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Abstract. Program evolution may reveal bad design decisions, misunderstand-
ings, erroneous code, or erroneous specifications, because problems made early
in the design of a system may not be discovered until much later in the life-time
of the system. Non-trivial changes of old code may be necessary. Flexibility in
making such changes is essential, especially in a distributed setting where the
system components are updated independently. In this setting re-verification is
challenging. We consider flexibility with respect to what changes can be made as
well as what can be efficiently reverified.

In this paper we propose a flexible framework for modeling and evolution of dis-
tributed systems. It supports unrestricted modifications in such systems, both in
code and specifications, and with support of verification and re-verification. We
consider on the setting of concurrent and object-oriented distributed programs,
and introduce a core high-level modeling language supporting active objects. We
allow multiple inheritance because it gives added flexibility during evolution,
allowing a wider class of software changes. To avoid undesired effects of mul-
tiple inheritance, we apply a healthy binding strategy. We prove that the frame-
work supports Modification Independence and Hierarchy Independence, which
requires healthy binding. We demonstrate that our framework can deal with veri-
fication of software changes that are not possible in comparable frameworks.

Keywords: Program evolution; Program reasoning; Software changes; Multiple
inheritance; Healthy binding; Active objects; Concurrency; Re-verification; Evo-
lution flexibility; Modification independence; Hierarchy independence.

1 Introduction

There is a need for program evolution in modern systems, because of long lifetime and
changing environmental needs. System development is a complicated process where
many kinds of mistakes can be made over time, including bad design decisions, unclear
specifications, misunderstandings, and erroneous code or specifications. Problems or
bad design decisions made early may not be discovered until much later. Redesigning
or modifying code made at an early stage in the software development may have severe
implications on the overall system. Making changes may create new problems that are
hard to foresee. These kinds of problems are severe in the setting of concurrent pro-
grams where the interaction of the different concurrent units is complicated, and also
in the setting of object-oriented programs where inheritance, late binding, and code
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reuse cause dependencies between the classes. A systematic approach, in which the
consequences of a software change can be formalized, would be advantageous. Formal
methods could be helpful in supporting specification and analysis of program proper-
ties. However, formal methods are mainly oriented towards developing correct specifi-
cations and programs, rather than the process of redoing earlier decisions. It is therefore
interesting to look at formal frameworks with support for unrestricted software changes,
and such that the framework can detect possible consequences. A trivial approach to
reasoning about program changes is to re-verify and reprove all results whenever a
change has been made. However this is time-consuming and expensive, especially for
large software systems. Ideally we would like to reprove as little as possible, without
losing soundness. This is critical in the setting of distributed systems where the system
components are updated independently.

We focus on the setting of distributed, concurrent, and object-oriented systems, and
introduce a framework for modeling, development, and evolution of such systems — with
support of verification. Our framework includes several life cycle aspects such as for-
mal requirement specification, system design, executable modeling, analysis, and main-
tenance. This means that one can avoid translation between different formalisms. The
framework allows unrestricted changes in code and requirements, and includes a the-
ory for reverification of a changed system. We consider programming mechanisms for
efficient, imperative style programming in a distributed setting, including non-blocking
as well as blocking remote method calls, combined with suspension and scheduling
control of processes inside an object. Our goal is flexibility, in the sense of support of
unrestricted software changes and with simplicity of reverification, more specifically,
that the framework makes it possible to do desired changes in software and require-
ments (Modification Independence, theorem 1), and that the effect of changing one
class is limited to that class and possibly subclasses inheriting from it (Hierarchy In-
dependence, theorem 2). We show that we can deal with software changes that are not
possible to verify in comparable frameworks.

A framework that allows the simplest reverification of any given software change,
has the best flexibility. Clearly incremental and modular reasoning are preferable, as
well as limiting the number of modules to be affected by a given change. It is desir-
able to avoid reverification of the whole system when possible. Flexibility depends on
the choice of programming and specification constructs, their semantics, as well as the
reasoning system. In particular flexibility is affected by the choice of abstraction mech-
anisms. For instance, for shared variable concurrency it is hard to analyze the effect of
software changes, even with an advanced reasoning framework. And synchronization
by signaling is notoriously hard to reason about. In the setting of behavioral subtyping, a
change in a subclass may violate superclasses requirements, thereby limiting flexibility.

Flexibility demands programming languages with a compositional semantics and
compositional reasoning frameworks. Compositional reasoning of classes is supported
by several approaches. Our framework is based on a programming paradigm with com-
positional semantics, cooperative scheduling to support object-local synchronization
control, using interface abstraction to reduce dependencies between classes, and the
use of communication histories to enable compositional specification and reasoning.
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In the presence of class inheritance, modularity of each subclass is advantageous,
as cross-class dependencies hinder flexibility. The strong dependencies of behavioral
subtyping can be reduced with the notion of lazy behavioral subtyping [8,9]; however,
reasoning requirements to local calls in a superclass are imposed on subclasses, which
limits flexibility. A framework for evolution based on this approach is given in [11].

We observe that changing a class C in the middle of a class hierarchy may in gen-
eral affect existing subclasses as well as superclasses. Clearly code inherited from C
in subclasses could lead to inconsistencies, since C is changed. And requirements im-
posed on C from superclasses may also lead to inconsistencies, something which may
in general be remediated by changes in these superclasses, thereby affecting other sub-
classes of these superclasses as well. This makes reasoning about changes of classes
difficult. However, the effect on superclasses depends on the semantics of class inher-
itance. Therefore the choice of class inheritance semantics is essential, in particular
when it comes to inheritance of requirements. If a class is changed, it is undesirable
that its superclasses also need to be modified, as this will destroy flexibility. This is the
case in approaches where requirements are pushed from superclasses to subclasses, as
in the case of behavioral subtyping.

In order to avoid this inherent flexibility limitation, we build on an approach with
separation of the reuse of code from the reuse of specifications to allow unrestricted
reuse of code and specifications. In particular we build on the approach of behavioral
interface subtyping [20] where each class is only required to satisfy its own interface
specifications, and any invariant or other local specifications given in the class. This
means that a method redefined in a subclass is allowed to break the requirements of
the superclass. This opens up for more liberal modifications than earlier work based
on lazy behavioral subtyping [8,9]. As no superclass requirements are imposed on a
subclass, this allows full control of the inheritance of code and of requirements when
a subclass is defined, and when it is modified. In this way we may avoid inconsistent
specifications due to inheritance. In our approach we can avoid inconsistencies due to
superclass requirements, simply by controlling which requirements to inherit.

The notion of multiple inheritance allows adjustments in the inheritance hierarchy
in the middle without removing existing inheritance relationships, simply by adding
superclasses (and superinterfaces) as needed. This gives added flexibility during evolu-
tion, while allowing backwards compatibility. However, multiple inheritance has been
criticized for too much flexibility and ambiguity issues, as exemplified in the diamond
problem. We therefore add syntax for resolving ambiguities statically by using class
names to limit the binding, and insisting on the healthiness condition suggested in [9],
which implies that a local call appearing in a class C may only bind to a class below or
above C, and not to a class in a different branch than that of C. Thus program changes
in other branches than C will not affect the binding of such calls. The addition of super-
classes during program evolution makes it possible to adjust the inheritance hierarchy
and to reuse code from added superclasses. For instance, a service-oriented system de-
fined by a class S defining online purchases of tickets of some kind may be extended
with functionality for subscription to newsletters (of the relevant kind) and such that
newsletters are sent to the subscribing customers. This extension can be done by adding
the subscription class as an additional subclass of S and adding the relevant subscription
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interface as an interfaces of S. Without support of multiple inheritance this extension
would not be possible when § already has a subclass from before.

Our framework allows unrestricted changes of code and specifications (assuming
type correctness). This means that one may write combinations of code and specifica-
tions that are inconsistent, for instance when a class does not satisfy the requirements of
its interface(s). The framework will detect such inconsistencies so that they may be re-
solved, by changing code and/or specifications. In order to determine the consequences
of changes in a (super)class, the framework needs to keep track of dependencies of local
calls. We show that our framework can deal with software changes that are not possible
to verify in comparable frameworks, and show how to reason within a hierarchy where
some classes are verified and others not. We demonstrate our framework by examples.

Our approach is modular in the sense that the consistency of a class is determined by
looking at the class itself, its interface(s), and reused code from superclasses. In order
to analyze a software modification, one must first determine the affected code, in par-
ticular subclasses, and for each such subclass one must reverify the affected parts (after
redesign of any inconsistent parts). Incremental reasoning is achieved by not letting a
class impose restrictions on its subclasses. The present work extends the framework
of [22] by adding multiple inheritance. As argued, multiple inheritance provides signif-
icant improvements in flexibility and simplicity during evolution since it enables added
functionality just by adding superclasses and interface support in the middle of a class
hierarchy, where needed. Thus multiple inheritance can be more useful in the program
evolution phase than in the original program design phase.

