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Abstract: Streams of data are produced today at an unprecedented scale. Efficient and stable 
processing of these streams requires a careful interplay between the parameters of the streaming 
application and of the underlying stream processing framework. Today, finding these parameters 
happens by trial and error on the complex, deployed framework. This paper shows that high-level 
models can help determine these parameters by predicting and comparing the performance of 
streaming applications running on stream processing frameworks with different configurations. 
To demonstrate this approach, this paper considers Spark Streaming, a widely used framework to 
leverage data streams on the fly and provide real-time stream processing. Technically, we 
develop a configurable and executable model to simulate both the streaming applications and the 
underlying Spark stream processing framework. Furthermore, we model the deployment of Spark 
Streaming on Apache YARN, which is a popular open-source distributed software framework for 
big data processing. We show that the developed model provides a satisfactory accuracy for 
predicting performance by means of empirical validation. 
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1 Introduction 
Streams of data are produced today at an unprecedented 
scale. The leverage of this data requires stream processing 
solutions which can scale transparently to large amounts of 
data and complex workflows, and process the data on the 
fly. State-of-the-art stream processing frameworks include 
Spark Streaming (Spark Streaming), Apache Storm, AWS 
Kinesis Streams, IBM InfoSphere Streams, and TIBCO 
StreamBase. Achieving stable and efficient processing for a 
streaming application requires a careful interplay between 
the configurations of the underlying stream processing 
framework and the streaming application itself. 
Inappropriate configurations and deployment decisions may 
lead to wasteful resource overprovisioning or poor 
performance, both of which may substantially increase 
costs. 

Using model-based analyses, appropriate configurations and 
deployment decisions can be explored and compared “in the 
laboratory” (Hähnle and Johnsen, 2015), thereby helping 
users to predict the performance of an application before the 
application is deployed. Our goal is to give users an easy-to-
use support for such analyses based on a highly 
configurable and executable model. For this purpose, the 
configurable model needs to be faithful to the real systems 
in the sense that the model-based analysis of an 
application’s deployment complies with the performance of 
its actual deployment. 

In this paper, we present a highly configurable model of 
Spark Streaming based on Real-Time ABS (Bjørk et al., 
2013; Johnsen et al., 2015). Spark Streaming is a widely 
used stream processing framework due to its scalability, 
efficiency, resilience, fault tolerance, and compatibility with 
several different cluster/cloud platforms, including Spark 
standalone clusters, Apache YARN (Vavilapalli et al., 
2013), Amazon EC2 (Amazon EC2), and Apache Mesos 
(Amazon Mesos). Real-Time ABS is a formal executable 
language for modeling distributed systems and deployed 
virtualized software. Our model SSP (which stands for 
Spark Streaming Processing) models Spark streaming 
applications, the underlying Spark stream processing 
framework, and the execution of the applications on the 
framework. SSP allows users to not only specify the 
workflow of their streaming applications, but also to 
configure crucial parameters for the underlying stream 
processing framework. We further model the deployment of 
Spark Streaming on Apache YARN (Vavilapalli et al., 
2013), a popular open-source distributed software 
framework for big data processing, by integrating SSP with 
a modeling framework for YARN (Lin et al., 2016). 

To validate the faithfulness of the proposed model, we 
compare performance as simulated using our model with 
performance as observed on Spark Streaming on Apache 

YARN to see how well our model can simulate and reflect 
streaming applications under different scenarios. The main 
contributions of this paper can be summarized as follows: 

• Formalization: SSP is a formal executable model 
targeting a state-of-the-art stream processing 
framework, i.e., Spark Streaming. We show how Spark 
Streaming can be deployed on a popular distributed 
big-data processing framework, i.e., YARN, from a 
modeling perspective. 

• Configurable modeling framework: The SSP model we 
proposed in this paper can be applied to when users 
need to make configuration decisions for their 
streaming applications. SSP enables users to configure 
stream processing workflows and experiment with 
different crucial parameters for the underlying stream 
processing framework at the abstraction level of the 
model. By means of simulations, users can easily 
compare how different parameter configurations affect 
the performance of their streaming applications. 

• Evaluation: The proposed model is validated through 
several scenarios in which dynamic data arrival patterns 
and different parameter configurations are considered. 
The results suggest that our model provides a 
satisfactory modeling accuracy compared with Spark 
Streaming on YARN. 

Paper overview. Section 2 introduces Spark Streaming and 
Real-Time ABS. Section 3 presents SSP. Section 4 shows 
how to model the deployment of Spark Streaming on 
YARN by extending SSP. Sections 5, 6, and 7 discusses 
model validation, surveys related work, and concludes the 
paper, respectively. 
 
