated waves are measured by wave
probes downstream of the rig. The corresponding wave-radiation
damping coefficients [13, p. 47], are small for all tested forcing am-
plitudes and periods of oscillation for both C19 and S28. We conclude
from this that the setup yields conditions that are close to an infinite
fluid domain.

3.3. Regular wave tests

A wave flap at the left end of the wave flume is used to generate
regular waves in the second part of the experiments. A sketch of the
regular wave setup is presented in Fig. 5. The water depth is =h 1.0 m
in all tests. The wave flap is hinged 0.1 m above the bottom of the tank.
The flap is forced to oscillate harmonically with a prescribed amplitude
and period of oscillation. Four wave periods are applied, =T 1.0 s,
1.1 s, 1.2 s and 1.3 s. The flap amplitudes are varied to yield waves with
wave amplitudes from 2.1 cm to 6.5 cm, corresponding to wave
steepnesses in the range H1

38
1

20 . The regular wave tests are per-
formed with the models placed at three vertical positions,

=z 0.30m m, =z 0.20m m and =z 0.10m m. Hence, the models are
placed closer to the mean free-surface in the regular wave tests than in
the forced oscillation tests.

The wave elevations are measured by eight wave probes placed in
pairs at four locations in the tank: 3.5 m, 2.0 m and 0.4 m upstream of
the rig, and 2.0 m downstream of the rig, cf. Fig. 5. In our analysis, we
use the incident (undisturbed) vertical water particle velocity velocity
at the geometrical center of the model as nondimensional parameter.
The wave profile above the model center is estimated based on the
upstream wave probes. Wave probes 1–6 are used to estimate the wave
celerity, and the measurements of wave probes 1–4 are used to estimate
the wave profile above the geometrical center of the models. Special
care is taken to ensure correct measurements of the horizontal distances
between the upstream wave probes and the position of the geometrical
center of the models, essential for calculating the correct wave celerity
and phase of the wave at the position of the models.

In both the experimental and numerical wave investigations, two
cycles of oscillation are used to ramp the wave flap to its prescribed
amplitude of motion. We ignore the following three cycles of oscilla-
tion, i.e. in total five cycles including the ramp, in order to achieve
steady-state conditions. The presented results from the wave tests are
based on the mean result from the following wave periods. The applied
number of considered wave periods are eleven ( =T 1.0 s), nine (1.1 s),
seven (1.2 s) and five (1.3 s). Bars in the figures represent the standard
deviation between the results obtained from the different wave periods.

Fig. 2. Photos of C19 (left) and S28 (right) used in present experimental in-
vestigations. The plates are 0.57 m long. The width of the plates are

=D 0.298 m (C19) and =D 0.360 m (S28).
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3.4. Reynolds numbers

The forces on blunt bodies without sharp edges, such as the circular
cylinders of the C19 plate, must be expected to be Reynolds number
dependent due to the lack of fixed flow-separation points. The relevant
Reynolds and KC numbers are local, that is, they are based on the width
of each cylinder, d. The local Reynolds number is

= WdRe .d (12)

The local KC number, KCd, is

= WT
d

KC .d (13)

The range of amplitudes and periods of oscillation in the forced oscil-
lation tests corresponds to 7.4<KCd <85 and
5.3× <102<Red <4.9×103. The effective local Reynolds and KC
numbers will be larger due to the flow restriction, caused by the row of
cylinders, which will increase the speed of the flow around each cy-
linder. Using a simple control volume analysis, the increase can be
estimated to 5,1 that is, 37≲ KCd ≲ 425 and 2.7
× 103<Red <2.5×104. These estimated KCd and Red numbers are
likely conservative since the flow will circumvent the plate.
Nevertheless, even if the range of Reynolds numbers are extended to
include somewhat smaller values than 2.7 × 103, the drag coefficient
for a smooth circular cylinders varies only slightly in this Reynolds
number range. One may expect similar behavior for the present model.
For moderate to large KC numbers, we expect the global wake, i.e. that
shed from the two cylinders at the ends of the model, to dominate the
hydrodynamic force on the plate, and the effect of the placement of the
separation point on each cylinder to be negligible.

4. Numerical simulations

Numerical results (CFD) are obtained from a two-dimensional
Navier–Stokes solver, developed earlier in our study [3]. The numerical
simulations are performed for discretized models of S28. The CFD uses
a staggered grid approach. The governing equations are solved on
rectilinear grids with a fine resolution region close to the discretized
perforated plates, and gradually larger cells away from the structure.
We follow previous findings using the CFD for simulation of perforated
plates, regarding grid size and stretching, the size of the numerical
domains and the number of fluid cells between each plate element
[3,4]. In particular, the numerically obtained force coefficients of per-
forated plates are almost insensitive to changes of the fine region grid
cell size between cell sizes of 4 mm, 2 mm and 1 mm [3]. Further, using
two fluid cells in the openings between two adjacent plate elements is
sufficient and give similar results as using more fluid cells in the
openings [3,4]. We have also found that the hydrodynamic coefficients
are almost insensitive to the number of holes on the plate; modeling a
perforated plate of = 0.19 using six holes instead of 13 or 26 gives only
small differences in the coefficients [3]. An exception is for very small
KC numbers, in which the hole size relative to the plate size is the
important parameter for the added mass of a perforated plate; in-
creasing the number of holes (nh) will reduce the added mass as

n
1
h
for

KC→0 [4,6].
The present CFD solves the governing equations of isothermal flows

of a homogeneous Newtonian fluid with negligible bulk viscosity, the
continuity and momentum equations, by use of a fractional-step
method, as that by Chorin [14], where the momentum equation is split
into two steps,

= +u u
t

u u
x

u
x

*
,i i

n

j
i

j

i

j

2

2 (14)

=
+u u

t
p
x

* 1 .i
n

i

i

1

(15)

Standard index notation is used; ui represents the velocity component in
the xi direction. For simplicity, the velocity components are referred to
as =u u1 (horizontal direction) and =w u2 (vertical direction). The
fluid density, ρ, and kinematic viscosity, ν, are set to values similar to
the water properties of the experimental investigations, ρ =
1000 kgm 3 and = ×1 10 6m2s 1. n represents the present time-step,

Fig. 3. Schematic sketches of S28 and C19. =D 0.298 m and the number of cylinders is 24 for C19, whereas =D 0.360 m and the number of cylinders is 26 for S28.

