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Abstract

This article explores using aspects of STEP AP242 for constraint-based robot programming for assembly operations. Industry 4.0 envisions smart,
connected factories where all the operations are connected by an unbroken thread of product and process data. As part of these efforts, many
industries are adopting Model Based Definition and STEP AP242. STEP AP242 is an exchange format that allows Model Based Definition where
Product Manufacturing Information is directly associated with the 3D CAD model. This article relates the geometric and assembly constraints
from the CAD model to motion constraints on the robot during the assembly process. This article also discusses the use of Product Manufacturing
Information from STEP AP242 files for automatic robot programming. The results are showcased with a prototype for a motor assembly scenario.
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1. Introduction

The new industrial revolution, Industry 4.0, brings aspects
of information technology into the manufacturing industries,
with high product customization, information gathering cyber-
physical systems, and a short time to deploy. The success of
Industry 4.0 depends on the integration of design and manufac-
turing operations.

One of the key enablers for Industry 4.0 is the availability of
product data to various stakeholders involved in the product life
cycle process. The completeness of the available data affects the
efficiency of product manufacturing operations both in terms of
time and product quality.

A large amount of data is created in the initial phases of
product development and design. The designers use CAD soft-
ware to design a product and create 3D models. 2D manufactur-
ing drawings are created from the 3D CAD models, and prod-
uct manufacturing information (PMI) is added to the drawings.
These manufacturing drawings are shared with the downstream
operations, resulting in many communication gaps between the
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designer and the manufacturer that give rise to delays and qual-
ity issues.

Many downstream operations like inspection need manual
intervention to study the 2D drawings, extract the necessary
data, and recreate it to match their needs. The recreation of
information is time-consuming and error-prone due to human
involvement. In the scenario of Industry 4.0, the manual inter-
pretation and recreation of data should be avoided as much as
possible. The solution for this is reusing the data created in the
product development stage in downstream manufacturing oper-
ations without recreation.

The recreation of information can be eliminated by employ-
ing model-based definition (MBD) in which PMI is directly ap-
pended to the 3D CAD model during the design phase. The
critical dimensions, geometric dimensioning and tolerancing
(GD&T), surface finish, and other needed information, are se-
mantically added to the features of the 3D CAD model. This
information is then available for direct use in downstream op-
erations like NC machining and inspection [1, 2].

Traditionally there are three methods of programming
robots: (1) teach-pendant programming, (2) offline program-
ming, and (3) programming by demonstration. A limitation of
these approaches is that they cannot be used for the automated
programming of robot operations – the robots can be used to
perform only pre-programmed tasks. They cannot be used to
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control the manipulators to perform in new/unexpected scenar-
ios. This severely limits the use of robots in small and medium
enterprises that have a wide variety of products.

Future smart factories need intelligent robotic systems that
can be used to complete various operations working in mixed
environments with humans and other machines. One approach
to solving this and overcome the limitations of traditional robot
programming methods is constraint-based robot programming.
In this approach, the robotic task is specified in terms of rela-
tions between components in the assembly, as well as with the
environment, and not directly by point-to-point motion or other
motion primitives. However, this requires that the robotic sys-
tem is able to detect and extract the constraints involved in the
task [3].

Integrating CAD in robot programming systems is a long-
standing problem in robotics. Early systems capable of ex-
tracting relevant geometric information includes the Autopass,
Archimedes 2, and HigLap frameworks.

Autopass is the earliest robot programming language based
on CAD and focuses on the product being assembled, the tools,
fixtures and the assembly tasks. An assembly world model is
created from the geometric data and updated at each step of
the assembly operation. The users plan the assembly sequence
and specify the assembly operations as if they are preparing an
assembly instruction manual without bothering about the actual
motion of the manipulator [4].

Archimedes 2 is an assembly planning system that uses 3D
CAD data to facilitate assembly planning and robot control. The
3D data from CAD files is used as an input to planning and sim-
ulation operations. The user can plan the assembly operations
with the help of a planner and an illustrator, which simulates
the operations. A translator converts these high-level assembly
plans into control code for robotic assembly [5].

