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A B S T R A C T   

Moonpools as a device for reducing pitch motion is investigated experimentally, numerically and by an 
approximate theory. A two-dimensional study is carried out of a rectangular body with two moonpools. Forced 
heave and pitch motion, as well as freely floating body in regular waves are studied. The body geometry is varied; 
two drafts and five different moonpool inlet configurations are considered; rounded and squared inlets, as well as 
vertical plates (appendages) extending below the inlet with three different depths. The outer corners of the body 
are square. There is a resonance as well as cancellation period in both pitch and heave, where the cancellation is 
the desired effect. By cancellation period we refer to a narrow period range where the pitch motion is nearly 
cancelled, due to the pressures induced by the moonpool piston-mode resonance. Our investigation reveals that 
the cases with rounded and square moonpool inlet geometries are most efficient in cancelling the pitch motions.   

1. Introduction 

Moonpools may be exploited in order to reduce rigid body motions in 
a frequency range near the natural frequency of the moonpool piston 
mode. In (Fredriksen et al., 2016) the authors investigated a barge with 
two moonpools for reducing the pitch motions of floating bridge foun
dations at one of the main natural modes of the bridge. The present study 
is inspired by the need for better understanding the coupled system, and 
in particular the role of flow separation at the moonpool inlets. We 
present a study performed in a two-dimensional setting, including ex
periments, numerical simulations and theoretical work. A rectangular 
barge with two moonpools is investigated both in freely floating regular 
wave conditions, and forced heave and forced pitch motions. The results 
are compared to that of a similar barge without moonpool. Our main 
focus is the configuration of the moonpool inlet (i.e. the entrance of the 
moonpool at the bottom of the barge). It is well established that flow 
separation from the moonpool inlet represents a major part of 
piston-mode damping at piston-mode resonance. We therefore investi
gate rounded and square inlets, in addition to inlets with vertical plates 
extending vertically below the bottom of the body. In the case with 
rounded moonpool inlets, there is weak flow separation with resulting 
weak damping, and therefore efficient pitch cancellation only for a 
narrow frequency range. It was anticipated by the authors that the 
increased damping for the other configurations could increase the 

frequency range for which there is significant pitch motion reduction. 
However, our results show that the case with rounded moonpool inlet 
out-performs the configurations with vertical plates, and gives similar 
results as the case with square moonpool inlet. 

It is well known that tanks partly filled with fluids may have a sig
nificant effect on the vessel motions, cf. for instance (Rognebakke and 
Faltinsen, 2003). The lowest sloshing frequency is the most important, 
since it is typically closest to frequencies with energy in the incident 
wave spectrum, it induces the highest loads on the vessel, and it excites 
higher modes due to nonlinear free-surface effects. Nonlinear sloshing 
easily occurs, with violent free-surface behaviour as (unwanted) 
consequence, in particular if the tank is long compared to the vessel. 
Nonlinear free-surface effects leading to super-harmonic excitation of 
sloshing is also documented for large moonpools (Ravinthrakumar et al., 
2020). In this study the moonpool length was half the ship length. In 
addition to significant nonlinear sloshing in the moonpool, the first 
sloshing mode influenced strongly the surge, heave and pitch motions. It 
is known that moonpools with significant size affects the vessel motions. 
See for instance (Maisondieu and Boulluec, 2001) where they investi
gated a well-head barge with a relatively large moonpool. The moonpool 
significantly affected heave and pitch motions, and also surge and sway 
to some degree. In Fredriksen et al. (2015), a similar two-dimensional 
study as that in the present paper was performed with a body with 
one moonpool only, in the middle of the body. Cancellation and 
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resonance periods for heave only, and not pitch, was observed for that 
configuration. The use of moonpools as motion reduction device is also 
exploited in floating offshore wind turbine design, such as that by Ideol. 

A benefit of using several small moonpools rather than closed tanks 
as damping device, is that there is significantly less potential for violent 
sloshing. Energy can escape due to radiated waves, and dissipate 
through flow separation at the moonpool inlet. In order to have a sig
nificant effect on pitch motions, the moonpool must in practice affect the 
pressure underneath the ends of the body. This may be achieved by a 
large moonpool. A large moonpool, however, may exhibit the first 
sloshing period within the wave spectrum. Further, a large moonpool 
reduces the dead-weight. Two or more laterally placed moonpools 
achieves both large effects in pitch, as well as keeping only the (non- 
violent) piston-mode motion within the incident wave spectrum range. 
This is exploited in the present concept. The pitch cancellation period 
can be tuned by varying the draft of the body, moonpool width and 
moonpool position. A resonance period in the vicinity of the cancellation 
period is an (unwanted) side-effect of the moonpools. 

Dedicated experiments are carried out, with corresponding numeri
cal simulations for selected cases. The study involves forced pitch and 
heave motions, as well as freely floating, horizontally moored, body in 
waves.Simulations of the forced motion cases are carried out by the 
Potential Viscous Code (PVC) (Kristiansen and Faltinsen, 2015), while 
for the freely floating body cases, simulations are carried out using the 
code by Fredriksen et al. (2015), which is based on a similar numerical 
hybrid scheme. In these methods, the free-surface conditions are derived 
from a potential flow theory assumption, but we emphasize that both 
codes are based on a Navier Stokes solver in the domain covering the 
body, such that the flow is (in principle) solved for by first principles, 
and there is no artifical or empirical damping added. Also, an approxi
mate theory, similar to that by Molin (2001) is developed to explain the 
two different piston-mode natural frequencies in forced heave and pitch. 

The present paper is organised as follows. The experiments are 
described in Section 2. Next, the numerical methods are briefly 
described in Section 3. The approximate theory is presented in Section 4. 
The experimental and numerical results are presented in Section 5. Last, 
concluding remarks are given in Section 6. 

2. Experiments 

The model tests were performed in a glass-walled wave flume located 
at the Marine Technology Centre at NTNU in Trondheim. The model 

setup is illustrated schematically in Fig. 1. Model scale dimensions are 
presented in Table 1. Two photos are provided in Fig. 2. Both forced 
motion and freely floating tests in waves were performed. A vertical 
actuator with a motion controller was used to oscillate the model. In the 
forced pitch motion tests, the pitch axis was taken in the still water line, 
and the middle of the model. 

Five different moonpool inlet geometries were tested, see Fig. 3. In 
Fig. 3 we illustrate the terminology that we use throughout the paper; 
(a) moonpool inlet (area), (b) moonpool inlet geometry and (c) flow 
separation from the moonpool inlets. In the rounded moonpool inlet 
case, there is no or very weak flow separation given the significant 
radius of the inlet, rm, relative to the piston-mode flow amplitude. 
Therefore, no no flow separation is indicated there. 

An imagined model scale was chosen to be 1:256, corresponding to a 
full scale beam of 333 m and drafts of 51 m and 38 m. Due to the fact that 
the geometries involve sharp corners (except for the rounded moonpool 
inlet), scale effects are argued to be small since the separation points are 
fixed. Flow separation at the moonpool inlet is well known to contribute 
significantly to piston-mode damping. Further, flow separation from the 
two lateral bilge corners (marked by A in Fig. 2) of the model is expected 
to contribute to pitch damping. 