2 Background 
In this section, we provide background about Spark 
Streaming and Real-Time ABS. 

2.1 Spark Streaming 
Spark Streaming (Spark Streaming) is developed as part of 
the Apache Spark tool suite (Spark: Lightning-fast cluster 
computing) for high-throughput and fault-tolerant data 
stream processing. Spark Streaming uses the discretized 
stream model (i.e., resilient distributed dataset or RDD for 
short) (Zaharia et al., 2012) to structure stream processing 
as a series of stateless, deterministic batch computations on 
small time intervals (Zaharia et al., 2013). Each Spark 
streaming application is a long-running and non-terminating 
stream processing service with a Spark driver as its master. 
Each Spark driver is responsible for initiating the reception 
of continuously flowing input data, periodically dividing the 
received data into batches based on a pre-configured batch 
interval, and managing the processing of each batch. A 
batch may contain zero or more data items depending on the 



 A Configurable and Executable Model of Spark Streaming on Apache YARN 241 

data arrival frequency and the batch interval. A batch with 
no data is called an empty batch. Otherwise, it is called a 
non-empty batch. 

 
Figure 1. An example of batch processing workflow. 

In Spark Streaming, each batch is processed by the 
workflow of a streaming application defined by the 
application designer. In this paper, the workflow is called 
batch processing workflow. In general, a batch processing 
workflow consists of a series of sequential jobs. Each job, 
which is triggered by an action, may have several sequential 
or parallel stages. For example, the workflow shown in 
Figure 1 comprises 3 jobs where job 1 has one stage, job 2 
has two sequential stages, and job 3 have both sequential 
and parallel stages. Each Spark driver also controls the 
maximum number of jobs that are allowed to be 
concurrently processed, which has a default value of one 
(Apache Spark JobScheduler). 

Spark Streaming can be deployed on different clusters or on 
the cloud, including Spark standalone clusters (Spark 
Streaming), Apache YARN (Vavilapalli et al., 2013), 
Amazon EC2 (Amazon EC2), and Apache Mesos (Apache 
Mesos). After it is deployed, the Spark driver of a streaming 
application can request a set of worker nodes (which may be 
physical machines, virtual machines, or containers) to start 
the application and process each batch on these workers 
according to the corresponding workflow. 

2.2 Real-Time ABS  
In this subsection, we introduce Real-Time ABS and 
explain why we chose this language to model Spark 
Streaming. Real-Time ABS (Bjørk et al., 2013; Johnsen et 
al., 2015) is a formal, executable, object-oriented language 
for modeling distributed systems and deployed virtualized 
software. This language combines functional and imperative 
programming styles with a Java-like syntax and a formal 
semantics. The first reason we chose this language is 
because it supports concurrent object groups. A concurrent 
object group is a group of objects. Concurrent object groups 
execute in parallel and communicate by asynchronous 
method calls and futures (Johnsen et al., 2011). Objects 
execute processes that stem from method calls. At any time, 
at most one process in a concurrent object group is active, 
whereas inactive processes are suspended and stored in a 
queue waiting to be executed on an object of the group. This 
cooperative scheduling of processes allows active and 
reactive behaviors to be combined in the object groups. 
Internal computations in an object are captured in a simple 
functional language based on user-defined algebraic data 
types and functions. 

The second reason we chose this language is that 
communication and synchronization in Real-Time ABS are 
decoupled. Communication is based on asynchronous 
method calls on the form f = o!m(e) where f is a future 

variable, o an object expression, m a method name, and e   
the parameter values for the method invocation. These calls 
are non-blocking: After calling f = o!m(e), the caller may 
proceed with its execution without blocking on the method 
reply. Synchronization is controlled by operations on 
futures. The statement await f ? releases the processor while 
waiting for a reply, allowing other processes to execute. 
When the reply arrives, the suspended process becomes 
enabled and the execution may resume. The return value 
from the method call is retrieved by the expression f.get, 
which blocks all execution in the object until the return 
value is available. The syntactic sugar x = await o!m(e) 
encodes the standard pattern f = o!m(e); await f ?; x = f.get. 

The third reason is because Real-Time ABS supports the 
timed behavior of concurrent objects, which is captured by a 
maximal progress semantics (Bjørk et al., 2013). Execution 
time can be specified explicitly by means of duration 
statements, or be implicit in terms of observations on the 
executing model. The statement duration (e1; e2) will cause 
time to advance between the best case e1 and the worst case 
e2 execution time, blocking all execution in the concurrent 
object group until time has advanced. The statement await 
duration (e1;e2) will suspend the process until time has 
advanced beyond e1, allowing other processes to be 
scheduled. 

