
Int. J. Xxxxxx Xxxxxxx Xxxxxxx, Vol. X, No. Y, XXXX

Copyright © 201x Inderscience Enterprises Ltd.

A Configurable and Executable Model of Spark
Streaming on Apache YARN

Jia-Chun Lin*

Department of Informatics,
University of Oslo, 0315 Oslo, Norway
Email: kellylin1219@gmail.com
*Corresponding author

Ming-Chang Lee

Department of Information Security and Communication Technology,
Norwegian University of Science and Technology (NTNU), 2802 Gjøvik, Norway
Email: ming.c.lee@ntnu.no

Ingrid Chieh Yu

Department of Informatics,
University of Oslo, 0315 Oslo, Norway
Email: ingridcy@ifi.uio.no

Einar Broch Johnsen

Department of Informatics,
University of Oslo, 0315 Oslo, Norway
Email: einarj@ ifi.uio.no

Abstract: Streams of data are produced today at an unprecedented scale. Efficient and stable
processing of these streams requires a careful interplay between the parameters of the streaming
application and of the underlying stream processing framework. Today, finding these parameters
happens by trial and error on the complex, deployed framework. This paper shows that high-level
models can help determine these parameters by predicting and comparing the performance of
streaming applications running on stream processing frameworks with different configurations.
To demonstrate this approach, this paper considers Spark Streaming, a widely used framework to
leverage data streams on the fly and provide real-time stream processing. Technically, we
develop a configurable and executable model to simulate both the streaming applications and the
underlying Spark stream processing framework. Furthermore, we model the deployment of Spark
Streaming on Apache YARN, which is a popular open-source distributed software framework for
big data processing. We show that the developed model provides a satisfactory accuracy for
predicting performance by means of empirical validation.

Keywords: Modeling; Simulation; Spark Streaming; Apache YARN; batch processing; stream
processing; ABS

Reference to this paper should be made as follows: Lin, J.-C., Lee, M.-C., Yu, I.C., and Johnsen,
E.B. (2018) ‘A Configurable and Executable Model of Spark Streaming on Apache YARN’, Int.
J. Ad Hoc and Ubiquitous Computing, Vol. X, No. Y, pp.000–000.

Biographical notes: Jia-Chun Lin is currently a postdoctoral research fellow at Department of
Informatics, University of Oslo, and will soon work at Norwegian University of Science and
Technology (NTNU), Norway. Her research interests include parallel and distributed computing,
cloud computing, Fog computing, Internet of Things, big data analytics, data mining, and
machine learning.

Ming-Chang Lee is currently a postdoctoral research fellow at Norwegian University of Science
and Technology (NTNU), Norway. His research interests include cloud computing, big data,
deep learning, intelligent systems, HPC, Security, and Privacy.

Ingrid Chieh Yu is an associate professor at Department of Informatics, University of Oslo. Her
research interests include specifications and formal modeling, and methodology for the design
and analysis of concurrent, distributed, context-dependent and evolving systems.

Einar Broch Johnsen is a full professor at Department of Informatics, University of Oslo. His
research interests include programming models and methodology; program specification and
modeling; formal methods and associated theory; lightweight analysis, type systems, testing; as
well as deductive verification and formal logic.

240 XXX et al.

1 Introduction
Streams of data are produced today at an unprecedented
scale. The leverage of this data requires stream processing
solutions which can scale transparently to large amounts of
data and complex workflows, and process the data on the
fly. State-of-the-art stream processing frameworks include
Spark Streaming (Spark Streaming), Apache Storm, AWS
Kinesis Streams, IBM InfoSphere Streams, and TIBCO
StreamBase. Achieving stable and efficient processing for a
streaming application requires a careful interplay between
the configurations of the underlying stream processing
framework and the streaming application itself.
Inappropriate configurations and deployment decisions may
lead to wasteful resource overprovisioning or poor
performance, both of which may substantially increase
costs.

Using model-based analyses, appropriate configurations and
deployment decisions can be explored and compared “in the
laboratory” (Hähnle and Johnsen, 2015), thereby helping
users to predict the performance of an application before the
application is deployed. Our goal is to give users an easy-to-
use support for such analyses based on a highly
configurable and executable model. For this purpose, the
configurable model needs to be faithful to the real systems
in the sense that the model-based analysis of an
application’s deployment complies with the performance of
its actual deployment.

In this paper, we present a highly configurable model of
Spark Streaming based on Real-Time ABS (Bjørk et al.,
2013; Johnsen et al., 2015). Spark Streaming is a widely
used stream processing framework due to its scalability,
efficiency, resilience, fault tolerance, and compatibility with
several different cluster/cloud platforms, including Spark
standalone clusters, Apache YARN (Vavilapalli et al.,
2013), Amazon EC2 (Amazon EC2), and Apache Mesos
(Amazon Mesos). Real-Time ABS is a formal executable
language for modeling distributed systems and deployed
virtualized software. Our model SSP (which stands for
Spark Streaming Processing) models Spark streaming
applications, the underlying Spark stream processing
framework, and the execution of the applications on the
framework. SSP allows users to not only specify the
workflow of their streaming applications, but also to
configure crucial parameters for the underlying stream
processing framework. We further model the deployment of
Spark Streaming on Apache YARN (Vavilapalli et al.,
2013), a popular open-source distributed software
framework for big data processing, by integrating SSP with
a modeling framework for YARN (Lin et al., 2016).