2.1. Instrumentation 

All data from the experiments were sampled at 200Hz. An amplifier 
of type Hottinger MGC+ was used for the data acquisition. A Butter
worth filter with cut-off frequency at 20Hz was applied to all signals, 

Fig. 1. Experimental set-up of the forced motion model tests and freely floating rigid motion model tests in regular waves. Top: side view. Bottom: bird’s eye view. 
The total tank length is 13.7 m, and the tank width 0.6 m. The model is B = 1.3 m long and 0.592 m wide. The moonpool gap widths are b = 0.2 m. Two drafts of D =
0.15 m and 0.2 m were tested in the force motion test. In the freely floating tests, only D = 0.15 m was tested. The locations of the wave probes (w1 - w7) are 
provided. Wave probe w1 is used to measure the incident wave. Three accelerometers were mounted on the top of the model; a1 and a3 are vertical and a2 horizontal. 
The mooring lines were not included in the forced motion tests. In the forced motion tests, a parabolic beach was installed also on the left hand side of the flume. 

Table 1 
Parameters describing the forced heave and forced pitch motion test set-up. The 
quantities are explained in Fig. 1.  

Quantity Parameter Value 

Beam of the model [m] B  1.300 
Beam of center box [m] L2  0.500 
Beam of lateral boxes [m] L1  0.200 
Total height of boxes [m] Hm  0.400 
Transverse width of boxes [m] lw  0.592 
Moonpool gap width [m] b  0.200 
Draft [m] D  0.150, 0.200 
Water depth [m] h  1.00  
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standard to most tests of this type. The accelerometers were designed by 
SINTEF Ocean with a maximum acceleration of 5g, where g is the ac
celeration of gravity. They are known to be stable and accurate for the 
present wave/oscillation frequencies and (small) motion amplitudes. 
The wave maker and actuators were controlled by a-priori generated 
time-signals with up-date frequency of 50Hz. The wave gauges were 
standard capacitance wave staffs, i.e. two parallel steel bars of 2 mm 
diameter each, approximately 20 mm apart. 

2.2. Forced heave and pitch experiments 

The motivation behind the forced motion tests was to investigate the 
resonant response in the moonpools, with emphasis on the damping due 
to flow separation, without the complication of incident waves and body 
motions. The model was forced to move in heave and pitch separately. 
The vertical position of the fixed point of rotation was chosen at the still 
water line. In addition to two drafts, five different inlet configurations 

Fig. 2. Photos from the experimental set-up. Left: forced motion test with square moonpool inlets. Right: freely floating model test. A: the lateral bilges of the model. 
B: the 4 cm × 4 cm removable moonpool inlet pieces. C: the lower part of the actuator (in the upper part of the photo). 

Fig. 3. Upper: Side view sketch of the model, which is a rectangular barge with two moonpools. The two areas that we refer to as ‘moonpool inlet’ are indicated by 
the dashed rectangles. Lower: mooonpool inlets. Five different moonpool inlet geometries were tested; squared, rounded and three different appendages. The radius of 
the rounded inlet was rm/b = 1/5 (rm = 0.04 m model scale). The appendages were vertical plates extending a distance da from the lower part of the boxes; da /b 
= 0.05, 0.1, 0.15 for the three cases denoted App1, App2 and App3, respectively (corresponding to 0.01 m, 0.02 m and 0.03 m in model scale). Flow separation from 
the moonpool inlets, which is a main contributor to piston-mode damping, is illustrated by rolled-up vortex sheets. 
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were tested at three forced motion amplitudes. The inlet configurations 
were changed by replacing a 40 mm × 40 mm removable section at the 
four moonpool inlet corners with the components illustrated in Fig. 3. 

Four parameters were varied during the experiments; the draft (D =
0.2 m and D = 0.15 m), the oscillation period (30 different periods 
between 0.7 s and 1.54 s), the forced oscillation amplitude, and moon
pool inlet geometry. The forced heave motion amplitudes were η3a =

0.0025 m, 0.005 m and 0.0075 m, corresponding to non-dimensional 
heave amplitudes of η3a/B = 0.0019, 0.0038 and 0.0058. The forced 
pitch motion angle amplitudes were η5a = 0.76, 1.01 and 1.53 degrees, 
corresponding to non-dimensional vertical motion in the center of the 
moonpools of b′η5a/B = 0.0020, 0.0027 and 0.0038 (somewhat lower 
than for forced heave). b′ is the horizontal distance from the pivot point 
at the center of the model to the middle of the moonpools. 

In total, almost 1 800 forced motion tests, including repetition tests, 
were performed. An automated controller set-up was designed in order 
to facilitate the test program. Only selected results are presented, chosen 
such as to reflect the main findings of the study. Five forcing periods was 
used to reach desired forced motion amplitude, followed by 50 
consecutive steady-state motion oscillations until the motion decreased 
linearly to zero during five oscillations. The model was then held at rest 
for 200 s prior to the next test, which was found sufficient to reach calm 
conditions prior to the next run. 

Seven wave probes were installed. Their locations are given in Fig. 1. 
Wave probes 1, 6 and 7 were mounted to the tank wall, whereas wave 
probes 2–5 were mounted to the moonpool hull, 6 cm from the hull. The 
free-surface was converted to Earth-fixed coordinate system using the 
recorded rigid-body motions. An Earth-fixed displacement sensor was 
mounted to the carriage to measure the forced motions. 

For the forced oscillation experiments, the wave flume was equipped 
with a parabolic beach at each end. The upper position of these were 

approximately 1 mm below the free surface. This has been found to 
absorb the small-amplitude waves adequately (Kristiansen and Faltin
sen, 2012). In the tests with waves, the beach in front of the wave maker 
was removed. 

2.3. Freely floating experiments 

About 900 regular wave tests were conducted, including repetition 
tests. This included 30 different wave periods (T = 0.7 s - 1.3 s), three 
different wave steepnesses (H/λ = 1/60, 1/45 and 1/30) and two 
different radii of gyration of ryy/B = 0.24 and ryy/B = 0.36. Here, H is 
the wave height and λ is the wave length according to linear wave 
theory. Also for these tests, all the five inlet configurations were tested. 
Only one draft was tested in the freely floating tests; the lowest draft of 
B/D = 8.7. Two aluminum L-profiles were used to connect the three 
hulls. In total, 34.0 kg of lead weights was placed inside the boxes, 
making the total weight 79.9 kg (giving a draft of 15 cm). See Table 2 for 
descriptive parameters of the model and test set-up 

Horizontal springs from both sides of the hull were connected to 
racks mounted to the tank wall 1.52 m away from the lateral walls of the 
hull. The model was thus free to move in surge, heave and pitch. Force 
rings were mounted on the mooring lines in-between the springs and the 
model. The springs were pre-tensioned such that no slack occurred 
during the tests. A soft mooring was used. The natural period in surge 
was 5.5 s, which is well outside the tested wave range. The pre-tension 
was 2.1N, and the vertical position of the mooring attachment was close 
to the centre of gravity of the model. The springs were modelled in the 
numerical simulations. 

The model front was 7.8 m from the wavemaker. The wavemaker 
was programmed to generate 27 waves, then held at rest for 210 s before 
the next test. The number of wave periods was in general sufficient to 
obtain near steady-state rigid-body motions. 

