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Abstract—Power Quality (PQ) data from 49 nodes in the
Norwegian power grid was analyzed for three types of voltage
anomalies; line interruptions, voltage dips and ground faults.
It was observed that the probability that a new anomaly has
occurred as a function of time passed since the previous anomaly
approximately follows a logarithmic curve. Thus the hazard
rate of a new anomaly declines significantly as the time since
the previous anomaly increases. A machine learning model was
developed to try to predict voltage anomalies 10 minutes in
advance based on the presence of early warning signs in the
preceding 50 minutes.

Index Terms—Power quality analysis, power systems, machine
learning, fault prediction

I. INTRODUCTION

In Norway in 2018, roughly 15.1 GWh of energy was not
supplied to end users due to unplanned power interruptions.
Although this number may seem relatively low compared
to the 120 000 GWh that were successfully delivered, it
is estimated that power outages, together with other power
quality anomalies such as ground faults and voltage dips, cost
Norwegian end users tens of millions of Euro annually [1].

Mahela et. al. [2] provides a review of more than 150
research publications published between 1986 and 2014 that
tackle the subject of detection and classification of power qual-
ity anomalies. It found that the most common detection/feature
extraction techniques were the wavelet-, S-, Fourier- and
Hilbert-Huang transforms, while the most commonly used
classification methods were artificial neural networks, support
vector machines, genetic algorithms, fuzzy expert systems and
evolutionary algorithms. Another similar review was done by
Misha in 2019 [3].

However, fault detection is a fundamentally reactive process
where the model tries to detect and classify a fault after it has
already started. It would be more useful to have a proactive
model that is able to predict faults in advance. E.g. to have a
model that is able to predict with high confidence that a new

fault is about to occur in ca. 10 minutes on a given node, so
that system operators can get a 10 minute head start on the
problem.

Real-time monitoring of power systems has experienced im-
pressive development in the last 10-15 years. Grid companies
globally have increasingly installed devices such as Power
Quality Analysers (PQA), Phasor Measurement Units (PMU)
and Advanced Metering Infrastructure (AMI) to increase their
situational awareness [4]. The increasing number of monitor-
ing instruments installed in the grid has given companies more
information about the present grid condition, which has made
grid operation more efficient.

In the period before a fault occurs there may be certain early
warning signs in the voltage data indicating that something is
amiss. A machine learning model trained on the large amount
of historical data available may be able to learn to recognize
these signs. The long-term objective of this research is to have
machine learning models running live on nodes in the electric
grid, that give a warning to system operators when the model
predicts that there is an elevated likelihood that a fault is about
to occur within the next time frame.

Fault prediction is a more difficult problem than fault
detection. The extent to which voltage anomalies can be
reliably predicted a long time in advance purely based on
PQA measurements is currently an unsolved research question.
Previous research literature on fault prediction using PQA data
is scarce. The most relevant articles are ones that look at
related, but somewhat different, problems like prediction of
power quality using weather measurements [5], predictions
done on lower voltage networks [6] or predictions with shorter
forecasting horizons, that are in the span of seconds instead
of minutes [7].

The main objective of this paper is to emphasize how
important it is to take the temporal distribution of faults
into account when trying to predict future voltage anomalies.
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Fig. 1. PQA data from a node spanning a one-year time period. A number of voltage dips and line interruptions can be seen. V12 is the RMS phase-to-phase
voltage, a.k.a the line voltage, between line 1 and 2. V23 and V31 are defined similarly.

Section II will introduce the data set that was used and discuss
how the faults in the data set exhibit strong clustering behavior
in time, section III will describe the prediction model that
was used, section IV contains the results from testing the
prediction model, while section V will discuss challenges with
the methodology and potential future work.

II. FAULT DISTRIBUTION

This study uses PQA data [8] collected from a total of 49
nodes in the Norwegian power grid, belonging to 9 different
distribution system operators (DSOs) and the Norwegian trans-
mission system operator (TSO). The data consisted of wave-
form and RMS line voltage, phase voltage and phase current
measurements sampled continuously at very high measuring
frequencies, generally at 50 kHz. The data spans the period
from January 2009 to early March 2020. The nominal line
voltages at the measurement points in the grid varied from
10 to 420 kV. A total of roughly 270 years of PQA data
was analysed. Thus, there was on average ca. 5-6 years of
historical data from each node, although the number of years
of available data varied significantly from node to node. The
node with the least amount of data contained only 4 months of
measurements, whereas the nodes with the most data contained
measurements spanning a period of 10 years. Figure 1 shows
one year of RMS line voltage data from one of the nodes.

