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Abstract- Malware is a serious threat that has been used to target mobile devices since its inception. Two
types of mobile malware attacks are standalone:  fraudulent  mobile apps and injected malicious apps.
Defending against the cyber threats of mobile malware requires a strong understanding of the permissions
declared in  applications  and application program interface (API)  calls.  In  this  paper,  we propose an
effective classification model that combines permission requests and API calls. As Android apps use a
large number of APIs, we propose three different grouping strategies for choosing the most valuable API
calls to maximize the likelihood of identifying Android malware apps: the ambiguous group, risky group,
and  disruptive  group. The results demonstrate that compared with benign apps, malicious applications
invoke a different  set  of  API calls  and that  mobile malware often requests dangerous permissions to
access sensitive data more often than benign apps. Empirical results obtained with a real malware dataset
containing  27,891  Android  apps  suggest  that  our  proposed  method  is  effective  at  detecting  mobile
malware apps and achieves an F-measure of 94.3%. Our model can significantly assist in the process of
malware forensic investigation and mobile application analysis.

Keywords: Mobile Malware, Malware Detection, Mobile Security, IoT, API Calls, Android Permissions.

1. INTRODUCTION

Mobile devices are now the most common means of accessing the Internet. The explosive growth of the
Internet  with  recent  increasing  trends  in  automation  using  intelligent  applications  provides  a  fertile
playground for malicious software (malware) attackers. The significant growth of cloud computing and
the Internet of Things (IoT) worldwide has increased malware threats. Such malicious actions can impact
the confidentiality, integrity, or availability of mobile systems (Farivar 2019). Cybercrime was estimated
to cost $600 billion in 2018 worldwide, and the preferred choice of access for the majority of the world’s
population is a mobile device (Mcafee 2019). Mobile malware authors have taken malware that targets
PCs and added new capabilities to create new threats on mobile platforms (Alazab 2014). Implementing
forensic  identification  security  controls  will  certainly  lower  the  risk  of  digital  systems  of  being
compromised (Ahvanooey 2020).

Mobile  malware  is  malicious  software  specifically  designed  to  target  mobile  devices,  such  as
smartphones  and  tablets.  It  refers  to  any  kind  of  malicious  code  that  affects  the  integrity  and  the
functionality of the mobile system without the user’s knowledge or consent; the types of malware include
ransomware,  trojans,  worms,  spyware,  rootkits,  and  botnets  (Alazab,  M  2015).  Mobile  malware  is
increasingly sophisticated and presents a serious threat due to malicious activities, such as stealing user’s
data, sending premium messages, making phone calls, etc. Malware authors have turned their attention to
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mobile devices, leading to an increase of 1,800% in mobile malware in 2016 (Caviglione et al. 2015).
According to Check Point’s international survey of 850 organizations, all the businesses surveyed had
experienced a  mobile  malware attack.  The anti-malware engine Kaspersky reported in  2019 that  the
number of users who encountered Android malware more than tripled to 1.7 million globally (Kaspersky
2019). McAfee Labs detected over 16 million mobile malware events in the third quarter of 2017 alone
(Mcafee 2019), and Juniper stated that the malware available for Android increased by 400% (Juniper
2012).  Since 2010,  SophosLabs has  observed more than 1.5 million Android malware apps (Sophos
2019). 

Mobile malware is continuously updated with new features, shifting into new distribution methods and
investing in the development of detection avoidance techniques, such as the use of obfuscation methods
(Alazab, et al.  2012) stealth techniques and repackaging (Arshad et al. 2016). A recent study (Faruki
2015) indicated that the majority of Android malware is repackaged in other legitimate (popular) apps to
bypass  security  barriers  (Zhou& Jiang 2012).  In  the  repackaging process,  as  illustrated in  Figure  1,
mobile malware authors download popular benign applications from the  Google Play Store, decompile
them, inject malicious content into them, and finally, reupload the injected apps in the third-party markets
for user uptake. 

Current anti-malware scanners are not effective against these evading techniques (Irshad et al. 2018; Li
et al. 2018; Naway & Li 2019; Quarta et al. 2018; Visu et al. 2019). In (Zhou & Jiang 2012), four mobile
security applications were tested on more than 1,200 Android malware apps. They found that existing
mobile anti-malware applications cannot detect obfuscated or repackaged malware apps. Access control is
usually considered a very good way to control the security of mobile devices, such as protecting against
DoS attacks, but has many significant limitations (Kayes, et al. 2019a; Watters et al. 2016; Kayes, et al.
2019b; Watters et al 2019; Kayes, et al. 2019c).

Figure 1. An overview of injection of malicious content

To assess the efficiency of mobile anti-malware scanners, in (Rastogi, Chen & Jiang 2013), researchers
applied different obfuscation techniques in ten malicious apps from six different families, and they ran
these new obfuscated binaries against 10 well-known anti-malware scanners. The result indicated that
none of the anti-malware scanners could detect any of these malicious apps. With the large number of
mobile  applications,  it  is  imperative  to  swiftly  analyse  and  check  the  available  applications  in  the
marketplaces in an automated and intelligent fashion. It is crucial to establish an automated system that
can identify and detect malicious applications in order to remove them from both official and non-official
markets and make them unavailable for further download. In (Badhani & Muttoo 2018), eight obfuscation
techniques of hiding malicious contents inside images were applied, and then malicious contents were
injected into the resources of the Android application to check if the malware could be caught by ten anti-
malware scanners. Their results confirmed that only one anti-malware scanner could detect two hiding
techniques, while the rest of the anti-malware scanners failed to detect malicious content.



1.1 Vulnerability of Android smartphone devices

The Android-based embedded operating system platform is intended for use with low-power, memory-
constrained IoT devices. The opportunities afforded by low-risk, low-cost, and profitable criminal activity
attract  cybercriminals  (Thomas  et  al.  2015).  Thus,  Android’s  open  and  adaptable  platform  is  more
vulnerable to cyberattacks. As reported by (Oh et al.  2012), the main three reasons that the Android
operating system is one of the most vulnerable platforms are the following: i) the openness of the Android
platform,  ii)  the  limited  reviews  of  applications  on  the  Google  Play  Store,  and  iii)  the  device's
compatibility with applications from third-party vendors. As outlined below, these reasons explain why
mobile malware is prominent and persistent.
     - Performance and profit. Smart mobile devices, such as smartphones and tablets, are becoming an
essential tool in today’s world. According to the real-time intelligence data of the Global System for
Mobile  Communications  Association  (GSMA),  there  are  now over  5.13  billion  people  with  mobile
devices worldwideBankmycell 2019). Thus, 66.53% of the world’s population has a mobile device (cell
phone, smartphone, tablet or cellular-enabled IoT device). Mobile users share sensitive data with apps all
the time, such as heart rate data from fitness apps; information from banking apps, shopping apps and
social  media  apps;  and  email  messages,  photos,  etc.  Mobile  devices  are  profitable  targets,  and
cybercriminals can acquire extensive financial and non- financial gain from such sensitive data. Mobile
malware offers a high return with little  investment.  According to McAfee Mobile Threat Report Q1,
2018, mobile malware could create revenue for malware authors that could reach the billion-dollar range
by 2020 (Mcafee 2019). 