Outline. Section 2 gives the programming setting for our framework, and Section 3
gives a summary of history-based specification and reasoning, including an example.
Section 4 describes the proof obligations generated by our framework, simplifying [21].
In Section 5, we show how the framework is extended to deal with software changes.
Finally, we discuss related work (Section 6) and give a conclusion (Section 7).

2 Language Setting

Our setting is distributed systems, and we focus on asynchronously communicating
objects, so-called active objects, supporting blocking and non-blocking remote calls,
without support of remote field access. In this setting, verification of a system of con-
current objects can be done compositionally, verifying each class separately, letting the
specification of each class and interface refer to its local history [21]. The local history
of an object reflects the time sequence of communication events such as method calls
and returns, involving the object. Each class can be verified in a sequential manner,
and a compositional rule states that a global invariant about the global history can be
obtained by conjunction of the local invariants on local histories together with a well-
formedness predicate relating the local histories to the global history.

We consider multiple inheritance, because this gives the freedom to extend the in-
heritance hierarchy during evolution, which greatly adds to the flexibility of changing
programs. A class can then inherit from several superclasses while removing/adding/re-
defining method definitions, method specifications and invariants. As customary, we re-
quire a non-cyclic inheritance graph. And fields w may be added (an initial value » may
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Pr = [In* C|* program
In = interface F|extends F*]’{Ss* I*} interface declaration
Cl == class C[([Tcp]T)]’ [implements F*]”  class definition
[inherits [C(¢)]T]’ [removing mT]’? inheritance mechanisms
{[Tw[=r"" s M* $* I*} class body
M =T m([T x]*) B P* method definition
S =T m([Tx]*) P* method signature
B = {[[Tx[=r"":]"[s;]’ return r} method body
T := F|Any| Void | Bool | String | Int | Nat | ... types
v on=xl|w variables (local or field)
e u=null |this |caller|v|cp]| f(e)] (e) pure expressions
r :=e| new C(e) | e.m(e) | this C.m(e) | [C]” : m(e) right-hand-side/call/new
s u= skip |[v:=]"r]|s;s basic statements
| await v:=e.um(e) | await e suspending statements
| if e then s[else s]’ fi if statement
P :=[[A,A]1]" [where AT]’ pre-/postcondition pairs
I == inv A" [where AT]’ invariant specification

Fig. 1. Language syntax. Specification elements are written in blue. F* denotes an interface name,
C a class name, m a method name, cp a formal class parameter, w a field, x a method parameter
or local variable. We use [ | as meta parentheses and superscipts *, +, and ? for repetition, non-
empty repetition, and optional parts, respectively. Expressions e are side-effect free, and e denotes
a (possibly empty) expression list. Assertions A are first order Boolean expressions and may refer
to the local communication history h. A where clause defines auxiliary functions used for
specification purposes. Other statements, such as while loops, can be added.

be given, otherwise the default value of the type is used). Class parameters are concate-
nated, and so are fields and initialization code. In case of a diamond-shaped inheritance,
where the top superclass is inherited through several superclasses, the top superclass is
inherited only once. This is achieved by the binding strategy. Method names (and field
and class parameter names) can be qualified by a class name so that the occurrence is
unique in the given class. This provides fine-grained control of the inherited names.
For local calls we may use a class name to make the name unique, and similarly for
fields and class parameters. Dot-notation as in o.n(...) and this C.n(...) is reserved for
late-bound method calls, while the colon notation C : n(...) is reserved for static local
method calls. If a field w is ambiguous due to multiple inheritance, we use the syntax
C:w for afield as seen in a superclass C. We insist on healthy binding, which means that
an internal call made by a method defined in class C must bind to a class hereditarily
related to C (as defined below).

We consider a core high-level imperative modeling language, given in Figure 1,
inspired by the concurrency model of Creol [15] — extended to multiple inheritance. The
language is executable with an interpreter in Rewriting logic/Maude [5]. The language
is similar to that of [22], which considered only single inheritance. A program consists
of a number of interfaces and classes. A class may implement a number of interfaces
and inherit a number of (super)classes. The reflexive and transitive extension of the
subclass relation is denoted <. If A < B, we say that A is below B, and B is above A; and
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we say that A and B are hereditarily related if either A is below B or A is above B. Class
instances represent concurrent and active objects. Local data structures are defined by
(build-in or user-defined) data types. An interface can extend other (super)interfaces
and add declarations of methods, behavioral constraints, and invariants.

A variable referring to an object is typed by an interface, not by a class. A variable
declared of interface F is called an F variable. Through type checking the language
guarantees that for an F variable, the object referred to by the variable at run-time
implements F. This is called the interface substitution principle [23,15,17]. We dis-
tinguish between public methods, those exported through an interface of the class, and
private methods, those that are not exported through any interface of the class. Note that
interface abstraction defines the public-ness, rather than keywords such as private and
public. Thus a public method in a class may be private in a subclass (and vice versa).

We allow remote calls of public methods with the syntax v := o.m(e) where e the
list of actual parameters and o is the callee. The value resulting from the call is assigned
to the variable v. (The assignment part may be omitted if this value is not needed). A
remote call v := o.m(e) is type correct if the interface of o supports a method m such
that the type of the actual parameters e is a subtype of the formal parameters of m and
the output type of m is a subtype of the type of v. Since verification is done after type
checking, we assume type correct programs, and assume that a class does not offer two
declarations of the same method name. (If needed we could index the method name by
the input and output type in order to make them distinct).

We allow both late-bound and static-bound local method calls, syntactically in-
dicated by dot-notation and colon-notation, respectively. Local calls have the syntax
v := this.m(e) and v := this C.m(e) (where C limits the binding of m) for late-bound
calls, or v := C:m(e) for static-bound calls, where this refers to the current object. We
let this have the enclosing class as its type. Public methods are required to maintain the
class invariant. Private methods may only be called locally, and may be called in states
violating the invariant. A static local call : m(...) binds to the method m defined in the
enclosing class C, if any, and otherwise to the closest inherited m, using a depth-first,
then left-first, traversal of the superclasses of C. If neither C nor its superclasses has a
method m, the call is statically illegal. The static local call B : m(...) (for C < B) binds
to the method m defined in class B or inherited by B, as defined for a local call : m(...)
appearing in class B. The class qualification (B) enables the programmer to select which
version of a redefined method is needed. A late-bound local call this B.m(...) is legal
if B:m(...) is legal and binds to the class closest to that of the executing object, as ex-
plained in detail in Sec. 3.2. The local call this C.m(...) when occurring in class C, may
be abbreviated to this.m(...). Note that all legal calls will have a binding. Type checking
ensures that there exists a binding, following [17].

In order to allow non-blocking calls, the language offers a suspension mechanism,
programmed by await statements. An object may perform at most one process at
a given time, and suspended processes are placed on a process queue local to the ob-
ject. When the active process is suspended or completed (by a return statement),
an enabled process from the process queue may be resumed. We consider conditional
suspension (by means of a Boolean expression) and call-related suspension, suspending
while the return value from a remote call has not arrived. The call await v:= 0.m(e)
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suspends the current process and places the remaining part of the process in the queue,
and it is enabled when the result from the call has arrived to the object. In the meantime
the object may execute enables processes or handle incoming calls. Note that the callee
o may be this, in which case the call will be done by the object. However, we may not
suspend on a local call to a private method (since the syntax await v:= C: m(e)
is not part of the language) as this would complicate the class invariant reasoning, as
explained below.

The behavior of methods may be specified by pre/post specifications. This is needed
for reasoning about local calls, for which the invariant may be violated, and is in par-
ticular useful for private methods, and other locally called methods. Multiple pre/post
specifications of each method are allowed, and a class may implement multiple inter-
faces. A class without an implements list will implement the empty interface Any,
which is the superinterface of all interfaces.

When an interface extends another (super)interface, all declarations and specifi-
cations are inherited. When a class inherits another class (the superclass), all code
and specifications are inherited unless redefined: A pre/post pair (P) is inherited unless
another is stated, an invariant (/) is inherited unless another is stated, the initialization
code (s) is inherited unless another is stated, and a method body (B) is inherited unless
the method is redefined or removed. Likewise, the implementation clause of the super-
class is inherited unless a new implementation clause is provided, in which case the
superclass implementation clause is not inherited.