HighLap is an assembly planning system that automatically
generates the assembly plans from the CAD data. It uses an
assembly by disassembly method to decompose the assembly
tasks into primitive robot skills [6, 7].

SMERobotics is an EU funded consortium aimed at enabling
robotics for small to medium sized enterprises. This consortium
presents a method for rapid robot programming based on mat-
ing constraints that are not extracted from the STEP or CAD
file, but rather specified by a shop floor worker [8]. The part-
oriented programming method showed good time-saving when
compared to classical programming methods [9]. The system
can plan assembly paths in the motion null-space formed by the
mating constraints [10, 3].

More recent frameworks for constraint-based robot pro-
gramming are the iTaSC [11] and eTaSL/eTC [12].

The iTaSC framework uses feature coordinates to define ob-
ject constraints and uncertainty coordinates to estimate geomet-
ric uncertainties. This achieves instantaneous task specification
for complex robotic applications with sensor interaction and ge-
ometric uncertainties [11, 13].

eTaSL is a task specification language, and eTC is a corre-
sponding controller both based on expression graphs. Expres-
sion graphs are a tree-like data structure that specifies the geo-

Fig. 1. Constraint-based robot programming using STEP AP242

metric relations between objects and supports the computation
of the Jacobians using automatic differentiation [12].

In this paper, we explore the use of model-based definition
and the use of the STEP AP242 exchange format for constraint-
based robot programming for assembly operations. The product
design information in the form of 3D CAD models (both the
part and assembly) carries rich and useful information about
the components and their constraints. The annotated models
with the PMI enriches the geometric data of the 3D CAD and
imparts meaning to these constraints. This data can be readily
extracted and used to automate the programming and control
of robots saving time and cost. The presented approach em-
ploys the eTaSL/eTC framework and is based on exporting the
assembly constraints directly from the 3D CAD system and us-
ing these to generate the motion constraints of the robotic sys-
tem automatically. A schematic presentation of our approach is
shown in Figure 1.

The paper is structured as follows. Section 2 presents the
STEP AP242 standard and how assembly constraints can be
modelled and exported from 3D CAD data and Section 3
presents the eTaSL/eTC framework in more detail and shows
how assembly constraints can be used to form motions con-
straints. A test case is presented in Section 4. A discussion of
the presented approach is presented in Section 5. The paper is
concluded in Section 6.

2. Extracting Assembly Constraint Information from
STEP AP242 Exchange Files

The product data created during the design stage should be
available to all the stakeholders in the downstream processes of
the product life cycle phases. The 3D models can be shared with
the downstream operations using native CAD files or neutral
formats.

The standard for the Exchange of Product Model Data
(STEP) is one of the standard neutral file formats used by the
industry. It is a set of ISO (International Standards Organiza-
tion) standards under ISO 10303. The two application protocols
(APs) STEP AP203 – Configuration controlled 3D designs of
mechanical parts and assemblies and STEP AP214 – Core data
for automotive mechanical design processes are being used by
aerospace and defense, and automotive industries, respectively.
These two APs have overlapping scopes, and their latest edi-
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tions started converging towards each other. Due to this, the
application protocol AP242 – Managed model based 3D engi-
neering was developed. This is a significant AP which com-
bines and replaces AP203 and AP214 (along with few other
APs under ISO 10303) [14, 15, 16].

STEP AP242 defines the use of semantic PMI for product
definition. Under this standard, product data like GD&T, rough-
ness specifications, welding details, direction features, contact-
ing tangents, and hull features are readily available at both the
part and assembly level.

As the industry is moving towards smart manufacturing, the
adoption of STEP AP242 is increasing. AeroSpace and Defence
Industries Association of Europe (ASD) recommends the use of
latest editions of this standard for ”exchange, long term archiv-
ing and transfer to downstream processes of CAD data (me-
chanical design, including composite) and associated configu-
ration (PDM) data” [17].

