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Abstract— Recently, the first result on backstepping-based
adaptive control of a 1-D linear hyperbolic partial differential
equation (PDE) with an uncertain transport speed was pre-
sented. The system also had an uncertain, constant in-domain
coefficient, and the derived controller achieved convergence
to zero in the L∞-sense in finite time. In this paper, we
extend that result to systems with a spatially varying in-domain
coefficient, achieving asymptotic convergence to zero in the
L∞-sense. Additionally, for the case of having a constant in-
domain coefficient, the new method is shown to have a slightly
improved finite-time convergence time. The theory is illustrated
in simulations.

I. INTRODUCTION

A. Motivation and problem statement

In this paper, we consider a scalar 1–D linear hyperbolic
partial differential equation (PDE) in the form

ut(x, t)− µux(x, t) = θ(x)u(0, t) (1a)
u(1, t) = U(t) (1b)
u(x, 0) = u0(x) (1c)

where u(x, t) is the system state defined on D1, where

D1 = {(x, t) | x ∈ D, t ≥ 0}, D = {x | x ∈ [0, 1]}. (2)

The system parameters and initial condition are unknown,
but assumed to satisfy

µ ∈ R, µ > 0, θ ∈ C1(D), u0 ∈ C1(D). (3)

The goal is to design a backstepping-based control law
U : [0,∞)→ R that adaptively stabilizes system (1) despite
having the parameters and initial condition (3) unknown,
and using boundary sensing only. The following boundary
measurements are assumed available

y0(t) = u(0, t), y1(t) = u(1, t) (4a)
ϑ0(t) = ux(0, t), ϑ1(t) = ux(1, t). (4b)

Adaptive control of systems in the form (1) using back-
stepping have recently been extensively studied. Starting with
results on parabolic PDEs [1], [2], [3], [4], [5], hyperbolic
PDEs have been given the most attention recently. The first
result on adaptive control of a hyperbolic PDE was in [6],
with numerous extensions following in for instance [7], [8],
[9], [10], [11].
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However, in all the above mentioned results, the sys-
tems’ transport speeds are assumed known. The first result
achieving estimation involving an uncertain transport speed
was presented in [12], where four different methods for
estimating the transport speed were presented, three of which
were proved to converge subject to some requirements of
persistence of excitation, and only one of those methods
relied on boundary measurements only. That method was in
[13] combined with an event-triggered least-squares identifier
inspired by the identifier in [14] into an event-triggered
finite-time convergent estimator scheme, and then combined
with a feedback law into an output-feedback control law for
adaptively stabilizing a linear hyperbolic PDE with uncertain
transport speed and an uncertain in-domain coefficient. The
result was an algorithm that adaptively stabilized a linear
hyperbolic PDE in several steps: 1) The transport speed
was estimated in finite time, 2) a linear parametric form
was constructed using swapping filters, 3) the in-domain
parameter was estimated in finite time, and 4) the estimated
parameters were used to generate an estimate of the state,
which was then used in a control law achieving convergence
to zero in finite time.

A similar technique was previously used in [15], com-
bining the event-triggered finite-time convergent estimator
scheme from [14] with a boundary controller, for adaptively
stabilizing a parabolic PDE. The resulting control law used
state feedback, however, and since parabolic PDEs cannot be
finite-time controlled, the convergence was asymptotic.

In this paper, we modify the method [13], to also handle
a spatially varying source term θ(x) in (1a), and propose
an estimation technique for simultaneously estimating the
transport speed and the endpoints of θ(x). In the case of
having a constant θ, thus, the method can be modified and
finite-time convergence of the system state despite having an
unknown transport speed is achieved. The convergence time
is slightly faster than what was achieved in [13].

As in [13], we assume a continuously differentiable initial
condition u0. We will also, as in [13], assume that the state
u always will remain in C1(D), meaning that the boundary
control law U(t) must be compatible so that this is the case.
This is formally stated in the following assumption:

Assumption 1: We assume u(t) ∈ C1(D).
We will achieve this property by limiting the considered
solutions to those compatible with this assumption.

Regarding the uncertain parameters, we assume the fol-
lowing.