- Usage and open source.  Since its launch in 2008, Android has grown to be one of the top-selling
smartphones. The Android OS, similar to the other most popular OSs, such as iOS and BlackBerry, has
expanded from running on smartphones to include tablets, music players, and other Android devices, thus
making them available to a larger audience. The popularity of smartphones has grown exponentially and
is still growing. Google reported that there are currently 2.5 billion active Android devices (Brandom
2019). With the high sales rates for smartphones, the market for applications running on these platforms
also  grows  exponentially.  As  a  consequence  of  their  accessibility  and  widespread  use  globally,
smartphones  have  become  the  new  target  for  cybercriminal  activities.  Android  is  an  open-source
operating  system for  mobile  devices  and  a  corresponding  open-source  project  led  by  Google.  With
Google  Android’s  policy  of  an  open-source  kernel,  malware  authors  potentially  can  gain  a  strong
understanding  of  the  mobile  platform;  this  creates  opportunities  for  cybercriminals  to  create  and
propagate mobile malware. Further, with the increased number of users downloading and installing apps,
the likelihood of installing mobile malware increases as well. 

The Google Play Store (previously called the Android Market) provides users with centralized access
to download many types of apps (either free or paid). Recent reports show that the number of apps in
Google  Play  Store  was  2.9  million  in  December  2019  (Clement  2019).  The  sole  Play  Store  is
administered by Google. It has been reported by (Allix et al. 2016a) that the Google Play market might
contain malware applications. A high number of third-party vendors and a non-Google market also started
appearing,  such  as  AppBrain,  AppChina  and  Aptoide,  that  offer  Android  applications  for  users  to
download. The applications available in markets outside of the Google Play Store are managed by third
parties, are at high risk of containing potentially malicious contents, and are not being monitored (Alazab
& Batten 2015; Alazab et al. 2012; Moonsamy., Alazab. & Batten. 2012). The research work by (Allix et
al. 2016b) shows that 22% of the apps in the Google Play Store have been identified as malware by at
least one anti-malware program, while 50% of the apps in AppChina have been flagged as malware by at
least one anti-malware software product. Mobile authors deconstruct and decompile popular apps, publish
malicious versions and make them available for free in those third-party markets; this technique is known
as “repackaging”.



1.2 Our work

This paper focuses on the permissions and frequency distribution of API calls in order to differentiate
malicious applications from non-malicious applications. The proposed methodology offers an automated
tool for testing and evaluating Android applications using various statistical tests. A set of experiments
related to the Android libraries in the software development kit  (SDK) with static feature methods is
provided. The main aims of this work can be summarized as follows:

         To introduce an efficient approach for describing Android malware that relies on the API in
all packages and requested permissions. 
         To  examine  the  permissions  and  API  call  frequency  distributions  in  order  to  classify
applications as benign or malicious. Our findings show that the proposed approach can determine
the similarities among malware families.
         To propose an efficient classification model for detecting mobile malware or risk factors of
mobile  malware.  Our  research  findings  demonstrate  that  API  calls  and  permissions  play  a
significant factor in classifying malware variants.
         To provide valuable insights about malware behaviour based on API calls and permission
requests. 
         To perform an  in-depth  analysis  of  different  public  and  private  packages,  classes,  and
methods with the purpose of evaluating our proposed method in terms of the efficacy in dealing
with large datasets and accuracy.

1.3 Paper organization
We have organized the overall structure of the paper as follows: Section 2 presents background about
Android application permissions and API calls. Section 3 provides an overview of the related literature.
Section 4 describes the dataset. Section 5 outlines our methodology and proposes a complete detection
system. In Section 6, we perform some statistical analyses. In Section 7, we perform the classification and
evaluate the model.  Finally, we provide our conclusions and highlight the limitations of the study in
Section 8.

2. BACKGROUND

2.1 Android application permissions

Android's operating system is responsible for a number of control access mechanisms. For instance, the
operating system can allow or deny a specific process during the running time. The core security of the
Android  applications  is  the  permission  system,  which  protects  the  smartphone’s  resources;  each
application has a list of permissions needed to access resources. Table 1 presents the list of permission
groups with the related permissions and levels. Assigning permissions to an Android application specifies
an access policy to mobile resources. In the situation in which an application demands to interact with
other applications or with resources, proper permission must be granted from the mobile user. A list of
permissions is displayed during the installation time or during running time. The user has the authority to
accept  or  ignore  the  installation  of  an  application.  Google  continuously  adds  permissions  to  protect
sensitive data and certain system features in every released version of a new API level. For example, the
version of Android 4.4, KitKat,  comes with 145 permissions pre-installed, while the earliest Android
version—API level 1—contained only 76 permissions. The regular mobile user cannot be expected to
understand the semantics and implications of all the associated permissions. The authors in (Gao et al.
2019) confirm that  few users pay attention to,  understand,  and act  on permission information during
installation, which implies that the permission technique does not help users make appropriate decisions.

The main purpose of permission is to protect user’s privacy. For Android mobile apps to perform, they
must request permission to access sensitive user data (such as SMS, calls, etc.) and some system features
(such as the camera and GPS location). Permissions are granted at the time of installation or through



runtime requests and give an application the ability to access relevant resources. The protection levels
vary, and there are four levels: 
 

1.       Normal Permission is considered low risk (i.e., permission to set the alarm). 
2.       Dangerous Permission is considered high risk (i.e.,  permission to access the camera, SMS,
camera, contacts, location, microphone, sensors, and storage). 
3.       Signature Permission is considered critical risk (i.e., gives access if the application requesting
access to the resources is signed with the same credentials as the permission). 
4.       Signature  or  System  Permission is  considered  critical  risk  (i.e.,  gives  access  to  the
applications having the same credentials,  as in the previous level,  or  if  they are in the system
image).