The last reason is that Real-Time ABS is able to model 
deployment by introducing a separation of concerns 
between the resource cost of executing a task and the 
resource capacity of the location where the task executes 
(Johnsen et al., 2015). A resource cost expression e can be 
associated with a statement s by a cost annotation [Cost: e] 
s. This allows the execution time of the statement s to 
depend on the location where it is executed. To model 
resource-constrained deployment architectures, Real-Time 
ABS uses deployment components to model locations with 
given resource specifications. A number of concurrent 
objects can be deployed on each deployment component. In 
other words, each deployment component has its own 
execution speed, which determines the performance of the 
objects running on it. A deployment component is created 
by the statement x= new DeploymentComponent 
(descriptor, capacity), where x is typed by the DC 
interface, descriptor is a descriptor for the purpose of 
monitoring, and capacity specifies the resource capacity of 
the deployment component. Using the DC annotation on the 
statement of creating an object, the object can be deployed 
on the corresponding deployment component. 

 
3 The SSP Model  
In this section, we introduce how the SSP model is defined 
and written in Real-Time ABS to model Spark stream 
applications and the underlying processing framework. 
 
3.1 Modeling Spark Stream Applications 
A batch is represented by a Real-Time ABS data type with 
an identifier bID and an associated size bSize. In datatype 
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definitions, the parameter names of a constructor become 
accessor functions; e.g., bSize(Batch(1,5)) reduces to 5. 
We define a Boolean function isEmptyBatch to recognize 
empty batches: 

 
Recall that a batch processing workflow in Spark Streaming 
consists of a series of jobs and each job has several stages. 
In this paper, we model such workflow from the job level. 
by means of two datatypes Workflow and JobInfo. The 
former defines a batch processing workflow as a list of jobs. 
The latter defines a job as an unique identifier and a list of 
constraints constr for executing the job. 

 
For instance, the batch processing workflow depicted in 
Figure 1 has three jobs, so the workflow corresponds to the 
ABS term Workflow [JobInfo(J1,Nil), 
JobInfo(J2,list["J1"]), JobInfo(J3,list["J2"])]. To guarantee 
that every job in a batch processing is executed in 
accordance with its constraints, we define a Boolean 
function check: 

 
For each unprocessed job, this function checks recursively 
to see if all its constraints are included in fin, which is a list 
of completed jobs of the batch processing. A job can be 
executed only when all its constraints have been resolved. 

To model the processing time of a batch, users might 
achieve it at the stage level if they know the cost of 
executing each stage for each job of a batch processing. 
Although such approach is fine-grained, it takes a lot of 
efforts for users to determine stage costs. Therefore, in this 
paper, SSP focuses on job-level modeling. In other words, 
users only need to specify a cost for executing each job of a 
batch processing. Since the time spent by a job to process a 
non-empty batch and an empty batch are different in Spark 
Streaming, our model allows users to define two cost 
approximation function: jobCostNonEmptyBatch and 
jobCostEmptyBatch. The former assigns an execution cost 
expression 𝑐"  to each job 𝐽"  (where i = 1, 2, …, n) that 
processes an non-empty batch. The latter assigns an 
execution cost expression to each job that processes an 
empty batch. 

 
Note that users can specify cost expressions at an 
appropriate level of precision based on their preferences. 
Cost expressions may be derived using cost analysis (e.g., 
SACO (Albert et al., 2014)) or represent an estimated or 

average execution time. Later in this paper, we will show 
how we assign such costs. 
 
3.2 Modeling the Spark Stream Processing 

Framework 
The architecture of SSP, shown in Figure 2, consists of a 
main block for a user to configure his/her streaming 
application and the underlying Spark stream processing 
framework, a class SparkDriver to model the Spark driver 
of the streaming application, and a class Worker to model 
worker nodes. Here we assume that a set of worker nodes is 
available to the stream processing framework. The 
deployment of Spark Streaming to make such worker nodes 
available will be modeled in Section 4. 

Before launching SSP, users are required to configure the 
following parameters for their streaming applications: 
• the specification of the batch processing workflow 
• the execution cost for each job of the batch processing 

workflow 
• the maximum number of worker nodes used to run the 

application (denoted by num) 
• the resource specification of each worker node (denoted 

by rs) 
• data inter-arrival pattern 
• batch interval (denoted by bi) 
• the maximum number of jobs allowed to execute 

concurrently (denoted by conJobs) 

 

Figure 2. The architecture of SSP. 