2.1. Relevant Features of STEP AP242 Exchange Files

The following types of information are available in a
STEP AP242 exchange file: Geometric data, assembly con-
straints, bill of materials, geometric dimensioning and toleranc-
ing (GD&T) details, and other product manufacturing informa-
tion (PMI) in the form of annotations.

Some of the information like the geometric details of the
product are readily available in the STEP file but some informa-
tion has to be inferred from the available data. For robotic as-
sembly applications, geometric definition of the product alone
is not much helpful. Product structure and assembly constraints
are needed along with the geometric details.

2.1.1. Assembly Constraints
The types of assembly constraints available in STEP

AP242 [15] are:

• Fixed constituent assembly constraint: This is applied to
the part which is fixed in the assembly and all other
parts are placed with respect to this part. The coordinate
system and origin of this part coincides with the world-
coordinate system and origin of the assembly.

• Parallel assembly constraint: This is used to define the
parallel relationship between the mating features of the
parts. This is applicable to lines and planes.

• Parallel assembly constraint with dimension: This is a
subtype of parallel assembly constraint with a ’dis-
tance value’ to define the distance between the parallel
features.

• Surface distance assembly constraint with dimension:
This is used to define the normal distance between lines
and planes of the mating parts.

• Angle assembly constraint with dimension: This defines
the angle between the line and plane features.

• Perpendicular assembly constraint: This is used to apply
the perpendicularity constraint between the mating lines
and planes.

• Incidence assembly constraint: This is used when a line
is incident on a plane or to define the concentricity of
circular, cylindrical, conical or spherical features.

• Coaxial assembly constraint: This constraint is used
when the axes of cylindrical or conical features have the
same direction.

• Tangent assembly constraint: This defines the tangency
of circular features with lines, planes or other circular
features.

Table 1 shows all the assembly constraints available in STEP
schema and the geometric features related by these constraints.

The assembly constraints available in the commercial CAD
software correspond to these types of constraints. However,
even though the STEP AP242 standards supports assembly con-
straints, when the assembly is exported as a STEP file from a
CAD software, e.g., SolidWorks or Siemens NX, the constraints
are not explicitly available in the STEP file.

2.1.2. Bill of Materials
The bill of materials (BoM) is beneficial information in un-

derstanding the product structure. It gives the number of com-
ponents used in the assembly and how many times each com-
ponent is used. BoM can be explicitly added to the assembly as
a table in the annotations.

2.1.3. GD&T and Other PMI
GD&T and other manufacturing information can be added

to the part file in the form of annotations, which increases the
understanding of the product and helps in creating robust au-
tomated robot programming systems. In many assemblies, the
mating fits can be inferred from the GD&T, which helps in un-
derstanding the force constraints on the robot during the assem-
bly operation.

2.2. Extracting Constraint Information

The required constraint information is extracted from the
STEP file and passed to the eTaSL framework for task specifica-
tion. The constraint information includes parts in the assembly,
the relative position of the parts to each other, assembly con-
straints, mating features of the parts, and their positions. The
steps involved in this process are:

1. Identifying the parts in the assembly: The total number of
parts and their instances are identified from the STEP file.
This gives the overall product structure. Alternately this
can be identified from the BoM if it is added as a table in
the annotations.

2. Establishing the global coordinate frame: This is the coor-
dinate frame to which the entire assembly is defined. By
default this coordinate frame is defined at the origin.

3. Identifying the fixed constituent part: This is the immov-
able part in the assembly to which all other parts are placed
in the assembly. Generally, the part coordinate frame of the
fixed part coincides with the global coordinate frame of the
assembly.
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Table 1. Assembly Constraints and applicable geometric entities.

Assembly Constraint Entity Line Plane Cylindrical/Conical/Spherical Surfaces

Parallel assembly constraint * *
Parallel assembly constraint with dimension * *

Surface distance assembly constraint with dimension * *
Angle assembly constraint with dimension *

Perpendicular assembly constraint * *
Incidence assembly constraint * *
Coaxial assembly constraint *
Tangent assembly constraint * * *

4. Get the next part in the assembly: It is assumed that the
assembly sequence is given by the order in which the parts
are added to the assembly or the order in which the parts
appear in the STEP file.