Table 1. List of Android Permissions
PERMISSION GROUP RELATED PERMISSION(S) PERMISSION LEVEL

ALARM
- Set_Alarm
- Set_Time_Zone

- Normal Permissions

MICROPHONE - Record_Audio - Dangerous Permissions

BLUETOOTH
- Bluetooth
- Bluetooth_Admin

- Normal Permissions

CALENDAR
- Read_Calendar
- Write_Calendar - Dangerous Permissions

CAMERA
- Camera

- Dangerous Permissions

CONTACTS

- Get_Accounts
- Read_Contacts
- Write_Contacts

- Dangerous Permissions

LOCATION
- Access_Coarse_Location
- Access_Fine_Location - Dangerous Permissions

NETWORK

- Access_Network_State
- Access_Notification_Policy
- Access_Wifi_State
- Change_Wifi_Multicast_State
- Change_Wifi_State

- Normal Permissions

PHONE

- Read_Phone_State
- Read_Phone_Numbers 
- Call_Phone
- Answer_Phone_Calls 
- Read_Call_Log
- Write_Call_Log
- Add_Voicemail
- Process_Outgoing_Calls

- Dangerous Permissions

SENSORS
- Body_Sensors

- Dangerous Permissions

SMS

- Receive_SMS
- Read_SMS
- Receive_Wap_Push
- Receive_MMS

- Dangerous Permissions

STORAGE
- Write_External_Storage
- Read_External_Storage - Dangerous Permissions

WALLPAPER 
- Set_Wallpaper
- Set_Wallpaper_Hints

- Normal Permissions



With Android malware, the application frequently requests the permissions to receive, write, and send
text messages as well as several other permissions during its installation phase. In the Android 6.0 and
higher released versions, Google introduced the granting of dangerous permissions at runtime and shows
the  various  categories  of  permissions.  Google  does  not,  however,  deliver  full  documentation  of  the
manner  in  which they classified those  permissions as  normal  permissions  or  dangerous  permissions.
Permissions are ordered into groups related to a device's capabilities or features, and the list of permission
groups with the related permissions and levels are listed in Table 1.

Several research papers such as (Brodeur 2012; Moonsamy & Batten 2012; Shao et al. 2016) have
shown that some applications with no permissions can still access sensitive information, such as taking
pictures in the background and recording keystrokes. (Shao et al. 2016) proposed a static tool, “Kratos”,
that  can  detect  inconsistencies  in  security  enforcement  within  the  Android  framework.  They  found
malicious applications with no permissions or low-privileged permissions can lead to security breaches,
such as crashing the entire Android runtime environment, arbitrarily ending phone calls, and setting up an
HTTP proxy.  Hence,  the  permissions feature  alone might  not  provide the best  picture  of reality.  As
summarized by (Aafer et al. 2013), permission mechanisms have several limitations: 

– The existence of a certain permission in the app manifest file does not necessarily mean that it is
actually used within the code. 

– A large number of requested permissions are actually not used within the application’s code itself but,
rather, are required by the advertisement packages.

– Malware can perform malicious behaviour without employing any permission (Shao et al. 2016).

2.1 Android API calls

In the research literature on malware targeting personal computers, one important detection approach has
been to leverage information from the API calls for understanding what the code does (Alazab & Batten
2015; Alazab et al. 2011; Jung et al. 2018; Xie et al. 2019). The API calls can hypothetically apprehend
the malicious activity since the API calls reflect how an application interacts with the system. Android's
platform provides an API framework that apps can use to interact with the underlying Android system.
The  literature  review demonstrates  the  use  of  API  calls  to  learn  the  interaction  behaviours  between
applications and the Android system and shows that this method is very helpful for distinguishing benign
and malware apps. Hence, it is crucial to include other behavioural app features such as API calls and
investigate  whether  a  specific  API  call  requires  dangerous  permissions  or  normal  permissions.
Additionally, it is necessary to conduct an in-depth study of the prominent API calls requested by the
malware apps and check if those API calls are protected by the proper permission or not.

3. RELATED WORK

The analysis and detection of mobile malware has been heavily researched in the last decade. This section
examines issues related to identifying mobile malware and explores significantly related approaches that
have been proposed by the literature. There are three methods of extracting features from mobile apps that
are frequently used by security vendors and researchers: static, dynamic, and hybrid (a combination of
static and dynamic). As indicated by (Alazab 2015; Venkatraman & Alazab 2018), compared to dynamic
analysis, static analysis is faster and more effective due to its advantages from the information captured
relating to  structural  properties,  such as  the  sequence of  byte  “signatures”  and anomalies  in  the  file
content. Dynamic analysis can be effective with runtime information, such as running process or by using
the control flow graph that could be less prone to obfuscated malware. Static analysis provides a greater
understanding of the source code of the application under investigation.  Dynamic analysis,  however,
provides a greater understanding of the behaviour of the application under investigation. 



3.1 Static and dynamic analysis

Recent methods that have been designed to understand Android applications have focused on Android
permissions.  (Shao et  al.  2016)  proposed  a  static  tool  called “Kratos”  to  discover  inconsistencies  in
security enforcement within the Android framework. The authors found that malicious applications with
no permission or low-privileged permission can lead to security breaches such as crashing the entire
Android runtime environment, arbitrarily ending phone calls, and setting up an HTTP proxy. Hence, the
permissions as a feature alone might not provide the best picture of reality. 

In (Yerima & Khan 2019), 350 features of API calls, permissions, intents, and other attributes were
extracted,  such  as  command  strings  and  the  presence  of  embedded  executables,  using  the  Android
package (APK) analysis tool. The authors collected a dataset of 13,805 malicious applications and 22,378
benign applications that were first seen in the period from 2012-2016. The primary objective of their
work was to explore the identification of malware over an extended period of time; they separated the
dataset into four groups: 2012, 2013, 2014 and 2015-2016. The authors employed the following machine
learning algorithms: naïve Bayes, support vector machines, random forest, J48 decision trees and simple
logistic methods. To evaluate the detection accuracy over the time period, each of the machine learning
algorithms  was  implemented  in  each  of  the  four  groups  (2012,  2013,  2014  and  2015-2016).  Their
research  findings  demonstrated  that  the  detection  accuracy  rate  becomes  much  less  accurate  in
distinguishing benign applications over the time period. The authors argue that some of the features could
become less  discriminative as  more evasion techniques  start  appearing more frequently in  malicious
applications, thus making it challenging to extract the relevant features associated with malware apps.
Hence, we focus throughout this paper on enforcing correlative strategies to isolate the most requested
features of both API calls and permissions from the malware apps and then build a complex detection
mechanism. 

In (Yang et al. 2014), the researchers proposed a tool named DroidMiner that applied static analysis to
detect malicious applications and then classified them into families. Their tool extracts API calls and
recognizes programming logic segments in the graph that correspond to known suspicious behaviour. The
researchers evaluated their tool using 10,403 benign applications and 2,466 malicious applications that
belong  to  68  malware  families.  To  test  their  methodology,  they  included  four  machine  learning
algorithms:  naïve  Bayes,  support  vector  machines  (SVM),  decision  trees  and  random forest,  and  in
testing, the algorithms obtained 82.2%, 86.7%, 92.4% and 95.3% average accuracies, respectively.

