
Reducing Overparametrization in MRAC for Hyperbolic PDEs
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Abstract— We construct a method of dealing with the
problem of overparameterization in model reference adaptive
control (MRAC) of 2× 2 linear hyperbolic partial differential
equations (PDEs). The method is based on linear interpolation
of the uncertain parameters. The proposed method is demon-
strated in simulations of the fluid mechanics of a drilling system,
and compared to a previously derived, overparameterized
MRAC scheme, showing improved tracking and convergence
properties.

I. INTRODUCTION

A. Background

Recently, a model reference adaptive controller (MRAC)
for 2× 2 coupled linear hyperbolic partial differential equa-
tions (PDE) was derived [1]. The MRAC controller manages
to make the system’s measured output asymptotically track
a signal generated from a reference model chosen to be a
simple transport delay. This is achieved from minimal knowl-
edge of the system parameters, by transforming the system
into an equivalent ”canonical form” for which the MRAC
problem becomes feasible. The method then introduces a
set of filters, known as swapping filters, that can be used
to obtain a linear parametric model, from which standard
estimation techniques like the gradient method can be used.

The MRAC controller from [1] is employed in [2] for
controlling the bottom hole pressure (BHP) in managed
pressure drilling (MPD). MPD is a technique that enables
pressure control in wells with narrow pressure windows
and varying formation pressures [3]. The drilling mud is in
MPD sealed from the atmosphere, and the well’s pressure
profile is altered by manipulating the topside choke, thus
limiting the mud exiting the well. As the well is typically
several kilometers long, and the choke is topside, the time-
delay caused by the finite pressure-wave propagation speed
may become significant. BHP pressure control is therefore
typically performed in a slow manner. The backstepping-
based MRAC controller presented in [1] managed to take
the propagation delays into account, and hence performed
better than a conventional PI controller. However, as the
method in [1] employs a series of transformations to bring
the system of interest into the required canonical form, the
initial physical representation of the system is lost. Specifi-
cally, the only uncertain parameter, the well model’s friction
factor, becomes a coefficient in the observer canonical form’s
nonlinear, distributed parameters. The MRAC controller from
[1] is not able take advantage of this relationship, and treats
the uncertain parameters in the observer canonical form
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as completely unknown. The unknowns therefore go from
single to infinite in number.

In this paper, we seek to improve the performance of the
MRAC controller applied to MPD by reducing overparam-
eterization. This is done by taking advantage of the fact
that the transformations mapping the MPD model to the
observer canonical form are known. By approximating the
observer canonical form’s distributed parameters as a linear
interpolation in the friction factor, we thus reduce the number
of unknowns in the canonical form from an infinite number
to a single one, and hence avoiding overparameterization.

Systems of linear hyperbolic PDEs have attracted consid-
erable attention due to the vast amount of different physical
systems that can be modeled by them, ranging from the
already mentioned oil wells [4], to open channel flows [5]
and predator-prey systems [6]. Early control and estimation
results can be found in [7], [8], [9] and more recently in
[10]. For the last decade, backstepping has been used with
great success for designing controllers and observers for
hyperbolic PDEs, with the first result being [11], where a
1-D linear hyperbolic PDE was non-adaptively stabilized
using this technique. The method was subsequently extended
to systems of coupled hyperbolic PDEs in [12], [13], [14].
In 2014, the first result using backstepping for adaptive
control of hyperbolic PDEs was presented in [15], where
a 1-D linear hyperbolic PDE was adaptively stabilized using
the aforementioned swapping technique in conjunction with
backstepping. More results utilizing the backstepping method
for adaptive control of linear hyperbolic PDEs quickly fol-
lowed in [16], [17], [18], [19], [20], [21].

Although the problem investigated in this paper, formally
stated in Section II, is motivated from BHP control in MPD,
the problem is in Section III solved for a more general class
of 2×2 systems of hyperbolic PDEs. The derived controller
is then applied to the BHP control in MPD in section VI, and
compared to the overparameterized control design previously
presented in [2]. Some concluding remarks are offered in
Section VII.