In the wave tests, an additional wave probe (wave probe 1), was 
positioned 3 m from the wavemaker. Wave calibration tests were carried 
out without the model, prior to the tests with model. The repeatability of 
the waves measured at this wave gauge relative to that wave calibration 
tests was found to be good. 

Three accelerometers were mounted on the top part of the model in 
order to measure the rigid body motions; vertical accelerometer 1 and 3, 
and horizontal accelerometer 2 (cf. Fig. 1). The center-to-center distance 
between accelerometers 1 and 3 was 1.20 m. All motions were thus 
measured in a body-fixed coordinate system and later transformed to an 
Earth-fixed system. Importantly, one must remove the g − component 
from the horizontal (body-fixed) accelerometer signal. 

2.3.1. Brief discussion on error sources 
Wave re-reflections by the wavemaker was a concern due to the 

relatively short distance between the front of the model and the wave

Table 2 
Parameters describing the freely floating test set-up. ryy was estimated during 
the experiments by summing weight contributions.  

Quantity Parameter Value 

Draft [m] D  0.15 
Total model mass [kg] m  79.92 
Radius of gyration [-] ryy/B  [0.24, 0.36] 

Pitch moment of inertia [kg m2]  I55  [7.75, 17.66] 

Center of gravity (from model bottom) [m] zCoG  0.17 
Spring constant [N/m] s1  27.4 
Spring constant [N/m] s2  32.14 
Pre-tension [N] F1  6.75 
Pre-tension [N] F2  6.91 
Mooring length [m]  1.52 
Distance mooring line to still water line [m]  0.1  

Fig. 4. Time-series of wave probe 1 (3 m from the 
wave-maker), heave and pitch motions in freely 
floating tests with wave steepness H/λ = 1/60, wave 
period T = 0.94 s (T* = 6.58), draft B/D = 8.7 m and 
lowest radius of gyration ryy/B = 0.24. t = 0 corre
sponds to start of the wave-maker. Using wave group 
velocity Cg predicted by linear wave theory, t1 refers 
to the time that reflections from the model reach 
wave probe 1, and t2 refers to the time when re- 
reflections from the wave-maker reaches the model. 
The RAOs are obtained from average amplitudes of 
the near steady part of each time-series as indicated in 
the figure.   
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maker (L = 7.8 m). For the wave periods close to resonance and 
cancellation, there were 20-25 wave periods until re-reflections. The 
effect of re-reflections are exemplified in Fig. 4 for wave period T =
0.94 s and wave steepness H/λ = 1/60. The chosen time-intervals used 
for extracting the response amplitudes are indicated by horizontal lines 
with triangular markers. There are clear wave reflections from the 
model back to wave probe 1 at time t1. However, this does not (linearly) 
disturb the incident waves on the model. More importantly is the fact 
that there are also clear re-reflections from the wave-maker back to the 
model on the rigid body motions at time t2. Although a near steady-state 
is reached, this represents an error source in our experiments. It appears 
that the heave motions are still increasing when the re-reflections occur, 
although it is not easy to judge, due to the beating type of behaviour 
which is present due to a set of closely spaced natural periods of the 
heave, pitch and piston-mode. Preferably, one would use a longer wave 
tank. 

The presented time-series are representative for the freely floating 
tests. In the forced motion tests, arbitrarily long time-intervals of near 
steady-state wave elevations was achieved due to that the radiated 
waves were efficiently absorbed by the parabolic beaches. 

Repetition tests were carried out. The results are presented later in 
the text (cf. Fig. 14). The standard deviations are in general within 3-4% 
of the mean values. 

The forced motion amplitudes, η3a and η5a, as well as the incident 
wave amplitudes, ζa, were in general 2 - 10% lower than that prescribed. 
However, this is accounted for by non-dimensionalizing the RAOs with 
the measured, steady state amplitudes. 

Investigation of video recordings did not indicate any significant 
three-dimensional disturbances. Wall gap effects have earlier been 
found to be minor in forced motion moonpool tests. Occasionally, the 
model was observed to nearly touch the glass walls of the wave flume. 
Damping of resonant pitch motions may therefore have been affected, 
but we have not been able to quantify this effect. 

Ventilation around the lateral corners of the model at the highest 
wave period for wave steepness H/λ = 1/30 was observed. It is expected 
that this affected the body motions, but it was not investigated in detail. 
The numerical simulations were carried out only for the smallest wave 
steepness, H/λ = 1/60, and the wave periods of main interest was lower. 

A small water leakage of about 3 mm during the first two days of the 
experiments led to some minor wave reflections for some tests, as well as 

a minor change of piston-mode natural frequency. The wave reflections 
appear as small irregularities in the free-surface RAOs for some tests. 
The beaches were carefully positioned such that the upper part was 
submerged by 1 mm. This has been found earlier to be important to 
efficiently damp out waves of very low steepness, such as those radiated 
from the present forced motion tests. The piston-mode resonance period 
was shifted by 1-2% for the affected tests due to a reduction in draft of 2- 
3%. 

2.4. Data analysis 

The results are in the present paper provided as non-dimensional 
responses; RAOs. The RAOs are computed from average amplitudes in 
near steady-state parts of the time-series, band-pass filtered around the 
basic harmonic. The time-windows were exemplified in Fig. 4 for wave 
period T = 0.94 s and wave steepness H/λ = 1/60. This corresponds to 
T* = 6.58, where T* = T

̅̅̅̅̅̅̅
g/b

√
is the dimensionless period for which the 

results will be presented throughout the paper. 
The free-surface RAO in forced heave motion cases is defined as ζg/

η3a, where ζg refers to the amplitude of the first harmonic of the wave 
gauges inside the moonpools, and η3a refers to the amplitude of the first 
harmonic of the forced heave motion. Similarly, in the forced pitch 
motion cases, the free-surface RAO is defined as ζg/b′ η5a, where b′ is the 
distance from the model centre-line to the middle of the moonpool, and 
η5a represents the amplitude of the first harmonic of the forced pitch 
motion. In this way, the free-surface motion is normalized by the mean 
local vertical body motion across the moonpool in the pitch case. In the 
freely floating tests, the free-surface RAOs are defined by ζg/ζa, where ζa 

is the amplitude of the first harmonic of the incident wave. The rigid 
body motion RAOs are defined as η3a/ζa and η5a/kζa, where k is the wave 
number. 

All free-surface RAOs inside the moonpools are transferred to the 
Earth-fixed coordinate system by subtracting the vertical motion of the 
wave gauge from the measured free-surface elevation. The heave and 
pitch motions are obtained by integration of the accelerometer signals, 

η̈3 =
az1 + az3

2
, (1)  

Fig. 5. Results from heave and pitch decay tests of the case with App2 moonpool inlet configuration, beam-to-draft ratio B/D = 8.7 and pitch radius of gyration ryy 

/B = 0.24. Upper: heave decay tests. Lower: pitch decay tests. 
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η̈5 =
az1 − az3

La
, (2)  

where La = 1.2 m is the center-to-center distance between the two ac
celerometers. The accelerometer signals were band-pass filtered in a 
narrow frequency range around the basic (wave) harmonic in order to 
avoid in particular low-frequency noise, and integration was performed 
in frequency domain. 

