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Preface

This thesis presents the work done during TMR4930 Marine Technology - Master’s Thesis
at NTNU (30 ECTS), and represents the final delivery for a Master of Science within
Marine Cybernetics. The work builds on a project thesis from the Fall of 2019, and was
done from January to June in 2020. The thesis was written in its entirety by Simen Sem
Øvereng.

The work was motivated by looking for ways of improving motion control and thrust
allocation for surface vessels during Dynamic Positioning. The approach was to utilize
recent advances within Machine Learning and where the project thesis utilized Super-
vised Learning, the master’s thesis improved performance by using Deep Reinforcement
Learning. The goal was to create a controller which accomplished Dynamic Positioning
in terms of positional accuracy, while being energy efficient, and low on wear and tear of
the actuators.

The resulting control method achieved higher positional accuracy while being more energy
efficient when compared to two classic control schemes in several testing scenarios in
simulation, where the simulations also showed that the Deep Reinforcement Learning
method was quite robust. It was also directly deployed on a real life model ship, with the
result being good positional accuracy, though with some oscillatory behavior presumably
coming from hardware issues of the ship model’s bow propeller. The work concluded with
that learning to efficiently control a vessel using Deep Reinforcement Learning is not only
possible, but also quite effective.

The reader is expected to have knowledge of basic control theory, including the develop-
ment and design of motion controllers and the principles of control allocation, especially for
marine vessels. It is also beneficial to have basic knowledge of modern machine learning.
However, the machine learning theory is explained in quite detail as it was not expected
that all stakeholders in the academic and industrial societies within marine technology
were familiar with it. A good intuition on gradients from Calculus is also beneficial.

i



Acknowledgments

I would like to thank my supervisor, Prof. Dong Trong Nguyen, for providing me with
good references, relevant rules and regulations, and discussions on methodology and test
scenarios. I would also like to thank my co-supervisor, Geir Hamre (DNVGL) for taking
his time to discuss problem formulations and solutions, and for giving feedback on the
thesis. A big thank you also goes to PhD candidate Andreas Bell Martinsen from the
Department of Engineering Cybernetics at NTNU, for both theoretical aspects of Rein-
forcement Learning, and good conversations about implementation details. The same goes
to Ella-Lovise Rørvik, Machine Learning Engineer at TrønderEnergi, who has helped with
useful discussions upon reward shaping and implementational nuances.

The thesis has not been possible without the help from several people at DNVGL sup-
porting me with practical issues. Especially, I would like to thank Jon Arne Glomsrud for
help with the interface between Python and Java in order to communicate efficiently with
the simulator, César Augusto Ramos de Carvalho for support with simulators for various
use cases, and Tom Arne Pedersen for support and hardware debugging on the real ship
model of ReVolt.

I would also like to thank my fellow students Magnus Oanes Knædal and Knut Turøy for
great cooperation during the work with ReVolt, especially during the sea trials. And last
but not least, a big thank you goes to friends and family, providing unconditional support
and encouragement during my studies at NTNU.

SSØ
June 24, 2020

ii



Abstract

Classic methods for Dynamic Positioning (DP) of surface vessels often consists of first cal-
culating desired forces and moments to exert on the vessel by using a motion controller,
followed by a thrust allocation scheme for translating these forces and moments into in-
dividual thruster commands. Common thrust allocation methods usually performs this
translation by calculating a pseudoinverse matrix, or by using various formulations of an
objective function for an optimization problem. In optimization, several solutions might
exist that satisfies the desired forces/moments due to the vessels being overactuated, and
additional objectives and/or constraints are usually added for finding a final solution at
each time step. This can be challenging in terms of computationally demanding solvers
due to the potentially complex configuration of actuators, including azimuth thrusters,
variable pitch propellers, tunnel thrusters, rudders etc. This thesis was set to investigate
how advances in machine learning could be used to train a machine learning model in sim-
ulation for the development a control scheme which was both positionally accurate and
energy efficient, while avoiding heavy computations on board during DP operations. The
thesis was written in collaboration with DNVGL, which gave access to technical advisory,
in addition to both a simulation platform and a physical ship model on which testing of
algorithms could be performed.

This thesis built on work from a project thesis from 2019 [1]. There it was found that
using supervised learning for thrust allocation could give adequate results in terms of
accurate translation of desired forces and moments. It was however found that it was
difficult to formulate the the constraints and boundaries on the azimuth thrusters’ force
production and angular rates using supervised learning. In this thesis, another type of
machine learning called Deep Reinforcement Learning (DRL) was used. It replaced both
the motion controller and the thrust allocation, translating a desired vessel pose directly
into individual thruster commands. This was obtained by by training the DRL model
in a simulator while attempting to maximize return over time from a reward function.
The neural networks which were used for representing the DRL model were trained using
the digital twin of the ReVolt ship model, and the Proximal Policy Optimization (PPO)
algorithm. The entire training regimen for the DRL method was created, and a (to
the author’s knowledge) novel reward function was used for positional accuracy, being a
multivariate, Gaussian reward function.

The DRL method was tested against classic methods, using a Proportional-Integral-
Derivative (PID) motion controller with feedforward, and two different thrust allocation
methods. The first thrust allocation method was a proprietary method given by DNVGL
based on calculating a pseudoinverse, while the other was a method based on Quadratic
Programming (QP), implemented by the author. All methods were tested against each
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other in various test scenarios in the simulator for evaluation of accuracy, robustness and
energy efficiency. In addition, a sea trial was performed on the physical ship model of
ReVolt to evaluate the difference between performance in simulator and in real life.

The simulation results showed that the DRL method was robust to changes in the desired
pose which was larger than what it had been trained on while performing DP, and per-
formed better positional accuracy than the classic methods while doing so. Test scenarios
with no environmental loads enabled showed that the DRL method was both better in
terms of positional accuracy, energy usage, and wear and tear than the classic methods.
After enabling a constant ocean current, the resulting positional accuracy was similar
among the methods, while the energy efficiency was lowest when using the DRL method.
A station-keeping test with large wind, wave and current loads showed that the DRL
method was able to maintain acceptable positional accuracy while station-keeping in a
larger sea state than what the method had been trained on. In the sea trial, the DRL
method’s positional accuracy was found good, having comparable performance to the sim-
ilar test in simulation. Due to hardware issues related to the ship model’s bow propeller,
the vessel movement was more oscillatory, resulting in a substantial increase of the en-
ergy usage when compared to the simulation since the method had to compensate for the
hardware issue.

The thesis concluded with that DRL’s potential for solving tasks with continuous control
signals which requires accuracy and energy efficiency is realizable both in terms of good
performance in the simulated tests, as well as by performing well when transitioning
from simulations to real life. Recommended future work was divided into two branches.
The first aimed at improving real life performance by retraining the DRL model trained
in simulation by using transfer learning on board the real ship model in order to learn
details of the hardware which was not modeled in the digital twin. The second was to
consider newer methods within the area of providing safety and stability guarantees during
training of control policies in order to develop a notion of the worst case performance of
DRL systems.
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Sammendrag

Klassiske metoder for Dynamisk Posisjonering (DP) av overflatefartøy best̊ar ofte av en
kombinasjon av en bevegelseskontroller som regner ut ønskede krefter og moment p̊a
fartøyet, etterfulgt av en algoritme for kontrollallokering som oversetter disse til indi-
viduelle kommandoer til hver aktuator. Dagens metoder for kontrollallokering baserer seg
ofte enten p̊a utregningen av en pseudoinvers, eller ulike formuleringer av en objektiv-
funksjon som skal optimeres. Avhengig av formulering s̊a kan optimeringsproblemene ha
flere løsninger som tilfredsstiller de ønskede kreftene/momentene siden fartøyet er overak-
tuert, og flere objektivfunksjoner og/eller begrensninger kan legges til for å velge mellom
disse løsningene. Dette kan skape utfordringer p̊a grunn av at de fartøyene som utfører
DP kan ha et bredt spekter av oppsett av ulike typer aktuatorer, som for eksempel roter-
bare propeller, propeller med eller uten justerbar stigning, tunnellpropellere, og propeller
med ror bak, noe som kan gjøre optimeringsprogrammene tidkrevende å løse. Denne mas-
teroppgaven tar for seg å utforske hvordan nyere tids metoder innen maskinlæring kan
brukes for å trene opp en modell i simulering for utvikling av et kontrollsystem som er
b̊ade nøyaktig og energieffektivt, og som unng̊ar tunge beregninger i sanntid ombord i
fartøyet under oppgaver som krever DP. Oppgaven ble skrevet i samarbeid med DNVGL,
noe som ga tilgang p̊a r̊adgivning, en simulator med en digital tvilling av en skipsmodell,
samt den ekte skipsmodellen for fysisk testing av ulike algoritmer.

Arbeidet i oppgaven bygger p̊a en prosjektoppgave fra 2019 [1]. I den ble det konkludert
at det å bruke Veiledet Læring til å løse kontrollallokering fungerte tilstrekkelig med tanke
p̊a avviket mellom ønskede og kommanderte krefter/moment. Det var derimot vanskelig å
generere gode datasett som formulerte begrensninger p̊a aktuatorene, som for eksempel å
ivareta maksimal kraftproduksjon og rotasjonshastigheten av roterbare propeller. I denne
oppgaven ble derimot Dyp Forsterkende Læring (DFL) brukt, ikke kun til kontrollallok-
ering, men ogs̊a som erstatning for bevegelseskontrolleren, noe som ble gjort gjennom
at algoritmen trente seg selv i simulatoren ved å forsøke å maksimere gevinst over tid
med hensyn til en ukjent belønningsfunksjon. Det betyr at DFL-modellen oversatte øns-
ket posisjon og retning p̊a skipet direkte til individuelle aktuatorkommandoer. De nevrale
nettverkene som representerte DFL-modellen ble trent p̊a den digitale tvillingen av ReVolt
ved å bruke en algoritme kalt Proximal Policy Optimization (PPO). Hele treningsregimet
ble utviklet, og en (til forfatterens kjennskap) ny type belønningsfunksjon ble brukt for å
belønne sm̊a posisjonsavvik: en multivariabel gauss-funksjon.

Det opptrente kontrollsystemet ble testet mot klassiske metoder metoder. Det besto av
en eksisterende implementasjon av en PID-regulator (Proporsjonal Integrasjon Derivasjon)
med foroverkopling for bevegelseskontroll, samt to klassiske metoder for kontrollallokering.
Den første algoritmen var en metode levert av DNVGL som baserte seg p̊a å finne en
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pseudoinvers, mens den andre baserte seg p̊a optimering av en kvadratisk objektivfunksjon
som ble implementert av forfatteren. Alle metodene ble først testet mot hverandre i
simulatoren for å teste nøyaktighet, robusthet og energibruk. I tillegg ble det utført en
test der DFL-modellen ble testet med krefter fra vind, bølger og strøm fra mange ulike
retninger for å evaluere nøyaktighet og robusthet under vanskelige forhold. Til slutt ble
DFL-modellen, som kun ble trent i simulator, testet i en sjøprøve om bord den fysiske
skipsmodellen av ReVolt for å evaluere ytelse fra simulator til virkelighet.

Simuleringsresultatene viste at DFL-modellen var robust mot endringer i ønsket posisjon
og kurs som var større enn det den hadde blitt trent med, og oppn̊adde større nøyaktighet
i følging av referansesignalet enn de klassiske metodene. Testscenarioene uten ytre belast-
ninger viste at DFL-modellen var mer nøyaktig i minimering av avvik fra referansesignalet,
hadde lavere energibruk, samt lavere slitasje av aktuatorene sammenlignet med de klas-
siske metodene. Etter å aktivere ytre belastninger i form av en konstant havstrøm ble
resultatene tilnærmet lik nøyaktighet i holding av posisjon og kurs, men DFL-modellen
oppn̊adde lavere energiforbruk og mindre slitasje. Simuleringstester av posisjonsholding
n̊ar b̊ade vind, bølger og havstrømmer var aktivert viste at DFL-modellen holdt referanse-
posisjon og -kurs med tilstrekkelig nøyaktighet, selv om modellen kun hadde blitt trent i
stille vann uten ytre belastninger. Sjøprøven viste at DFL-modellen ga god nøyaktighet
posisjonsmessig sammenlignet med en tilsvarende test i simulator. P̊a grunn av prob-
lematikk i tilknytning til maskinvaren til baugpropellen var bevegelsene p̊a skipsmodellen
oscillerende, hvilket resulterte i høyere energiforbruk sammenlignet med i simulering et-
tersom modellen m̊atte kompensere for maskinvareproblemet.

Oppgaven konkluderte med at potensialet til DFL til kontrolloppgaver med kontinuerlige
kontrollsignal som krever nøyaktig posisjonskontroll samt lavt energiforbruk er realiser-
bart, b̊ade i form av god ytelse i alle tester i simulering, samt i form av samsvar mellom
simulering og fysiske tester. Anbefalt videre arbeid ble delt i to grener. Den første tok
sikte p̊a å forbedre ytelsen i fysiske teseter ved å ta i bruk den opptrente modellen fra
simulator, og gjennomføre overførende læring slik at algoritmen f̊ar mulighet til å lære seg
detaljer omkring maskinvaren p̊a den virkelige modellen som ikke har blitt modellert i den
digitale tvillingen. Den andre grenen omhandlet å ta i bruk nyere metoder for å sørge for
stabilitet og sikkerhet underveis i treningen av kontrollalgoritmer for å utvikle et m̊al p̊a
den verst mulige ytelsen av DFL-systemer.
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Chapter 1

Introduction

1.1 Autonomy At Sea

Automation has been increasing the production accuracy and capabilities of many indus-
tries during the last century. Currently, increased levels of automation, computational
capabilities and inter-robotic communication is opening a landscape of autonomy. Au-
tonomy is enabling robotic systems to not only replace traditional automated tasks, but
also to perform the decision making during missions by themselves. The application of
autonomy includes fields all the way from subsea to interplanetary. Shipping was given
another dimension for Norway during the 60’s with the discovery of oil on the Norwe-
gian continental shelf, where Norway’s shipping fleet today has become one of the top 10
fleets in the world(1). As the field of autonomous and remotely operated vessels is rapidly
expanding [2], more stakeholders are showing interest in the developments.

1.2 Motivation

As DNVGL is a major stakeholder in the ship classification business, technological de-
velopments needs to be understood in order for the company to be able to verify the
performance and security of new types of systems emerging within the shipping industry.
Therefore, DVNGL developed the ReVolt concept vessel [3], which was brought to life by
creating a 1:20 scaled ship model, which is displayed in Figure 1.1. Today, there exists a
control system on-board the ReVolt ship model based on classical methods, implemented
by previous graduate students. As developments within artificial intelligence (AI) are be-
ing used more and more in many academic and industrial areas, including control systems,
it is expected that they will have to be verified by class societies such as DNVGL. This
motivated the research carried out by this thesis, as most modern control techniques being
used for vessel control today are based on theory developed before the explosive attention
to AI emerged, and more knowledge on how to ensure performance of AI-based systems
was needed.

(1)https://stats.unctad.org/handbook/MaritimeTransport/MerchantFleet.html
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Figure 1.1: The ReVolt model ship in Dorabassenget, Trondheim, Norway.

In the recent years, applications of AI have become prevalent in a lot of industrial sectors.
The current state of AI has been displayed, among other examples, by Google’s DeepMind
and OpenAI, where the latter recently achieved beating the world champion team in the
complex computer game ”Dota 2”, using their model called OpenAI Five. This model was
trained by playing itself, accumulating an estimated 250 years of simulated experience per
day(2). In guidance and control, Waymo, Optimus Ride and Tesla (among others) has
been employing AI in various way for making cars that are currently capable of navigating
through regular traffic by themselves(3). However, at sea, there seems to be only a few
stakeholders currently working on achieving results on the level and scale as is being
displayed in computer games and on the roads. Another motivation of this thesis was
therefore to inspire more work combining the fields of AI and marine/naval engineering.

A last point of motivation was the fact that the ReVolt vessel is planned to run only
on electric power, and hence energy consumption becomes important as the capability of
today’s electric energy storage units on marine vessels does not have the capabilities of
traditional, fossil fuel based energy storage. This underlined the motivation for finding
energy efficient control methods.

1.3 Literature Review

As an introduction to the relevant work done on the area of motion control and thrust
allocation (TA) previously (especially for surface vessels), the following provides a litera-
ture review on classic methods, in addition to relevant work within AI that is connected
to the proposed approaches in this thesis.

1.3.1 Classic Thrust Allocation

Work on Dynamic Positioning (DP) control systems has been carried out since the 1960s,
being accelerated in the development within multivariable control, and the introduction of
the iterative optimal state estimator (Kalman filter) in the 1970’s [4]. DP systems are tra-
ditionally used for low-speed applications, such as stationkeeping while controlling surge,
sway and yaw motions, but current work is being done within hybrid control, which looks
at developing one control system to be used in both low-speed and high-speed applications
(e.g. work done by Brodtkorb [5]).

(2)https://openai.com/blog/how-to-train-your-openai-five/
(3)https://www.tesla.com/autopilot

2

https://openai.com/blog/how-to-train-your-openai-five/
https://www.tesla.com/autopilot


• Early work from 1997 by Sørdalen [6] introduced the notion improving the ”ex-
tended thrust” formulation, in which force vectors from each rotatable thrusters are
decomposed into surge and sway components, making it possible to calculate a pseu-
doinverse of the thruster effector model while adding weights on each thruster, thus
finding a solution to an unconstrained optimization problem. This method formed
the basis for a lot of approaches within TA in the years following due to its com-
putational efficiency, but offers no guarantees on optimality in terms of minimum
fuel usage or other explicit goals. It is however used commercially with some mod-
ifications [7]. Sørdalen proposed an improvement including filtering techniques for
reducing extensive azimuth rotations, and singular value decomposition techniques
for avoiding high thruster inputs close to singular configurations.

• Based on their development on an algorithm in 2003 called Multi-Parametric
Quadratic Program (mp-QP) [8], Johansen, Fossen, and Tøndel [9] demonstrated
in 2005 the performance and efficiency compared to other optimization techniques.
Tests with a model vessel displayed a well performing allocation scheme, robust to
several constraints incurring the optimization objective.

• In 2008, Leavitt [10] proposed work on the limitations of the linear optimization
formulation Ax ≤ b, as there is no way of handling forbidden sectors, rudders,
non-zero minimum thrust etc., e.g. by proposing that rudder thrust regions can be
split into several convex regions for Quadratic Programs (QP). Weaknesses in mp-
QP formulations used until this point was summarized in the presentation as: (1)
azimuthing thrusters will rotate excessively in low sea states, (2) spoil zones cannot
effectively be handled (3) non-zero minimum thrust cannot effectively be handled
for azimuthing thrusters, (4) explicit rate limits for azimuths are not possible, (5)
power limiting can only be handled for simple cases, but with prohibitive offline
computation times in a commissioning setting. An improved solution was proposed,
including online computations of several mp-QP cases, enforcing constraints if the
best mp-QP results consisted of a breach of the constraints imposed on the thrusters,
as shown in Figure 1.2.

Figure 1.2: Proposed improvement from regular mp-QP for thrust allocation. Courtesy:
Leavitt [10].
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• Rindarøy and Johansen [11], 2013, proposed a constrained control allocation strat-
egy with rudders, where the mp-QP approach is applied to four pre-determined
convex zones as a work-around for the non-convex thruster regions that appears
when thrusters are used in configuration with rudders. Figure 1.3 shows a flowchart
of the intended structure of the suggested TA strategy. This method is also ap-
plicable to illegal zones for azimuths, where the illegal zones are removed from the
thruster regions, and the remaining regions are pre-computed as independent convex
regions, requiring explicitly formulating these regions beforehand. As stated in the
conclusion of the publication: ”The non-convexity of the problem is handled by a
mixed-integer-like convex reformulation that allows the solution to be pre-computed
in a piecewise linear form using multi-parametric quadratic programming. Benefits
compared to online numerical optimization are higher software reliability and less
computational effort. A weakness of the approach is that the pre-computed explicit
solution does not easily admit reconfiguration, unless several cases are pre-computed
in which case computer memory requirements will be limiting the practical applica-
bility of the approach”.

Figure 1.3: Thrust allocation scheme using multiple mp-QP with different convex regions.
Courtesy: Rindarøy and Johansen [11].

• A comprehensive survey of control allocation techniques for marine vessels was pub-
lished in 2013 by Fossen and Johansen [12], where the authors lined out the options
and challenges of TA in general. A walk-through of solutions for linear actuator
models such as Linear and Quadratic Programming (LP and QP, respectively) were
discussed. Of special interest for this thesis, it is stated in Chapter 2.2.3 that ”Opti-
mal solutions of LPs are found at vertices of the feasible set. A consequence of this
is that the LP-based method tends to favor the use of a smaller number of effectors,
while methods based on a quadratic cost function and ∞-norm tends to use all effec-
tors, but to a smaller degree, (Bodson 2002). This seems to be the main reason why
error minimization approaches are based on quadratic programming in most cases.”.
The survey’s concluding notes were that control allocation is fairly well understood
for linear actuator models, where optimization techniques provides several advan-
tages, but having cons such as difficult numerical implementations and verification of
performance. Fewer methods for non-linear models exist, but the paper summarizes
how e.g. Lyapunov-based design has been used to propose some promising results.

