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ABSTRACT
In this article, we introduce a modular hybrid analysis and modeling (HAM) approach to account for hidden physics in reduced order mod-
eling (ROM) of parameterized systems relevant to fluid dynamics. The hybrid ROM framework is based on using first principles to model
the known physics in conjunction with utilizing the data-driven machine learning tools to model the remaining residual that is hidden in
data. This framework employs proper orthogonal decomposition as a compression tool to construct orthonormal bases and a Galerkin pro-
jection (GP) as a model to build the dynamical core of the system. Our proposed methodology, hence, compensates structural or epistemic
uncertainties in models and utilizes the observed data snapshots to compute true modal coefficients spanned by these bases. The GP model
is then corrected at every time step with a data-driven rectification using a long short-term memory (LSTM) neural network architecture to
incorporate hidden physics. A Grassmann manifold approach is also adopted for interpolating basis functions to unseen parametric condi-
tions. The control parameter governing the system’s behavior is, thus, implicitly considered through true modal coefficients as input features
to the LSTM network. The effectiveness of the HAM approach is then discussed through illustrative examples that are generated synthetically
to take hidden physics into account. Our approach, thus, provides insights addressing a fundamental limitation of the physics-based models
when the governing equations are incomplete to represent underlying physical processes.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002051., s

I. INTRODUCTION

Advances in machine learning algorithms along with the huge
amount of data generated from high-fidelity numerical simulations,
lab experiments, and sensor data can be integrated with physical
modeling to improve the prediction of complex dynamical systems.
The physics-based approaches are interpretable, trustworthy, and
highly generalizable, implying that they can be applied to a much
wider array of problems (in the context of fluid mechanics, atmo-
spheric flows, and flow around microprocessors), provided that they
are governed by similar physics. However, they can be computa-
tionally very demanding. The machine learning algorithms, on the
other hand, can lead to models which are computationally efficient
for real-time predictions and can evolve with time as they experience
new physics. However, their blackbox nature is currently preventing
their full potential from being utilized in engineering applications.
The current paper is an effort in the direction of combining these
two approaches in the context of real-time prediction to develop

a new paradigm in modeling called the hybrid analysis and model-
ing (HAM) which combines the best of both approaches to develop
models which are generalizable, trustworthy, computationally effi-
cient, and dynamically evolving in time. Readers are directed to
Reichstein et al.1 and references therein for an excellent perspec-
tive on the hybridization of physical modeling and machine learn-
ing algorithms in the context of geoscientific research. In addition,
Karpatne et al.2 offer insights into the paradigm of theory-guided
data science for scientific problems involving a complex physical
phenomenon and describe several approaches for integrating phys-
ical knowledge into data-driven methods. In recent years, there has
been growing interest in using machine learning algorithms for
fluid flow modeling.3 In a complementary perspective, Ref. 4 out-
lined different opportunities and challenges of using machine learn-
ing for fluid mechanics. Furthermore, as highlighted by Rasheed
et al.,5 both injecting physical knowledge into machine learning
models to make them more trustworthy and generalizable (physics
for machine learning) and correcting physical models by machine
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learning to enhance their fidelity and robustness (machine learn-
ing for physics) are getting more and more attention in physical and
applied sciences.

The problems in fluid mechanics are very high-dimensional
owing to a wide range of spatial and temporal scales that have
to be resolved, which places an enormous computational burden
on numerical simulations. There is a range of techniques that aim
at constructing a reduced order model (ROM) that captures the
essential features of these flows and is also computationally orders
of magnitude faster than actual numerical simulations.6–8 Fur-
thermore, many physical processes are governed by parameterized
partial differential equations, and there is increased attention in
building parametric ROMs with high-fidelity over a range of param-
eters.9 These ROMs are particularly essential for system identi-
fication,10,11 design optimization,12,13 flow control,14–16 flow sens-
ing,17 data assimilation,18–20 and uncertainty quantification21 that
require multiple forward simulations over a large range of param-
eters. In addition, in the context of digital twins, a model that is
reliably accurate and computationally efficient is sought to allow
for real-time and informed decision making strategies.5,22,23 Hence,
a ROM offers a viable and promising enabler for such frameworks
as well.24,25

Proper orthogonal decomposition (POD) is one of the most
popular model reduction methods that decompose the flow field
into a set of basis functions that optimally describe the system and
select only the most energy-conserving bases to represent the sys-
tem.26 The POD was introduced to the fluid mechanics community
by Lumley27 by showing the link between coherent structures in
turbulent flows and the spatial structures of the POD modes. Dif-
ferent variants of POD have been introduced such as spectral POD28

that enables the separation of a phenomenon that occurs at multi-
ple frequencies and multiscale POD29 that extracts the optimal basis
from each scale. Dynamic mode decomposition (DMD)30 is another
model reduction method designed to decompose time-resolved data
into modes, each one of which corresponds to a single charac-
teristic frequency and growth rate. Since its introduction, many
versions of the DMD approach have been introduced to enhance
its robustness by analyzing the spectral properties of the Koop-
man operator and effectively de-biasing the resulting modes.31,32

Another dimensionality reduction method is an autoencoder,33

which can be considered as a nonlinear generalization of the POD.34

Autoencoders have been successfully applied for lid-driven cav-
ity flow,35 advection-dominated flows,36 and viscous flow around a
cylinder.37

The POD is complemented by a Galerkin projection (GP) in
which the dynamics of the system are modeled.38–40 However, GP
models often suffer from instability, and several successful closures
have been proposed to model the effect of truncated modes.41–44 In
a recent study, it is also shown that a numerically stable and accu-
rate ROM can be constructed using a Petrov–Galerkin projection
framework.45 We highlight that the GP framework is based on the
physical model of the system and requires complete information
about equations governing the system’s dynamics. In many pro-
cesses, there might be a discrepancy between the physical model and
the observed data. This discrepancy arises due to approximations to
complex physical processes, the requirement of parameterizations in
physical models, imperfect knowledge about source terms, observa-
tional errors, etc. For example, the only information available for

many geophysical flows might be the dynamical core represented
by the vorticity transport equation. We might not have any prior
accurate information about the hidden physics such as wind forcing,
bottom friction, rotation, stratification, radiation, or other parame-
terizations.46 However, the observed data for such systems will have
the correct external forces embedded in it. The observed data can be
utilized in a hybrid fashion to build accurate and robust ROMs for
these systems.

Recently, there has been a significant effort to use machine
learning algorithms to develop nonintrusive ROMs that do not
require any information about the full order model (FOM) and
solely rely on the data.47–54 Guo and Hesthaven55 proposed a com-
bination of the reduced basis method and Gaussian process regres-
sion along with an active data selection algorithm for parameterized
nonlinear structural analysis. Li et al.56 utilized the LSTM neural net-
work for constructing parametric unsteady aerodynamic ROMs for
aeroelastic applications. Maulik et al.57 presented a data-driven para-
metric ROM framework for advection-dominated systems with con-
volutional autoencoders for dimensionality reduction and recurrent
neural networks for modeling the latent space dynamics.