The syntax removing my,m;....expresses that the listed methods should not be
inherited, thereby defining “negative” inheritance. By type checking it must be ensured
that public methods are not removed and that the remaining methods in C (including
inherited ones) do not (directly or indirectly) lead to a call on a removed method. The
purpose of a removal is to make a semantically simpler subclass, where irrelevant or
problematic code is eliminated. In particular this can be used to make verification eas-
ier, and even avoid verification problems for instance when an invariant is redefined.
Removal of fields will mainly be a typing issue. For simplicity, we assume read-only
access to method and class parameters.

Apart from standard statements, we have included multiple inheritance, both static
and late-bound calls, as well as cooperative scheduling and suspension allowing non-
blocking calls, something which is useful in a distributed concurrent setting. Recursive
calls are allowed, and while statements can easily be added.

3 History-Based Specification

The abstract state of an object is captured by the time sequence of communication
events that have occurred so far involving the object. In a given state this sequence
is finite. Thus finite communication sequences suffice for safety reasoning, called his-
tories. Interface, class, and system specifications are expressed by means of histories.
Global histories capture all communication events in a distributed system (or subsys-
tem), and local histories capture all communication events seen from a given object.
The local history h of an object o is part of the global history H, and these are related



8 O. Owe, E. Fazeldehkordi, J.-C. Lin

by the equation h = H /o where H /o denotes the projection of the global history H to
all communication events involving o as either the sender or receiver.

The invariant of an interface F' may refer to the local history h and this, but not fields
since these are not visible at the interface level. When seen from another class or inter-
face with a larger alphabet, the F' invariant must hold on the alphabet of F. The invariant
of a class C may refer to fields, the local history h, class parameters, and this. This in-
variant must be maintained by each public method of the class (possibly inherited), and
a class must satisfy each implemented interface using projection on the history to re-
flect the subset of methods visible through the interface. A method specification may
in addition refer to the formal parameters (including the caller) and logical variables
(primed variables), and a postcondition may talk about the result (return). When seen
from another class with a larger alphabet, a C invariant must hold on the alphabet of C.

The local history h of a class/interface is the time sequence of communications
events seen by this object, considering the following kinds of events:

- amethod call made by this object, denoted this — o.m(e)

— amethod call received by this object, denoted o — this.m(e) (for m in the class)
— a method return made by this object, denoted o < this.m(e;e) (for m in the class)
— a method return received by this object, denoted this «— o.m(e;e), as well as

— a creation event made by this object, denoted this — 0. new C(e)

where o represents the other part in the communication. In practice, specifications using
histories will often be concerned about method completions, i.e., «— and « events, and
possibly creation events, since these capture the essential input/output relations. (This
is the case for our examples.) For a given method call, the <— event precedes the «—
event, which is formalized by a wellformedness predicate (wf) below.

Sequence notation: A sequence is either empty or of the form ¢;x where ¢ is a sequence
and x an element. The notation ¢/s denotes the projection of g restricted to elements in
the set s, ¢ < ¢’ denotes that g is a prefix (head subsequence) of ¢’, xbefore x’ in g de-
notes that x appears before any occurrence of X’ in g, i.e., length(q' /x) < length(q' /x')
for any prefix ¢’ of ¢. For a global history H, there must be a meaningful ordering of
the events, i.e., the history must be wellformed, defining wf(H) by the conjunction of:

(0 — o'.m(e)) before(o— o' .m(e))in H

(0 — o'.m(e)) before (o<« o' .m(e;e))in H

(0 < o'.m(e;e)) before (0 « o'.m(e;e)) in H

(o'~ 0.newC(e)) before (0—0".m(e')) in H

(o' = 0.newC(e)) before (0" —o.m(e')) in H

expressing that messages are sent before they are received, that method invocation must
precede method return, and that a creation event of o must precede other o events. The
conjunction of these properties (universally quantified) expresses the wellformedness
predicate, used in the compositional rule for global reasoning. The rule for object com-
position essentially says that the global invariant is the conjunction of the wellformed-
ness predicate and all object interface invariants, each referring to its own alphabet.
Since the alphabets of the objects are by definition disjoint, the wellformedness predi-
cate is needed to connect the different object invariants.
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We let h/F denote the projection of a local history h to the events visible through F,
i.e., events of the form this — 0. new C(e), this — 0.m(e), and this «— 0.m(e;e), as well
as events of the form o — this.m(e) and o < this.m(e;e) for m offered by F. The same
notation applies to classes C, projecting to this — and this «— events as well as — this.m
and < this.m for m defined or inherited in the class. An invariant /(h) of an interface F
is understood as I(h/F) in a subinterface or class. We therefore define I (h) as I(h/F),
and similarly for classes, defining Ic(h) = I(h/C).

In general history-based invariant specification is more expressive than pre/post
conditions since a pre/post pair (P,Q) of a method m with parameters X can be for-
mulated as the invariant (caller < this.m(X;return)) € h AP = Q where P and Q may
refer to this, caller, and X, and Q also to return, and h. For instance, one may express
that the return event of a method hire implies that the object has received the return
of a method check budget with OK as result. However, a specification expressible as a
pre/post specification can be simpler to read and write than the corresponding invariant.

3.1 A Bank Example

Figure 2 shows a minimalistic example defining a class BANK and a subclass BANKPLUS,
as well as related interfaces and a possible CLIENT class. The example is taken from [22].
The code illustrates suspension, non-blocking and blocking calls, static and late-bound
local calls. Interface and type names are capitalized while class names are written in
upper case letters. The keyword inv identifies invariants and the keyword where
identifies auxiliary function definitions. In assertions, inv refers to the current invari-
ant, while C : inv refers to the invariant of class C.

Interface Bank states that the balance (as returned by bal) is the sum of amounts de-
posited (by add) or withdrawn (by sub) from the bank account, ignoring unsuccessful
add and sub calls. In addition it states that add calls always succeed. Interface Per-
fectBank extends Bank by stating that also sub calls succeed, while interface BankPlus
extends Bank by stating that the balance is always non-negative. Interface Client (here
omitted) includes methods salary (for receiving salary) and bill (for paying a bill).

The specifications of interface Bank and class CLIENT illustrate history-based speci-
fication, with inductive definitions of sum and allpaid. Functions are defined by a set of
equations. The left hand sides can be seen as patterns, using underscore (_) to match any
expression and letting others match any other case not covered by the other left hand
sides. The auxiliary function sum calculates the balance from the local history. Note
that only method-return events are used in the specification as other kinds of events are
covered by the others equations. This is a typical situation for objects with “reactive”
behavior as illustrated here.

The subclass BANKPLUS inherits the pre/post specifications of bal and add from
BANK, but not the ones for upd and sub, which are redefined and therefore not inher-
ited. In fact, the subclass violates the pre/post specifications for upd and sub in BANK.
BANKPLUS does not support the BANK interface PerfectBank. Therefore the implements
clause is redefined and not inherited. The await statement in class CLIENT allows the
client to be responsive to salary reception calls and bill payment calls in case the sub
call takes much time. However, it is then possible that two bills with the same kid are
both paid. This would not be possible if the sub call is made as a blocking call.
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interface Bank {
Bool sub(Nat x)
Bool add(Nat x) [true, return= true]
Int bal() [true, return= sum(h)]
where sum(empty) = 0,

sum(h; (_«this.add(x;true))) = sum(h)+x,
sum(h; (_«this.sub(x;true))) = sum(h)—x,
sum(h; others) = sum(h) }

interface PerfectBank extends Bank {
Bool sub(Nat x) [true, return= true] }

interface BankPlus extends Bank {
inv sum(h)>=0}

class BANK implements PerfectBank {

Intbal:=0; —— a field defining the balance

Bool upd(Int x) {bal:=bal+x; return true} [true, return= true]
[inv, bal=sum(h)+x and return=true]

Bool add(Nat x) {return this.upd(x)} [true, return= true]

Bool sub(Nat x) {return this.upd(—x)} [true, return= true]

Int bal() {return bal} [true, return=bal]

inv bal=sum(h) }

class BANKPLUS implements BankPlus inherits BANK {
Bool upd(Int x) {Bool ok:=(bal+x>=0);
if ok then ok:=BANK:upd(x) £i; return ok}
[inv, bal>=0 and bal=sum(h)+if return then x else 0]
[b’=bal, return=(b’+x>= 0)]
Bool sub(Nat x) [b’=bal, return=(b’>= x)]
inv BANK:inv and bal >=0}

class CLIENT implements Client {
Seq[String] paid; —— a field keeping track of paid bills
Bank acc:= new BANK; —— the banc account of the client
Bool salary(Nat x) {return acc.add(x)}
Bool bill(String kid, Nat x, Bank y) { Bool ok:=false;
if kid ¢ paid then await ok:=acc.sub(x);
if ok then y.add(x); paid:=(paid;kid) £i
fi; return ok}
inv paid=allpaid(h) ——— paid corresponds to successful bill payments
where allpaid(empty) = empty,
allpaid(h;_<—this.bill(k,x,y;true))=(allpaid(h);k),
allpaid(h; others)=allpaid(h) }

Fig. 2. A bank example with a client class [22].
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class BANK2 implements PerfectBank, BankPlus inherits BANKPLUS {
Bool upd(Int x)
{await bal+x>=0; bal:=bal+x; return true}
[inv, bal=sum(h)+x and bal>=0 and return]
Bool sub(Nat x) [true, return= true] }

Fig. 3. A possible subclass of class BANKPLUS [22].