Table 1
Characteristics of the presently experimentally tested perforated structures. d
expresses the diameter of each cylinder of C19/S28. D is the total width of the
structure. M is the dry weight of the structure.

Perforation Cylinders d Openings D M

C19 τ = 1 - 240 mm
298 mm

= 0.19 Circular 10 mm 23 298 mm 3.02 kg

S28 τ = 1 - 260 mm
360 mm

= 0.28 Square 10 mm 25 360 mm 1.79kg

Fig. 4. Sketch of the tank setup during forced oscillation tests. Upper: Side
view. Lower: Bird’s eye view. The tank is approximately 13.5 m long and
0.60 m wide. The water depth is =h 1.0 m. The position of the model rig,
wave probes and beaches are indicated.
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+n 1 the next time-step, and * an auxiliary step. Since the velocity field
at +n 1 is divergence free, the divergence of Eq. (15) yields a Poisson
equation for the pressure, p,

=p
x t

u
x

*
.

i

i

i

2

2 (16)

In simulations of oscillating and orbital flow, for each time-step,
Eq. (14) is solved to find the tentative velocity field. Then Eq. (16) is
used to determine the pressure, before the velocity field at +n 1 is
found from Eq. (15). The three steps of the procedure are as follows:

1. un, wn → u*, w*
2. +u w p*, * n 1

3. + + +u w p u w*, *, ,n n n1 1 1.

Spatial discretizations in the CFD are of first and second orders. The
diffusion terms of Eq. (14), the pressure gradient terms of Eq. (15), as
well as the terms of Eq. (16), are solved with second-order accurate
central difference schemes unless else is explicitly highlighted. The
spatial discretization of the advection terms is performed using the first
order upwind scheme. The advection terms are linearized in time using
the previous known velocity, i.e. uj

n of Eq. (14).
Time-stepping is performed using the implicit Euler scheme. The

time-step size is chosen based on requirements to ensure at least 200
time-steps per period of oscillation, and a CFL number smaller than one
in all cells,

=t T x
u

z
w

min
200

, , .
(17)

Simulations are performed with two different discretizations of S28.
Illustration of the fine regions of the two grids are presented in Figs. 6
and 7. The first discretization is an exact two-dimensional numerical
model with the same geometrical cross-section as the structure that is
experimentally investigated, i.e. 26 cylinders, cf. Fig. 2. Additionally,
simulations are performed with a simplified numerical model, denoted
S28s. S28s has a coarser grid and less structure elements, 11 vs. the 26
cylinders of the physical model, but the same perforation ratio. A major
advantage of the coarser grid model is increased numerical stability in
simulations with incident waves. For consistency, simulations with S28s

in oscillating and orbital flow conditions are also conducted.

4.1. Oscillating flow conditions

The boundary conditions in oscillating flow are illustrated in Fig. 8.
In oscillating flow conditions, the velocity field at the borders of the
computational domain is set to a prescribed oscillating vertical velocity
based on a prescribed velocity amplitude, W, which from Eq. (1) can be
written in terms of the KC number, the period of oscillation, T, and the
characteristic width of the structure, D,

=u 0, (18)

=w D
T

tKC sin . (19)

The period of oscillation (and corresponding circular frequency = T
2 )

is set to T = 1.0 s to yield similar Reynolds numbers as in the experi-
ments, although the Reynolds number is expected not to be of im-
portance since the cylinders have sharp edges. Hence D

T
is a constant,

0.36 ms ,1 in all oscillating flow simulations.
Appropriate boundary conditions for the pressure gradient are ob-

tained from the Navier–Stokes equation,

= =p
x

u
t

0, (20)

= =p
z

w
t

D
T

tKC cos .
(21)

No-slip conditions are used on the boundaries of the discretized
models,

= = = =u w p
x

p
z

0, 0.
(22)

4.2. Orbital flow conditions

The boundary conditions in orbital flow are illustrated in Fig. 9.
Except for non-zero horizontal prescribed velocities and accelerations,
the orbital flow simulations are performed in the exact same manner as
the oscillating flow simulations. The following velocity conditions are

Fig. 5. Sketch of the tank setup during incident wave tests. Upper: Side
view. Lower: Bird’s eye view. The tank is approximately 13.5 m long and
0.60 m wide. The water depth is =h 1.0 m. The position of the wave flap,
model rig, wave probes and beach are indicated.

Fig. 6. Fine region grids of S28 (top) and S28s (bottom). In oscillating and orbital flow simulations, the total domain size is 6m × 6m and the total number of grid
cells are 48 630 (S28) and 28 456 (S28s).
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set on the boundaries of the computational domains,

=u D
T

tKC cos , (23)

=w D
T

tKC sin , (24)

with corresponding appropriate boundary conditions for the pressure

gradient based on the prescribed accelerations.
Orbital flow conditions may be regarded as a limiting case of a body

submerged in waves, where the wave is long compared to the model
and the model is deeply submerged, such that there is no interaction
with a free surface. A benefit of this approach is that simulations with
model in waves can be set up similar to oscillating flow conditions.
Later in the text, we compare results in orbital flow with both oscil-
lating flow results and results from wave tests and simulations using a
free surface.