To validate the faithfulness of the proposed model, we
compare performance as simulated using our model with
performance as observed on Spark Streaming on Apache

YARN to see how well our model can simulate and reflect
streaming applications under different scenarios. The main
contributions of this paper can be summarized as follows:

• Formalization: SSP is a formal executable model
targeting a state-of-the-art stream processing
framework, i.e., Spark Streaming. We show how Spark
Streaming can be deployed on a popular distributed
big-data processing framework, i.e., YARN, from a
modeling perspective.

• Configurable modeling framework: The SSP model we
proposed in this paper can be applied to when users
need to make configuration decisions for their
streaming applications. SSP enables users to configure
stream processing workflows and experiment with
different crucial parameters for the underlying stream
processing framework at the abstraction level of the
model. By means of simulations, users can easily
compare how different parameter configurations affect
the performance of their streaming applications.

• Evaluation: The proposed model is validated through
several scenarios in which dynamic data arrival patterns
and different parameter configurations are considered.
The results suggest that our model provides a
satisfactory modeling accuracy compared with Spark
Streaming on YARN.

Paper overview. Section 2 introduces Spark Streaming and
Real-Time ABS. Section 3 presents SSP. Section 4 shows
how to model the deployment of Spark Streaming on
YARN by extending SSP. Sections 5, 6, and 7 discusses
model validation, surveys related work, and concludes the
paper, respectively.

2 Background
In this section, we provide background about Spark
Streaming and Real-Time ABS.

2.1 Spark Streaming
Spark Streaming (Spark Streaming) is developed as part of
the Apache Spark tool suite (Spark: Lightning-fast cluster
computing) for high-throughput and fault-tolerant data
stream processing. Spark Streaming uses the discretized
stream model (i.e., resilient distributed dataset or RDD for
short) (Zaharia et al., 2012) to structure stream processing
as a series of stateless, deterministic batch computations on
small time intervals (Zaharia et al., 2013). Each Spark
streaming application is a long-running and non-terminating
stream processing service with a Spark driver as its master.
Each Spark driver is responsible for initiating the reception
of continuously flowing input data, periodically dividing the
received data into batches based on a pre-configured batch
interval, and managing the processing of each batch. A
batch may contain zero or more data items depending on the

 A Configurable and Executable Model of Spark Streaming on Apache YARN 241

data arrival frequency and the batch interval. A batch with
no data is called an empty batch. Otherwise, it is called a
non-empty batch.

Figure 1. An example of batch processing workflow.

In Spark Streaming, each batch is processed by the
workflow of a streaming application defined by the
application designer. In this paper, the workflow is called
batch processing workflow. In general, a batch processing
workflow consists of a series of sequential jobs. Each job,
which is triggered by an action, may have several sequential
or parallel stages. For example, the workflow shown in
Figure 1 comprises 3 jobs where job 1 has one stage, job 2
has two sequential stages, and job 3 have both sequential
and parallel stages. Each Spark driver also controls the
maximum number of jobs that are allowed to be
concurrently processed, which has a default value of one
(Apache Spark JobScheduler).

Spark Streaming can be deployed on different clusters or on
the cloud, including Spark standalone clusters (Spark
Streaming), Apache YARN (Vavilapalli et al., 2013),
Amazon EC2 (Amazon EC2), and Apache Mesos (Apache
Mesos). After it is deployed, the Spark driver of a streaming
application can request a set of worker nodes (which may be
physical machines, virtual machines, or containers) to start
the application and process each batch on these workers
according to the corresponding workflow.

2.2 Real-Time ABS
In this subsection, we introduce Real-Time ABS and
explain why we chose this language to model Spark
Streaming. Real-Time ABS (Bjørk et al., 2013; Johnsen et
al., 2015) is a formal, executable, object-oriented language
for modeling distributed systems and deployed virtualized
software. This language combines functional and imperative
programming styles with a Java-like syntax and a formal
semantics. The first reason we chose this language is
because it supports concurrent object groups. A concurrent
object group is a group of objects. Concurrent object groups
execute in parallel and communicate by asynchronous
method calls and futures (Johnsen et al., 2011). Objects
execute processes that stem from method calls. At any time,
at most one process in a concurrent object group is active,
whereas inactive processes are suspended and stored in a
queue waiting to be executed on an object of the group. This
cooperative scheduling of processes allows active and
reactive behaviors to be combined in the object groups.
Internal computations in an object are captured in a simple
functional language based on user-defined algebraic data
types and functions.

The second reason we chose this language is that
communication and synchronization in Real-Time ABS are
decoupled. Communication is based on asynchronous
method calls on the form f = o!m(e) where f is a future

variable, o an object expression, m a method name, and e
the parameter values for the method invocation. These calls
are non-blocking: After calling f = o!m(e), the caller may
proceed with its execution without blocking on the method
reply. Synchronization is controlled by operations on
futures. The statement await f ? releases the processor while
waiting for a reply, allowing other processes to execute.
When the reply arrives, the suspended process becomes
enabled and the execution may resume. The return value
from the method call is retrieved by the expression f.get,
which blocks all execution in the object until the return
value is available. The syntactic sugar x = await o!m(e)
encodes the standard pattern f = o!m(e); await f ?; x = f.get.

The third reason is because Real-Time ABS supports the
timed behavior of concurrent objects, which is captured by a
maximal progress semantics (Bjørk et al., 2013). Execution
time can be specified explicitly by means of duration
statements, or be implicit in terms of observations on the
executing model. The statement duration (e1; e2) will cause
time to advance between the best case e1 and the worst case
e2 execution time, blocking all execution in the concurrent
object group until time has advanced. The statement await
duration (e1;e2) will suspend the process until time has
advanced beyond e1, allowing other processes to be
scheduled.