In this example, the subclass does not obey the requirements imposed by behavioral
subtyping, nor by lazy behavioral subtyping. The redefinition of upd in BANKPLUS does
not satisfy the BANK postcondition of upd, and therefore the verification of the redefined
upd will not succeed when using the framework of lazy behavioral subtyping (since the
BANK postcondition of upd is needed for the local upd calls in the verification of BANK
and therefore pushed to subclasses). In our framework, the BANK postcondition of upd
is not imposed on the subclass, and the example can be verified without problems.

Figure 3 shows a subclass of BANKPLUS that could be meaningful in a distributed
setting. A transaction is delayed as long as the balance is insufficient. This is done by
means of an await statement, which suspends the sub activation, but does not block the
object. Note that sub is inherited but not its specification. Class BANK2 implements the
additional interface PerfectBank, and it inherits from BANKPLUS the invariant and all
pre/post specifications, except the ones for upd and sub, which are violated. Again rea-
soning with behavioral subtyping or lazy behavioral subtyping breaks down, because
the reasoning about the (late-bound) calls to upd in BANK depends on the postcondi-
tion of upd, and therefore it is imposed on all subclasses in the case of lazy behavioral
subtyping. Our framework allows flexible reuse of code and specifications, without ver-
ification problems, avoiding harmful superclass requirements.

Consider next that class BANKPLUS is changed for instance by redefining sub by

Bool sub(Nat x) { return BANK:sub(x+1)}

A fee of 1 unit is incorporated in the withdrawal. In this case, class BANKPLUS can still
be reverified, but the subclass BANK2 is indirectly affected by this change, and it is no
longer a PerfectBank (because of the fee). Thus to avoid this inconsistency, class BANK2
should be modified, say by removing PerfectBank as an interface.

If a subclass of BANK redefines add and sub without using upd, that subclass may
remove method upd. And a subclass of BANK implementing an interface with add, but
not sub, and with the same class invariant as class BANKPLUS, may remove method sub
in order to make invariant reasoning simpler.

3.2 Reasoning about late binding and static binding

Statically bound calls are resolved at compile time, while late bound calls are bound at
runtime. In either case the behavior of the call depends on on the class of the object ex-
ecuting the method, called the actual class, since the behavior may (possibly indirectly)
depend on late bound calls inside the method body. For C1 and C2 subclasses of C, it
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may be that there is a local call this.n(x) in method m of C, and if n is redefined in both
C1 and C2, an m call will bind n differently depending on the actual class. For instance
in the Bank example, a call to sub binds to BANK : sub, but the this.upd call in the body
of BANK :sub binds to BANKPLUS :upd or BANK: upd depending on the class of the
executing object, BANKPLUS or BANK, respectively.

To formalize the binding of late-bound and static calls, we introduce three func-
tions, bind(A,m), bind(A,B,m), and bind(A,B,C,m), where A < B and B < C. We let
the function bind (A, m) return A if it has a definition of m, otherwise the closest class
with a definition of m considering the superclasses above A, using a depth-first, left-fist
traversal. This is used for binding a static call : m(...) appearing in class A and also for a
static call A : m(...) appearing in subclass of A. We let the function bind(C, B,m) return
C if C has a definition of m, otherwise the closest superclass of C with a definition of m
using a depth-first, left-first search of the superclass hierarchy of C, restricted to classes
hereditarily related to B. Similarly, bind(C,B,A,m) returns the closest superclass of C
hereditarily related to both B and C, using a depth-first, left-first search of the superclass
hierarchy. When C is known, bind(C,..,m) can be calculated, even with an open-ended
class hierarchy.

A late-bound local call this.m(...) appearing in a class B binds to bind(C,B,m)
where C is the class of the executing object. The late-bound local call this A.m(...)
appearing in a class B binds to bind(C,B,A,m) with B < A and C and B as above. For a
late-bound local call the binding can be calculated statically for a given actual class of
the executing object, this.

In the case of verification based on behavioral interface subtyping, we reconsider
each possible actual class of this. Thus for each subclass of C (defined so far), we
reconsider the verification of any inherited or reused methods. For each subclass C’, the
binding can then be done at verification time, binding a call this.m appearing in C to
bind(C',C,m) and binding C:m(..) to bind(C,m) as explained.

A complication in reasoning about local calls is that a release point (programmed
by an await statement) should maintain the invariant of the actual class (say D) as
opposed to the enclosing class (C). Thus reasoning about a release point occurring in a
method C:m must consider the invariant of the actual class, which may be a subclass (D)
of C. We therefore index the derivation symbol () both with the class of the executing
object D as well as with the class of the enclosing object C, using the notation p c.
In the setting of behavioral interface subtyping, reasoning is done for each choice of
D. For a method inherited from C, we derive properties by means of p ¢, thereby
letting all relevant proof obligations from C be reconsidered for each subclass D. In
reasoning with behavioral subtyping, this is not needed since reasoning about method
m of C is made (once) for all actual D. The latter approach makes reasoning simple
when it succeeds, at the cost of redefinition flexibility — whereas in our system, based
on behavioral interface subtyping, we may differentiate the different versions of an
inherited method in the different subclasses. This gives more fine-grained reasoning
(and specification) control, which is valuable in the setting of flexible code reuse and
program evolution. A pre/post specification of m in C will be based on the invariant of
C, which may be different from that of D. Therefore a pre/post specification of m in C
cannot in general be guaranteed in a subclass D if C:m has local calls or release points.
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For example, consider two executions of a late-bound m call occurring in class A
with C1 and C2 as the actual classes. These can be referred to by C1:m and C2:m,
respectively. We have that bind(C1,A,m) = bind(C2,A,m) when the closest definition
of m (hereditarily related to A) is in a common superclass of C1 and C2. A call to m
with C as the actual class may cause a local call this.n(y) (directly or indirectly). In
the verification, this call will then be re-analyzed with C as the actual class, using the
binding bind(C,A,n) where A is the class enclosing the call, and a static call D:n(y)
with C as the actual class will be re-analyzed using the binding bind(D, m). The analysis
of these call is the same when bind(C,A,m) = bind(D,A,m) and the method body has
no local calls to methods redefined below D and no release points.

For partial correctness reasoning, we consider theorems of the form

Fea [P]s[O]

where C is the actual class and A is the class enclosing s, and the Hoare triple [P]s[Q)]
states that if the statement(list) s is executed in a state satisfying the precondition P the
final state will satisfy the postcondition Q provided the execution of s terminates (using
square brackets rather than curly brackets since the latter are part of the programming
language syntax). Figure 4 presents sample proof rules needed for the example, modify-
ing the rules in [22] (using a double-indexed proof symbol). Note that the axiom schema
for assignment is as for sequential programs without aliasing. If we had allowed remote
field access, this would no longer hold. The notation Q) denotes (capture-free) textual
substitution replacing all free occurrences of the variable v by the expression e. Simi-

larly, QZ:,/ denotes simultaneous replacement (v by e and v/ by ¢’). Rules for sequential
composition and if-statements are as usual. Rules for while-loops and recursive calls
are also standard, but are omitted here for brevity.

For a class C we use ¢ 4 to prove the pre/post verification conditions for objects
of that class, for code inherited from A. For code in class C this corresponds to normal
class-based reasoning (¢ ). For code inherited from A, reasoning about release points
and local or self calls depends on C, which reflects the actual class of this object, as
well as A. Note that reasoning about late-bound self calls reduces to reasoning about
static local calls: According to rule self call, the late-bound self call v := this B.m(x)
is equivalent to the static call v := D:m(X) where D is given by bind(C,A,B,m). Thus
the binding depends on the class of the executing object C, restricted by A and B. The
binding bind(C,A,B,m) can be calculated at verification time since C, A, and B are
known. We have that the self call v := this.m(e) abbreviates v := this A.m(e) where A
is the enclosing class, and similarly that the static call v := : m(e) abbreviates v:= A :
m(e). Thus rules for these special cases are omitted. For instance, reasoning about the
late-bound call v := this.m(X) reduces to reasoning about the static v :=: m(¥) if the class
of this has a redefinition of m. Rule static call states that reasoning about v := B:m(e)
reduces to reasoning about bodyp;,a(p,m).m» dding effects on the history, where bodyc:m
denotes the body of the definition of method m in class C.