4.3. Simulations with incident waves

The final set of numerical simulations are performed using a nu-
merical wave tank based on a hybrid Navier–Stokes and potential-flow
approach, similar to [15]. In a few layers of cells close to the top sur-
face, i.e., the free surface, the advection and diffusion terms of Eq. (14)
are omitted. Consequently, the right-hand side of Eq. (16) is zero.
Kristiansen and Faltinsen [15] noted that no vorticity of significance
should be advected into the part of the domain without consideration of
the advection and diffusion terms. Sensitivity analyses of the intersec-
tion between the two parts of the domain are performed. Independent
results are obtained between intersections =z 0.075 m, =z 0.05 m
and =z 0.025 m. In the present simulations, we set the intersection
between the two parts of the domain at =z 0.05 m such that there are
10 cell layers without advection and diffusion (the vertical grid cell size
is Δz = 5 mm in this region). In addition to Eqs. (14)–(16), a differ-
ential equation for the wave elevation, ζ, solved at the free-surface
boundary, is obtained from linearizing the kinematic free-surface con-
dition. A forward Euler step is used to time-step the wave elevation,

=
+

t
w b .i

n
i
n

i
n

i
n

1

(25)

A numerical beach is implemented through the function b(x) which is a
third-order polynomial with non-zero values in the right part of the
domain (opposite side to the wave flap), and zero elsewhere.

The pressure at the top boundary is obtained from the linearized
Bernoulli equation,

=p g . (26)

Here =g 9.81m s 2. An appropriate boundary condition for the pressure
gradient at the top boundary is taken from a first-order spatial back-
wards differential,

Fig. 7. A zoomed-in section of the fine region grids of S28 (top) and S28s (bottom), cf. Fig. 6.

Fig. 8. Oscillating flow setup. The ambient vertical velocity component is os-
cillating harmonically on the boundaries. The simulated model is placed in the
center of the numerical domain.

Fig. 9. Orbital flow setup. The ambient horizontal and vertical velocity com-
ponents are oscillating harmonically on the boundaries. The simulated model is
placed in the center of the numerical domain.
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=p
z

g p
z0.5

,c

c (27)

with pc being the pressure in the cell center of the grid cell next to the
top boundary, and Δzc being the vertical grid cell size.

When simulating waves, the solution procedure consists of four
main steps:

1. un, wn → u*, w*
2. +w,n n n 1

3. + +u w u w p, , *, *,n n n n1 1

4. + + + +u w u w p u w, , *, *, , ,n n n n n n1 1 1 1.

Steps 1 and 2 are independent on each other and can be solved in
the opposite sequence.

The numerical domains, used when simulating waves, are similar in
size as the experimental counterparts, cf. Fig. 5. A sketch of the nu-
merical setup is presented in Fig. 10. The right and bottom wall of the
tank is modeled as solid walls with no-slip boundary conditions. A
harmonically oscillating horizontal velocity is prescribed at the left
boundary of the computational domain, to mimic the wave flap of the
experiments. The wave flap is modeled using a prescribed harmonically
oscillating horizontal velocity with amplitude U,

=
+

<
u

U t
z h

h
z z h

z z h

sin ,

0, .

f

f
FS f

FS f (28)

=w 0 (29)

= =
+

<

p
x

u
t

U t
z h

h
z z h

z z h

cos ,

0, .

f

f
FS f

FS f (30)

The wave flap is hinged 0.9 m below the free surface in the experi-
mental investigations, and the same flap design is used in the numerical
simulations, i.e. hf = 0.9 m ( =z 0FS ).

Simulations using wave flap conditions are performed for S28s, the
coarser model of the S28 plate. Stability issues were experienced in
trials of the original model with finer grid, S28. We tested decreasing
the time-step size and increasing the order of the time-stepping, using a
fourth order Runge–Kutta scheme, but still experienced unstable si-
mulations. We do not experience these stability issues in simulations
with oscillating and orbital flow conditions. Therefore, we suspect that
the problems are related to the hybrid coupling and free-surface mod-
eling. The fine region grid size must be 2mm in order to have two grid
cells between each cylinder of S28. In the coarser model, the smallest
grid size is 5mm. Using larger grid cell sizes increases the general sta-
bility in terms of smaller CFL and increased numerical damping.
Additionally, since a stretched grid is applied, the differences between
grid sizes in the x- and z-directions are generally smaller, and less
stretching is required.

4.4. Potential flow added mass calculation

Added mass coefficients in the limit of zero KC are computed with a
previously developed source method, i.e. a boundary element method
(BEM). The BEM is two-dimensional and based on constant source
strengths. Calculations are performed for the three considered
configurations—C19, S28 and S28s.

The potential flow solver is verified and checked for convergence for
a single circular cross-section and a single square cross-section. The
results of the convergence study of the potential flow solver are pre-
sented in Table 2. We find convergent results for both a circular and a
square cross-section when increasing the number of sources to calculate
the added mass of the basic structures. When we use 128 sources to
discretize the basic structures, the error is less than or equal to 1% when
compared with the analytical added mass of both basic structures [16,
pp.145–146]. Consequently, we use 128 sources for each cylinder when
modeling the perforated structures consisting of rows of circular (C19)
or square (S28) cylinders, in the present study. The total number of
sources in the potential flow calculations are 3072 (C19), 3328 (S28)
and 1408 (S28s).