B. Notation
For some function f and some domain D, such that f :

D → R, we define

f ∈ B(D)⇔ |f(z)| <∞, ∀z ∈ D. (1)

For a time varying, signal f : [0,∞)→ R we define

f ∈ L2 ⇔
∫ ∞
0

|f(t)|2dt <∞ (2a)

f ∈ L∞ ⇔ sup
t≥0
|f(t)| <∞. (2b)



II. PROBLEM STATEMENT

We consider systems of 2 × 2 coupled linear hyperbolic
PDEs. They can be stated as

ut(x, t) + λ(x)ux(x, t) = c1(x)v(x, t) (3a)
vt(x, t)− µ(x)vx(x, t) = c2(x)u(x, t) (3b)

u(0, t) = qv(0, t) (3c)
v(1, t) = k1U(t) + d (3d)
u(x, 0) = u0(x) (3e)
v(x, 0) = v0(x) (3f)
y(t) = k2v(0, t), (3g)

where u(x, t), v(x, t) are system states defined for x ∈
[0, 1], t ≥ 0 and y is the measurement. The parameters
µ, λ, c1, c2, q, k1, k2, d and initial conditions u0, v0 are un-
known, but assumed to satisfy

µ, λ, ∈ C1([0, 1]), µ(x), λ(x) > 0,∀x ∈ [0, 1] (4a)

c1, c2 ∈ C0([0, 1]), q, k1, k2 ∈ R\{0} (4b)
d ∈ R, u0, v0 ∈ B([0, 1]). (4c)

Although the exact profiles of λ and µ are not needed, it is
assumed that the total transport delays in each direction, and
the sign of the product k1k2, that is

dα = λ
−1

=

∫ 1

0

ds

λ(s)
, dβ = µ−1 =

∫ 1

0

ds

µ(s)
(5)

and

sign(k1k2) (6)

are known quantities. In [1], an adaptive control law U(t) is
designed so that the system is stabilized, and the following
tracking goal is achieved

lim
t→∞

∫ t+T

t

(y(s)− yr(s))2ds = 0 (7)

for some bounded constant T > 0, where the reference signal
yr(t) is generated from the reference model

at(x, t) + λax(x, t) = 0, a(0, t) = b(0, t)

a(x, 0) = a0(x) (8a)
bt(x, t)− µbx(x, t) = 0, b(1, t) = r(t)

b(x, 0) = b0(x), yr(t) = b(0, t) (8b)

where a0, b0 ∈ B([0, 1]). The signal r(t) is a bounded
signal of choice. The goal (7) was achieved from using the
sensing (3g), and knowledge of the quantities (5), only, but
all uncertain system parameters were treated as completely
unknown.

III. REDUCING OVERPARAMETRIZATION

A. Observer canonical form

The controller in [1] is derived by transforming system (3)
into the following observer canonical form

wt(x, t) + λwx(x, t) = 0 (9a)

zt(x, t)− µzx(x, t) = µθ(x)z(0, t) (9b)
w(0, t) = z(0, t) (9c)
z(1, t) = ρU(t)− r(t)

+

∫ 1

0

κ(ξ)(w(ξ, t) + a(ξ, t))dξ

+

∫ 1

0

θ(ξ)b(1− ξ, t)dξ + ď, (9d)

w(x, 0) = w0(x) (9e)
z(x, 0) = z0(x) (9f)
y(t) = z(0, t) + b(0, t). (9g)

with w0, z0 ∈ B([0, 1]). The goal (7) is then equivalent to
achieving

lim
t→∞

∫ t+T

t

z2(0, s)ds = 0 (10)

The original uncertain parameters, c1, c2, k1, k2 and q are
contained in the new uncertain functions θ(x), κ(x) and ď, ρ,
where

ď = −k2d, ρ = k1k2, (11)

but θ and κ are nonlinear functions of the original pa-
rameters, which involve the solutions to complicated ker-
nel equations used in backstepping transformations (these
equations can be found in [1]). However, the mappings from
c1, c2, k1, k2 and q to θ(x) and κ(x) are known and can be
(numerically) computed (for exact definitions of θ(x) and
κ(x), see [1]). The objective is now to take advantage of
this known relationship to alleviate overparametrization.