Assumption 2: A lower bound on µ and an upper bound
on the absolute value of θ(x) are known, specifically, we are



in knowledge of positive parameters µ and θ̄ so that

µ ≤ µ, |θ(x)| ≤ θ̄, ∀x ∈ D. (5)
B. Notation

For two (possibly time-varying) signals a(x), b(x) defined
for x ∈ D, the L∞-norm is defined as

||a||∞ = max
x∈D
|a(x)| (6)

while the operator ≡ is defined as

a ≡ b⇔ ||a− b|| = 0. (7)

II. EVENTS AND EVENT TRIGGERS

As in [13], we introduce a series of periodic time-triggered
events with a fixed interval between each event. Since linear
hyperbolic PDE in the form (1) is finite-time observable [16]
in a time d defined as

d = µ−1 (8)

which is an unknown quantity, we choose an interval larger
than d. We choose a time T between intervals taken as

T = µ−1 (9)

where µ is as stated in Assumption 2. Since µ ≤ µ, this
means that T ≥ d, and hence system (1) is finite-time
observable within a time T .

We will let τi denote the ith event, which occurs at time

τi = iT, i ∈ N (10)

while the interval between the (i − N)th and ith events,
N ∈ N+, is denoted

BNi = [τmax{0,i−N}, τi], i, N ∈ N+ (11)

with the short-hand notation

Bi = B1
i , (12)

where the max operator is included to ensure that data prior
to t = 0 is not used. Using the notation (11)–(12), means
that for instance t ∈ B1 ⇔ t ∈ [0, T ] and t ∈ B2

3 ⇔ t ∈
[T, 3T ], and that (1) is observable within interval BNi for any
i,N ∈ N+.

III. ESTIMATION OF THE PARAMETERS µ, θ(0), θ(1)

A. A linear equation in µ, θ(0), θ(1)

We start by presenting a set of equations in the transport
speed µ, as well as the parameter θ(x)’s endpoints. Consider
the following six equations in the three unknowns

Aiν = bi (13)

where

Ai =


Qi,11 −Qi,12 Qi,12

Qi,12 −Qi,22 Qi,22

Gi,11 0 Gi,12

Gi,12 0 Gi,22

Hi,11 Hi,12 0
Hi,12 Hi,22 0

 (14a)

ν =
[
µ θ0 θ1

]T
(14b)

bi =
[
Pi,1 Pi,2 Fi,1 Fi,2 Ji,1 Ji,2

]T
, (14c)

where

θ0 = θ(0), θ1 = θ(1). (15)

The components of Ai and bi are generated from

Pi =

[
Pi,1
Pi,2

]
=

∫
BNi

∫
BNi

(pq)(t, σ)dσdt (16a)

Fi =

[
Fi,1
Fi,2

]
=

∫
BNi

∫
BNi

(fg)(t, σ)dσdt (16b)

Ji =

[
Ji,1
Ji,2

]
=

∫
BNi

∫
BNi

(jh)(t, σ)dσdt (16c)

and

Qi =

[
Qi,11 Qi,12

Qi,12 Qi,22

]
=

∫
BNi

∫
BNi

(qqT )(t, σ)dσdt (17a)

Gi =

[
Gi,11 Gi,12

Gi,12 Gi,22

]
=

∫
BNi

∫
BNi

(ggT )(t, σ)dσdt (17b)

Hi =

[
Hi,11 Hi,12

Hi,12 Hi,22

]
=

∫
BNi

∫
BNi

(hhT )(t, σ)dσdt, (17c)

where

p(t, σ) = η(t)− η(σ) (18a)
f(t, σ) = U(t)− U(σ) (18b)
j(t, σ) = y0(t)− y0(σ) (18c)

and

q(t, σ) =
[
q1(t, σ) q2(t, σ)

]T
=

∫ t

σ

z(s)ds (19a)

g(t, σ) =
[
g1(t, σ) g2(t, σ)

]T
=

∫ t

σ

r(s)ds (19b)

h(t, σ) =
[
h1(t, σ) h2(t, σ)

]T
=

∫ t

σ

m(s)ds (19c)

with

η(t) = y1(t)− y0(t) (20a)

z(t) =
[
ω(t) y0(t)

]T
(20b)

r(t) =
[
ϑ1(t) y0(t)

]T
(20c)

m(t) =
[
ϑ0(t) y0(t)

]T
(20d)

ω(t) = ϑ1(t)− ϑ0(t) (20e)

for some N ∈ N+. We note that all components in Ai and
bi can be generated using measured quantities.