• Model Predictive Control (MPC) has also been emerging as a viable alternative
for control allocation due to the recent advances in both hardware and algorithms.
MPC is a control method for both planning and control of dynamic systems while
concurring with physical constraints, relying on a mathematical representation of
the system dynamics. The planning aspect of the MPC is what sets it apart from
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simpler methods, since it can be used for optimizing the current time step’s control
input with respect to a finite time horizon into the future. Relevant work includes
the likes of Vermillion, Sun, and Butts [13] which used MPC for control allocation of
an overactuated dynamic system for translating desired forces and moments into ac-
tuator commands, Naderi, Khaki Sedigh, and Johansen [14] which used an extension
of the pseudoinverse methodology for ensuring feasible control allocation by using
MPC, and Veksler et al. [15] which performed control allocation of an overactuated
marine vessel in a DP task by replacing the traditional setup of a separate motion
control algorithm and a control allocation algorithm, using MPC to encapsulate
these entities into one.

1.3.2 Learning Based Approaches

Not much literature exists within the use of AI towards marine applications, but within
other domains such as robotics, a large amount of attention has been drawn to the potential
of utilizing advances in AI for solving optimal control problems. It should be noted that
AI is a very broad term, and could in some sense apply to the classic allocation methods in
Section 1.3.1 also. However, the methods mentioned in the following all share a ”learning”
strategy, meaning that they are not explicitly programmed to solve a problem, but rather
”learn” how to solve it. Learning methods are further explained in Chapter 3.

• Luman, Roh, and Hong [16] proposed in 2015 using genetic algorithms to solve
power optimal TA. Genetic/evolutionary algorithms learn by simulating different
populations (representing different sets of parameters), and learn by selecting an
amount of the best sets as a baseline for the next evolution - the methods are inspired
by natural selection [17, 18]. In their work, generation no. 300 of the evolutionary
population was able to learn the proposedly optimal TA, where the only objective
function used was to minimize the power consumption of the four thrusters on the
vessel being used.

• In 2016, Wu, Ren, and Zhang [19] proposed an energy optimal TA method based on
adaptive bee colony algorithm, which differs from traditional optimization methods
by mimicking the behavior of bee swarms, each bee representing a subset of the
decision variables used in the optimization, with the goal of the swarm converging
to a set of decision variables which gives an optima to the problem to be solved.

• Supervised Learning as means of control has been explored in the context of control
theory several times. Monga and Moehlis [20] gave a large overview of its applica-
tions, and showed Supervised Learning’s ability to be used in various applications
within optimal control of underactuated systems outputting bang-bang policies(4),
and discusses the interpretability of such algorithms due to their ”black-box” nature.

• In 2018, Skulstad et. al [21] implemented a static Neural Network (NN), trained
with supervised learning, which transformed virtual force commands from a PID
motion controller into individual thruster commands on a vessel, thus using the
neural network as a TA scheme. The NN was implemented with a single layer, using
3 input units, 12 hidden sigmoid units, and 6 output units, the latter representing the
number of actuators on the vessel in question. No azimuthing thrusters were used.

(4)”Bang-bang” policies refers to action selection yielding either 0, maximum, or minimum of the actuator
limits: https://www.semanticscholar.org/topic/Bang-bang-control/1288573
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The NN was trained on 7800 training samples, gathered from running simulations
in the Offshore Simulator Centre(5). The training samples consisted of manually
labeled data where the thruster commands had been set manually.

• In the project thesis on which this master’s thesis is built upon [1], Supervised Learn-
ing was also attempted employed as a means of translating the desired forces from a
PID motion controller into thruster commands, using a neural network similarly to
[21], but allowing for rotatable azimuth thrusters. The conclusion was that a regular
feed-forward neural network trained with Supervised Learning showed limited use
case in terms of dynamic control using optimality conditions such as minimizing fuel
and/or wear and tear on the thrusters. The reason was that it was hard to formulate
any time-dependent constraints, causing the trained agent to often violate thruster
rates, and to have a very aggressive usage of the thrusters in general. The trained
neural network for TA was able to perform the station-keeping task it was trained
to do - it just did not do it very efficiently when compared to classic methods such
as the pseudoinverse or quadratic programming. It was proposed that further work
should either be put into using recurrent neural networks instead, so that temporal
constraints could be added, or to shift focus from Supervised Learning to Reinforce-
ment Learning (RL), arguing for that the latter approach seems more promising due
to the results obtained in publications presented in the following.

• Since 2015, two main algorithms within Deep Reinforcement Learning (DRL) has
become the baseline for applications to decision making in complex games, and for
robotic manipulation. Being demonstrated on OpenAI’s gym repository(6) which
includes simulation environments for games and robotics, Deep Deterministic Policy
Gradient (DDPG) [22] and Trust Region Policy Optimization (TRPO) [23] are the
algorithms upon which most work on DRL is being compared to as of this date.

• In 2017, Hwangbo et al. [24] used DRL to learn to control a quadcopter by using
a deterministic policy for the selection of the four rotor’s thrust output. They
compared their performance to known algorithms at the time, such as DDPG and
TRPO, in which their algorithm was able to compete with TRPO in terms of final
performance while beating TRPO in terms of learning rate, measured by performance
versus number of learning steps made in the simulation environment.

• Around the same time as Hwangbo et al. published their work, OpenAI published
a more sample-efficient version of TRPO which aimed at simplifying some of its key
concepts, naming it Proximal Policy Optimization (PPO) [25]. The PPO algorithm
was tested by Lopes et al. [26], which demonstrated the sample efficiency of the
PPO algorithm, tested on a simulated quadrotor. The results showed that it was
possible to train a DRL based agent with PPO to obtain a policy which was capable
of controlling the aircraft by deciding the thrust output of all four rotors. As the
PPO algorithm uses a stochastic policy in order to achieve sufficient exploration
during training, the authors removed the action-selection noise during testing in
order to reduce the variance of the action selection of the trained agent, which was
deemed successful, and improved the quadcopters ability to reach setpoints from
different extreme initial conditions, in addition to improving the ability of trajectory
following.

(5)https://osc.no/
(6)https://gym.openai.com/
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• Also Bohn et al. [27] implemented a successful PPO algorithm, showing that it was
capable of stabilizing an inherently unstable system being a fixed-wing aircraft. They
used an actor-critic setup with a unique actor network for each of the actuators, and
showed that it was possible to use Convolutional Neural Networks as a means of
improving temporal abilities of the DRL method.

• Looking towards marine applications, in 2018, Martinsen [28] used the DRL algo-
rithm Deep Deterministic Policy Gradient (DDPG) for learning a one-dimensional
policy, controlling the rudder angle of marine vessels for path-following while as-
suming the vessel to have constant total speed. The resulting controller was able to
perform as well or better when compared to a standard in today’s guidance methods,
namely Line-of-Sight (LOS) guidance.

• Kjærnli [29] compared in 2018 the use of DDPG and PPO for learning the calcula-
tions of motion control signals for a Remotely Operated Vehicle (ROV). The work
concluded that the PPO algorithm learned faster, and was the one learning stable
policies. The agent was able to perform station keeping in 3 DOF under the as-
sumption that the ROV could be assumed stable in roll and pitch, but included
noisy action selections.

• Knudsen [30] further explored the possibility of creating a controller for an ROV
with a deep reinforcement learning method in 2019. The algorithm of choice was
DDPG which was considered as an alternative to extensive and precise modeling of
the dynamics; learning from interactions with the environment instead. Knudsen
showed that it was possible to use Deep Learning for translational motion control in
conjunction with a PD controller for rotational motion control in order to develop
a combined controller which was able to station keep in 6 DOF. The simulation
results were promising, and the experiments showed that the controller was able to
to control surge and sway of the ROV. The learned controller calculated the desired
force vector only, before a separate, existing TA scheme was used to employ the
physical forces and moments on the ROV.

• Vallestad [31] built on work by [28] in 2019, and used DDPG to develop a control
algorithm for path following, including surge and heading control, while performing
collision avoidance. In 2020, Rørvik [32] implemented both the DDPG and PPO
algorithms for learning the thruster commands directly in order to solve the task
of docking of an autonomous vessel; the learned controller directly translated a
positional set-point into thruster commands instead of having a motion controller
and a thrust allocation scheme divided into two entities. The conclusion was that
both algorithms was able to learn the docking scenarios, with PPO displaying the
most stable results, and having the lowest error on the performance metrics Rørvik
selected. In addition, the noisy nature of the resulting control policy was discussed,
as the output from the learned policies was quite fluctuating.
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1.3.3 Previous Work on ReVolt

On the ReVolt model ship, there has been written master’s degrees directly concerning
the control system, leading to how it is currently set up. In addition, auxiliary work has
been done, using ReVolt as demonstration platform.

• The first thesis that was written with ReVolt in focus was done by Alfheim and
Muggerud in 2016 [33]. They developed both a guidance system, a navigation system,
and a control system. The control system was made primarily as a DP system,
using a PID controller with feedforward for calculating the desired forces that was
to be put on the vessel, and a thrust algorithm for calculating the corresponding
thruster commands in order to physically generate these forces. The thrust allocation
algorithm was based on the pseudoinverse, provided by DNVGL. The code from
DNVGL calculated the individual thruster’s forces, which Alfheim and Muggerud
translated into propeller speeds by using that the thruster force was modeled as
T = Kn|n|, solving for n using n = sign(T/K)

√
|T/K|.

• In 2018, Havnegjerdet [34] expanded the control and guidance system, implementing
a speed and heading controller, combining them to enable path following. A path
following scheme was also implemented, using LOS guidance with lookahead-based
steering.

• In 2020, Martinsen et al. [35] proposed a control scheme based on model-based
Reinforcement Learning for motion control, demonstrated on the ReVolt platform,
both in simulations and during real life sea trials. The scheme combined ideas
from optimal control and RL in order to first estimate model-parameters used in
a feedforward control law, followed by using RL to develop a feedback control law.
The resulting controller calculated the desired forces to put on the vessel, and used
the existing thrust allocation. The results was a control scheme which performed
well in both DP and trajectory tracking, in addition to being versatile in terms of
ease of applicability for a wide range of systems.

1.4 Objectives

The goals and research questions which this thesis was set to investigate was comprised
into the following objectives:

• Review a wide variety of literature within the field of classic control theory, control
allocation, and find where deep learning theory fits into this framework.

• Propose one or more machine learning methods for control of marine surface vessels.
The control scenarios was to be restricted to low speed applications such as DP,
focused on station-keeping with the possibility of reacting to minor setpoint changes
of the vessel’s desired pose.

• Verify performance by numerical simulations on a digital twin of the 1:20 scale ship
model of DNVGL’s concept ship ReVolt by using the Open Simulation Platform
(OSP). It was also desirable to perform tests on the physical ship model to evaluate
how transferable performance in the simulations was compared to real life perfor-
mance.
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• Compare the performance of the DRL method to other, classic methods which were
implemented as a part of the control system on ReVolt by previous master’s students.
This was to be done both with and without environmental forces for evaluation of
the DP capabilities of the different methods.

• Evaluate DRL as a methodology for control of marine vessels in general, both in
terms of development and training, robustness, accuracy and energy efficiency.

1.5 Contributions

The main contributions of this thesis to the both the scientific, industrial and classification
communities can be summarized as the following:

• An implementation of a control scheme which replaces the traditional structure of
using a motion controller in combination with a thrust allocation scheme, combining
them both into one entity by using DRL. By using a neural network, the selection
of actuator commands is done in negligible time, enabling usage on systems within
a large range of computational power.

• A discussion upon reward shaping, concluding in a reward function seemingly new
to the field.

• Rigorous testing of the method in simulation, displaying good energy efficiency while
being positionally accurate when compared to classic methods, in addition to dis-
playing good results on a physical ship model during a sea trial.

• An open-source implementation of the learning algorithm, the trained model, the
final system that was used for testing in the Robotic Operating System (ROS), in
addition to documentation on how to use to code for further work. This can be
found at https://github.com/simensov/ml4ca.

• A draft of an abstract to be submitted to the Ocean Engineering journal, added to
Appendix G.

1.6 Outline

Chapter 1 gives the reader an introduction to the foundation this thesis builds on. Chap-
ter 2 gives a general, theoretical overview of the classic methods within control systems
and thrust allocation. Chapter 3 gives a brief overview of machine learning and how deep
neural networks works, followed by a theoretical walk-through of the Deep Reinforcement
Learning methods used in the thesis. Chapter 4 outlines the simulation platform and
the physical system of ReVolt, in addition to the software framework used for imple-
mentations. Chapter 5 explains the thrust allocation method provided by DNVGL,
the development of the Quadratic Programming thrust allocation, and the considerations
taken when developing the Deep Reinforcement Learning system. Chapter 6 presents the
test scenarios used, the results from both simulations and real life testing, and discussions
of these results. Chapter 7 discusses the results on a more general basis and evaluates
the characteristics of the Deep Reinforcement Learning system, while Chapter 8 gives a
conclusion of the work. Lastly, Chapter 9 proposes points of interest for further work
within DRL.
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Chapter 2

Control Theory for Marine Vessels

2.1 Notation and Reference Frames

The notation used in this report follows conventions from the Society of Naval Architects
and Marine Engineers (SNAME), summarized in Table 2.1 for the relevant Degrees of
Freedom (DOF). Figure 2.1 shows a visualization of the conventions. For analyzing the
motion of ReVolt, the geographical reference frame North-East-Down (NED) and the
body-fixed reference frame was used. NED is chosen as a tangent plane to the surface of
the earth, and positions within the frame is denoted (xn, yn, zn), where the xn-axis points
towards true north, the yn-axis points east and the zn-axis points downwards. The body-
fixed reference frame is denoted (xb, yb, zb), where the xb-axis points in the longitudinal
direction of the vessel, the yb-axis in the transverse direction, and zb points in the direction
normal to the xb,yb-plane. (xb, yb, zb) = (0, 0, 0) was defined to be located in the Center
of Gravity (CG) of the vessel. In this thesis, yb was positively defined in the starboard
direction, hence zb was positively defined downwards. In addition, the term position
referred to a 2 or 3 dimensional coordinate, while pose was used for vectors consisting of
both position and the orientation of the vessel relative to true North.

Table 2.1: Notation by SNAME for 3 DOF models.

DOF Position in Euler
coordinates

Linear and angular
velocities

Forces and
moments

Surge x u X
Sway y v Y
Yaw ψ r N

To avoid confusion with a reward, which is used widely in Reinforcement Learning termi-
nology, the yaw rate will be denoted as ψ̇ instead of r. rt will therefore denote a reward
at time t, and ψ̇t denote the yaw rate at time t.
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Figure 2.1: Definition of surge, sway, heave, roll, pitch and yaw modes of motion in body-fixed
frame. Courtesy: Sørensen [4].

2.2 DP Control Plant Model for 3 DOF

A control plant model is a simplified mathematical model of the vessel in the relevant DOFs
for the control system being designed. Its purpose is to describe the vessel dynamics, and
it is used to design the controller. Control plant models for Dynamic Positioning (DP)
assume low vessel speeds, and are valid for up to approximately 2 m/s, according to Fossen
[36]. In the following, all roll, pitch and heave motions has been neglected, which results
in a 3-DOF model, consisting of surge, sway and yaw. The non-linear equations of motion
can be presented as in Equation (2.1), where C(ν) ∈ R3x3 is the Coriolis and centripetal
matrix, D(ν) ∈ R3x3 is the damping matrix, M ∈ R3x3 is the system inertia, consisting of
the added mass and the rigid body inertia. τi represents the different forces acting on the
system, η is the NED-frame position, while ν is the velocity of the vessel expressed in the
body-frame. The numeric values of these matrices for ReVolt were found experimentally
by Alfheim and Muggerud [33], and is added to Appendix A.

η̇ = R(ψ)ν

Mν̇ +C(ν)ν +D(ν)ν =
∑
i

τi
(2.1)

The kinetic equation of motions is restricted to rotation about the z-axis due to the neg-
ligible roll and pitch motions during DP, such that the rotation matrix used to transform
velocities from the body-frame to the NED-frame can be simplified to Equation (2.2).

R(ψ) =

 cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2.2)
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2.3 Control System

The control system on board a vessel is the system responsible for calculating and exerting
the forces necessary to act on the vessel in order to keep a certain position when station-
keeping, or following a certain trajectory when maneuvering. In addition, it needs to take
into account thruster limitations with respect to acceleration limits, rotational limits etc.
The control hierarchy can thus be divided into three levels (according to Sørensen [4]): the
guidance system, the high-level plant control, and low-level thruster control. An overview
of the control system can be seen in the block diagram presented in Figure 2.2.

Motion	Control Thrust	Allocation Low-level	
Thruster	Control Vessel

Signal	Processing

Guidance	System

Control	System

State	Estimation

Desired	
states

Generalized	
forces

Thruster	
signals

Environmental	LoadsReference	Model

Figure 2.2: Block diagram of the components involved in control of a vessel, with the control
system outlined.

2.3.1 Guidance system

The high-level control (being the motion control and the thrust allocation) receives a
setpoint to act on with respect to the vessel’s current state, and the guidance system is
responsible for input to the controller. To do so, a combination of setpoint generation and
a reference model is used.

Setpoint Generation

The desired states for the vessel can be generated in difference ways. For general ma-
neuvering, the setpoints might be generated by a motion-planning algorithm, or they can
be set manually by an on board or remote operator. For station-keeping situations, the
setpoint is constant or slowly varying in low speed operations, but for path-following, the
setpoints change more drastically over time. Path-following algorithms can be found in
detail in Fossen [36], chapter 10. The generation of desired states needs a component that
computes reference signals to the vessel’s high-lever controller, which is where a reference
model is used.

Reference Model

When the DP system of a ship attempts to control a vessel from one position to another,
it might receive large changes between setpoints, potentially causing large accelerations
of the actuators. This could induce large sudden movements of the vessel, as well as
increased actuator wear and tear. In order for the control system to work with smooth
trajectories, mechanisms can be implemented to generate references that incrementally
move the setpoints away from the current position, resulting in a more predictable behavior
of the positioning procedure. An example of such a mechanism is a reference model.
Although the name includes ”model”, it can be seen as filter, filtering the setpoints and
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computing references for the control algorithm. The reference model thus feeds references
into the controller that get incrementally closer and closer to the global setpoint given from
the setpoint generation mentioned above. During the tuning of the reference model, there
needs to be made a compromise between accuracy and performance. Tuning the model
too aggressively might make the vessel’s controller act very aggressively and quickly, but
in turn, the accuracy of the reference following could be reduced. Equation (2.3) shows a
mass-damper-spring system that is able to filter step changes in the reference position (in
the NED frame) ηnref in order to achieve smooth trajectories for the desired vessel states.
A more rigorous explanation of reference filters can be found in Fossen [36], Chapter
10.2.1. A reference model was already implemented on ReVolt [33], which is discussed in
Section 5.1.2. η̇d

η̈d
η̈d

 =

 0 I 0
0 0 I
−Ω3 −(2∆ + I)Ω2 −(2∆ + I)Ω

 ηd
η̇d
η̈d

+

 0
0

Ω3

 ηnref (2.3)

2.3.2 Motion Control

In order to move from the vessel’s current state to the desired state proposed from the
reference model, forces and moments has to act on the vessel in order for it to move.
The size and direction of these forces is calculated in the motion controller. A typical
implementation of such a controller for surface vessels for path- or trajectory following is
to use a combination of a speed controller and a heading controller, where two different
controllers work in synergy to maintain the wanted speed and attitude of the vessel.
However, for DP systems, there is one controller unit responsible for maintaining position
and attitude as the vessel’s speed is low. The controller calculates the generalized forces
that the vessel needs to be subject to in order to eliminate the error between the current
and desired state. A typical implementation of a feedback controller is a proportional-
integral-derivative (PID) controller, which consists of three terms which (1) aims to reduce
the current deviation from a given setpoint (proportional term), (2) reduce the steady state
deviation from a setpoint in case of a disturbance put on the system (integral term), and
(3) the rate of change deviation (derivative term). The generalized forces are calculated
in the body-frame, so the vessel’s positional error η̃ must be transformed from the NED-
frame. The resulting control law becomes as shown in Equation (2.4),

τPID(t) =

Xd

Yd
Nd

 = −Kp

(
R>(ψ)η̃(t)

)
−Kdν̃(t)−Ki

∫ t

0

(
R>(ψ)η̃(τ)

)
dτ, (2.4)

where Kp,Kd, and Ki represents the proportional-, derivative, and integral gains respec-
tively, while τPID represents the desired forces in surge, sway and yaw. The K-values are
parameters that are tuned for proper stability and performance. Fossen [36], chapter 12,
gives an example of useful tuning rules for stable PID controllers. On the ReVolt model
ship, a PID controller was already developed and tuned [33]. In addition, a feedforward
controller was implemented, using the mass-, damping-, and Coriolis matrices as explained
combined with the desired vessel states to react directly to the desired states instead of
only relying on the feedback control law from the PID to correct for errors between the
desired and the vessel’s states. In theory, if the modeling is done perfectly, a feedforward
control law should be enough to control the vessel to the desired states if the external
forces acting on it is known. However, due to modeling errors, non-linearities, and often
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unknown and varying external forces such as the sea state, the necessity for a correcting,
feedback control law is needed. Assuming no known external forces on the vessel, the
feedforward control law was formulated according to

τFF = Mν̇d +C(νd)νd +D(νd)νd. (2.5)

The resulting control law τc of the motion controller thus becomes the sum of the two:
the feedforward control law for ”predicting” the necessary control inputs for reaching the
desired states, and the feedback control law for correcting for the resulting errors:

τc = τFF + τPID. (2.6)

2.3.3 Thrust Allocation

In order to physically put forces on the vessel, the generalized forces has to be transcribed
into individual commands to each of the vessels’ thrusters, which might be fixed-pitch
propellers, azimuth thrusters, water jets etc. This process is called Thrust Allocation
(TA), and is classically implemented as an optimization problem. A mapping between the
actual thrust forces τ and the thruster forces T can be expressed several ways, but the
most common one is the linear actuator model, as shown in Equation (2.7), where xthr is
the thruster states, and t denotes time.