The last reason is that Real-Time ABS is able to model
deployment by introducing a separation of concerns
between the resource cost of executing a task and the
resource capacity of the location where the task executes
(Johnsen et al., 2015). A resource cost expression e can be
associated with a statement s by a cost annotation [Cost: e]
s. This allows the execution time of the statement s to
depend on the location where it is executed. To model
resource-constrained deployment architectures, Real-Time
ABS uses deployment components to model locations with
given resource specifications. A number of concurrent
objects can be deployed on each deployment component. In
other words, each deployment component has its own
execution speed, which determines the performance of the
objects running on it. A deployment component is created
by the statement x= new DeploymentComponent
(descriptor, capacity), where x is typed by the DC
interface, descriptor is a descriptor for the purpose of
monitoring, and capacity specifies the resource capacity of
the deployment component. Using the DC annotation on the
statement of creating an object, the object can be deployed
on the corresponding deployment component.

3 The SSP Model
In this section, we introduce how the SSP model is defined
and written in Real-Time ABS to model Spark stream
applications and the underlying processing framework.

3.1 Modeling Spark Stream Applications
A batch is represented by a Real-Time ABS data type with
an identifier bID and an associated size bSize. In datatype

242 XXX et al.

definitions, the parameter names of a constructor become
accessor functions; e.g., bSize(Batch(1,5)) reduces to 5.
We define a Boolean function isEmptyBatch to recognize
empty batches:

Recall that a batch processing workflow in Spark Streaming
consists of a series of jobs and each job has several stages.
In this paper, we model such workflow from the job level.
by means of two datatypes Workflow and JobInfo. The
former defines a batch processing workflow as a list of jobs.
The latter defines a job as an unique identifier and a list of
constraints constr for executing the job.

For instance, the batch processing workflow depicted in
Figure 1 has three jobs, so the workflow corresponds to the
ABS term Workflow [JobInfo(J1,Nil),
JobInfo(J2,list["J1"]), JobInfo(J3,list["J2"])]. To guarantee
that every job in a batch processing is executed in
accordance with its constraints, we define a Boolean
function check:

For each unprocessed job, this function checks recursively
to see if all its constraints are included in fin, which is a list
of completed jobs of the batch processing. A job can be
executed only when all its constraints have been resolved.

To model the processing time of a batch, users might
achieve it at the stage level if they know the cost of
executing each stage for each job of a batch processing.
Although such approach is fine-grained, it takes a lot of
efforts for users to determine stage costs. Therefore, in this
paper, SSP focuses on job-level modeling. In other words,
users only need to specify a cost for executing each job of a
batch processing. Since the time spent by a job to process a
non-empty batch and an empty batch are different in Spark
Streaming, our model allows users to define two cost
approximation function: jobCostNonEmptyBatch and
jobCostEmptyBatch. The former assigns an execution cost
expression 𝑐" to each job 𝐽" (where i = 1, 2, …, n) that
processes an non-empty batch. The latter assigns an
execution cost expression to each job that processes an
empty batch.

Note that users can specify cost expressions at an
appropriate level of precision based on their preferences.
Cost expressions may be derived using cost analysis (e.g.,
SACO (Albert et al., 2014)) or represent an estimated or

average execution time. Later in this paper, we will show
how we assign such costs.

3.2 Modeling the Spark Stream Processing

Framework
The architecture of SSP, shown in Figure 2, consists of a
main block for a user to configure his/her streaming
application and the underlying Spark stream processing
framework, a class SparkDriver to model the Spark driver
of the streaming application, and a class Worker to model
worker nodes. Here we assume that a set of worker nodes is
available to the stream processing framework. The
deployment of Spark Streaming to make such worker nodes
available will be modeled in Section 4.

Before launching SSP, users are required to configure the
following parameters for their streaming applications:
• the specification of the batch processing workflow
• the execution cost for each job of the batch processing

workflow
• the maximum number of worker nodes used to run the

application (denoted by num)
• the resource specification of each worker node (denoted

by rs)
• data inter-arrival pattern
• batch interval (denoted by bi)
• the maximum number of jobs allowed to execute

concurrently (denoted by conJobs)

Figure 2. The architecture of SSP.

The SparkDriver interface has the following five methods:
confSetup, streamReceiver, batchGenerator,
batchScheduler, and batchManager.

When a user launches SSP, method confSetup is invoked
to create the requested set of num worker nodes with the
requested resource specification rs. Each worker node is
modeled by class Worker on an independent deployment
component with the resource specification rs of type
RSpec:

 A Configurable and Executable Model of Spark Streaming on Apache YARN 243

Here, cores, speed, and memory are accessor functions to
the values of the respective resources in the resource
specification. Class Worker uses method exe to execute
one job of a batch processing with the corresponding cost
expression. Exploiting the resource-constrained semantics
of Real-Time ABS, the job execution time is determined by
the cost expression and the CPU processing speed of the
worker.