Machine learning algorithms have also been utilized in iden-
tifying and extracting patterns from the observational data that
can help us in the understanding of the physical phenomena
and discovering the equations governing these phenomena.58–63

Raissi and Karniadakis64 proposed a data-efficient learning algo-
rithm to discover underlying physical laws from sparse data using
neural networks. Along a similar line, machine learning algo-
rithms can be used to extract patterns from the observed data
that are not included in a physical model and will allow us to
improve the physical model.65 Kou and Zhang66 developed a mul-
tifidelity aerodynamic ROM framework based on data fusion with
machine learning employed for learning the correction from the
low-fidelity model to the high-fidelity model. In this study, instead
of employing a purely data-driven method, we develop an algo-
rithm that blends the physical knowledge with a machine learn-
ing approach for modeling parameterized systems with hidden
physics.

The goal of the present study is to build a modular ROM for
any parametrized process that can be defined by

∂u
∂t
(x, t; ν, γ) = Fm(x, t;u; ν) + Π(x, t;u; ν, γ), (1)

where u is the prognostic variable, Fm is the physics-based model
(i.e., dynamical core) governing the known process, and Π includes
the external empirical parameterizations and unknown physics.
Here, ν and γ refer to the control parameters that are relevant to
the dynamical core and the hidden physics, respectively. The source
term Π is usually unknown and can be learned using machine learn-
ing methods from the observed data. However, machine learning
methods and, in particular, deep learning models lack interpretabil-
ity and generalizability, and, hence, are prone to produce physi-
cally inconsistent results. Hence, there is active research going on to
incorporate the physical knowledge into machine learning methods
to make them physically consistent, such as loss regularization based
on physical laws,67,68 designing novel neural network architectures
to embed certain physical properties,69,70 building hybrid models
to correct the imperfect knowledge in physical models,46,71–74 and
training neural networks guided by the physics.75 How should we
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inject physics and domain knowledge into machine learning mod-
els? When and how might machine learning be a complementary
approach for generating more robust surrogate models? These are
open research questions that we tackle, and the present study offers
a glimpse into addressing these issues and pertains to introduc-
ing an effective hybrid modeling approach toward more accurate
real-time predictions of fluid flows under epistemic or structural
uncertainties.

The motivation behind this work is to synthesize a physics-
based approach along with machine learning to model the hidden
physics in parameterized ROMs. The paper is structured as follows:
We introduce the main philosophy of the hybrid analysis and mod-
eling (HAM) approach in Sec. II. We then discuss a specific for-
mulation of the HAM framework in Sec. III for developing reduced
order models for parameterized systems. The numerical results for
the one-dimensional Burgers equation and two-dimensional vor-
ticity transport equation with the HAM framework are detailed in
Sec. IV. Finally, Sec. V will present conclusions and ideas for the
future work.

II. HYBRID ANALYSIS AND MODELING
(HAM) FRAMEWORK

In the context of upcoming technologies such as digital twin,5

the role of cybernetics is to steer the system toward an optimal set-
point. In order to do so, the output of the system is continuously
monitored and compared against a reference. The difference, called
the error signal, is applied as feedback to the controller, which gen-
erates a system input to bring the output set-point closer to the
reference. With the availability of more and more sensors and com-
munication technologies, an increasingly larger volume of data (in
fact big data) is being made available in real-time. The challenge is
then to develop a better understanding of the big data before it can
be used for control purposes.

Most of these modeling approaches lie in either of the two cat-
egories: physics-based modeling or data-driven modeling. Recently,
a third approach to modeling which is a combination of the two is
fast emerging. However, there remains a lack of formal definition
and terminology for the approach. In a nutshell, our hybrid model-
ing philosophy attempts to combine physics-based models with the
versatility of data-driven approaches. Specifically, we define hybrid
analysis and modeling (HAM) as a modeling approach that com-
bines the interpretability, robust foundation, and understanding of
a physics-based approach with the accuracy, efficiency, and auto-
matic pattern-identification capabilities of advanced data-driven
machine learning and artificial intelligence algorithms. This concept
offers many new perspectives to our rapidly digitized society and its
seamless interactions with many different fields.

Here, we pretend that some partially known physics govern the
process of the vortex merging problem. The behavior of the vortices
can be captured using RADAR or LIDAR. Using our partial under-
standing of the behavior of the vortices, we might utilize a first set
of equations that govern vorticity transport processes. Since we do
not have a good understanding of the effect of humidity and tem-
perature on the evolution of these vortices, we simply claim that
this unknown physics is captured by the term Π. At this stage to
explain the vortex behavior, we solve these equations without Π. At
this first iteration, the model is a pure physics-based model. It is

generalizable because we have not tuned it with any case-specific
data. However, the numerical solution of these equations can be
computationally expensive. To address the problem of computa-
tional efficiency, proper orthogonal decomposition (POD) can be
applied to the observed data to capture case-specific basis functions.
Using these basis functions, the partial governing equations from the
first stage are projected onto a reduced dimensional space to develop
a system of ordinary differential equations which are relatively inex-
pensive to solve. This projection is commonly referred to as the
Galerkin projection. However, at this stage, the unexplained term
Π from the previous stage still remains unaccounted for. It only gets
projected to a lower dimensional space. At the last stage and only
as the last resort, we utilize a blackbox machine learning algorithm,
e.g., long short-term memory (LSTM) neural network approach, to
model this term. It is to be noted that if the LSTM misbehaves, then
the mass and momentum conservation represented by the equations
will be violated, and we can include this as a way to keep sanity check
on the blackbox part of the workflow. Finally, we can also utilize
a symbolic regression65 approach to explicitly learn the functional
form of Π. Once the functional form is in place, we go and update
the previous version of the model we started with. Hence, this way
of running HAM will always be more generalizable, trustworthy,
dynamically evolving, and computationally efficient.

The current paper is an attempt in this direction to not only for-
malize the definition of HAM but also to give directions on how this
kind of modeling can be done. To this end, in Sec. III, we present
a potential application area where hybrid modeling is supposed to
make severe impacts. Here, we devise a hybrid reduced order model
based on the Galerkin projection and machine learning correction
(LSTM-based). The Galerkin projection model founded on POD
modes is constructed to capture the core of the flow physics while
machine learning is used to uncover the hidden physics. The accu-
racy of the model is demonstrated for a shock formation (Burgers
equation) and vortex merging problem with forcing (2D incom-
pressible flow). However, in the current demonstration, we con-
sider a single family of solutions representing Π in Eq. (1) for
quick prototyping. As a starting point, we set it up so that we can
train on one set of Π and then test on a structurally similar set
of Π. However, by expanding the training set, including a wide
range of possible physical processes, we might arguably agree that
the proposed framework can be utilized in an effective manner
for a variety of physical processes relevant to fluid dynamics and
turbulence.

III. HAM FOR PARAMETERIZED SYSTEMS
IN LOW DIMENSIONS

To construct a set of orthonormal POD basis functions, we
collect the data snapshots, u1,u2, . . . ,uN ∈ Rm, at different time
instants. We form the matrixA ∈Rm×N , whose columns are the snap-
shots un, and then perform the singular value decomposition (SVD)
of the matrix,

A =WΣVT
=

N

∑
k=1

σkwkv
T
k , (2)

where W is an m × N matrix with orthonormal columns wk, V is an
N × N matrix with orthonormal columns vk, and Σ is an N × N
matrix with non-negative diagonal entries, called singular values,
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TABLE I. Galerkin projection operators for two prototypical examples, where ϕuk refers to the kth basis function of field u

in the Burgers equation. Similarly, in the vorticity transport equation, ϕωk and ϕψk refer to basis functions of the vorticity and
streamfunction, respectively.