2.5. Free decay tests 

Free-decay tests of all geometric configurations were performed. An 
example is provided in Fig. 5 for the moonpool inlet with medium 
appendage (App2), and lowest radius of pitch gyration ryy /B = 0.24. 
Three decays were performed for each, as illustrated in the left part of 
the figure. The last one is shown in more detail in the right part of the 
figure. The two upper figures represent the heave decay test. Due to that 
it is difficult in practice to achieve pure heave, also the pitch motion is 
provided in the top right figures. Similarly for pitch in the lower right 
figure. 

We made an attempt to extract heave and pitch damping using log
arithmic decay analysis. However, due to beating type of behaviour 
caused by the piston-mode resonance, there is no clear decay throughout 
the test. The time-series of the heave and pitch motions are not mono
tonically decaying, as exemplified around 100–105 s in the upper right 
figure. Even though a quantitative (logarithmic decay) analysis cannot 
therefore be performed, we observe that there are clearly different levels 
of damping between the five different inlet geometries. This is illustrated 
in Fig. 6. There are clear quantitative similarities between the three 
cases with appendages in the inlet. In the rounded inlet case, the system 
is clearly less damped as compared to the others. This illustrates that the 
damping in heave is clearly dependent on the energy dissipation due to 
flow separation at the moonpool inlet. Similar observations are made for 
pitch. 

3. Numerical simulations 

Numerical simulations were carried out for selected forced motion 
and freely floating cases. In the forced motion case, the two highest 
forcing amplitudes were simulated for the two cases with squared and 
largest appendage (App3) moonpool inlet configurations. In the freely 
floating case, only the square corner inlet configuration with the lowest 

radius of pitch gyration ryy/B = 0.24 at the smallest wave steepness H/

λ = 1/60 was simulated. 

3.1. Forced motion simulations 

The SINTEF Ocean (former MARINTEK) implemented software Po
tential Viscous Code (PVC) was used for the forced motion simulations. 
The code is based on the hybrid methodology coupling potential and 
viscous flow solvers developed by Kristiansen and Faltinsen (2012). The 
code has been used to study different two- and three-dimensional 
moonpool cases, see for instance (Kristiansen et al., 2013) and 
(Ommani et al., 2016b). The method involves a Navier Stokes solver 
with linearised free-surface and linearised or exact body-boundary 
conditions. 

We emphasize that there is no empirical or artificial damping added 
in the simulations. The flow is solved for by first principles, i.e. by the 
Navier–Stokes solver; the main difference from a standard two-phase 
CFD analysis is that the free-surface conditions are linearized accord
ing to linear potential flow theory. This facilitates much larger cell size 
at the free surface, since the wave amplitude itself does not need to be 
resolved, only the wave length. Fast and robust computations are ach
ieved in this manner. The method has proven very useful in marine 
resonance problems such as moonpool and roll resonance. CPU times of 
minutes, rather than hours or days are achieved in practice. 

Linearised free-surface and body-boundary conditions have been 
found to be sufficient for moonpool resonance, as long as the relative 
velocity at separation points at the moonpool inlet is dominated by the 
water motion. The strength of the separating vortical structures is then 
well captured, and thereby the damping of the resonant piston-mode 
motion. 

We emphasize that linearised body-boundary conditions are not 
applicable for vessel roll. There, the roll motion of the body is the main 
contributor to the relative water velocity at the bilges. It was shown in 
(Fredriksen et al., 2015) that linear body-boundary conditions are not 
sufficient to capture flow separation at the bilges. PVC has been further 
developed for vessel roll, cf. (Ommani et al., 2016a) and (Ommani et al., 
2016c), where the main difference is that fully-nonlinear body-
boundary conditions are applied in order to remedy this. This is ach
ieved in their work by a deforming mesh technique. 

In the case of forced heave, both linear and fully nonlinear body- 
boundary conditions (i.e. deforming mesh) were simulated in the 

Fig. 6. Results from heave decay tests of all five moonpool inlet configurations, beam-to-draft ratio B/D = 8.7 and pitch radius of gyration ryy /B = 0.24.  
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present study. Negligible differences in results were found. In the case of 
forced pitch motions, fully nonlinear body-boundary conditions were 
employed only. 

A mesh size convergence study was performed using forced pitch 
motion of the square moonpool inlet as a test case. The results are pre
sented in Fig. 7 in terms of moonpool free-surface RAOs. Mesh 3 (in the 
vicinity of the body) is illustrated in Fig. 8. The results are clearly sen
sitive to the mesh. According to our experience, the main physical 
feature to capture adequately for piston-mode resonance are the main 
vortical structures emanating from the moonpool inlets. Based on the 
results in Fig. 7, mesh 4 was selected. Although one cannot claim uni
form convergence, it appears that the main physics is captured for the 
present cases with this mesh, since Mesh 4 and 5 give very similar re
sults. A similar mesh convergence study was performed for forced heave, 
and the results were considerably less mesh-dependent. Pitch motions 
thus seems to be more sensitive, at least in the present set-up. 

Running 40 forced oscillations with mesh 4, took typically about 120 
s on a single processor using a regular laptop equipped with an Intel i7- 
5500U CPU with 8Gb RAM. The number of time-steps per oscillation 
was approximately 40. The method is thus very efficient, with the reason 
discussed above. 

3.2. Freely floating body simulations 

Solving for the equations of body motions is not implemented at 
present in PVC. Fredriksen’s (Fredriksen et al., 2015) numerical code 
was used to simulate the freely floating body in waves. The code is based 
on a similar hybrid method as PVC, combining potential flow and Navier 
Stokes solvers. The difference is that this code employs fully nonlinear 
body-boundary conditions as well as fully nonlinear free-surface con
ditions, and the problem is solved in body-fixed coordinates. The main 

parameters of the mesh was similar to Mesh 4 above. 

4. Theory 

The most important mode in the moonpool in our case is the piston 
mode. When there are two moonpools, there are two piston modes; one 
when the two water columns oscillate with the same phase, and one 
when they oscillate with opposite phase. We refer to these two modes as 
symmetric and antisymmetric piston modes. In freely floating condi
tions, both piston modes will be excited and influence the body motions. 
Both modes are excited by the diffraction problem (body fixed in inci
dent waves), whereas the symmetric piston mode is excited by heave 
motions only, while the antisymmetric piston mode is excited by pitch 
motions only. 

We see from the forced motion tests that the two piston mode natural 
frequencies differ by about 6%. This is explained by that the moonpool 
flow will differ for the two modes. In the antisymmetric case, the two 
moonpool piston modes mutually excite each other, whereas in the 
symmetric case, the flow will be as if there is a vertical wall in the center- 
line of the model. 

In order to investigate the differences, we developed a simplified 
analysis inspired by that of Molin (2001). He applied the matched 
eigenfunction expansion technique in order to approximately solve the 
spectral problem for a rectangular barge with one moonpool. In the 

Table 3 
Numerical mesh parameters for simulations with Potential Viscous Code 
(PVC). N means total number of cells. Ng means number of cells across the 
moonpool.  