The SparkDriver interface has the following five methods: 
confSetup, streamReceiver, batchGenerator, 
batchScheduler, and batchManager. 

 
When a user launches SSP, method confSetup is invoked 
to create the requested set of num worker nodes with the 
requested resource specification rs. Each worker node is 
modeled by class Worker on an independent deployment 
component with the resource specification rs of type 
RSpec:
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Here, cores, speed, and memory are accessor functions to 
the values of the respective resources in the resource 
specification. Class Worker uses method exe to execute 
one job of a batch processing with the corresponding cost 
expression. Exploiting the resource-constrained semantics 
of Real-Time ABS, the job execution time is determined by 
the cost expression and the CPU processing speed of the 
worker. 

After all the worker nodes have been created, method 
confSetup triggers methods streamReceiver, 
batchGenerator, and batchScheduler to start running the 
streaming application. As illustrated in Figure 2, streams of 
data are sent to method streamReceiver based on the pre-
configured data inter-arrival pattern. Upon receiving data, 
method streamReceiver keeps it in the memory buffer of 
the Spark driver. Method batchGenerator periodically 
generates batches based on the pre-configured batch interval 
and inserts these batches into a queue. Method 
batchScheduler schedules batch processing by invoking 
method batchManager for each batch so that the 
batchManager is able to manage the corresponding batch 
processing. In the following, we here focus on describing 
methods batchGenerator, batchScheduler, and 
batchManager. 
 
Method batchGenerator 

This method periodically generates a batch at the rate given 
by the batch interval bi. Using the await duration statement 
of Real-Time ABS, this method suspends its execution and 
resumes again after the time interval bi. Each time, method 
batchGenerator considers all received data in the memory 
buffer as a batch, inserts the batch into the queue, and 
empties the memory buffer to avoid reprocessing the same 
data. Each batch has a unique bID and has size bSize where 
bSize=dataSizeInBuffer, i.e., total size of the data in the 
memory buffer. 

 
 
Method batchScheduler 

Similar to batchGenerator, method batchScheduler is 
also a non-terminating process. It uses the default first-in-
first-out scheduling approach to schedule the execution of 
batches. As long as the total number of currently running 
jobs is less than conJobs (i.e., runningJobs < conJobs) 
and there is an unprocessed batch in the queue (i.e., 
length(queue)>0), method batchScheduler invokes 
method batchManager to create a separate object for 
managing the processing of the head-of-queue batch. Note 
that the await-statement suspends the active process in Real-
Time ABS and therefore allows SparkDriver to interleave 
the different stream processing activities in a flexible way. 

 
Method batchManager 

When batchManager is requested to manage a batch 
processing, it retrieves the corresponding batch processing 
workflow. As long as there are unfinished stages (i.e., 
length(fin)<totalJobs), batchManager checks if any of 
these jobs can be executed immediately based on the 
corresponding constraints. When the constraint of a job is 
resolved (i.e., check(constr(s),fin) evaluates to True), 
batchManager awaits until there is available worker in the 
workerList. When this condition is satisfied, method 
batchManager executes the job on the worker by invoking 
the corresponding exe method. At this point, the global 
parameter runningJobs increases by one. When the job is 
finished, runningJobs decreases by one, which enables 
batchScheduler to schedule another batch processing. By 
repeating the above process, batchManager is able to 
manage the entire workflow of the batch processing. When 
all the jobs are finished, the batch processing is complete. 

 
 
4 Modeling Spark Streaming on YARN 
In this section, we model the deployment of Spark 
Streaming on YARN to provision the stream processing 
framework with worker nodes. This is done by integrating 
SSP with ABS-YARN, which is an executable framework 
for modeling and simulating Apache YARN. ABS-YARN 
(Lin et al., 2016) focuses on modeling the following four 
important components of a YARN cluster: 
• ResourceManager (RM): It is the master server in a 

YARN cluster to manage all resources and allocate 
resources to different completing applications, such as 
MapReduce, Spark Streaming, graph applications, etc. 

• Slave nodes: Each slave node provides computation 
resource and storage capacity. 

• Containers: Each container is a logical resource 
combination (e.g., 1 CPU core and 1 GB memory) of a 
particular slave node to execute a task. 

• MapReduce Application Master (MapReduceAM): It is 
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the master of a MapReduce application to request 
containers from RM and manage the execution of the 
MapReduce application. 