AHA [9], an event analysis software program, was used
on the data to generate lists of fault events. The fault events
were divided into three categories. The first category was line
interruptions, defined as a time period lasting more than one
half-cycle where all three RMS line voltages dropped below
5 % of the nominal line voltage. The second category was
voltage dips, defined as a time period where one or several
of the three RMS line voltages dropped below 90 % of the
nominal line voltage without all three dropping below 5 %.
The third category was ground faults, which match one or
both of the following two criteria: a) time periods where one
of the three RMS phase voltages went above 130 % of the
nominal phase voltage while the other two phase voltages were
below the nominal phase voltage and b) the opposite scenario
where one of the three phase voltages went below 70 % of

the nominal phase voltage, while the other two stayed above
100 %.

Note that minor voltage dips frequently do not cause any
significant adverse effects in the power grid. Thus referring
to these anomalies as faults may be somewhat misleading.
However, for the sake of simplicity, in this paper the terms
anomaly and fault are used interchangeably and refers exclu-
sively to any event that belongs to one of the three categories
described above.

A total of 69 612 discrete fault events were detected in
the overall data set. Of these, 47 612 were ground faults,
19 813 were voltage dips and the remaining 2187 were line
interruptions. The mean frequency of faults averaged over
all nodes was one fault every nine days, although the fault
frequency varied significantly from node to node. The node
with the highest fault frequency experienced on average one
fault every 7-8 hours, whereas the node with the lowest fault
frequency only experienced one fault every 65 days. The
proportion of different types of faults also varied significantly
from node to node. The node in Figure 1, for instance, had an
unusually large number of line interruptions, but also had an
unusually small number of voltage dips.

Figure 2 shows data from the hour preceding a random
ground fault and the hour preceding a random voltage dip. The
hour of data that precedes the voltage dip looks completely
inconspicuous. For the ground fault, on the other hand, there
is a fairly clear-cut event starting around 23 minutes before
the fault occurs. Faults that are preceded by early warnings
signs in the PQA data, like the ground fault in the figure,
are ones that motivate the idea that some faults may be
reliably predicted in advance using machine learning models.
Unfortunately, for a large number of faults, like the voltage
dip in the figure, there are no visible signs in the PQA data
at all that a fault is about to occur.

66.3 % of the detected faults started less than one second
after the end of the previous fault on the same node. The reason
that this percentage is so high can be explained by looking at
Figure 3, which shows an example of what appears to be a
series of two or three ground faults. However, because the
third RMS phase voltage constantly switches between being
over and below 130 % of the nominal phase voltage, each brief
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Fig. 2. Top plot shows an example of a ground fault that has a noticeable
event starting at around 23 minutes before the fault. Bottom plot shows an
example of a voltage dip with no disturbances in the preceding hour.

00:02:20 00:02:30 00:02:40 00:02:50 00:03:00
Time [hour:min:sec]

10

12

14

16

18

RM
S 
Ph
as
e 
Vo

lta
ge
 [k

V]

V1
V2
V3

Fig. 3. Example showing intermittent ground faults.

period where it is above the threshold for being considered a
ground fault was counted by the event analysis program as a
separate fault. Thus the fault on the left was actually registered
as a sequence of 19 short ground faults, while the one on the
right was registered as 20 separate faults.

Even by merging faults of the same type that occur less than
one second after each other and categorizing them as the same
event, it is still ambiguous what exactly constitutes a discrete
fault event. E.g. the fault on the left in the plot is clearly split
in two, with roughly a one-second period in-between where
the voltages behave normally. It is debatable whether these
should be categorized as one or two fault events. Furthermore,
the previous fault before the time period shown in the plot
occurred more than an hour earlier and the next fault occurred
more than two hours later. Thus, the 17 second gap between
these two ground faults is fairly small in comparison and an
argument could be made that they should be considered part
of the same fault event.