Lemma 3: Consider system (1), and the equation (13)
with the components of Ai and bi at the ith event generated
using the equations (14)–(20). Suppose the actuation signal
U is taken to satisfy the differential equality

U̇(t) = a(t)ϑ0(t) + b(t)y0(t), ∀t ∈ BNi (21)



for some N ∈ N+, and some bounded coefficients a(t), b(t)
that are non-constant and non-identical over BNi . Then the
Moore-Penrose inverse

A+
i = (ATi Ai)

−1ATi (22)

of Ai exists.
Remark 4: The coefficients of a and b over the most

recent interval Bi can for instance be taken as

a(t) = A cos($1t) b(t) = B cos($2t) (23)

for some nonzero constants A,B and angular frequencies
$1, $2 6= 0, $1 6= $2.

We will dedicate the next subsections to deriving the
equations (13)–(20), and also the condition (21) on the
actuation that leads to the existence of (22).

B. Dynamics of ux

We proceed as in [13] and derive the dynamics of the
spatial derivative ux, and define the new variable v as

v(x, t) = ux(x, t), (24)

for which we derive the dynamics from (1) to obtain

vt(x, t)− µvx(x, t) = θ′(x)u(0, t) (25a)

v(1, t) = dU̇(t)− dθ(1)u(0, t) (25b)
v(x, 0) = v0(x) (25c)

where v0(x) = u′0(x).

C. Obtaining parameters using Qi

This method is based on [13]. However, we slightly
modify it to use data from a longer time series, and also
accommodate for the spatially varying θ. We proceed as in
[13] and rewrite the definition of η in (20a) as

η(t) = y1(t)− y0(t)

= u(1, t)− u(0, t) =

∫ 1

0

ux(x, t)dx

=

∫ 1

0

v(x, t)dx. (26)

Differentiating (26) with respect to time, inserting the dy-
namics (25a) and solving the integrals, we obtain

η̇(t) = µ

∫ 1

0

vx(x, t)dx+

∫ 1

0

θ′(x)dxu(0, t)

= µ(v(1, t)− v(0, t)) + (θ1 − θ0)u(0, t)

= aT z(t) (27)

where z is defined in (20b), and

a =
[
µ (θ(1)− θ(0))

]T
(28)

Integrating (27) from σ to t, we obtain

p(t, σ) = aT q(t, σ) (29)

where p and q are defined in (18a) and (19a), respectively.
Consider the cost function

Vi(α) =

∫
BNi

∫
BNi

(p(t, σ)− αT q(t, σ))2dσdt (30)

which equally weights all measurements in the N most
recent intervals. It is clear that α = a minimizes (30).
Evaluating ∂Vi(α)

∂α = 0, we obtain

Pi = Qia (31)

where Pi and Qi are defined in (16a) and (17a), respectively.
If det(Qi) 6= 0, a can be computed as a = Q−1

i Pi. We will
now investigate in what cases det(Qi) 6= 0, and show that
choosing U to satisfy (21) over Bi results in det(Qi) 6= 0.

First of all, since by Assumption 1, u and hence u(0, t)
is assumed continuous, Qi,22 = 0 is equivalent to q2(t, σ) =
0, ∀t, σ ∈ BNi , which in turn implies u(0, t) = 0 for all
t ∈ BNi , and due to the finite-time observability property
of system (1), this implies u(t) ≡ 0 for all t ∈ BNi , and
the control objective is trivially achieved. Hence, we assume
q2 6≡ 0 for the interval. If det(Qi) = 0, we must have

Qi,11Qi,22 = Q2
i,12, (32)

and since Cauchy–Schwarz’ inequality holds as an equality
only when the two functions q1, q2 are linearly dependent,
we obtain the relationship

q1(t, σ) = λq2(t, σ) (33)

for some constant λ ∈ R, and hence∫ t

σ

ω(s)ds = λ

∫ t

σ

u(0, s)ds (34)

for all σ, t in the interval, meaning that

ω(t) = λu(0, t), (35)

or by the definition of ω in (20e)

v(1, t) = v(0, t) + λu(0, t) (36)

for all t ∈ Bi. Inserting the boundary condition (25b), yields

U̇(t) = µv(0, t) + (µλ+ θ(1))u(0, t) (37)

Hence, det(Qi) = 0 can only happen if U̇ is a linear
combination of v(0, t) and u(0, t) for all t ∈ BNi . The choice
of U̇ as (21) ensures that this is never the case, and thus,
det(Qi) 6= 0.