Mesh N  Ng  

Mesh 1 17 852 10 
Mesh 2 20 158 20 
Mesh 3 27 268 35 
Mesh 4 50 058 70 
Mesh 5 130 550 130  

Fig. 7. Convergence study in terms of free-surface moonpool RAOs from forced pitch motion simulations with Potential Viscous Code (PVC). See Table 3 for mesh 
descriptions. The results are clearly mesh dependent. Mesh 4 was applied in the main analysis. The results were considerably less mesh dependent in forced heave 
simulations. 

Fig. 8. Numerical mesh in the vicinity of the right moonpool, used in the forced 
heave and pitch motion simulations with Potential Viscous Code (PVC). Mesh 
resolution level 3, cf. Table 3 and Fig. 7. 
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two-dimensional case he represented the flow to both sides of the body 
by two sources (sinks). 

We assume that the fluid is inviscid and incompressible, and that the 
flow is irrotational. We may then use potential flow theory. The spectral 
problem involves solving a linearised potential flow boundary-value 
problem with zero Neumann conditions on the body boundaries, in 
order to find natural frequencies ω. We define a Cartesian coordinate 
system 0xy with the vertical y-axis pointing upwards and with origin in 
the centre-line of the inlet of moonpool I, see Fig. 9. The free surface is 
located at y = D and denoted by SF (including the free surface both in the 
moonpools and exterior of the body). The water domain is denoted Ω,

where domains I and II represent the moonpools and domain III the 
remaining part of the domain. The body surface (including all three 
hulls) is denoted S0. Harmonically oscillating conditions are assumed 
such that the velocity potential may be expressed as Φ(x,y, t) = ℜ(φ(x,
y)e− iωt). The spectral problem for φ is 

∇2φ= 0 in Ω (4)  

∂φ
∂n

= 0 on S0 (5)  

− ω2φ + g
∂φ
∂y

= 0 on SF (6)  

φ→0 as r→∞ (7)  

Here, ∂/∂n denotes normal derivative and r =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2 + y2

√
. 

We solve the spectral problem (4–7) approximately. The approxi
mation lies in that the domain exterior to the body is represented by 
point sources located some distance away from the lateral bilges, at x =
− d1 and x = d2, y = 0. This approach was cleverly suggested and used 
by Molin (2001). Further, we assume that the two moonpools are suf
ficiently far away from each other such that the influence of moonpool II 
on moonpool I can be represented by a point source located at the 
middle of moonpool entrance II. The free-surface conditions are satisfied 
only in the moonpools. The flow to the sides of the body is not physical. 

It is sufficient to perform the matching at the entrance of moonpool I 
only, denoted SI, (or equivalently, at the entrance of moonpool II only). 
The matching involves requiring equality of the normal velocity; ∂φIII /

∂y = ∂φI/∂y on SI and equality of pressure (velocity potential) on 
average over SI. 

In our analysis we keep only the lowest order terms of the eigen
function expansion in the moonpools; 

φI = A0 + B0 y/D, (8)  

meaning that the flow is uniform and vertical in the moonpools. The zero 
Neumann condition along the vertical moonpool walls is satisfied with 
this solution. 

In the symmetric problem, we require that φII = φI, while in the 

antisymmetric problem we require φII = − φI. Placing all sources and 
source distributions at y = 0 satisfies the zero Neumann body-boundary 
condition along the bottom of the hull, at y = 0. 

The solution of the velocity potential in domain III (below the body) 
is now, for the symmetric problem, 

φIII(x, y= 0) = −
1
π

∫

SI

B0

D
[log|x − ξ|

− log|x+ d1| − log|x − d2| + log|x − c|]dξ. (9)  

Here, we have applied continuity of normal velocity along SI by means 
of using the moonpool (piston-mode) velocity ∂φI

∂y = B0/D at y = 0. The 
point sources outside the body are necessary in the symmetric problem 
in order for the potential (and pressure) to vanish at infinity; their 
strengths are equal to each of the two moonpools, with opposite sign. 
This is different to Molin, where each source has half the source strength 
of the moonpool in order to achieve balance. While the vertical position 
is given as y = 0 in order for the zero normal flow body-boundary 
condition on the bottom of the body to be satisfied, the horizontal co
ordinate is not uniquely given. Molin argued that the position should be 
a small distance away from the barge keel. 

In the antisymmetric problem, the lateral point sources are not 
strictly speaking necessary, since the two moonpools act as a source and 
a sink with equal strength, and therefore in total vanish at infinity. 
However, neglecting these implies that all the flow must go from one 
moonpool to the other. There will certainly also be some flow commu
nicating with the exterior domain, and so, they should be included. The 
weight, say β, of the point sources are unknown, however, so we must 
make a qualified guess. We suggest a simple geometric weighting, β =

c/(c+ d1). c is the center-to-center distance between the two moonpools, 
and d1 is the distance from the center of moonpool I to the left point 
source. We then have for the antisymmetric problem, 

φIII(x, y= 0) = −
1
π

∫

SI

B0

D
[log|x − ξ|

− βlog|x+ d1| + βlog|x − d2| − log|x − c|]dξ. (10)  

We now assume that b/2 is small compared to c, d1 and d2. We may then 
simplify the three point source terms to logγ, where γ = c/d1d2 in the 
symmetric problem and γ = c− 1(d2/d1)

β in the antisymmetric problem. 
The theory may be generalised to several moonpools, as long as they are 
some distance apart so that they may be assumed to be in each other’s 
far field. The only consequence of more than two moonpools is more 
factors in γ. A relevant theory was developed by Miles (2002). He 
investigated a three-dimensional body of infinite horizontal extent, with 
arbitrary number of moonpools with circular cross-section. 

The matching of the pressure in an average sense involves integra
tion over SI,

Fig. 9. Definitions of parameters used in the approximate solution of the spectral problem to predict the two piston-mode natural frequencies (symmetric and 
antisymmetric problems). Domains I and II are defined by the vertical moonpool walls, the free surface y = D and the moonpool entrance y = 0. Domain III con
stitutes the remaining part of the fluid domain Ω. S0 is the boundary of the total body. 
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∫

SI

φI dx =

∫

SI

φIII dx. (11)  

Inserting (8) and (9) or (10) into the matching condition (11) results in a 
double integral on the right hand side of (11). This gives us 

A0

/

B0 =
b

πD

(
3
2
− log bγ

)

. (12)  

The free-surface condition − ω2φI + g ∂φI/∂z = 0 on z = D gives the 
relation 

ω2 =
g

D(1 + A0/B0)
. (13)  

Inserting (12) into (13) gives the natural piston-mode frequency as 

ω2 =
g

D
(

1 + b
πD

(
3
2 − log bγ

)). (14) 

Numerical values of the natural periods, T*
n, as function of the dis

tance from the lateral bilges of the body to the sources/sinks normalized 
by the moonpool width, s/b, are provided in Fig. 10. The draft is B /D =
6.5, and the other geometrical parameters are as those in the experi
ments. The experimentally obtained natural periods from the forced 

heave and pitch tests (to be presented later) are indicated by horizontal 
lines. The best agreement between the theory and the experiments ap
pears for s/b ≃ 1.5. This is a reasonable position seen from a physical 
point of view. More important than the exact position of the lateral 
sources is that the simplified theory qualitatively predicts that the nat
ural period of the symmetric problem is higher than that in the anti
symmetric problem, which is consistent with the experimental results. It 
is consistent with our intuition that the water will flow with more ease 
when it may (partly) flow back and forth between the moonpools as it 
may in the antisymmetric problem, and not only towards the lateral 
sides of the body as it must in the symmetric problem, and this will result 
in a higher natural frequency. 