τ = B(xthr, t)T (2.7)

B is called the effectiveness matrix, and contains the geometric setup which transforms the
individual thrusters’ forces, T , into forces and moments acting on the ship, τ . Due to that
the thrusters on ReVolt are all azimuth thrusters, B depends on the thruster rotations,
and is therefore not constant unless the thruster angles are constrained to a fixed angle.
The entire thrust model can therefore be modeled as in Equation (2.8). Note that sαi and
cαi corresponds to the sine and cosine of αi, respectively, and that the thrusters’ distances
from CG in the longitudinal and transverse directions are lx,i and ly,i, which are shown in
Figure 4.2 in Chapter 4.

τ =

XY
N

 =

 cα1 cα2 cα3

sα1 sα2 sα3

lx,1sα1 − ly,1cα1 lx,2sα2 − ly,2cα2 lx,3sα3 − ly,3cα3

T1

T2

T3

 (2.8)

Figure 2.3 gives a representation of the three elements of τ in 3DOF. Going from Equa-
tion (2.8), the thrust allocation procedure is concerned with finding the thruster commands
that produces τ = τd. Note that this is not necessarily achievable instantaneously at all
time instances, so the thrust allocation can be formulated as an optimization problem,
attempting to get τ as close as possible to τd at every time step. After the thruster
angles and the individual forces has been found, they have to be translated into thruster
commands, usually through a known model of the thruster forces as a function of thruster
commands, as shown in Equation (2.9), where KT is a coefficient found through empir-
ical tests [37], ρ is the fluid density, and D is the propeller diameter. ni represents the
rotational velocity of the propeller, and is the signal which is commanded from the thrust
allocation scheme.
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Ti = KTρD
4ni|ni| (2.9)

CG

X

Y
N

Figure 2.3: Definition of the thrust vector τ .

Extended Thrust Formulation using the Pseudoinverse

There are several formulations which takes different approaches the thrust allocation prob-
lem. A popular version is called the extended thrust formulation, where the T -vector is
extended to contain the x- and y-components of each thruster. The B-matrix is extended
with one additional column per thruster such that the x-component in the extended thrust
vector is connected to a column in the B-matrix that corresponds to the thruster angle
being 0 degrees, and the y-component is connected to a column that correspond to the
thruster angle being 90 degrees. This decomposing can be visualized as shown in Fig-
ure 2.4. The extended thrust formulation for ReVolt thus becomes as shown in Equa-
tion (2.10).

τ = BextText =

 1 0 1 0 1 0
0 1 0 1 0 1
−l1,y l1,x −l2,y l2,x −l3,y l3,x




T1,x

T1,y

T2,x

T2,y

T3,x

T3,y

 (2.10)

If the target is to minimize the size of Text with respect to that τ = BextText, solving
the unconstrained linear control allocation without setting constraints of the size of the
forces, nor on the rate of change of the forces or angles, can be formulated as shown in
Equation (2.11a). W is a weighting matrix containing how much weighting each thruster
force component should have in the minimization problem, and large weights corresponds
to reducing the resulting thrust more than with small weights. The analytic solution is
as shown in Equation (2.11b), using the pseudoinverse of B (the Moore-Penrose inverse
[38]), assuming that B has full rank and that the desired force vector is τd.

min
1

2
T>extWText

subject to τd = BextText

(2.11a)

=⇒ Text =
(
W−1B>ext(BextW

−1B>ext)
−1
)
τd (2.11b)
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The resulting forces are then found by calculating the magnitude as in Equation (2.12),
having direction as in Equation (2.13), where atan2(y,x) is the four-quadrant inverse
tangent. A visualization of the result can be seen in Figure 2.4(1).

Ti =
√
T 2
i,x + T 2

i,y (2.12)

αi = atan2
(
Ti,y, Ti,x

)
(2.13)

Ti,y

Ti,x αi

Ti

Figure 2.4: Thruster forces decomposed.

Using the extended thrust formulation as presented in in Equation (2.11a), no constraints
regarding the rates of force production and angle of the azimuth thrusters is considered, but
it is possible to iteratively search for solutions which reside within given constraints after
a solution is found as shown in Equation (2.12) and Equation (2.13). More information
about ways to accomplish this is given in Section 5.2.

Quadratic Programming Formulation

The extended thrust formulation, without any modifications, does not consider the pre-
vious thrust states nor thruster constraints from one time step to another. It is also not
possible to include constraints such as forbidden azimuth angle zones, which is further
discussed by Sørdalen [6] and Johansen and Fossen [12]. In order to handle this, a full
quadratic programming approach could be taken to effectively formulate the constraints.

The constraints that could be enforced includes physical rate limitations on the force
generation from each thruster between each time step, and rate limitations on how fast
the azimuths are able to rotate. Due to the fact that many marine vessels are overactuated
(having more control outputs than the DOFs that are being controlled), there might exist
several solutions to an allocation problem that satisfies τ = τd. The constraints and
extra goals of the optimization procedure are used to separate solutions from each other,
typically by including a goal of minimizing power consumption in addition to reducing
wear and tear on both the propeller shaft and the azimuths’ rotational machinery.

The quadratic programming introduces a slack variable which represents the difference
between the produced and the desired forces and moments such that τ − τd = s. There-
fore, minimizing the magnitude of s means minimizing the difference between the two
force/moment vectors. Minimizing power consumption could be formulated as minimiz-
ing the total thruster forces, which means that |T | should be minimized. The variables
to be minimized could have different priorities, assigning them different weights in the

(1)Thruster image from https://www.pngflow.com/en/free-transparent-png-cewun
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objective function. This could be done in order to e.g. prioritize to minimize power con-
sumption by allowing a larger deviation between τ and τd by assigning small weights to
the slack variables, and higher weights to the thruster forces. Altogether, this could be
formulated as minimizing a quadratic objective function such as xTQx, where Q is the
weighting matrix, and x contains all decision variables, namely the variables that needs
to be assigned values through the optimization.

The constraints on how large of a step the thrusters are able to make in terms of force
per time step, and how much the azimuth thrusters can rotate per time step (according
to their physical limitations), are formulated as inequality constraints, and the entire
quadratic program could be formulated as in Equation (2.14), where the thruster forces
and the slack variables are the parameters to minimize for each time step t, weighted
differently by the weights qi.

min
T,s

3∑
i=1

qTi(T
t
i )

2 +
3∑
j=1

qsj (s
t
j)

2

subject to B(αt)T t − τd = s,

Tmin ≤ T t ≤ Tmax,
δT,min ≤ T t − T t−1 ≤ δT,max,
δα,min ≤ αt −αt−1 ≤ δα,max

(2.14)

Note that this formulation contains non-linear equality constraints due to the fact that the
azimuth angles are occurring in trigonometric functions inside the B-matrix, and hence this
becomes a quadratic optimization problem with non-linear constraints. The optimization
problem could also be nonconvex, such that regular QP-solvers would not be guaranteed
to find the global optimum. Methods for handling this has been proposed as mentioned
by Johansen and Fossen [12], where the different azimuth angles are divided into separate
regions, hence solving several convex QPs in parallel. This means that there needs to be
done an extra evaluation afterwards to find the best solution coming from the different
QPs based on an additional, predefined performance measure.
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Chapter 3

Deep Reinforcement Learning

In this chapter, an explanation of Machine Learning generally, and Reinforcement Learning
specifically, is given. The use of function approximators such as Deep Neural Networks to
approximate value-functions and policies is discussed, leading up to Deep Reinforcement
Learning. State-of-the-art algorithms used in the context of action selection processes like
dynamic control will be given, where the algorithm of choice for this thesis is explained
in detail. The chapter bases its derivations and notation on the ”Deep Learning” book
by Goodfellow, Bengio and Courville [39], the second edition of ”Reinforcement Learning,
An Introduction” by Sutton and Barto [40], OpenAI’s ”Spinning Up” website [41], and
course material from ”CS294: Deep Reinforcement Learning” at UC Berkeley [42].

3.1 Machine Learning - An Overview

Within the field of AI, Machine Learning (ML) is a sub-field which has gotten much
attention over the last ten years, especially due to developments within Deep Learning
(DL). In short, ML deals with developing algorithms that lets a computer learn from data
without explicitly being programmed what to learn, but rather how to learn. Due to the
improvement of different computer processing units in the 21st century, the computation-
ally demanding processes involved in training Neural Networks have become much faster.
The field of ML is typically divided into three sub-fields, namely Supervised Learning,
Unsupervised Learning, and Reinforcement Learning. In the following, each of these sub-
fields will be explained briefly. A more elaborate explanation of RL follows, in addition
to an explanation of tools which modern Deep Reinforcement Learning builds on, and
which has given it much attention the later years: Neural Networks. For a more in-depth
explanation of the different applications of the various sub-fields, the reader is referred to
chapter 5 of the Deep Learning textbook [39] which goes through the basics of ML.

3.1.1 Supervised Learning

Supervised Learning is used in situation where a dataset of input-output pairs are known,
but how the pairs map to each other is not known. Therefore, supervised learning is used
in classification tasks, where different classes is to be classified, e.g. through identification
of objects in images. It is also used regression tasks, where one tries to predict the value of
some output based the previous input-output data, such as predicting good control outputs
from a vehicle’s actuators based on the state of the vehicle and/or previous control outputs.
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3.1.2 Unsupervised Learning

Unsupervised Learning differs from supervised learning through the fact that it is trained
on a dataset that does not have labels. Hence, the learning algorithm is not explicitly
told which predictions are right or wrong. This yields unsupervised learning helpful in
applications where useful structural properties of the dataset can be discovered, which
could be hard for humans to find. Due to the fact that these algorithms finds patterns
which is not encoded by the humans applying them, a cost/reward function is not easy to
implement. Therefore, the field of control has not been exploring Unsupervised Learning.

3.1.3 Reinforcement Learning

In Reinforcement Learning (RL), a trial-and-error based approach to the learning proce-
dure is used. The basic setup of such a learning method involves an agent which performs
actions within an environment while receiving rewards for each action in order to learn a
policy. Unlike Supervised Learning, there are no existing ground truth dataset. Rather,
the goal is to find a policy which selects actions that maximizes some expected reward
when being in a certain state of the environment.

RL has become one of the most prominent machine learning areas due to its results in
complex games consisting of both single and multiple agents(1). Previously, RL methods
has struggled with systems with large state- and action-spaces since implementing them
into computer programs could be limited by computational memory and time complexity.
Therefore, instead of explicitly storing information about each combination of a state and
an action which the system can consist of, function approximators has been applied to
circumvent the problem of large state- and action spaces, a problem named ”the curse of
dimensionality”. A much used approximator is the use of various architectures of Neural
Networks. In fact, Neural Networks has become essential in enabling RL algorithms to be
applied to real systems. Therefore, before going into the details of RL from Section 3.3
through Section 3.10, an introduction to Neural Networks follows as a mean of providing
the foundation on which Deep Reinforcement Learning builds on.

3.2 Neural Networks and Deep Learning

An Artificial Neural Network (ANN) is a type of function approximator for functions that
are hard to encode by hand, artificially mimicking the behavior of neurons in the human
brain. This means that by itself, it has no relation with a particular sub-field of ML, but
is used across various fields due to its expressive power. From a mathematical point of
view, the ANN performs a mapping of one set of inputs in the input space in to another
set of outputs in the output space. The nature of ML methods is to learn and represent
connections that are hard to solve by humans either by analytical solutions, or by explicitly
creating computer programs. Therefore, ANNs have been used extensively within ML as
a means of approximation of various entities. In the eyes of control theory, the mapping
could be done from a certain state of a system into control signals. In the following, a
brief explanation of how a Neural Network works will be given.

(1)https://openai.com/five/
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3.2.1 The Neuron

An artificial neuron in the ANN is a unit that works like a function which takes several
arguments, and yields a single output. The arguments consists of differently weighted
inputs and a bias term, which are summed up, passed through an activation function,
with the result being the neuron’s output as shown in Figure 3.1.

x1

x2

xn

w1

w2

wn

a

w0

z

OutputActivation
function

Inputs f(z)

1

Bias

...

Figure 3.1: An artificial neuron’s weights, bias and activation function.

The inputs might contain real numbers representing different features in the input data,
and the weights are what expresses the relative importance of the different inputs. The
bias term is not considered a part of the input set, but is a constant multiplied with a
weight in order to shift the output with a constant. The activation function is what makes
an ANN able to represent non-linear features, since if the neuron would only sum the
inputs together, it becomes a linear classifier, only able to represent linear combinations
of the input parameters. The formulation of the output can in general be written for a
neuron with n inputs as

a = f(z) = f(

n∑
i=1

xiwi + w0) (3.1)

Popular activation functions include the hyperbolic tangent function (”tanh”, Equa-
tion (3.2)), the Sigmoid-function (Equation (3.3)), and the Rectified Linear Unit (”ReLU”,
Equation (3.4)).

ftanh(z) =
e2z − 1

e2z + 1
(3.2)

fSigmoid(z) =
1

1 + e−z
(3.3)

fReLU (z) =

{
0 if z < 0

z if z ≥ 0
(3.4)

3.2.2 Feedforward Neural Networks

There exists different ways to connect neurons together to form an ANN, with one of
most regular ways resulting in a Feedforward Neural Network (FFNN). The neurons in
an FFNN have weights going strictly from the input layer towards the output layer, using
no feedback of information. It is characterized by having an input layer, one or more
hidden layers, and one output layer. A hidden layer is the layer of neurons with activation
functions. The neurons within a hidden layer are not connected to each other in an FFNN,
so the only connections to the layer comes from the previous layer, and goes to the next
layer. A simple FFNN is shown in Figure 3.2, where one hidden layer is drawn.
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Figure 3.2: A Feedforward Neural Network with arrows representing weights between neurons.

The number of input neurons is decided by the number of features in the input data, and
the output layer’s size is determined by the task at hand. The number of neurons in the
hidden layers, as well as the number of hidden layers, is subject to tuning, meaning that it
comes down to trial and error (Heaton [43]). Generally, if there are more than one hidden
layer, the learning process is called Deep Learning. As stated in chapter 6 of the Deep
Learning textbook [39], there is no clear consensus on why deeper networks work better
than shallow ones, but trends are showing that deeper networks seems to generalize better
than shallow ones.

Going from the notation in Equation (3.1), it is possible to make a formulation for all
parameters of an ANN. Let L denote the number of layers in the network so that l
represents a specific layer number. Let k denote a neuron in layer l consisting of in total
Kl neurons. The output alk of neuron k in layer l depends on its input from the previous
layer. The weighted connection between neuron k

′
in layer l − 1 and neuron k in layer l

can be written as wl
k
′
,k

. Thus the output alk of a neuron k in layer l depends on the sum

of all Kl−1 weights and outputs from the previous layer, and can be written in component
form as in Equation (3.5),

alk = f(

Kl−1∑
k′

wl
k′ ,k a

l−1
k′

+ wl0,k). (3.5)

It is convenient to handle large networks by using vectors and matrices, so the entire
output vector from layer l can be written in vector form as in Equation (3.6), where W l

is the weight matrix connecting weights in layer l to the previous layer’s outputs and wl
0

is the bias vector for each of the neurons in layer l.

al = f(W lal−1 +wl
0). (3.6)

Training a Neural Network

The process of which most ANN structures learn is by using backpropagation. During
training, the output from each node is compared to a performance metric which is used to
calculate ”how much the output from a node contributes to the total performance”, going
from the output layer, through the nodes in the hidden layers, and to the input layer.
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The goal of backpropagation in combination with an optimization function is to optimize
an objective function J by adjusting the weights and biases of the network. An objective
function is often referred to as a loss function when the goal is to minimize it. The
objective function can be formulated in various ways, and for regression, Mean Squared
Error is commonly used in order to formulate the error between outputs from the network
and the desired ones. For measuring the performance of a network classifying different
classes, outputting probabilities of each class between 0 and 1, the Log Loss can be used.
Using an example of minimization, the total loss function J could be formulated as the
average loss from each training sample m out of M training samples, such that

J =
1

M

∑
m

Jm. (3.7)

Using Calculus, the rate of change of the loss function with respect to each layer’s weights
is found through the partial derivatives ∂J

∂W and ∂J
W0

. In order to compute these deriva-
tives, the loss depending on neuron k in the output layer (layer L) can be written as in
Equation (3.8), stating how the error of the loss function changes with the input to neuron
k the output layer, zLk .

δLk =
∂J

∂zLk
=

∂J

∂aLk
·
∂aLk (zLk )

∂zLk
=

∂J

∂aLk
· f ′(zLk ). (3.8)

In vector form, this is formulated as shown in Equation (3.9),

δL = ∆aJ � f ′(zL), (3.9)

where ∆aJ denotes the rate of change of the loss with respect of the activation function, �
represents the elementwise multiplication operator, and f ′(zL) denotes the rate of change
of the outputs of the output layer with respect to its inputs. Note that the shape of
∆aJ depends on the type of loss function, while f ′(zL) depends on the type of activation
function. Now that the output layer’s error rate has been defined, the error rate of the
other layers is calculated through propagating the output error rate backwards in the
network, giving

δl = W l+1δl+1 � f ′(zl). (3.10)

The effect on the error rate from the weight connecting neuron k
′

in layer l−1 and neuron
k in layer l is formulated as in Equation (3.11), and the effect on the error rate from the
bias of neuron k in layer l is found from Equation (3.12).

∂J

∂wl
k′ ,k

= al−1
k′
δlk (3.11)

∂J

∂wl0,k
= δlk (3.12)
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This defines the backpropagation, and the final step involves updating each of the weights
based on the gradients found previously. For such updates, variants of gradient descent
is commonly used. The reader is referred to Kiefer and Wolfowitz [44] and Du et al. [45]
for gradient descent fundamentals. In all simplicity, the gradient descent update rule is
defined as updating the weights according to the gradient which seems to minimize the
output layer’s loss, using a certain step size α. If the goal is to minimize the loss function
J , the update rule for the weights of neuron k can be formulated as in Equation (3.13).

wk ← wk − α
∂J

∂wk
(3.13)

Note that J in some cases refer to an objective function that is to be maximized instead
of minimize, in which the sign in Equation (3.13) changes; this is the difference between
gradient ascent and decent. Since the update rule has to be done for all weights and biases,
for all data points in the data set when training, the learning process might become slow
for increasing amounts of data. There exists several methods for increasing training speed
by calculating the cost function gradient of each input for a small sample of randomly
chosen training inputs, generalizing the idea of Stochastic Gradient Descent (SGD) [46],
improved by Mini-Batch Gradient Descent [47], and optimized with clever selection of an
adaptive step size η(t) during training [48, 49, 50]. After training, the weights are set to
be constant, i.e. no more backpropagation is carried out, and all inputs are only passed
strictly forward - called a forward pass.

Deep Reinforcement Learning (DRL) describes the field that combines RL with Deep
Neural Networks. In the following, the basics of RL will be described generally, leading
up to the DRL algorithm of choice specifically, while explaining how the Neural Networks
are being used to represent various entities.

3.3 Markov Decision Processes

In RL, it it usually assumed that the environment, and the behavior of making any actions
within it, is described as a Markov Decision Process (MDP) [40]. The purpose of an MDP
is to provide a general framework for finding optimal decisions for a decision maker in
an environment which dictates the outcome of making actions. An MDP consists of the
following:

• s ∈ S: a set of states defining the state space of the MDP.

• a ∈ A: a set of actions defining the action space of the MDP.