In (Shabtai et al. 2011), a framework called Andromaly was proposed that could detect malware on
Android mobile devices. The components of the proposed system were clustered into four main groups:
feature extractors, processors, the main service, and the graphical user interface (GUI). The researchers
applied three feature selections: chi square (CS), Fisher score (FS), and information gain (IG). To classify
the collected apps as  being either  malicious or  benign,  the  researchers  applied six machine learning
algorithms. They conducted four different experiments. The first experiment used the same applications
for training and testing the classifiers on the same device. In the second experiment, different applications
were used in training and testing the classifiers on the same device. The third experiment used the same
applications for training and testing the classifiers on different devices. In the fourth experiment, different
applications were used in training and testing the classifiers on different devices. The first experiment
achieved the highest scores using the decision tree algorithm, achieving 99% accuracy. The limitation of
this work was the class imbalance problem due to the inclusion of 4 self-written malicious applications
and 40 benign applications.

A significant number of studies have focused on finding the similarities and differences between two
applications based on the analysis of API calls.  For instance, in (Kanda et  al.  2011),  the researchers
proposed a tool that can find the differences between two Android applications based on the API calling
sequence by extracting only the libraries related to the Android. The authors selected two case studies to
investigate  whether  the  API  calling  sequence  can  be  used  to  differentiate  between  two  Android
applications.  Their  results  showed  that  API  calling  sequences  can  be  useful  in  comparing  the  two



applications.  They  extracted  the  methods,  whose  fully  qualified  names  start  with  “android”  or
“com.google.android”, as the Android API. The Android SDK, however, contains several libraries: Java
library, Apache HttpClient library and Google library. Hence, our approach is not limited to the methods
that start with “android” or “com.google.android” but also includes permissions and other libraries, such
as “Android”, “Dalvik”, “java”, “javax”, “junit”, and “org”. A reference for these libraries is accessible
from the “android.jar" in the Android SDK. Furthermore, our system is designed to find similarities and
differences in a large set of apps rather than by comparing two Android applications.

The system calls  have been used to  monitor the  behaviour of unknown malware.  Several  studies
confirm the efficiency of their tools when profiling the system calls with self-written malware (malware
that has been written by the authors) (Burguera, Zurutuza & Tehrani 2011). The detection accuracy rate is
100% for self-written malware. Nevertheless, when profiling the system calls with the real malware, the
detection rate decreases,  as shown when testing the HongToutou family (Labs 2014),  where the test
achieved a detection rate of 85%. The researchers in (Dimjašević et al. 2016) tested profiling the system
calls with real malware apps collected from the wild; they achieved a 93% detection accuracy rate with a
5% benign application classification error. 

3.2 Hybrid analysis

Hybrid analysis is a combination of static and dynamic analysis. The work of (Kaushik & Jain 2015)
applied static analysis to extract the requested permissions from the manifest file using AAPT (Android
asset packaging tool); they also applied dynamic analysis to trace system calls using the Strace tool. The
researchers collected a dataset of 108 benign applications and 112 malicious applications. The authors
combined the features from both static analysis and dynamic analysis. For the purpose of testing their
tool,  they included 4 different  machine learning algorithms;  a detection accuracy of 70.31% was the
highest achieved. The work conducted by (Kapratwar, Di Troia & Stamp 2017) consisted of static and
dynamic analysis based on permissions and system calls on 103 malicious applications and 97 benign
applications. The authors extracted 135 permissions statically using the APK tool. IG was used to retrieve
the top 87 permissions. The authors made use of the Android emulator together with the Strace tool to
record the system calls dynamically. The authors used the frequency distribution of system calls to check
if  a system call  invoked more in  a  malicious application than in  a  benign application.  To test  their
methodology,  they  included  6  different  machine  learning  algorithms.  They  achieved  high  detection
accuracy using a random forest, with accuracy rates of 0.972 for static analysis and 0.884 for dynamic
analysis.  The  authors  concluded  that  a  static  feature  based  on  permissions  is  significantly  more
informative than a dynamic feature based on system calls. Thus, we opt in this paper to use static analysis
to investigate the API calls in conjunction with permissions-based features.

3.3 Deep learning 

There have been attempts to apply deep learning (Alazab & Tang 2019) and machine learning based on
the relationship of API calls to identify the different behavioural patterns of malicious and benign apps to
build a detection system. The authors in (Zhang et al. 2019) achieved a 96% detection accuracy rate on a
dataset of Drebin (benign 5.9K and malware 5.6K) and AMD (benign 20.5K and malware 20.8K). The
authors of (Fereidooni et al. 2016) presented an automated tool they call uniPDroid that uses both static
analysis and machine learning algorithms to classify malevolent applications families. They collected a
dataset of 15,884 malicious applications. Using static analysis, they extracted 560 features. The authors
used extra-trees classifiers and meta-transformer for selecting the best features. To evaluate their tool,
they  applied  the  XGBoost  classifier  to  78  different  malware  families  and  obtained  92%  average
classification accuracy.

The work of (Karbab et al. 2018) investigated the effectiveness of the raw sequences of API calls and
deep learning techniques to detect malicious applications, and their tool is known as “MalDozer”. The
researchers  extracted  the  sequences  of  API  method  calls  using  Dexdump  from  33,000  malicious



applications from Malgenome, Drebin, and MalDozer and 38,000 benign applications from the Google
Play  Store.  To  normalize  the  features  vector,  MalDozer  employs  two  word  embedding  techniques:
word2vec and GloVe. The authors achieved 96% to 99% detection accuracy and a false positive rate
range from 0.06% to 2%. The authors did not consider other features of API calls, such as permission
requests. In our work, we used both permissions and frequency analysis of API calls from the Android
platform, such as packages, classes, constructors, and methods.

An in-depth study by (Naway & Li 2019) presents a deep learning approach for Android malware
detection. The authors extracted permissions, intent filters, invalid certificates, the presence of APK files
in the asset folder and API calls using a mobile security framework (MobSF). Then, they converted all
five  features  to  vector  space.  To  evaluate  their  tool,  they  applied  a  neural  network  on  600  benign
applications and 600 malicious applications. They used 80% for training and 20% for testing and obtained
a 96.81% detection accuracy. Similarly, in our case, we integrate various kinds of features, such as the
frequency of API calls and permissions, to build an automated detection mechanism.

