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Abstract

We study solitons of general topological charge over noncommutative tori from the per-
spective of time-frequency analysis. These solitons are associated with vector bundles of higher
rank, which we express in terms of vector-valued Gabor frames. We apply the duality theory of
Gabor analysis to show that Gaussians are such solitons for any value of the topological charge.
They also solve self and/or anti-self duality equations resulting from an energy functional for
projections over noncommutative tori, and have a reformulation in terms of Gabor frames.
As a consequence, the projections generated by Gaussians minimize this energy functional.
We also comment on the case of the Moyal plane and the associated continuous vector-valued
Gabor frames and show that Gaussians are the only class of solitons.

1 Introduction
Solitons over noncommutative tori of topological charge one were treated in [5] via Gabor frames, a
well-known object of time-frequency analysis. The equivalence of the construction of projections in
noncommutative tori and (tight) Gabor frames [17] indicates a potential relation between solitons
over noncommutative tori and Gabor frames.

In this paper we discuss the case of solitons of general topological charge by interpreting the
relevant projective modules over noncommutative tori as vector-valued Gabor frames. Furthermore
we show that Gaussians are solutions of self-duality equations (or anti-self duality equations) on
noncommutative tori, and can be termed (noncommutative) sigma-model solitons. These equations
are derived from Euler-Lagrange equations for an energy functional for projections in noncommu-
tative tori that have been introduced in [3, 4] and further studied in [20, 18, 15].

The energy functional for projections in noncommutative tori with topological charge q becomes
a functional for functions generating Gabor frames in L2(R×Zq), were Zq, with q ∈ N is the finite
cyclic group {0, 1, 2, . . . , q − 1} under addition modulo q. The key in our investigation is a novel
reformulation of Connes-Rieffel vector bundles over noncommutative tori in terms of vector-valued
Gabor frames.

For ν = (λ, l, γ, c) ∈ R× Zq × R̂× Ẑq, we define the time-frequency shift operator

π(ν) : L2(R× Zq)→ L2(R× Zq),

π(ν)f(x, j) = (Eγ,cTλ,lf)(x, j) = e2πi(x·γ+jc/q)f(x− λ, j − l).

In order to define the Gabor systems associated to Connes-Rieffel vector bundles we need to
define lattices in the time-frequency plane R × Zq × R̂ × Ẑq. Let r and s be some integers in
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{1, 2, . . . , q − 1} that are co-prime to q (if q = 1 take r = s = 0) and let α and β be two non-zero
real parameters. In the time domain we then define the lattice

Λ = {(λ, l) ∈ R× Zq : λ = αn, l = rn mod q for all n ∈ Z}.

Whereas in the frequency domain we consider the lattice

Γ = {(γ, c) ∈ R̂× Ẑq : γ = βm, c = sm mod q for all m ∈ Z}.

Then the vector-valued Gabor systems we are interested in are of the form {π(ν)}ν∈Γ×Λ. These
have not been studied in time-frequency analysis despite they are natural generalizations of stan-
dard Gabor frames and possess an intriguing structure that should be accurately studied.

If q = 1 then these vector-valued Gabor systems reduce to the lattices Λ = αZ and Γ = βZ
traditionally used in Gabor analysis on L2(R). For α = a − r/q, for some a ∈ R such that
α ≥ 0, β = 1 and s = 1 the generated Gabor system are Connes-Rieffel’ vector bundles over
noncommutative tori.

Based on these vector-valued Gabor systems we are in the position to extend some of the
results in [5], such as the computation of the topological charge of solitons in terms of the Connes-
Chern number of projections in noncommutative tori. Our focus in this investigation is the time-
frequency aspects of solitons and so we refer the reader interested into the operator algebra and
noncommutative geometry aspects to [5, 14]. We hope that this makes our exposition of this
intriguing link between Gabor frames and noncommutative geometry also accessible to the time-
frequency community.

For now our results are best explained for the topological charge q = 1 (which is covered in [5]).
In this case we consider Gabor frames for L2(R) of the familiar form {EmβTnαg}m,n∈Z, where g
is a function in the Schwartz class or, more generally, in the Banach space M1

s(R) for some s ≥ 2,
and where α and β are parameters in R\{0} such that |αβ| < 1. We then show that the energy
functional,

E(g) =
π

|αβ|
∑
n,m∈Z

((αn)2 + (βm)2) |〈g,EmβTnαS−1
g g〉|2

is bounded from below by the constant q = 1 (here S−1
g is the inverse of the Gabor frame operator

generated by the above Gabor system) and that the (generalized) Gaussian g(x) = e−πx
2−iλx,

λ ∈ C attains this minimum. A similar result holds for q 6= 1. We do not know if there are other
Gabor frame generators that obtain this minimum.

In the final section we discuss solitons of general topological charge over the Moyal plane and
prove that also in the general case, Gaussians are the only minimizers of the energy functional for
projections in the Moyal plane algebra and consequently the only solitons (for our sigma-model)
on the Moyal plane.

2 Subspaces of Feichtinger’s algebra
A space which turns out to be very well suited for our purposes is the Banach space of functions
known as M1

s(R). This is a weighted modulation space introduced by Feichtinger in the ’80s. In
this section we recall some facts about it (see e.g. [10] and [7]).

In the following we let (Tx)g(t) = g(t−x), x, t ∈ R be the translation operator and (Eω)g(t) =
e2πitωg(t), ω, t ∈ R be the modulation operator.

Definition 2.1. Fix any function g in the Schwartz space S(R) and let s be a non negative real
number. The weighted modulation space of order s is defined to be,

M1
s(R) =

{
f ∈ L2(R) :

∫
R2

|〈f,EωTxg〉| (1 + |x|+ |ω|)s d(x, ω) <∞
}
.

For s = 0 the space M1
0(R) is the Feichtinger algebra. The norm

‖f‖M1
s,g

=

∫
R2

|〈f,EωTxg〉| (1 + |x|+ |ω|)s d(x, ω)
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turns M1
s(R) into a Banach space. One can show that different choices of g define the same space

and moreover yield equivalent norms. Let F denote the Fourier transform. If 0 ≤ s1 < s2, there
are dense and continuous inclusions

S(R) =
⋂
s∈N

M1
s(R) ⊆ M1

s2(R) ( M1
s1(R) ( L1(R) ∩ FL1(R) ( C0(R).

Furthermore M1
s(R), s ≥ 0, is dense in and continuously embedded into L2(R). The translation

and modulation operators Tx and Eω are bounded on M1
s(R), where the operator norm depends

on the order s and on x and ω, respectively.
It is well known that the differential operator and multiplication by polynomials map the

Schwartz space S(R) into itself. A similar result holds for the spaces M1
s(R).

Proposition 2.2. For any s ≥ 0, the operators

D : M1
s+1(R)→ M1

s(R), Df(t) = d
dtf(t)

M : M1
s+1(R)→ M1

s(R), Mf(t) = t · f(t),

are well-defined, linear and bounded. Moreover,

FDf = 2πiMFf, for all f ∈ M1
s(R), s ≥ 1.

Proof. It is straightforward to verify that

〈Mf,EωTxg〉 = 〈f,EωTxMg〉+ x 〈f,EωTxg〉

and, by use of partial integration,

〈Df,EωTxg〉 = 2πiω 〈f,EωTxg〉+ 〈f,EωTxDg〉.

For the operator D, for f ∈ M1
s(R),∫

R2

|〈Df,EωTxg〉| (1 + |x|+ |ω|)s d(x, ω)

≤ 2π

∫
R2

|ω| |〈f,EωTxg〉| (1 + |x|+ |ω|)s d(x, ω) +

∫
R2

|〈f,EωTxDg〉| (1 + |x|+ |ω|)s d(x, ω)

≤ 2π

∫
R2

|〈f,EωTxg〉| (1 + |x|+ |ω|)s+1 d(x, ω) +

∫
R2

|〈f,EωTxDg〉| (1 + |x|+ |ω|)s+1 d(x, ω).

Since the Schwartz functions g and Dg induce equivalent norms on M1
s+1(R), we conclude that

there is a constant C > 0 such that

‖Df‖M1
s

=

∫
R2

|〈Df,EωTxg〉| (1 + |x|+ |ω|)s d(x, ω) ≤ C ‖f‖M1
s+1
.

Similarly, for the operator M ,∫
R2

|〈Mf,EωTxg〉| (1 + |x|+ |ω|)s d(x, ω)

≤
∫
R2

|〈f,EωTxMg〉| (1 + |x|+ |ω|)s d(x, ω) +

∫
R2

|x| |〈f,EωTxg〉| (1 + |x|+ |ω|)s d(x, ω)

≤
∫
R2

|〈f,EωTxMg〉| (1 + |x|+ |ω|)s+1 d(x, ω) +

∫
R2

|〈f,EωTxg〉| (1 + |x|+ |ω|)s+1 d(x, ω).

As before, the Schwartz functionsMg and g induce equivalent norms on M1
s+1(R) and so, for some

C > 0, we have that

‖f‖M1
s

=

∫
R2

|〈Mf,EωTxg〉| (1 + |x|+ |ω|)s d(x, ω) ≤ C ‖f‖M1
s+1
.