• P ∈ P(s′|s, a): a probability matrix relating the selection of an action a in a certain
state s and ending up in a new state s′. This probability matrix can be viewed as
the environment’s dynamics.

• r ∈ R(s, a): a scalar reward function that describes how good a certain action was
while being in state s.

Thus, an MDP can be, as a bare minimum, be defined in a 4-tuple < S,A,P,R >.
Note that this tuple might vary in the literature: some include a discount factor γ in the
tuple, while others might include an initial state distribution ρ0. Regardless, an important
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property of an MDP is that the result of an action taken in one state is independent of
previous states; transitions between states only depends on the most recent state-action
pair. This property implies that all information about the sequence leading up to a certain
state can be inferred from that state alone, and as stated in chapter 3.3 of Ibe [51]: ”The
Markov property implies that for all t, the process {X(t+ s)−X(t), s ≥ 0} has the same
distribution as the process {X(s), s ≥ 0} and is independent of {X(s), 0 ≤ s ≤ t}”, where
X describes a stochastic variable, being the state of the MDP in the context of this thesis.

The ultimate goal of methods for solving MDPs is to find the optimal action selection
procedure. The action selection procedure is formulated through a policy. The following
describes what an ”RL agent” consists of, and how the rewards from the MDP can be
used for updating the way the agent makes actions.

3.4 The Policy

The ”RL agent” describes an entity which is able to interact with an environment like an
MDP, through making observations and by selecting actions. While the policy describes
how actions are decided upon, the actual performer of the actions would be elements like
the actuators of a dynamic system. The two main ways policies are formulated is either
being deterministic, being a fixed mapping directly from a state to an action, or it could be
stochastic, following some probabilistic sampling of a distribution over the actions which
are possible to make, given a certain state. A deterministic policy can be formulated
as in Equation (3.14a), while stochastic policies are usually represented as probabilistic
distributions as in Equation (3.14b).

at = µ(st) (3.14a)
at ∼ π(st) (3.14b)

Both ways of selecting actions are applicable to both types of action spaces. The action
space describes the manner in which actions exist for the given system, and are divided
into discrete and continuous spaces. Discrete action spaces are spaces where the number
of all possible actions to take are finite. On the other hand, the continuous action spaces
are not possible to enumerate. This includes many robotic systems, where actions can be
a certain percentage of the maximum torque being applied to a joint. In reality, due to the
finite accuracy of floating point numbers in computers, these continuous actions spaces are
discrete, but they can become exponentially many, and thus unsuitable for enumeration.
Due to parameterization, ANNs has given rise to Deep Reinforcement Learning (DRL) the
last years, as Neural Networks have shown an ability to approximate complex functions,
which can be used as the policy function for the RL agent. An example of a stochastic
policy being represented as the probability of an action given a certain state and the
parameters could be given as in Equation (3.15).

πθ = π(a|s,θ) = P (a|s,θ) (3.15)

Various policy formulations combats the challenge of exploration vs. exploitation in differ-
ent ways, explaining the challenge of knowing how to weight the exploration of the state
space in the search of good policies, and when to utilize what the agent has learned this far
in order to intensify the search for good policies in restricted areas of the state space. Too
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much exploration, and the learning becomes very slow and possibly never converges to a
good policy. Too much exploitation, and the agent might converge to a local minimum due
to lack of exploration. For stochastic policies in continuous action spaces, this problem is
handled by probabilistic sampling. A typical formulation of such a policy is done by using
Gaussian policies, consisting of a mean, µ and a standard deviation σ. For agents with
more than one action output, multivariate Gaussian distributions can be used, in which
the distribution is represented as a vector of means µ and a covariance matrix Σ. The
covariance matrix is normally diagonalized for simplicity in order to avoid policy outputs
being dependent on each other. This gives a diagonal, multivariate Gaussian distribution.
In this way it has become common for DRL applications that the policy is created by using
a Neural Network as the parameterization of the means of this distribution, namely that
the network outputs µθ, combined with the standard deviations σ. The policy πθ outputs
actions depending on a sampling procedure, and the sampling strategy using diagonal,
multivariate Gaussian distribution is as shown in Equation (3.16) for a multidimensional
action vector. � represents the elementwise multiplication operator, and z is a noise vector
sampled from a normal distribution with zero mean and unity variance (z ∼ N (0, I)).

at ∼ πθ(st) = µθ(st) + σ(st)� z (3.16)

From here on out, all references to the policy will be about the stochastic policy, hence
using π for the action selection procedure. This is due to that the setup of ReVolt’s
thrusters are in such a fashion that is advantageous to formulate the action space as
continuous. In addition, the bold notation used for vectors will be used only when it is
necessary to separate a vector from a scalar or a matrix.

3.5 Episodes and Rewards

Following the vocabulary from MDPs, it could be said that during learning, the agent
observes states from the environment, and makes actions based on its policy. The outcome
of the action is a new state, and a reward. This interaction can be visualized as in
Figure 3.3.

dsfsdf                   AGENTENVIRONMENT

Statet+1 Statet

RewardtRewardt+1

Actiont

Figure 3.3: Agent-environment interaction in Reinforcement Learning.

An episode denotes one batch of state-action pairs which the agent generated while ob-
serving and acting in the environment. The length of an episode can be determined by
several factors: either the episode is set to be of a particular maximum length, or the
agent might encounter states which stops the episodes. Such states are called terminal
states which are states where the agent cannot continue, either because the agent arrived
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in a certain goal state, or because the agent arrived in a state which is considered as ”out
of bounds” or a dangerous state. Episodes can, especially for dynamic systems, be viewed
as trajectories of states and actions which describes how the agent got from the initial
state, to any state in the trajectory by taking the actions leading up to that state. Such
a trajectory, gathered under policy πθ are usually denoted as τ ∼ πθ.

During these episodes, the agent’s job is to somehow aggregate as much reward as it can
over time in some way or another. Note that in this thesis, reward is used on a particular
scalar value which the agent can receive at a given time, while return denotes a given
aggregation of several rewards over time. A commonly used formulation for the return is
the infinite-horizon undiscounted return, which represents the return Gt as the return of
following a policy from time t until the end of the episode as shown in Equation (3.17).
The reward r is an output of the reward function R introduced in Section 3.3.

Gt = rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑
k=0

γkrt+(k+1). (3.17)

0 ≤ γ ≤ 1 is the discount rate, a weighting factor between rewards accumulated immedi-
ately, and reward accumulated in future time steps. If the discount factor is zero, the agent
only maximizes the immediate reward and never considers future rewards. As the discount
factor increases, more of the future reward will be considered. The practical consequence
of the discount factor is discussed in Chapter 5. Equation (3.17) offers some attractive
mathematical properties due to the lower and upper limit on the discount factor, since it
converges to a finite value [40]. In the case of the agent finding the optimal reward r∗,
and stays there from time t and through to infinity, the sum converges to the geometric
series (and in this case the maximum possible discounted return),

G∗t = r∗ + γr∗ + γ2r∗ + ... =

∞∑
k=0

γkr∗ =
r∗

1− γ
. (3.18)

Since the RL agent does not have a perfect model of the world, it will try to maximize
the return for whatever experience it aggregates. Therefore, its job is to maximize the
expected return over the trajectories τ which are experienced by following the policy πθ,

J(πθ) = E
τ∼πθ

[G(τ)], (3.19)

and by doing so, it tries to find the optimal policy, π∗. In the following, common ways of
learning how to do this with RL will be shown.

3.6 Solving MDPs with Reinforcement Learning

An RL agent can interact with the MDP, gathering experiences of certain actions taken
in certain states, leading to certain reward as shown in Algorithm 1. This experience is
referred to as a trajectory, τ . In order to learn, different RL methods aims to use the
trajectories in order to teach the agent how to behave, as shown in Algorithm 2. If the
learning algorithm only uses trajectories which were sampled with the current policy for
learning, the process is called ”on-policy” RL. If the actions are taken without having
information about the environment, it represents model-free RL.
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Algorithm 1 On-policy RL trajectory generation

generate trajectory = function(policy, M, initial observation):
for all M steps per episode do

Select and action based on the current policy, given the current observation.
Perform the action while observing the next state and the reward received.
Store the observation, action and reward in trajectory.
if Next state was a terminal state then

return Trajectory.
else

Update current observation to be the observation of next state.

return Trajectory

Algorithm 2 On-policy RL for solving MDPs

RL = function(agent, N, learning algorithm):
Initialize all parameters of the agent.
for all N episodes do

Randomly initialize state in the environment, and observe the state.
Run an episode as shown in Algorithm 1.
Perform update on the agent’s policy according to the learning algorithm.

return The agent’s policy.

3.6.1 Value Functions

In almost all RL algorithms, a notion of the value of being in a certain state is used.
The entity which represents the value of being in all the different states is called a value
function. There are two main types of value functions used: one representing the value of
being in a specific state (the state-value function), and the other representing the value of
a certain combination of being in a certain state while taking a certain action (the action-
value function). The exact value of these types of value functions are usually estimated
due to imperfect information about the environment, and the values are therefore an
expectation, represented with E[·] in the equations to come. For the state-value function,
the value of being in state s is denoted is

V π(s) := E
τ∼π

[G(τ)|s0 = s], (3.20)

where the notation means that V π(s) represents the expected return G of the trajectory τ
generated by taking actions according to policy π, starting in state s. The expected return
is often found through letting the agent interact with the environment while generating
trajectories. For the action-value function, the formulation is very similar to the state-
value function, except for the inclusion of the value of taking a certain action in state s
as well, as shown in Equation (3.21). Note that it evaluates only action a in the current
state, but the following actions are made by the followed policy.

Qπ(s, a) = E
τ∼π

[G(τ)|s0 = s, a0 = a]. (3.21)
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It can be helpful to notice that the return in Equation (3.17) can be formulated as

Gt = rt+1 + γrt+2 + γ2rt+3 + ...

= rt+1 + γ
(
r(t+1)+1 + γr(t+1)+2 + ...

)
= rt+1 + γGt+1,

(3.22)

meaning that the return from time t to infinity is the next reward plus the discounted
future rewards of the next time step’s return. As the state-value function and the action-
value function are both defined on the basis of the return, the same type of recursive
property can be formulated, and forms the basis of the Bellman Equations presented in
the next section. From here on out, the term value function will refer to the state-value
function V (s), and the action-value function Q(s, a) will be referred to as the Q-function.

3.6.2 Bellman Equations and Dynamic Programming.

Richard E. Bellman (1920-1984) introduced the ideas of Dynamic Programming and the
Bellman Equations in the 1950’s. In the cases where the MDP is able to be fully for-
mulated, including the transitional probabilities P, dynamic programming serves as a
collection of iterative methods for finding solutions to the optimal policy and/or value
function in cases where the analytic solutions are complex to find. The field of Dynamic
Programming is vast, and will only be explained in brevity here; chapter 3 and 4 of [40]
gives a rigorous walk-through.

Bellman formulated equations which was proved to be necessary conditions for solutions
of Dynamic Programs to be optimal(2). The equations follows what was showed in Equa-
tion (3.22), and gives that the value of being in state st and following policy π, is the
sum of the immediate reward and the discounted sum over the values of the next states,
weighted by the probability of getting to state st+1 when taking actions according to the
policy π:

V π(st) = r(st, π(st)) + γ
∑
st+1

P (st+1|st, π(st))V
π(st+1). (3.23)

Note that since this includes the transitional probabilities, it represents an expectation,
and by letting st+1 ∼ P denote ”going to state st+1 from state st by taking action at,
following the transitional probability P (st+1|st, at)”, we get

V π(st) = E
τ∼π

[
r(st, π(st)) + γ E

st+1∼P
[V π(st+1)]

]
. (3.24)

Bellman also formulated an optimality equation, which defined the optimal policy as the
policy π∗ that maximizes Equation (3.24),

V ∗(st) = max
a′

{
r(st, a

′) + γ
∑
st+1

P (t+1|st, a′)V ∗(st+1)
}

= E
τ∼π∗

[
r(st, π

∗(st)) + γ E
st+1∼P

[V ∗(st+1)]
]
.

(3.25)

(2)These equations are formulated depending on the setup of how the agent receives rewards in the MDP,
one being that rewards are given for transitions between states, and other being giving rewards given the
presence in a state. This thesis uses the latter formulation.
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It is worth noting that the same equations are valid for the Q-function, where a′ ∼ π
denotes taking next actions according to the policy pi, giving the Bellman equation in
Equation (3.26).

Qπ(st, at) = E
st+1∼P

[
r(st, at) + γ E

at+1∼π
[Qπ(st+1, at+1)]

]
(3.26)

The strategies of solving MDPs with Dynamic Programming are, as stated in [40], page
74, ”... obtained by turning Bellman equations such as these into assignments, that is,
into update rules for improving approximations of the desired value functions”. In RL, the
iterative fashion of Dynamic Programming is still pertained, but there are uncertainties
in the MDP such as the transitional probabilities, which is typical for model-free RL.
However, the Bellman Equations still stands as crucial tools.

3.6.3 Learning Through Estimation

Dynamic Programming and the Bellman equations serves as a tool for solving MDP’s
when the transitional probabilities are known. But when these probabilities are unknown,
other tools must be applied, such as RL which learns through estimation.

Monte Carlo Methods

Monte-Carlo methods (MC) is a way of estimating value functions for usage in the Bellman
equations letting the agent interact with the environment. Then, the return of being in the
current state st is calculated the average of the returns the agent observed after moving on
from the state. As more experience is gathered, the closer the average return gets to the
true value. By keeping track of how many times st has been visited in a function N(st)
by sampling N trajectories, an estimate of the value in the state can be formulated as
the iterative MC update in Equation (3.27), where Gt is the last available return from all
trajectories i = 1 to N . The MC methods are shown to converge to the expected value,
and are therefore said to have zero bias. The convergence can be slow due to that MC
methods depends on sampling entire trajectories before doing any updates to the value
function estimates; the episodes has to terminate before updating. They tend to have
large variance since entire trajectories has to be sampled before the update rule can be
applied, potentially making the updates noisy.

V (st)← V (st) +
1

N(st)
(Gt − V (st)) (3.27)

Temporal Difference Methods

Another way of estimating the value function is to use the estimates of the value function
of other states in order to update the value of the current state. This is what Temporal
Difference (TD) methods are based on, and thus does not need to have entire trajectories
in order to perform an update to the value estimates. The TD methods are closely related
to the Bellman equation and uses an estimate for how well the value function is being
approximated called the ”temporal difference error” or ”TD-error”, δt. If we are looking
only towards the next state we get the one-step TD-error as in Equation (3.28a). If the
estimated value of the current state is too low compared to the immediate reward and the
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expectation of the future returns, the TD-error will be positive, and vice versa. This can
be used to update the value estimates, using a step size α, as shown in Equation (3.28b).

δt := rt + γV (st+1)− V (st), (3.28a)
V (st)← V (st) + α[rt + γV (st+1)− V (st)] = V (st) + αδt (3.28b)

TD methods provides less variance in its estimation of the expected values since it can
update much more frequently, and is said to be a bootstrapping method since it uses
estimate values during the update of the same type of estimated values. However, it is
sensitive to the initial values that the value function was set to have, and comes with a
bias towards these values. This is known to potentially cause instabilities during learning
in methods which are mainly focused on learning the optimal value function for finding
optimal policies in some cases, as explained in chapter 11.3 in [40] about the deadly triad(3).

One idea of how to find the optimal policy is to learn the optimal values first, and then
selecting the policy that always transitions between the states with the highest values. This
idea is the basis of popular methods such as Q-learning, a method introduced in 1989 by
Watkins [52], receiving large attention in 2013 with the demonstration of DQN [53] which
combined Q-learning with Neural Networks to reach super-human level in Atari computer
games. Another idea is to directly update the policy itself during learning, which forms
the basis of methods within policy optimization which optimizes an objective function J
through its gradient (named policy gradient methods) such as the REINFORCE algorithms
[54]. In the following, the value function methods will be explained briefly, while policy
gradient methods will be explained in detail. This is due to that the selected algorithm of
implementation, PPO, relies on the theory of policy gradient methods, but it uses some
of the principles of Q-learning which is beneficial to introduce beforehand.

3.7 Value Function Methods

The most known algorithm for learning the value function is the Q-learning algorithm.
In fact, it learns the Q-values as presented in Section 3.6.1. The algorithm seeks to find
the optimal policy by finding the Q-values of the MDP it is set to solve. It works by
gathering experience through the before-mentioned interaction between the agent and the
environment, and updates the Q-values according. δt is used to represent the TD-error as
in Section 3.6.3, only using action-values instead state-values. The update rule uses the
maximum of the future Q-values by iterating through the possible actions to take in st,
a′ ∈ A, as shown in Equation (3.29) where α is a parameter deciding the size of the step
to take in the direction of the TD-error. Note that a′ represents the action at time t+ 1
which maximizes the Q-value of the next state st+1.

Q(st, at)← Q(st, at) + α[rt + γ max
a′∈A

Q(st+1, a
′)−Q(st, at)]. (3.29)

The Q-values can be stored in tables if the states and actions can be discretized, but this
gives problems when the state space and/or action space is too large, or is continuous.

(3)The deadly triad is Sutton and Barto’s term on the potentially problematic combination of function
approximation (e.g. Neural Networks), bootstrapping methods (e.g. TD methods) and off-policy training
(training the value function and/or policy on data which was not produced under the current value function
and/or policy).
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Consequently, function approximation becomes relevant, and Neural Networks can be
used to estimate the Q-values. The authors of [53] also introduced the idea of experience
replay, in which previous experience can be reused update the Neural Networks, making
Q-learning a sample efficient algorithm due to the use of the same experience several
times. Training of the Neural Network is commonly done with the Mean Squared Error
(MSE) objective function. Using a Neural Network with the parameters W to estimate
the Q-values QW (s, a), an objective function J(W ) as formulated as in [53] is done by
using MSE, where the task of the optimization would be to minimize it. Note maximum
operator calculates the maximum Q-values using the old network weights, Wold.

J(W ) =
1

2

(
r(st, at) + γ max

a′
QWold

(st+1, a
′)−QW (st, at)

)2
. (3.30)

The optimization through gradient decent thus uses the gradient with respect to the Neural
Network’s weights as shown in Equation (3.30),

∇WJ(W ) = −
(
r(st, at) + γ max

a′
QWold

(st+1, a
′)−QW (st, at)

)
∇wQW (st, at). (3.31)

∇WQW (st, at) is a gradient related to the output of the Neural Network and depends
on network architecture, as explained in Section 3.2. This gradient is then used in the
update rule, which can be optimized with a gradient descent optimizer like SGD (see
Section 3.2.2), an idea used in the PPO algorithm used in this thesis.

3.8 Policy Gradient Methods

In DRL, Neural Networks are used to parameterize πθ. As the goal of the DRL agent is to
find the policy that maximizes the expected return, a formula for the expected return as a
function of the parameters θ lets us formulate an objective function J(πθ) to maximize, as
shown in Equation (3.19). This allows for a representation of the optimization procedure
as a gradient step method, where to goal is to maximize the objective function (oppositely
from gradient descent in Equation (3.30) where a loss function was to be minimized), and
so we look for ways to carry out gradient ascent :

θnew ← θold + α∇θJ(πθold). (3.32)

The gradient of J(πθ) has to be estimated due to the uncertainties of the MDP, and
methods focused on optimizing the parameters by estimating the policy gradient ∇θJ(πθ)
are referred to as policy gradient (PG) methods.

3.8.1 Calculating the Gradient

The goal of PG methods is to find an expression for the gradient of the objective function in
order to carry out gradient ascent, and in the following, an analytic approach to finding the
gradient will be shown. By using the probability P (τ |πθ) of experiencing each trajectory,
the expected return over all trajectories is the probability of a trajectory τ gathered with
πθ times the return of that trajectory, summed over all trajectories experienced by the
agent in the environment:

J(πθ) =

∫
τ
P (τ |πθ)G(πθ), (3.33)
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The probability of experiencing τ is the probability ρ0(s0) of starting in state s0 times the
transitional probability between states, P (st+1|st, at), following πθ:

P (τ |πθ) = ρ0 (s0)

T∏
t=0

P (st+1|st, at)πθ (at|st) . (3.34)

Using Equation (3.34) and taking the gradient with respect to the ANN’s parameters,
we obtain Equation (3.35). Since the integral represents the finite summation over all
trajectories, the gradient of the sum is equal to the sum of the gradients.