Example Lik Nijk

Burgers equation ⟨
1

Re
∂2ϕui
∂x2 ,ϕuk⟩ ⟨ − ϕui

∂ϕuj
∂x

,ϕuk⟩

Vorticity transport equation ⟨
1

Re
(
∂2ϕωi
∂x2 +

∂2ϕωi
∂y2 ),ϕωk ⟩ ⟨ −

⎛

⎝

∂ϕωi
∂x

∂ϕψj
∂y
−
∂ϕωi
∂y

∂ϕψj
∂x
⎞

⎠
,ϕωk ⟩

arranged such that σ1 ≥ σ2 ≥⋯ ≥ σN ≥ 0. The vectors wk are the POD
modes that we denote as ϕk in this text, and Φ = {ϕk}Rk=1 is the set of
POD basis functions for any values of R ≤ N.6 The representation of
the approximated field using the POD modes is as follows:

u(x, tn) =
R

∑
k=1

ak(tn)ϕk(x), (3)

where a(n)k are the time dependent modal coefficients and R refers
to the number of modes retained in our model. The GP model

equations are obtained by applying projection to our physical sys-
tem [i.e., using the linear superposition given by Eq. (3) in Eq. (1)
and applying the inner product of the resulting equation with the
basis functions ϕk that are orthonormal to each other]. The resulting
system of equations is given below,

dak
dt
=

R

∑
i=1

Likai +
R

∑
i=1

R

∑
j=1

Nijkaiaj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Physics-based model G(ak)

+ C̃k
¯

Hidden physics

, (4)

FIG. 1. Hybrid analysis and modeling (HAM) framework for model order reduction. Top and bottom rows refer to offline and online stages, respectively.
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FIG. 2. Square of singular values of the
snapshot data matrix A (equivalent to
eigenvalues of AAT or AT A) for differ-
ent Re training datasets obtained by the
one-dimensional Burgers equation (left)
and the two-dimensional vorticity trans-
port equation with γ = 0.1 (right).

where L and N are the linear and nonlinear operators of the
physical system, and C̃ is the part of the system for which
the physical model is not available. The linear and nonlinear
operators for the two prototypical examples investigated in this

study are presented in Table I. The angle-parentheses in Table I
refer to the Euclidean inner product defined as ⟨x, y⟩ = xTy
= ∑

m
i=1 xiyi. In a discrete sense, the update formula can be

written as

FIG. 3. Temporal evolution of modal coefficients for the Burgers equation at Re = 500 (left), Re = 1000 (middle), and Re = 1500 (right).
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a(n+1)
k = a(n)k + Δt

s

∑
q=0

βq[G(a(n−q)k ) + C̃(n−q)k ], (5)

where s and βq depend upon the numerical scheme used for the
time integration. We use the third-order Adams–Bashforth (AB3)
method in this study for which s = 2, β0 = 23/12, β1 = −16/12, and β2
= 5/12. The physics-based GP model at any time tn is

G(a(n)k ) =
R

∑
i=1

Lika
(n)
i +

R

∑
i=1

R

∑
j=1

Nijka
(n)
i a(n)j . (6)

In our HAM approach, since we attempt to learn the hidden physics
part C̃ by using a supervised data-driven approach, Eq. (5) can be
rewritten as

a(n+1)
k = a(n)k + Δt

s

∑
q=0

βqG(a(n−q)k ) + C(n+1)
k , (7)

where we set apart C̃k from the time integrator and represent hid-
den physics by Ck in the discrete form given by Eq. (7). We can
generate a training set from the true projection of observed data
onto POD basis. These true projection modal coefficients encompass

both the dynamical core of the system and hidden physics. The true
projection modal coefficients are computed as below,

α(n)k = ⟨u(x, tn),ϕk⟩. (8)

Using Eqs. (7) and (8), we can recover the hidden physics as below,

C(n+1)
k = α(n+1)

k −

⎡
⎢
⎢
⎢
⎢
⎣

α(n)k + Δt
s

∑
q=0

βqG(α(n−q)k )

⎤
⎥
⎥
⎥
⎥
⎦

. (9)

We can use any of the suitable supervised machine learning
algorithms to learn this correction term Ck. In this study, we employ
a long short-term memory (LSTM) neural network algorithm to
learn the mapping from true modal coefficients to the correction
term (e.g., {α1, . . . ,αR} ∈ RR

→ {C1, . . . ,CR} ∈ RR). At this point,
we highlight that the mapping architecture can be constructed in
various forms depending on the problem. Since we test our pro-
posed approach against unseen conditions, we include the under-
lying control parameters in our training (i.e., {ν,α1, . . . ,αR} ∈ RR+1

→ {C1, . . . ,CR} ∈ RR, where ν is the control parameter parame-
terizing the system’s behavior, e.g., Reynolds number). The LSTM
network is particularly suitable for time-series data as it considers

FIG. 4. Space-time solution field for the Burgers equation for an interpolatory test condition at Re = 500 (top), and extrapolatory test conditions at Re = 1000 (middle) and Re
= 1500 (bottom).
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the effect of the past state of the system in the future prediction
of the state of the system. Other architectures might benefit from
including the time index into the input layer.76 Because of its built-in
memory embedding capability, the LSTM network has been used in
many nonintrusive ROM studies.49,77,78 The AB3 multi-step scheme
requires three previous time steps to perform temporal integration
for the forward model. Thus, we use a lookback of three steps in
the LSTM architecture to be consistent with the time integration
of the GP model (e.g., see the work of Rahman et al.48 for further
details). During the deployment, we start with an initial condition
and then at every time step, the correction is added to the GP model
G(ak), and we recursively proceed with this process. We would like
to note here that the GP model and the correction model are tightly
coupled in this dynamic framework. Therefore, it is possible to
have stability problems either because of the incompleteness of the
Galerkin projection or the incorrect input from the LSTM network.

However, in our numerical experiments, the stability issues were
not encountered due to the accurate prediction of the correction
term at every time step. Additionally, the stability issues79 due to
the truncation of modes were not faced as the number of retained
modes capture more than 99.9% energy in our numerical experi-
ments. The parameter governing the behavior of the physical system
is taken implicitly into account through a physics-based GP model,
and explicitly using the control parameter as an input feature to the
LSTM network. This augments the learning process to improve the
generalizability of the model.