Lastly, by use of partial integration, we establish that

FDf(ω) =

∫
R

(
d
dtf(t)

)
e−2πitω dt = f(t)e−2πitω

∣∣∣−∞
t=+∞

−
∫
R
f(t) (−2πiω)e−2πitω dt

= 2πiω

∫
R
f(t) e−2πitω dt = 2πiMFf(ω) for all f ∈ M1

s(R), s ≥ 1.

This concludes the proof.
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3 Gabor frames and non-commutative tori
We need to review some theory on Gabor analysis and non-commutative tori.

Consider the space R×Zq, where Zq is the finite abelian cyclic group of order q. We first define
the translation and modulation operators on function on R× Zq.
For every (λ, l) ∈ R× Zq we define the translation operator (time shift) as

Tλ,l : L2(R× Zq)→ L2(R× Zq), (Tλ,lf)(x, j) = f(x− λ, j − l).

For every (γ, c) ∈ R̂× Ẑq (the ̂ above the R and Zq indicate that γ ∈ R and c ∈ Zq are variables
in the frequency domain) we define the modulation operator (frequency shift)

Eγ,c : L2(R× Zq)→ L2(R× Zq), (Eγ,cf)(x, j) = e2πi(x·γ+jc/q)f(x, j).

For ν = (λ, l, γ, c) ∈ R× Zq × R̂× Ẑq, we then have the time-frequency shift operator

π(ν) : L2(R× Zq)→ L2(R× Zq),

π(ν)f(x, j) = (Eγ,cTλ,lf)(x, j) = e2πi(x·γ+jc/q)f(x− λ, j − l).

Observe that the time and frequency shift operators commute up to a phase factor, Eγ,cTλ,l =
e−2πi(λ·γ+lc/q)Tλ,lEγ,c. This phase factor is irrelevant in the theory of Gabor frames. However, for
the theory of the non-commutative torus this phase factor is paramount. Because of this, we also
introduce the frequency-time shift operator

π◦(ν) : L2(R× Zq)→ L2(R× Zq),

π◦(ν)f(x, j) = Tλ,lEγ,cf(x, j) = e2πi((x−λ)·γ+(j−l)c/q)f(x− λ, j − l).

For ν1 = (λ1, l1, γ1, c1) and ν2 = (λ2, l2, γ2, c2) it is useful to define the 2-cocycle

ϕ(ν1, ν2) = e−2πi(λ1γ2+l1c2/q).

Note that ϕ(−ν1, ν2) = ϕ(ν1,−ν2) = ϕ(ν1, ν2) (this 2-cocycle is co-homologous to the anti-

symmetrised one ϕ′(ν1, ν2) = e−πi
(

(λ1γ2−λ2γ1)+(l1c2−l2c1)/q
)
). Furthermore, some little algebra

shows that

π(ν) = ϕ(ν, ν)π◦(ν),

π(ν1)π(ν2) = ϕ(ν1, ν2)π(ν1 + ν2) and π(ν)∗ = π◦(−ν) = ϕ(ν, ν)π(−ν),

π◦(ν1)π◦(ν2) = ϕ(ν2, ν1)π◦(ν1 + ν2) and (π◦(ν))∗ = π(−ν) = ϕ(ν, ν)π◦(−ν).

The space R × Zq × R̂ × Ẑq is the time-frequency plane or phase space. The real line R and
its frequency domain R̂ are equipped with the usual Lebesgue measure. The group Zq is equipped
with the counting measure, whereas Ẑq is equipped with the counting measure times q−1.

In parallel with the weighted modulation space of order s ≥ 0 introduced in the previous section,
the space M1

s(R× Zq) is defined as follows:

M1
s(R× Zq) = {f ∈ L2(R× Zq) : f( · , k) ∈ M1

s(R) for all k ∈ Zq},

endowed with a norm M1
s(R× Zq) given by

‖f‖M1
s(R×Zq) =

∑
k∈Zq

‖f( · , k)‖M1
s(R).

Notice that there is no weight in the finite component in Zq. We also need the space M1
s(R2) which

consists of all functions F ∈ L2(R2) that satisfy∫
R4

|〈F,Eω1,ω2
Tx1,x2

G〉|(1 + |x1|+ |x2|+ |ω1|+ |ω2|)s d(x1, x2, ω1, ω2) <∞

for some fixed non-zero function G ∈ S(R2). And the space

M1
s(R× Zq × R̂× Ẑq)

= {F ∈ L2(R× Zq × R̂× Ẑq) : F ( · , k, · , l) ∈ M1
s(R2) for all (k, l) ∈ Zq × Ẑq}.

4



Definition 3.1. Given two functions f, g ∈ M1
s(R×Zq) we define the short-time Fourier transform

of f with respect to g to be the function

Vgf : R× Zq × R̂× Ẑq → C, Vgf(λ, l, γ, c) = 〈f,Eγ,cTλ,lg〉.

Then, if f, g ∈ M1
s(R× Zq), one can show that Vgf ∈ M1

s(R× Zq × R̂× Ẑq).
In order to define the Gabor systems that we will be working with, and equivalently the non-

commutative tori that we will be considering, we need to define lattices in the time-frequency plane
R× Zq × R̂× Ẑq. Let r and s be some integers in {1, 2, . . . , q − 1} that are co-prime to q (if q = 1
take r = s = 0) and let α and β be two non-zero real parameters. In the time domain we then
define the lattice

Λ = {(λ, l) ∈ R× Zq : λ = αn, l = rn mod q for all n ∈ Z}.

Whereas in the frequency domain we consider the lattice

Γ = {(γ, c) ∈ R̂× Ẑq : γ = βm, c = sm mod q for all m ∈ Z}.

With the normalizations of the measures as described above we find that the measure of a
fundamental domain of Λ is µ(Λ) = q|α|, whereas µ(Γ) = |β|. Note that µ(Λ) does not depend on
r, nor does µ(Γ) depend on s. If q = 1 then we recover the usual lattices Λ = αZ and Γ = βZ used
in Gabor analysis on L2(R).

Remark 3.2. The lattices Λ and Γ considered here are inspired by [1]. There, for some a ∈ R,
one takes

α = a− r/q, β = 1 and s = 1,

such that α 6= 0.

In the following paragraphs we detail how these lattices Λ and Γ are used to construct the
non-commutative tori and the Gabor systems that we are interested in.

Let us consider the space of weighted `1-sequences indexed by the lattice Λ × Γ of the time-
frequency plane. That is we define

`1s(Λ× Γ) =
{
a ∈ `1(Λ× Γ) :

∑
(λ,l,γ,c)∈Λ×Γ

|a(λ, l, γ, c)| (1 + |λ|+ |γ|)s <∞
}
.

This vector space becomes an involutive Banach algebra under the norm

‖a‖`1s =
∑

(λ,l,γ,c)∈Λ×Γ

|a(λ, l, γ, c)| (1 + |λ|+ |γ|)s for all a ∈ `1s(Λ× Γ),

the twisted involution
∗ : `1s(Λ× Γ)→ `1s(Λ× Γ), (a∗)(ν) = ϕ(ν, ν)a(−ν) for all ν ∈ Λ× Γ,

and with respect to the twisted convolution

\ : `1s(Λ× Γ)× `1s(Λ× Γ)→ `1s(Λ× Γ),

(a1 \ a2)(ν) =
∑

ν′∈Λ×Γ

a1(ν′) a2(ν − ν′)ϕ(ν′, ν − ν′). (1)

One can show that the map

I : a 7→
∑

ν∈Λ×Γ

a(ν)π(ν), a ∈ `1s(Λ× Γ)

is an isometric isomorphism from `1s(Λ× Γ) onto the involutive Banach algebra

As =
{
T : M1

s(R× Zq)→ M1
s(R× Zq) : T =

∑
ν∈Λ×Γ

a(ν)π(ν), a ∈ `1s(Λ× Γ)
}
.

It is clear that all elements in As are linear and bounded operators on L2(R× Zq). Indeed, As is
an involutive Banach algebra under the norm ‖T‖As = ‖a‖`1s , the composition of operators, and
the involution of T ∈ As being its L2-Hilbert space adjoint T ∗.

The enveloping C∗-algebra Aθ of `1s(Λ×Γ) is the non-commutative torus generated, by the two
unitaries U = Eβ,s, and V = Tα,r satisfying then

UV = e2πiθV U, θ = αβ + rs/q.
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Remark 3.3. If the parameters α, β, r and s are chosen as in Remark 3.2, then θ = a.

By a celebrated result of Gröchenig and Leinert in [9] it follows that As is inverse closed in Aθ.
More concretely, if T ∈ As and T−1 ∈ Aθ, then T−1 ∈ As.

Since a sequence a ∈ `1s(Λ × Γ) corresponds to the operator I(a) ∈ As, it is natural to define
the (left) action of a on a function f ∈ M1

s(R× Zq) as

a · f = I(a)f =
∑

ν∈Λ×Γ

a(ν)π(ν)f. (2)

We next construct an `1(Λ× Γ)-valued inner-product on M1
s(R× Zq) in the following way.