5. Results

5.1. Oscillating and orbital flows

5.1.1. Pressure distribution on a perforated plate
The pressure distribution on the perforated plate S28 is investigated

using BEM and CFD and compared with BEM of a corresponding solid
plate. The presently investigated perforated plates consist of small cy-
linders placed next to each other. Numerically, we model a perforated
plate as a series of small two-dimensional plate elements with openings
between them. In Fig. 11, we compare the pressure distribution on the
plate elements in BEM and CFD. For a given x

D
along the plate, we

present the pressure loss, that is, the upstream pressure minus the
downstream pressure. In the CFD, the pressure on the plate is obtained
at the time-instant = 30.00,t

T that is, when the prescribed ambient ac-
celeration is at its maximum, and the prescribed ambient velocity is
zero. We normalize using the maximum and minimum pressure losses
along the plate. By utilizing the present normalization, using the

Fig. 10. Incident wave setup.

Table 2
Convergence study of potential flow solver. Added mass coefficients for a single
circular cross-section and a single square cross-section calculated using an in-
creasing number of sources to discretize the bodies. Analytical results: 1 and
1.513 for, respectively, a circular and a square cross-section [16, pp. 145–146].

Number of sources Circular Square

8 1.0908 1.6799
16 1.0671 1.5748
32 1.0386 1.5362
64 1.0205 1.5219
128 1.0105 1.5165
256 1.0053 1.5144
512 1.0027 1.5137
1024 1.0013 1.5134
2048 1.0007 1.5132
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maximum and minimum pressure from each calculation, we are able to
visualize and compare the difference between a solid plate and a per-
forated plate.

The distribution of sources in the BEM matches the number of cells
in the CFD. In the CFD, the sides of each plate element of S28 have five
grid cells, cf. Fig. 7. Therefore, we present the calculated pressure loss
based on the five grid cells above and below each plate element. In the
BEM, we model each plate element using five sources along each side of
the element, and present the pressure loss for the five sources above and
below each plate.

Potential flow results are presented for both the S28 model and a
corresponding solid plate. The analytical velocity potential for a flat
plate yields a reversed U-shaped pressure distribution over the plate
[13, pp. 285–286],

= < <p w
t

D x D x D
4

,
2 2

.
2

2
(31)

The global pressure loss distribution predicted by the BEM for S28 has
the same characteristic reversed U-shape. Further, the pressure loss
distribution over each plate element also follows the same shape. This
may perhaps be anticipated.

Included in Fig. 11 are CFD results from the forced oscillation si-
mulations at three KC numbers. For the smallest KC number, the dif-
ference between the pressure predicted by the CFD and BEM is hardly
visible. This serves as further verification of the CFD. The variations in
pressure loss on each plate element are, in general, smaller when the KC
number is increased, that is, the significance of the local reversed U-
shapes are decreased. Hence, the wake behind each plate element re-
sults in a more uniform pressure distribution, similar to the near uni-
form base drag pressure profile in the wake of a cylinder. For the very
last plate elements, that is, the plate-ends, instead of a local reversed U-
shape, the normalized pressure loss distribution is similar to that of the
solid plate at the corresponding locations.

5.1.2. Added mass calculations with BEM
The potential flow added mass for C19 and S28 are presented in

Table 3. C19 and S28 are exact discretizations of the experimentally
investigated plates, cf. Fig. 2. S28s is a simpler and coarser version of
the S28 model, cf. Fig. 6.

5.1.3. Experimental and numerical added mass and damping
The different markers of the forced oscillation experiments indicate

the five tested forcing periods, =T 1.00 s (diamonds), 1.25 s (penta-
gons), 1.50 s (hexagons), 1.75 s (circles) and 2.00 s (stars). We use the
same markers to indicate the periods of oscillations from the forced

oscillation experiments in all figures. The markers are presented with
and without error bars in Fig. 12.

Added mass and damping coefficients from the forced oscillation
tests are presented in Fig. 13. Examples of time-series from the forced
oscillation tests are given in Appendix A. The coefficients increase with
increasing KC for both C19 and S28. There is in general small period
dependence. The coefficients for C19 are larger than those for S28. Note
that the damping coefficients are larger than the added mass coeffi-
cients.

For S28, the experiments and CFD are in general in good agreement.
This provides validation of the CFD, and, in addition, confidence in our
experimental data. The added mass coefficients agree well for all tested
KC numbers, while the damping coefficients are slightly over-predicted
by the CFD. In the CFD, the structure elements have sharp-edged cor-
ners exactly equal 90∘. The physical model consists of square sectional
tubes (type: Alberts 4004338473518). Blunting of the edges leads to
slightly less sharp corners in the physical model, a possible reason for
the small discrepancy. Extrapolation of the experimental and CFD re-
sults for KC→0 is consistent with the BEM, providing further

Fig. 11. Pressure loss distribution on the
S28 perforated plate with BEM and CFD.
The pressure loss, that is, the upstream
pressure minus the downstream pressure,
is normalized using the maximum and
minimum pressure losses on the plate. The
BEM result for a corresponding solid plate,
S00, and the analytical expression for a
solid flat plate, Eq. (31), are included for
comparison.

Table 3
Potential flow solver added mass results (BEM) and Froude–Krylov contribu-
tions. S28 is an exact two-dimensional discretization of the S28 model, while
S28s is a simplified coarser model, cf. Fig. 6. V is the volume of the structure.