RM is modeled by a class RM with four methods: 
initialization, getContainer, free, and logger. Method 
initialization is used to initialize the YARN cluster, 
including RM and the slave nodes. Each slave node is 
modeled as a database record with a unique SlaveID and an 
initial resource specification. After initialization, the cluster 
is ready to serve client requests. Method getContainer 
allows a MapReduceAM (modeled by class 
MapReduceAM) to request containers from RM. When 
invoked, getContainer tries to allocate desired containers 
from the available slave nodes to the caller. This method 
may fail if no slave node has sufficient resources to meet the 
container resource requirements within a certain time. When 
a container finishes its task, method free is called to release 
the resources of the container and method logger is invoked 
to record the execution statistics. 

In ABS-YARN, each container is modeled by class 
Container, which has a method exe to execute a task. Each 
container is deployed as a deployment component with the 
given resource specification. MapReduceAM is modeled by 
class MapReduceAM, which has a method req to request a 
container for each map/reduce task from RM. Once the 
container is obtained from RM, the MapReduceAM can 
execute a task on the container by calling the exe method of 
the container. Since each MapReduce application is a 
terminating application with only two stages (i.e., map and 
reduce), MapReduceAM is unable to model the Spark driver 
of a Spark Streaming application. 

In order to deploy SSP on ABS-YARN, we further create a 
new class StreamingAM on ABS-YARN by instantiating 
the SparkDriver class of the SSP model as a class 
StreamingAM. The resulting model of SSP on ABS-YARN 
is illustrated in Figure 3. In this model, classes RM, 
Container, and MapReduceAM remain as in ABS-YARN 
except that the exe method of Container can be invoked to 
execute either a map/reduce task or a job of a batch 
processing. In this model, users can specify not only all the 
parameters discussed in Section 3 for Spark Streaming, but 
also the following parameters to configure the scale of the 
underlying YARN cluster: 
• the number of slave nodes in the YARN cluster 
• the CPU capacity for each slave node 
• the memory capacity of each slave node 

When a user launches this model to run a Spark streaming 
application on YARN, method confSetup will first be 
triggered to request a set of desired containers from RM by 
invoking method getContainer. When the required 
containers have been obtained, confSetup triggers methods 
streamReceiver, batchGenerator, and batchScheduler 
to start the streaming application. Note that when a 
container finishes a job of a batch processing, method free 
will not be invoked to release the container’s resources. 
Instead, the container will be returned to a container pool 

and wait for another execution. 

 
Figure 3. The modeling architecture of Spark Streaming on 

Apache YARN. 

Our model exploits the concurrent objects of Real-Time 
ABS to capture concurrent batch processing. The 
deployment components of Real-Time ABS are used as an 
abstraction of containers with execution capacities for batch 
processing. The language’s support for timed behavior is 
used to model how the resources of containers are 
consumed by stream processing as time passes. 
Furthermore, we exploit cost annotations to abstract from 
concrete job executions and focus on the resource and 
performance aspects of job computations. Hence, users can 
abstract from specific application details or black box 
components and still be able to experiment with the 
performance of the overall streaming application. 

 
5 Model Validation 
To validate the proposed model, we compared our model 
(i.e., SSP on ABS-YARN) with Spark Streaming deployed 
on a YARN cluster running Hadoop 2.2.0 (Apache Hadoop) 
and Spark 1.5.1 (Spark 1.5.1 released). The cluster has one 
virtual machine acting as RM and 30 virtual machines 
acting as slave nodes. Each virtual machine runs Ubuntu 
12.04 with 2 virtual cores of Intel Xeon E5-2620 2GHz 
CPU and 2 GB of memory. To achieve a fair comparison, 
we also configured our model to have one RM and 30 slave 
nodes; each with 2 CPU cores and 2 GB of memory. For 
both our model and the real Spark Streaming environment, 
the resource requirements for each container are 1 CPU core 
and 1 GB of memory. 

We chose three benchmarks called JavaNetworkWordCount  
(NWC for short), JavaSQLNetworkWordCount  (SQLNWC 
for short), and JavaNetworkFunctionCost  (NFC for short) 
from (Spark Streaming Example; Spark Streaming 
Programming Guide) as example streaming applications to 
conduct our validation. Table 1 summarizes the 
characteristic of these benchmarks. For some performance 
considerations, we noticed that, in Spark Streaming, the 
number of jobs in a batch processing for a same streaming 
application might change. For instance, when we run 
SQLNWC and NFC, some of their batches require 2 
sequential jobs to finish, but some others require 3 
sequential jobs to finish. However, this phenomenon does 
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not happen when NWC was executed. Therefore, our model 
considers the worst-case batch processing workflow, i.e., 
NWC has one job in its batch processing workflow, but both 
SQLNWC and NFC have 3 sequential jobs in their batch 
processing workflows. 

Table 1. Three Spark Streaming benchmarks. 