Lemma 3.4. For any s ≥ 0 the operator

•〈·, ·〉 : M1
s(R× Zq)×M1

s(R× Zq)→ `1s(Λ× Γ), •〈f, g〉 = Vgf
∣∣
Λ×Γ

is well-defined. Moreover, there exists a constant C > 0 such that

‖ •〈f, g〉‖`1s ≤ C ‖f‖M1
s
‖g‖M1

s
.

Proof. As mentioned earlier, if f, g ∈ M1
s(R× Zq), then Vgf ∈ M1

s(R× Zq × R̂× Ẑq). In fact, for
some C > 0, one has ‖Vgf‖M1

s
≤ C ‖f‖M1

s
‖g‖M1

s
. Furthermore, if Λ× Γ is a discrete subgroup of

R× Zq × R̂× Ẑq, then the restriction operator

RΛ×Γ : M1
s(R× Zq × R̂× Ẑq)→ `1s(Λ× Γ), RΛ×ΓF (ν) = F (ν), ν ∈ Λ× Γ

is linear and bounded. Hence Vgf
∣∣
Λ×Γ

is a sequence in `1s(Λ×Γ) and the norm estimates follow.

One can show that the inner-product is compatible with the action defined in (2) and the
twisted convolution and involution on `1s(Λ × Γ) given above. That is, for all f, g ∈ M1

s(R × Zq)
and a ∈ `1s(Λ× Γ),

a \ •〈f, g〉 = •〈a · f, g〉 , •〈f, g〉 \ a
∗ = •〈f, a · g〉 , (•〈f, g〉)

∗ = •〈g, f〉,

•〈f, f〉 ≥ 0 and •〈f, f〉 = 0 ⇔ f = 0. (3)

Now, a function g ∈ L2(R×Zq) is said to generate a Gabor frame for L2(R×Zq) if there exists
constants A,B > 0 such that

A ‖f‖22 ≤
∑

ν∈Λ×Γ

|〈f, π(ν)g〉|2 ≤ B ‖f‖22 for all f ∈ L2(R× Zq). (4)

With such a g, the collection of functions {π(ν)g}ν∈Λ×Γ is the Gabor system generated by g and
the lattice Λ × Γ. From now on we will always assume g ∈ M1

s(R × Zq) for some s ≥ 0. In this
case the Gabor frame operator

Sg : M1
s(R× Zq)→ M1

s(R× Zq), Sgf =
∑

ν∈Λ×Γ

〈f, π(ν)g〉π(ν)g = •〈f, g〉 · g

is well-defined, linear and bounded; it is also positive. The lower inequality in (4) implies that
the frame operator Sg is invertible on L2(R × Zq). The aforementioned result by Gröchenig and
Leinert on the invertibility implies that Sg is also invertible on M1

s(R× Zq) if g ∈ M1
s(R× Zq). In

particular, this invertibility allows for series representations of any function f ∈ M1
s(R × Zq) (in

fact, for all functions in L2(R× Zq)) of the form

f =
∑

ν∈Λ×Γ

〈f, π(ν)g〉π(ν)S−1
g g = •〈f, g〉 · S

−1
g g for all f ∈ M1

s(R× Zq). (5)

There may be other functions h ∈ M1
s(R× Zq), h 6= S−1

g g such that

f =
∑

ν∈Λ×Γ

〈f, π(ν)g〉π(ν)h = •〈f, g〉 · h for all f ∈ M1
s(R× Zq). (6)
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In general, if a pair of functions g and h in M1
s(R × Zq) allow for series representations as in (5)

and (6) we call them a dual pair and the pair g and S−1
g g is the canonical dual pair. Note that in

(6) the role of g and h can be interchanged.
In order to go further with the theory of Gabor frames we need to describe the annihilators

Λ⊥ and Γ⊥ of the lattices Λ and Γ. The annihilators Λ⊥ and Γ⊥ are lattices of the frequency and
time domain, respectively,

Λ⊥ = {(ξ, τ) ∈ R̂× Ẑq : e2πi(λξ+lτ/q) = 1 for all (λ, l) ∈ Λ},
Γ⊥ = {(ξ, τ) ∈ R× Zq : e2πi(γξ+cτ/q) = 1 for all (γ, c) ∈ Γ}.

To conveniently describe these lattices we use the following notation. If r is co-prime to q and
r = {1, 2, . . . , q−1}, we define r◦ to be the unique element in {1, 2, . . . , q−1} such that rr◦+ lq = 1
for some l ∈ Z (that this is possible follows from the Chinese remainder theorem). If q = 1, we
take r = r◦ = 0. If r = 1, then r◦ = 1. If r = q − 1, then r◦ = q − 1. Furthermore, (r◦)◦ = r.
Similarly we define s◦ for the parameter s.

Lemma 3.5. If Λ and Γ are as above, then

Λ⊥ = {(ξ, τ) ∈ R̂× Ẑq : ξ =
n

αq
, τ = −r◦n mod q for all n ∈ Z},

Γ⊥ = {(ξ, τ) ∈ R× Zq : ξ =
n

βq
, τ = −s◦n mod q for all n ∈ Z}

and the measure of a fundamental domain of Λ⊥ is µ(Λ⊥) = (q|α|)−1, whereas that of a funda-
mental domain of Γ⊥ is µ(Γ⊥) = |β|−1.

Proof. For (ξ, τ) ∈ R̂× Ẑq to be in Λ⊥ we need, by definition, that

e2πi(αmξ+rmτ/q) = 1 for all m ∈ Z.

that is αmξ + rmτ/q ∈ Z for all m ∈ Z, If l ∈ Z is such that rr◦ + lq = 1, then

1

q
=
rr◦

q
+ l.

Indeed, using this relation it is straightforward to show that for (ξ, τ) as in the lemma,

αnm

αq
− rr◦nm

q
= nm

(rr◦
q

+ l
)
− rr◦nm

q
= nml ∈ Z

Hence {
(ξ, τ) ∈ R̂× Ẑq : ξ =

n

αq
, τ = −r◦n mod q for all n ∈ Z

}
⊆ Λ⊥.

In order to show equality we argue as follows: It is a general fact that for a lattice Λ and its adjoint
Λ⊥ it holds that µ(Λ)µ(Λ⊥) = 1. As remarked earlier, µ(Λ) = q |α|. It is not hard to see that the
lattice {

(ξ, τ) ∈ R̂× Ẑq : ξ =
n

αq
, τ = −aΛn mod q for all n ∈ Z

}
⊆ Λ⊥.

has size (q|α|)−1. If it was a lattice strictly contained in Λ⊥, then its size would be strictly larger
than (q|α|)−1. Since this is not the case we conclude that it must be Λ⊥. The calculation for
Γ⊥ ⊆ R × Zq is similar. Note that in order to compute the lattice size, that is, the measure of a
fundamental domain of the lattices, it is important to check whether the adjoint lies in the time or
in the frequency domain as we have different measures on R×Zq and R̂× Ẑq (as described earlier
in this section).

With the lattice Γ⊥ × Λ⊥ of the time-frequency plane we proceed in the same way as before
and consider, for s ≥ 0, the space of all weighted `1-sequences,

`1s(Γ
⊥ × Λ⊥) =

{
b ∈ `1(Γ⊥ × Λ⊥) :

∑
(λ,l,γ,c)∈Γ⊥×Λ⊥

|b(λ, l, γ, c)| (1 + |λ|+ |γ|)s <∞
}
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and the algebra of operators

A◦s =
{
T : M1

s(R× Zq)→ M1
s(R× Zq) : T =

∑
ν◦∈Γ⊥×Λ⊥

b(ν◦)π◦(ν◦), b ∈ `1s(Γ⊥ × Λ⊥)
}
.

NaturallyA◦s becomes an involutive Banach algebra just as before withAs. The twisted convolution
and twisted involution on `1s(Γ⊥×Λ⊥) are defined in such a way that A◦s and `1s(Γ⊥×Λ⊥) become
isometric isomorphic involutive Banach algebras under the identification

I◦ : `1s(Γ
⊥ × Λ⊥)→ A◦s, I◦(b) =

∑
ν◦∈Γ⊥×Λ⊥

b(ν◦)π◦(ν◦).

Note that the algebra A◦s is generated by frequency-time shifts π◦ rather than time-frequency
shifts π (as was the case with As). In particular, A◦s is generated by the two unitary operators
U◦ = T1/βq,−s◦ and V ◦ = E1/αq,−r◦ . These generators satisfy

U◦V ◦ = e2πiθ◦V ◦U◦, θ◦ = r◦s◦/q − (αβq2)−1.

Remark 3.6. If the parameters α, β, r and s are chosen as in Remark 3.2, one has θ◦ = (l +
ar◦)/(r − aq), where l ∈ Z is such that rr◦ + lq = 1.