During training, we compute the POD basis sets Φ = [ϕ1, ϕ2,
. . ., ϕR] for different parameters governing the physical system. We
utilize the Grassmann manifold interpolation approach80,81 to com-
pute the POD basis set for the unseen test parameter from a set of
available POD basis functions constructed in the offline phase. The
Grassman manifold interpolation consists of choosing a reference

FIG. 5. Temporal evolution of vorticity modal coefficients for the vortex-merger problem at Re = 500 (left), Re = 1000 (middle), and Re = 1500 (right) with γ = 0.01.
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point S0, corresponding to the basis set Φ0, and then mapping each
point Si to a matrix Γi which represents a point on the tangent space
at S0 using the logarithmic map logS0

,

(Φi −Φ0ΦT
0 Φi)(ΦT

0 Φi)
−1
= UiΣiVT

i , (10)

Γi = Uitan−1
(Σi)VT

i . (11)

The matrix Γt corresponding to the test parameter νt is obtained by
the Lagrange interpolation of the matrices Γi corresponding to νi, i
= 1, 2, . . ., P,

Γt =
P

∑
i=1

⎛
⎜
⎜
⎜
⎝

P

∏
j=1
j≠i

νt − νj
νi − νj

⎞
⎟
⎟
⎟
⎠

Γi, (12)

where P refers to the number of the control parameters for offline
simulations (e.g., P = 4 in our numerical examples). The POD basis
set Φt corresponding to the test parameter νt is computed using the
exponential mapping as follows:

Γt = UtΣtVT
t , (13)

Φt = [Φ0Vtcos(Σt) + Utsin(Σt)]VT
t . (14)

We note that trigonometric functions apply only to diagonal ele-
ments. The main blocks of the hybrid analysis and modeling (HAM)
framework are shown in Fig. 1. In our numerical experiments, we
use two hidden layers with 80 cells for both Burgers and vorticity
transport equations to train the LSTM network. Our experiments
with different sets of hyperparameters show that the LSTM network
is not highly sensitive to hyperparameters.

FIG. 6. Vorticity field at time t = 20 for the vortex-merger problem testing an interpolatory condition at Re = 500 (top), and extrapolatory conditions at Re = 1000 (middle) and
Re = 1500 (bottom) with γ = 0.01.
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IV. NUMERICAL EXPERIMENTS
A. One-dimensional Burgers equation

We test the performance of the HAM framework for the one-
dimensional Burgers equation, which is a prototypical example for
nonlinear advection–diffusion problems. The Burgers equation can
be written as

∂u
∂t

+ u
∂u
∂x
=

1
Re

∂2u
∂x2 + Π, x ∈ [0, 1], t ∈ [0, 1.5] (15)

and accepts an analytical solution in the form of

u(x, t) =
x
t+1

1 +
√

t+1
t0

exp(Re x2

4t+4)
, (16)

when the hidden physics part is set toΠ = 0. Here, t0 = exp(Re/8) and
Re is the Reynolds number that parameterizes the Burgers equation.
We add 30% perturbation to this canonical solution to represent
the hidden physics with an unknown source term. Therefore, our
snapshots read from

u(x, t) = 1.3
x
t+1

1 +
√

t+1
t0

exp(Re x2

4t+4)
, (17)

and we note that Π ≠ 0. In our HAM approach, we model this
part Π with a data-driven machine learning model. We generate the
data snapshots using the analytical solutions given by Eq. (17) for
Re = [200, 400, 600, 800] and evaluate the performance of the HAM
framework for Re = 500, 1000, and 1500. The reference point in the
Grassmann manifold interpolation is set to Re = 400 for testing at

FIG. 7. Temporal evolution of vorticity modal coefficients for the vortex-merger problem at Re = 500 (left), Re = 1000 (middle), and Re = 1500 (right) with γ = 0.1.

Phys. Fluids 32, 036602 (2020); doi: 10.1063/5.0002051 32, 036602-9

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

Re = 500, and Re = 800 for testing at Re = 1000 and 1500. The per-
formance of the HAM framework for these test Reynolds numbers
can inform us about its interpolatory and extrapolatory prediction
capability.

We use R = 24 modes in our ROM to represent the Burgers
equation, which captures more than 99.99% energy at all Reynolds
numbers. The eigenvalues of the Burgers equation for different
Reynolds numbers included in training are shown in Fig. 2. From
Fig. 3, we observe that in the presence of the source term, the GP is
not able to predict the same trajectory as the true projection even
with 24 modes (we show only the first eight modes in all plots).
The HAM framework adds the correction due to the source term

at every time step and follows the trajectory similar to the true
projection modal coefficients as shown in Fig. 3 for the interpolatory
Reynolds number Re = 500. We note that the HAM framework aims
at modeling not only the closure term (due to truncation of higher
modes) but also hidden physics. The prediction of modal coefficients
is very accurate at Re = 1000, which is slightly extrapolated from the
training Reynolds number regime. We see some discrepancy in true
and hybrid modal coefficients for Re = 1500, which can be attributed
to the limited extrapolation capability of data-driven methods as
demonstrated for turbulent isotropic flows.82 This discrepancy can
also be a result of disparity between true basis and interpolated basis
functions, which can be minimized by incorporating a richer offline

FIG. 8. Vorticity field at time t = 20 for the vortex-merger problem testing an interpolatory condition at Re = 500 (top), and extrapolatory conditions at Re = 1000 (middle) and
Re = 1500 (bottom) with γ = 0.1.
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dataset. Figure 4 shows the time evolution of the solution field from t
= [0, 1.5] for FOM and the reconstructed solution field with true, GP,
and hybrid modal coefficients. The HAM framework can produce
the solution field similar to the true projection for all test Reynolds
numbers, i.e., Re = 500, 1000, and 1500.

B. Two-dimensional vorticity transport equation
After a successful demonstration of the HAM framework

for the Burgers equation, we test the HAM framework for two-
dimensional vorticity transport equation applied to the vortex-
merger problem. This problem is a prototypical example used
to study the merging of two co-rotating vortices. Initially, two
vortices of the same sign are separated by some distance and
end up as a single nearly axisymmetric vortex after some time.
The two-dimensional vorticity transport equation in vorticity-
streamfunction formulation can be written as

∂ω
∂t

+
∂ψ
∂y

∂ω
∂x
−
∂ψ
∂x

∂ω
∂y
=

1
Re
(
∂2ω
∂x2 +

∂2ω
∂y2 ) + Π, (18)

∂2ψ
∂x2 +

∂2ψ
∂y2 = −ω, (19)

whereω is the vorticity defined asω =∇× u, u = [u,v]T is the velocity
vector, and ψ is the streamfunction. We start from an initial vorticity
field of two Gaussian-distributed vortices,

ω(x, y, 0) = exp(−π[(x − x1)
2 + (y − y1)

2
])

+ exp (−π[(x − x2)
2 + (y − y2)

2
]), (20)

where their centers are initially located at (x1, y1) = (3π/4, π) and
(x2, y2) = (5π/4, π). We add a perturbation field (i.e., referring to
hidden physics) by utilizing an arbitrary array of decaying Taylor–
Green vortices as the source term, which is given below,

Π = −F(t)cos(3x)cos(3y), (21)

where F(t) = γ e−t /Re. We use the computational domain (x, y) ∈ [0,
2π] with periodic boundary conditions. We generate data snapshots
for Re = [200, 400, 600, 800] with 2562 spatial grids and a time step
of 0.01 from time t = 0 to t = 20. We test the HAM framework for
out-of-sample conditions at Re = 500 (interpolatory), Re = 1000 and
Re = 1500 (extrapolatory). The Grassmann manifold interpolation
utilizes the reference dataset from Re = 400 for testing at Re = 500,
and Re = 800 is chosen as the reference for testing at Re = 1000 and
Re = 1500.