4. DATASETS

As reported in Table 2Feil: Fant ikke kilden til referansen, we conduct the evaluation experiments under
two types of datasets: i) a benign dataset, which contains benign apps, and ii) a malware dataset, which
contains only malware apps. For the malware dataset, we leverage reference datasets, such as AndroZoo,
Contagio, MalShare, VirusShare and VirusTotal. The total number of malicious apps in this dataset is
13,719;  all  of  the malware dataset  was scanned and flagged as malware by at  least  10 anti-malware
products in the VirusTotal. For the benign dataset, since there is no standard benign dataset, we generated
our own dataset and then scanned it using VirusTotal to confirm its cleanness. The benign applications
were collected from the PlayStore using AndroZoo. The total number of benign apps in this dataset is
14,172.  The app topics  are  diverse  to  reflect  the  variety  of  applications  collected in  June  2019 and
checked using VirusTotal; if all of the anti-malware vendors in VirusTotal identified an app as benign, we
identify it as benign. We used the SMOTE (synthetic minority over-sampling technique) to address the
class imbalance problem.

Table 2. Datasets
Mobile application Number

Malware 13,719
Benign 14,172
Total 27,891

5. METHODOLOGY

The  accuracy  of  mobile  malware  detection  is  based  on  how  the  permission  request  and  API  call
behaviours exhibited by applications with malicious code could be extracted and correlated. To maximize
the likelihood of identifying malware apps, different from previous works, we use the permissions and
frequency analysis of  API calls.  Our proposed system is  based on an automated process by using a
scoring  and  grouping  technique  to  identify  the  most  important  API  calls  requested  by  the  Android
malware. Detecting repackaged applications by matching the name, hash value, or blacklist database is an
ineffective  method.  Instead,  our  proposed  system  can  identify  similar  repackaged  applications  by
comparing  the  frequency  distributions  of  API  calls  and  permissions  between  two  applications.  For
analysis purposes,  we model our proposed mobile malware analysis method to consist of  three main
phases as follows:

Phase 1: Pre-processing phase.
Phase 2: Extraction phase.
Phase 3: Grouping phase.



5.1 Pre-processing phase

Android applications are written in Java, compiled into Java bytecode, and translated into DEX (Dalvik
executable) bytecode (Dalvik virtual machine (VM)). The compiled Java code generates a number of files
with the .class extension. Using the dx tool, the class files are merged into a single .dex file. The Android
app is packaged into the APK content that is stored in binary format. Before any analysis, it is important
to decompile the Android app. There are many reverse engineering tools to disassemble or decompile the
Android app, such as Apktool, dex2jar, JADX, and Android MultiTool.

In this phase, we use Androguard (Desnos 2019), an open-source, static analysis reverse engineering
tool, to disassemble and decompile Android apps. We used Androguard for a number of reasons:
- It is a powerful reverse engineering tool that can generate the control flow graphs for each method and
provide access through Python-API on the command line and graphic interface. 
- It can be implemented in Linux and Windows operating systems.
- It is able to identify hidden byte code at specific offsets. 
- It enables the automatic extraction of specific packages, classes, constructors, methods and fields. 

5.2 Extraction phase

The  Android  SDK provides  developers  with  a  framework  of  API  calls  (consisting  of  a  core  set  of
packages, classes, constructors, methods, and fields) to interact with the system, application or hardware.
There are numerous APIs provided by the SDK that developers can use when developing the application.
These API calls  can be used illegally by malicious authors in ways that  exploit  mobile devices.  For
example, the benign or malicious app might request the same API call to access and retrieve specific data
from an operating system. The Android SDK comprises various libraries such as Android, Dalvik, Java,
Javax, Com, Java, Junit and Org, as shown in Figure 2. A reference for these libraries can be accessed
from the “android.jar" in the Android SDK. 

Figure 2. The Android Packages

Each Android application is mapped to a set consisting of the permission features and the API call
features. For extracting API calls and permission requests from the APK files, we adopted the following
process. A Python script has been developed to automatically execute and decompile the entire dataset as
follows:
1. Generate all distinct packages invoked within each APK using Androguard.

2. Extract API calls and their package level information from entire packages, such as Java, Android and
other packages; the main reason for including entire packages is that some contain significant methods
and  classes.  More  importantly,  some  of  these  sensitive  API  calls  are  protected  by  the  Android
permissions,  which  means  they  are  important.  For  instance,  the  API  entitled



“android.webkit.resource.VIDEO_CAPTURE”  is  protected  by  the  following  permission:
“android.permission.CAMERA” 

3. Extract the requested permissions of the apps; we adopted the same approach as presented in (Qiao et
al., 2016) and define the set of all Android permissions and all of the requested API calls as follows:

Pi={P1, P2 ,……,Pn }

Di={D1 , D2 ,……,Dn }

4. Represent each application as a binary vector of API calls, namely, Appi, where

Appi ,={1 ,if i th API isused∈the app ,∧¿0 , if corresponding appdoes not use the API

5. To map between API calls Di and permissions Pi, we define the association map as follows:

A={(P ,D )|P∈P , D∈D ,whereD is controlled by P}

6. Compute the number of API calls to each permission, represented as MP, and the numerical C ito count
each API call to each permission as follows:

MP={MP1 , MP2 ,MP3 ,…. , MPn } ,where

MPi ,={ 1 ,∧if ∃Di

0 ,∧if ∃ �̸ Di

C i=∑ Di∨(P¿¿ i , Di)¿

5.3 Grouping phase

To provide an expansive coverage of the detection performances, we employed a grouping strategy to
further reveal subtleties of the use of API calls in malicious apps. We constructed groups of API calls that
were capable of detecting malicious apps to a high degree. We labelled the API calls that appeared in the
benign apps, considered inconsequential, as being irrelevant calls. We focused specifically on the API
calls that appeared more frequently in the malicious applications. The features that we considered were
prominent in the malicious apps. The aim of this system was to implement complementary procedures
that circumvent fingerprinting the malware apps, with the goal of grouping three significant levels of API
calls and categorizing them based on their threats, as shown in Figure 3.

We implemented a complete set of 27,147 API calls for the analysis because each call in the
group could potentially be used by malicious applications to perform numerous jobs in the system. We
defined 3 such groups according to their appearance in the malicious apps as follows: ambiguous API
calls (A3),  risky API calls (A2) and  disruptive API Calls (A1).



Figure 3. Architecture for ranking the API Calls

- Ambiguous group (A3)

We extracted the intersections of the API calls that are commonly used by both benign and malicious
apps and that have almost the same number of occurrences of API calls in the entire set of benign and
malicious applications. While considering the API calls exhibited in both benign and malware apps, the
frequency of each API call is also included in both categories. To clarify, we considered how many times
each API call appears among the benign applications. We employed the same reasoning for malicious
calls.  Thus,  let  C={C 1,C2 ,…Ci }be the set of API calls that  appear in the benign apps with their
frequency, and let M={M 1 ,M 2 ,…Mj } be the set of API calls that appear in the malware apps with
their frequency. Consequently, we could isolate the ambiguous group by extracting the API calls that had
almost the same number of appearances in both benign and malicious applications. Figure 3 shows the
ambiguous calls as Area 3 (A3). 