 
We employed Netcat (The GNU Netcat) to continuously 
send data from the Wikipedia website of Apache Spark 
(Wikipedia: Apache Spark) to these benchmarks. The size 
of each data item is around 1 KB and the data is sent in a 
dynamic inter-arrival pattern following an exponential 
distribution (Koralov and Sinai, 2007) with the average time 
of 1.96 sec and the standard deviation of 1.768 sec. In order 
to assign appropriate execution costs for each job of these 
benchmarks, we conducted an experiment on one of the 
slave node to study if there is a linear relationship between 
batch size and job execution time. However, the results of 
NWC illustrated in Figure 4 show that the job execution 
time does not always increase when the size of a batch 
increases. The other two benchmarks also have a similar 
phenomenon, implying that it is inappropriate to use batch 
size to assign job execution costs. As an alternative, we 
separately executed each benchmark on the same slave node 
without any workload to measure the average job execution 
time and standard deviation. Table 2 lists the corresponding 
results, which we used to assign job execution costs in our 
model. 

 
Figure. 4. The batch processing time of NWC under 

different batch sizes. 
 

Table 2. The average job execution time and standard 
deviation of each benchmark. 

 
 

In Spark Streaming, a streaming application is stable if each 
of its batches can be scheduled immediately. For stability, 

the parameters conJobs and bi are highly influential. 
Hence, for each benchmark, we designed two scenarios, one 
is unstable and the other is stable, to see if our model can 
correspond to Spark Streaming on YARN in the following 
two performance metrics: 
• Batch scheduling delay: The time a batch waits for 

scheduling. 
• Batch processing time: The total time to process a 

batch. 
 
5.1 Benchmark 1: NWC 
First, we simulated the execution of NWC on our model and 
compared the corresponding results with those of NWC 
running on Spark Streaming by separately designing an 
unstable scenario and a stable scenario. In the unstable 
scenario, conJobs=1 and bi=2 sec, implying that at most 
one job is allowed to run at any time, and a batch is 
periodically generated every two seconds. On the other 
hand, in the stable scenario, conJobs=15 and bi=4 sec. Our 
goal is to see how well our model can simulate Spark 
Streaming when a streaming application is executed with 
both unstable and stable parameter settings. 

Figure 5 illustrates the batch scheduling delay of NWC in 
the unstable scenario. We can see that the batch scheduling 
delay on Spark Streaming keeps increasing as more batches 
are generated, implying that the generated batches were 
unable to be processed immediately. The reasons are 
twofold: First, the value of conJobs was only one, so other 
jobs needed to wait in the queue. Second, setting bi to two 
seconds was too short. A shorter bi implies that batches are 
generated more frequently, so more containers are required 
to process these batches. Despite the poor performance, it is 
clear that the batch scheduling delay in our model follows 
the same trend as in Spark Streaming. 

Figure 6 shows the batch processing time of NWC in the 
unstable scenario. Because data arrived every 1.96 sec in 
average and the standard deviation was 1.768 sec, data 
might sometimes arrive frequently (i.e., when the data inter-
arrival time is shorter than 2 sec) and sometimes more 
seldom (i.e., when the data inter-arrival time is longer than 2 
sec). Due to the fact that bi is 2 sec, a lot of generated 
batches were empty. This explains why the batch processing 
time in Spark Streaming fluctuated between 4 sec and 0 sec. 
This phenomenon also occurs in our model since our model 
considers both empty batch processing and non-empty batch 
processing. 

Table 3 lists the average batch scheduling delay and 
standard deviation results of NWC in the stable scenario. It 
is clear that NWC in the Spark Streaming environment 
became more stable compared with that in the unstable 
scenario because the average batch scheduling delay were 
close to zero second. This means that each batch could be 
scheduled almost immediately. This phenomenon is also 
captured and reflected by our model. Figure 7 shows the 
batch processing time of NWC in the stable scenario. We 
can see that a lot of batch processing time in Spark 
Streaming are slightly lower than the batch processing time 
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simulated in our model. This is because that our model 
follows the worst-case batch process workflow. In addition, 
we can observe that the number of empty batches in this 
scenario is far lower than that in the unstable scenario 
(compare Figure 7 with Figure 6). The main reason is that 
the value of bi in this scenario was double of the value in 
the unstable scenario, meaning that the probability of 
generating empty batches is reduced. From the results, we 
can see that our model also captures this change. 
 

 
Figure 5. The batch scheduling delay of NWC in the 

unstable scenario. 
 

Figure 6. The batch processing time of NWC in the unstable 
scenario. 