The real problem involves a freely floating body, and not forced 
motion. The lateral sources will also have consequences for the pitch 
response in freely floating conditions, as the flow due to the piston-mode 
underneath the lateral part of the body will considerably influence the 
hydrodynamic pitch moments, and play a major part in the coupled 
pitch/piston mode system. More work would be needed in order to 
develop an approximate theory for the freely floating problem due to the 
difficulties with solving the radiation problem in an approximate 
manner. An eigenvalue problem of the freely floating case using added 
mass coefficients extracted from forced motion time-domain simulations 
with PVC is presented in the last part of the paper. 

Fig. 10. Curves represent natural periods predicted by 
the presented approximate theory of the symmetric and 
antisymmetric problems as function of the non- 
dimensional position of the laterally placed sources, 
s/b. T* = T

̅̅̅̅̅̅̅̅
g/b

√
. The experimentally obtained piston- 

mode periods from forced heave (symmetric) and 
forced pitch (antisymmetric) tests are indicated by the 
horizontal lines. In both the symmetric and antisym
metric cases the experimentally obtained natural piston 
modes indicate that the position of the lateral sources 
are as much as s = 1.5b from the latereal bilges of the 
body.   

Fig. 11. Experimental piston-mode RAOs from forced motion tests illustrating the effect of the five different moonpool inlet geometries. The RAOs are average values 
of the moonpool wave gauges wp 2-5. Largest forced motion amplitudes η3a/B = 0.0058 and b′ η5a/B = 0.0041. b′

= 0.350 m is the distance from the model centre to 
the centre of the moonpools, cf. Table 1. Draft B/D = 6.5. 

L.M.U. Reiersen et al.                                                                                                                                                                                                                          



Applied Ocean Research 108 (2021) 102477

10

5. Results 

We first present and discuss results from the forced motion case, and 
next the freely floating case. We last perform an eigenvalue analysis of 
the freely floating case. 

5.1. Forced heave and pitch 

Earth-fixed moonpool RAOs for the five different inlet configurations 
are presented in Fig. 11 under forced heave and forced pitch, for the 
largest forcing amplitude. As discussed above, the natural periods in the 
forced heave (symmetric) and forced pitch (antisymmetric) problems 
differ. For instance, the natural period in forced heave is about 6% 
higher than that in forced pitch in the case with square moonpool inlet 
geometry. In forced pitch, the two moonpools mutually excite each 
other, whereas, in forced heave, they do not. As a result, not only the 
natural periods differ, but the moonpool response is in general larger in 
forced pitch than forced heave, as seen from the experimental results. 

The largest appendage moonpool inlet (App3) causes smallest reso
nant responses, whereas the rounded inlet the largest. The fact that the 
largest inlet causes smallest moonpool response may be anticipated due 
to larger damping caused by the strong geometric singularities at the 
moonpool inlet (the lower end of the vertical plates at the moonpool 
entrance). It is also anticipated that the response is largest for the 
rounded inlet case, since there should have been negligible damping due 
to none, or very weak flow separation in the present small Keulegan 
Carpenter (KC) number range. We use KC = w Tg/d as a measure of the 
KC number, where Tg is the natural piston-mode period, w = ωgζg is the 
amplitude of the vertical velocity of the piston-mode free-surface at 

resonance frequency ωg = 2π/Tg and d = 2r = 2× 0.04m = 0.08 m is 
two times the radius of the moonpool inlet (cf. Fig. 3). The largest KC 
number in the forced heave tests is then 4.7, for η3a = 0.0075 m 
amplitude and moonpool RAO of 5. The largest KC number in the forced 
pitch tests is 4.2, for local heave amplitude in the moonpool b′η5a =

0.0053 m and moonpool RAO of 8. Flow over a blunt body (like the 
rounded moonpool inlet) at KC numbers of 4-5 indicates minor flow 
separation effects. This is supported by that the rounded inlet moonpool 
RAOs from the tests with small and medium forcing amplitudes (not 
shown) are practically identical to the ones presented in the figure for 
the largest forcing amplitude. 

An increased resonance period for appendages, relative to square 
moonpool inlet, is explained by that they represent an increased effec
tive draft. This results in a larger effective piston-mode mass. Both the 
effect of reduced piston-mode response and shift in natural period may 
be exploited in a design. In particular, we expected a priori that a 
reduced piston-mode response would be beneficial for the performance 
of the bridge foundation. However, as discussed later in the paper, the 
rounded and square moonpool inlets seem to out-perform the inlets with 
vertical plates in that they provide a higher degree of pitch reduction. 

Experimental and numerical RAOs are compared in Fig. 12 for square 
inlet and largest appendage case (App3), both for forced heave and 
forced pitch, for the medium and large forcing amplitudes. The draft is 
B/D = 6.5. The numerical results are averaged free-surface elevation 
across the moonpool, and the experimental are averaged values of the 
two moonpool wave gauges. The agreement between the experiments 
and simulations is in general satisfactory. This provides confidence in 
the experiments, as well as validation data for the numerical simula
tions. We would like to point out that, despite the numerical difficulties 

Fig. 12. Numerical versus experimental moonpool RAOs for the cases with square moonpool inlets and the largest appendage moonpool inlet (App3) configurations 
for the forced motion tests. Left: forced heave. Right: forced pitch. From the experiments, the two largest forcing amplitudes are included. The effect of forcing 
amplitude is small. The data points indicated as Far-field refer to wave probe 7, 1 m from the hull. B/D = 6.5. 
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experienced in general with flow of a viscous fluid across flat plates, the 
PVC simulations are able to predict the moonpool response well also for 
the App3 geometry. 

The effect of motion amplitude is not pronounced for the present 
square moonpool inlet set-up. It is in general more pronounced with 
smaller ratios between moonpool gap width and body beam, cf. for 
instance (Faltinsen et al., 2007). The reason is that, in our case, wave 
radiation damping (of the piston-mode) dominates over that due to flow 
separation. If the moonpool width, b, is reduced relative to the body 
beam, B, or the moonpools are placed closer to the middle of the body, 
higher resonant piston-mode response is expected, leading to more 
relative importance of flow separation damping, and therefore 
amplitude-dependent RAOs. 

The effect of changing draft is mainly that of a shift in the piston- 
mode period, as expected. This is illustrated in Fig. 13. Experimental 

results for square and rounded inlets are presented, for the highest 
forcing amplitude. The response is observed to be somewhat larger for 
the smallest draft. This is in fact opposite to what was observed by 
Fredriksen et al. (2014) in their forced heave tests of a body with a single 
moonpool. 

Results from the repetition study are presented in Fig. 14. The two 
upper plots represent forced motion tests, while the two lower plots 
freely floating tests. The results are based on five repetitions. Mean 
values of selected responses are presented, accompanied by the standard 
deviation. The standard deviation provides a measure of the random 
errors. Around the resonance peaks, the standard deviation relative to 
the mean is in general within 3-4%, and we conclude that the degree of 
repeatability is within typical experimental error levels. 