From a set theory approach, we used the intersection operation to distinguish between benign and
malicious groups; the intersection operation finds those API calls that are common and similar. A change
in the frequency of the API calls, however, introduced a threshold value; due to this threshold value, the
determination of benign or malicious API calls belonging to the ambiguous or risky groups vacillates.
Only, 2,368 calls out of 27,147 appear in the ambiguous group.

- Risky group (A2)

We extracted the intersection of the API calls that were found more often in the malware apps than in the
benign applications. We refer to this group as the ‘risky API calls’ group since malicious applications
constantly invoke these API calls rather than benign apps. Let C={C 1,C2 ,…Ci } be the set of API
calls that appear in the benign apps with their frequency;  let  M={M 1 ,M 2 ,…Mj } be the set of API
calls that appear in the malware apps with their frequency. Since we had the number of appearances for
each API call in both benign and malicious applications, we could extract Area 2 (A2) by extracting the
API calls that had a higher frequency in the malicious files than in the benign files, as shown in Figure 3.

In the ‘risky’ group, we implemented the same set theoretical intersection operation between benign
and malicious groups as that employed for the first group. The distinctive feature of this group, however,
was that the frequency of such API calls for malicious apps was greater than API calls of clean apps. The



intersection operation finds those API calls that are more similar; however, a change in the frequency of
the API calls introduces the need for a threshold value. Moreover, even with the threshold value, there is
less of a propensity for API calls belonging to benign apps to be active, determined, and prominent. In
other words, there is more of a propensity towards malicious API calls. 

Let C  and D be two points at the intersections between the two circles (malicious and benign circles).
Let  A be the centre of the benign circle(x0 , y0)of radius  r0 and  B be the centre of the malware circle

(x1 , y1)of radius r1.We want to calculate the three sub-areas in the intersection portion ( A2 , A3∧A4 ), as

shown in  Figure 3.  The  area  comprises  the  three  sub-areas( A2 , A3∧A4 ) : the  left,  centre  and right
portions of the intersection. The ambiguous API calls can be found in area A3, while the risky API calls
can be found in area A2.
Step 1: To calculate the entire intersection area, we can compute

Area=(A2+A3+A4)
Step 2: To calculate the three sub-areas ( A2 , A3∧A4 ), we can compute

A2=A pie (CBD )−ACBD

A3=A pie (CD )−ACD

A4=Apie (DAC )−ADAC

Step 3: Since the intersection is related to the two circles, the angle of the intersection area of the circles
(the pie-shaped area) is expressed with the following relation:

Apie∗2π=α∗A
¿̊ ¿

Apie=α∗
A

¿̊

2π
¿

Apie=
α∗π r2

2 π

Apie=
α∗r2

2

Apie=0.5∗α∗r
2

Apie(DAC )=0.5∗D̂AC∗r0
2

Apie(CBD )=0.5∗ĈBD∗r1
2

Apie(CD )=0.5∗ĈD
Step 4: To determine the angles, we can follow the cosine rule:

r0
2
=r1

2
+A B2−2∗r1∗AB∗cos (CBA)

Step 5: To determine the distance AB, we can calculate it from the coordinates of A and B:

AB=√ (x1−x0 )
2
−√ ( y1− y0 )

2

cos (BAC )=¿ r0
2
+A B2+

r1
2

2
∗r0∗AB ¿

B̂AC=acos (r 0
2
+A B2+

r1
2

2
∗r0∗AB)

ÂBD=acos (r1
2
+A B2+

r0
2

2
∗r 1∗AB)



Step 6: To determine the triangles, since we have the distance between the two triangles and the

angles, we can compute the following:

ADAC=0.5∗r0
2 sin ( D̂AC )

ACBD=0.5∗r0
2 sin (ĈBD )

Step 7: Finally, we can determine the entire area:

Area=(A¿¿1+A2+A3)¿

A=A pie (DAC )−A DAC+A pie (CBD )−ACBD+A pie (CB )−ACB

A=0.5∗D̂AC∗r0
2
−0.5∗r 0

2
∗sin ( D̂AC )+0.5∗ĈBD∗r1

2
−0.5∗r0

2
∗sin (ĈBD )+0.5∗ĈD

Subsequently,  the  extraction of the  associated API calls  with malware apps is  enabled,  as shown
in Figure 3. The creation of the intersection of value sets and frequency exhibited the information of these
features that occurred in most of the malicious apps. The value set of the given API calls in malicious
apps is greater than the number of appearances in benign apps. To illustrate this point, suppose that a
specific API call was requested ten times by the malware set and requested only twice in the benign set.
Consequently, we assume the representative API call is associated with malware apps because it appears
more frequently in the malicious dataset. Moreover, only 1,321 calls out of 27,147 appear in the risky
calls.

We find that  compared to  the  benign dataset,  the  malware dataset  requests  frequent  API calls  to
interact with the system. For instance, the API calls related to telephony manager, SMS manager, storage,
system service, logs, database, telephony manager and device information occur more frequently in the
collected malware apps than in the benign apps. Due to the space limitations, in Table 3, we present a
subset of some of the API calls that appeared in this group that are used more frequently in malware apps
than in benign apps. 

We find the features used by malicious apps request sensitive API calls to access the system. For
instance, the (“detDeviceId” and “getSubscriberId”) methods can be used to steal sensitive data, such as
International Mobile Equipment Identifier (IMEI) and International Mobile Subscriber Identity (IMSI),
codes and then later send them over the network using setWifiEnabled or execHttpRequest. The result
also  shows  that  the  malware  apps  are  influenced  by  the  methods  related  to  sending  and  receiving
messages (i.e., “sendTextMessage”, “getDefault” and “.setMessage”). Furthermore, we noticed that the
malware  dataset  influences  obfuscation  and  other  hiding  techniques  to  evade  static  analysis  (e.g.,
Cipher.getInstance). 

We assumed that some of the classes in this group might have needed appropriate permissions to
protect  them  against  the  harmful  apps  (i.e.,  “Getdeviceid  “,  “TelephonyManager”,  “SmsManage”,
“SmsMessage”, “getSubscriberId”). We found that some of these API calls were already protected by
Google permissions, such as “Getdeviceid” “Getsubscriberid”, and “Setwifienabled". 