C19 S28 S28s

A
A0

0.0780 0.0799 0.1086

V
A0

0.0270 0.0255 0.0255

+A V
A0

0.1050 0.1054 0.1341

Fig. 12. Markers used to present results of different periods of oscillation from
forced oscillation experiments.
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confidence in the experimental setup and CFD.

5.1.4. Cylinder shape importance
The difference between C19 and S28 is both the perforation ratio

and the shape of the cylinders. Consequently, it is hard to know which
factor is more important for the change in hydrodynamic

coefficients—change of perforation ratio or change of cylinder shape.
To investigate the effect of cylinder shape, viscous flow solver si-

mulations, and potential flow added mass calculation, are performed
for a numerical model that is similar to C19, but with square, not cir-
cular, cylinders. This model is denoted S19. The numerical simulations
are set up similar to those of S28. The potential flow added mass of S19
is calculated with the BEM using 128 sources per cylinder, in total
3072, equivalent to the number of sources used for C19. In the viscous
flow solver simulations, the total domain size is 6m × 6 m, the fine
region grid cell size is 1.25 mm, the plate width is 297.5 mm and the
total number of grid cells in the domain is 59 904. The fine region grid
of S19 is presented in Fig. 14.

Note the minor difference in the distance between adjacent cylin-
ders in S19 (2.5 mm) compared to C19 (2.52 mm, to two decimal
places), cf. Fig. 3. In order to use a constant grid cell size in the fine
region of S19, the distance between each cylinder is set to 2.5 mm in the
numerical simulation. Consequently, there is a slight difference in the
width of the plates and the perforation ratio, D = 298 mm, τ = 0.1946
(C19) versus D = 297.5 mm, τ = 0.1933 (S19). However, these dif-
ferences are very small and within the expected error of measuring the
correct width of C19; needless to say, these differences are without
importance for the present comparison.

Comparing different types of results (numerical and experimental),

Fig. 13. Added mass and damping coefficients from forced oscillation experi-
ments of C19 and S28 (five different periods of oscillation). Numerical results in
terms of potential flow (BEM) added mass results for C19 and S28, and CFD
results for S28.

Fig. 14. Fine region grid of S19 (top). A zoomed-in section of the fine region grid is presented in the bottom subplot.

Fig. 15. Added mass and damping of the numerical simulations of S19 com-
pared with the experimental investigations of C19.
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to investigate the effect of plate type and cylinder shape, is supported
by the viscous flow solver results of S28, which are generally good
compared to the experiments, cf. Fig. 13. However, we stress the added
uncertainty of such an approach.

The results from the simulations of S19 are compared with the

experimental results of C19 in Fig. 15. The added mass coefficient for
S19 calculated with the potential flow solver is = 0.1438A

A0
. Both

coefficients are larger for S19 than for C19 for corresponding KC
numbers throughout the whole range of considered KC numbers. Based
on the good agreement between the experimental and numerical results
for S28, we are confident that the considerable differences between S19
and C19, by and large, must be a result of different cylinder shapes.

In the semi-analytical method by Molin for calculating the hydro-
dynamic coefficients of perforated plates, the effect of different types of
openings of a perforated plate is expressed through the discharge
coefficient, μ [6]. The discharge coefficient is inversely proportional to
the resistance coefficient. In the case that the resistance is due to the
drag of a cylinder, the discharge coefficient is inversely proportional to
the drag coefficient. For a single cylinder of diameter =d 0.01 m, in the
range of Reynolds number considered in the experimental investiga-
tions, cf. Section 3.4, the drag coefficient of a square cylinder is con-
siderably larger than that of a circular cylinder, 50% 100%. Con-
sequently, the drag coefficient for the row of square cylinders is likely
considerably larger than that of the row of circular cylinders, although
one must be careful with superposing the results due to the small dis-
tance between the cylinders, which gives speed-up of flow (increases
the Reynolds number) and considerable interaction effects.

In Molin’s original method without drag correction due to plate-end
flow separation [6], the hydrodynamic coefficients only depend on the
porous KC number, which can be written

Fig. 16. Added mass coefficients from numerical simulations of oscillating flow
conditions and orbital flow conditions for S28 and the simplified model, S28s.

Fig. 17. Damping coefficients from numerical simulations of oscillating flow
conditions and orbital flow conditions for S28 and the simplified model, S28s.

Fig. 18. Normalized force amplitude, i.e. the square root of the sum of the
normalized added mass and damping coefficients squared, from numerical si-
mulations of oscillating flow conditions and orbital flow conditions for S28 and
the simplified model, S28s.

Fig. 19. Normalized force on S28 during the first six oscillation cycles for
=KC 0.5, 1.5 and 2.5 from numerical simulations of oscillating (top) and or-

bital (bottom) flow conditions.
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Fig. 20. Streamline plots of S28 with orbital (top) and oscillating (bottom) flow conditions at =KC 0.5. The time-instant is 0.26T into an oscillation period
( =w tKC sin ,D

T orbital: =u tKC cos ,D
T oscillating: =u 0). The color map for the contours represent the vertical velocity (red for positive, blue for negative). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. Streamline plots of S28 with orbital (top) and oscillating (bottom) flow conditions at =KC 1.5. The time-instant is 0.26T into an oscillation period
( =w tKC sin ,D

T orbital: =u tKC cos ,D
T oscillating: =u 0). The color map for the contours represent the vertical velocity (red for positive, blue for negative). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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µ

KC KC 1
4

,por 2 (32)

hence increasing the drag coefficient (decreasing the discharge coeffi-
cient) is equivalent to increasing the KC number. The results of Fig. 15
supports the analysis of discharge coefficients since both coefficients
increase with KC for both C19 and S19, and, for a given KC number, the
coefficients are considerably larger for S19 than for C19. This is in
particular true for the added mass of small KC numbers. However, the
potential flow solver added mass calculated for S19 is almost twice that
of C19, = 0.1438A

A0
versus = 0.0780A

A0
. Therefore, it is likely that the

large relative differences in added mass for small KC numbers is partly
due to the difference in potential flow added mass of the two structures.
Smaller relative differences for larger KC numbers can be an indication
that the effect of plate-end flow separation is more important than the
type of cylinder shape (and, for the added mass coefficients, potential
flow effects) when the KC number is increased.