5. Identify the part coordinate frame: This coordinate frame
gives the relative position of each part in the assembly. All
the part features are defined with respect to this coordinate
frame.

6. Find the assembly constraints: Identify all the assembly
constraints applied on a part.

7. Establish feature coordinate frames: For each assembly
constraint, find the corresponding mating features. Estab-
lish appropriate coordinate frames for these mating fea-
tures. For simple surfaces, these can be directly identified
from the STEP file. These feature coordinate frames are
used in eTaSL to define the robotic tasks.

8. For all the parts in the assembly, repeat steps 4 to 7.

3. eTaSL/eTC for Assembly Constraints

eTaSL [12] is a Lua-based task specification language, eTC
is a simultaneous hierarchical task controller realization for the
task specifications. The controller works by inverting the dif-
ferential kinematics of the constraints using a quadratic opti-
mization program, which is solved for joint velocity commands
that are sent to the robot. In the cases where a joint velocity
command is not available, the joint velocities are integrated to
achieve joint position commands.

3.1. Task Specification

The task specification is a Lua-based eTaSL script. A single
eTaSL script defines a set of tasks, robot variables, support for
continuous sensor inputs, event triggering when sensor or con-
troller conditions are achieved, and continuous state outputs for
monitoring and debugging. eTaSL defines tasks where the task
equations are either driven to zero or driven to remain within
an upper or lower limit. The set-based tasks enable defining
work-cell related tasks such as remaining within a workspace or
keeping the robot in an elbow up configuration. For more com-
plex task specifications, eTaSL also supports feature variables
that are controller-internal and sensor inputs. This allows for
sensor-guided motion, such as compliant assembly strategies

[18], and sensor-based event triggering. Relating CAD assem-
bly constraints to force-based robot tasks is an ongoing research
topic [19], which currently goes through a selection process of
available assembly skills rather than using the assembly con-
straint directly.

3.2. Distance Measures

The assembly constraints are defined between geometric el-
ements whose placement is defined relative to the part coor-
dinate frame. The parts either have predefined locations in the
work cell, are located with vision-based localization systems, or
are rigidly grasped by the robot. The relative placement and pa-
rameters of the geometric elements are extracted from the STEP
file, and used to describe the assembly relative to the robot grip-
per in the task specification.

Establishing a constraint between parts is considered to be
the same as minimizing a distance measure between the geo-
metric elements on the parts. This is achieved by selecting a
joint velocity on the robot which imposes an exponential con-
vergence of the distance measure. For joint variables q ∈ Rn,
and scalar distance function e, this is achieved by ensuring

ė(t,q) =
∂e
∂q

q̇ = −Ke(t,q) −
∂e
∂t

holds for the choice of q̇ that will command the robot. K is a
tunable gain that defines the rate of convergence to the task.
Slack variables can be included to handle incongruous tasks.

A sample of the distance measures used to implement the
constraints described in Table 1 in eTaSL are given in Table
2. With p ∈ R3 being a point relative to the shape representa-
tion, and n ∈ R3 being a vector in the reference frame of the
shape representation, lines are represented by (p,d) describing
a point p on the line and its direction d. These are implemented
as eTaSL expressions using the Vector datatype, which is nor-
malized to unit vectors for directions, and geometric entities
implemented in eTaSL follow the parametrization described in
the geometry schema ISO 10303-42.
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Table 2. Summary of Distance Measures - eTaSL

Description Distance Measure expression

Parallel (direction/normal/axis d1,d2 ||d1 × d2||

Perpendicular (direction/normal/axis d1,d2) |d1 · d2|

Distance point (p1) - line (p1,d2) ||p1 − p2 − ((p1 − p2)) · d2)d2||

Distance line (p1,d1) - line (p2,d2)
{

Distance point (p1) - line (p2,d2), if ||d1 × d2 = 0||
|(p1−p2)·(||d1×d2 ||)|

||d1×d2 ||
, otherwise

Distance line (p1,d1) - plane(p2, n2)
{
|(p1 − p2) · d1|, if d1 · n2 = 0

0, otherwise

Fig. 2. Motor Assembly - Exploded View

Fig. 3. Assembly sequence, frames 1 and 2 show the part being grasped and
lifted above the housing, frames 3-6 show the motion being guided by the as-
sembly constraints for inserting the rotor.