The body of a method definition m(X){s; return e} is given by

h := (h;caller — this.m(X));
s; return :=e;
h := (h;caller + this.m(x;return))
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assign Fca [Qi]v:=e[0]

history Fea [ =h]s[h <h]

await guard FcallcANL) await b[bAIc AL

new Fea W .fresh(V',h) = Q:;,llll;(thisevﬁnewc(é))] v:= new C(e)[0Q]
simple call Fca [Q'ﬁ;ahis_mm@)] o.m(e) [Q]

blocking call  Fc.a [V .0 # this A QU e o mie)):thiseom(enry] V= 0M(@) (0]

v,h
v’,h;(this«eo.m(?;v’))]
await v:=o.m(e)[Q]

bca [P] await true VW .Q

Fea [P

non-blocking call
h;(this~>o.m(?))}

Fca [P]v:=bind(C,A,B,m) : m(e) [Q]

self call Fca [P]v = this B.m(e) [Q]
o Fea [P]v:= bind(C,A,m) : m(e) O]
implicit self call Fea o =this AP]v = om(e) 0]
static call _Fea [P bodypind B my:m [Qg;(this«this.rrL(E;\f))]
Fea [Pg,}i?!i;zhiSﬂthis.m(E)) AL}y i=B:m(e) [0 e ™" AL
Fca [P]s[0O] Fca [0 [R]
sequence Fea [Pls:s (R
ift-then-else FealPAbls O] FealPAb)S (0]

Fca [P] if b then s else s’ £i [Q]

Fig.4. Hoare-style rules and axioms. Primed variables represent fresh logical variables,
fresh(v’ ,h) expresses that v does not occur in h, and L denotes a local assertion, i.e., without
occurrences of fields. In rules self call and static call, we assume that v does not occur in e (oth-
erwise we would need a primed variable, V). In rule static call we assume that X is the formal
parameter list (which is read-only). Note that binding is calculated at verification time.

incorporating the effects on the local history reflecting method call reception and method
return. Since each class is analyzed separately, we obtain a modular and incremental
verification system suitable for an open-ended class hierarchy, not unlike [7]. In the
analysis of a class C we may need to consider superclasses of C, but not subclasses. We
may reuse superclass verification results as follows: For code inherited from a super-
class B, we may derive ¢ g [P] s [Q] from I-p g [P] s [Q] when s has no release points and
no local calls leading to calls of methods redefined below B. Otherwise ¢ p [P] s [Q]
can be established by a new analysis of s and of any locally called methods in s. In par-
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ticular ¢ g [P]v := B:m(X) [Q] follows from tp g [P]v:= B:m(X) [Q] when B:m has
no release points nor local calls. In contrast to behavioral subtyping and lazy behavioral
subtyping, no requirements are imposed on subclasses.

4 Proof Obligations

For each class C we must ensure that it satisfies the stated requirements, i.e., that the
implements clause is satisfied (syntactically and semantically), that the class invari-
ants are maintained by each method (except private ones), and that the stated pre/post
specifications are satisfied by the corresponding methods of the class.

In this proof, inherited methods must be considered, while superclass implementa-
tion claims, superclass invariants, and superclass pre/post specifications, are not con-
sidered unless inherited. Each class is verified in this sense, taking inherited superclass
code into consideration. Together with correct typing of object variables, this ensures
that each object variable will satisfy its declared interfaces, and each object of run-
time class C will satisfy the interfaces of C. This ensures that the compositional rule
(Section 5.1) for reasoning about active object systems is sound. Furthermore, each
late-bound local call with C as the run-time class of the caller/callee will satisfy the
pre/post specification given in C since class C is statically verified. This is reflected in
the composition rule, which considers all verified callee classes.

We formalize the proof obligations expressing the correctness of a program, a class,
an interface claim, a class invariant, and a method specification. We define the following
proof obligations, identifying the actual class and the enclosing class:

Definition 1 (Program and Class Correctness).
A program P is correct, denoted = P ok, if each class in the program is correct.
A class C is correct, denoted - C ok, iff

F Csat F foreach interface F specified in the implements clause of C,

F Cinv [ for each stated (or explicitly inherited) invariant I of C,

Fc.c m(X) sat [P, Q] for each method m(X) defined in C, and each specifica-
tion [P, Q] stated (or inherited) in C for m,

Fc.a m(X) sat [P,Q] for each method m(X) inherited from A, and each speci-
fication [P, Q)] stated (or inherited) in C for m,

where

Fc.a m(x) sat [P,Q] isverified by proving t=c a [P] bodypina(c A m):m |Q] (as ex-
plained above).

F Cinv [ is verified by proving -c c m(x) sat [I,1] for each public method
m(%) in C, and by proving ¢ 4 m(%) sat [1,1] for each public method m(x)
inherited from A, and by proving that the invariant holds initially, i.e., 1
holds when h is replaced by the empty history and fields by initial values.

FCsat F is verified by proving that the conjunction of the invariants I;(h) of
C implies the invariant of F, Ir (considering methods visible through F, as
explained in Section 3):

Nili(h) = Ip(h/F)
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Note that type checking ensures that all methods of F are offered in C, with a signa-
ture better or equal to that of F' (i.e., contravariant parameter types and covariant return
types). And it ensures that removed methods are not directly or indirectly called from
C, and that private methods of C are not directly or indirectly called with await .

For a subclass C’ of C, ¢ 4 m(X) sat [P, Q] need not imply - 4 m(X) sat [P, Q]
even if m is not redefined, since the binding of local calls appearing in the body of m
in C may bind differently in the context of C’ (i.e., bind(C,A,n) versus bind(C',A,n),
respectively). In general ¢ 4 m(X) sat [P, Q] depends on redefinition of m or locally
called methods and possible C invariants in case of suspension (by await statements).
A redefinition in C’ of a locally called method may violate the supertype specification
of that method. A suspension point performed on a C’ object can only guarantee that
the C’ invariant is maintained, which could be weaker than the C invariant. We therefore
track these dependencies, and we may conclude that ¢ 4 m(¥) sat [P,Q] implies k¢ 4
m(X) sat [P,Q] if F¢ m(X) sat [P, Q] does not depend on any redefined code and that
any invariant used in the verification is respected by C'.

For a method m defined in B without local calls or suspension points, we have
that the theorem k¢4 B:m(X) sat [P, Q] reduces to -c ¢ m(X) sat [P,Q]. This gives a
practical way of reusing proofs from superclasses.

4.1 Verification of the Bank example

Let B denote BANK and BP denote BANKPLUS. Let I denote the invariant of B and
Ipp that of BP. According to our definition of class correctness, we get the following
verification conditions for class BANK (- B ok ):

= Ig = IpesfectBank (h/ PerfectBank) (1)
Fg g bal(x) sat [true,return = bal] (2)
Fp g add(x) sat [true,return = true] 3)
Fg,p sub(x) sat [true,return = true] 4
= 5 ey 5)
Fpp bal(x) sat [Ip,15] 6)
tp.p add(x) sat [Ip, Ip] @)
Fg,p sub(x) sat (I, I5] €]
Fgp upd(x) sat [Ig,bal = sum(h) +x A return = true] 9)

In addition we must verify the PerfectBank pre/post conditions, which follow by the
corresponding BANK pre/post conditions (2,3.4). In particular, the postcondition return =
sum(h/PerfectBank) follows by (2) and Ig. Here (1) represents the entailment of the
PerfectBank invariant, which in this case is an empty obligation since PerfectBank has
no invariant, (2,3,4) are requirements from BANK, (5) states that /p holds initially, (6,7,8)
state the invariance of Iz, and (9) represents the additional pre/post specifications of upd
given in BANK. Verification conditions (2,5,6) and (9) are trivial, (3,4) and (7,8) follow
from (9), treating the return e of a public method m(X) as the assignment return :=e,
followed by h := (h; (caller +— this.m(%;return))) according to the definition of body.