5.1.5. Orbital flow versus oscillating flow
Added mass and damping coefficients from the CFD simulations of

orbital flow conditions are presented in Figs. 16 and 17. The normalized
force amplitude, i.e. the square root of the sum of the normalized added
mass and damping coefficients squared, Eq. (8), is presented in Fig. 18.
The results are obtained for both S28 (26 squares) and the simpler
model, S28s (11 rectangles), cf. Fig. 6. Oscillating flow results are in-
cluded for comparison.

Consistent with the potential flow results, the S28s model yield
slightly larger added mass coefficients than the S28 model in oscillating
flow conditions. The damping coefficients show the opposite trend; the
S28 model, which has smaller elements and more openings, yield larger
damping coefficients than S28s. We do not observe the same clear
tendencies in the orbital flow conditions, although the results at the

smaller KC numbers corresponds to that of the oscillating flow condi-
tions.

In general, the coefficients in orbital and oscillating flow are similar
for small KC numbers, whereas there is a relative decrease in the orbital
flow coefficients for increasing KC numbers. The presence of a non-zero
horizontal velocity component in the orbital flow simulations is likely
to affect the global flow separation, important for the force on the
structure. We find it particularly interesting that there is a clear re-
duction in coefficients for KC≳ 1.6. Note that the KC number is defined
based on the amplitude of the vertical velocity in both simulation types.
Hence, the coefficients are smaller, even though the absolute velocities,

+u w ,2 2 are larger in orbital than in oscillating flow conditions for a
given KC number.

In Fig. 19, the normalized vertical force time-series on the S28 plate
is presented for three KC numbers, =KC 0.5, 1.5 and 2.5, for oscillating
(top subplot) and orbital (bottom subplot) flow conditions. The nor-
malized force is plotted against time for the first six periods of oscil-
lation, including the ramp. In oscillating flow, Fig. 19, the normalized
force increases with increasing KC. Contrary, the normalized force in
orbital flow conditions reduces from =KC 1.5 to =KC 2.5, consistent
with the results of Fig. 18.

Flow visualizations, comparing the orbital and oscillating flow
fields, at =KC 0.5, 1.5 and 2.5, are analyzed. Streamline plots are
presented in Figs. 20–22. The color map for the contours represent the
vertical velocity (red for positive, blue for negative). The plots are
zoomed in on the plates at a time-instant 0.26T into an oscillation
period ( =w tKC sinD

T ). Hence, at this time-instant, the boundary
conditions are approximately equal in oscillating and orbital flow
conditions; the vertical velocity is w≈W, while the horizontal velocity
is u≈0 (exactly =u 0 in oscillating flow conditions).

The flow visualizations at =KC 0.5 are presented in Fig. 20. The

Fig. 22. Streamline plots of S28 with orbital (top) and oscillating (bottom) flow conditions at =KC 2.5. The time-instant is 0.26T into an oscillation period
( =w tKC sin ,D

T orbital: =u tKC cos ,D
T oscillating: =u 0). The color map for the contours represent the vertical velocity (red for positive, blue for negative). (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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normalized force amplitude is reduced by 7% in orbital compared to
oscillating flow conditions at =KC 0.5. In both orbital and oscillating
flow conditions, we observe local wakes downstream of each plate
element of the perforated structure. The local wakes are of similar
magnitude as the global vortical structures caused by flow separation at
the plate-ends. A zoomed-in streamline plot illustrating the local flow
separation from each cylinder of S28 is presented in Fig. 23. The
streamlines are obtained for oscillating flow at =KC 0.5 at the time-
instant 0.26T.

Corresponding flow visualizations at =KC 1.5 are presented in
Fig. 21. Here, the normalized force amplitude is 20% less in orbital than
in oscillating flow conditions. The importance of the flow separation at
the plate-ends, relative to the local flow separation at each plate ele-
ment, is increased compared to =KC 0.5. In both flow conditions, there
is a significant global wake formation downstream of the left plate-end,
but only the oscillating flow has a similar wake downstream of the right
plate-end. A reduction in flow velocity is observed upstream of the right
plate-end in orbital flow.

As the KC number is further increased to =KC 2.5, Fig. 22, the
extent of the global vortical structures from the plate-ends are con-
siderably larger than the local vortical structures in the wakes behind
each plate element. The reduction in the normalized force amplitude is
50% in orbital compared to oscillating flow conditions. A large plate-
end vortex is observed on the left side only in orbital conditions,
whereas a symmetric pattern is seen in oscillating flow. The fact that
there is only one vortex rather than two, creating low pressure, might
explain the lower force amplitude.

5.2. Damping-to-added mass ratio

The ratio of the damping force to the added mass force from the
forced oscillation experimental investigations of C19 and S28, and the
numerical simulations of S28 in oscillating and orbital flow conditions
is presented in Fig. 24. Both configurations are damping dominant.