100 101 102 103 104 105 106
Seconds since previous fault

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob
. o
f n

ew
 fa

ul
t

Empirical distribution function
ln(t) / ln(M)

Fig. 4. Probability of a new fault having occurred as a function of time since
previous fault. Note the logarithmic scale on the x-axis.

Time passed Prob(new fault)
1 second 0
10 seconds 0.18
1 minute 0.33
10 minutes 0.52
1 hour 0.62
1 day 0.76
1 week 0.87
1 month 0.97

TABLE I
PROBABILITY THAT A NEW FAULT HAS OCCURRED AS A FUNCTION OF

TIME PASSED SINCE PREVIOUS FAULT.

Figure 4 shows the probability that a new fault will have
occurred within t seconds after the previous fault, with the
x-axis plotted on a logarithmic scale. In other words it shows
the empirical distribution function for the duration between
subsequent faults. For the sake of this plot, fault events that
occurred less than one second after each other were merged
together and considered to be the same event. Table I shows
some specific values from the plot.

The result seen in the figure is very interesting. The empir-
ical distribution follows a curve that resembles a straight line
when plotted on a logarithmic scale. This means that it can
be approximated by the function

F (t|t > 1) ≈ ln(t)

ln(M)
. (1)

M is the constant 30 · 24 · 60 · 60, corresponding to the
number of seconds in a month. Thus the hazard function, the
probability that a new fault will occur within a short time
period from the present, e.g. within the next minute, declines
sharply as the time since the previous fault increases.

Since some nodes suffer from more faults than others, and
the faults on some nodes appear to display more clustering
than the ones on others, the relationship in Figure 4 does not
hold on all nodes if you break the figure down on a node-
by-node basis. However, a logarithmic cumulative probability
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function appeared to be a reasonably good approximation on
the majority of nodes.

Figure 5 shows the cumulative fault duration distribution.
As can be seen from the plot, the duration of most faults is
relatively short; ∼ 90 % of all faults last less than a second
and ∼ 99 % last less than 10 seconds. Most of the faults that
lasted more than 10 seconds were line interruptions. Although,
as can be seen in the figure, if fault events that happen in
close succession are merged, the average length of faults will
increase.
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Fig. 5. Empirical cumulative distribution for fault duration. The blue line is
for the non-merged fault list, while the orange line shows how the distribution
changes when faults of the same type that occur within 1 second of each other
are merged together.

Figures 4 and 5 do not change much if only ground faults
or voltage dips are studied separately, although ground faults
appeared to cluster together slightly more than voltage dips.
However, line interruptions were clustered together signifi-
cantly less than the other two fault types and typically lasted
significantly longer. Of line interruptions,∼ 40 % lasted longer
than 10 seconds, ∼ 15 % lasted longer than an hour and ∼ 3
% lasted longer than a day.

Figure 6 displays a histogram of the extreme values of
voltage dips and line interruptions. The extreme value is the
lowest RMS line voltage measurement that was observed
during the voltage dip or line interruption. As can be seen
from the plot, ∼ 75 % of voltage dips have an extreme value
that is between 80 % and 90 % of the nominal line voltage.
Note that in addition to the large number of minor voltage dips
seen in the figure there was also a large number of ”almost
voltage dips” in the data, where the RMS line voltage briefly
dropped to 91 % or 92 % of the nominal line voltage, but did
not drop below 90 %.

One final thing to note about the way the faults are dis-
tributed is that some of the nodes that belong to the same DSO
are very heavily correlated with each other. This means that
the exact same fault often can be seen to occur simultaneously
on two or more of the nodes belonging to the same DSO. E.g.
a fault that is measured at the 66 kV level in the DSO’s grid
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Fig. 6. Histogram showing the distribution of the extreme values of all voltage
dips and line interruptions. The width of each bin is 5 %. The bin furthest to
the right shows the number of voltage dips whose extreme value fell between
85 and 90 % of the nominal line voltage.

area will naturally propagate and be measured at measurement
nodes in the downstream 22 kV grid.