We use eight modes in our ROM for the vorticity transport
equation and these eight modes capture more than 99.95% energy
for all Reynolds numbers included in the training. Figure 2 shows the
eigenvalues for 2D vorticity transport equation. We use two differ-
ent amplitudes for Taylor–Green vortices (i.e., γ = 0.01 and γ = 0.1)
to demonstrate the effectiveness of the HAM framework in mod-
eling different magnitudes of hidden physics. First, we present the
results for the case of γ = 0.01 that represents a comparatively easier
setting due to its small magnitude compared to the actual vorticity
field. Figure 5 shows the trajectories of the vorticity modal coeffi-
cients obtained by the true projection, GP, and HAM framework for
γ = 0.01. The GP deviates from the true projection modal coefficients
due to the presence of a source term that is not embedded in the

FIG. 9. Three-dimensional vorticity field at time t = 20 for the vortex-merger problem testing at Re = 1000 with γ = 0.01 (top) and γ = 0.1 (bottom).
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GP model. The HAM framework can accurately predict the effect
of the source term through the LSTM network at every time step,
and we observe that the hybrid modal coefficients follow almost the
same trajectory as true modal coefficients. We note a small discrep-
ancy between true and hybrid modal coefficients, especially for later
modes (i.e., a6, a7 and a8) for Re = 1500. Figure 6 displays the vor-
ticity field at the final time t = 20 for FOM and the reconstructed
field using true, GP, and hybrid modal coefficients. The GP fails to
capture the correct orientation of two counter-rotating vortices at
the final time for all test Reynolds numbers. The HAM framework
predicts the correct orientation of vortices with sufficient accuracy
in comparison to the FOM vorticity field.

Next, we present the results of our numerical experiments with
γ = 0.1. Figure 7 shows the vorticity modal coefficient trajectories for

γ = 0.1 at all three test Reynolds numbers. The GP modal coefficients
deviate significantly from true projection modal coefficients as they
do not incorporate any information about the hidden physics, and
for this test case, the major contribution comes from the unknown
source term. The HAM framework, on the other hand, can produce
accurate dynamics for both Re = 500 and 1000 with little devia-
tion near the final time for a few modes. The deviation in true and
hybrid modal coefficients is more at the Re = 1500 test case, which
is far from the training Reynolds number regime. Figure 8 shows
the vorticity field at t = 20, and it can be noted that the HAM
framework predicts the vorticity field with sufficient accuracy for all
Reynolds numbers. To demonstrate the difference in magnitude of
source terms, we plot a three-dimensional view of the vorticity field
at Re = 1000 for γ = 0.01 and γ = 0.1 in Fig. 9. The magnitude of

FIG. 10. Temporal evolution of vorticity modal coefficients for the vortex-merger problem for Re = 1000 with γ = 0.03 (left), γ = 0.06 (middle), and γ = 0.1 (right). The model
is trained for γ = 0.01, 0.02, 0.04, 0.05, 0.07, 0.08, and 0.09.

Phys. Fluids 32, 036602 (2020); doi: 10.1063/5.0002051 32, 036602-12

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

decaying Taylor–Green vortices is very small compared to two
Gaussian-distributed vortices for γ = 0.01. In the case of γ = 0.1,
the magnitude of Taylor–Green vortices is of the same order of
magnitude or even more compared to two Gaussian-distributed
vortices. This illustrates the advantage of the hybrid framework to
model physical systems where the major contribution comes from
an unknown source term.

In the previous set of numerical experiments, we looked at the
Reynolds number as the control parameter for the vorticity trans-
port equation. We consider the strength of the source term, i.e., γ as
the control parameter in the next set of numerical experiments. We
keep the Reynolds number constant at Re = 1000, train the LSTM
network with different magnitudes of the source term (i.e., γ = 0.01,
0.02, 0.04, 0.05, 0.07, 0.08, 0.09), and test the hybrid framework for
γ = 0.03, 0.06, and 0.10. Figure 10 shows the evolution of vorticity

modal coefficients for different test source terms. We obtain an accu-
rate prediction of modal coefficients for γ = 0.03 and γ = 0.06, which
lie in the interpolatory regime of training source terms. It can also
be observed that the pattern of vorticity modal coefficients is dif-
ferent at γ = 0.1 compared to source terms of other magnitudes,
suggesting a slight discrepancy between true and interpolated basis
functions. Figure 11 displays a three-dimensional view of the vor-
ticity field for FOM and compares with the reconstructed vorticity
fields using true, GP, and hybrid modal coefficients. The hybrid
framework can predict the accurate vorticity field at γ = 0.03 and
γ = 0.06. We observe a larger deviation of the vorticity field from
FOM at γ = 0.1 in the region where the Gaussian-distributed vor-
tices are generated as an initial condition. This discrepancy is due
to both inaccuracy in the interpolation of basis functions and modal
coefficients.

FIG. 11. Vorticity field at time t = 20 for the vortex-merger problem for Re = 1000 with γ = 0.03 (top), γ = 0.06 (middle), and γ = 0.1 (bottom). The model is trained for γ
= 0.01, 0.02, 0.04, 0.05, 0.07, 0.08, and 0.09.
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FIG. 12. Temporal evolution of vorticity modal coefficients for the vortex-merger problem for Re = 1000 with σ = 0.01.

In another example of the vorticity transport equation, we
can consider a hypothetical case where a possible friction process
occurs in large scale ocean basins. For example, a linear forcing term
might represent the hidden physics in our model, which should be
modeled as

Π = σω, (22)

where σ is the Ekman bottom layer friction coefficient. The param-
eter σ is set using the Stommel scale, and it accounts for larger scale
damping in quasigeostrophic ocean models.83,84 If the friction term
is missing in the physical model, the GP model would use only
the vorticity transport equation to model the dynamics of the pro-
cess. On the other hand, the hybrid framework is able to learn the
missing physics from the data. The motivation behind this exam-
ple is to demonstrate the advantage of the hybrid framework in

recovering missing physics from the data itself to augment the
physical model.

First, we test the hybrid framework with a smaller magnitude
of friction, σ = 0.01, at Re = 1000. Figure 12 shows the time evo-
lution of vorticity modal coefficients for σ = 0.01. The GP model
predicts modal coefficients that have the same magnitude as the true
modal coefficients. The trajectory of GP modal coefficients starts
deviating from true modal coefficients after t ≈ 10. The hybrid
framework predicts the same trajectory as the true modal coeffi-
cients. Figure 13 compares the vorticity fields reconstructed using
true, GP, and hybrid modal coefficients with FOM. The GP is not
able to produce the vorticity field with correct magnitude and ori-
entation as the true projection. The hybrid framework, however,
calculates the vorticity field with the same level of accuracy as the
true projection. Next, we analyze the hybrid framework with a larger

FIG. 13. Vorticity field at time t = 20 for the vortex-merger problem for Re = 1000 with σ = 0.01.
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FIG. 14. Temporal evolution of vorticity modal coefficients for the vortex-merger problem for Re = 1000 with σ = 0.1.

FIG. 15. Vorticity field at time t = 20 for the vortex-merger problem for Re = 1000 with σ = 0.1.

magnitude of friction, σ = 0.1, using the same Reynolds number.
Figure 14 displays the evolution of vorticity modal coefficients for
σ = 0.1. We can see a large variation in true and GP modal coeffi-
cients due to the large magnitude of the friction that is not modeled
by the GP. The hybrid framework accurately predicts the vortic-
ity modal coefficients even for a large magnitude of the friction.
Figure 15 shows the vorticity field for FOM and reconstructed vor-
ticity fields using true, GP, and hybrid modal coefficients. The mag-
nitude of the vorticity field predicted by the GP is very small com-
pared to the true projection as the large magnitude of hidden physics
is not accounted for in the GP. The hybrid framework predicts the
vorticity field with a sufficient level of accuracy as the FOM. Our
findings from numerical experiments suggest that the hybrid frame-
work can be looked into in two ways. The first way to look at the
hybrid framework is as a corrector to the physical model using
data-driven methods. The other way is as a means to incorporate

physics into nonintrusive ROMs to make them more interpretable
and generalizable.