∇θJ(πθ) =

∫
τ
∇θP (τ |πθ)G(τ). (3.35)

G(τ) does not depend on the parameters θ and is treated as a constant in the differentia-
tion. Therefore, we can look for the derivative of the probability distribution as a function
of θ, ∇θP (τ |πθ). Here, a common identity in PG methods is used through the chain rule:

∇θ logP (τ |πθ) =
1

P (τ |πθ)
∇θP (τ |πθ), (3.36)

This leads to that ∇θP (τ |πθ) can be replaced with an expression including the natural
logarithm log such that

∇θJ(πθ) =

∫
τ
P (τ |πθ)∇θ logP (τ |πθ)G(τ). (3.37)

Going from Equation (3.34), we obtain the expression for ∇θ logP (τ |πθ) through first
calculating the expression for the log-probability logP (τ |θ) as

logP (τ |θ) = log
(
ρ0 (s0)

T∏
t=0

P (st+1|st, at)πθ (at|st)
)

= log ρ0 (s0) + log

T∏
t=0

P (st+1|st, at)πθ (at|st)

= log ρ0 (s0) +

T∑
t=0

(
logP (st+1|st, at) + log πθ (at|st)

)
(3.38)

When taking the derivatives with respect to θ of the log-probability, the derivatives of the
initial state distribution and the transitional probabilities evaluates to zero as they are
not functions of the parameters of the policy, which results in

∇θ logP (τ |θ) =
T∑
t=0

∇θ log πθ (at|st) . (3.39)

This is a quantity which only relies on the policy, and which we know how to compute,
a property which was not present previously. The gradient of the objective function can
therefore be written as in Equation (3.40).
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∇θJ(πθ) =

∫
τ
P (τ |πθ)

T∑
t=0

∇θ log πθ (at|st)G(τ)

= E
τ∼πθ

[
T∑
t=0

∇θ log πθ (at|st)G(τ)].

(3.40)

The consequence of this result is the ability to calculate the gradient for a gradient ascent
optimizer. An expression of the gradient through estimation can be the mean gradient of
the collected rewards over all M trajectories gathered, {τ1, ..., τM}, namely

∇θJ(πθ) ≈ ĝ =
1

N

τM∑
τi

( Tτi∑
t=0

∇θ log πθ (at|st)G(τ)
)

(3.41)

One of the earliest examples of an on-policy PG method is the REINFORCE algorithm,
introduced by Williams [54], which samples from the environment by the Monte Carlo
method (gathering full trajectories before updating the parameters), and can be set up
like in Algorithm 3 using the infinite-horizon return from Equation (3.17). Note that the
gradient calculation is done at each time step in each trajectory, thus representing the
expression inside the rightmost sum in Equation (3.41).

Algorithm 3 Episodal REINFORCE with discounted return

REINFORCE = function(policy πθ, N):
Initialize parameters θ of the policy network and the step size α.
for all N episodes do

Generate trajectory τ of length T+1 following policy πθ in Algorithm 1.
for all t in T+1 steps do

Calculate the discounted return from current time t, Gt =
∑T

i=t γ
iri

Calculate the estimated gradient ĝt = ∇θ log πθ(at|st, θ)Gt
Perform the parameter update θ ← θ + αĝ

return Obtained policy πθ.

For clarity, the expression for the log-probability is an expression depending on the type
of policy used. As an example of a stochastic policy by a multivariate, diagonal Gaussian
distribution, the log-probability calculates to be as in Equation (3.42). This represents the
”log-likelihood” of the k-dimensional action at given the state st, and is differentiated for
finding the so-called ”grad-log probability”. In practice, it can be computed with software
packages supporting automatic differentiation such as Tensorflow(4). The expression for
∇θ log πθ(at|st) will vary depending on how the means µ and the standard deviations σ
depend on the parameters θ.

log πθ(at|st) = −1

2

k∑
i=1

((ai − µθ,i)2

σ2
i

+ 2 log σi

)
− k

2
log(2π) (3.42)

(4)https://tensorflow.org/
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3.8.2 Reducing Variance in the Gradient Estimation

PG methods are, as mentioned by Schulman et al. [55], troubled by two aspects. The first
is sample inefficiency, since once a trajectory has been used in the update rule, it cannot
be used any more as it was gathered under an old policy. Thus the methods requires
a large amount of interactions with the environment to show improvements. The other
aspect involves difficulties with ensuring that the changes done to the policy leads to better
performance due to the shift in the distribution of the data that is being gathered since
the gathered data distribution changes as the policy changes). Schulman et al. proposed
a solution to both, but their solution to the first aspect is what has been picked up by
several similar PG methods in order to reduce variance. To understand their proposal of
the Generalized Advantage Estimator (GAE), a baseline function must be introduced.

Baselines

In combination with an update rule, it can be viewed like the gradient in Equation (3.40)
is used to increase the probability of good actions, while decreasing the probability for
actions with bad outcomes. This is done while weighting the log-probabilities according
to the trajectory’s return. There are however other choices of ”weighting functions” that,
in expectation, gives the same gradient as in Equation (3.40), but lowers variance during
training. As shown by Williams in 1992 [54], it is possible to introduce a baseline function
b for reducing the variance of the estimations of the gradient,

∇θJ(πθ) = E
τ∼πθ

[ T∑
t=0

∇θ log πθ (at|st)
(
G(τ)− b

)]
. (3.43)

In fact, due to Williams’ proof, any function Ψt not depending on the policy parameters
θ can replace (G(τ)− b) as it results in the same value of the gradient in expectation:

∇θJ(πθ) = E
τ∼πθ

[ T∑
t=0

∇θ log πθ (at|st) Ψt

]
. (3.44)

In practice, a trade-off between variance and bias has to be made when choosing Ψt.
Good choices are discussed in chapter 3 of Peters and Schaal [56] and in the introduction
of Schulman et al. [55], often including a notion of one of the value functions.

Generalized Advantage Estimation

Since the gradient should help improving the policy by increasing probabilities of taking
good actions while decreasing it for bad ones, it would be preferable for Ψt to also help in
the weighting of the importance of the good and bad actions. An estimate of how good
an action is in a certain state compared to the average value of all actions in that state
(from following the current policy) would therefore be helpful. This is called an Advantage
Function, which is formulated as

Aπθ(st, at) = Qπθ(st, at)− V πθ(st). (3.45)

It turns out that choosing Ψt = Aπθ(st, at) is close to choosing the function minimizing the
variance, but it could be hard to estimate. Schulman et al. proposed using the Advantage
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function which uses the infinite-horizon discounting as introduced in Equation (3.17), such
that the discounted policy gradient becomes

∇θJ(πθ) = E
τ∼πθ

[ T∑
t=0

∇θ log πθ (at|st)Aπθ
]
. (3.46)

Their estimator for the discounted advantage function builds on that the TD-error, as
introduced in Section 3.6.1, can be seen as an estimate of the Aπθ(st, at):

Aπθ(st, at) = E
st+1

[
Qπθ(st, at)− V πθ(st)

]
= E

st+1

[
r(st, at) + γV πθ(st+1)− V πθ(st)

]
= E

st+1

[
δV

πθ

t

]
.

(3.47)

By writing out the sums of k numbers of the TD-errors (where k = 1 represents a one-step
look-ahead such as seen in Equation (3.47)) and denoting each sum Â(k), it can be shown
that the infinite-step estimator simplifies to the infinity-horizon discounted return minus
the value function,

Â(∞),πθ =

∞∑
i=0

γirt+i − V πθ(st). (3.48)

The exponentially-weighted average of k estimators, using a decay factor λ to decay the
importance of multi-step look-ahead estimators, gives the final GAE estimator,

Ât = (1− λ)
(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + ...+ λk−1Â

(k)
t

)
=

k∑
i=0

(γλ)iδV
πθ

t+i . (3.49)

This has the advantage of low variance, while offering a potentially low bias. The com-
putation of the TD-error, δ, can be done online, and the computation of Ât is efficient.
However, the TD-errors are using the value function as used by the value based methods
in Section 3.6.1, but not yet in the PG methods; until now, only the policy parameters is
what has been stored during training. To be able to estimate these value functions, and
update the estimates during training in order to guide the policy, hybrid methods called
actor-critic methods are used.

3.9 Actor-Critic Methods

The actor-critic methods are methods where estimates of the value function are used as
support in the evaluation of what actions are better actions than others for the policy.
The methods therefore combine a parameterization of the policy, and another one of the
value function. The former is called the actor, as it is the one making the actions. The
latter is called the critic, since its estimations are used to critic the actions that the actor
is making. The input to both entities could be the state, but the output of the actor is the
action, while the output of the critic is a scalar value of the value function estimate. The
way the two networks are trained directly follows from the explanations of value function
methods in Section 3.6.1 and PG methods in Section 3.8. In the following, θ is used as
the actor’s parameters, and W is used as the critic’s parameters - they are the weights
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in the Neural Networks. We can save the TD-errors for both generating good estimates
of the Advantage function for the training of the actor (πθ), and to create targets for the
regression task of improving the accuracy of the value function (VW ). Since both the actor
and the critic use the TD-errors, the RL agent architecture can be be imagined to look
like in Figure 3.4.

dsfsdf																			AGENTENVIRONMENT

Statet+1 Statet

RewardtRewardt+1

Actiont

POLICY
TD-error

State Reward

Action

Actor Critic

VALUE
FUNCTION

Figure 3.4: The actor-critic architecture.

3.10 Proximal Policy Optimization

This section introduces the DRL algorithm used in this thesis, named Proximal Policy
Optimization (PPO), starting with the idea of trust regions for ensuring improvements
to the PG methods’ parameter updates, followed by explaining the objective function
formulation which has made PPO successful in a large variety of DRL applications.

3.10.1 Trust Regions

An advantage of PG methods is that the optimization target is directly affecting what is
searched for: the policy itself. However, the PG methods are not ensured of never doing an
update which leads to instability, changing the policy to a bad one by making a too large
changes during a parameter update. Newer PG methods aims at improving the stability
convergence properties during training by avoiding large changes of the policy network for
each update. Trust region methods for optimization has been used for a while [57, 58, 59],
and a trust region in the context of Neural Network policies is, simply put, a region in
policy parameter space (the space of the Neural Network weights) in which we are sure of
a certain performance in the policy space (the resulting probability distribution).

As showed in Section 3.8.2 on GAE, the gradient used by PG methods so far can be
formulated as in Equation (3.46) while using an estimator for the advantage function Ât
at any state-action pair (st, at). This gives the objective function as proposed by Kakade
and Langford [60],

JCPI(πθ) = Et[log πθ (at|st) Ât]. (3.50)

The superscript CPI denotes ”conservative policy iteration”, and Et is used for the expec-
tation at the current time step. To avoid performing optimization steps on this objective
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too far away from the old parameter space, it can be beneficial to consider the probability
ratio between the policies of performing action at in state st, using the old and the updated
network parameters. By using this ratio, it can be shown that formulating an objective
function which has the same gradient as JCPI enables the improvement of the original
objective while actually optimizing an approximation of it, called a surrogate objective
function:

JIS(πθ) = Et
[ πθ(at|st)
πθold(st|at)

Ât

]
, (3.51)

where IS denotes ”Importance Sampling”, and as been shown to be very similar to the
original PG-objective for reasonably small changes to the policy parameters [23, 60]. In
fact, with the identity in Equation (3.36), we can see that the two objectives results in the
same policy gradient. Letting θ be the parameters after a policy update, and θold be the
parameters used when gathering trajectories of state-action pairs, we get the following by
staying close to θold:

∇θ log πθ(at|st)
∣∣∣∣
θold

=
∇θπθ(at|st)

∣∣
θold

πθold(at|st)
= ∇θ

( πθ(at|st)
πθold(at|st)

)∣∣∣∣
θold

(3.52)

=⇒ ∇θJCPI(πθ) =
(
∇θJIS(πθ)

)∣∣∣∣
θold

. (3.53)

By using JIS(πθ), it becomes possible to formulate a notion used by trust region methods.
Through determining how much we accept that the probability distribution changes from
the current to the next policy, it becomes possible to limit the changes in the policy’s
probability space, and not only a bound on the policy’s parameter space. The TRPO
algorithm formulates the optimization of the objective function with respect to a limited
change of the probability ratio by using a computational complex measurement for the
ratio. PPO was introduced straight after TRPO by Schulman et al. [25], and aimed at
making TRPO simpler while achieving the same performance. Therefore, PPO was the
chosen algorithm in this thesis since, while being simpler in implementation and complexity
than TRPO, it has shown great performance on a large variety of robotic tasks, having less
hyperparameters to tune while also being less sensitive to the choice of hyperparameters
[25, 61]. PPO exists with two variants: one with ”adaptive KL-coefficient”, and one with
a ”clipped surrogate objective”. This section will only explain the latter since researchers
from OpenAI experienced that the clipped surrogate objective outperformed the adaptive
KL-coefficient [25].

Clipped Surrogate Objective

Schulman et al. restricted the size of each parameter update as in the following. Letting
the probability ratio between the new and the old probability of taking action at given
the state st be denoted as a function of θ,

r̄(πθ)t =
πθ(at|st)
πθold(at|st)

. (3.54)
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Note that r̄(πθ) ≥ 0 ∀ θ and r̄(πθold)t = 1.0 since the probability in the numerator is the
same as the one in the denominator of r̄(5). This way, the surrogate objective function
can be rewritten as

J(πθ) = Êt
[
r̄(πθ)tÂt

]
, (3.55)

which leads to the clipped PPO objective function,

JCLIP (πθ) = Êt
[

min
(
r̄t(πθ)Ât, clip (r̄t(πθ), 1− ε, 1 + ε) Ât

) ]
. (3.56)

The operator clip(r̄, (1 − ε), (1 + ε) represents a function which restricts the value of r̄
to be within the lower bound (1 − ε) and upper bound (1 + ε), and ε is the clipping
hyperparameter. To make it easier to understand this objective function for a single
trajectory, it can be refactored as the sum of the expected objective function at each
state-action pair for all the state-action pairs in the trajectory,

JCLIP (πθ) = E
τ∼πθold

[
JCLIP (πθ, st, at)

]
. (3.57)

Looking at each state-action pair, it can be shown that the objective function can be
written as in Equation (3.58) [62], where Ât = Â

πθold
t refers to the estimated value of the

Advantage function of the state-action pair (st, at) under the old policy used during the
trajectory generation, πθold . For simplicity, the ratio r̄ (πθ)t is denoted as r̄t.

JCLIP (πθ, st, at) =


(1 + ε)Ât, Ât > 0 and r̄t > (1 + ε)

(1− ε)Ât, Ât < 0 and r̄t < (1− ε)
r̄tÂt, otherwise

(3.58)

Note that JCLIP (πθ, st, at) is still a function of the new policy πθ due to its dependency
on r̄t, as it represents Equation (3.56), just for a single state-action pair. Equation (3.58)
states that

1. If Ât is positive, we have estimated that making action at in state st is better than
the average return from being in st. Therefore, we would like to encourage selecting
at. However, the probability should not be increased too much, and so we bound
the probability ratio to an upper bound (1 + ε). Otherwise, if the ratio is not higher
than the bound, then we use the conservative objective r̄tÂt from Equation (3.55).

2. If Ât is negative, the estimated value of choosing at in st is worse than average.
Therefore, we want to discourage taking action at, still avoiding changing the policy
too much. Therefore, the ratio is lower bounded to (1− ε). Otherwise, if the ratio is
higher than the lower bound, then the minimum of (1− ε)Ât and r̄tÂt is the latter
since the advantage is negative and both the lower bound and the ratio themselves
are positive numbers, and thus the conservative objective is used.

(5)Schulman et al. used r instead of r̄, but here r̄ has been chosen to avoid confusing the probability
ratio with a reward, which has been denoted as r until now, and still will be.
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This objective function makes PPO computationally efficient under the assumption that
the it could be assumed linear within the trust region in policy space (bounding the prob-
ability ratio) which is defined by only one hyperparameter: ε. The exact implementation
in this thesis used PPO with the clipped surrogate objective, an actor-critic structure with
a single actor and critic, each represented by their own, separate Neural Network. The
critic network outputted the value function estimates, while the actor outputted the mean
of a Gaussian distribution using variable standard deviations like in [23, 61] for action
selection. The choice of the critic’s objective function, the optimizers, the selection of
hyperparameters and more implementation details are explained in Section 5.4, while the
pseudocode is given in Algorithm 4.

Algorithm 4 Clipped PPO with GAE

Input {agent network, critic network, N}:
Initialize actor parameters θ and optimizer.
Initialize critic parameters W and optimizer.
for all N episodes do

Collect M trajectories Dk = {τ1, ..., τM} under the policy πθk .

Calculate returns from all trajectories from t to T, Ĝt =
∑T

i=t γ
iri.

Evaluate all advantages with GAE, Ât =
∑T

i=0(γλ)iδt+i, using V̂Wk
.

Optimize θ wrt. objective averaged over all MT samples for Ia iterations:

θk+1 ← argmax
θ

1

MT

∑
τ∈Dk

T∑
t=0

min
(
r̄t(πθk)Ât, clip (r̄t(πθk), 1− ε, 1 + ε) Ât

)
(3.59)

Fit the critic’s value function network V̂Wk
to the returns for Ic iterations:

Wk+1 ← argmin
W

1

MT

∑
τ∈Dk

T∑
t=0

(
V̂Wk

(st)− Ĝt
)2

(3.60)

return Obtained policy πθ.
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Chapter 4

System description

4.1 The ReVolt Model Ship

This chapter explains the physical system in brief. For more details, the reader is re-
ferred to the master’s thesis of Alfheim and Muggerud [33], which gave an extensive walk
through of the physical dimensions, sensor hardware, software, and more. In short, the
ship model consisted of the hull, two 12V batteries, a Tank-720 computer running the
Ubuntu operating system, sensor hardware including Inertial Measurement Units (IMU)
used for acceleration and rotational velocity measurements, the Global Navigation Satel-
lite System (GNSS) used for position measurements, among other on board sensors. All
thrusters had servo motors which were controlled by Arduino microcontrollers. A brief
overview of all the components and their placements on board is given in Figure 4.1. On
board, an embedded computerized control was enabled by Alfheim and Muggerud, using
the programming architecture Robot Operating System (ROS) to connect all hardware
measurements and calculations with the software. The control system in ROS included an
observer, a reference filter, a motion controller among many things, all being adjustable
by a Graphical User Interface (GUI). The existing thrust allocation software used was
provided by DNVGL. The mathematical modeling and calculations of the hydrodynamic
coefficients had also been done (which can be seen in Appendix A), and the dimensions of
the model ship can be seen in Figure 4.2. Since Alfheim and Muggerud wrote their thesis,
additional sensors like a Lidar and a 360◦ camera has been mounted, used for improving
the situational awareness and for object detection and tracking. Their placement can be
seen in the introductory image in Figure 1.1 and Figure 4.1. In addition, new tests have
been performed in a towing tank from which the thruster parameters was updated. The
thrusters’ specifications used in this thesis are shown in Table 4.1, and their coefficients
will be explained in Section 5.1.1.
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Figure 4.1: An outline of all components of the ReVolt ship model.

1
3

2

Figure 4.2: ReVolt ship model dimensions. Courtesy: Alfheim and Muggerud [33].

Table 4.1: ReVolt’s thruster specifications.

Thruster lx [m] ly [m] D [m] Sectors

1 -1.12 -0.15 0.15 Fully rotatable
2 -1.12 0.15 0.15 Fully rotatable
3 1.08 0 0.06 (−270◦, 270◦)

The thrusters’ angles were defined in their separate body-frames, where 0◦ represents the
thrusters pointing parallel to the vessels’ longitudinal direction, and were defined positive
when rotating clockwise. The enumeration of the thrusters was: (1) the port thruster at
the stern, (2) the starboard thruster at the stern, and (3) the bow thruster. Note that the
definition of the direction of the force vectors from each thruster followed the definition of
their angles.
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4.2 Framework

4.2.1 Simulation Platform

DNVGL developed a simulation platform for testing control systems of different vessels,
called Open Simulation Platform (OSP). In it, a digital twin of ReVolt was added in order
to carry out testing of the software being developed, which was used in this thesis. The
simulator contained a lot of useful functionality like modeling of surface, wind, and wave
forces going from calm seas to extreme sea conditions. Figure 4.3 shows the simulator
interface, where the ReVolt ship model is placed in Dorabassenget in Trondheim, Norway.

Figure 4.3: Simulator for the digital twin of ReVolt, showing Dorabassenget in Trondheim.

During simulations, the simulator ran on a computer with the Microsoft Windows oper-
ating system, and the digital twin was controlled by using the control system on a Linux
computer. The two computers connected through an Ethernet cable such that the control
system on the Linux computer could send control signals to the simulator. In sea trials
however, all code was running directly on the Tank-720 computer on board, with the
possibility of connecting to it through WiFi for making adjustments to the code.

4.2.2 Software

The code running the control system was mainly written in the two programming languages
C++ and Python. The different scripts and configuration files were connected in the
ROS(1) framework, which is an open-source software framework, enabling code written in
different programming languages to interface with each other. Hence, ROS worked as the
”core” of the entire software architecture, enabling communication between ”nodes” (e.g.
communication between the observer, the motion controller and the thrust allocation) that
could be written in the programming language of choice.