Similarly to what we did for the lattice Λ × Γ, we define the right action of an element b ∈
`1s(Γ

⊥ × Λ⊥) on a function f ∈ M1
s(R× Zq) as

f · b = I(b)f =
∑

ν◦∈Γ⊥×Λ⊥

b(ν◦)π◦(ν◦)f. (7)

For a function f let f† be the involution t 7→ f(−t). We then define the `1s(Γ⊥ × Λ⊥)-valued
inner-product M1

s(R× Zq)

〈·, ·〉• : M1
s(R× Zq)×M1

s(R× Zq)→ `1s(Γ
⊥ × Λ⊥), 〈f, g〉• = (q|αβ|)−1 (Vgf)†

∣∣
Γ⊥×Λ⊥

.

Note that this inner-product is linear in the second entry and (Vgf)†(ν◦) = 〈g, π◦(ν◦)f〉. Its
properties are as in Lemma 3.4 , that is, there exists a constant C > 0 such that

‖〈f, g〉•‖`1s ≤ C ‖f‖M1
s
‖g‖M1

s
.

Furthermore, for all f, g ∈ M1
s(R× Zq) and b ∈ `1s(Γ⊥ × Λ⊥) the inner-product 〈·, ·〉• satisfies

〈f, g〉• \ b = 〈f, g · b〉• , b∗ \ 〈f, g〉• = 〈f · b, g〉• , (〈f, g〉•)∗ = 〈g, f〉•,

〈f, f〉• ≥ 0 and 〈f, f〉• = 0 ⇔ f = 0.

The now established notation allows us to formulate well-known results in Gabor analysis in
the following way.

The fundamental identity of Gabor analysis.
This states that for all f, g, h ∈ M1

s(R× Zq) one has that

•〈f, g〉 · h = f · 〈g, h〉• , (8)

that is ∑
ν∈Λ×Γ

〈f, π(ν)g〉π(ν)h =
1

q|αβ|
∑

ν◦∈Γ⊥×Λ⊥

〈h, π◦(ν◦)g〉π◦(ν◦)f.

If the involved functions are “nice” enough, then (8) follows by an application of the Poisson
summation formula. This is the case for functions in the Schwartz space [19], or functions in
M1
s(R× Zq) [8]. The equality does in general not hold for arbitrary functions f, g, h ∈ L2(R× Zq)

(see [10] and [13]).
These statements have as consequence the Morita equivalence of As and A◦s, which extends the

result of Luef from q = 1 in [16] to general q.
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Proposition 3.7. The algebras As and A◦s are Morita equivalent and M1
s(R×Zq) is an equivalence

bimodule. Consequently, M1
s(R × Zq) is a projective finitely generated As-module, i.e. there exist

finitely many g1, ..., gn in M1
s(R× Zq) such that any f ∈ M1

s(R× Zq) may be written as

f = •〈f, g1〉g1 + · · ·+ •〈f, gn〉gn.

In noncommutative geometry one says that M1
s(R× Zq) is a vector bundle over As.

The Wexler-Raz biorthogonality relations.
These characterise when two functions g, h ∈ M1

s(R×Zq) generate dual Gabor frames, that is, (6)
holds. This is the case if and only if

〈g, h〉• = 1, i.e., 〈h, π◦(ν◦)g〉 =

{
q|αβ| ν◦ = 0

0 ν◦ 6= 0
, for all ν◦ ∈ Γ⊥ × Λ⊥.

As remarked earlier, if a function g ∈ M1
s(R× Zq) generates a Gabor frame {π(ν)g}ν∈Λ×Γ for

L2(R× Zq), there exists functions h ∈ M1
s(R× Zq) such that 〈g, h〉• = 1 and therefore

f = •〈f, g〉 · h for all f ∈ M1
s(R× Zq).

In particular, one can take the canonical dual generator h = S−1
g g = g · (〈g, g〉•)−1.

The duality principle for Gabor frames.
This states that {π(ν)g}ν∈Λ×Γ is a frame for L2(R × Zq) if, and only if, the Gabor system
{π◦(ν◦)g}ν◦∈Γ⊥×Λ⊥ is a Riesz sequence for L2(R × Zq). That is, there exist positive constants
c1, c2 such that

c1
∑

ν◦∈Γ⊥×Λ⊥

|aν◦ |2 ≤
∥∥∥ ∑
ν◦∈Γ⊥×Λ⊥

aν◦ π
◦(ν◦)g

∥∥∥2

≤ c2
∑

ν◦∈Γ⊥×Λ⊥

|aν◦ |2

for all sequences a ∈ `2(Γ⊥×Λ⊥). For our purposes the importance of the duality principle is that
the Riesz sequence property implies that

f = g · 〈h, f〉• for all f ∈W, (9)

whereW is the closure of span{π◦(ν◦)g} in M1
s(R×Zq) (in fact it holds for functions in the closure

of span{π◦(ν◦)g} in L2(R×Zq)). Note that W cannot contain all of M1
s(R×Zq) for any s ≥ 0 nor

can W contain the entire Schwartz space. One therefore has to be careful when using the equality
in (9). The duality principle for Gabor frames was proven independently in [6], [11] and [21] for
Gabor systems in L2(R). The duality principle for Gabor systems in L2(R× Zq) follows from the
general duality principle for Gabor systems on locally compact abelian groups in [13].

The following result shows that generators of Gabor frames for L2(R) can sometimes be used
to generate Gabor frames for L2(R× Zq).

Lemma 3.8. Assume that the parameters α, β, r, s and q are such that

(αβq2)−1 + r◦s◦/q ∈ Z.

If g̃ ∈ M1
s(R) generates a Gabor frame for L2(R) w.r.t. the lattice αZ × qβZ, then the function

g ∈ M1
s(R × Zq) given by g(·, k) = g̃, for k ∈ Zq generates a Gabor frame for L2(R × Zq) with

respect to the lattice Λ and Γ.

Proof. By the duality principle of Gabor frames we know that {π(ν)g}ν∈Λ×Γ is a Gabor frame for
L2(R× Zq) if and only {π◦(ν◦)g}ν◦∈Γ⊥×Λ⊥ is a Riesz sequence for L2(R× Zq). This is the case if
and only if the bi-infinite matrix(〈

Tñ/βq,−s◦ñEm̃/αq,−r◦m̃g, Tn/βq,−s◦nEm/αq,−r◦mg
〉
L2(R×Zq)

)
m,m̃,n,ñ∈Z

is invertible as an operator on `2(Z2). Now〈
Tñ/βq,−s◦ñEm̃/αq,−r◦m̃g, Tn/βq,−s◦nEm/αq,−r◦mg

〉
L2(R×Zq)

=
〈
g, T(n−ñ)/βq,−s◦(n−ñ)E(m−m̃)/αq,−r◦(m−m̃)g

〉
L2(R×Zq)

,
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since the phase factor coming from commuting the translation and modulation operators disappears
due to the condition on the parameters that (αβq2)−1 +r◦s◦/q ∈ Z. This shows that the bi-infinite
matrix has Laurent structure. As can be found in, e.g. [12], the invertibility of such matrices is
equivalent to the fact that the function

F (t1, t2) =
∑
m,n∈Z

〈
g, Tn/βq,−s◦nEm/αq,−r◦mg

〉
L2(R×Zq)

e2πi(mt1+nt2), (t1, t2) ∈ R2,

is bounded away from zero (and finite, which is automatic for functions in M1
s(R×Zq)). Note that

〈
g, Tn/βq,−s◦nEm/αq,−r◦mg

〉
L2(R×Zq)

= 〈g̃, Em/αqTn/βq g̃〉L2(R)

{
q m ∈ qZ,
0 otherwise.

.

This implies that
F (t1, t2) = q

∑
m,n∈Z

〈g̃, Em/αTn/βq g̃〉L2(R)e
2πi(qmt1,nt2).

Again by [12] this function is bounded away from zero if and only if {EmβqTnαg̃}m,n∈Z is a Gabor
frame for L2(R), which is true by assumption. The result follows.

For the following sections it is important to observe that functions that generate dual Gabor
frames allow us to construct special elements in the algebra `1s(Λ× Γ).

Lemma 3.9. Let g and h be functions in M1
s(R × Zq), s ≥ 0, such that the Gabor systems

{π(ν)g}ν∈Λ×Γ and {π(ν)h}ν∈Λ×Γ are dual Gabor frames for L2(R × Zq), that is (6) is satisfied.
Then the following holds.

(i) The sequence a = •〈g, h〉 ∈ `1s(Λ× Γ) is idempotent, that is, a2 = a \ a = a.

(ii) If h is the canonical dual generator, h = S−1
g g, then a = •〈g, S−1

g g〉 is a projection, that is,
a2 = a \ a = a and a∗ = a.

Proof. (i). Since g and h are dual generators they satisfy the Wexler-Raz relations, 〈g, h〉• = 1
and, equivalently, 〈h, g〉• = 1. We thus find

a2 = •〈g, h〉 \ •〈g, h〉
(3)
= •〈 •〈g, h〉 · g, h〉

(8)
= •〈g · 〈h, g〉•, h〉 = •〈g, h〉 = a.