V. DISCUSSION AND CONCLUSION

A hybrid ROM framework is presented for parameterized sys-
tems with hidden physics that uses a GP model to compute modal
coefficients and a LSTM neural network to predict the unknown
physics. The parameter governing the physical system is directly
embedded in the GP model and the effect on the unknown physics is
considered implicitly. The control parameter governing the physical
system’s behavior is also taken explicitly into account by including
it as an input feature to the LSTM network. This type of training
is found to augment the learning process making the model more
generalizable.
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The accuracy of the HAM framework in predicting modal coef-
ficients and reconstructed field is illustrated for two prototypical
examples: Burgers and vorticity transport equations. We examine
the Burgers equation with 30% perturbation as an unknown source
term. The vorticity transport equation is tested using two types of
perturbation as the hidden physics, one in with decaying Taylor–
Green vortices and the other in the form of linear forcing friction
referring to the unknown source term. In both cases, the prediction
for the interpolatory parameter by the HAM framework is shown to
be considerably more accurate than only a physics-based GP model
that cannot model the hidden physics. The evaluation of the HAM
framework for the extrapolatory parameter also shows great agree-
ment with the true projection and yields a result superior to the GP
model. The HAM framework is found to be robust even when the
magnitude of the unknown source term is almost the same or even
larger than that of the physical model for both interpolatory and
extrapolatory predictions.

The numerical experiments with large magnitudes of hidden
physics demonstrate the effectiveness of the HAM framework for
processes where there is a considerable difference between the phys-
ical model and the observed data. The HAM approach can also be
interpreted as a way to inject physics or include physical models into
the data-driven nonintrusive ROMs. The input features to the LSTM
network in our framework are based on the GP model and, hence,
the proposed approach can also be considered as a physics-informed
approach rather than relying only on machine learning algorithm
prediction.

The analysis of numerical experiments with two examples sug-
gests that the hybrid modeling approaches have the potential to
model a multiphysics system where there is a deviation in the physi-
cal model and the observed data. In the current study, we present the
robustness of our approach using synthetic datasets generated either
from an analytical solution or numerical simulation. Our approach
can also be viewed as a data assimilation technique on a reduced
dimensional space, which is a topic we intend to exploit further.
The performance of the HAM framework in the presence of mul-
tiple source terms, noisy and realistic observed data, and complex
turbulent flows will be investigated as a part of future studies. The
ROMs can also be constructed for quasilimit cycle problems such
as deferentially heated cavity85 or flow past a cylinder86 where the
dynamics is to be predicted beyond the training time window. In our
future studies, we will test our hybrid framework for quasilimit cycle
problems and assess its predictive performance for those settings.

To sum up, in our study, we convey a hybrid modeling philos-
ophy, arguing that one should always rely on the domain knowl-
edge developed over decades of hard and diligent work to begin
with and only switch to the blackbox pure data-driven model-
ing approach as a last resort. This philosophy is presented in our
HAM approach for reduced order modeling of fluid flow prob-
lems involving known and unknown physics. In such a situation,
the last step of blackbox modeling will not only account for the
unknown physics but also for the errors resulting from the basic
assumptions made to begin with. In fact, this is a powerful aspect
of the approach we follow and demonstrate in the present study.
In this regard, our hybrid methodology provides a way of catering
to industrial needs in fluid dynamics through the generalizability,
trustworthiness, computational efficiency, and dynamic adaptation
of the models.
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19R. Ştefănescu, A. Sandu, and I. M. Navon, “POD/DEIM reduced-order strategies
for efficient four dimensional variational data assimilation,” J. Comput. Phys. 295,
569–595 (2015).
20D. Xiao, J. Du, F. Fang, C. Pain, and J. Li, “Parameterised non-intrusive reduced
order methods for ensemble Kalman filter data assimilation,” Comput. Fluids 177,
69–77 (2018).
21S. Guzzetti, L. M. Alvarez, P. Blanco, K. T. Carlberg, and A. Veneziani, “Propa-
gating uncertainties in large-scale hemodynamics models via network uncertainty
quantification and reduced-order modeling,” Comput. Methods Appl. Mech. Eng.
358, 112626 (2020).
22F. Tao, H. Zhang, A. Liu, and A. Y. Nee, “Digital twin in industry: State-of-the-
art,” IEEE Trans. Ind. Inf. 15, 2405–2415 (2018).
23R. Ganguli and S. Adhikari, “The digital twin of discrete dynamic systems: Initial
approaches and future challenges,” Appl. Math. Modell. 77, 1110–1128 (2020).
24D. Hartmann, M. Herz, and U. Wever, “Model order reduction a key tech-
nology for digital twins,” in Reduced-Order Modeling (ROM) for Simulation and
Optimization (Springer, 2018), pp. 167–179.
25S. Chakraborty, S. Adhikari, and R. Ganguli, “The role of surrogate mod-
els in the development of digital twins of dynamic systems,” arXiv:2001.09292
(2020).
26L. Sirovich, “Turbulence and the dynamics of coherent structures. I. Coherent
structures,” Q. Appl. Math. 45, 561–571 (1987).
27J. L. Lumley, “The structure of inhomogeneous turbulent flows,” in Atmospheric
Turbulence and Radio Wave Propagation, edited by A. M. Yaglom and V. I.
Tatarsky (Nauka, Moscow, 1967), pp. 166–176.
28M. Sieber, C. O. Paschereit, and K. Oberleithner, “Spectral proper orthogonal
decomposition,” J. Fluid Mech. 792, 798–828 (2016).
29M. Mendez, M. Balabane, and J.-M. Buchlin, “Multi-scale proper orthogonal
decomposition of complex fluid flows,” J. Fluid Mech. 870, 988–1036 (2019).
30P. J. Schmid, “Dynamic mode decomposition of numerical and experimental
data,” J. Fluid Mech. 656, 5–28 (2010).
31H. Arbabi and I. Mezic, “Ergodic theory, dynamic mode decomposition, and
computation of spectral properties of the Koopman operator,” SIAM J. Appl. Dyn.
Syst. 16, 2096–2126 (2017).
32M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “De-biasing
the dynamic mode decomposition for applied Koopman spectral analysis of noisy
datasets,” Theor. Comput. Fluid Dyn. 31, 349–368 (2017).
33D. DeMers and G. W. Cottrell, “Non-linear dimensionality reduction,” in
Advances in Neural Information Processing Systems (Morgan-Kaufmann, 1993),
pp. 580–587.
34G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science 313, 504–507 (2006).
35F. J. Gonzalez and M. Balajewicz, “Deep convolutional recurrent autoen-
coders for learning low-dimensional feature dynamics of fluid systems,”
arXiv:1808.01346 (2018).
36K. Lee and K. Carlberg, “Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders,” J. Comput. Phys. 404, 108973
(2020).
37S. E. Otto and C. W. Rowley, “Linearly recurrent autoencoder networks for
learning dynamics,” SIAM J. Appl. Dyn. Syst. 18, 558–593 (2019).
38D. Rempfer, “On low-dimensional Galerkin models for fluid flow,” Theor.
Comput. Fluid Dyn. 14, 75–88 (2000).
39C. W. Rowley, T. Colonius, and R. M. Murray, “Model reduction for com-
pressible flows using POD and Galerkin projection,” Physica D 189, 115–129
(2004).
40I. Akhtar, A. H. Nayfeh, and C. J. Ribbens, “On the stability and extension of
reduced-order Galerkin models in incompressible flows,” Theor. Comput. Fluid
Dyn. 23, 213–237 (2009).

