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Abstract. The existing contribution plot-based reconstruction fault identification 

methods suffer from low identification accuracy and serious trailing effect. In 

this paper, a new fault identification method is proposed based on a combination 

of reconstruction contribution plot and structured residual method. The fault di-

rection vector is calculated by utilizing the structured residual method. The re-

construction contribution plot utilizes the obtained fault direction vector to accu-

rately localize the fault variable, where the fault source can be accurately local-

ized subsequently. The experimental results show that, compared with the tradi-

tional PCA and PPCA (PCA based on probability) reconstruction contribution 

method, this algorithm can accurately identify the fault variables, and reduce the 

influence of the fault variables on the non-fault variables. 
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1 Introduction 

Variously fault identification algorithms have currently evolved based on the use of 

fuzzy logic theory, multivariate statistical analysis, artificial intelligence and other 

types of algorithms. Among these algorithms, algorithms based on statistical analysis 

and its improvement has been widely used. Miller [1] introduced the contribution plot 
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method to reflect the contribution of each variable to the statistics for the first time. 

Based on this work, various PCA model-based contribution plot methods have been 

proposed subsequently, including complete decomposition contribution, partial decom-

position contribution, diagonal contribution, angle-based contribution and reconstruc-

tion-based contribution (RBC). The traditional reconstruction contribution plot method 

would increase the contribution of non-fault variables when localizing the fault varia-

bles, it is necessary to combine multivariate statistical methods and analytical methods 

to investigate and decouple the fault vectors by constructing appropriate residuals, 

where the accuracy of fault separation can be improved [3-4]. When the fault range is 

set to a larger value [5], RBC can identify the single-variable fault with 100% accuracy. 

However, the accuracy of multivariable fault identification [6] cannot be 100%.There-

fore, it is urgent to study new methods to improve the traditional reconstruction contri-

bution method. 

A weighted RBC-based [7] fault identification method was proposed, which can re-

duce the impact of fault variables on non-fault variables. By leveraging the missing 

values, an improved reconstruction contribution plot method was proposed to signifi-

cantly reduce the “pollution effect” on non-fault variables [8]. A kernel principal com-

ponent analysis (KPCA) based fault identification method is proposed based on data 

reconstruction [9], it can desirably avoid the single-variable fault in the traditional 

KPCA algorithm and obtain reduced computational complexity of the data indices. To 

overcome the inconsistent monitoring results with two different monitoring statistics, a 

probabilistic principal component analysis-based reconstruction contribution plots 

(PPCA-RCP) was proposed by using monitoring statistics of a unified metric [10]. The 

problem of inaccurate fault variables localization by traditional contribution plot anal-

ysis method is further investigated, where a new fault localization method was proposed 

by combining the nearest neighborhood imputation and the traditional contribution plot 

[11-12].  

The fault variable acquisition process is relatively complicated in complex systems, 

where the identification accuracy and real-time performance are difficult to be guaran-

teed. Therefore, a reconstruction contribution plots combined structured residual (RCP-

SR) method is proposed based on reconstruction contribution plot and structured resid-

ual. The structured residual method is used to calculate the fault variable direction and 

the fault variable. Subsequently, the direction data is fed to the reconstruction contri-

bution map for accurate fault localization, which can effectively avoid the trailing effect 

and improve the fault identification rate. 

2 Reconstruction contribution Method 

The contribution plot can be utilized to visualize the results of fault variables with a 

bar chart, which can reflect the severity of the fault variables and visualize the impact 

of the fault variable on the non-fault variable. The contribution rate of all principal 

variables is reflected in the contribution plot, which can be used to intuitively observe 

the statistical contribution and determine an abnormal data. 



Duo to single fault variable, the fault sample x  can be decomposed as normal and 

faulty components, 

                                                    
*

i ix x f= +
 
                                                 (1) 

where 
*x  is the normal component, 

i  is the direction vector of the fault and 
if  is 

the fault amplitude of the fault variable. 

The reconstructed value 
iz  can be expressed as follow, 

                                                    i i iz x f= −                                                   (2) 

The statistics D  of observed samples can be expressed as, 

                                                  
1( ) TD x xC x−=                                              (3) 

For each variable ( 1,2, , )ix i m= , the statistical contribution of monitoring sta-

tistics D  from 
ix  to x  can be expressed as, 

                                                 
0.5 2( )D

i ic xC −=                                               (4) 

where 
i  is the direction vector of the i-th fault variable vector. 

According to (4.3), the monitoring measure of the reconstructed sample 
iz  can be 

expressed as follows, 

                                        
1( ) T

i i iD z z C z−=                                                (5) 

If the method is to minimize the monitoring measure of reconstruction sample ( )iD z

, it can be obtained by taking the partial derivative of 
if  as follow 

                                              

( ( ))
0i

i

d D z

df
=                                              (6) 

The amplitude 
if  can then be expressed as, 

                                     
1 1 1( )T T T

i i i if C C x  − − −=                                     (7) 

When the fault occurs, the reconstruction method is utilized to localize the fault. 