III. DESCRIPTION OF PREDICTIVE MODEL

As discussed in section II, ground faults and voltage dips
show strong clustering behavior. Thus, the presence of a
ground fault or a voltage dip means that there is a high
probability that another voltage anomaly will occur soon. Thus
it may be possible to predict more serious faults, such as line
interruptions, based on the presence of less serious events such
as voltage dips or ground faults. Furthermore, it would also
be reasonable to suspect that voltage dips and ground faults
may be predicted based on the presence of minor disturbances
in the voltage that are too minor to be categorized as faults.

The idea behind the predictive model is to use information
about the number and severity of minor voltage disturbances
that occurred in the preceding 50 minutes to predict the
probability that a fault is imminent. Minor disturbances in this
context means any deviation from normal behavior that is not
categorized as a voltage dip, ground fault or line interruption.
E.g. a rapid voltage change, a dip in line voltage that is too
small to be categorized as a voltage dip or a change in the
relationship between the three line or phase voltages.

The model was trained on a balanced data set. The fault
examples consisted of the minimum and maximum RMS line
and phase voltages from between an hour to 10 minutes before
a fault occurs, sampled at a frequency of 1 Hz. The time series
did therefore not include the actual fault nor the last 10 minutes
leading up to the fault. The non-fault examples were identical
50 minute long time series, except that they came from periods
of time where no fault occurred in the next 24 hours, nor had
occurred in the preceding 24 hours. Note that the dimension of
each raw training sample, before preprocesssing, was 12x3000.

The model used was relatively simple. It starts by normal-
izing each of the voltage channels. Part of this involves setting
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the average RMS value during the first minute of the sample as
the base value. For each voltage channel it then calculates the
m largest deviations from this base value that occur during the
remaining 49 minutes of the sample. It then differentiates the
time series and calculates the n largest deviations from 0 for
each voltage channels. The dimension of each prepossessed
sample is thus 12 ∗ (m+ n). For the prediction results in the
next section the values of m and n used were both 5.

The preprocessed sample is then fed into a random forest
classifier [10] [11]. Scikit-learn’s implementation of random
forest with standard parameters was used [12]. The classifier
decides what the probability is that this time series sample
results in a fault.

Note that instead of using the line voltages V12, V23 and
V31, the model instead uses V12, V23-V12 and V31-V12.
The same was done for the phase voltages V1, V2 and V3.
Note that this is the difference between the RMS values of the
channels. This was done so that the model would be able to
detect gradual changes in the relationship between the three
channels during the 50 minute time period.

More advanced prepossessing techniques were tested, but
they did not exhibit any noticeable improvements in perfor-
mance and thus the simple method was retained.

IV. PREDICTION RESULTS

Figure 7 shows the ROC curves [13] for the random forest
model when trained on three different data sets. The ROC
curve is the true positive rate plotted against the false positive
rate. The ideal result is that the area under the red curve (AUC)
is 1. A model that is randomly guessing would receive an AUC
of around 0.5.

The only difference between the three data sets is the
variable tmin. This variable specifies that for a fault to be
included in the data set, the time between the fault and the
previous fault that occurred on any node belonging to the same
DSO must be more than tmin. This variable was one minute
in the plot on the left, an hour in the centre plot and 24 hours
in the plot on the right.

With tmin = 24 hours the total number of faults in the data
set that could be used for training and testing was reduced to
2786 from the original 69 612. However, this did not have
a significant impact on the results, since the ROC curves
in Figure 7 did not change significantly when increasing
the number of fault and non-fault samples beyond 500 of
each. To produce the figure, the size of the training set for
each of the three plots was set at 1500 examples of faults,
randomly sampled from the eligible faults, together with 1500
examples of randomly sampled non-faults. Testing was done
using stratified 5-fold cross validation.

As we can see from the left hand pane in Figure 7, with
tmin = 1 minute, ∼ 35 % of the faults could be classified with
high enough certainty for there to be a negligible amount of
false positives. However this result could potentially be quite
misleading. ∼ 42 % of the fault samples in the data set with
tmin = 1 min are ones where at least one fault occurred on
the same node in the preceding hour. This is not the case

for any of the non-fault samples. Thus, since the input to the
model spans the period from 1 hour to 10 minutes before the
fault occurs, samples where a fault occurs in this time period
were trivially easy to categorize, leading to a misleadingly
good ROC curve. For these samples, the model is not actually
predicting that a fault is about to occur. It merely learns that
if there is a fault in the input data, then this is a fault sample.
Similarly, if no faults occurred in the time period between 1
hour and 10 minutes before the fault, but one or several did
occur in the 10 minute to 1 minute time period, then the model
is not predicting a fault ten minutes in advance, but between
0 and 9 minutes in advance, which is obviously easier.