41J. Borggaard, T. Iliescu, and Z. Wang, “Artificial viscosity proper orthogonal
decomposition,” Math. Comput. Modell. 53, 269–279 (2011).
42Z. Wang, I. Akhtar, J. Borggaard, and T. Iliescu, “Proper orthogonal decom-
position closure models for turbulent flows: A numerical comparison,” Comput.
Methods Appl. Mech. Eng. 237, 10–26 (2012).
43L. Cordier, B. R. Noack, G. Tissot, G. Lehnasch, J. Delville, M. Balajewicz,
G. Daviller, and R. K. Niven, “Identification strategies for model-based control,”
Exp. Fluids 54, 1580 (2013).
44O. San and T. Iliescu, “Proper orthogonal decomposition closure models for
fluid flows: Burgers equation,” Int. J. Numer. Anal. Model., Ser. B 5, 217–237
(2014).
45S. Grimberg, C. Farhat, and N. Youkilis, “On the stability of projection-based
model order reduction for convection-dominated laminar and turbulent flows,”
arXiv:2001.10110 (2020).
46V. M. Krasnopolsky and M. S. Fox-Rabinovitz, “Complex hybrid models com-
bining deterministic and machine learning components for numerical climate
modeling and weather prediction,” Neural Networks 19, 122–134 (2006).
47J. Yu, C. Yan, and M. Guo, “Non-intrusive reduced-order modeling for fluid
problems: A brief review,” Proc. Inst. Mech. Eng., Part G 233, 5896–5912 (2019).
48S. M. Rahman, S. Pawar, O. San, A. Rasheed, and T. Iliescu, “Nonintrusive
reduced order modeling framework for quasigeostrophic turbulence,” Phys. Rev.
E 100, 053306 (2019).
49S. E. Ahmed, S. Rahman, O. San, A. Rasheed, and I. M. Navon, “Memory embed-
ded non-intrusive reduced order modeling of non-ergodic flows,” Phys. Fluids
31(12), 126602 (2019).
50D. Xiao, F. Fang, C. Heaney, I. Navon, and C. Pain, “A domain decomposition
method for the non-intrusive reduced order modelling of fluid flow,” Comput.
Methods Appl. Mech. Eng. 354, 307–330 (2019).
51D. Xiao, C. Heaney, L. Mottet, F. Fang, W. Lin, I. Navon, Y. Guo, O. Matar,
A. Robins, and C. Pain, “A reduced order model for turbulent flows in the urban
environment using machine learning,” Build. Environ. 148, 323–337 (2019).
52R. Swischuk, L. Mainini, B. Peherstorfer, and K. Willcox, “Projection-based
model reduction: Formulations for physics-based machine learning,” Comput.
Fluids 179, 704–717 (2019).
53D. Xiao, “Error estimation of the parametric non-intrusive reduced order model
using machine learning,” Comput. Methods Appl. Mech. Eng. 355, 513–534
(2019).
54T. Murata, K. Fukami, and K. Fukagata, “Nonlinear mode decomposition with
convolutional neural networks for fluid dynamics,” J. Fluid Mech. 882, A13
(2020).
55M. Guo and J. S. Hesthaven, “Reduced order modeling for nonlinear structural
analysis using Gaussian process regression,” Comput. Methods Appl. Mech. Eng.
341, 807–826 (2018).
56K. Li, J. Kou, and W. Zhang, “Deep neural network for unsteady aerodynamic
and aeroelastic modeling across multiple mach numbers,” Nonlinear Dyn. 96,
2157–2177 (2019).
57R. Maulik, B. Lusch, and P. Balaprakash, “Reduced-order modeling of
advection-dominated systems with recurrent neural networks and convolutional
autoencoders,” arXiv:2002.00470 (2020).
58M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental
data,” Science 324, 81–85 (2009).
59A. J. Majda, C. Franzke, and D. Crommelin, “Normal forms for reduced
stochastic climate models,” Proc. Natl. Acad. Sci. U. S. A. 106, 3649–3653 (2009).
60S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Data-driven discovery
of partial differential equations,” Sci. Adv. 3, e1602614 (2017).
61Z. Long, Y. Lu, and B. Dong, “PDE-Net 2.0: Learning PDEs from data
with a numeric-symbolic hybrid deep network,” J. Comput. Phys. 399, 108925
(2019).
62J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi, “Artificial neural
networks trained through deep reinforcement learning discover control strategies
for active flow control,” J. Fluid Mech. 865, 281–302 (2019).
63R. Iten, T. Metger, H. Wilming, L. Del Rio, and R. Renner, “Discovering physical
concepts with neural networks,” Phys. Rev. Lett. 124, 010508 (2020).
64M. Raissi and G. E. Karniadakis, “Hidden physics models: Machine learning of
nonlinear partial differential equations,” J. Comput. Phys. 357, 125–141 (2018).

Phys. Fluids 32, 036602 (2020); doi: 10.1063/5.0002051 32, 036602-17

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1115/1.4031175
https://doi.org/10.1016/j.compfluid.2004.11.006
https://doi.org/10.1002/fld.1316
https://doi.org/10.1016/j.jcp.2015.04.030
https://doi.org/10.1016/j.compfluid.2018.10.006
https://doi.org/10.1016/j.cma.2019.112626
https://doi.org/10.1109/tii.2018.2873186
https://doi.org/10.1016/j.apm.2019.09.036
http://arxiv.org/abs/2001.09292
https://doi.org/10.1090/qam/910462
https://doi.org/10.1017/jfm.2016.103
https://doi.org/10.1017/jfm.2019.212
https://doi.org/10.1017/s0022112010001217
https://doi.org/10.1137/17m1125236
https://doi.org/10.1137/17m1125236
https://doi.org/10.1007/s00162-017-0432-2
https://doi.org/10.1126/science.1127647
http://arxiv.org/abs/1808.01346
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1137/18m1177846
https://doi.org/10.1007/s001620050131
https://doi.org/10.1007/s001620050131
https://doi.org/10.1016/j.physd.2003.03.001
https://doi.org/10.1007/s00162-009-0112-y
https://doi.org/10.1007/s00162-009-0112-y
https://doi.org/10.1016/j.mcm.2010.08.015
https://doi.org/10.1016/j.cma.2012.04.015
https://doi.org/10.1016/j.cma.2012.04.015
https://doi.org/10.1007/s00348-013-1580-9
http://arxiv.org/abs/2001.10110
https://doi.org/10.1016/j.neunet.2006.01.002
https://doi.org/10.1177/0954410019890721
https://doi.org/10.1103/physreve.100.053306
https://doi.org/10.1103/physreve.100.053306
https://doi.org/10.1063/1.5128374
https://doi.org/10.1016/j.cma.2019.05.039
https://doi.org/10.1016/j.cma.2019.05.039
https://doi.org/10.1016/j.buildenv.2018.10.035
https://doi.org/10.1016/j.compfluid.2018.07.021
https://doi.org/10.1016/j.compfluid.2018.07.021
https://doi.org/10.1016/j.cma.2019.06.018
https://doi.org/10.1017/jfm.2019.822
https://doi.org/10.1016/j.cma.2018.07.017
https://doi.org/10.1007/s11071-019-04915-9
http://arxiv.org/abs/2002.00470
https://doi.org/10.1126/science.1165893
https://doi.org/10.1073/pnas.0900173106
https://doi.org/10.1126/sciadv.1602614
https://doi.org/10.1016/j.jcp.2019.108925
https://doi.org/10.1017/jfm.2019.62
https://doi.org/10.1103/physrevlett.124.010508
https://doi.org/10.1016/j.jcp.2017.11.039