For class BANKPLUS we must verify = BP ok, which amounts to the verification



A Framework for Program Evolution 17

F Igp = sum(h/BankPlus) > 0 (10)
Fgpp bal(x) sat [true,return = bal| (11)
Fppp add(x) sat [true,return = true] (12)
= TP gy (13)
FBrB bal(x) sat [IBPJBP] (14)
Fppp add(x) sat [Igp,Ipp] (15)
Fap.p sub(x) sat [Igp,Ipp] (16)
Feppp upd(x) sat [Igp,bal > 0 Abal = sum(h) + ifreturnthenxelse () a7
Fpppp upd(x) sat [b' = bal,return = (b’ +x > 0)] (18)

Fig. 5. Verification conditions for class BANKPLUS.

F Iy = sum(h/BankPlus) > 0 (19)
Fp2.p bal(x) sat [true,return = bal] (20)
g2, add(x) sat [true,return = true] 21
kg2, sub(x) sat [true,return = true| (22)
= B2 oo (23)
82,5 bal(x) sat [Izy, Igo) (24)
Fpo.p add(x) sat [Ip,Ip] (25)
g2 sub(x) sat [Ip),Ip)] (26)
2.2 upd(x) sat [Igy,bal = sum(h) +xAbal > 0 Areturn = true] 27

Fig. 6. Verification conditions for class BANK 2 .

conditions given in Figure 4.1. These represent the entailment of the BankPlus invari-
ant (10), the inherited pre/post specifications of BankPlus (11,12), the initial satisfaction
of Igp (13), the invariance of Igp (14-16), and the pre/post specification of upd given
in BANKPLUS (17). Here (10,13,14) are trivial and (11) reduces to (2) by observing that
Fspp bal(x) sat [P, Q] equals Fp 5 bal(x) sat [P, Q] (for any [P, Q]) since there are no
local calls nor release points. Then (12,15,16) follows by using (17). For the local call
in the redefined upd we observe that proofs about B:upd(x) do not depend on the actual
class since the body has no local calls. We may therefore reuse the specification of upd
from BANK when analyzing the call BANK :upd(x) in class BANKPLUS. Then verifica-
tion of (17) is straightforward, and verification of (18) reduces to the trivial condition
b' =bal = if bal+x>0 then b'+x>0=true else b’ +x >0 = false. Moreover,
the verification above can easily be mechanized.

Consider BANK2, abbreviated B2, of Figure 3. We have that Ip, is Igp. Figure 4.1
gives the verification obligations for - B2 ok . Here (19,23) reduce to (10,13) since /5,
is the same as Igp. Since reasoning about bal(x) does not depend on the actual class,
(20) reduces to (2). Furthermore, (24) is trivial, and (20,22,25,26) follow by (27). For
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(27) we use Hoare-style reasoning and must verify that the given pre/post specification
is satisfied by the body of upd, which is:

await bal +x > 0;bal := bal + x;return := true;h := (h; (caller + this.upd(x;return)))
(since we may here ignore all — events) which reduces to the condition
Igr ANbal +x > 0 = (bal + x = sum(h; (caller < this.upd(x;true))) +x Abal +x > 0)

which is trivial since upd events do not affect sum due to the others equation. The
example shows that: Verification of a class is done by inspecting the class and its su-
perclasses, and does not impose any proof obligations on subclasses. Reasoning about
static and late-bound local calls are handled by the actual class context. Proof obliga-
tions can often be reduced to already verified superclass obligations. The verification
conditions we have seen are easily verified and thus easily automated.

5 Evolutionary Program Changes

During evolution of a system there may be a series of program changes, including
changes of existing classes as well as additions of new classes and interfaces. For in-
stance, an existing class in the middle of a class hierarchy may by augmented by adding
a new class as a superclass and by adding new implementation clauses. And one may
introduce a new interface to make two independent subsystems interact, adding support
of the new interface in one or more existing classes.

In general, an existing class D may be changed by adding methods and fields, replac-
ing methods, changing inheritance clauses, implementation clauses, removal clauses,
and/or specifications. This can be understood by replacing the whole class definition by
another definition. The updated class D may in general have a number of subclasses (at
the time when D is updated) and these are implicitly modified if they inherit or reuse
code from D. Thus, we need to reverify the redefined D, but in addition we need to
consider the affected subclasses of D.

Definition 2 (System Change). A system change is given as a sequence of introduce
and update definitions. We use the syntax introduce In for adding an interface
definition In and the syntax introduce ClI for adding a class definition CI, with In
and Cl as defined in Figure 1. We use the following syntax for defining class updates:

update class D|[([Tcp]t)]’
[implements also’ F*]’
[inherits also’C(e)]’
[removing also’m™]’
{[Tw[:=r]"]" s’ M* S* I*}

This class update modifies an existing class D by adding class parameters cp™ (if
present), changing the interface support to F* (if present), adding superclasses [C(e)]"
(if present), removing methods m™ (if present), adding fields w™ (if present), adding
initialization code s (if present), adding/redefining method definitions M* (if present),
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changing method specifications S* (if present), and changing the invariant to I* (if
present). For any optional item omitted, there is no change from the original class.
This is somewhat similar to the semantics of inheritance, except that the modifications
are made on an existing class rather than a new subclass. In order to limit duplication
of old code, we use the quasi class name OLD to refer to elements of the original ver-
sion of the class, thus the redefinition of a method m may contain the call OLD : m(...)
to reuse the old version of m. In contrast to static calls, such a call is textually ex-
panded using the original definition (since the original definition may be removed).
Similarly, OLD : inv expands to the old invariant. We may use the keyword also in
implements, inherits, and removes clauses, to define added elements. Thus
inherits also C means that the updated class inherits C in addition to the classes
inherited by the original version of the class.

An example of a class update is given in Fig. 7. Here the transaction-oriented bank
version given by BANK 2 is changed so that one can check earlier transactions. This
is done by letting the BANK 2 class inherit SAFETRANS in addition to the old super-
class, thereby using multiple inheritance. The SAFETRANS class stores transactions in
a secure manner, by giving limited read access, through checking if a given transaction
has happened or not, and restricting write access to append. (For brevity the class is
minimalistic.) The upd method of BANK 2 is then updated using the append method
of SAFETRANS. The added invariant states that the transactions defined by SAFETRANS
corresponds to the history as defined in Bank. Note that sum(h) is here understood as
sum(h/Bank). The example shows the usefulness of multiple inheritance during evolu-
tion. The updated BANK 2 class supports the old interfaces (PerfectBank and BankPlus),
so any previous usage of BANK 2 objects through these interfaces is not affected by the
change. After the update, BANK 2 objects can also be used through the SafeTrans inter-
face. One needs to verify that the updated upd method satisfies the (inherited) conditions
and the new invariant. This will be quite straight forward in this example.

We consider correctness of the updated code, and avoid complications such as run-
time upgrades where new and old versions of the updated code are part of the running
system. As before we assume type correctness. In general, the redefined class D (let
us refer to it as D) implements some interfaces, which may or may not be the same
as for D. If D includes all interfaces of D, all type correct calls to D objects will be
type correct and supported by D objects as well; and if the interface specifications are
the same, global reasoning from interface specifications of D objects is not violated by
replacing D objects by D objects.

Consider next the case that a class is modified by removing the support for an inter-
face. In this case the statement v:= new D, becomes illegal when class D is modified
so that it no longer supports the interface type of variable v. We may then change the
statement to v:= new B where B supports the interface. In general we may need a se-
quence of changes in order to obtain a desired resulting program, including changes to
C and other classes using D. (Subclasses that inherit the interface clause of D may then
explicitly add support for the interface, when desirable.)

The verification obligations caused by the redefinition consist of verifying - D ok
and reverification of the subclasses of D since they may be affected by the change. We
first mark the obligation = Dok, as well as all sub-obligations, as pending. And for
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introduce interface SafeTrans { —— may append and check data,
—— but not change data
Void append(Int x)
Bool checkTrans(Int x) [true, return= (_<-this.append(x) €h)] }

introduce class SAFETRANS implements SafeTrans {List[Int] trans= empty;
Void append (Int x) {trans:=(trans;x)}
Bool checkTrans(Int x) {return x ctrans} }

update class BANK2 implements also SafeTrans inherits also SAFETRANS {
Bool upd(Int x) {OLD:upd(x); SAFETRANS:append(x); return true}
inv OLD:inv and sum(h)=add(trans)
where add(empty)=0
add(trans;x)=add(trans)+x }

Fig.7. An update of Bank2 causing multiple inheritance.

each subclass D' we mark the obligation = D’ ok, as well as all sub-obligations, as
pending. Verification of - D ok is then done as defined above for the class resulting
from the update, and the subclasses of D must be reverified. If an obligation depends
on a pending sub-obligation, one should consider the latter first. Since subclasses may
depend on classes defined earlier (as substantiated by Theorem 1 below), we reconsider
the subclasses in the order defined. For a subclass D', the obligation - D’ ok should be
marked as pending if the proof made use of a result from D, say Fp 4 m(v) sat [P,Q].
For each such D result, it suffices to prove - , m(v) sat [P,Q]. If all sub-obligations
of = D' ok can be reverified in this manner, the obligation - D’ ok is marked correct.