D. Obtaining parameters using Gi
Consider the relationship (25b). By solving for U̇ , we

obtain

U̇(t) = µv(1, t) + θ(1)u(0, t) = bT r(t) (38)

where r is defined in (20c), and

b =
[
µ θ(1)

]T
. (39)

Integrating (38) from σ to t, we find:

f(t, σ) = bT g(t, σ) (40)



for f and g defined in (18b) and (19b), respectively. Proceed-
ing as in the previous method, by forming a cost function
and equating its derivative to zero, we obtain

Fi = Gib (41)

for Fi and Gi defined in (16b) and (17b), respectively. Once
again, we can assume Gi,22 6= 0, because Gi,22 = 0 implies
u(t) ≡ 0. If det(Gi) = 0, we must have:

Gi,11Gi,22 = G2
i,12, (42)

which implies that

g1(t, σ) = ζg2(t, σ) (43)

for all t, σ ∈ Bi, and for some constant ζ ∈ R, implying

v(1, t) = ζu(0, t) (44)

for all t ∈ Bi. Inserting the boundary condition (25b), we
obtain

U̇(t) = (µζ + θ1)u(0, t) (45)

Hence: det(Gi) = 0 can only happen if U̇ is a constant
times u(0, t) for all t ∈ Bi, which is avoided by choosing
U̇(t) = a(t)u(0, t) for some non-constant function a(t), or
choosing U̇ as (21).

E. Obtaining parameters using Hi

Consider the dynamics (1a). Evaluating at x = 0 gives

ut(0, t) = µux(0, t) + θ(0)u(0, t) = cTm(t) (46)

where m is defined in (20d), and

c =
[
µ θ(0)

]T
(47)

Integrating (38) from σ to t, we find:

j(t, σ) = cTh(t, σ) (48)

for j and h defined in (18c) and (19c), respectively. Proceed-
ing as in the previous two methods gives

Ji = Hic (49)

for Ji and Hi defined in (16c) and (17c), respectively.
Again, it is evident that if det(Hi) 6= 0, the value of c can

be computed as c = H−1
i Ji.

F. Proof of Lemma 3
Proof: [Proof of Theorem 3] It was shown in Sections

III-C and III-D that choosing the actuation U to satisfy
the differential equality (21) ensures det(Qi) 6= 0 and
det(Gi) 6= 0. From the equations (31) and (41), it is evident
that µ, θ0 and θ1 therefore can be computed by solving (31)
and (41). This also implies that the matrix Ai defined in
(14a) at time t = τi has full column rank, and hence, the
Moore-Penrose inverse (22) exists and is unique.

Remark 5: While conditions for invertibility of Qi and
Gi are derived in Sections III-C and III-D, no conditions are
offered for invertibility of Hi in Section III-E. The reason
is that invertibility of Qi and Gi is sufficient for the Moore-
Penrose inverse (22) to exist. We nevertheless include Hi in
Ai because it may improve the condition number of Ai.

G. Estimation theorem
Using Lemma 3, we state the following Theorem.

Algorithm 1 Estimation of ν

1) Let

ν̂(0) = ν̂0. (50)

for some initial guess

ν̂0 =
[
µ̂0 θ̂0,0 θ̂1,0

]T
(51)

with µ̂0 ≥ µ.
2) Select the estimation horizon N ∈ N+, and at event i,

set ν̂ as

ν̂(τi) =

{
A+
i bi if rank(Ai) = 3

ν̂(τi−1) otherwise
(52)

where Ai and bi are generated from (14)–(20) for some
N ∈ N+, and A+

i is the Moore-Penrose inverse given
as (22).

3) For all times t ∈ (τi−1, τi), i = 1, 2, . . . between
events, the estimate ν̂ is set to the most recent event-
triggered estimate, that is

ν̂(t) = ν̂(τi), ∀t ∈ [τi, τi+1). (53)

Lemma 6: Consider system (1). For any N ∈ N+, if
the actuation is chosen as (21) for t ∈ B1, the method of
Algorithm 1 produces the correct estimate ν for t ≥ τ1.

Proof: From Lemma 3, choosing U to satisfy the
differential equality (21) will ensure that the Moore-Penrose
inverse A+

i exists at each event t = τ1 and hence, will
produce a nonsingular matrix ATi Ai from t = τ1.

For the remainder of the paper, we will denote the event for
which ν is estimated as the iµth event (which should equal
1), so that τiµ is the time for which ν̂(t) = ν, ∀t ≥ τiν .

Remark 7: If it is known that θ is constant, the last two
columns of Ai can be combined, yielding a simplified matrix
Ai and vector ν of unknowns as

Ai =


Qi,11 0
Qi,12 0
Gi,11 Gi,12

Gi,12 Gi,22

Hi,11 Hi,12

Hi,12 Hi,22

 , ν =
[
µ θ

]T
. (54)

The vector bi remains unchanged.