(ii). Since a2 = a from (i), we only need to show that a = a∗. Recall that the inverse frame
operator S−1

g is self-adjoint and commutes with time-frequency shifts {π(ν)}ν∈Λ×Γ. Thus,

a∗ = (•〈g, S
−1
g g〉)∗ (3)

= •〈S
−1
g g, g〉 = {〈S−1

g g, π(ν)g〉}ν∈Λ×Γ = {〈g, π(ν)S−1
g g〉}ν∈Λ×Γ = a.

This concludes the proof.

Finally, consider the group GL(A◦s), of all invertible elements in A◦s ∼= `1s(Γ
⊥×Λ⊥). Its elements

are called gauge transformations of M1
s(R×Zq). Example of gauge transformations are the Gabor

frame operator Sg of a function g ∈ M1
s(R×Zq) with time-frequency shifts along the lattice Λ×Γ,

its square root S1/2
g and also their inverses, S−1

g and S−1/2
g .

Lemma 3.10. Let T be a gauge transformation.

(i) If g ∈ M1
s(R× Zq) generates a Gabor frame {π(ν)g}ν∈Λ×Γ for L2(R× Zq), then

•〈f1, S
−1
g f2〉 = •〈Tf1, S

−1
TgTf2〉 for all f1, f2 ∈ M1

s(R× Zq).

(ii) Furthermore,

•〈f1, f2〉 = •〈Tf1, (T
−1)∗f2〉 for all f1, f2 ∈ M1

s(R× Zq).
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Proof. Since A◦s ∼= `1s(Γ
⊥×Λ⊥), we may write Tf = f · b for some unique b ∈ `1s(Γ⊥×Λ⊥). Using

properties of the inner product 〈 · , · 〉• we find

S−1
TgTf2 = f2 · (b \ (〈g · b, g · b〉•)−1)

= f2 · (b \ (b∗ \ 〈g, g〉• \ b)−1)

= f2 · (b \ b−1 \ (〈g, g〉•)−1 \ (b∗)−1)

= f2 · ((〈g, g〉•)−1 \ (b∗)−1).

Using this and the fact that •〈f1 · b, f2〉 = •〈f1, f2 \ b
∗〉 yields the desired equality:

•〈Tf1, S
−1
TgTf2〉 = •〈f1 · b, f2 · ((〈g, g〉•)−1 \ (b∗)−1)〉 = •〈f1, f2 · (〈g, g〉•)−1〉 = •〈f1, S

−1
g f2〉.

This proves (i). The statement in (ii) follows from the fact that T (and thus also T ∗) commutes
with time-frequency shifts from the lattice Λ× Γ:

•〈Tf1, (T
−1)∗f2〉 = {〈Tf1, π(ν)(T ∗)−1f2〉}ν∈Λ×Γ = {〈f1, π(ν)f2〉}ν∈Λ×Γ = •〈f1, f2〉.

This concludes the proof

Lemma 3.10 implies that the canonical dual pair g and S−1
g g generate the same projection as

the canonical tight dual window S
−1/2
g g, that is,

•〈g, S
−1g〉 = •〈S

−1/2g, S−1/2g〉.

4 Derivations, connections and curvature
In this section we shall detail a few concepts of non-commutative geometry related to non-
commutative tori. On `1s(Λ× Γ) we define derivations ∂1 and ∂2 as follows. For s ≥ 0, define

∂j : `1s+1(Λ× Γ)→ `1s(Λ× Γ), j = 1, 2

with, for (λ, l, γ, c) ∈ Λ× Γ,

(∂1a)(λ, l, γ, c) = 2πiλ a(λ, l, γ, c), (∂2a)(λ, l, γ, c) = 2πiγ a(λ, l, γ, c).

Similarly, on `1s+1(Γ⊥ × Λ⊥) we define

∂◦j : `1s+1(Γ⊥ × Λ⊥)→ `1s(Γ
⊥ × Λ⊥), j = 1, 2

with, for (λ, l, γ, c) ∈ Γ⊥ × Λ⊥,

(∂◦1a)(λ, l, γ, c) = 2πiλ a(λ, l, γ, c), (∂◦2a)(λ, l, γ, c) = 2πiγ a(λ, l, γ, c).

Using the isomorphism between `1s(Λ×Γ) and As and between `1s(Γ⊥×Λ⊥) and A◦s the derivations
can naturally be defined on As and A◦s, such that

∂j : As+1 → As and ∂◦j : A◦s+1 → A◦s for j = 1, 2.

Remark 4.1. Note that the derivations depend on the lattices Λ and Γ. In other literature, see
e.g. [1, 2, 5, 14], the sequence spaces `1s are not indexed by the lattice Λ × Γ but rather by Z2.
One therefore defines, e.g., for j = 1, 2,

∂j : `1s+1(Z2)→ `1s(Z2), (∂ja)(n1, n2) = 2πi nja(n1, n2), (n1, n2) ∈ Z2.

Hence, in this case, the derivations are independent on Λ and Γ. This discrepancy has no implica-
tion on the theory, it is just a matter of normalization.

The derivations are well-defined, linear and bounded operators. Concerning boundedness one
easily verifies that

‖∂1a‖`1s =
∑

(λ,l,γ,c)∈Λ×Γ

|2πiλa(λ, l, γ, c)|(1 + |λ|+ |γ|)s ≤ 2π ‖a‖`1s+1
.

And similar estimates can be established for ∂2, ∂
◦
1 and ∂◦2 .

In analogy to Riemannian geometry we consider the following covariant derivatives on the
bundle M1

s+1(R× Zq), s ≥ 0:
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∇1 : M1
s+1(R× Zq)→ M1

s(R× Zq), ∇1f( · , k) = 2π iMf( · , k), k ∈ Zq,

∇2 : M1
s+1(R× Zq)→ M1

s(R× Zq), ∇2f( · , k) = Df( · , k), k ∈ Zq.

Note that Proposition 2.2 implies that these operators are well-defined, linear and bounded. Ob-
serve also that ∇1 and ∇2 do not have any action in the discrete variable k and that they do not
depend on the parameters α, β, r, s nor q.

It is straightforward to verify that, for all f ∈ M1
s(R× Zq) with s ≥ 1,

∇1(Eγ,cf) = Eγ,c∇1f, ∇1(Tλ,lf) = 2πi λ(Tλ,lf) + Tλ,l∇1f (10)
∇2(Tλ,lf) = Tλ,l∇2f, ∇2Eγ,cf = 2πi γ(Eγ,cf) + Eγ,c∇2f (11)

From the definition of the operators ∇j and ∂j , j = 1, 2 and equations (10) and (11) one
establishes that the Leibniz rule holds, that is

∇j(a · f) = (∂ja) · f + a · ∇jf for all f ∈ M1
1(R× Zq), a ∈ `11(Λ× Γ), (12)

and that the derivations are compatible with the `1s-sequence valued inner-product,

•〈∇jf, g〉+ •〈f,∇jg〉 = ∂j(•〈f,∇jg〉) for all f, g ∈ M1
1(R× Zq). (13)

Combining these two equations, we find that, for all f, g, h ∈ M1
1(R× Zq) that

∇j(•〈f, g〉h) = •〈〈∇jf, g〉h+ •〈f,∇jg〉h+ •〈f, g〉∇jh j = 1, 2.

Similar statements hold with ∂◦j and 〈·, ·〉• instead of ∂j and •〈·, ·〉.
As in Riemannian geometry, the curvature of the covariant derivatives is given by

F12 = ∇1∇2 −∇2∇1,

since ∂1 and ∂2 are two commuting derivations. It turns out that the curvature is constant.

Lemma 4.2. For any s ≥ 0 the curvature of the covariant derivatives is given up to a numerical
constant by the identity operator

F12 : M1
s(R× Zq)→ M1

s(R× Zq), F12 = −2πi Id.

Proof. For any s ≥ 0, from the definition of ∇j , j = 1, 2 it is clear that F12 is a linear and bounded
operator from M1

s+2(R× Zq) into M1
s(R× Zq). It is straightforward to show that F12f = −2π i f.

Since M1
s+2(R×Zq) is dense in M1

s(R×Zq) one can extend this operator to all of M1
s(R×Zq) and

the result follows.

5 Traces and the Connes-Chern number
In this section we introduce the Connes-Chern (classes and) numbers. In order to do this, we first
need to talk about traces. A trace on `1s(Λ×Γ) is a linear and bounded functional tr : `1(Λ×Γ)→ C
such that

tr(a1 \ a2) = tr(a2 \ a1) for all a1, a2 ∈ `1(Λ× Γ),

tr(a∗ \ a) ≥ 0, and tr(a∗) = tr(a)

If tr(a∗ \ a) = 0 if and only if a = 0, then the trace tr is called faithful. The functional

tr : `1s(Λ× Γ)→ C, tr(a) = a(0)

is a faithful trace on `1(Λ×Γ). Naturally, this trace extends to As by the isomorphism I. Similarly,

tr◦ : `1s(Γ
⊥ × Λ⊥)→ C, tr◦(b) = q |αβ| b(0)

defines a faithful trace on `1s(Γ⊥ × Λ⊥). Note the normalization of tr◦.