The state of a proof obligation indicates whether it has been proved or not. We con-
sider the states: correct, incorrect, pending. These express respectively that the obliga-
tion is verified, that the (old) proof is no longer valid, that verification remains to be
done. As explained above, if a pending obligation can be verified or be reduced to a
correct obligation, its state can be reset to correct. If a pending obligation cannot be
verified, its state can be set to incorrect. In some cases it may be possible to reverify the
obligation using additional specifications of inherited or called methods, but in general
this may require human insight. Otherwise further modifications are needed.

An advantage of our approach is that violations in a class C caused by superclass
modifications can be handled without changing the superclasses of C, called Modifica-
tion Independence:

Theorem 1 (Modification Independence). Assume that a class C is affected by a su-
perclass modification such that some inherited superclass specifications are violated
in C. Then C can be modified such that there is no violation.

Proof. Let [P, Q] be a violated m-specification. If this specification is inherited, we sim-
ply change C by not inheriting it and then the specification is no longer required in C.
And if [P, Q] is stated in C, we remove the specification. In case [/,] is then removed
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for an invariant I, we also remove the invariant from C, and remove any interface of C
depending on the invariant. We repeat this process until all violations are removed. [

This means that any undesired requirements due to modifications in a superclass can
be removed. After removal one may add desired requirements and verify these require-
ments (modifying the class if needed). In this way one may reverify that the stated
interfaces are satisfied. This gives full flexibility of properties during evolution, at the
cost of reconsidering subclasses in case the modifications require changes in subclasses.
Our framework supports independence between different branches of a hierarchy,
a property which is essential for flexible evolution. However, this kind of Hierarchy
Independence is non-trivial, especially in presence of multiple inheritance.

Theorem 2 (Hierarchy Independence).
Modification of a class C will only affect C and subclasses of C.

Proof. Let D be a class other than a subclass of C. The case when C is a subclass of
D follows by the theorem above. Thus we may assume that C and D are hereditarily
unrelated, but in the presence of multiple inheritance they may have common super-
classes and common subclasses. By our healthiness condition on the binding strategy,
a late-bound call in D cannot bind to a method defined in C because the healthiness
condition then requires that C and D are hereditarily related. And it cannot bind to a
common subclass of C and D because we may assume that D is the executing object,
and thus all late-bound calls will bind to a method defined in D or a superclass. Such a
call may bind to a common superclass (of C and D), but by theorem 1, this superclass
is not affected by the change in C.

A static-bound call occurring in D may bind to superclass of D which may contain
a late-bound call. However, our binding strategy ensures that this is call binds to a class
above D due to the healthiness condition. Thus it cannot bind to C. O

5.1 Reasoning in presence of unverified classes.

Our approach may result in some verified classes and some classes that are not yet
verified. In this imperfect setting we may still reason about the overall system by using
the following formulation of the global system invariant /(H) over the global history H
(i.e., the sequence of all events that have occurred so far in the total system):

I(H) 2 wfiiH) A\ N\ Ir(H /o)™

—o.newC()eH FeC

where C is restricted to range over classes that are tagged correct, i.e., those satis-
fying = Cok. The last conjunction ranges over all interfaces F' implemented by C.
Here wf(H) denotes the wellformedness predicate, expressing the before ordering
between events, given in Section 3.

This global invariant captures the partial knowledge of the global history H given
by the interface invariants of the objects appearing in the system (possibly dynami-
cally generated) considering only objects of correct classes. This global reasoning rule
essentially turns off the interface invariants for the non-correct classes.
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Limitation: We assume type correctness since reverification of a modified class C will
be preceded by type checking of the modified class and other existing classes using
C in creation statements. Thus we consider only program changes that result in type
correct programs. Removal of declarations of fields, methods, parameters, and variables
is therefore only allowed when not in use. Secondly we do not consider changes in an
interface . This can be simulated by adding the new version of I as a separate interface,
making changes wherever I (or a subinterface) is used, and then removing the original
I when no longer referred to.

5.2 Examples of Software Changes on BANK

Assume now that class BANK is changed so that upd calls checkAvail, which returns true.

update class BANK implements PerfectBank {
Bool checkAvail(Int x){return true} [true, return]
Bool upd(Int x){Bool ok:=checkAvail(x);
if ok then bal:=bal+x £i; return ok}
[inwv, bal=sum(h)+x and return=true] }

All other aspects of class BANK are kept unchanged, including all BANK specifications.
Thus inwv refers to the original invariant of BANK. Since checkAvail returns true, the
verification of upd can be reused, and the other verification conditions of BANK are
as before and need not be reverified. And the verification of the added local method
checkAvail is trivial. Furthermore, the subclasses are not affected by this change. Thus
the verification conditions caused by the class update are straightforward.

However, if class BANKPLUS is changed by redefining checkAvail(x) as in

update class BANKPLUS {
Bool checkAvail(Int x){return bal+x>0} }

the local late-bound call to upd(—x) in the inherited method sub results in the value of
bal — x > 0 to be returned from sub. Again verification conditions are straightforward.
In contrast this could not be verified in the frameworks of [10,11].

Adding a side effect in checkAvail such as if x <0 then bal :=bal —1 £fi
would destroy the BANK invariant, but not the BANKPLUS invariant. Then the former
should be removed.

Consider next the following update of class BANK with a redefinition of sub:

update class BANK { Bool sub(Nat x)
{ bal:=bal—x; return true} }

The new version of BANK inherits the old interface (PerfectBank), the methods add, bal,
and upd, the old invariant, the old specification of sub (i.e., postcondition return = true).
The proof obligations amount to first verifying that the redefined sub maintains the
invariant and satisfies the postcondition. This is trivial. Secondly it must be verified that
each subclass is still ok . As subclass BANKPLUS now may allow a negative balance, the
BANKPLUS invariant bal > 0 cannot be verified (because it is incorrect). We may still
do (limited) global invariant reasoning about a system containing BANKPLUS objects.
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To solve this inconsistency in BANKPLUS, we may update this class by removing
the support of interface BankPlus and removing the last conjunct of the invariant and
the specification of sub, and then reverify. Alternatively, we may change BANKPLUS by
redefining sub so that the old specifications can be reverified.

Finally, the redefinition of sub in Section 3.1 can be handled by removing inter-
face PerfectBank in class BANK2 and checking/adjusting any usage of new BANK2 (as
PerfectBank) in other classes.

6 Related Work

Formal notions of refinement have been used to reflect software development. A refine-
ment is in general leading from a design with certain properties to a design which pre-
serves these properties while adding more detail. In this way refinement is semantics-
preserving [27]. Certain refinement logics support the addition of error values, thereby
semantics is preserved as long as no errors appear. Banach et al. have argued for the
need of refinement-like steps that go beyond the limitation of semantics-preserving de-
velopment [2]. But their approach does not support analysis of program properties. Hu
and Smith [12,13] consider verification of evolving Z specifications. However, they do
not look at changes to classes that may affect global system properties.

In the setting of object-oriented programs with inheritance, behavioral subtyping
is the most common reasoning approach, restricting subclasses to obey the super-class
specifications [19]. This means that subclasses must preserve behavior. Lazy behavioral
subtyping [8,9] relaxes this condition; only behavior that is needed to verify local calls
in a superclass must be respected by a subclass redefining the method. This gives added
flexibility, allowing a larger class of changes without breaking the requirements.

Interface abstraction allows reasoning about remote calls to rely on the declared
interface of the callee. This means that changes in a (super)class implementation may
be done as long as the stated interface support is respected, and as long as subclass
reasoning is not affected. A calculus allowing changes to methods, (super)classes and
interfaces is presented in [11], based on lazy behavioral subtyping. Program properties,
represented by Hoare triples, are classified in two categories for each class C, repre-
senting the verified ones and the unresolved (unverified) ones, U(C). The set of verified
properties of a given class C and method m is denoted G (C,m). When the set of unver-
ified program properties is verified (i.e., U(C) is empty) the class is found to be correct
in the sense that all pre/post method specifications are satisfied by the corresponding
implementation in a class as well as those in interfaces supported by the class. Changes
in code or specifications may affect both categories. However, a program requirement
added to U(C) may be impossible to verify (in case the Hoare triple is not satisfied),
and it will then remain in U(C), and there is no guarantee that this problem is detected.