B. Linearization

In our case, we approximate θ, κ, ρ and ď as

θ(x) = fT (x)ν̌, ρ = hT ν̌, (12a)

κ(x) = gT (x)ν̌, ď = sT ν̌, (12b)

where

ν̌ =
[
1 ν

]T
ν =

[
ν1 ν2 . . . νn

]T
, (13)

while

f(x) =
[
f0(x) f1(x)

]T
h =

[
h0 h1

]T
(14a)

g(x) =
[
g0(x) g1(x)

]T
s =

[
s0 s1

]T
(14b)

are known n + 1 dimensional vectors containing the
scalars f0(x), g0(x), h0 and s0, and n-dimensional vectors
f1(x), g1(x), h1 and s1. Inserting (12) into (9), we obtain

wt(x, t) + λwx(x, t) = 0 (15a)

zt(x, t)− µzx(x, t) = µfT (x)ν̌z(0, t) (15b)
w(0, t) = z(0, t) (15c)

z(1, t) = hT ν̌U(t)− r(t) + sT ν̌

+

∫ 1

0

gT (ξ)(w(ξ, t) + a(ξ, t))dξν̌

+

∫ 1

0

fT (ξ)b(1− ξ, t)dξν̌ (15d)



w(x, 0) = w0(x) (15e)
z(x, 0) = z0(x) (15f)
y(t) = z(0, t) + b(0, t). (15g)

C. Filter Design

As in [1], we introduce the following filters

ψt(x, t)− µψx(x, t) = 0, ψ(1, t) = U(t)

ψ(x, 0) = ψ0(x) (16a)
φt(x, t)− µφx(x, t) = 0, φ(1, t) = y(t)− b(0, t)

φ(x, 0) = φ0(x) (16b)

Pt(x, ξ, t) + λPξ(x, ξ, t) = 0, P (x, 0, t) = φ(x, t)

P (x, ξ, 0) = P0(x, ξ) (16c)

and also the following filters for the reference model states

Mt(x, ξ, t)− µMx(x, ξ, t) = 0, M(1, ξ, t) = a(ξ, t)

M(x, ξ, 0) = M0(x, ξ) (17a)
Nt(x, ξ, t)− µNx(x, ξ, t) = 0, N(1, ξ, t) = b(1− ξ, t)

M(x, ξ, 0) = M0(x, ξ) (17b)

for some initial conditions satisfying ψ0, φ0,∈ B([0, 1]),
P0,M0, N0 ∈ B([0, 1]2). Lastly, we also define the derived
filters

p0(x, t) = P (0, x, t), p1(x, t) = P (1, x, t) (18a)
n0(x, t) = N(0, ξ, t), m0(x, t) = M(0, ξ, t). (18b)

One can now construct non-adaptive estimates w̄ and z̄ of
the variables w and z as

w̄(x, t) = p1(x, t), z̄(x, t) = γ0(x, t) + γT1 (x, t)ν, (19)

where

γ0(x, t) = h0ψ(x, t)− b(x, t)

+

∫ 1

x

f0(ξ)φ(1− (ξ − x), t)dξ

+

∫ 1

0

g0(ξ)(P (x, ξ, t) +M(x, ξ, t))dξ

+

∫ 1

0

f0(ξ)N(x, ξ, t)dξ + s0 (20a)

γ1(x, t) = h1ψ(x, t) +

∫ 1

x

f1(ξ)φ(1− (ξ − x), t)dξ

+

∫ 1

0

g1(ξ)(P (x, ξ, t) +M(x, ξ, t))dξ

+

∫ 1

0

f1(ξ)N(x, ξ, t)dξ + s1. (20b)

With the new form of the canonical system, the following
result from [1] still holds.