Lemma 5.1. The following equalities hold:

(i) tr(•〈f, g〉) = tr◦(〈g, f〉•), for all f, g ∈ M1
s(R× Zq),
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(ii) tr(∂ja) = 0, j = 1, 2, for all a ∈ `1s(Λ× Γ)

(iii) tr◦(∂◦j b) = 0, j = 1, 2, for all b ∈ `1s(Γ⊥ × Λ⊥),.

Proof. It is straightforward to establish that

tr(•〈f, g〉) = Vgf(0) = 〈f, g〉

and
tr◦(〈g, f〉•)) = q|αβ|(q|αβ|)−1Vfg(0) = 〈f, g〉

which is (i). The statements (ii) and (iii) are easily verified.

For any projection p ∈ `1s(Λ× Γ), s ≥ 1, its Connes-Chern number c1(p) is given by

c1(p) =
1

2πi |αβ|
tr
(
p[(∂1p)(∂2p)− (∂2p)(∂1p)]

)
.

By general facts [1] this is an integer number, being the index of a Fredholm operator, that depends
only on the class of p. If p = •〈g, h〉, g, h ∈ M1

s(R× Zq), s ≥ 1, then

c1(p) =
2π

i |αβ|
∑

ν,ν′∈Λ×Γ

(λ′γ − λγ′)Vhg(ν)Vhg(ν′)Vhg(−ν − ν′)ϕ(ν′, ν′ + ν)ϕ(ν, ν),

where ν = (λ, γ) ∈ Λ× Γ ⊂ R× R̂ and similarly for ν′ = λ′, γ′.
We will next show that if p = •〈g, h〉 and g and h in M1

s(R×Zq), s ≥ 1, are any pair of functions
that generate dual Gabor frames for L2(R × Zq) with respect to time-frequency shifts in Λ × Γ,
then c1(p) = q. In order to prove this, we need the following lemma.

Lemma 5.2. Let g, h ∈ M1
s(R × Zq), s ≥ 1 be a dual (not necessarily the canonical dual) pair of

Gabor frame generators with respect to Λ and Γ. Then

•〈f1,∇jg〉 •〈h, f2〉+ •〈f1, g〉 •〈∇jh, f2〉 = 0 for all f1, f2 ∈ M1
s(R× Zq).

Proof. By the Wexler-Raz relations for dual generators, we know that 〈g, h〉• = 1. Therefore
∂◦j 〈g, h〉• = 0. It follows that for all f1, f2 ∈ M1(R× Zq)

•〈f1,∇jg〉 •〈h, f2〉+ •〈f1, g〉 •〈∇jh, f2〉
= •〈f1 · (〈∇jg, h〉• + 〈g,∇jh〉•), f2〉 = •〈f1 · (∂◦j 〈g, h〉•), f2〉 = 0,

as stated.

These results allow us to extend the computation of the Connes-Chern character of projections
for higher-rank vector bundles over noncommutative tori, extending the ones in [5].

Proposition 5.3. If g, h ∈ M1
s(R×Zq), s ≥ 1 generate dual frames {π(ν)g}ν∈Λ×Γ and {π(ν)h}ν∈Λ×Γ

for L2(R× Zq), then, for p = •〈g, h〉,

c1(p) =
1

2πi |αβ|
tr(p [(∂1p)(∂2p)− (∂2p)(∂1p)]) = q.

Proof. By the Wexler-Raz relations 〈h, g〉• = 1. Hence, for all f1, f2 ∈ M1(R× Zq),

•〈f1, h〉 •〈g, f2〉 = •〈 •〈f1, h〉g, f2〉 = •〈f1 〈h, g〉•, f2〉 = •〈f1, f2〉. (14)
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In addition, using the linearity of the trace, the cyclic property tr(a · b) = tr(b · a) for all a, b ∈ As
and the result (12) one has the equalities:

tr(p [(∂1p)(∂2p)− (∂2p)(∂1p)])

= tr
(
•〈g, h〉 [(∂1 •〈g, h〉)(∂2 •〈g, h〉)− (∂2 •〈g, h〉)(∂1 •〈g, h〉)]

)
= tr

(
•〈g, h〉 [(•〈∇1g, h〉+ •〈g,∇1h〉)(•〈∇2g, h〉+ •〈g,∇2h〉)]

)
− tr

(
•〈g, h〉 [(•〈∇2g, h〉+ •〈g,∇2h〉)(•〈∇1g, h〉+ •〈g,∇1h〉)]

)
= tr

(
•〈g, h〉[•〈∇1g, h〉 •〈∇2g, h〉+ •〈∇1g, h〉 •〈g,∇2h〉]

)
+ tr

(
•〈g, h〉[•〈g,∇1h〉 •〈∇2g, h〉+ •〈g,∇1h〉 •〈g,∇2h〉]

)
− tr

(
•〈g, h〉[•〈∇2g, h〉 •〈∇1g, h〉+ •〈∇2g, h〉 •〈g,∇1h〉

+ tr
(
•〈g, h〉[•〈g,∇2h〉 •〈∇1g, h〉+ •〈g,∇2h〉 •〈g,∇1h〉]

)
= tr

(
•〈∇1g, h〉 •〈∇2g, h〉+ •〈g, h〉 •〈∇1g,∇2h〉+ •〈∇2g,∇1h〉+ •〈g,∇1h〉 •〈g,∇2h〉

)
− tr

(
•〈∇2g, h〉 •〈∇1g, h〉+ •〈g, h〉 •〈∇2g,∇1h〉+ •〈∇1g,∇2h〉+ •〈g,∇2h〉 •〈g,∇1h〉

)
= tr

(
•〈g, h〉 •〈∇1g,∇2h〉+ •〈∇2g,∇1h〉

)
− tr

(
•〈g, h〉 •〈∇2g,∇1h〉+ •〈∇1g,∇2h〉

)
. (15)

Using Lemma 5.2 we continue,

tr(p [(∂1p)(∂2p)− (∂2p)(∂1p)])

= −tr
(
•〈g,∇1h〉 •〈g,∇2h〉

)
+ tr

(
•〈∇2g,∇1h〉

)
+ tr

(
•〈g,∇2h〉 •〈g,∇1h〉

)
− tr

(
•〈∇1g,∇2h〉

)
= tr

(
•〈∇2g,∇1h〉

)
− tr

(
•〈∇1g,∇2h〉

)
= −tr

(
•〈(∇1∇2 −∇2∇1)g, h〉

)
= −tr

(
•〈F12g, h〉

)
= −〈F12g, h〉 = 2πi 〈g, h〉 = 2πiq|αβ|.

In the last steps we used that tr
(
•〈f1,∇jf2〉

)
= −tr

(
•〈∇jf1, f2〉

)
for all f1, f2 ∈ M1

s(R× Zq) and
j = 1, 2. The very last equality is due to the Wexler-Raz relations.

6 An energy functional for projections
Let now Ps be the set of all projections p ∈ `1s(Λ× Γ). For s ≥ 1 we define the energy-functional

E : Ps → R+
0 , E(p) =

1

4π |αβ|
tr
(
(∂1p)

2 + (∂2p)
2
)
.

The energy-functional takes non-negative values: the self-adjointness of all sequences p ∈ Ps
together with the fact that tr(p∗p) ≥ 0, for all p ∈ `1s(Λ× Γ) implies that

0 ≤ tr
(
(∂1p)

∗(∂1p) + (∂2p)
∗(∂2p)

)
= tr

(
(∂1p)

2 + (∂2p)
2
)
.

The following shows that there is an interesting relationship between the energy-functional E(p)
and the Connes-Chern number c1(p) of projections in `1(Λ× Γ).

Lemma 6.1. The energy-functional is bounded from below by the Connes-Chern-number:

E(p) ≥ |c1(p)| for all p ∈ Ps, s ≥ 1.

If p satisfies either of the two self-duality or anti-self duality equations,

(∂1p+ i∂2p) p = 0, or p (∂1p− i∂2p) = 0,

(∂1p− i∂2p) p = 0, or p (∂1p+ i∂2p) = 0,

then E(p) = |c1(p)|.
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Proof. Since p2 = p one has ∂jp = ∂j(p
2) = (∂jp)p+ p(∂jp) for j = 1, 2. This implies that

(∂1p)
2 + (∂2p)

2 = (∂1p)
2 p+ (∂1p) p (∂1p) + (∂2p)

2 p+ (∂2p) p (∂2p).

Applying the trace and using its cyclic property, we find

tr((∂1p)
2 + (∂2p)

2) = tr
(

(∂1p)
2 p
)

+ tr
(

(∂1p) p (∂1p)
)

+ tr
(

(∂2p)
2 p
)

+ tr
(

(∂2p) p (∂2p)
)

= 2 tr
(
p [(∂1p)

2 + (∂2p)
2]
)
.