Fig. 13. Experimental moonpool RAOs for square and rounded moonpool inlets illustrating the effect of changing the draft. Upper: square moonpool inlet. Lower: 
rounded. Largest forced motion amplitudes (η3a/B = 0.0058 and b′ η5a/B = 0.0041). 

Fig. 14. Mean and standard deviations of selected, representative responses obtained from the repetitions tests. The analysis is based on five repetition tests in all the 
cases. Upper: forced motion. Lower: freely floating tests. The standard deviation is in general within 3-4% of the mean values. 
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5.2. Freely floating model in waves 

Experimental and numerical RAOs for surge, heave and pitch mo
tions, and free surface inside the two moonpools are provided in Figs. 15 
and 16 for two wave steepnesses (H/λ = 1/60 and 1 /30). The beam-to- 
draft ratio is B/D = 8.7. The latter figure represents a focused view of 
the pitch RAO in the most interesting wave period range, i.e. the wave 
period range including pitch resonance and near-cancellation, for 
increased clarity. η1, η3 and η5 refer to surge, heave and pitch motion, 

respectively. ζgl and ζgr refer to the upstream and downstream moon
pools, respectively. The results denoted “No mp.” in the legends refer to 
numerical simulations based on linearized potential flow theory for a 
barge with the same beam and draft as the studied model (B = 1.3 m and 
B/D = 8.7), but without moonpool. The same moment of inertia is used 
as in the experiments and other numerical simulations. The results do 
not include the two smallest appendages for clarity. The RAOs for these 
are in-between those for the square inlet and App3 inlet. 

The main observation is that there are (desired) near-cancellation 

Fig. 15. Experimental and numerical RAOs obtained 
from the freely floating cases in waves. From top to 
bottom: surge, heave, pitch and moonpool RAOs. 
Lowest radius of gyration ryy/B = 0.24. Draft B/D =

8.7. The resonance peaks in heave and pitch, as well as 
period intervals with heave and pitch reduction (near 
cancellation) are indicated. The curves denoted by ”No 
mp.” in the legend refers to 2D potential flow theory 
computations of a barge without moonpool with the 
same width B, draft D and radius of pitch gyration I55 as 
the model with moonpool.   

Fig. 16. Focused view of the pitch RAOs from the 
freely floating tests provided in Fig. 15. The values of 
the RAOs at the local minima denoted ”Pitch reduc
tion” in Fig. 15 are provided. The square and rounded 
moonpool inlets provide the best pitch reduction with 
pitch RAO between 0.02 and 0.04, depending on the 
inlet geometry and wave steepness. The largest 
appendage inlet (App3) provides less good pitch 
reduction (RAOs between 0.08 and 0.12), and 
increasingly less good with increasing wave steepness.   
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periods, as well as (undesired) resonance peaks in both heave and pitch. 
This is indicated by text in the right part of Fig. 15 as ”Heave and Pitch 
Resonance and Reduction”. In period ranges around the cancellation 
and resonance periods, the heave and pitch responses are clearly lower 
and higher than that of the barge without moonpool, respectively. 

The resonance and (near) cancellation of heave and pitch are clearly 
correlated with resonant piston-mode motion in the two moonpools, and 
in particular the downstream moonpool. This illustrates that there is a 
strong coupling between the piston-modes and the heave and pitch 
motions. The resonance and cancellation frequencies for pitch, heave 
and moonpool differ slightly. This is explained by means of an eigen
value analysis in the last part of the paper. There is an inertial coupling 
between surge and pitch, while heave is (linearly) de-coupled due to 
symmetry of the body around x = 0. However, there will be a nonlinear 
coupling between heave and pitch due to flow separation. 

The numerical results are in overall fair agreement with the experi
mental values. We emphasize that the numerical simulations are per
formed by a Navier–Stokes solver, so there is no empirical or artificial 
damping added. The overall fair agreement provides further confidence 
in both experiments and numerical schemes. One exception is that the 
numerical simulations over-predict in the order of 20% at heave and 
pitch resonance. As mentioned earlier, some contact between the model 
and the glass wall of the tank occurred, something which may have 
caused additional damping. 

The values of the pitch RAOs at the local minima (near-cancellation 
period), are provided by text in Fig. 16. The RAO values are here as low 
as 0.02 and 0.04 for the rounded and square inlet geometries. The 
rounded and square moonpool inlets show opposite trends with respect 
to wave steepness. The corresponding numbers for the case of largest 
appendage inlet are 0.08 and 0.12, a factor 3-4 times higher than for 
rounded and square moonpool inlets. There is thus significantly less 
pitch reduction when inlet plates are added. Some of this effect might be 
due to potential flow effects, since the plates effectively ”block” the 
communication between the two moonpools to some extent. However, 
the 50% increase from 0.08 at H/λ = 1/60 to 0.12 at H /λ = 1 /30 in
dicates major contributions from flow separation at the plate ends. One 
would have hoped for that the flow separation effects could broaden the 
period range for which pitch reduction (near cancellation) is experi
enced. On the contrary, the present results show that they have an un
wanted effect on the performance of the structure; the pitch motion is 
larger, and the period range for which there is a reduced pitch motion is 
not notably increased. 

The pitch resonance peak is similar for the three moonpool inlet 
geometries, although the largest appendage moonpool inlet in fact 

provides inferior results, i.e. higher values of the pitch RAO at the 
resonance peak. For heave, however, the largest appendage case gives 
lower resonance peaks (Fig. 15). This is also the case for the downstream 
moonpool, although the moonpool responses are so moderate that they 
hardly pose a concern. There is considerably less moonpool response in 
the freely floating case than for forced motion. This is consistent with 
previous investigations in the literature, and related to phasing between 
the piston-mode excitation from heave motions, pitch motions and 
incident waves. 

We deduce from this that rounded and square moonpool inlets are most 
efficient for pitch reduction purpose. The success in a practical design de
pends on the width of the response curve of the super-structure at its 
main resonant mode, how well the near pitch cancellation period of the 
floater is tuned to this, and the closeness of other resonant modes of the 
super-structure to the resonance peak introduced by the moonpools. 

5.3. Eigenvalue analysis 

The natural periods are studied by means of an eigenvalue analysis 
following that described in (Fredriksen et al., 2014). The square 
moonpool inlet case is chosen. The undamped and unforced equations of 
motion for the coupled three-degree of freedom system of surge, heave 
and pitch is analysed, 

(M +A11)η̈1 + (I15 +A15)η̈5 + C11η1 = 0, (15)  

Mη̈3 + C33η3 = 0, (16)  

(I55 +A55)η̈5 + (I51 +A51)η̈1 + C55η5 = 0. (17)  

The quantities are referring to the coordinate system specified in Fig. 1. 
The restoring coefficient in surge, C11, is given by the (soft) mooring line 
stiffness. Added mass coefficients are calculated from Fourier averaging 
of the force- and moment time-series obtained from the forced motion 
simulations using PVC. A33 and A55 are presented in the upper part of 
Fig. 17. The numerical results for A35 = A53 (not presented) confirm that 
the coupling terms are zero, due to body symmetry. In reality, a small 
non-linear coupling is expected through the fact that flow separation at 
the moonpool inlets depend on the relative flow velocity, which in the 
freely floating case is a function of all rigid body modes. This is not 
included in this eigenvalue analysis. The added mass in heave and pitch 
are negative for period range close to the piston-mode natural period 
(T* = 8.3), something which is a well-known feature in gap resonance 
problems. Results from the three simulated forcing amplitudes are 

Fig. 17. Added mass and damping coefficients as calculated by the numerical code PVC for three different forcing amplitudes. Square moonpool inlets. Draft B /D 
= 8.7. 
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included. The added mass coefficients are slightly amplitude-dependent, 
most notably around the natural piston-mode period. The values from 
the smallest forcing amplitude is used for the eigenvalue analysis. 