Physics of Fluids ARTICLE scitation.org/journal/phf

65H. Vaddireddy, A. Rasheed, A. E. Staples, and O. San, “Feature engineering
and symbolic regression methods for detecting hidden physics from sparse sensor
observation data,” Phys. Fluids 32, 015113 (2020).
66J. Kou and W. Zhang, “Multi-fidelity modeling framework for nonlinear
unsteady aerodynamics of airfoils,” Appl. Math. Modell. 76, 832–855 (2019).
67M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural net-
works: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations,” J. Comput. Phys. 378, 686–707
(2019).
68M. Bode, M. Gauding, Z. Lian, D. Denker, M. Davidovic, K. Kleinheinz,
J. Jitsev, and H. Pitsch, “Using physics-informed super-resolution genera-
tive adversarial networks for subgrid modeling in turbulent reactive flows,”
arXiv:1911.11380 (2019).
69J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged turbulence mod-
elling using deep neural networks with embedded invariance,” J. Fluid Mech. 807,
155–166 (2016).
70T. Beucler, M. Pritchard, S. Rasp, P. Gentine, J. Ott, and P. Baldi,
“Enforcing analytic constraints in neural-networks emulating physical systems,”
arXiv:1909.00912 (2019).
71O. San and R. Maulik, “Neural network closures for nonlinear model order
reduction,” Adv. Comput. Math. 44, 1717–1750 (2018).
72R. Ibáñez, E. Abisset-Chavanne, D. González, J.-L. Duval, E. Cueto, and
F. Chinesta, “Hybrid constitutive modeling: Data-driven learning of corrections
to plasticity models,” Int. J. Mater. Form. 12, 717–725 (2019).
73S. Pan and K. Duraisamy, “Physics-informed probabilistic learning of linear
embeddings of non-linear dynamics with guaranteed stability,” SIAM J. Appl.
Dyn. Syst. 19(1), 480–509 (2020).
74C. Mou, H. Liu, D. R. Wells, and T. Iliescu, “Data-driven correction reduced
order models for the quasi-geostrophic equations: A numerical investigation,” Int.
J. Comput. Fluid Dyn. 1–13 (2020).
75N. Muralidhar, J. Bu, Z. Cao, L. He, N. Ramakrishnan, D. Tafti, and A. Karpatne,
“Physics-guided design and learning of neural networks for predicting drag force
on particle suspensions in moving fluids,” arXiv:1911.04240 (2019).

76O. San, R. Maulik, and M. Ahmed, “An artificial neural network framework
for reduced order modeling of transient flows,” Commun. Nonlinear Sci. Numer.
Simul. 77, 271–287 (2019).
77Z. Y. Wan, P. Vlachas, P. Koumoutsakos, and T. Sapsis, “Data-assisted reduced-
order modeling of extreme events in complex dynamical systems,” PLoS One 13,
e0197704 (2018).
78Z. Wang, D. Xiao, F. Fang, R. Govindan, C. C. Pain, and Y. Guo, “Model iden-
tification of reduced order fluid dynamics systems using deep learning,” Int. J.
Numer. Methods Fluids 86, 255–268 (2018).
79T. Lassila, A. Manzoni, A. Quarteroni, and G. Rozza, “Model order reduction
in fluid dynamics: Challenges and perspectives,” in Reduced Order Methods for
Modeling and Computational Reduction (Springer, 2014), pp. 235–273.
80D. Amsallem and C. Farhat, “Interpolation method for adapting reduced-
order models and application to aeroelasticity,” AIAA J. 46, 1803–1813
(2008).
81R. Zimmermann, B. Peherstorfer, and K. Willcox, “Geometric subspace updates
with applications to online adaptive nonlinear model reduction,” SIAM J. Matrix
Anal. Appl. 39, 234–261 (2018).
82N. B. Erichson, L. Mathelin, Z. Yao, S. L. Brunton, M. W. Mahoney, and J. N.
Kutz, “Shallow learning for fluid flow reconstruction with limited sensors and
limited data,” arXiv:1902.07358 (2019).
83O. San, A. E. Staples, and T. Iliescu, “Approximate deconvolution large eddy
simulation of a stratified two-layer quasigeostrophic ocean model,” Ocean Modell.
63, 1–20 (2013).
84O. San and A. E. Staples, “An efficient coarse grid projection method for quasi-
geostrophic models of large-scale ocean circulation,” Int. J. Multiscale Comput.
Eng. 11, 463–495 (2013).
85S. Pawar, S. Rahman, H. Vaddireddy, O. San, A. Rasheed, and P. Vedula,
“A deep learning enabler for nonintrusive reduced order modeling of fluid flows,”
Phys. Fluids 31, 085101 (2019).
86M. Mohebujjaman, L. G. Rebholz, and T. Iliescu, “Physically constrained data-
driven correction for reduced-order modeling of fluid flows,” Int. J. Numer.
Methods Fluids 89, 103–122 (2019).

Phys. Fluids 32, 036602 (2020); doi: 10.1063/5.0002051 32, 036602-18

Published under license by AIP Publishing

https://scitation.org/journal/phf
https://doi.org/10.1063/1.5136351
https://doi.org/10.1016/j.apm.2019.06.034
https://doi.org/10.1016/j.jcp.2018.10.045
http://arxiv.org/abs/1911.11380
https://doi.org/10.1017/jfm.2016.615
http://arxiv.org/abs/1909.00912
https://doi.org/10.1007/s10444-018-9590-z
https://doi.org/10.1007/s12289-018-1448-x
https://doi.org/10.1137/19m1267246
https://doi.org/10.1137/19m1267246
https://doi.org/10.1080/10618562.2020.1723556
https://doi.org/10.1080/10618562.2020.1723556
http://arxiv.org/abs/1911.04240
https://doi.org/10.1016/j.cnsns.2019.04.025
https://doi.org/10.1016/j.cnsns.2019.04.025
https://doi.org/10.1371/journal.pone.0197704
https://doi.org/10.1002/fld.4416
https://doi.org/10.1002/fld.4416
https://doi.org/10.2514/1.35374
https://doi.org/10.1137/17m1123286
https://doi.org/10.1137/17m1123286
http://arxiv.org/abs/1902.07358
https://doi.org/10.1016/j.ocemod.2012.12.007
https://doi.org/10.1615/intjmultcompeng.2013005024
https://doi.org/10.1615/intjmultcompeng.2013005024
https://doi.org/10.1063/1.5113494
https://doi.org/10.1002/fld.4684
https://doi.org/10.1002/fld.4684