After all the worker nodes have been created, method
confSetup triggers methods streamReceiver,
batchGenerator, and batchScheduler to start running the
streaming application. As illustrated in Figure 2, streams of
data are sent to method streamReceiver based on the pre-
configured data inter-arrival pattern. Upon receiving data,
method streamReceiver keeps it in the memory buffer of
the Spark driver. Method batchGenerator periodically
generates batches based on the pre-configured batch interval
and inserts these batches into a queue. Method
batchScheduler schedules batch processing by invoking
method batchManager for each batch so that the
batchManager is able to manage the corresponding batch
processing. In the following, we here focus on describing
methods batchGenerator, batchScheduler, and
batchManager.

Method batchGenerator

This method periodically generates a batch at the rate given
by the batch interval bi. Using the await duration statement
of Real-Time ABS, this method suspends its execution and
resumes again after the time interval bi. Each time, method
batchGenerator considers all received data in the memory
buffer as a batch, inserts the batch into the queue, and
empties the memory buffer to avoid reprocessing the same
data. Each batch has a unique bID and has size bSize where
bSize=dataSizeInBuffer, i.e., total size of the data in the
memory buffer.

Method batchScheduler

Similar to batchGenerator, method batchScheduler is
also a non-terminating process. It uses the default first-in-
first-out scheduling approach to schedule the execution of
batches. As long as the total number of currently running
jobs is less than conJobs (i.e., runningJobs < conJobs)
and there is an unprocessed batch in the queue (i.e.,
length(queue)>0), method batchScheduler invokes
method batchManager to create a separate object for
managing the processing of the head-of-queue batch. Note
that the await-statement suspends the active process in Real-
Time ABS and therefore allows SparkDriver to interleave
the different stream processing activities in a flexible way.

Method batchManager

When batchManager is requested to manage a batch
processing, it retrieves the corresponding batch processing
workflow. As long as there are unfinished stages (i.e.,
length(fin)<totalJobs), batchManager checks if any of
these jobs can be executed immediately based on the
corresponding constraints. When the constraint of a job is
resolved (i.e., check(constr(s),fin) evaluates to True),
batchManager awaits until there is available worker in the
workerList. When this condition is satisfied, method
batchManager executes the job on the worker by invoking
the corresponding exe method. At this point, the global
parameter runningJobs increases by one. When the job is
finished, runningJobs decreases by one, which enables
batchScheduler to schedule another batch processing. By
repeating the above process, batchManager is able to
manage the entire workflow of the batch processing. When
all the jobs are finished, the batch processing is complete.

4 Modeling Spark Streaming on YARN
In this section, we model the deployment of Spark
Streaming on YARN to provision the stream processing
framework with worker nodes. This is done by integrating
SSP with ABS-YARN, which is an executable framework
for modeling and simulating Apache YARN. ABS-YARN
(Lin et al., 2016) focuses on modeling the following four
important components of a YARN cluster:
• ResourceManager (RM): It is the master server in a

YARN cluster to manage all resources and allocate
resources to different completing applications, such as
MapReduce, Spark Streaming, graph applications, etc.

• Slave nodes: Each slave node provides computation
resource and storage capacity.

• Containers: Each container is a logical resource
combination (e.g., 1 CPU core and 1 GB memory) of a
particular slave node to execute a task.

• MapReduce Application Master (MapReduceAM): It is

244 XXX et al.

the master of a MapReduce application to request
containers from RM and manage the execution of the
MapReduce application.

RM is modeled by a class RM with four methods:
initialization, getContainer, free, and logger. Method
initialization is used to initialize the YARN cluster,
including RM and the slave nodes. Each slave node is
modeled as a database record with a unique SlaveID and an
initial resource specification. After initialization, the cluster
is ready to serve client requests. Method getContainer
allows a MapReduceAM (modeled by class
MapReduceAM) to request containers from RM. When
invoked, getContainer tries to allocate desired containers
from the available slave nodes to the caller. This method
may fail if no slave node has sufficient resources to meet the
container resource requirements within a certain time. When
a container finishes its task, method free is called to release
the resources of the container and method logger is invoked
to record the execution statistics.

In ABS-YARN, each container is modeled by class
Container, which has a method exe to execute a task. Each
container is deployed as a deployment component with the
given resource specification. MapReduceAM is modeled by
class MapReduceAM, which has a method req to request a
container for each map/reduce task from RM. Once the
container is obtained from RM, the MapReduceAM can
execute a task on the container by calling the exe method of
the container. Since each MapReduce application is a
terminating application with only two stages (i.e., map and
reduce), MapReduceAM is unable to model the Spark driver
of a Spark Streaming application.

In order to deploy SSP on ABS-YARN, we further create a
new class StreamingAM on ABS-YARN by instantiating
the SparkDriver class of the SSP model as a class
StreamingAM. The resulting model of SSP on ABS-YARN
is illustrated in Figure 3. In this model, classes RM,
Container, and MapReduceAM remain as in ABS-YARN
except that the exe method of Container can be invoked to
execute either a map/reduce task or a job of a batch
processing. In this model, users can specify not only all the
parameters discussed in Section 3 for Spark Streaming, but
also the following parameters to configure the scale of the
underlying YARN cluster:
• the number of slave nodes in the YARN cluster
• the CPU capacity for each slave node
• the memory capacity of each slave node

When a user launches this model to run a Spark streaming
application on YARN, method confSetup will first be
triggered to request a set of desired containers from RM by
invoking method getContainer. When the required
containers have been obtained, confSetup triggers methods
streamReceiver, batchGenerator, and batchScheduler
to start the streaming application. Note that when a
container finishes a job of a batch processing, method free
will not be invoked to release the container’s resources.
Instead, the container will be returned to a container pool

and wait for another execution.