Table 3. Ranking Difference of the API Calls
API Calls Name Meaning
Getdeviceid() 
Getsubscriberid()

For accessing sensitive data (phone's unique device ID)

Setwifienabled()
Exechttprequest() For communicating over the network

Sendtextmessage()
Smsmanager()
Setmessage()

For sending and receiving SMS messages



RuntimeException() For execution of external commands
Cipher.Getinstance()

For obfuscation purposes

Java/Lang/Stringbuffer;.Insert. For obfuscation purposes

Java/Io/Bytearrayoutputstream;.Reset For accessing sensitive data
Java/Util/Gregoriancalendar;.Set For accessing sensitive data (current time)
Android/Telephony/Telephonymanager;
.Getnetworkoperator

For accessing sensitive data

- Disruptive group (A1)

We have selected only the API calls that commonly appeared in malicious apps and did not appear in
benign apps, as shown in Figure 3.  Let  C={C 1,C2 ,…Ci } be the set of API calls that appear in the
benign apps with their frequency, and let M={M 1 ,M 2 ,…Mj } be the set of API calls that appear in
the malware apps with their frequency. To extract the disruptive calls, we compute the following: 

R=M ¿
With respect to the above equation, the features regarding disruptive calls are more clearly oriented

towards malicious apps.  In contrast  to the prior  two categories  with respect  to  Figure  3,  there  is  no
specific  condition  for  the  frequency of  API  calls  because  this  group  is  definitively  more  biased  by
maliciousness.  Since there  is  no specific  frequency condition and there  are  more propensities  in  the
majority  of  these  cases  for  malicious  API  calls,  the  previously  implemented  threshold  becomes
inconsequential, and its role is negligible in this scenario. 

The  described  system was  used  to  generate  the  API  calls  that  were  frequently  used  only  in  the
malware  dataset.  The  experimental  results  show  some  of  the  API  calls  (i.e.,
(Lorg/w3c/dom/DOMException.getMessage),
(Android/location/LocationManager;.getLastKnownLocation),
(Java/lang/Thread;.setContextClassLoader),(Android/content/Context;.deleteFile),
(Android/database/sqlite/SQLiteDatabase;.query),(Java/net/URL;.openConnection),  and
(Android/telephony/TelephonyManager;.getLine1Number)) are found only in the malware apps and do
not appear in the benign apps. Only 5 calls out of 27,147 appear in the disruptive API calls; this result can
be explained as follows:

- getLastKnownLocation: it returns the last known location from the given provider and transmits the
location  information  from  the  device  to  a  remote  location;  we  have  noticed  that  most  of  the
Android.Geinimi family uses this method.

- getLine1Number: it steals private information, such as the phone number, as a string and sends it to
a remote server; we have noticed that most of the Android.Fokonge family uses this method.

- setContextClassLoader: it loads the external classes or resources from a repository and can be used
for the dynamic loading of malicious codes. Malicious apps could implement the ClassLoader class in
order to evade the current countermeasures by replacing the intended code with malicious code.  The
malicious code is most likely hidden beneath the following path (/assets) or in the secure digital (SD) card
itself. We have noticed that most of the Android.Steek family uses this method. During the installation of
these malicious applications, only one permission request was made for full Internet access. With one
permission request by these malicious applications during installation, it may seem to be less of a risk to
potential victims. As soon as it is installed on the smartphone, the malware opens and brings the user to a
screen related to the installed fraudulent  applications.  Malicious apps in the Steek family invoke the
setContextClassLoader method the same number of times.



-  DOMException: it  can be used when events occur.  We found that  the malicious apps invoked
(Lorg/w3c/dom/DOMException)  and  (Lorg/w3c/dom/DOMException;.<init>.(S  Java/lang/String;)V).
We found that most of the Android. Steek family uses this method.

- OpenConnection: this method appears in the Android.Generisk family. This family contains open a
connection from a predefined remote server and then loads and executes it.

6. STATISTICAL ANALYSIS 
In our experiment, we considered all of the features from both groups, “risky calls” and “disruptive calls”,
as summarized in Table 4. 

Table 4. Feature Distribution in the Groups
Feature set # of API calls

A3 Ambiguous Group 2,368 
A2 Risky Group 1,321 
A1 Disruptive Group 5 

We calculated the IG of each feature to select important features from among the available ones. The
selected features can be used in different kinds of attacks, as reported in Table 5. The main categories
denote classifications of types of API calls that can be grouped reasonably. For each group, there are
multiple  APIs  that  might  be requested.  Each feature  will  be  rated as  “very important”,  “important”,
“normal”, or “unimportant” according to the following rules:
While not at end of list do,

if the feature ∈ Disruptive group, 
Then, the feature is very important

elseif the feature ∈ Risky group,
Then, the feature is important 

elseif the feature ∈ Ambiguous group, 
Then, the feature is normal

else
Then, the feature is unimportant 

End
The IG has been applied in each feature, as shown in Figure 4. The score shows the feature importance

according to the IG for the top 12 features in the risky group. It confirms that the features selected are very
important  in  mobile  malware  detection.  The  algorithm  computes  splitting  criteria  for  decision  trees  to
discover the contribution of each feature to the given dataset. The IG of each permission is calculated as
follows:
gain(c , r i)=entropy (c)−entropy (c∨r i)

where c is the class value (i.e., either malware or benign) and r i is the ith feature. Here, entropy (c) is
the information entropy. Depending on the classifier, there is an ideal set of features that is less than the
overall number of available features. During the initial experiment, we initially use all the features in
conjunction with the machine learning algorithms, and then we select the features from the (risky calls
and disruptive calls) for the evaluation.

Table 5. Type of Attacks 
Attacks API call groups 
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 Android/telephony/SmsManager;.sendTextMessage
 Android/telephony/SmsManager;.getDefault

 Android/telephony/gsm/SmsMessage;.createFromPdu
 Android/telephony/gsm/SmsMessage;.getMessageBody
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 Android/telephony/TelephonyManager;.getNetworkType
 Android/telephony/TelephonyManager;.getCallState
 Android/telephony/TelephonyManager;.getSimState
 Android/telephony/TelephonyManager;.getSimCountryIso
 Android/telephony/TelephonyManager;.getSimOperator
 Android/telephony/TelephonyManager;.getDataState
 Android/telephony/TelephonyManager;.getNeighbouringCellInfo
 Android/telephony/TelephonyManager;.getCallState
 Android/telephony/TelephonyManager;.getNetworkType
 Android/telephony/TelephonyManager;.getSimSerialNumber

 Android/telephony/
TelephonyManager;.getLine1Number

 Android/telephony/TelephonyManager;.getSubscriberId
 Android/telephony/TelephonyManager;.listen
 Android/telephony/

TelephonyManager;.getNetworkOperatorName
 Android/telephony/TelephonyManager;.getPhoneType
 Android/telephony/TelephonyManager;.getCellLocation
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 Android/location/Address;.getLatitude
 Android/location/Address;.getLongitude
 Android/location/Geocoder;.getFromLocationName
 Android/location/Location;.getAccuracy
 Android/location/Location;.getLatitude
 Android/location/Location;.getLongitude

 Android/telephony/TelephonyManager;.getCellLocation
Android/location/LocationManager;.getLastKnownLoca
tion

 Android/location/LocationManager;.getProvider
 Android/telephony/gsm/GsmCellLocation;.getLac

Camera
attacks

 Android/hardware/Camera;.getParameters
 Android/hardware/Camera;.open
 Android/hardware/Camera;.setOneShotPreviewCallback

 Android/hardware/Camera;.setPreviewCallback
 Android/hardware/Camera;.startPreview

Storage
attacks

 Android/os/Environment;.getExternalStorageDirectory
 Java/io/Externalizable;.readExternal

 Android/content/Context;.getExternalFilesDir
 Java/io/Externalizable;.writeExternal

Load
extra
attacks

 Dalvik/system/DexClassLoader;.loadClass
 Java/lang/ClassLoader;.getResource
 Java/lang/ClassLoader;.getSystemResources

 Java/lang/Thread;.setContextClassLoader
 Java/lang/ClassLoader;.loadClass
 Java/net/URLClassLoader;.newInstance.