(1)https://www.ros.org/
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The specific computer used when training the Neural Networks, and for running the sim-
ulator, was a Huawei Matebook X Pro with an Intel i7-8550U CPU with 8 cores running
at 1.8 GHz clock speed and 16 GB RAM. For simulating the training results, the model
was loaded onto the control system of ReVolt a Dell Latitude E7470 with 16 GB RAM,
equipped with an Intel Core i7-6600U CPU with four cores with 2.6 GHz clock speed. At
the time, Ubuntu 16.04.6 LTS 64-bit was the operating system. For this thesis, Python
was considered to be the most convenient language to program in due to the language
being the most popular language for computer science in general. Especially, there exists
a lot of optimization, statistics and machine learning relevant packages. The SciPy(2)

package was used for implementing thrust allocation using Quadratic Programming, while
Tensorflow(3) was used for handling the implementation and training of the Neural Net-
works. Since none of the computers had graphics cards with the necessary compatibility
for GPU-versions of Tensorflow, the CPU-version was used.

(2)https://www.scipy.org/
(3)https://www.tensorflow.org/
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Chapter 5

Implementation

This section describes the details of the all of the methods used during tests, ranging from
the classic methods used for comparison to the DRL method, and the DRL method itself.
All the methods were implemented as individual ROS nodes. According to Sørensen [4],
full scale thrust allocation systems should command signals to the actuators at a rate
down to 1 second. By using Froude scaling, the scaling factor between the length of
the full scale ReVolt and the model vessel was λ = 3 m/60 m = 1/20 = 0.05. As
Froude scaling for time is done with a factor of λ0.5, 1 second at full scale corresponds
to 0.050.5 ≈ 0.22 s at model scale. Rounding down to 0.2 s served as a lower bound, so
the ROS nodes were set to operate at (0.2 s)−1 = 5 Hz. All methods also used the same
reference filter, which has already been implemented by previous students. The classic
thrust allocation methods performed their allocation after receiving the desired force vector
from the existing implementation of a motion controller, while the DRL method performed
thrust allocation directly from the reference filter signal; a difference which is illustrated
in Figure 5.1. Following experiences done by Alfheim and Muggerud [33] and from the
project thesis [1], the thrust allocation was performing in the best by fixing the bow
thruster to 90◦, making it act as a tunnel thruster. Accordingly, the actions being decided
from the different control methods consisted of three revolutions per second (RPS) values
(n) for the thrusters’ propellers, and the two angles of the stern thrusters (α).
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Figure 5.1: Flowcharts of the difference between classic vs. proposed method.
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5.1 Existing Implementations

The implementation of this thesis builds on top of previous work as mentioned in Sec-
tion 1.3.3. Therefore, some of the parts are explained in the following to give the reader
an insight into the components that were used. The observer, responsible for state estima-
tion, was recently upgraded during the summer of 2019, and was found to be performing
well in the simulator. Other components was however tweaked in order to improve the
performance of both the existing methods, but also the proposed DRL method. Sec-
tion 5.1.1 explains the parameters which was used for the thrusters in the simulator, while
Section 5.1.2 explains the parameters of the reference model and the motion controller.

5.1.1 Thruster Parameters

As mentioned by Alfheim and Muggerud [33], the thrusters made for ReVolt was custom
made, hence many of the needed parameters were not known. In order to formulate a
thruster force model for each thruster, they performed a Bollard pull test(1) in order to
estimate coefficients for the three thrusters. The resulting non-linear model was found
through measuring exerted force for the three different thrusters while going through
the RPS-range of the thrusters from -100% to 100%. The resulting plots are shown in
Figure 5.2. Note that u was used as their notation for ”percentage of maximum RPS
of the propeller”. In the ROS implementation, the signals being sent to the thrusters
were given as percentages of maximum. Therefore, the thruster coefficients had units
of Newton, while the thrusters’ RPS were given as percentage of max RPS. It was also
found that the stern thrusters had the same force profile for rotating in both negative and
positive directions, while the bow thruster (being unsymmetrical) yielded considerably less
force when rotating in the negative direction versus the positive direction. The resulting
thruster force formula used was as shown in Equation (5.1), giving the expression, when
inserted into the linear actuator model in Equation (2.7), as shown in Equation (5.2).

Figure 5.2: Results from bollard pull test. Courtesy: Alfheim and Muggerud [33].

T±i = K±i ni|ni| (5.1)

X±

Y ±

N±

 =

 cα1 cα2 cα3

sα1 sα2 sα3

lx,1sα1 − ly,1cα1 lx,2sα2 − ly,2cα2 lx,3sα3 − ly,3cα3

K±
1 n1|n1|

K±
2 n2|n2|

K±
3 n3|n3|

 (5.2)

(1)https://www.sciencedirect.com/topics/engineering/bollard-pull
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The values found from the test above was used previously in the existing software in ROS
for the motion controller and thrust allocation method. However, what was found during
this thesis was that the parameters used as thruster coefficients in the simulator was not
the same as the ones shown above. This was due to new tests of ReVolt performed in
the towing tank at NTNU. The result of those tests gave rise to new thruster coefficients
which was updated in the simulator but not in the software in ROS. The new maximum
forces for each thruster was therefore updated in the ROS nodes according to the ones in
the simulator, and is showed in Table 5.1, which includes the thrusters force production
rates and and angular rates as well. Note that the bow thruster was now set to have equal
values in all directions.

Table 5.1: New thruster parameters.

Coefficient K1 [N ] K2 [N ] K3 [N ]

K±i 2.05 · 10−3 2.05 · 10−3 0.9 · 10−3

Max force T1 [N ] T2 [N ] T3 [N ]

Ti,max 20.5 20.5 9.0

Force rate ∆T1 [N/∆t] ∆T2 [N/∆t] ∆T3 [N/∆t]

∆Ti,max 10.0 10.0 4.0

Angular rate ∆α1 [rad/∆t] ∆α2 [rad/∆t] ∆α3 [rad/∆t]

∆αi,max π/6 π/6 0 (static)

5.1.2 Reference Filter and Motion Controller Specifications

The state-space equation for the reference filter used on ReVolt was as previously shown
in Equation (2.3). The 3-dimensional diagonal matrices ∆ > 0 and Ω > 0 contained the
relative damping ratios and natural frequencies of the reference filter, respectively. The
tuned values of these matrices were based on [33] and the existing implementation in ROS.
Their coefficients are shown in Equation (5.3).

∆ =

1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

 , Ω =

0.6 0.0 0.0
0.0 0.6 0.0
0.0 0.0 1.4

 (5.3)

The reference filter’s coordinates is in the order of 9 dimensions, outputting the desired
pose (surge, sway and yaw) in both position, velocity and acceleration. All dimensions
were used as inputs to the motion controller, while the DRL controller only used the
pose (3 dimensions) since it was not trained with any reference filter in the simulator in
Windows, where all the setpoints for velocity was set to zero. The motion controller, as
explained in Section 2.3.2, was tuned in [33]. That work was done in 2016, and since, there
has been several summer and master’s students working on software. During this thesis,
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it was found that the outputs of the motion controller consisted of desired forces and yaw
moment larger than what was feasible for the thrusters’ capabilities. New calculations
was done in order to find the maximum producible forces and moment with the thruster
setup being as discussed earlier, setting the bow thruster fixed at 90◦. These calculations
can be seen in Appendix B, with the resulting bounds of the motion controller being

τmax = [41 N, 17.7 N, 20.0 Nm]>. (5.4)

5.2 DNVGL’s Pseudoinverse

The thrust allocation provided from DNVGL was as mentioned based on the pseudoinverse
method. This was a replica of standard thrust allocation software, as they do not provide
such software commercially. The method was set up according to the extended thrust
formulation, in addition to taking the thrusters’ limits into consideration. Initially, the
method finds a pseudoinverse as explained in Section 2.3.3. If all thrusters are within their
legal areas, then the method performs a check to constrain the outputs from breaching the
rate limits, and publishes the results. However if some thrusters violates the rate limits,
they are frozen to their maximum force production, and a new calculation of the desired
forces is done by reducing the desired force vector by subtracting the force exerted from
those thrusters who has been frozen to their maximums. From this, a new pseudoinverse
is found in an iterative manner until an accepted solution has been found as shown in
Algorithm 5. The implementation published the individual, commanded thruster angles
and forces. As the thrusters’ servo motors required commanded RPS signals, these forces
was translated to RPS by using the thruster model in Equation (5.2), solving for n =
sgn(T/K)

√
|T/K|. Due to giving a fair comparison to the other methods, no forbidden

zones of the thrusters’ angles were enabled. Du to the iterative nature of the method, it
will be refered to as Iterative Pseudoinverse (IPI) hereafter.

Algorithm 5 Iterative Pseudoinverse (IPI) thrust allocation

Input {τd, previous thruster states, time limit}:
Define boundaries such as maximum force production and forbidden zones.
Define constraints such as thrusters’ rates.
Initialize thruster configuration Bext and weights W .
Find thrust vector from the pseudoinverse, Text = W−1B>ext(BextW

−1B>ext)
−1τd.

while (Not all bounds are met) and (time limit is not breached) do
Freeze the thrusters exceeding their limits and recalculate the desired forces.
Recalculate the force vector using new pseudoinverse.

if (No solution within bounds are found within time limit) then
Use thrust vector from solution with the smallest deviation between τd and τ .

Calculate the resulting thrust and angles from Equation (2.12) and Equation (2.13).
Constrain the thrust and angles according to the thrusters’ rates.
Translate thrust to thruster commands through ni = sgn(Ti/Ki)

√
|Ti/Ki|.

return (n and α)
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5.3 Quadratic Programming

The implementation of the quadratic programming (QP) approach was based on Sec-
tion 2.3.3. As mentioned there, the fact that the vessel is overactuated means that there
are several force/angle combinations from the thrusters that could yield the same resultant
force vector. In order to find a particular solution from the multiple ones, it is possible
to put a cost to both thruster forces and rotation rates in order to optimize for power
consumption, and wear and tear, which was done as in the following.

Constraints used in the optimization was the maximum producible forces, the force pro-
duction rates, and the angular rates of the azimuths. These were inequality constraints,
which means that they were constraints which bounds the decision variables. Therefore,
decision variables that are not expressed in the cost function are found as solutions based
on their constraints. All the numerical values used were as shown in Table 5.1.

Due to the fact that decision variables are formulated as constraints containing trigono-
metric functions, the equality constraints are non-linear. This means that the solver
chosen had to accept non-linear constraints. It was ensured that the solver was quick
enough so that the ROS node was able to calculate solutions at 5 Hz. Various solvers
in Python were tested, where none was slower than 20 Hz during the preliminary tests.
The package scipy.optimize was selected due to its simplicity. The method within its
optimize-package called minimize was chosen, using Sequential Least Square Quadratic
Programming(2). As an additional measure, since scipy.optimize.minimize required to
set a certain iteration limit for the optimization, it was found that it failed to find a solu-
tion within the given limit, even though it reached the limit very fast. It was difficult to
find a good iteration limit, and as a way of countering this, it was decided to increase the
bounds of the slack variables if the iteration limit was reached, giving rise to an ”Iterative
Quadratic Program”.

The decision variables was chosen to be all thruster forces and slack variables, as shown in
Equation (5.5a). The decision variables were augmented as shown in Equation (5.5b) in
order to include the thrusters’ rates in the objective function, however the rates were not
to be decided ; they were only included for the means of minimization. Since the power
usage of a propeller is proportional to the thrust force to the power of 1.5 (P ∝ |T |3/2),
the augmented decision variable vector reflected this. Note that the minimum of |T | and
|T |3/2 is the same, but the latter penalizes larger T -values more. This formulation ensured
that both the thruster power usage was subject to minimization, and that the magnitude
of the slack variables were small in order to get τ − τd as close to zero as possible.

xt =
[
(T1)t, (T2)t, (T3)t, (s1)t, (s2)t, (s3)t

]>
(5.5a)

yt =
[
(T

3/2
1 )t, (T

3/2
2 )t, (T

3/2
3 )t, (s1)t, (s2)t, (s3)t, |(α1)t − (α1)t−1|,

|(α2)t − (α2)t−1|, |(T1)t − (T1)t−1|, |(T2)t − (T2)t−1|, |(T3)t − (T3)t−1|
]> (5.5b)

(2)https://optimization.mccormick.northwestern.edu/index.php/Sequential_quadratic_

programming
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The solver had to be given initial values for the decision variables for which it starts its
solving process at each time step. They were set to be the previous time step’s thruster
states stored in the ROS node. All constraints to the optimizer had to either be formulated
as equality constrains including slack variables, or inequality constraints in order to bound
the variables. All inequality constraints had to be set in the format of ”greater than
zero”. Therefore, any constraint defined by upper and lower bounds, e.g. ∆Tmin ≤
∆T ≤ ∆Tmax was formulated as ∆Tmax − ∆T ≥ 0 and −∆Tmin + ∆T ≥ 0. The entire
mathematical programming formulation is summarized, with relevant numerical values,
in Equation (5.6). The constraints are enumerated in Equation (5.6) as the following: (i)
limit the difference between desired and produced forces/moments, (ii) limit the largest
producible force from each thruster, (iii) limit the largest negative producible force from
each thruster, (iv) limit the largest thrust production rate, (v) limit the largest negative
thrust production rate, (vi) limit the maximum positive angular rotation rate, and (vii)
limit the maximum negative angular rotation rate.

min
yt∈R11

y>t ·QQP · yt

subject to B(αt)Tt − (τd)t − st = 0, (i)20.5
20.5
9.0

N − Tt ≥ 0, (ii)

−

−20.5
−20.5
−9.0

N + Tt ≥ 0, (iii)

10
10
4

N/∆t−
(
Tt − Tt−1

∆t

)
≥ 0, (iv)

−

−10.0
−10.0
−4.0

N/∆t +

(
Tt − Tt−1

∆t

)
≥ 0, (v)

[
π/6

π/6

]
rad/∆t−

(
αt −αt−1

∆t

)
≥ 0, (vi)

−
[
−π/6

−π/6

]
rad/∆t +

(
αt −αt−1

∆t

)
≥ 0. (vii)

(5.6)

The bounds for the slack variables was set to be 1 N and 1 Nm initially, which set the
magnitude of the allowed deviation between the desired and commanded force vectors.
The increment factor, deciding how much the slack variables were allowed to increase if
no solution was found initially due to the iteration limit, was set to 2 N and 2 Nm.
The weight matrix used in the objective function was a diagonal 11x11 matrix QQP =
diag ([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.25, 0.25, 0.5, 0.5, 0.5]), and the pseudocode of the
implementation can be seen in Algorithm 6.
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Algorithm 6 Iterative Quadratic Programming

Input {τd, xt−1, QP-solver, increment factor, time limit}:
Set up objective function, using yt and QQP .
Define boundaries of the decision variables.
Initialize all constrains, including τd and xt−1.
Initialize decision variables with previous thruster states in xt−1.
Find thrust and angles through the QP-solver.

while (No solution was found) and (time limit is not breached) do
Increase bounds for slack variables with increment factor.
Find the thrust and angles through the QP-solver.

if No solution was found then
Use solution from previous time step.

Translate thrust to thruster commands through ni = sgn(Ti/Ki)
√
|Ti/Ki|.

return (n and α)

5.4 Deep Reinforcement Learning

For the implementation of the DRL agent, the work was divided into three phases: (1)
building the framework in which PPO was to be used, (2) training the agent while itera-
tively tuning the reward function and network architectures, and (3) verifying/validating
the performance afterwards. This section explains how the environment was created, how
the state and action vectors of the agent was decided, how the network structure and
features were decided upon, and how the reward function was created in order to achieve
the desired behavior in DP-operations. The material presented is the resulting details of
the final DRL model used for testing in Chapter 6, but should be read with the fact in
mind that it was carried out as an iterative process, since the findings from one of the
subsections might have led to changes in another.

5.4.1 Environment

The environment that the agent was to interact with was the aforementioned simulation
platform. The simulator ran in the Windows operating system, so the learning algorithm
was decided to be implemented in Windows, using the Python programming language.
Several classes was made in Python in order to interact with the PPO algorithm while
communicating with the simulator which was running on Java. The flow of information
between these classes can be visualized in Figure 5.3.

Environment:
RevoltFinal

Communicator:
DigiTwin

Learning	algorithm:
PPO

Simulator:
CyberSea

Figure 5.3: Flowchart of software implementations used during training.
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For the pose, the state-space bounds were set to be within a reasonably large area around a
setpoints, meaning that, relative to the vessel length, a maximum body-frame error was to
be set in which the agent was not allowed to operate within. It was decided that the body-
frame positional errors were allowed to be at a factor of 2.5 the vessel length, and that the
yaw errors was not be allowed to be larger than 45◦, giving ηbound = [8 m, 8 m, π/4 rad].
These were considered to be pretty large values at first, but after just a short amount
of training, the DRL method was never close to coming near these boundaries. For the
velocities, a test was run while activating thruster losses in the simulator. The velocity
boundaries were set to νbound = [ |umax|, |vmax|, |ψ̇max| ] = [1.4 m/s, 0.3 m/s, 0.52 rad/s].
If the agent’s states exceeded some of these values, it was treated as a terminal state. No
states were treated as a goal state, which is explained in Section 5.4.8.

5.4.2 State Vector

The state vector for the actor and the critic was developed with focus on the agents’ ability
to reduce body-frame errors. The body-frame errors were added as the first components
to the state vector, and it was believed that it could be beneficial for the agent to have
access to the body-frame velocities u, v and ψ̇, which was seen by previous work [28, 29,
30, 32]. To improve the agents ability to reduce the total thruster usage, it was decided
to add the previous commanded thruster’s RPS (as a fraction between -1 and 1, denoted
n̄). This led to the state vector of length 9 as shown in Equation (5.7a). The body-frame
errors was calculated using the pose error in the NED-frame, η̃ = η − ηd = [Ñ , Ẽ, ψ̃]> as
shown in Equation (5.7b) and Equation (5.7c). ψ̃ was wrapped between (−π, π] radians
before being used in the state vector, while all other quantities was extracted straight from
the simulator.

st = [x̃t, ỹt, ψ̃t, ũt, ṽt,
˜̇
ψt, n̄bow,t−1, n̄port,t−1, n̄star,t−1]>. (5.7a)

[
x̃
ỹ

]
=

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]> [
Ñ

Ẽ

]
(5.7b)

ψ̃ = ψ − ψd (5.7c)

North

y

x
ψ

ψ

ψd

(Nd,	Ed)

(N,	E)

East

~
~

~

Figure 5.4: Example of body-frame errors (green arrows), showing desired pose in dark gray.
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5.4.3 Action Vector

The action vector, being the output of the policy network, was set to consist of the RPS
of each thruster, and the angles of the thrusters, all as components in the range [-1, 1].
The stochastic, Gaussian policy outputs values with a mean of 0, but the values might
be smaller than -1 and larger than +1. Therefore, the RPS outputs from the actor was
clipped to the range [-1, 1] before being scaled to [-100 %, 100 %] for the simulator. For
the clipping and scaling of the angles, different approaches was tested to combat the issue
of representing the continuity of angles, meaning that −179◦ and 179◦ should be perceived
as being 2◦ apart, rather than 358◦ apart. This challenge was attempted combated in two
ways:

1. The actor’s output was directly was wrapped to the region (−π, π].

2. Instead of representing the angles as their raw values, their sine and cosine was to be
outputs of the network. The advantage of this approach was that (1) the trigonomet-
ric functions already fits into the region [-1,1], and (2) the angle was represented as
a circular parameter by selecting the angles through α = arctan2(sin(), cos()),
where arctan2() represents the four-quadrant inverse tangent function. Appendix C
demonstrates the output of arctan2(), showing that the action vector setup is able
to represent all angles in addition to doing it in a circular manner in the region
(-180◦, 180◦].

The action vector of the first approach was therefore as shown in Equation (5.8a), while
the second approach resulted in an action vector as shown in Equation (5.8b) (the hat
represents that it is the predicted sines and cosines from the network, and not the ac-
tual sines and cosines, as the arctan2()-function is responsible for calculating the actual
angle).

at = [nbow,t, nport,t, nstar,t, αport,t, αstar,t]
> (5.8a)

at = [nbow,t, nport,t, nstar,t,

sin(α̂port,t), cos(α̂port,t), sin(α̂star,t), cos(α̂star,t)]
> (5.8b)

The results of the training sessions using the different action vectors has been added to
Appendix D, from which it can be seen that the second action vector formulation displayed
the fastest development in turns of average episodal return and convergence of the average
value function estimates. The experiments was done with reward functions of varying
complexity, and no matter the reward function, the second formulation resulted in faster
convergence. In addition, it was being more consistent when validating after training (as
explained in Section 5.4.11). Therefore, the action vector from Equation (5.8b) was used.
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5.4.4 Reward Shaping

The way rewards are assigned is essential for how the agent is updated towards exhibiting
a good policy. In order to achieve a model which learns a desired behavior, it is crucial
to have a well formulated reward function. The reward function encapsulates everything
that the agent is supposed to learn that leads to good and bad actions, and the agent
learns what the reward function tells it to, and not what the designer intended it to do,
so it must be shaped with caution. In order to guide the learning process for helping
the agent towards the maximum reward, a process of reward shaping was commenced.
Reward shaping stems from the idea of adding supplemental rewards in order to guide the
learning process toward the natural reward of the problem (being zero pose deviation for
DP operations) [63]. As an example, instead of only rewarding the agent for getting into a
”goal state”, the agent can receive reward for getting closer and closer to the goal. Several
reward functions might fit this supplemental formulation, in which a few is discussed in
the following.