Steady-state solutions are assumed, such that each motion is assumed 
to oscillate with frequency ω. The determinant of the resulting system 
matrix must be zero in order for the system to have non-trivial solutions. 
The solutions to natural frequencies are provided in the following 
manner. In Fig. 18, the natural periods are those where the different 
curves intersect with the straight, dashed line. The intersections are 
indicated by black dot markers. The curve for surge is outside the ver
tical limit of the figure, with values between 60 and 65 over the 
considered range of periods. The surge natural period is as high as T*

n1 =

36.4, due to soft mooring system. 
The natural period in heave predicted by the eigenvalue analysis 

presented in Fig. 18 correspond well with that predicted by both ex
periments and numerical simulations; from the resonance peaks in 
Figs. 15 and 16, the heave resonance period for square moonpool inlet is 
T* = 6.55, and the heave curve of Fig. 18 crosses the straight line at T* =

6.66. This gives a discrepency of 1.5%; a quite fair comparison. 
There are several curves representing pitch. The different curves 

correspond to different values of pitch moment of inertia, I55. The thick 
curve corresponds to the nominal value, In

55, i.e. the value that was 
computed by summation of weights as given in Table 2. The other curves 
correspond to 0.75, 1.25, 1.50 and 1.75 times the nominal value. We can 
compare these results with the results from the numerical simulation 
sensitivity study presented in Fig. 19. The pitch natural period is in 
general predicted to be higher by the eigenvalue analysis than by the 
numerical simulations. For the cases with nominal and 1.25 times the 
nominal value, the eigenvalue analysis predicts 3.5% and 4.7% higher 
natural period, respectively. 

Although the eigenvalue analysis is not highly accurate in predicting 
the natural periods, it does give interesting information regarding the 
existence of multiple natural periods. Two of the curves in Fig. 18 
intersect the straight curve at three values of T*. This indicates three 
resonance periods. The level of (resonant) response is then a matter of 
damping. Although the surge and pitch motions are coupled, we present 
in Table 4 the ratio between the actual pitch damping and critical pitch 
damping as though pitch was independent; ξi = B55(ωi)/

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(I55 + A55(ωi))C55

√
, since this will give a reasonable qualitative 

measure of the damping in pitch. B55(ωi) are taken from the PVC sim
ulations, as presented in Fig. 17. The index i = 1, 2 or 3 refers to the 
crossing points in Fig. 18 numbered from left to right. We see from 
Fig. 15 that the resonance peaks of the RAOs all appear for crossing point 
1 in Fig. 18. This is consistent with that ξ1 is in the range ξ1 ≃ 0.12 − 0.3,
cf. Table 4, which means the system is not lightly damped, but far from 
critically damped. On the other hand, ξ2 > 1, meaning the system is 

Fig. 18. Results from the eigenvalue analysis used to 
investigate the natural periods in heave and pitch. The 
natural periods are those where the curves intersect 
with the straight line T* = T*. The numbers indicate 
different moment of inertia I55 between 0.75In

55 and 
1.75In

55. 2.45 In
55 refers to the tested model with the 

highest moment of inertia. Heave is de-coupled from 
the coupled surge-pitch motion, and therefore inde
pendent of I55. By the marker ”best fit” we refer to the 
simulations with best fit of the natural period peaks in 
the experiments in Fig. 19. The curve for surge is 
outside the vertical limit of the figure (the values are 
between 60 and 65 over the considered range of pe
riods). Some curves intersect T* three places, indicating 
three natural periods. The two highest natural periods 
are near critically or over-damped (see Table 4).   

Fig. 19. Sensitivity of the heave and pitch RAOs to variation of the radius of gyration in pitch, I55. In
55 means the nominal value as found experimentally. The 

simulations with I55 = 1.25In
55 is clearly in best agreement with the experiments. The legend ”Exp. 2.45In

55” refers to the experimental case with the highest pitch 
radius of gyration (cf. Table 2). Square moonpool inlets. 

Table 4 
Ratio of actual damping to critical damping, ξi, relevant for the sensitivity 
analysis of natural periods of the coupled heave and pitch system (cf. Fig. 18). In

55 
refers to the nominal value of the pitch moment of inertia provided in Table 2.  

I55  ξ1  ξ2  ξ3  

0.75 In55  0.13 - - 
1.00 In55  0.14 - - 
1.25 In55  0.15 - - 
1.50 In55  0.17 1.71 0.87 
1.75 In55  0.29 3.40 0.71 
2.45 In55  0.27 3.29 0.61  
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over-damped at these periods, and there will be no resonant motion. For 
the third and highest natural period, however, ξ3 is between 0.6 and 0.9, 
so one must expect undesired resonant motion also at this wave period, 
something which should be considered in design. 

The experimental pitch RAO for the case with the highest radius of 
gyration, 2.45In

55 (or ryy/B = 0.36) is also included in Fig. 19. There is no 
resonance peak in the considered period range. This is consistent with 
the eigenvalue analysis (Fig. 18), which predicts a resonance at T* = 9.7,
which is outside the tested period range. The pitch response is quite low 
for this configuration, something we in fact seek in the present study. 
However, the pitch response is not as low as for the other radius of 
gyration case (ryy/B = 0.24) around the near cancellation period T* =

7.2. Also, it is a question whether a radius of gyration this high (ryy /B =
0.36) is physically realisable from a structural point of view. 

6. Concluding remarks 

In the present paper we investigated a rectangular barge with two 
moonpools in a two-dimensional setting, by means of experiements, 
numerical simulations and theoretical work. The body was studied in 
both freely floating regular wave conditions, as well as forced heave and 
forced pitch. A main objective of the work was to assess different 
moonpool inlet configurations, and their efficiency to achieve (near) 
pitch motion cancellation. Five moonpool inlet configurations were 
investigated: rounded, square and square with three different size ver
tical plates extending below the moonpool inlets. 

We found that the effect of flow separation at the moonpool inlets 
(which provide desired and dominant part of damping for the traditional 
moonpool problem), represents an undesired effect in the pitch cancel
lation problem; the pitch cancellation ability is significantly less for the 
configurations with vertical plates at the inlets relative to the configu
rations with rounded and square moonpool inlets. The moonpool re
sponses were moderate, and should not pose a concern in practice. Based 
on this, square or rounded moonpool inlets were clearly found to best 
fulfil its purpose as pitch reduction device. A negative side effect of the 
moonpools is pitch and heave resonance in a period range close to the 
cancellation period. This increases the heave and pitch motions relative 
to a corresponding body with no moonpools. The vertical plate config
urations gave, in addition to less efficient pitch cancellation, also slightly 
higher resonant pitch motion compared to the configurations with 
rounded and square moonpool inlet. 
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