Figure 3. The modeling architecture of Spark Streaming on

Apache YARN.

Our model exploits the concurrent objects of Real-Time
ABS to capture concurrent batch processing. The
deployment components of Real-Time ABS are used as an
abstraction of containers with execution capacities for batch
processing. The language’s support for timed behavior is
used to model how the resources of containers are
consumed by stream processing as time passes.
Furthermore, we exploit cost annotations to abstract from
concrete job executions and focus on the resource and
performance aspects of job computations. Hence, users can
abstract from specific application details or black box
components and still be able to experiment with the
performance of the overall streaming application.

5 Model Validation
To validate the proposed model, we compared our model
(i.e., SSP on ABS-YARN) with Spark Streaming deployed
on a YARN cluster running Hadoop 2.2.0 (Apache Hadoop)
and Spark 1.5.1 (Spark 1.5.1 released). The cluster has one
virtual machine acting as RM and 30 virtual machines
acting as slave nodes. Each virtual machine runs Ubuntu
12.04 with 2 virtual cores of Intel Xeon E5-2620 2GHz
CPU and 2 GB of memory. To achieve a fair comparison,
we also configured our model to have one RM and 30 slave
nodes; each with 2 CPU cores and 2 GB of memory. For
both our model and the real Spark Streaming environment,
the resource requirements for each container are 1 CPU core
and 1 GB of memory.

We chose three benchmarks called JavaNetworkWordCount
(NWC for short), JavaSQLNetworkWordCount (SQLNWC
for short), and JavaNetworkFunctionCost (NFC for short)
from (Spark Streaming Example; Spark Streaming
Programming Guide) as example streaming applications to
conduct our validation. Table 1 summarizes the
characteristic of these benchmarks. For some performance
considerations, we noticed that, in Spark Streaming, the
number of jobs in a batch processing for a same streaming
application might change. For instance, when we run
SQLNWC and NFC, some of their batches require 2
sequential jobs to finish, but some others require 3
sequential jobs to finish. However, this phenomenon does

 A Configurable and Executable Model of Spark Streaming on Apache YARN 245

not happen when NWC was executed. Therefore, our model
considers the worst-case batch processing workflow, i.e.,
NWC has one job in its batch processing workflow, but both
SQLNWC and NFC have 3 sequential jobs in their batch
processing workflows.

Table 1. Three Spark Streaming benchmarks.

We employed Netcat (The GNU Netcat) to continuously
send data from the Wikipedia website of Apache Spark
(Wikipedia: Apache Spark) to these benchmarks. The size
of each data item is around 1 KB and the data is sent in a
dynamic inter-arrival pattern following an exponential
distribution (Koralov and Sinai, 2007) with the average time
of 1.96 sec and the standard deviation of 1.768 sec. In order
to assign appropriate execution costs for each job of these
benchmarks, we conducted an experiment on one of the
slave node to study if there is a linear relationship between
batch size and job execution time. However, the results of
NWC illustrated in Figure 4 show that the job execution
time does not always increase when the size of a batch
increases. The other two benchmarks also have a similar
phenomenon, implying that it is inappropriate to use batch
size to assign job execution costs. As an alternative, we
separately executed each benchmark on the same slave node
without any workload to measure the average job execution
time and standard deviation. Table 2 lists the corresponding
results, which we used to assign job execution costs in our
model.

Figure. 4. The batch processing time of NWC under

different batch sizes.

Table 2. The average job execution time and standard
deviation of each benchmark.

In Spark Streaming, a streaming application is stable if each
of its batches can be scheduled immediately. For stability,

the parameters conJobs and bi are highly influential.
Hence, for each benchmark, we designed two scenarios, one
is unstable and the other is stable, to see if our model can
correspond to Spark Streaming on YARN in the following
two performance metrics:
• Batch scheduling delay: The time a batch waits for

scheduling.
• Batch processing time: The total time to process a

batch.

5.1 Benchmark 1: NWC
First, we simulated the execution of NWC on our model and
compared the corresponding results with those of NWC
running on Spark Streaming by separately designing an
unstable scenario and a stable scenario. In the unstable
scenario, conJobs=1 and bi=2 sec, implying that at most
one job is allowed to run at any time, and a batch is
periodically generated every two seconds. On the other
hand, in the stable scenario, conJobs=15 and bi=4 sec. Our
goal is to see how well our model can simulate Spark
Streaming when a streaming application is executed with
both unstable and stable parameter settings.

Figure 5 illustrates the batch scheduling delay of NWC in
the unstable scenario. We can see that the batch scheduling
delay on Spark Streaming keeps increasing as more batches
are generated, implying that the generated batches were
unable to be processed immediately. The reasons are
twofold: First, the value of conJobs was only one, so other
jobs needed to wait in the queue. Second, setting bi to two
seconds was too short. A shorter bi implies that batches are
generated more frequently, so more containers are required
to process these batches. Despite the poor performance, it is
clear that the batch scheduling delay in our model follows
the same trend as in Spark Streaming.

Figure 6 shows the batch processing time of NWC in the
unstable scenario. Because data arrived every 1.96 sec in
average and the standard deviation was 1.768 sec, data
might sometimes arrive frequently (i.e., when the data inter-
arrival time is shorter than 2 sec) and sometimes more
seldom (i.e., when the data inter-arrival time is longer than 2
sec). Due to the fact that bi is 2 sec, a lot of generated
batches were empty. This explains why the batch processing
time in Spark Streaming fluctuated between 4 sec and 0 sec.
This phenomenon also occurs in our model since our model
considers both empty batch processing and non-empty batch
processing.