The most intuitive way of rewarding the agent for reaching a setpoint could be to give
a reward of 1 for getting into a region of accepted deviation from the desired pose, and
0 otherwise. This has been discussed by others previously [28, 31, 32]. A problem here
arises due to ”sparsity”, meaning that it is hard for the agent to learn what to do when
it is in an area of the state-space which yields zero rewards. As proposed by Martinsen
[28], a Gaussian-shaped reward function could be used in order to combat sparsity. Such a
function is showed in Equation (5.9) (being a univariate Gaussian function since it depends
on one variable) where a is a constant deciding the amplitude, µ is the mean value around
which the Gaussian is centered, and σ is the standard deviation.

f(x) = ae−
1
2

(
(x−µ)2

σ
) (5.9)

If x represents the body-frame error for DP operations, then µ = 0 is used, and a and σ
becomes tunable parameters. This Gaussian was utilized initially, one with the euclidean
distance d =

√
x̃2 + ỹ2, and another with the body-frame error in yaw ψ̃. The parameter

a was set to be 1 for each of the components, and the total reward function was the
sum of the two Gaussian functions. In most DP operations, the priority of holding the
desired yaw angle is prioritized before position [15, 64, 65], which was taken into account
when testing for which values of σ that gave good results. Good behavior of the agent
(following the validation process explained in Section 5.4.11) was found when σd = 1.0 m
and σψ̃ = 5.0◦.

As seen from Figure 5.5a, if the deviation of both position and yaw angle is large, this
summed Gaussian reward function has many areas where there are large positive gradients
in both the direction of lowering positional error and the yaw angle error. E.g, if ψ̃ = −20◦

and d = 5 m, the fastest increase in rewards comes from reducing d first. This was also
learned by the agent, which caused undesirable vessel motions when far away from the
setpoint. In order to combat this behavior, a modification to the reward function was
proposed, being a multivariate Gaussian. The formulation was motivated by the shape of
the probability distribution of the policy itself, meaning that the multivariate Gaussian
can be expressed as in Equation (5.10), where x is the vector containing multiple variables
and Σ is the matrix containing the variances of each variable, called the covariance matrix.
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f(x) = ae−
1
2

(x>Σ−1x) (5.10)

It was decided to use a diagonal covariance matrix for simplicity, meaning that the diago-
nals of the matrix contained the σ2-values of each variable. Using the same values of σ as
in the case of the sum of the univariate Gaussian reward functions gave the shape shown
in Figure 5.5b. The resulting reward function for the pose was therefore formulated as
Rgauss, shown in Equation (5.11b). A comparison of the summed univariate Gaussians
and the multivariate Gaussian is shown in Figure 5.5.

Σ =

[
σ2
d 0.0

0.0 σ2
ψ̃

]
(5.11a)

Rgauss = cgauss · e
− 1

2

[
d ψ̃

]
Σ−1

d
ψ̃


(5.11b)

A term was added as an ”anti-sparsity” (AS) to decrease the sparsity of Rgauss, which
increased linearly towards the goal of zero deviation. Since the function was multivari-
ate, the linear function was shaped to look like a cone in the (d, ψ̃)-space. A special
measurement φ was used as a weighted distance metric in the (d, ψ̃)-space as shown in
Equation (5.12a), where ψ̃ was divided by 4 since the magnitude of the values of the yaw
angles relative to the positional values were much larger for the range of values used during
the learning task. It was given the shape of (1 − cAS φ) having a maximum value of 1
at the origin in (d, ψ̃)-space, and was lower bounded at 0.0 to avoid negative rewards as
shown in Equation (5.12b). In order to ensure that it was not more valuable for the agent
to output zero RPS when d and ψ̃ was large (meaning Rgauss was close to zero), a constant
term was also added. The resulting reward function for the pose, Rη, was the sum of the
multivariate Gaussian and the anti-sparsity term as shown in Equation (5.13), and is by
the author’s knowledge new to the field. All its components has been plotted separately
in Appendix E, and the resulting shape is shown in Figure 5.6.

φ =

√
(d)2 + (ψ̃/4)2 (5.12a)

RAS = max (0.0, (1− cAS φ)) + cconst (5.12b)

Rη = Rgauss +RAS (5.13)
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(c) Contour of summed Gaussians.
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(d) Contour of multivariate Gaussian.

Figure 5.5: Difference between Gaussian functions, using σd = 1.0 and σψ̃ = 5.0.
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(b) Contour plot.

Figure 5.6: Plots of Rη using cgauss = 2.0, σd = 1.0, σψ̃ = 5.0, cAS = 0.1 and cconst = 0.5.
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Velocity, Energy, and Wear and Tear

Inspired by a classic PD-controller, it was decided to enforce small negative reward on the
body-frame velocities to avoid aggressive maneuvers in addition to potential overshoots of
the desired pose, as shown in Equation (5.14).

Rvel = −
√
cu(ũ)2 + cv(ṽ)2 + c ˜̇

ψ
(

˜̇
ψ)2. (5.14)

A negative reward on the actuator usage was added for two reasons, the first being that
it was desired to train an energy efficient control system. Second, it was done in order
to avoid the agent reducing the body-frame errors while staying at the setpoint and still
using the thrusters extensively, causing unwanted wear and tear. Previous work has been
adding negative rewards on the use of actuators [28, 27, 32], and as mentioned in [27], linear
penalties (being linearly proportional to the actuator outputs) are better at eliminating
small errors than e.g. a squared penalty. It was decided to add linearly increasing,
negative rewards to the actuator output, as shown in Equation (5.15), where the rewards
was calculated from the fractions of the magnitude of the actuator outputs with respect
to their maximums.

R|n| = −
(
c|n|,bow

|nbow|
100

+ c|n|,port
|nport|

100
+ c|n|,star

|nstar|
100

)
(5.15)

The wear and tear of the actuators was addressed by using small negative rewards to the
derivatives of the commanded thruster outputs and angles as shown in Equation (5.16)
and Equation (5.17), respectively. The derivatives was normalized with a factor of 100
for the derivatives of the RPS values, and a factor of π for the azimuth angle derivatives.
Note that only the port and starboard thrust angles’ derivatives were penalized since the
bow thruster was fixed at 90◦.

R∆n = −
∑

i∈{bow, port, star}

c(∆n),i

100

(
|ni(t)− ni(t− 1)|

0.2s

)
. (5.16)

R∆α = −
∑

i∈{port, star}

c(∆α),i

π

(
|αi(t)− αi(t− 1)|

0.2s

)
. (5.17)

Final Reward Function and Coefficients

The final reward function was the sum of all the above mentioned reward components
shown in Equation (5.18), and the coefficients used for the final agent are listed in Table 5.2.

Rtot = Rη +Rvel +R|n| +R∆n +R∆α (5.18)
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Table 5.2: Final reward function coefficients.

cgauss cAS cconst σd σψ cu cv c ˜̇
ψ

2.0 0.1 0.5 1.0 5.0 0.5 0.5 1.0

c|n|,bow c|n|,port c|n|,star c(∆n),bow c(∆n),port c(∆n),star c(∆α),port c(∆α),star

0.2 0.3 0.3 0.05 0.05 0.05 0.01 0.01

5.4.5 Activation Functions

As mentioned in Section 3.2, the activation functions are necessary for representing non-
linear connections between the different layers, and the standard approaches in today’s
state-of-the art deep learning architectures for regression problems use some version of a
hyperbolic tangent, a sigmoid, or a Rectified Linear Unit (ReLU). The vast majority of
the previous work found on continuous control used a ReLU or a tanh activation function
[23, 25, 26, 27, 66, 67]. However, inspired by findings in [68, 69, 70], in particular ”leaky
ReLUs” improved learning of various Neural Network setups, consistently performing well
across several learning algorithms and environments. As such, it was chosen to use this
leaky ReLU, which builds on the ReLU by introducing a ”leakage-rate” αleak ∈ (0, 1)
for the negative inputs as displayed in Equation (5.19). Note that in the special case of
αleak = 0.0 the activation function is the same as a regular ReLU, or if αleak = 1.0 it
represents a linear activation function (just passing the input straight through without
any non-linear modifications).

fLeakyReLU(z, αleak) =

{
αleakz if z < 0

z if z ≥ 0
. (5.19)

Several training sessions with various layer activations were performed, in which it was
found that the leaky ReLU with a fixed ”leakage-rate” of αleak = 0.2 outperformed the
other on both of the two network structures; both in terms of fast learning and stable
convergence. The results from these training session can be seen in Appendix D. Therefore,
the leaky ReLU activation function was chosen as the activation function, used across all
hidden layers. The output layer was given a linear activation function, as the values the
network was to predict included both positive and negative numbers.

5.4.6 Actor and Critic Network Architecture

In the previous work, a variety of network widths and depths has been used, typically
using between 2 and 3 hidden layers with between 5 to 400 nodes in each layer [25, 26,
27, 29, 30, 31, 32], with 2 layers of 64 nodes seemingly being a standard for continuous
control problems [23, 24, 25, 26, 66]. Several training sessions were run using various
network sizes, ranging from 1 to 3 hidden layers, using between 40 and 400 nodes per
layer. The results of the training sessions can be found in Appendix D. It was found that
using 1 layer with 40 nodes was too small: the learning did not converge fast enough. 1
layer with 400 nodes resulted in very fast learning, as did 3 layers with 80 nodes. Using
the validation (Section 5.4.11) as the judge, it was found that, even though 1 layer with
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400 nodes learned fast, the resulting behavior was quite oscillating. The larger networks
tended to give smoother output signals, and thus a calmer behavior of the vessel. That
was the reason for selecting 3 layers using 80 nodes. For visualization, the final network
structures were as shown in Figure 5.7a and Figure 5.7b.
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5.4.7 Optimizer and Learning Rates

In order to carry out gradient descent in the back propagation in order to calculate how to
adjust the weights during the training process, using normal stochastic gradient descent
could be quite slow, and it uses no information about the slope in order to dynamically
adjust the learning rate. Using other optimizers have shown to improve performance, and
the chosen one is one which is used a lot in the academic research, namely Adam, intro-
duced by Kingma and Ba [50], which uses the notion of momentum to adjust the learning
rate as the training is carried out. By selecting an optimizer which utilizes momentum to
make the step size adaptive throughout training, the learning process becomes less sen-
sitive to the initial selection of the learning rate. Kingma and Ba [50] also showed that
Adam was applicable within a wide range of initial parameters. The default learning rates
in the Spinning Up implementation was found to suffice in combination with the Adam
optimizer from Tensorflow. These parameters are summarized in Table 5.4. Note that the
critic and actor networks ended up using different initial learning rates, but both used the
Adam optimizer.

5.4.8 PPO Algorithm

The implementation of the PPO algorithm was done in Python, and was based on the
Spinning Up repository [41]. The repository was made by research scientists at OpenAI,
lead by Joshua Achiam, serving as an educational tool for the methods used in their
research within Deep Reinforcement Learning. Two implementations details can be noted
from the pseudocode presented in Algorithm 4: an estimate of the KL-divergence (a metric
for how similar two probability distributions are) was added for aiding the hindrance of too
large steps on the network parameters, and the advantages in each batch were standardized
(meaning that the advantages were standardized using the mean and standard deviation
of each batch of data) which in practice leads to more stable training due to the neural
networks’ sensitivity to scale, and theoretically it contributes to less variance [55, 71].
The hyperparameters of the algorithm had to be tuned, but some of the default values
presented in the Spinning Up repository were used. The estimate of the KL-divergence
and the policy clipping ratio ε was found to be successful by using the defaults, as changes
in the clipping ratio slowed down the training, while changing the KL-divergence bound
was rather destabilizing for the training process.

58



Discount Factor and Decay Rate

The effect of a reward obtained at time step T steps ahead of a current time step is
weighted γT , being its highest at time step 0 as long as 0 ≤ γ < 1.0. An overview of the
effects are done in Table 5.3, where some values of γt has been shown in order to help
choose the discount factor.

Table 5.3: Discount factor effect γT vs. number of time steps T .

γ
T

10 steps 50 steps 100 steps 500 steps 1000 steps

0.900 0.35 0.01 0.00 0.00 0.00
0.950 0.60 0.08 0.01 0.00 0.00
0.975 0.78 0.28 0.08 0.00 0.00
0.990 0.90 0.61 0.37 0.07 0.00
0.995 0.95 0.78 0.61 0.08 0.01
0.999 0.99 0.95 0.90 0.61 0.37

In order to determine the range of the rewards to account for, a test was done by using
the existing control system (PID + the pseudoinverse thrust allocation), reacting to a
setpoint change of [6 m, 6 m,−45◦]. This was a combination of setpoint elements that
was expected to give a difficult DP-task, since all degrees of freedom had to be controlled
simultaneously, and could act as an indicator for how much time the control system needs
to reduce the body-frame errors. The results of the test can be found in Appendix F.
It was seen that the time taken by the control system to minimize the positional error
was approximately 60 seconds. To allow the agent to explore enough, 60 seconds was set
to be a lower bound for the time step horizon in which the discount factor had to make
rewards valuable. In order to reach a setpoint, but also to stay there (hence performing
station-keeping), the time horizon was chosen to be 80 seconds to allow for accumulation
of reward while being in the setpoint.

The number of time steps was determined based on this time horizon: as the control system
was set to select control signal at a frequency of 5 Hz, the time step in the simulator was
set to be 0.2 s. Hence, in order to simulate each episode having a maximum length of 80
seconds, 80 s/(0.2 s/time step) = 400 time steps was chosen. In order for the discount
factor to be in a valid range according to Table 5.3, it was iteratively tested with values
within the range of (0.95, 0.995). The desired learning behavior was observed with various
values close to 0.99, so 0.99 was therefore set to be the discount factor. The fact that 0.99
was also set to be the standard discount factor in the Spinning Up implementation further
supported the selection of the discount factor in this thesis. As so, the decay rate used
in the Generalized Advantage Estimation was also set to the default value, as iterative
testing gave bad results of testing values below the default at 0.97.

From the fact that one episode could be no longer than 400 time steps, it was iteratively
chosen that the minibatch size (being the number of time steps taken between each network
update) should be at least 2000. This lead to that, if no trajectories during one epoch is
terminal, the parameter updates were done with 5 trajectories of size 400 time steps. One
epoch represents all time steps done between each update of the networks.
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Hyperparameter Summary

Table 5.4(3) shows a summary of the chosen hyperparameters for the final agent used in
the tests following in Chapter 6.

Table 5.4: PPO hyperparameter selection.

Parameter Symbol /
abbreviation

Value

Kullback-Leibler divergence limit KL 0.015
Clipping ratio ε 0.2

Discount factor γ 0.99
Decay factor λ 0.97

Actor learning rate αa 3e-4
Actor network iterations Ia 80

Critic learning rate αc 1e-3
Critic network iterations Ic 80
Adam initial momentum [β1, β2, εA] [0.9, 0.999, 1e-07]

Number of epochs N 1500
Max trajectory length T 400 time steps / 80 s

Max time steps per epoch MT 1600

5.4.9 Performing Agent

The critic only helps in evaluating states during training, and improves the stability of the
PPO algorithm. However, when the training was done, the agent purely consisted of the
policy network during testing. Its performance was validated in two steps: first, a simple
test was performed on the Windows computer in order to see how the agent performed on
a simple setpoint-change test with perfect information (using the states directly from the
simulator). This is further explained in Section 5.4.11. Second, the network was loaded
onto the Ubuntu computer, and used by the control system in ROS, where it was tested
with ”imperfect” state estimations coming from an observer.The latter representation was
used when performing the final tests in Chapter 6.

Previous work has showed that removing the noise vector after training helps on stabiliz-
ing the performance [26]. A final adjustment in this thesis was therefore to remove the
action noise from the actor network. This means that all components of σ from Equa-
tion (3.14b) was set to zero, which resulted in smooth control signals without any delay.
As an addition, it was chosen to use an integral effect on the state vector of the DRL
method during final testing (not validation). The integral effect was added as in [28],
augmenting the body-frame error pose in the state vector according to η̂t = ηt + η̂ss,t,
where the discrete integration was implemented according to η̂ss,t = η̂ss,t−1 + ∆tkηt. ∆t
is the time step of 0.2 s for the ROS node, and k is a coefficient deciding the speed of
the integral accumulation, set to 0.05 for all test scenarios, and a windup was added to
prevent overshoots, set at [x̃windup, ỹwindup, ψ̃windup] = [0.5 m, 1.0 m, π/32 rad].

(3)Some values are given in scientific notation using the E-notation: a · 10b = aeb
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5.4.10 Training the Agent

The training of the agent was carried out in the following manner: First, the agent was
reset to a random pose within the state-space bounds. The setpoint could be set to be
the same point in the NED frame each episode, since the agent’s body-frame error was
randomly initialized. This made exploring the state space effective while using only one
setpoint for all episodes. During training, the agent carried out observing and acting in
the environment until it reached a terminal state, or the maximum episodal length was
reached. The agent was reset every time this event occurred. The reset-method randomly
selected values from the lower 80% of the maximum values for body-frame surge, sway
and yaw errors, as this allowed for less terminal states early on during training, which
empirically yielded faster learning. Since the purpose of this agent was to perform DP,
low velocities was desirable, and thus the random initialization of velocities was from the
lower 30% of their respective maximums.

The results of the training of the final agent is shown in Figure 5.8. Note that all plots
shows a running average of the 25 last epochs(4), and that the units of the x-axis is 106 time
steps. Figure 5.8a shows the average return accumulated over each episode within each
epoch. Since the largest instantaneous reward achievable from Rtot in Equation (5.18) was
r∗ = 3.5, the maximum episodal return was 1400 over the possible 400 time steps within
each episode. Due to the pose being set to random values within the state space between
each episode, 1400 was not achievable unless the agent was reset exactly at the setpoint,
and stayed there throughout the entire episode. Therefore, this metric was expected to
be noisy, but it was found that it converged to an area of good performance, validated as
explained in Section 5.4.11.

The critic’s objective function is shown in Figure 5.8b, which quickly converged towards
low absolute values. The critic’s average and maximum value function estimates within
each epoch is shown in Figure 5.8c and Figure 5.8d, respectively. Note that the maximum
value is r∗/1−γ = 3.5/1−0.99 = 350 (going from Equation (3.18)), which is what the maximum
estimates converged towards in Figure 5.8d. The change of the actor’s objective function
per epoch is shown in Figure 5.8e, while an estimate of the policy’s entropy (being the
average value of − log πθ(·) during one epoch) is shown in Figure 5.8f. These are not really
expected to converge to a predetermined value, but an eye was kept on the improvement of
the PG objective (thereby improving the policy’s performance on the PG-objective), and
that the entropy was going towards small numbers as large values of the entropy means a
large spread in the action-selection from the policy.

(4)This must not be confused with simulator time steps: one epoch consisted of MT time steps.
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Figure 5.8: Running average of 25 epochs showing results of training the final DRL model.
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5.4.11 Validating Performance

After a training session, a validation was done to test the agent’s performance, starting
in various initial poses. The agent was reset to 6 different poses, all with the target of
reaching the setpoint at [0 m, 0 m, 0◦]. Each of the sessions was set to last 80 seconds, and
the coordinates are showed in Table 5.5. The validation sessions run with the final model
is shown in Figure 5.9. The performance was found good in terms of quick convergence to
low body-frame errors and high reward, in addition to the actuator outputs being smooth
and relatively small.

Table 5.5: Validation test starting coordinates.

Run North
[m]

East
[m]

Yaw
[deg]

1 5.0 0.0 0.0
2 3.5 3.5 0.0
3 0.0 5.0 -15.0

Run North
[m]

East
[m]

Yaw
[deg]

4 -5.0 0.0 15.0
5 -3.5 -3.5 0.0
6 0.0 -5.0 -15.0
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Figure 5.9: Final model validation plot.
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Chapter 6

Results

This chapter explains and presents the results from various test scenarios. Positional
plots are plotted in meters where the axes represents the distances away from the initial
setpoint, and yaw is used instead of heading since the plots shows the orientation of the
vessel relative to the initial heading. All angles are plotted in the region (−180◦, 180◦].
The plots containing scenarios with setpoint changes have alternating white and gray
backgrounds to separate between the setpoints. The controllers tested was the existing
motion controller + IPI thrust allocation (referred to as IPI in the plots), the existing
motion controller + QP allocation (referred to as QP), DRL control (referred to as RL),
and DRL control with integral effect as explained in Section 5.4.9 (referred to as RLI).