When the fault direction 
i  is correctly localized, the fault variable identification is cor-

rect if the monitoring measure of reconstruction sample ( )iD z  is lower than the control 

threshold. Otherwise, the fault variable identification is incorrect. 

For a single variable, the reconstruction contribution[2] can be calculated as, 

                  
1 1 1 1( ) ( )= ( )RBC T T T

i i i i i ic index x index z xC C C x   − − − −= −                (8) 

For multiple variables, the reconstruction contribution[13] can be calculated as, 
1 1 1 1( )RBC T T Tc xC C C x− − − −=    

 
                                (9)  

where   is the matrix constructed by the fault direction vector. 

3 Structured Residual 

3.1 The Principle of Structured Residual 

From the analysis in the previous section, it can be seen that the fault direction vector 

i  directly determines the fault localization accuracy. In order to improve the accuracy, 



it is required to obtain the correct fault direction vector 
i . In this paper, the fault di-

rection vector 
i  based on PCA structured residual is proposed, which is further illus-

trated as follows. 

Since the original residual T

e et P x=  represents the deviation of the monitored vari-

able from the principal component subspace (PCS) at each sampling time, the original 

residual can be used to construct the structured residual. Since the relationship between 

PCS and residual Subspace (RS) is orthogonally complementary in space, it can be 

obtained for system with fault, 

                                                      
*

0 0T

eP x =                                                    (10) 

                                             
T T

e e et P x P f f = = =                                          (11) 

where *

0x  represents the true variable value without impact of measurement and 

noise, T

eP  represents the fault mapping vector and f  represents the incident matrix. 

Based on (10) and (11), it can be obtained, 

                                                     
T

eP =
     

                                                 (12) 

In particular,   represents the mapping matrix from individual fault to original re-

sidual 
et , where each column represents the fault mapping coefficient vector from one 

corresponding fault to original residual 
et .  

By introducing the transformation matrix G , the structured residual   is con-

structed by the original residual, 

                                             eGt G f Hf = = =                                         (13) 

where the number of structured residuals is the number of rows in G  and H G=  

represents the mapping matrix from each fault to the structured residual. The i-th row 

in the incidence matrix is represented by 
i . When corresponding elements in the i-th 

row is 0, it indicates that the residual has no response to the fault, i.e., the i-th row T

ig  

of G  is orthogonal to the corresponding columns in  . 

                                                  0| 0T i

i fcodeg  = =                                               (14) 

where 0| 0i

fcode = =  represents a matrix consisting of the columns corresponding to 

the row 0 element of the incidence matrix. Since the number of rows in   is m , the 

solution exists for (14) and there exists the following relationship between its rank and 

the number of rows in  , 

                                            0[ | 0]i

fcoderank m = =                                         (15) 

To guarantee that 
i  corresponds to the fault from the 1 value in i-th row of the 

incidence matrix, the i-th row of the incidence matrix should satisfy the following nec-

essary condition, 

                             

1

0 0[ | 0 ] [ | 0] 1i i

fcode j fcoderank rank  = == = = +                   (16) 

where 1

j  is the column in   not belonging to the column of 0| 0i

fcode = = . 

The mapping vector matrix and the incidence matrix directly determine the transfor-

mation matrix, and it can directly obtain T

eP with PCA statistical model. 



4 The fault identification algorithm flow based on reconstructi-

on contribution plot and structured residual 

Based on the reconstruction contribution plot and structured residual method as de-

scribed in the previous two sections, a fault identification algorithm is designed by 

combining the reconstruction contribution plot and structured residual, where the algo-

rithm flow is summarized in Fig. 1. The basic idea is briefly described as follows. 

Firstly, the fault direction vector 
i  is calculated by utilizing the structured residual al-

gorithm. Secondly, the obtained fault direction vector is fed into the reconstructed con-

tribution plot for accurate fault variable localization. The steps of the algorithm are 

further summarized as follows. 

（1）The fault direction vector 
i  can be obtained with the structured residual 

algorithm;  

（2）The fault sample can be expressed as normal and faulty components, i.e., 
*

i ix x f= + ;  

（3）The PCA based method is utilized to reconstruct the fault variable by uti-

lizing 
i i iz x f= − ; 

（4）According to the statistics of observed sample 1( ) TD x xC x−= , the recon-

struction monitoring measure can be expressed as 1( ) T

i i iD z z C z−= ； 

（5）By taking partial derivative of reconstruction monitoring measure, i.e., 

( ( ))
0i

i

d D z

df
= , the fault amplitude can be obtained as 1 1 1( )T T T

i i i if C C x  − − −= ; 

（6）The contribution from the fault types of a single fault variable and multiple 

fault variables can be calculated with 1 1 1 1= ( )RBC T T T

i i i i ic xC C C x   − − − −  and 

1 1 1 1( )RBC T T Tc xC C C x− − − −=     , respectively; 

（7）The fault source can be accurately localized according to the identified fault 

variables.  