 
Table 3. The batch scheduling delay of NWC in the stable 

scenario. 

 
 

 
Figure 7. The batch processing time of NWC in the stable 

scenario. 

 

5.2 Benchmark 2: SQLNWC 
To see how well our model can simulate Spark Streaming 
when SQLNWC is executed, we also designed an unstable 
scenario and a stable scenario. In the former, conJobs=1 
and bi=4 sec. In the latter, conJobs=2 and bi=4. Note that 
here we randomly chose these two settings to separately 
achieve unstable and stable execution and to verify if our 
model can correspond accordingly. 

Figure 8 illustrates the batch scheduling delay of SQLNWC 
in the unstable scenario. The batch scheduling delay in both 
our model and Spark Streaming increased when SQLNWC 
generated more batches. However, the trend in our model is 
steeper than that in the real Spark Streaming environment. 
The key reason is that our model adopts the worst-case 
batch processing workflow, so the total number of jobs for 
all batch processing in our model is more than that in Spark 
Streaming, which causes this phenomenon. Nevertheless, 
our model is still able to reflect this unstable scheduling 
delay. In addition, Figure 9 shows that our model captures 
the batch processing time of SQLNWC running in Spark 
Streaming. Due to the worst-case batch processing 
workflow, we can see that most batch processing time in our 
model are slightly longer than those in Spark Streaming. 

 

 
Figure 8. The batch scheduling delay of SQLNWC in the 

unstable scenario. 
 

 
Figure 9. The batch processing time of SQLNWC in the 

unstable scenario. 

On the other hand, in the stable scenario, the batch 
scheduling delay of SQLNWC in Spark Streaming 
dramatically decreased (see Table 4) and our model is still 
able to capture this performance change. In addition, Figure 
10 suggests that our model is also able to reflect the batch 
processing time of SQLNWC running in Spark Streaming. 
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Table 4. The batch scheduling delay of SQLNWC in the 

stable scenario. 

 

 
Figure 10. The batch processing time of SQLNWC in the 

stable scenario. 
 

5.3 Benchmark 3: NFC 
Similar to the previous two benchmarks, we randomly 
designed two scenarios to achieve an unstable execution and 
a stable execution for NFC. In the unstable scenario, 
conJobs=1 and bi=8 sec. In the stable scenario, 
conJobs=2 and bi=8 sec. Figure 11 and Figure 12, 
respectively, illustrate the batch scheduling delay and batch 
processing time of NFC in the unstable scenario. It is clear 
that our model is able to simulate the unstable performance 
behavior of NFC. Similarly, due to the adoption of the 
worst-case batch processing workflow, the batch scheduling 
delay and batch processing time in our model were longer 
than those in Spark Streaming.  

 
Figure 11. The batch scheduling delay of NFC in the 

unstable scenario. 

 
Figure 12. The batch processing time of NFC in the unstable 

scenario. 

 

Furthermore, from the results shown in Table 5 and Figure 
13, we can see that our model also reflects the batch 
scheduling delay and batch processing time of NFC when 
NFC running on Spark Streaming in the stable scenario. 

Based on all the above results, we conclude that our model 
indeed captures the properties of Spark Streaming and it 
provides a good approximation of the performance of Spark 
Streaming on YARN under the dynamic data traffic pattern 
for both unstable and stable scenarios. Users can easily 
model their streaming applications in our model and 
compare by means of simulations and know how different 
parameter configurations affect the performance of their 
applications before these applications are deployed on the 
Spark Streaming framework. 
 

Table 5. The batch scheduling delay of NFC in the stable 
scenario. 

 
 

 
Figure 13. The batch processing time of NFC in the stable 

scenario. 
 
6 Related Work 
There have been some research efforts devoted to 
configurable and executable modeling. Lin et al. (2016) 
developed a generic framework called ABS-YARN for 
Hadoop YARN, which is a cluster platform for executing 
both batch processing and streaming processing. ABS-
YARN enables users to configure a Hadoop YARN cluster 
(including cluster size and resource capacity) and determine 
job workload and job inter-arrival patterns to evaluate their 
deployment decisions. ABS-YARN was validated through a 
comprehensive comparison. The results show that ABS-
YARN provides satisfactory modeling and offer users a 
dependable framework for making deployment decisions 
about YARN at design time. However, users are unable to 
directly model the detail of stream processing on ABS-
YARN since ABS-YARN is mainly developed to model the 
underlying cluster platform.  