Lemma 1 (Lemma 7 in [1]): Consider the system (15)
and the non-adaptive state estimates (19)–(20) generated
using the filters (16)–(18). Then

w̄(t) ≡ w(t), z̄(t) ≡ z(t), (21)

for t ≥ tF , where

tF = dα + dβ (22)

with dα and dβ defined in (5).

IV. ADAPTIVE LAWS

We follow the same steps as in [1] to obtain a linear
parametric model from which adaptive laws can be obtained.
Following the relationship (19) and the result of Lemma 1,
we have

y(t) = z(0, t) + b(0, t)

= γ0(0, t) + b(0, t) + γT1 (0, t)ν (23)

for t ≥ tF , which is a linear parametric model for which
adaptive laws can be derived. We start by assuming the
following.

Assumption 2: Bounds on ν are known. That is, we are
in knowledge of some constants ν = [ν1, ν2, . . . , νn] and
ν = [ν1, ν2, . . . , νn] so that

νi ≤ νi ≤ νi, i = 1, 2, . . . , n. (24)
Assumption 2 is no restriction, since the bounds are

arbitrary. As an adaptive law, we propose the gradient method
with projection.

˙̂ν(t) =

{
0, t < tF

projν,ν{τ(t), ν̂(t)}, t ≥ tF
, ν̂(0) = ν̂0 (25)

where

τ(t) = Γ
ε̂(0, t)γ1(0, t)

1 + |γ1(0, t)|2
(26)

with Γ = ΓT > 0 as a design matrix and

ε̂(x, t) = z(x, t)− ẑ(x, t). (27)

is the prediction error, with

ẑ(x, t) = γ0(x, t) + γT1 (x, t)ν̂(t), (28)

as an estimate of the state z. The initial guess ν̂0 =[
ν̂0,1 ν̂0,2 . . . ν̂0,n

]T
is chosen inside the feasible do-

main

νi ≤ ν0,i ≤ νi, i = 1, 2, . . . , n, (29)

and the projection operator is given as

proja,b(τ, ω) =

 0, if ω = a and τ ≤ 0
0, if ω = b and τ ≥ 0
τ, otherwise

(30)

which for the case of vectors acts component-wise. The
following lemma follows directly from [1].

Lemma 3 (Lemma 9 in [1]): The gradient adaptive law
guarantees that

νi ≤ ν̂i(t) ≤ νi, ∀t ≥ 0, i = 1, 2, . . . , n (31a)
ε̂(0, t)√

1 + |γ1(0, t)|2
, ˙̂ν ∈ L2 ∩ L∞. (31b)



V. CONTROL LAW

The MRAC control law from [1] can straightforwardly
be combined with the results of Lemma 3, to obtain the
following result.

Theorem 4 (Theorem 10 in [1]): Consider system (3), the
reference model (8) and the filters (16)–(18). Suppose r(t)
is bounded. Then, the control law

U(t) =
1

ĥ(t)

(
r(t)−

∫ 1

0

ĝ(ξ, t)(p1(ξ, t) + a(ξ, t))dξ

−
∫ 1

0

f̂(ξ, t)b(1− ξ, t)dξ − d̂(t)

+

∫ 1

0

k̂(1− ξ, t)ẑ(ξ, t)dξ
)
, (32)

where ĥ(t) = h0(t) + hT1 (t)ν̂(t), ĝ(ξ, t) = g0(ξ, t) +
gT1 (ξ, t)ν̂(t), f̂(ξ, t) = f0(ξ, t)+fT1 (ξ, t)ν̂(t), d̂(t) = s0(t)+
sT1 (t)ν̂(t) and ẑ(ξ, t) is generated using (28) and k̂(x, t) is
the online solution to the Volterra integral equation

k̂(x, t) =

∫ x

0

k̂(x− ξ, t)f̂(ξ, t)dξ − f̂(x, t) (33)

with ν̂ generated from adaptive law (25), guarantee (7).
Moreover, all additional variables in the closed loop system
are bounded in the L2-sense.