If the model is instead trained and tested only on faults
where tmin = 1 hour, it results in the ROC curve displayed
in the centre of Figure 7. As the figure illustrates, the results
have deteriorated considerably. The model does predict ∼ 8
- 12 % of the faults with some confidence, however, out of
the 100 samples that were assigned the highest probabilities
of being faults, only 89 were actual faults and the remaining
11 were false positives. If tmin is increased to 24 hours, the
models performance is reduced further, as can be seen in the
right hand pane of Figure 7.

V. DISCUSSION

In the process of developing and testing the model above,
two major issues were identified. The first issue is that the
data sets that the model was trained on were balanced. In an
operational setting, a model like this may run continuously in
the grid and produce an updated fault probability much more
frequently than the occurrence of faults. As an example, the
model could be run every minute and the fault frequency may
be once every week. Thus, if the model does not have a very
low false positive rate, the number of false alarms could very
easily outnumber the true positives. Furthermore, since giving
a false alarm to power operators could potentially be quite
costly, even a relatively low false positive rate could be too
high for a model to be applicable in the real world.

The second issue is that the time since the previous fault
on the same node was identified as the dominant factor when
estimating the probability that a new fault is about to occur.
The probability of a new fault occurring declines rapidly as the
time since the previous fault increases. Thus, a more relevant
test of an operationally applicable model would be its ability
to predict an upcoming fault with high confidence when no
fault has occurred in a long time, e.g. in more than 24 hours.

The preferable way to test an early warning model for
voltage anomalies would be to train and test it in a way
that more closely mimics the way it would be used in an
operational setting. Specifically; to test it on long continuous
time series of historical voltage data from a specific node using
a sliding window approach.

As can be seen in the right hand pane in Figure 7, the
model does show some ability to predict around 5 % of
faults in advance with some confidence when the previous
fault occurred more than 24 hours ago, but the false positive
rate was significant. Some testing using this model was done
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Fig. 7. From left to right: Change in fault prediction ROC curve when only looking at faults that occurred at least one hour, one minute or 24 hours after
the previous fault event.

on longer historical time series. When tested using a sliding
window approach, false positives typically outnumbered true
positives. Such a model is therefore deemed to have too
poor predictive ability to be used in an operational setting. A
possible avenue of future improvement is to analyze whether
some of the false positives share certain similarities that the
model can be trained to learn to recognize, so that these false
positives can be filtered out.

More research needs to be done on whether using the pres-
ence of minor disturbances to predict future voltage anomalies
is feasible in an operational setting. Preliminary results so far
seem to suggest that these minor disturbances occur frequently
without being followed by major disturbances, and thus are not
reliable indicators on whether a fault will soon occur or not.

Concerning faults that are separated by more than one
hour from the previous fault on the same node, the overall
observation both from the prediction results and from manual
inspection of the PQA data is that a majority of the faults were
not preceded by any early warning signs. That is, the progress
of the time series in advance of the fault event typically tends
to be more similar to the bottom plot in figure 2 than the top
one. However a small percentage of these faults, somewhere
around 10 %, did show clear signs in the preceding hour.
This does give some promise to the idea that even though the
majority of faults may not be predictable, it may be possible
to predict a small percentage of faults reliably in advance.
However, so far the number of false positives has been far to
high for a model to be usable in practice.

VI. CONCLUSION

In this paper, it was observed that the probability of a new
fault occurring as a function of the time since the previous fault
appears to follow a roughly logarithmic curve in the time span
between 1 second and 1 month. This tendency for temporal
clustering among power quality anomalies is important to
take into account when trying to predict the likelihood of
future anomalies. Initial testing seems to suggests that the
majority of voltage anomalies cannot be reliably predicted a

long time in advance. However, more research needs to be
done on whether it might still be possible to reliably predict
a small percentage of them. Finally, training on balanced data
sets is a training methodology that is not representative for
operational conditions, and thus less applicable for evaluating
voltage anomaly prediction models.
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