Table 3 lists the average batch scheduling delay and
standard deviation results of NWC in the stable scenario. It
is clear that NWC in the Spark Streaming environment
became more stable compared with that in the unstable
scenario because the average batch scheduling delay were
close to zero second. This means that each batch could be
scheduled almost immediately. This phenomenon is also
captured and reflected by our model. Figure 7 shows the
batch processing time of NWC in the stable scenario. We
can see that a lot of batch processing time in Spark
Streaming are slightly lower than the batch processing time

246 XXX et al.

simulated in our model. This is because that our model
follows the worst-case batch process workflow. In addition,
we can observe that the number of empty batches in this
scenario is far lower than that in the unstable scenario
(compare Figure 7 with Figure 6). The main reason is that
the value of bi in this scenario was double of the value in
the unstable scenario, meaning that the probability of
generating empty batches is reduced. From the results, we
can see that our model also captures this change.

Figure 5. The batch scheduling delay of NWC in the

unstable scenario.

Figure 6. The batch processing time of NWC in the unstable
scenario.

Table 3. The batch scheduling delay of NWC in the stable

scenario.

Figure 7. The batch processing time of NWC in the stable

scenario.

5.2 Benchmark 2: SQLNWC
To see how well our model can simulate Spark Streaming
when SQLNWC is executed, we also designed an unstable
scenario and a stable scenario. In the former, conJobs=1
and bi=4 sec. In the latter, conJobs=2 and bi=4. Note that
here we randomly chose these two settings to separately
achieve unstable and stable execution and to verify if our
model can correspond accordingly.

Figure 8 illustrates the batch scheduling delay of SQLNWC
in the unstable scenario. The batch scheduling delay in both
our model and Spark Streaming increased when SQLNWC
generated more batches. However, the trend in our model is
steeper than that in the real Spark Streaming environment.
The key reason is that our model adopts the worst-case
batch processing workflow, so the total number of jobs for
all batch processing in our model is more than that in Spark
Streaming, which causes this phenomenon. Nevertheless,
our model is still able to reflect this unstable scheduling
delay. In addition, Figure 9 shows that our model captures
the batch processing time of SQLNWC running in Spark
Streaming. Due to the worst-case batch processing
workflow, we can see that most batch processing time in our
model are slightly longer than those in Spark Streaming.

Figure 8. The batch scheduling delay of SQLNWC in the

unstable scenario.

Figure 9. The batch processing time of SQLNWC in the

unstable scenario.

On the other hand, in the stable scenario, the batch
scheduling delay of SQLNWC in Spark Streaming
dramatically decreased (see Table 4) and our model is still
able to capture this performance change. In addition, Figure
10 suggests that our model is also able to reflect the batch
processing time of SQLNWC running in Spark Streaming.

 A Configurable and Executable Model of Spark Streaming on Apache YARN 247

Table 4. The batch scheduling delay of SQLNWC in the

stable scenario.

Figure 10. The batch processing time of SQLNWC in the

stable scenario.

5.3 Benchmark 3: NFC
Similar to the previous two benchmarks, we randomly
designed two scenarios to achieve an unstable execution and
a stable execution for NFC. In the unstable scenario,
conJobs=1 and bi=8 sec. In the stable scenario,
conJobs=2 and bi=8 sec. Figure 11 and Figure 12,
respectively, illustrate the batch scheduling delay and batch
processing time of NFC in the unstable scenario. It is clear
that our model is able to simulate the unstable performance
behavior of NFC. Similarly, due to the adoption of the
worst-case batch processing workflow, the batch scheduling
delay and batch processing time in our model were longer
than those in Spark Streaming.

Figure 11. The batch scheduling delay of NFC in the

unstable scenario.

Figure 12. The batch processing time of NFC in the unstable

scenario.

Furthermore, from the results shown in Table 5 and Figure
13, we can see that our model also reflects the batch
scheduling delay and batch processing time of NFC when
NFC running on Spark Streaming in the stable scenario.

Based on all the above results, we conclude that our model
indeed captures the properties of Spark Streaming and it
provides a good approximation of the performance of Spark
Streaming on YARN under the dynamic data traffic pattern
for both unstable and stable scenarios. Users can easily
model their streaming applications in our model and
compare by means of simulations and know how different
parameter configurations affect the performance of their
applications before these applications are deployed on the
Spark Streaming framework.

Table 5. The batch scheduling delay of NFC in the stable
scenario.

Figure 13. The batch processing time of NFC in the stable

scenario.

6 Related Work
There have been some research efforts devoted to
configurable and executable modeling. Lin et al. (2016)
developed a generic framework called ABS-YARN for
Hadoop YARN, which is a cluster platform for executing
both batch processing and streaming processing. ABS-
YARN enables users to configure a Hadoop YARN cluster
(including cluster size and resource capacity) and determine
job workload and job inter-arrival patterns to evaluate their
deployment decisions. ABS-YARN was validated through a
comprehensive comparison. The results show that ABS-
YARN provides satisfactory modeling and offer users a
dependable framework for making deployment decisions
about YARN at design time. However, users are unable to
directly model the detail of stream processing on ABS-
YARN since ABS-YARN is mainly developed to model the
underlying cluster platform.