Lin et al. (2018) introduced a model to simulate Spark 
Streaming and allow users to specify different parameters. 
The model focused on batch processing that consists of only 
one job, and it only provides the modeling from the stage 
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level. To validate the model, the authors chose 
JavaNetworkWordCount to be their example application 
and designed two scenarios to separately enable and disable 
concurrent job processing. The simulation results show that 
the proposed model provides a good approximation of Spark 
Streaming in terms of the batch scheduling delay and batch 
processing time. Different from their model, the model we 
proposed in this paper emphasizes the modeling from the 
job level, which allows to model batch processing 
consisting of multiple jobs and reduces users’ burden for 
assigning cost annotations for their batch processing 
workflows. Besides, our model not only models and 
simulates Spark Streaming, but also Apache YARN, 
offering users more flexibility to control the underlying 
cluster resources.  

Kroß and Krcmar (2017) presented an approach to model 
and simulate the performance of batch processing and 
stream processing by using and extending the Palladio 
component model (PCM), which enables engineers to 
describe performance relevant factors of software 
architecture. The authors use PCM to represent resource 
clusters, simulate parallel operations, and distribute them on 
a cluster of hardware resources. However, this approach 
does not allow users to configure the stream processing 
framework and their applications. SECRET (Botan et al., 
2010) is a descriptive model for describing and predicting 
the behavior of diverse stream processing engines. This 
model focuses on time-based windows and single-input 
query plans and gives an end-to-end view of the effects of 
different execution semantics. However, SECRET is not a 
configurable and executable model. State Refinement 
(Dosch and Stümpel, 2004) is a formal method for 
transforming a stream processing function into a state 
transition machine with input and output. In this method, 
states are the abstraction of input history and state transition 
function are derived using history abstractions. Persistent 
Turing Machines (Goldin et al., 2004) endows classical 
Turing machines with dynamic stream semantics by 
formalizing the intuitive notion of sequential interactive 
computation. Event Count Automata (Chakraborty et al., 
2005) is a state-based model for Stream Processing Systems 
by capturing the timing properties of data stream in terms of 
arrival and service pattern. 

Another line of work focuses on modeling stream queries. 
Babcock et al. (2002) describe fundamental models and 
issues in developing a general-purpose data stream 
management system, especially related to stream query 
languages, requirements and challenges in query processing, 
and algorithmic issues. The authors extend standard SQL to 
allow the specification of sliding windows. Later, 
Kapitanova et al. (2011) have proposed a formal 
specification language called MEDAL to model data stream 
queries and data admission control. This language is based 
on Petri nets and focuses on modeling different stream-
processing features such as collaborative decision-making 
and temporal and spatial data dependencies.  

In contrast to the work discussed above, the model 
introduced in this paper targets the formalization of a state-
of-the-art stream processing framework: Spark Streaming. 

We capture the main features of Spark Streaming on an 
elastic YARN cluster and address how processing 
capacities, data arrival patterns, and framework parameters 
affect the nonfunctional aspects of streaming applications, 
i.e., batch scheduling delay and batch processing time. Our 
model is executable and highly configurable and allows 
users to observe and compare the performance 
consequences of their streaming applications at the 
modeling phase. 

 
7 Conclusion and Future Work 
In this paper, we have presented SSP for modeling Spark 
Streaming. The proposed model enables users to configure 
the processing framework of Spark Streaming and adapt it 
to their streaming application settings, including streaming 
job workflow and execution cost. To model the deployment 
of Spark Streaming on Apache YARN, we have extended 
SSP by integrating it with ABS-YARN. The resulting model 
allows users to easily evaluate and compare how different 
parameter configurations and deployment decisions affect 
their streaming applications before these applications are 
actually deployed in the real world. 

To increase the applicability of formal methods in the 
design of virtualized stream processing backends, we 
believe that it is crucial to show that the proposed model can 
faithfully reflect Spark Streaming once the model has been 
configured. To validate the proposed model, we have 
compared it with Spark Streaming running on a YARN 
cluster. The validation shows that 1) the model captures the 
key properties of Spark Streaming, including batch 
generation, empty batch processing, non-empty batch 
processing, and batch scheduling; 2) the model provides a 
good approximation of Spark Streaming on YARN in terms 
of the batch scheduling delay and batch processing time; 
and 3) the model enables users to predict the performance of 
their streaming applications on Spark stream processing 
framework with different configuration settings during the 
modeling phase and thereby to determine an appropriate 
deployment decision. 

In future work, we plan to extend the model and further 
formalize virtualized stream processing by considering the 
modeling of multiple stream receivers and the failure of 
slaves, containers, and the network. Furthermore, we plan to 
investigate application-aware scheduling algorithms to 
optimize batch processing performance and reduce resource 
consumption using a formal approach. 
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