Remark 5: The projection operator used in the adaptive
law (25) must ensure, by an appropriate choice of the bounds
(24), that the estimated value ĥ does not cross zero, as this
will result in a division by zero in (32). This is incorporated
in the projection operator used in [1], and is the reason for
the requirement (6).

VI. APPLICATION TO THE CONTROL OF DOWNHOLE
PRESSURE IN OIL WELL DRILLING

A. The Oil Well Model

The following is a model for an MPD system [4]

pt(z, t) = − β
A
q̄z(z, t) (34a)

q̄t(z, t) = −A
ρ
pz(z, t)−

F

ρ
q̄(z, t)−Ag (34b)

p(l, t) = pl(t), p(z, 0) = p0(z) (34c)
q̄(0, t) = qbit, q̄(z, 0) = q̄0(z) (34d)
y(t) = p(0, t) (34e)

where l is depth of the well, z ∈ [0, l], t ≥ 0, p(z, t) is
pressure, q̄(z, t) is volumetric flow, β is the bulk modulus
of the mud, ρ is the density of the mud, A is the cross
sectional area of the annulus, F is the friction factor, g
is the acceleration of gravity and qbit(t) is the flow from
the drill string into the annulus around the drill string. The
initial conditions satisfy p0, q̄0 ∈ B([0, 1]). We assume that
the choke is operated by a fast pressure controller so that
we can treat the pressure at the top of the well, pl(t),
rather than choke opening, as our manipulated variable. The
control objective is to have the downhole pressure follow the

reference yr(t), that is

p(0, t) = yr(t). (35)

with yr generated using a reference model on the form (8).
The only uncertain parameter in the oil well model (34) is
the scalar friction factor F .

B. Feasibility of design

To use the estimation theory on this problem, we need to
transform the system into the form (3). Using the invertible
transformation

u(x, t) =
1

2

(
(q̄(xl, t)− qbit)

+
A√
ρβ

(p(xl, t) +
Flqbit
A

+ ρglx)

)
e

lF
2
√
ρβ
x (36a)

v(x, t) =
1

2

(
(q̄(xl, t)− qbit)

− A√
ρβ

(p(xl, t) +
Flqbit
A

+ ρglx)

)
e
− lF

2
√
ρβ
x
,

(36b)

we obtain (3) with system parameters

λ(x) = µ(x) =
1

l

√
β

ρ
(37a)

c1(x) = −1

2

F

ρ
e
lF√
ρβ
x
, c2(x) = −1

2

F

ρ
e
− lF√

ρβ
x (37b)

k1 =
1

2
e

lF
2
√
ρβ , k2 = −2

√
ρβ

A
(37c)

d = −qbitlF
2
√
ρβ
e
− lF√

ρβ , q = −1, (37d)

For more details on this, see the similar transformation in
[22].

Now that we have a system in the proper form, we can
see that most of the system parameters (37) depend non-
linearly on the uncertain parameter F . It is possible to use the
method proposed in [1] directly, which was what was done
in [2]. However, treating the coefficients (37) as completely
unknown functions of x leads to severe overparameterization.
Thus, we propose to use the approximation (12).

C. Linearization

We assume that bounds on F are given as

F ≤ F ≤ F . (38)

As a result of the aforementioned continuous mapping of the
MPD system (34) into the canonical from (15), there exists
continuous mappings, mθ and mκ such that θ(x) = mθ(F )
and κ(x) = mκ(F ). Given that F ∈ [F , F ], we approximate
θ(x) by a linear interpolation between θ(x) = mθ(F ) and
θ(x) = mθ(F ), and κ(x) by a linear interpolation between
κ(x) = mκ(F ) and κ(x) = mκ(F ), that is, we select n = 1,
and

f0(x) = θ(x), f1(x) = θ(x)− θ(x) (39a)
g0(x) = κ(x), g1(x) = κ(x)− κ(x) (39b)



with ν = F−F
F−F for F ∈ [F , F ]. This gives ν ∈ [0, 1].