Lin et al. (2018) introduced a model to simulate Spark
Streaming and allow users to specify different parameters.
The model focused on batch processing that consists of only
one job, and it only provides the modeling from the stage

248 XXX et al.

level. To validate the model, the authors chose
JavaNetworkWordCount to be their example application
and designed two scenarios to separately enable and disable
concurrent job processing. The simulation results show that
the proposed model provides a good approximation of Spark
Streaming in terms of the batch scheduling delay and batch
processing time. Different from their model, the model we
proposed in this paper emphasizes the modeling from the
job level, which allows to model batch processing
consisting of multiple jobs and reduces users’ burden for
assigning cost annotations for their batch processing
workflows. Besides, our model not only models and
simulates Spark Streaming, but also Apache YARN,
offering users more flexibility to control the underlying
cluster resources.

Kroß and Krcmar (2017) presented an approach to model
and simulate the performance of batch processing and
stream processing by using and extending the Palladio
component model (PCM), which enables engineers to
describe performance relevant factors of software
architecture. The authors use PCM to represent resource
clusters, simulate parallel operations, and distribute them on
a cluster of hardware resources. However, this approach
does not allow users to configure the stream processing
framework and their applications. SECRET (Botan et al.,
2010) is a descriptive model for describing and predicting
the behavior of diverse stream processing engines. This
model focuses on time-based windows and single-input
query plans and gives an end-to-end view of the effects of
different execution semantics. However, SECRET is not a
configurable and executable model. State Refinement
(Dosch and Stümpel, 2004) is a formal method for
transforming a stream processing function into a state
transition machine with input and output. In this method,
states are the abstraction of input history and state transition
function are derived using history abstractions. Persistent
Turing Machines (Goldin et al., 2004) endows classical
Turing machines with dynamic stream semantics by
formalizing the intuitive notion of sequential interactive
computation. Event Count Automata (Chakraborty et al.,
2005) is a state-based model for Stream Processing Systems
by capturing the timing properties of data stream in terms of
arrival and service pattern.

Another line of work focuses on modeling stream queries.
Babcock et al. (2002) describe fundamental models and
issues in developing a general-purpose data stream
management system, especially related to stream query
languages, requirements and challenges in query processing,
and algorithmic issues. The authors extend standard SQL to
allow the specification of sliding windows. Later,
Kapitanova et al. (2011) have proposed a formal
specification language called MEDAL to model data stream
queries and data admission control. This language is based
on Petri nets and focuses on modeling different stream-
processing features such as collaborative decision-making
and temporal and spatial data dependencies.

In contrast to the work discussed above, the model
introduced in this paper targets the formalization of a state-
of-the-art stream processing framework: Spark Streaming.

We capture the main features of Spark Streaming on an
elastic YARN cluster and address how processing
capacities, data arrival patterns, and framework parameters
affect the nonfunctional aspects of streaming applications,
i.e., batch scheduling delay and batch processing time. Our
model is executable and highly configurable and allows
users to observe and compare the performance
consequences of their streaming applications at the
modeling phase.

7 Conclusion and Future Work
In this paper, we have presented SSP for modeling Spark
Streaming. The proposed model enables users to configure
the processing framework of Spark Streaming and adapt it
to their streaming application settings, including streaming
job workflow and execution cost. To model the deployment
of Spark Streaming on Apache YARN, we have extended
SSP by integrating it with ABS-YARN. The resulting model
allows users to easily evaluate and compare how different
parameter configurations and deployment decisions affect
their streaming applications before these applications are
actually deployed in the real world.

To increase the applicability of formal methods in the
design of virtualized stream processing backends, we
believe that it is crucial to show that the proposed model can
faithfully reflect Spark Streaming once the model has been
configured. To validate the proposed model, we have
compared it with Spark Streaming running on a YARN
cluster. The validation shows that 1) the model captures the
key properties of Spark Streaming, including batch
generation, empty batch processing, non-empty batch
processing, and batch scheduling; 2) the model provides a
good approximation of Spark Streaming on YARN in terms
of the batch scheduling delay and batch processing time;
and 3) the model enables users to predict the performance of
their streaming applications on Spark stream processing
framework with different configuration settings during the
modeling phase and thereby to determine an appropriate
deployment decision.

In future work, we plan to extend the model and further
formalize virtualized stream processing by considering the
modeling of multiple stream receivers and the failure of
slaves, containers, and the network. Furthermore, we plan to
investigate application-aware scheduling algorithms to
optimize batch processing performance and reduce resource
consumption using a formal approach.

Reference
1. Albert, E., Arenas, P., Flores-Montoya, A., Genaim, S.,

Gómez-Zamalloa, M., Martin-Martin, E., Puebla G., and
Román-Díez, G. (2014) ‘SACO: Static Analyzer for
Concurrent Objects’ in TACAS 2014: the 20th International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, Vol. 8413 of Lecture Notes in Computer
Science, Springer, pp. 562-567.

2. Amazon EC2. [online] https://aws.amazon.com/ec2/?nc1=h_ls

 A Configurable and Executable Model of Spark Streaming on Apache YARN 249

(Accessed 3 December 2018).
3. Apache Hadoop. [online] http://hadoop.apache.org/ (Accessed

3 December 2018).
4. Amazon Mesos. [online] http://mesos.apache.org/ (Accessed 3

December 2018).
5. Apache Spark JobScheduler. [online]

https://github.com/apache/spark/blob/master/streaming/src/mai
n/scala/org/apache/spark/streaming/scheduler/JobScheduler.sc
ala (Accessed 3 December 2018).