This shows that 2π |αβ|E(p) = tr
(
p [(∂1p)

2 + (∂2p)
2]
)
. Then, the positivity of the trace gives,

0 ≤ tr
((

[∂1p+ i∂2p] p
)∗(

[∂1p+ i∂2p] p
))

= tr
(
p∗(∂1p)

∗(∂1p) p+ i p∗(∂1p)
∗(∂2p) p− i p∗(∂2p)

∗(∂1p) p+ p∗(∂2p)
∗(∂2p) p

)
= tr

(
p
[
(∂1p)

2 + (∂2p)
2)
])

+ i tr
(
p
[
(∂1p) (∂2p)− (∂2p) (∂1p)

])
. (16)

Similarly, one establishes that

0 ≤ tr
((

[∂1p− i∂2p] p
)∗(

[∂1p− i∂2p] p
))

= tr
(
p
[
(∂1p)

2 + (∂2p)
2)
])
− i tr

(
p
[
(∂1p) (∂2p)− (∂2p) (∂1p)

])
. (17)

Combining (16) and (17) yields the inequality

2π |αβ|E(p) = tr
(
p [(∂1p)

2 + (∂2p)
2]
)
≥ |tr

(
p
[
(∂1p) (∂2p)− (∂2p) (∂1p)

])
| = 2π |αβ c1(p)|.

Since tr(a∗a) = 0 if and only if a = 0 it is clear that equality holds if either of the two equations
above are satisfied.

6.1 An energy functional for Gabor frame generators
Let G(Λ× Γ) denote the set of all functions g ∈ M1

s(R× Zq), s ≥ 1, that generate a Gabor frame
{π(ν)g}ν∈Λ×Γ for L2(R × Zq). If we apply the energy functional E from the previous section to
the projection p = •〈g, S−1

g g〉, g ∈ G(Λ× Γ), then one finds that

E(p) =
π

|αβ|
∑

ν∈Λ×Γ

(λ2 + γ2) |Vg(S−1
g g)(ν)|2.

One then has an energy functional for Gabor frame generators g ∈ M1
s(R× Zq), s ≥ 1,

E : G(Λ× Γ)→ R+
0 , E(g) =

π

|αβ|
∑

ν∈Λ×Γ

(λ2 + γ2)
∣∣〈g, π(ν)S−1

g g
〉∣∣2 (18)

It follows from Lemma 6.1 that this is bounded from below by q. Moreover, we know that the
minimum value E(g) = q is obtained for those functions g, where p = •〈g, S−1

g g〉 satisfies either of
the two equations in Lemma 6.1. As it turns out, the duality principle for Gabor frames allows us
to find minimisers of this functional.

As we did earlier when we described the duality principle for Gabor frames, we let W be the
closure of span{π◦(ν◦)g} in M1

s(R× Zq).

Theorem 6.2. If g ∈ G(Λ× Γ) satisfies either of the following conditions,

(i) (∇1 + i∇2)g ∈W ,

(ii) (∇1 − i∇2)g ∈W ,

then g minimizes the energy functional (18), that is,

E(g) =
π

|αβ|
∑

ν∈Λ×Γ

(λ2 + γ2)
∣∣〈g, π(ν)S−1

g g
〉∣∣2 = q.
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Proof. Let p = •〈g, S−1
g g〉. We will show that if (i) is satisfied, then (∂1p + i∂2p)p = 0 and if

(ii) holds then (∂1p − i∂2p)p = 0. In either case Lemma 6.1 implies that p minimizes the energy
functional E. Using the fact that g and S−1g are dual frame generators, it is a straightforward
computation with the help of (14) to show that

(∂1p± i∂2p)p = •〈(∇1 ± i∇2)g, S−1g〉+ •〈g 〈(∇1 ∓ i∇2)S−1g, g〉•, S−1g〉 (19)

Since 〈S−1g, g〉• = 1 it follows that

〈∇jS−1g, g〉• + 〈S−1g,∇jg〉• = ∂j〈S−1g, g〉• = 0, j = 1, 2.

Therefore
〈(∇1 ∓ i∇2)S−1g, g〉• = −〈S−1g, (∇1 ± i∇2)g〉•.

With this we continue the calculation in (19) and establish that

(∂1p± i∂2p)p = •〈(∇1 ± i∇2)g, S−1g〉 − •〈g 〈S
−1g, (∇1 ± i∇2)g〉•, S−1g〉. (20)

The duality principle for Gabor frames yields that any function f ∈W can be written as

f = g 〈S−1g, f〉•.

The assumption (i) and (ii) ensure that we have such a representation available for the function
(∇1 ± i∇2)g. Therefore

g 〈S−1g, (∇1 ± i∇2)g〉• = (∇1 ± i∇2)g.

Using this in (20) yields that

(∂1p± i∂2p)p = •〈(∇1 ± i∇2)g, S−1g〉 − •〈(∇1 ± i∇2)g, S−1g〉 = 0.

Thus concluding the proof.

Note that conditions (i) and (ii) in Theorem 6.2 are first order differential equations. The
following lemma details a solution to these soliton equations for any topological charge q, provided
the parameters α, β, r and s defining the lattices Λ and Γ are suitably chosen.

Lemma 6.3. If α, β, r, s and q are such that

(αβq2)−1 + r◦s◦/q ∈ Z and |αβ| q < 1,

then, for any non-zero c ∈ C and any λ ∈ C the Schwartz function

g(x, k) = c e−πx
2−iλx, x ∈ R, k ∈ Zq,

minimizes the energy functional E for the non-commutative torus with these parameters.

Proof. It is straightforward to show that (∇1 + i∇2)g = λg, which then implies that (∇1 + i∇2)g ∈
W . The function g( · , k), for k ∈ Zq, belongs to the Schwartz space, hence, in particular to all the
weighted modulation spaces M1

s(R×Zq) for all s ≥ 0. Furthermore, the knowledge that the Gabor
system {EmβqTnαg̃}m,n∈Z, where g̃ is the generalized Gaussian g(·, k), is a frame for L2(R) if and
only if |αβ|q < 1 together with Lemma 3.8 shows that g ∈ G(Λ×Γ). Hence the result follows from
Theorem 6.2.

It is unknown whether there are other functions besides the Gaussian that satisfy the assump-
tions of Theorem 6.2.

7 The continuous picture – the Moyal plane
We close with the construction of solitons of general topological charge for the Moyal plane A which
extends the results in [5]. So far we have considered Gabor systems of the form {π(ν)g}ν∈Λ×Γ,
where Λ and Γ are lattices in the time and frequency domain. The presented theory also works for
continuous Gabor systems in L2(R × Zq), where one takes Λ × Γ to be the entire time-frequency
plane. That is, for some g ∈ M1

s(R× Zq) we consider the Gabor system of the form

{Eω,cTx,l g : (x, l, ω, c) ∈ R× Zq × R̂× Ẑq}.
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Such a Gabor system is a frame for L2(R× Zq) if there exists constants A,B > 0 such that

A ‖f‖22 ≤
∑
c,l∈Zq

∫
R2

|〈f,Eω,cTx,lg〉|2 d(x, ω) ≤ B ‖f‖22 for all f ∈ L2(R× Zq).

The theory of continuous Gabor frames is not as intricate as the one of discrete Gabor frames
because the Moyal identity states that all functions g ∈ M1

s(R × Zq) (in fact, all functions in
L2(R× Zq)) generate a continuous Gabor frame with bounds A = B = q ‖g‖22. Specifically,∑

c,l∈Zq

∫
R2

|〈f,Eω,cTx,lg〉|2 d(x, ω) = q ‖g‖22 ‖f‖22 for all f ∈ L2(R× Zq). (21)

Further, we need the vector space M1
s(R × Zq × R̂ × Ẑq). It becomes an involutive Banach

algebra under the twisted convolution and twisted involution given by

(k1 \ k2)(ν) =
∑

Zq×Zq

∫
R2

k1(ν′)k2(ν − ν′)ϕ(ν′, ν − ν′) dν′, ν ∈ R× Zq × R̂× Ẑq

k∗(ν) = ϕ(ν, ν)k(−ν), ν ∈ R× Zq × R̂× Ẑq.

One can show that the map

I : k 7→
∑

Zq×Zq

∫
R2

k(ν)π(ν) dν

is an isomorphism from M1
s(R× Zq × R̂× Ẑq) onto the involutive Banach algebra

As =
{
T : M1

s(R× Zq)→ M1
s(R× Zq), T =

∑
Zq×Zq

∫
R2

k(ν)π(ν) dν, k ∈ M1
s(R× Zq × R̂× Ẑq)

}
.

Indeed, As is an involutive Banach algebra for the norm ‖T‖As
= ‖k‖L1

s
, composition of operators

and the involution of T ∈ As being its L2-Hilbert space adjoint T ∗. We define the left action of a
function k ∈ L1

s(R× Zq × R̂× Ẑq) on a function f ∈ M1
s(R× Zq) by

k · f = I(k)f =
∑

Zq×Zq

∫
R2

k(ν)π(ν)f dν.

The M1
s(R× Zq × R̂× Ẑq)-valued inner-product is defined by

•〈·, ·〉 : M1
s(R× Zq)×M1

s(R× Zq)→ M1
s(R× Zq × R̂× Ẑq), •〈f, g〉 = Vgf.