Fig. 23. Streamline plot zoomed in on the local flow separation from each of the four middle cylinders of S28 in oscillating flow at =KC 0.5. The time-instant is 0.26T
into an oscillation period ( =u 0, =w tKC sinD

T ). The color map for the contours represent the vertical velocity (red for positive, blue for negative). (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 24. Damping to added mass force ratio from forced oscillation experiments
of C19 and S28 (five different periods of oscillation). Numerical results for S28
in forced oscillation and orbital flow conditions are included for comparison.
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In a numerical study on the effect of perforation ratio, we found that
the damping dominance increases, in general, with increasing per-
foration ratio [4]. This is consistent with previous experimental studies
of perforated plates and disks [7,9,11]. However, despite the difference
in perforation ratio for C19 ( = 0.19) and S28 ( = 0.28), there is no
clear difference in their damping-to-added mass ratios. These findings
suggest that the hydrodynamic force ratio is a function of both the
perforation ratio and the shape of the perforated plate openings.

Although damping dominates in both orbital and oscillating flow,
notable differences in the damping dominance are found between the
two flow conditions. For small KC numbers, the damping dominance is
larger in orbital than in oscillating flow conditions. For larger KC
numbers, the opposite is observed.

5.3. Hydrodynamic force in incident waves

The hydrodynamic force on the perforated plates in incident waves
is presented in the following. Examples of time-series extracted from

the experiments are presented in Fig. 25. The measured wave eleva-
tions, 2m upstream and 2m downstream of the rig, and the force on the
model are presented for the case of S28 placed at =z 0.3m m with
wave parameters =T 1.3 s and =KC 0.29. In addition to the raw
measurements, the force filtered around the first five harmonics is
presented. We observe higher harmonics in the downstream wave
measurements.

In Fig. 26 we present the numerical counterpart of the experimental
time-series of Fig. 25. Due to the hybrid numerical approach with linear
free-surface conditions, the higher harmonics of the wave profiles in the
experiments cannot be reproduced in the CFD. Contrary, the force on
the plate, which is solved in the Navier–Stokes part of the domain,
contains higher harmonics, similar to those in the experiments. Con-
sequently, most of the nonlinearity in the force must be associated with
the quadratic pressure jump on the plate. We note the good agreement
between the numerical simulation and the experiment.

The normalized vertical force amplitude, from the experiments of
C19 and S28 in waves, is presented in Fig. 27 for C19 and in Fig. 28 for
S28. The experimental results are presented for three different sub-
mergences of the perforated plates, =z 0.30 m, =z 0.20 m and

=z 0.10 m. Note that the Froude–Krylov force is not subtracted in
these cases. Limiting values for KC→0 predicted by the potential flow
solver in an infinite fluid domain are 0.1050 and 0.1054 for, respec-
tively, C19 and S28, including the Froude–Krylov contributions, cf.
Table 3. The potential flow calculations seem reasonable compared to
the experimental results for both structures, contributing to confidence

Fig. 26. Examples of time-series extracted from the numerical simulations of
S28s in incident waves. The perforated plated is placed at =z 0.3m m. The
wave parameters are =T 1.3 s and =KC 0.29. The wave elevations 2m up-
stream (wp3) and 2m downstream (wp7) of the model is presented, in addition
to the raw and filtered force.

Fig. 27. Normalized force amplitude on C19. Results are presented for four
wave periods, =T 1.0 s ( = 5.25D ), =T 1.1 s ( = 6.35D ), =T 1.2 s ( = 7.51D ) and

=T 1.3 s ( = 8.74D ), with the model placed at =z 0.30 m, =z 0.20 m and
=z 0.10 m.

Fig. 28. Normalized force amplitude on S28. Results are presented for four
wave periods, =T 1.0 s ( = 4.33D ), =T 1.1 s ( = 5.23D ), =T 1.2 s ( = 6.20D ) and

=T 1.3 s ( = 7.21D ), with the model placed at =z 0.30 m, =z 0.20 m and
=z 0.10 m.

Fig. 25. Examples of time-series extracted from the experimental investigations
of S28 in incident waves. The perforated plated is placed at =z 0.3m m. The
wave parameters are =T 1.3 s and =KC 0.29. The wave elevations 2m up-
stream (wp3) and 2m downstream (wp7) of the model is presented, in addition
to the raw and filtered force.
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in the experiments.
The normalized force on C19 is, in general, larger than the force on

S28 for a given KC number. The overall trends are similar for the
normalized force on the two models. The force increases, in general,
with increasing KC number also in waves.

The normalized force in waves depends on both the wave period
and the submergence. Some period dependence is noted, in particular
for larger KC numbers and for increasing wave steepnesses. For a given
KC number, increasing the wave period—which increases

D
and

2 a
—increases, in general, the normalized force amplitude. The

variations in the flow over the plates are larger when
D
is small, which

is a likely explanation. The sensitivity to the vertical position is, in
general, small when the depth dependence of the velocity is included in
the normalization of the force amplitude. This is in particular true for
the longest waves. However, there is a tendency that the normalized
force is slightly increased when the distance from the free-surface is
increased, given a fixed KC number.

In Fig. 29, CFD results of S28 and S28s are presented. The CFD in-
cludes numerical simulations of S28s at =z 0.30 m including linear-
ized free-surface conditions, as well as orbital flow simulations of S28
and S28s. The KC numbers of the linearized free-surface CFD are based
on the calculated wave elevations above the center of the model, cf. ζa

in Eq. (2). The experimental results with the model placed at
=z 0.30 m are included for comparison. There is in general good

agreement between the numerical simulations of incident waves and
the experiments.