6. Babcock, B., Babu, S., Datar, M., Motwani, R., and Widom, J.
(2002) ‘Models and issues in data stream systems’ in
Proceedings of the 21st ACM SIGMOD-SIGACTSIGART
Symposium on Principles of Database Systems, ACM, pp. 1-
16.

7. Bjørk, J., de Boer, F.S., Johnsen, E. B., Schlatte, R., and
Tarifa, S.L.T. (2013) ‘Userdefined schedulers for real-time
concurrent objects’, Innovations in Systems and Software
Engineering, Vol. 9, No. 1, pp. 29-43.

8. Botan, I., Derakhshan, R., Dindar, N., Haas, L., Miller, R.J.,
and Tatbul, N. (2010) ‘Secret: a model for analysis of the
execution semantics of stream processing systems’
Proceedings of the VLDB Endowment, Vol. 3, Issue 1-2, pp.
232-243.

9. Chakraborty, S., Phan, L.T., and Thiagarajan. P. (2005) ‘Event
count automata: A statebased model for stream processing
systems’ in RTSS 2005: 26th IEEE International Real-Time
Systems Symposium, IEEE, pp. 12-pp.

10. Dosch, W. and Stümpel, A. (2004) ‘Transforming stream
processing functions into state transition machines’ in
International Conference on Software Engineering Research
and Applications, Springer, Berlin, Heideberg, pp. 1-18.

11. Goldin, D.Q., Smolka, S.A., Attie, P.C., and Sonderegger, E.L.
(2004) ‘Turing machines, transition systems, and interaction’,
Information and Computation, Vol. 194, No. 2, pp. 101-128.

12. Hähnle, R., and Johnsen, E.B. (2015) ‘Designing resource-
aware cloud applications’, IEEE Computer, Vol. 48, No. 6, pp.
72-75.

13. Johnsen, E.B., Hähnle, R., Schäfer. J., Schlatte, R., and
Steffen, M. (2011) ‘ABS: A core language for abstract
behavioral specification’ in FMCO 2010: International
Symposium on Formal Methods for Components and Objects,
Vol. 6957 of Lecture Notes in Computer Science, Springer, pp.
142-164.

14. Johnsen, E.B., Schlatte, R., and Tarifa, S.L.T. (2015)
‘Integrating deployment architectures and resource
consumption in timed object-oriented models’, Journal of
Logical and Algebraic Methods in Programming, Vol. 84, No.
1, pp. 67-91.

15. Kapitanova, K., Wei, Y., Kang, W., and Son, S.H. (2011)
‘Applying formal methods to modeling and analysis of real-
time data streams’, Journal of Computing Science and
Engineering, Vol. 5, No. 1, pp. 85-110.

16. Koralov, L. and Sinai, Y.G. (2007) ‘Theory of Probability and
Random Processes’, Springer Science & Business Media.

17. Kroß, J. and Krcmar, H. (2017) ‘Model-based performance
evaluation of batch and stream applications for big data’ in
MASCOTS 2017: 25th IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, IEEE, pp. 80-86.

18. Lin, J.-C., Lee, M.-C., Yu, I.C., and Johnsen, E.B. (2018)
‘Modeling and Simulation of Spark Streaming’ in AINA 2018:
32nd IEEE International Conference on Advanced Information
Networking and Applications, IEEE, pp. 407-413.

19. Lin, J.-C., Yu, I.C., Johnsen, E.B., and Lee, M.-C. (2016)
‘ABS-YARN: A formal framework for modeling Hadoop
YARN clusters’ in FASE 2016: 19th International Conference
on Fundamental Approaches to Software Engineering, Vol.
9633 of Lecture Notes in Computer Science, Springer, pp. 49-

65.
20. Spark 1.5.1 released. [online]

https://spark.apache.org/news/spark-1-5-1-released.html
(Accessed 3 December 2018).

21. Spark: Lightning-fast cluster computing. [online]
http://spark.apache.org/ (Accessed 3 December 2018).

22. Spark Streaming. [online] http://spark.apache.org/streaming/
(Accessed 3 December 2018).

23. Spark Streaming Example. [online]
https://github.com/apache/spark/tree/v2.4.0/examples/src/main
/java/org/apache/spark/examples/streaming (Accessed 3
December 2018).

24. Spark Streaming Programming Guide. [online]
https://spark.apache.org/docs/latest/streaming-programming-
guide.html (Accessed 3 December 2018).

25. The GNU Netcat. [online] http://netcat.sourceforge.net/
(Accessed 3 December 2018).

26. Vavilapalli, V.K., Murthy, A.C., Douglas, C., Agarwal, S.,
Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S.,
Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B., and
Baldeschwieler, E. (2013) ‘Apache Hadoop YARN: yet
another resource negotiator’ in SOCC 2013: ACM Symposium
on Cloud Computing, pp. 5.

27. Wikipedia: Apache Spark. [online]
https://en.wikipedia.org/wiki/Apache_Spark (Accessed 3
December 2018).

28. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J.,
McCauley, M., Franklin, M.J., Shenker, S., and Stoica, I.
(2012) ‘Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing’ in NSDI 2012:
9th USENIX conference on Networked Systems Design and
Implementation, USENIX, pp. 2-2.

29. Zaharia, M., Das, T., Li, H., Hunter, T., Shenker, S., and
Stoica, I. (2013) ‘Discretized streams: Fault-tolerant streaming
computation at scale’ in SOSP 2013: Proceedings of the 24th
ACM Symposium on Operating Systems Principles, ACM, pp.
423-428.