Getdeviceid

Getsubscriberid

Setwifienabled

Exechttprequest

Sendtextmessage

Setmessage

Runtime.Exec

Cipher.Getinstance

Stringbuffer;.Insert

Bytearrayoutputstream;.Reset

Gregoriancalendar;.Set

Getnetworkoperator
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Figure 4. Information gain for the top features in the risky group

7. LEARNING-BASED DETECTION

7.1 Data normalization

Data normalization is an important step before applying machine learning algorithms. Since we have
collected the important features (risky group features and disruptive group features), we need to weight
and represent those features as a vector space. The term frequency (TF) normalization was implemented



to  avoid  cases  where  the  classifier  has  different  weights  during  the  decision  process.  Let  w  be  the
extracted dictionary, where the dictionary is from both of the groups (risky groups and disruptive group).
The TF representation of the applications is a vector space of weights (w1n ,…w ¿w∨n),  w ¿∈ {0, 1} that
represents the occurrence or non-occurrence of a specific feature in an application. This term signifies the
frequency of the feature in the application. The step can also be useful to scale the TFs to values between
[0-1] by taking the number of times that a feature appears in an application divided by the total number of
features in the application, where every application has its own TF. The TF can be computed as follows:

tf i , j=
ni , j

∑
k

ni , j

The TF normalization of the dataset allows the vector representation to be observed as a matrix, where
rows denote the application vectors and columns are the features. By doing so, various machine learning
algorithms  can  be  applied,  and  we  can  also  find  the  similarity  and  differences  using  the  similarity
measurement algorithms. 

7.2 Evaluation metrics

To evaluate the performance of classifiers, we have considered the following: accuracy, precision, recall
and  F-measure  standard  metrics.  These  metrics  are  estimated  based  on  the  true  positive  (TP),  true
negative (TN), false positive (FP), and false negative (FN) values. 

- TP: represents the number of malware application apps correctly identified as malware applications. 
- TN: represents the number of benign application apps correctly identified as benign application apps.
- FP: represents the number of benign application apps misclassified as malware application apps. 
- FN: represents the number of malware application apps misclassified as benign application apps. 
- The metrics such as accuracy, precision, recall and F-measure are defined as follows:

 Accuracy:  It  estimates  the  ratio  of  the  correctly  recognized  connection  records  to  the  entire  test
dataset. If the accuracy is higher, the machine learning model is better. The accuracy serves as a good
measure for the test dataset that contains balanced classes and is defined as follows:

Accuracy=(TP+TN ) /(TP+TN+FP+FN )
 Precision: The percentage of correctly identified can be computed as follows: 

Precision=TP /(TP+FP)

 Recall: The percentage correctly identified as malicious can be computed as follows:

Recall=TP /(TP+FN )

 F-measure: The combination of precision and recall can be computed as follows: 

F .Measure=
2∗Precision∗Recall
Precision+Recall

7.3 Results & analysis 

Our main aim is to examine if the selected features from the risky group and disruptive calls could be
used to build complex classification models to predict the classes or risk factors of mobile malware. All
features were obtained from both the risky or disruptive groups (1,326 distinct features) remaining after
neglecting those unimportant features in the dataset. For each group (risky group and disruptive groups),
five machine learning algorithms were executed through 10-fold cross-validation: random forest (RF),
J48, random tree (RT), k-nearest neighbours (k-NN) and naïve Bayes (NB).



The empirical results suggest that our proposed method is effective at detecting mobile malware and
achieved an F-measure of 94.3%, as shown in Figure 5. Our model can significantly assist in the process
of malware forensic investigation and mobile application analysis.

RF J48 RT K-NN NB
80,00%

85,00%

90,00%

95,00%

100,00%

94,30%

90,90%
89,10%

87,90%

91,80%

Figure 5. F-measure scores
In terms of the speed of training and testing of each classifier, the fastest algorithms are the random tree

and k-NN; they both take 0.2 seconds. J48 requires the longest time, 0.92 seconds. Random forest takes
0.73 seconds for training and testing. Overall, the system is predictable and reliable, and the speed is
acceptable for all 5 classifiers in real-time applications. 

8. CONCLUSIONS

Identifying the most prominent features requested by malware apps is the key factor in building a safe
mobile computing environment, protecting sensitive data and detecting malware. Permissions and critical
API calls reflect the behaviour patterns of an Android application. Motivated by the increasing number of
apps and the lack of effective malware detection tools, in this paper, we propose a reliable classification
model that combines the consideration of permissions and API calls to detect malware apps. Our analysis
method consists of three main phases: the pre-processing phase, extraction phase, and grouping phase.
Because Android apps use a large number of APIs, we used a grouping strategy for choosing only the
most valuable API calls to maximize the likelihood of identifying the Android malware apps as follows: 
- Ambiguous group (common API calls in both malware apps and benign apps)
- Risky group (common API calls in malware apps that are less similar to those in benign apps)
- Disruptive group (API calls that appeared in malware apps and did not appear in benign apps)
The frequency analysis  is  performed on the important  groups to  find the most  discriminating set  of
features for malware detection. The results demonstrate that malicious applications invoke a different set
of  API  calls  with  different  frequencies  compared  with  the  benign  apps  and  that  mobile  malware
applications request dangerous permissions more often than benign apps to access sensitive user data. For
instance, the API calls for the telephony manager, SMS manager, storage, system service, logs, database,
telephony manager and device information appear significantly more often in malware apps. Empirical
results with a real malware dataset of 27,891 Android apps suggest that our proposed method is effective
at detecting mobile malware and can significantly assist in the process of malware forensic investigation
and mobile application analysis. The IG and API calling frequencies are calculated to select a valuable



subset of features, and then the TF is used for dimensionality reduction of the selected features. We apply
five different  machine learning techniques in our approach, namely,  the RF, J48, RT, k-NN and NB
algorithms. The experimental results demonstrate that our model achieves an F-measure of 94.3%.
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