The orbital flow simulations of S28 were included in Fig. 29 as well.
For KC≳ 0.3, the force is overpredicted in orbital flow relative to the
experiments and CFD with waves. However, for KC≲ 0.3, the force is
very similar to that in waves. This is interesting from a practical point of
view, since the orbital flow simulations are significantly less cumber-
some. In terms of safety, the most conservative approach (oscillating,
orbital or waves) to choose in a practical situation, is likely to be
coefficients based on oscillating flow.

In Figs. 30 and 31, streamline plots for S28s are presented. The
incident wave simulation with wave parameters =T 1.3 s, = 7.21D and

=KC 0.52 is compared with the orbital flow simulation of =KC 0.50.
The normalized force amplitude on the models is similar for these cases,
cf. Fig. 29.

The streamline plots are matched with regards to the vertical ve-
locity at the free surface above the centerline of the plate in the incident
wave simulation. In Fig. 30, the vertical velocity at the free-surface
above the center of the plate is at its maximum. In the orbital simula-
tion, the horizontal velocity is zero, whereas in the incident wave

Fig. 30. Streamline plots for =KC 0.5 from the numerical incident wave (top) and orbital (bottom) simulations of S28s. In the incident wave simulation, the time-
instant is taken when the vertical velocity above the centerline of the plate is at its maximum. In the orbital simulation, the time-instant is 0.24T into an oscillation
period ( =u tKC cos ,D

T =w tKC sinD
T ). The color map for the contours represent the vertical velocity (red for positive, blue for negative). (For interpretation of

the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 29. Normalized vertical force amplitude on S28 and S28s, fixed in incident
waves, from experiments and CFD. Experimental results for S28 are presented
for four wave periods, =T 1.0 s ( = 4.33D ), =T 1.1 s ( = 5.23D ), =T 1.2 s
( = 6.20D ) and =T 1.3 s ( = 7.21D ), with the model placed at =z 0.30 m. CFD
results for S28s are presented for two wave periods, =T 1.0 s ( = 4.33D ) and

=T 1.3 s ( = 7.21D ), with the model placed at =z 0.30 m. Orbital flow si-
mulations and BEM results for S28 and S28s are included for comparison.
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simulation the horizontal velocity is positive upstream and negative
downstream of the centerline of the plate. In Fig. 31, the vertical ve-
locity at the free-surface above the center of the plate is zero (positive
upstream and negative downstream), and the horizontal velocity is
positive. Contrary, in the orbital flow simulation, the ambient vertical
velocity is zero in the whole domain.

6. Conclusion

The hydrodynamic forces and behavior of two-dimensional perfo-
rated plates, relevant for several marine applications, were in-
vestigated. Experiments and simulations were performed in forced os-
cillations, waves and orbital flow. Good agreement between
experimental and numerical results were found. Therefore, streamline
plots were used to study the flow in detail.

Added mass and damping coefficients were presented for oscillating
and orbital flow conditions. Consistent with previous investigations, the
hydrodynamic force on the structures, which have perforation ratios

= 0.19 and = 0.28, are dominated by damping. Further, we find that
the forces and coefficients of the perforated structures are functions of
the amplitude of motion. The period dependence is small in oscillating
flow.

Considerable differences are found in the hydrodynamic forces in
oscillating and orbital flow conditions. An exception is for small
KC ≲ 0.5. In both conditions, streamline plots reveal that the relative
importance of vortex generation from the plate-ends, compared to the
local flow separation from each plate element, increases with increasing
KC number. Decreased force in orbital compared to oscillating flow was
found for all simulated configurations, with increasing relative

importance for increasing KC number. We emphasized the influence
from plate-end flow separation, which is asymmetric in orbital flow.

The normalized force amplitude on the perforated plates in waves
increases, in general, with increasing KC number. The period depen-
dence increases with decreasing distance to the mean free surface. For
small and moderate KC numbers, orbital flow simulations give a good
prediction of the force in waves. For larger KC numbers, orbital flow
simulations overpredict the force.
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Appendix A. Experimental time-series

Figs. A.32 –A.39.

Fig. 31. Streamline plots for =KC 0.5 from the numerical incident wave (top) and orbital (bottom) simulations of S28s. In the incident wave simulation, the time-
instant is taken when the vertical velocity above the centerline of the plate is zero. In the orbital simulation, the time-instant is 0.50T into an oscillation period
( =u tKC cos ,D

T =w tKC sinD
T ). The color map for the contours represent the vertical velocity (red for positive, blue for negative). (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. A.32. Forced oscillation experiments of C19. =T 2.0 s, ηa= 1.7 cm, =KC 0.35. Measured and filtered force.

Fig. A.33. Forced oscillation experiments of C19. =T 2.0 s, ηa= 1.7 cm, =KC 0.35. Measured and filtered acceleration.
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Fig. A.34. Forced oscillation experiments of C19. =T 2.0 s, =a 13 cm, =KC 2.82. Measured and filtered force.

Fig. A.35. Forced oscillation experiments of C19. =T 2.0 s, ηa = 13 cm, =KC 2.82. Measured and filtered acceleration.
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Fig. A.36. Forced oscillation experiments of C19. =T 1.0 s, ηa = 1.7 cm, =KC 0.35. Measured and filtered force.

Fig. A.37. Forced oscillation experiments of C19. =T 1.0 s, ηa = 1.7 cm, =KC 0.35. Measured and filtered acceleration.
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Fig. A.38. Forced oscillation experiments of C19. =T 1.0 s, ηa = 5.0 cm, =KC 1.05. Measured and filtered force.

Fig. A.39. Forced oscillation experiments of C19. =T 1.0 s, ηa = 5.0 cm, =KC 1.05. Measured and filtered acceleration.
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