Furthermore, for ρ and ď, we have

h0 = −
√
ρβ

A
e
lF√
ρβ (40a)

h1 = −
√
ρβ

A
e
lF√
ρβ +

√
ρβ

A
e
lF√
ρβ (40b)

s0 = − lF
2A

qbite
− lF√

ρβ (40c)

s1 = − lF
2A

qbite
− lF√

ρβ +
lF

2A
qbite

− lF√
ρβ . (40d)

D. Simulation

The MPD model (34) and the controller of Theorem 4
were implemented in MATLAB, using the system parameters

β̄ = 7317 · 105 Pa, ρ̄ = 1250 kg/m3, (41a)

l = 2500 m, A1 = 0.024 m2, (41b)

A2 = 0.02 m2, g = 9.81 m/s2. (41c)

The uncertain friction factor F was set to

F =

{
1000 for t < 140 kg/m3s

800 for t ≥ 140 kg/m3s
(42)

The friction factor is set to change at t = 140 s to
demonstrate the adaptive properties of the method. The
adaptation gain was set to

Γ = 100, (43)

while the lower and upper values for F were set to

F = 700, F̄ = 1200. (44)

The method from [2] was also implemented for compari-
son, using the same adaptation gains. The initial parameter
estimates for the method from [2] were set to values corre-
sponding to the initial value of ν, that is ν = ν0.

1) Case 1: The initial guess for ν was in this case
set to 1.0, corresponding to a friction factor F = F̄ . It
can be observed from the tracking objective displayed in
Figure 1 and the tracking error shown in Figure 2, that both
methods manage to track the reference signal. However, the
old method oscillates and heavily overshoots during set point
changes, and especially when the friction factor changes at
t = 140.

The initial transient seen for both methods are due to the
initialization of the swapping filters, and the new method is
also a bit slower at the initial tracking, but this is due to
the initial slow adaptation, as seen from Figure 3. However,
the rate of adaptation can be improved by increasing the
adaptation gain.

2) Case 2: For this case the initial guess for ν is set
to 0.0, corresponding to a friction factor F = F . Heavy
oscillations are observed in Figures 4 and 5 for the old
method. Such oscillations are not present for the new method.
The oscillations for the old method die out however, and the
old method manages to track the reference reasonably well
when the friction factor changes at t = 140. The friction
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Fig. 1: Case 1: Reference signal yr (thick black) and mea-
sured downhole pressure for the new (red) and old (blue)
methods. Also plotted is the input r to the reference model
(thin black).
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Fig. 2: Case 1: Tracking error for the old (blue) and new
(red) methods.

factor is estimated quite well by the new method in both
cases, as seen from Figures 3 and 6. An estimate of the
friction factor is not provided by the old method.

VII. CONCLUSION

We have proposed a method for reducing overparametriza-
tion for model reference adaptive control (MRAC) of linear
hyperbolic PDEs. The method is based on linearization of
the distributed, uncertain parameters, and expressing them as
a linear combination of a finite number of parameters. The
method was shown in simulations on a managed pressure
drilling system to perform better than the previously derived
MRAC controller which uses a heavily overparameterized
scheme.
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[8] J.-M. Coron, B. d’Andréa Novel, and G. Bastin, “A strict Lyapunov
function for boundary control of hyperbolic systems of conservation
laws,” IEEE Transactions on Automatic Control, vol. 52, no. 1, pp.
2–11, 2007.

[9] X. Litrico and V. Fromion, “Boundary control of hyperbolic con-
servation laws with a frequency domain approach,” in 45th IEEE
Conference on Decision & Control, San Diego, CA, USA, 2006.

[10] B.-Z. Gou and F.-F. Jin, “Output feedback stabilization for one-
dimensional wave equation subject to boundary disturbance,” IEEE
Transactions on Automatic Control, vol. 60, no. 3, pp. 824–830, 2015.
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