The approach in [10] addresses transformation of classes and allow classes in the
middle of a class hierarchy to be changed. Modifications are archived by means of
update operations modify and simplify. The modify operations extend class definitions,
allowing code such as new fields, method definitions, guarantees, and interfaces to be
added to classes, and existing methods to be redefined. The simplify operation allows
redundant methods to be removed from class definitions. The approach does not classify
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classes using G and U such as in [11], rather, for each update applied to a class, all
verification work is done to methods affected by the update. However, any superclass
requirements needed to handle local calls are imposed on subclasses, as in [11].

A number of works on asynchronously communicating concurrent objects, partly
by the authors of this paper, consider certain forms of software and/or specification
changes: The concept of dynamic software updates allows changes to (super)classes
during run-time [16]. A challenge with run-time upgrades of distributed systems is the
need to allow updates in a distributed manner, and thereby allowing coexistence of dif-
ferent versions of the software [1,16,25]. In contrast to these works, we are focusing
on the reasoning aspects. Bannwart and Miiller [3] consider program changes through
refactoring, and show how to preserve external behavior for a class of non-trivial refac-
toring. However, they do not include changes that violate behaviors.

Another line of work considers proof reuse, including partial reuse of proofs of ear-
lier verified properties. This may require some storage of proof outlines or non-trivial
verification steps. This means that when a module is corrected, one may try to rerun
previous proofs to alleviate the verification burden [24]. The notion of abstract method
calls allows reuse of abstract proof outlines, for a fixed method body, while their in-
stances may need further work when other methods or requirements are changed [4,14].
A related approach is the use of symbolic predicates to express requirements to general
properties for a given program without knowing what the concrete properties are [6].
These approaches simplify the verification task of evolving programs. The amount of
proof reuse can be balanced against the amount of automation. Efficiently automated
proofs need not be reused while interactive proofs could benefit from reuse, if possible.
Our approach is oriented towards a language with a high degree of automation of verifi-
cation conditions, and proof reuse is therefore not our focus. A recent work by Ulewicz
et al. [26] supports a tight integration of verification of unchanged behavior (regression
verification) with that of changed behavior (delta verification); but unrestricted changes
are not supported.

We build on results from [21] concerning (single) class inheritance. In contrast to
that work, we consider here program changes and evolution, supporting Modification
Independence (Theorem 1), and give a reasoning rule for partially reverified systems.
In addition we provide here more fine-grained control of reused code, and a simplified
treatment of (static and late-bound) local calls. Furthermore, while [21] assumes single
class inheritance, we here extend the approach to multiple inheritance. This greatly
improves flexibility since addition of superclasses during evolution allows an outdated
inheritance hierarchy to be adjusted with minor class changes. Multiple inheritance has
also been considered in [20], but not in the context of program evolution.

The present work is an extension of the framework presented in [22], providing
more details and theoretical results supporting Modification Independence and Hier-
archy Independence, and extending that framework and reasoning system to multiple
inheritance. This requires the reasoning rules to use a double-indexed proof symbol,
without complicating the practical applicability. Multiple inheritance has been criticized
due to possible confusion between horizontal and vertical name conflicts. However, our
language include qualification of inherited names by a superclass, which provides fine-
grained control of used names, solving both horizontal and vertical name conflicts at the
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cost of awareness of which superclass inherit the relevant definition. And we insist on
a healthy binding strategy, as also argued in [9] for the purpose of program reasoning.
This limits undesired vertical name conflicts in the case of late binding. In addition, we
allow static binding to allow reuse of code from superclasses in a way not affected by
added or changed subclasses.

Moreover healthiness is essential in order to ensure Hierarchy Independence (the-
orem 2) in the presence of multiple inheritance. This ensures that changes in a class
will only affect subclasses. Without this property we could no longer claim to have
a flexible evolution framework! The particular binding strategy used in our approach
is based primarily on depth-first traversal of the superclass hierarchy, and secondarily
on following superclasses left to right. This is similar to binding in the Perl language
(apart from healthiness). This binding strategy is not the most commonly used, but it
is advantageous in the setting of evolution, since adding a superclass at the end of a
superclass list (somewhere in a hierarchy) will not affect the binding made in existing
code. This simplifies the reverification needed for inherited code. The binding strategy
also ensures that calls that have a binding before an added superclass also has a bind-
ing after the class change. (If inherited method differ in parameter types and numbers,
we would need to index the method name by the parameter types.) These factors are
advantageous from a pragmatic point of view.

The considered concurrency model is used by a number of languages supporting
active objects, including Creol, ABS, Encore, Rebecca, and ASP/Proactive. The core
language used here is avoiding the use of futures, in order to simplify the basic reason-
ing rules for method calls, as discussed in a recent paper [18].

7 Conclusion

We have introduced a framework for evolution of distributed systems, offering flex-
ibility with respect to both changes of code and specifications. We support reverifi-
cation of changed classes without requiring changes or reverification of (unchanged)
superclasses, captured by Hierarchy Independence (Theorem 2). Specification viola-
tions in changed classes or affected subclasses can be solved modulo local changes
in these classes, captured by Modification Independence (Theorem 1). In contrast to
earlier work [22], we consider evolution in presence of multiple inheritance. We have
argued that multiple inheritance is useful and powerful during evolution, and demon-
strated this by an example (given in Fig. 7). In particular, multiple inheritance allows
adjustments in the middle of an inheritance hierarchy without removing existing inher-
itance relationships, simply by adding superclasses as desired. This clearly also makes
refactoring easier, by reordering the inheritance relationships. By adopting a healthy
binding strategy, we control vertical name conflicts. The semantical value of healthi-
ness is demonstrated by the fact that healthiness is needed for Hierarchy Independence.

We are avoiding inconsistencies that are inherent in frameworks building on be-
havioral subtyping/lazy behavioral subtyping. Flexibility with respect to reuse and in-
heritance, beyond the limitations of behavioral subtyping, requires that all objects are
seen through an interface (interface abstraction). Our approach builds on the principle
of the interface substitution (any object of interface F supports any superinterface of F
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as well) and the principle of behavioral interface subtyping, where each class must sup-
port its declared interfaces, but need not support interfaces of superclasses. This allows
the class hierarchy to be used for code reuse while the interface hierarchy is used for
behavioral reuse. In contrast to lazy behavioral subtyping, no superclass requirements
are imposed on subclasses by the framework. This gives a more flexible framework
for software modifications than those of [10,11] since methods can be redefined with-
out restrictions caused by superclasses. This means that we may deal with software
changes that cannot be verified with approaches building on lazy behavioral subtyping.
The Bank example demonstrated this.

In our framework, modifications to a class C lead to reverification of that class, and
subclasses must be reconsidered when they (directly or indirectly) inherit modified parts
of C, but superclasses need not be reverified. Other (i.e., hereditarily unrelated) classes
are not affected unless some interfaces are removed from the implementation clause
of C, in which case all v:= new C statements must be reconsidered, ensuring C still
supports the interface of o and if not, using another class. During reverification, proofs
can be reused as much as possible, and further changes to the class and/or subclasses
may be done as needed.

Our framework considers the setting of active, concurrent objects, for which Java
code can be generated. We have demonstrated that Hoare-style reasoning is quite sim-
ple for this setting, in the sense that reasoning is like sequential reasoning, with se-
quential effects on the history added. The handling of multiple inheritance implies a
double indexing of the proof symbol for Hoare triples, which guides the generation of
verification conditions without adding practical complications. Our language supports
late-bound remote method calls, as well as static local calls and late-bound local calls.
The notion of static local calls is needed in the framework to reduce verification condi-
tions about late-bound local calls to verification conditions about static local calls. Our
framework gives fine-grained control of reused code, where the handling of local calls,
both late-bound and static ones, as well as suspension, is essential. Static local calls are
also useful in programming, avoiding the fragile base class problem since the binding
is fixed for such calls.

We have assumed type correct programs. Therefore removal of fields, methods,
classes, and interfaces is only allowed when these are superfluous. We have not con-
sidered changes in interfaces, other than removal of superfluous interfaces. As men-
tioned the change of an interface could be simulated by introducing a new version of
the interface, and by changing all usage of the old interface, and then removing it.

Our framework may be extended to reason about dynamic (run-time) class up-
grades, assuming existing objects are upgraded in invariant states, as in Creol [16],
where new calls run renewed code and suspended old calls run old code. The new in-
variant must imply the old invariant, and it must be verified that old methods maintain
the new invariant. This ensures that the interleaving of new code and remaining old
code is not harmful. The requirements to an upgraded class are strengthened by these
requirements, whereas the requirements to subclasses are as described.
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