5 Simulation validation and analysis 

5.1 Simulation Environment Setting 

The TE process is a realistic simulation of the actual production plant. The entire 

process consists of five operating units, i.e., reactor, product condenser, gas-liquid sep-

arator, recycle compressor and stripper. Four types of gaseous materials mainly partic-

ipate in the reaction, which generates two types of products G and H via chemical re-

action. Moreover, a small amount of inert gas B and gaseous by-products are removed 

by venting during the product feed, where 22 measurement variables are used in the 

continuous process. There are 21 types of faults in the TE process, which is shown in 



Table 1. In this section, fault 1 and fault 14 are used as examples to validate the practi-

cability of the algorithm, wherein the variables associated with fault 1 are 
1x , 

4x  and 

18x , and the fault variables associated with fault 14 are 
9x  and 

21x .  

Table 1 A summary of the fault types in the TE process 

Number Process Variables     Types 

Fault 1 Feed ratio of Material A/C changes Step 

Fault 2 Composition ratio changes Step 

Fault 3 Temperature change of Material D Step 

Fault 4 Temperature change of the reactant cooling water inlet Step 

Fault 5 Temperature change of the reactant cooling water inlet Step 

Fault 6 Loss of Material A Step 

Fault 7 Head loss of Material C Step 

Fault 8 Composition changes of Materials A, B, C  Random 

Fault 9 Temperature change of Material D  Random 

Fault 10 Temperature change of Material C  Random 

Fault 11 Temperature change of reactor cooling water inlet  Random 

Fault 12 Temperature change of condenser cooling water inlet  Random 

Fault 13 Reaction kinetic constant change Slow shifting 

Fault 14 Reactor cooling water valve Sticky 

Fault 15 Condenser cooling water valve Sticky 

Fault 16-21 Unknown Unknown 

Table 2 Fault Description 

Fault Number Fault Description
 

Fault Variables
 

Fault Type 

Fault 1 Feed ratio of Material A/C 1x ,
4x ,

18x  Step 

Fault 14 Reactor cooling water valve 9x ,
21x  Sticky 

5.2 The analysis and comparison for simulation 

           
  Fig. 1-a basic RBC method                    Fig. 1-b PCA-MRCP method 

          



         Fig. 1-c PPCA-RCP method                      Fig. 1-d RCP-SR method 

By comparing RBC, PCA-MRCP, PPCA-RCP and proposed RCP-SR methods, the 

location analysis of fault 1 is shown in Fig. 1-a, 1-b, 1-c, and 1-d. In these figures, the 

darkness of the shadow color represents the contribution rate of reconstruction, among 

which the darker color represents the larger contribution rate, and the variable with a 

larger contribution rate is defined as the fault variable. From these figures, it can be 

seen that there is a trailing effect from the time 160 to 400, because the reason is that 

the variables are not independent of each other in the initial stage of the fault. Although 

there are certain relationships between the variables after time 400, the system will 

reach a new stable state due to the self-regulation of the control system. The reconstruc-

tion contribution plot based on traditional RBC method is relatively chaotic, resulting 

in some non-faulty variables being misidentified as fault variables. Ultimately, it affects 

the identification and leads to trailing effects. The PCA-MRCP method suffers from 

the inconsistent fault variables identification issue when different PCA metrics are 

used, where the trailing effect is also generated. The PPCA-RCP method is better than 

the traditional method. Consistent with the previous process analysis, x1 x4 and x18 

can be correctly identified to be the most obvious three fault variables. The RCP-SR 

method can overcome the inconsistency of the localization results when monitoring the 

statistics of different metrics based on the PCA-MRCP method, and can localize the 

fault variables more accurately and effectively.  

  
       Fig. 2-a basic RBC method                    Fig. 2-b PCA-MRCP method 

                   
  Fig. 2-c PPCA-RCP method                  Fig. 2-d RCP-SR method 

The fault localization analysis is shown in Fig. 2-a, 2-b, 2-c and 2-d. Although the 

traditional RBC method can correctly identify the fault variable to be x2, x9 and x21, 

the localized fault variables are not consistent with the actual fault variables, where the 

trailing effects are rather significant. Although the PCA-MRCP method can localize the 

fault variables, the localization results are inconsistent and affect determination of the 

fault variables. The PPCA-RCP method can localize the fault variables accurately, but 



the trailing problem exists. The proposed RCP-SR can desirably resolve the drawbacks 

of the above methods with significant superiority. 

6 Conclusion 

A new fault vector direction vector calculation algorithm is developed based on 

structured residuals, and a fault identification algorithm is proposed based on recon-

struction contribution plot and structured disability. Simulation example of the algo-

rithm is also designed based on the fault identification algorithm workflow. The simu-

lation results show that the proposed algorithm can achieve superior performance com-

pared to the conventional RBC, PCA-MRCP and PPCA-RCP methods, which can ob-

tain reduced impact on non-fault variables, suppression of trailing effects and improved 

fault localization accuracy. 
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