IV. ADAPTIVE CONTROL

A. Spatially varying θ(x)

Now that µ has been estimated using the method of the
previous section, we can proceed by introducing a swapping-
based adaptive control law. This adaptive control method was
first introduced in [6] for the case µ = 1. The slight extension
to non-unity µ was first presented in [17] for solving an
MRAC problem. We introduce the filters

φt(x, t)− µ̂(t)φx(x, t) = 0, φ(1, t) = y0(t)



φ0(x, 0) = φ0(x) (55a)
ψt(x, t)− µ̂(t)ψx(x, t) = 0, ψ(1, t) = U(t)

ψ0(x, 0) = ψ0(x) (55b)

for some initial conditions φ0, ψ0 ∈ C1(D) of choice, and
the adaptive law

θ̂t(x, t) =

{
0, t ∈ [0, tiµ)

projθ̄
{
f(x, t), θ̂(x, t)

}
, t ≥ tiµ

(56a)

θ̂(x, 0) = θ̂0(x) (56b)

where

f(x, t) = γ(x)
ê(0, t)φ(1− x, t)

1 + ||φ(t)||2
(57)

with the projection operator defined as

proja(τ, ω) =


0 if ω = −a and τ ≤ 0

0 if ω = a and τ ≥ 0

τ otherwise.
(58)

for some initial guess θ̂0 ∈ C1(D), with

û(x, t) = ψ(x, t)

+
1

µ̂(t)

∫ 1

x

θ̂(ξ, t)φ(1− ξ + x, t)dξ (59a)

ê(x, t) = u(x, t)− û(x, t). (59b)

Consider also the adaptive control law

U(t) =

∫ 1

0

k̂(1− ξ, t)û(ξ, t)dξ (60)

where k̂ is the on-line solution to the Volterra integral
equation

µ̂(t)k̂(x, t) =

∫ x

0

k̂(x− ξ, t)θ̂(ξ, t)dξ − θ̂(x, t). (61)

Theorem 8: Consider system (1), the filters (55) and adap-
tive law (56), with the estimate µ̂ of µ generated using
Algorithm 1. The control law (60) guarantees

||u||, ||ψ||, ||φ||, ||u||∞, ||ψ||∞, ||φ||∞ ∈ L2 ∩ L∞ (62a)
||u||, ||ψ||, ||φ||, ||u||∞, ||ψ||∞, ||φ||∞ → 0. (62b)

Proof: By Lemma 6, µ̂(t) = µ for t ≥ τiµ . The result
then follows immediately from for instance [11, Theorem
5.1].

Remark 9: It should be possible to improve the conver-
gence time by utilizing the fact that the endpoint values of
θ(x) are known from the estimation method described in
Algorithm 1. However, this possibility is not investigated in
this paper.

Remark 10: We have not payed attention to ensuring that
solutions stay in C1(D), which is an assumption stated in
Assumption 1, and is assumed the mathematical analysis. A
modification to the parameter update laws would be needed
to render U(t) sufficiently smooth for Assumption 1 to hold.
Such a modification would only serve to hide the main
aspects of the design in unnecessary technical details.

B. Constant θ

If it is known beforehand that the parameter θ is a constant,
finite-time convergence of the state can be achieved, as in
[13]. The convergence time can be slightly improved by the
method presented in this paper. The method of Algorithm
1 will then produce an estimate ν̂, where the latter two
components of ν̂ are identical estimates of the parameter
θ.

We introduce the state observer

ût(x, t)− µ̂(t)ûx(x, t) = θ̂(t)y0(t) (63a)
û(1, t) = U(t) (63b)
û(x, 0) = û0(x) (63c)

and the control law

U(t) = − θ̂(t)
µ̂(t)

∫ 1

0

exp

(
θ̂(t)

µ̂(t)
(1− ξ)

)
û(ξ, t)dξ. (64)

Theorem 11: Consider system (1) where it is known that
the parameter θ is a constant. Consider also the state observer
(63) with the estimate µ̂ of µ, and estimate θ̂ generated
using the method of Algorithm 1. Then the control law (64)
guarantees

u(t), û(t) ≡ 0, for t ≥ τiν + 2d (65)
Proof: Since, by Lemma 6, under the assumption of

having θ constant, we have µ̂(t) = µ and θ̂0(t) = θ̂1(t) = θ
for t ≥ τiν , if follows from [11, Theorem 3.2] that û(t) ≡
u(t) for t ≥ τiν + d. It then follows from [11, Theorem
3.3] that u(t) ≡ 0 t ≥ τiν + d, and since û(t) ≡ u(t) for
t ≥ τiν + d, û(t) ≡ 0 also follows. The explicit form of the
controller gain in (60) is derived in e.g. [11, Example 3.1].