4. Test Case

In this test case a rotor is inserted into a motor housing as
part of a motor. The motor assembly is shown in Fig. 2. The test
case is implemented using the etasl ros control library [20].

The purpose of this test case is to show the generation of
robot motion derived directly from STEP AP242 assembly con-
straints translated into eTaSL tasks, using the above-mentioned
distance measures, for programming robotic assembly. The ro-
tor has an Incidence assembly constraint between its cylinder
axis and the cylinder axis of the hole in the housing, and the
bottom plane of the rotor has an Incidence assembly constraint
with the bottom plane it is touching. The assembly sequence is
shown in Fig. 3. The part is grasped and lifted above the hous-
ing in frames 1 and 2; the assembly constraints are then used to
guide the motion during frames 3 – 6.

The norm of the common normal between the axes, the dis-
tance between the axes, and the distance between the planes

Fig. 4. The distance measures over time: the common normal of the rotor’s
cylinder axis and the housing’s hole cylinder axis, the line distance of the axes,
and the distance between the bottom plane of the rotor and the bottom plane of
the housing.

during assembly are given in Fig. 4. The incidence constraint
between the planes also imposes the two plane normals to be
parallel, but that is not included as it has the same behavior as
the norm of the common normal between the cylinder axes.

5. Discussion

By using the STEP AP242 directly as tasks in the reactive
eTaSL controller, rather than indirectly informing the choice
of assembly skill [19], or to define spaces to plan within [3],
specific issues arise.

The task convergence formulation of eTaSL is an exponen-
tial convergence; this means that one must tune the task specifi-
cation such that the tasks that define the alignment process, e.g.,
the line-line incidence of the axes in the rotor example, have
converged before the tasks that ensure the mating and surface
contacts, e.g., the plane-plane incidence constraint. The expo-
nential convergence formulation will also incur a high veloc-
ity at the beginning and a low velocity at the end of the pro-
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cess. The high initial velocity, and discontinuity in acceleration,
might present some problems with physical equipment.

These issues suggest that a more advanced controller for-
mulation than the simple exponential convergence may be re-
quired, or that a planning process must be used to figure out
which constraints must be achieved before others.

As mentioned earlier, the force requirements for the assem-
bly tasks can be estimated from the mating fits based on the
GD&T information. Other process-specific requirements and
constraints can be added to the STEP file in the form of annota-
tions and can be used in the task specification. The annotations
can be added as per the ontological approaches to improve data
reuse in downstream operations.

The second edition of STEP AP242 will add more PMI fea-
tures for welding, GD&T of threads, complex holes, and other
enhancements for new manufacturing features [16]. These new
enhancements, along with other features like kinematics, can be
explored, and methods can be developed to use them for effec-
tive automation of manufacturing and assembly.

6. Conclusions and Future Research

In this paper, we have presented how product information
can be extracted from STEP AP242 exchange files and used in
task specification for robotic assembly in general, and a motor
assembly task in particular. This is the first step towards lever-
aging model-based definition and STEP AP242 in automatic
programming of robotic assembly tasks.

The motor assembly test case was implemented using
eTaSL/eTC – a framework for constraint-based robot program-
ming – where the assembly constraints derived from the ex-
change file were converted to distance measures in the task
specification. That is, the assembly constraints of the 3D CAD
model of the motor were converted to motion constraints of the
robot.

One issue that arose in the presented approach was due to
the exponential convergence formulation: The task has a high
initial velocity and low final velocity and thus slow conver-
gence when the distance measures, or task errors, are low. This
high initial velocity might present some problems with physi-
cal equipment, while the slow convergence is unfortunate due
to possibly high cycle times. These issues will be addressed in
future research.
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