One can verify analogous of properties (3). That is, for all f, g ∈ M1
s(R × Zq) and for all k ∈

M1
s(R× Zq × R̂× Ẑq) one has,

k \ •〈f, g〉 = •〈k · f, g〉 , •〈f, g〉 \ k
∗ = •〈f, k · g〉 , (•〈f, g〉)

∗ = •〈g, f〉

•〈f, f〉 ≥ 0 and •〈f, f〉 = 0 ⇔ f = 0. (22)

The associated enveloping C∗-algebra is the Moyal plane A represented by compact operators on
L2(R× Zq), see [5] for the scalar case q = 1.

Since we are really considering the short-time Fourier transform, that is Gabor systems with
time-frequency shifts along the entire time-frequency plane, the annihilator is just a single point.
We therefore have A◦s ' C, where C takes the role of `1s(Γ⊥ × Λ⊥) from earlier:

A◦s =
{
T : M1

s(R× Zq)→ M1
s(R× Zq) : T = b, b ∈ C

}
.

The right action of elements b ∈ C on a function f ∈ M1
s(R× Zq) is given by

f · b = I(b)f = bf.

And the C-valued inner-product on M1
s(R× Zq) is now

〈·, ·〉• : M1
s(R× Zq)×M1

s(R× Zq)→ C , •〈f, g〉 = q 〈g, f〉.

A variation of [5, Prop. 5.1] shows that M1
s(R × Zq) is a singly generated projective module

over A, that is M1
s(R× Zq) is a line bundle over the Moyal plane and the Moyal plane algebra As

is Morita equivalent to C.
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Proposition 7.1. The algebra As is Morita equivalent to C and M1
s(R × Zq) is an equivalence

bimodule. Any g ∈ M1
s(R × Zq) with ‖g‖L2(R×Zq) = 1 generates M1

s(R × Zq), that is for any
f ∈ M1

s(R× Zq) we have f = •〈f, g〉g.

Since the annihilator of the full time-frequency plane only consists of one point the main results
of the Gabor frame theory reduce to well known facts:

The fundamental identity of Gabor analysis:
just states that for all f, g, h ∈ M1

s(R× Zq) one has that

•〈f, g〉 · h = f · 〈g, h〉• (23)

that is,
∑
Zq

∫
R2

〈f, π(ν)g〉π(ν)hdν = q 〈h, g〉 f , a version of the Moyal identity (21).

The Wexler-Raz biorthogonality relations:
just characterises when two functions g, h ∈ M1

s(R × Zq) generate dual continuous Gabor frames.
This is the case if and only if

〈g, h〉• = 1, that is 〈h, g〉 = q−1,

and the construction of a pair of generators for dual continuous Gabor frames is trivial.
The duality principle for Gabor frames:

just becomes the simple statement, that for g and h such that 〈g, h〉• = 1, we have

f = g · 〈h, f〉• for all f ∈W = span g. (24)

As in Section 4, we have covariant derivatives on the line bundle M1
s(R× Zq):

∇1 : M1
s+1(R× Zq)→ M1

s(R× Zq), ∇1f( · , k) = 2π iMf( · , k), k ∈ Zq,

∇2 : M1
s+1(R× Zq)→ M1

s(R× Zq), ∇2f( · , k) = Df( · , k), k ∈ Zq.

On L1
s(R× Zq × R̂× Ẑq), for s ≥ 0, we define derivations ∂1 and ∂2,

∂j : L1
s+1(R× Zq × R̂× Ẑq)→ L1

s(R× Zq × R̂× Ẑq), j + 1, 2

given, for (x, l, ω, c) ∈ R× Zq × R̂× Ẑq) by,

(∂1k)(x, l, ω, c) = 2πix k(x, l, ω, c), (∂2k)(x, l, ω, c) = 2πiω k(x, l, ω, c).

On C there are just the trivial derivations:

∂◦j : C→ C, ∂◦j b = 0, b ∈ C, j = 1, 2.

Clearly, the isomorphisms I and I◦ between M1
s(R×Zq × R̂× Ẑq) and As and between C and A◦s,

respectively, allow us define the derivations on As and A◦s, such that

∂j : As+1 → As and ∂◦j : A◦s+1 → A◦s for j = 1, 2.

In parallel with what happens for the discrete case, from the definition of the operators ∇j and
the derivations ∂j , j = 1, 2 one establishes the Leibniz rule,

∇j(a · f) = (∂ja) · f + a · ∇jf for all f ∈ M1
1(R× Zq), a ∈ L1

s(R× Zq × R̂× Ẑq) (25)

and that there is compatibility with the M1
s(R× Zq × R̂× Ẑq) valued inner-product •〈·, ·〉,

∂j(•〈f, g〉) = •〈∇jf, g〉+ •〈f,∇jg〉 for all f, g ∈ M1
1(R× Zq). (26)

Combining these two equations we find that, for all f, g, h ∈ M1
1(R× Zq),

∇j(•〈f, g〉h) = •〈∇jf, g〉h+ •〈f,∇jg〉h+ •〈f, g〉∇jh j = 1, 2.

Similar statements hold with ∂◦j and 〈·, ·〉• instead of ∂j and •〈 · , · 〉.
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The curvature of the covariant derivatives is, as earlier, given by

F12 = ∇1∇2 −∇2∇1

and is the linear and bounded operator computed to be,

F12 : M1
s(R× Zq)→ M1

s(R× Zq), F12f = −2πi Id.

The functional
tr : M1

s(R× Zq × R̂× Ẑq)→ C, tr(k) = k(0),

is a faithful trace on M1
s(R×Zq× R̂× Ẑq). Naturally, this trace extends to As by the isomorphism

I. Similarly,
tr◦ : C→ C, tr◦(b) = q−1b, b ∈ C

defines a faithful trace on C.
For all f, g ∈ M1

s(R× Zq), k ∈ L1(R× Zq × R̂× Ẑq), b ∈ C and j = 1, 2,

tr(∂jk) = 0, tr◦(∂◦j b) = 0 and tr(•〈f, g〉) = tr◦(〈g, f〉•).

If p ∈ L1
s(R × Zq × R̂ × Ẑq), s ≥ 1, is a projection, p2 = p = p∗, its Connes-Chern number is

now given by

c1(p) =
q2

2πi
tr
(
p[(∂1p)(∂2p)− (∂2p)(∂1p)]

)
.

Note the difference when compared to the one used earlier for discrete Gabor systems. In a way
similar to the prove of Proposition 5.3, one shows the following.

Proposition 7.2. If g, h ∈ M1
s(R × Zq), s ≥ 1, generate dual continuous Gabor frames, that is,

〈h, g〉 = q−1, then, for p = •〈g, h〉 one finds

c1(p) = q.

Let now Ps be the set of all projections p ∈ M1
s(R × Zq × R̂ × Ẑq). For s ≥ 1, we define the

energy-functional

E : Ps → R+
0 , E(p) =

q2

4π
tr
(
(∂1p)

2 + (∂2p)
2
)
.

Similarly to the discrete case, one shows that energy-functional is bounded from below by the
Connes-Chern-number. Specifically,

E(p) ≥ |c1(p)| for all p ∈ Ps, s ≥ 1. (27)

And, if p satisfies either of the two equations

(∂1p+ i∂2p) p = 0, or p (∂1p− i∂2p) = 0,

(∂1p− i∂2p) p = 0 or p (∂1p+ i∂2p) = 0,

then E(p) = |c1(p)|. Let G denote the set of all functions g ∈ M1
s(R × Zq), s ≥ 1, which generate

a continuous Gabor frame {π(ν)g}ν∈R×Zq×R̂×Ẑq
for L2(R × Zq). Note that this set comprises all

functions in M1
s(R× Zq). If we apply the energy functional E to the projection p = •〈g, S−1

g g〉 =

‖g‖−2
2 •〈g, g〉, g ∈ G, we find that

E : G → R+
0 , E(g) =

q2 π

‖g‖22

∑
Zq×Zq

∫
R2

(x2 + ω2) |Vgg(ν)|2 dν, (28)

where ν = (x, l, ω, c) ∈ R× Zq × R̂× Ẑq. This functional is bounded below by q.
Next one shows the analogue of Theorem 6.2.

Proposition 7.3. The unique solution among all functions g ∈ M1
s(R × Zq) to either of the

conditions
(∇1 ± i∇2)g ∈ span g

is the generalized Gaussian

g(x, k) = ck e
−πx2−iλx, x ∈ R, k ∈ Zq, {ck} ∈ Cq.
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Hence, for the continuous Gabor transform and its associated soliton equation, the only solution
that we can produce is the generalized Gaussian. Note the major difference here compared to the
one for the discrete Gabor frames considered before: there one needs (∇1 ± i∇2)g to lie in the
space spanned by all time-frequency shifts of the adjoint lattice of the generator g. It is therefore
reasonable to conjecture the existence of more functions besides the Gaussian that solve the soliton
equation for discrete Gabor frames as described in the previous sections.
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