Assuming τiν = T , the achievement of having u(t) ≡ 0
for t ≥ τiν + 2d = T + 2d is a slight improvement over the
convergence time in [13], which was 3T + d.

V. SIMULATIONS

A. Spatially varying θ(x)

System (1) is implemented in MATLAB using the system
parameters and initial condition

µ = 2 θ(x) = 1 + x, u0(x) = x (66)

System (1) with parameters (66) is open-loop unstable. The
known lower bound on µ is set as

µ = 1 (67)

which results in T = 1, and hence an event every second.
The parameter estimation method of Algorithm 1 was also

implemented using N = 4, and so was the control law of
Theorem 8. The actuation signal was chosen to satisfy (23)
in Remark 4, with

A = B = 10, $1 =
2π

T
, $2 =

√
2π

T
, (68)

so that the Moore-Penrose inverse is by Lemma 3 guaranteed
to exist at the first event. The initial conditions φ0, ψ0 of the
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Fig. 1: Actual (solid black) and estimated (dashed red) µ for
Case 1.
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Fig. 2: Actual (solid black) and estimated (dashed red) θ(0)
for Case 1.

filters as well as the initial guess θ̂0 were all set identically
to zero.

Due to numerical issues when implementing on a com-
puter, the requirements of Algorithm 1 will not always
produce a well-conditioned Moore-Penrose inverse A+. The
inverse is thus only computed if the absolute value of the
determinant ATi Ai is above a certain threshold, that is:
|det(ATi Ai)| ≥ ε0 for a small number ε0 chosen in these
simulations to be 10−3. The simulation results are found in
Figures 1–5. It is observed from Figures 1–3 that Algorithm 1
produces fairly accurate estimates of µ, θ(0), θ(1) at the first
event, and that these estimates’ accuracy is improved at the
second event. This is probably due to numerical issues, and
the improved accuracy is due to the fact that data from more
than one interval is used from the second event onward. The
state norm converges asymptotically to zero, as seen from
Figure 4, while the actuation signal stays bounded, as seen
in Figure 5.
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Fig. 3: Actual (solid black) and estimated (dashed red) θ(1)
for Case 1.
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Fig. 4: System norm ||u||∞ for Case 1.
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Fig. 5: Actuation signal U for Case 1.

B. Constant θ

In this simulation, a constant θ was used, and we chose

θ = 3, (69)

while the value of µ and u0 were the same as in Case V-A.
Again, the system parameters constitute an unstable system.
The Algorithm 1 with Ai designed according to Remark 7,
the control law of Theorem (11) were also implemented. The
simulation results are found in Figures 6–10. Figures 6 and
7 show that the transport speed µ and in-domain parameter
θ are correctly estimated at the first event. The system norm
is displayed in Figure 8, with a close up in Figure 9. It is
seen from the latter that the system norm converges to zero
after a time 2T + d = 2.5 sec as predicted by Theorem 11.
The actuation signal remains bounded, as seen in Figure 10.
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Fig. 6: Actual (solid black) and estimated (dashed red) µ for
Case 2.
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Fig. 7: Actual (solid black) and estimated (dashed red) θ for
Case 2.
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Fig. 8: System norm ||u||∞ for Case 2.
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Fig. 9: System norm ||u||∞ (zoomed) for Case 2.
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Fig. 10: Actuation signal U for Case 2.

VI. CONCLUSIONS

We have in this paper slightly modified a recently derived
trigger-based estimation scheme [13] for adaptive control of
a type of scalar, linear hyperbolic PDEs, into also handling
systems with a spatially varying in-domain coefficient. The
resulting controller achieves asymptotic convergence of the
state to zero in the L∞-sense. In the special case of having a
constant in-domain parameter, the presented method achieves
a slightly improved convergence time compared to what was
achieved in [13]. Also, a condition on the actuation signal is
derived, so that the method is always guaranteed to produce
the required estimates at the first event. Such a condition was

not given in [13]. The theory was illustrated in numerical
examples.
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