First, Section 6.1 explains the test scenarios the performance metrics used for quantitative
analysis. Then, individual sections displays the results from each scenario, including a
short comment on what can be seen in the plots presented. A more discussion of the
results, in addition to an assessment of the performance and characteristics of the different
methods is found in Chapter 7.

6.1 Test Scenarios

6.1.1 Large setpoint changes

In order to test the neural network’s ability to perform with input data ranges which it
has not been trained on, a test was made with setpoint changes as shown in Table 6.1.
Recall that the body-frame error bounds were [x̃, ỹ, ψ̃] = [8 m, 8 m, 45◦].

Table 6.1: Pose of large setpoint changes, relative to initial pose.

Setpoint no. Time span [s] North [m] East [m] Yaw [deg]

0 0 - 10 0 0 0
1 10 - 80 12 0 0
2 80 - 150 12 -12 0
3 150 - 190 12 -12 90
4 190 - 270 0 0 -45
5 270 - 350 0 0 0
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6.1.2 Four Corner Test

The four corner test is a common way of testing the performance of a DP control system
(e.g. [33, 35, 72]), where a selection of setpoints are to be followed in order to test the
ability of the control system to control separate degrees of freedom individually, in addition
to testing coupled motions. On ReVolt, a four corner program was written, which changes
setpoints based on a time scale. An overview of the setpoints is shown in Table 6.2.

Table 6.2: Poses for regular four corner test, relative to initial pose.

Setpoint no. Time span [s] North [m] East [m] Yaw [deg]

0 0 - 10 0 0 0
1 10 - 60 5 0 0
2 60 - 110 5 -5 0
3 110 - 140 5 -5 -45
4 140 - 190 0 -5 -45
5 190 - 250 0 0 0

0,	5

12,	3

4

Figure 6.1: Four corner test illustration with the ReVolt model ship to scale.

6.1.3 Four Corner Test with Ocean Current

A four corner test was also performed while enabling current loads to observe the con-
trollers’ robustness to steady state deviations. The coordinates was the same as in the
regular four corner test, but each positional translation was given 20 seconds extra due
to the current loads acting as shown in Table 6.3. The current was irrotational and non-
fluctuating (in order to keep the environmental loads and moments as constant as possible),
having its velocity set to νc = 0.2 m/s, while the direction was set to βc = 135◦, meaning
that it was traversing from North-West towards South-East. All tests were started when
the vessel had been standing still for 30 seconds.
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Table 6.3: Poses for four corner test with ocean current, relative to initial pose.

Setpoint no. Time span [s] North [m] East [m] Yaw [deg]

0 0 - 10 0 0 0
1 10 - 80 5 0 0
2 80 - 150 5 -5 0
3 150 - 190 5 -5 -45
4 190 - 270 0 -5 -45
5 270 - 350 0 0 0

6.1.4 Station-keeping Capability with Environmental Loads

A test was constructed according to DNVGL’s standard ”DNVGL-ST-0111 - Assessment
of station keeping capability of dynamic positioning vessels” [73] for evaluating station-
keeping capabilities while being subject to environmental loads from various angles. The
test was run with an increment of 22.5 degrees, with the wind, current, and waves acting
in the same direction at each increment. The environmental loads’ parameters were set
according to Table 6.4, including slowly varying wave drift forces and fluctuating wind
and current speeds. Before each test was recorded, the new environmental loads (after
changing their angles) was acting for 5 minutes in order for the sea state to properly build
up, and the integral parts of the controllers to stabilize, before the station-keeping was to
commence.

Table 6.4: Station-keeping capability test parameters.

Wind speed
[m/s]

Current speed
[m/s]

Significant
wave height [m]

Increments
[deg]

2.0 ± 0.3 0.1 ± 0.05 1.0 22.5

6.1.5 Performance Metrics

To evaluate the performance of the different methods, metrics were chosen in order to
qualitatively evaluate the both positional accuracy, efficiency, and wear and tear.

Positional Accuracy

The Integral Absolute Error (IAE) measurement was used as a measurement of how ac-
curate the DP system is to reduce the error between the current pose and the desired
pose coming from the reference filter. The normalized measure used was η̄ as shown in
Equation (6.1), where the normalizing parameters were used for making the IAE a dimen-
sionless number, set to [xb, yb, ψb] = [5 m, 5 m, 25◦], meaning that a 1 meter deviation
was weighted equally as a 5 degree deviation from their desired values.

η̄ =

[
x̃

xb
,
ỹ

yb
,
ψ̃

ψb

]>
. (6.1)

IAE(t) =

∫ t

τ=0

√(
η̄(τ)− η̄d(τ)

)>(
η̄(τ)− η̄d(τ)

)
dτ. (6.2)
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Energy Usage

The energy usage was calculated by integrating the power for each of the commanded
RPS-signals. The power as a function of RPS, n, is given as shown under the integral in
Equation (6.3). The water density ρ was set to 1025 kg/m3 and the diameters D were as
shown in Table 4.1. The thruster coefficients were found from the towing tank results, and
were approximated to being constant over the entire tests due to the low advance speeds
in DP-operations: KQ,bow = 0.02 and KQ,port = KQ,star = 0.036. This approximation was
done because the performance metric was only used for a comparison between methods,
and not as an absolute measurement of energy usage. Therefore, the energy usage is
presented as energy equivalents, being denoted W ∗.

W ∗(t) =

∫ t

τ=0

(
2πρKQD

5 sgn(n(τ))n(τ)3
)
dτ. (6.3)

Wear and Tear

The Integral of Absolute Differentiated Control (IADC) metric was adapted from Eriksen
and Breivik [74], and assesses the wear and tear by integrating the magnitude of the change
of commanded bow, port and starboard (b,p,s) outputs. The thrusters’ RPS derivatives
were calculated in the same way as the thruster outputs’ derivatives in Equation (5.16)
and the angles’ derivatives as in Equation (5.17), normalized with a factor of 100 and π,
respectively.

IADC(t) =

∫ t

τ=0

∑
i∈{b,p,s}

(
|

˙n(τ)i
100
|+ |

˙α(τ)i
π
|

)
δτ. (6.4)

6.1.6 Execution Notes

Some notes about how all tests were executed follows for clarity.

• All the values used for the energy usage and the IADC metrics were the commanded
outputs since the physical model has no measurement / feedback of the actual pro-
pellers’ RPS or angles, and the metrics were only used for comparisons between
methods.

• All tests were carried out in the following sequence. Initially, the control system was
set into ”DP mode”. On the software of ReVolt, this sets the initial setpoint in the
NED frame which acts as the reference pose for the DP software. Then, the tests
were started by a separate command, which was at a later point in time than the
switch to ”DP mode”. This was done since the vessels’ pose and the DP methods’
integral effect had to stabilize before starting the tests. This meant that, for some
of the tests where environmental loads were included, it was difficult to start the
tests exactly in the pose which was set as the initial pose. Thus, some of the plots
from tests including environmental loads might include minor deviations between
the vessel’s initial pose and the first setpoint’s pose.
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6.2 Large Setpoint Changes

6.2.1 Results

This section shows the resulting plots of the pose over time for the test using large changes
of setpoints, where the position in the NED frame is shown in Figure 6.2a, the IAE over
time is shown in Figure 6.2b, and the measured pose versus the reference pose is shown
in Figure 6.2c.
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(c) Pose vs. reference signal.

Figure 6.2: Resulting pose and IAE from large setpoint change test.
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6.2.2 Comment

From the plots of the pose in Figure 6.2c, it was observed that the classic methods (being
the motion controller with the IPI and QP thrust allocation methods) reached all setpoints,
but with an overshoot in all respective degrees of freedom. The DRL methods both with
and without integral effect reached all setpoints with no significant overshoot with the
exception of the yaw at setpoint no. 4 (activated at 190 seconds). As can also be observed
from the interval from setpoint no. 4 to 5 was that all methods were rather inefficient in
reducing deviations in position (North and East), having a big impact on the IAE during
the same interval. During the initial phases of all setpoint changes, all methods can be seen
to deviate significantly in yaw, before reducing the yaw-deviation rather quickly. While
the DRL-methods reduced deviations of the body-frame errors in a stable fashion, the
existing methods seems to oscillate more, especially in yaw. Figure 6.2b showed that the
DRL methods resulted in a mean IAE-value being 19% lower than the mean of the classic
methods’ IAE.

6.3 Four Corner Test

6.3.1 Results

The results of the four corner test with no environmental loads is shown in the following.
The position in the NED frame and the IAE over time is shown in Figure 6.3, while the
pose versus reference over time is shown in Figure 6.4. The resulting plots of commanded
RPS and angles for the different methods are shown in Figure 6.5, while the wear and tear
through the IADC metric, and the energy usage, is shown in Figure 6.6.
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Figure 6.3: Resulting position and IAE from four corner test in still water.
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Figure 6.4: Pose vs. reference signal from four corner test in still water.
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Figure 6.5: Resulting commanded RPS and angles from four corner test in still water.
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Figure 6.6: Resulting commanded IADC and energy usage from four corner test in still water.

6.3.2 Comments

From the plots of position and pose in Figure 6.3 and Figure 6.4, it was observed that
all methods were able to reach the setpoints without much steady state deviations. As
for overshoots, the existing methods had an overshoot before reaching the setpoints. The
DRL method with no integral effect had no significant overshoot in any of the setpoint
changes, while the DRL method with integral effect did have small overshoots. In terms
of oscillations, the existing methods oscillated (particularly in yaw) before settling on a
setpoint, while this was not as noticeable for the DRL methods. The mean resulting IAE
for the DRL methods was approximately 24% less compared to the existing methods’
mean resulting IAE.

The DRL method with no integral effect commanded large RPS signals early during tran-
sitions between setpoints, before easing down on the commanded RPS pretty rapidly. The
DRL method with integral effects looked to command quite similar RPS-signals, only with
a slight delay when compared to the method without integral effect. Both DRL meth-
ods commanded smooth RPS and angles, while the commanded RPS-signals from the IPI
and the QP allocation methods was seen to fluctuate between the rate-constraints, and
looked quite similar to each other over certain time intervals. The same could be seen
from the commanded angles, although the wrapping of the angles in (−180◦, 180◦] might
make it look like the commanded angles were fluctuating a lot,even though the angular
rate constraints were being satisfied. The DRL methods kept the commanded angles at
a fairly constant value of around −145◦ for the port thruster and −45◦ for the starboard
thruster, only deviating immediately after each setpoints change occurred. The DRL
methods having lower resulting IADC-value compared to IPI and QP. The DRL method
without integral effect ended up with an energy usage approximately 37% lower than that
of the QP allocation, and 55% less than that of the IPI allocation, while the DRL method
with integral effect used approximately 15% and 38% less energy than the QP and IPI,
respectively.
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6.4 Four Corner Test with Ocean Current

6.4.1 Results

The results of the four corner test with a constant ocean current acting is shown in
the following. Both the position in the NED frame, the IAE over time, and the pose vs.
reference over time is shown in Figure 6.7. The resulting plots of commanded RPS, angles,
IADC and energy usage for the different methods are shown in Figure 6.8.
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(c) Pose vs. reference signal.

Figure 6.7: Resulting pose and IAE from four corner test with current loads.
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Figure 6.8: Resulting commanded RPS, commanded angles, IADC, and energy usage from four
corner test with current loads.

6.4.2 Comments

All methods displayed difficulties with keeping position when subject to the ocean current,
which can be seen from e.g. that some methods started the test already with an offset
relative to the initial setpoint. Only the DRL method with integral effect was able to
totally remove the steady state body-frame error in all setpoints. It did display oscillations
before managing to do so, in addition to some overshoots. The DRL method without
integral effect was not able to remove steady state errors in the sway direction, making
it unsuitable for comparisons on other metrics. The QP method resulted in the highest
values both in terms of IAE and energy usage, while the DRL method with integral effect
resulted in the lowest values for the IAE and the energy usage both. The latter resulted
in 15% lower IAE and 38% less energy usage compared to the QP allocation, while having
8% lower IAE and 33% less energy usage compared to the IPI allocation.
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6.5 Station-keeping Capability with Environmental Loads

6.5.1 Results

This test was performed using the existing motion control law + the IPI allocation, and
the DRL method using integral effect. Figure 6.9 shows the pose of the vessel during the
test for both methods. The black lines shows the setpoint, while the red dashed lines
shows the boundary of 1 m deviation in North and East, and 5◦ in yaw which were set
inspired by the DNVGL standard [73]. Figure 6.10 shows the resulting IAE for each of
the runs, including the average IAE.
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(b) DRL method with integral effect.

Figure 6.9: Pose from all environment angles during the station-keeping test.
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Figure 6.10: IAE from all runs during station-keeping test.
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6.5.2 Comments

From the plots of the pose over time in Figure 6.9, it was observed that the boundaries were
violated by the DRL method a few times during all 16 runs. The IPI allocation was for
the most part well within the bounds in terms of translation, but violated the boundaries
for yaw quite often, and with a larger magnitude than that of the DRL method. The
average IAE was 30% larger for the motion controller + IPI allocation compared to the
DRL method.

6.6 Sea Trial

6.6.1 Notes

The sea trial was carried out with the physical model ship of ReVolt on June 23, 2020.
First, a measurement was taken of the time it took the neural network to perform a
feedforward pass on the computer on board the ship model. The maximum time recorded
was 0.015 seconds, and the average computation time per forward pass was 0.011 seconds.

Initial tests were done with a remote controller to ensure that all hardware components
was working as expected. It was found that the bow thruster’s propeller only rotated
when being commanded signals at 50% or above, seemingly due to resistance put on the
propeller by the propeller housing. Commands lower than 50% yielded no response at all,
but commands above 50% resulted in the propeller rotating at the commanded RPS value.
Thus, no commands yielded a slow propeller rotation. A solution for this was not found.
This meant the deviation in yaw had to become large before the DP algorithms finally
outputted commanded signals above 50%. In order to carry out a test, it was decided to
multiply the commanded bow thrust signals by 2.5 to get the signals large enough for the
bow thruster to react more often than not. This came at the cost of an expected overshoot
and/or oscillation in sway and yaw due to the bow thruster output being much larger than
outputted by the DP methods. The results which are plotted in the following therefore
shows 2.5 times the magnitude of the commanded bow RPS signal, only clipped at 100%.

Due to this issue, the sea trial turned out to be a test of robustness to dysfunctional
hardware, a test which had not been carried out in the simulator. Unfortunately, due to
the time consumed by debugging, time for testing was limited. Therefore it was chosen
to test the DRL method in it’s ”purest” form, meaning without any integral effect on the
state vector. For comparison, the motion controller in combination with the IPI thrust
allocation was chosen. The test itself was carried out by using the same setpoints as
the four corner test with current loads in simulation (Table 6.3). However, at the time
of the four corner tests, the sea state consisted of negligible waves, but a slight breeze in
combination with a small ocean current was acting towards South, which was not identical
to the simulation with ocean current. In Figure 6.11, the position in the NED frame, the
IAE over time, and the pose versus reference is shown. The resulting commanded RPS,
angles, IADC, and energy usage is shown in Figure 6.12.
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6.6.2 Results
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(c) Pose vs. reference signal.

Figure 6.11: Results of pose and IAE from long four corner test during sea trial.
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(b) Commanded angles in (−180◦, 180◦].
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Figure 6.12: Resulting commanded RPS, commanded angles, IADC, and energy usage from
long four corner test during the sea trial. Note that the recorded bow signal is a factor of 2.5

larger in magnitude than the actual output from the different methods due to the way the
hardware issue was attempted combated.

6.6.3 Comments

It was observed from Figure 6.11 that the vessel movements were more oscillatory around
the reference signals than in simulation, with the DRL method being the most oscillatory.
Both methods were able to get to all setpoints in approximately the same time as in the
comparative simulation. The motion controller with IPI allocation resulted in an IAE
33% larger than for the same method in the comparable simulation, while the total energy
usage was increased by 7%. For the DRL method, the resulting IAE was 49% larger
compared to in simulation, increasing the energy usage by 310%. Compared to each other
in the sea trial, the motion controller with IPI allocation resulted in 12% lower IAE and
a 48% lower energy usage compared to the DRL method.
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The commanded angles of the DRL method was similar to what was seen in results from
simulations, but for the commanded RPS, the resulting outputs was oscillating and did not
resemble the smooth output as displayed in e.g. Figure 6.8a. The thruster usage from the
IPI allocation more closely resembled what had been observed during simulations, both for
the angular commands and the RPS commands, but the bow thruster’s commanded RPS
reached saturation most of the time for both methods due to the ramped up signal used to
combat the hardware issue. The stern thruster’s commanded RPS was oscillating for the
DRL method, but did not reach saturation as often, while the IPI allocation commanded
more consistent RPS signals to the stern thrusters. For the motion controller with IPI
allocation, the resulting IADC was 71% larger in the sea trial compared to in simulation,
while the DRL method’s IADC increased with 949%. The resulting IADC for the DRL
method in the sea trial was however 424% lower than that of the IPI allocation.
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Chapter 7

Discussion

This chapter discusses the results in Chapter 6 generally, and the development and per-
formance of the DRL model specifically.

7.1 Fairness of Comparison

From all plots including results from the existing methods, it was deemed reasonable to
believe that the existing implementations the motion control law (feedforward + PID
feedback) could be better. This meant that the biggest drawback for the IPI and QP
thrust allocation methods was that they converted signals from a motion control law that
seemed to work rather poorly. Interestingly, the results from the four corner test without
environmental loads did not match the results presented in the work of the master’s thesis
by Alfheim and Muggerud [33], nor from the best result presented in their publication
a year later [75]. This indicated that later changes done to the software has reduced
the performance of the motion control system, at least for DP tasks. Supporting the
assumption of a poor motion controller was also the fact that the QP thrust allocation
not only worked as a comparative method for the DRL method, but it was also compared
against the IPI allocation. From several simulations, the trajectory of the vessel while
using the motion controller and the two classic allocation methods was quite similar. This
indicated that both allocation methods translated the desired forces from the motion
controller similarly, but since the desired forces was calculated in a sub-optimal manner,
the resulting DP capability using both classic thrust allocation methods suffered. It was
first believed that one reason for this could be that the motion controller had been tuned
on board the physical ship model and not the digital twin, but during the sea trial,
the vessel movements with the existing motion controller and the IPI allocation was quite
similar to those in simulations despite the hardware issues, supporting that the controller’s
DP ability had been reduced from previous work. Therefore, it can be discussed if the
methods used as comparison to the DRL method is particularly useful. At least it forms
a benchmark against methods which were in general able to reach setpoints, but they did
not do so in a particularly accurate nor energy efficient manner in general.

It should also be noted that to use the four corner test with ocean current as a direct
comparative scenario to the sea trial could be inaccurate. However, there was external
loads present in the sea trial pushing the vessel southwards, so the simulation scenario
still served as a useful benchmark to test performance between simulations and real life.
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7.2 Test Results

7.2.1 Positional Accuracy

When discussing positional accuracy, it is referred to the controllers’ ability to eliminate
the body-frame errors. The NED plots can be deceiving since they do not inform about the
time scale, but as the pose plots showed, the perceived errors in the NED frame pertained
over a short amount of time, which was true for all methods. The short spikes of deviation
from the reference signal could possibly have been reduced by using a slower reference
filter. When evaluating using the IAE metric from the simulation results, it was seen
from all IAE-plots that the DRL method (especially with integral effect) performed best,
varying from outperforming the classic methods from 8− 15% when using environmental
loads, to 19 − 55% without environmental loads. It was also seen that it was doing so
without much oscillations, but occasionally oscillating around the yaw angle reference,
implying that the yaw angle priority could have been increased even more in the reward
function. This could have been accomplished by reducing σψ̃ in the multivariate Gaussian
to reward a smaller range of yaw angle deviations, making the anti-sparsity distance metric
φ steeper in the direction of ψ̃, or a combination of both.

From the sea trial, the positional accuracy of both the DRL method and the motion
controller with IPI allocation was considerably reduced. This was expected due to both
the hardware issues, and as can be seen in Figure 6.11b, especially the deviations in yaw
contributed largely to the increase of the total IAE. What was also noticeable from the
positional plots was that the DRL method resulted in a more oscillatory behavior in sway
and yaw than the IPI method, and when inspecting the commanded bow thruster signals in
Figure 6.12a, it was believed that this was mainly due to larger oscillations in commanded
RPS, which again the DRL method was attempting to compensate for by commanding
larger RPS values for the stern thrusters. This was observed physically during the sea
trial as well since the small ship model is sensitive to actuator usage with respect to the
roll motions, as the vessel rolled more during the test with the DRL method. This effect
could also be observed from the positional plots when moving between setpoints, as the
roll motions stopped when the vessels’ velocity increased when moving between setpoints,
also resulting in less oscillations in all degrees of freedom.

In addition to a more oscillatory behavior in general in sway and yaw, the bow thruster
issue caused larger overshoots when switching between setpoints which included sway and
yaw movements. However, this was more noticeable when the vessel was moving in positive
sway (towards starboard) and yaw directions (clockwise). This brought attention to the
unsymmetrical nature of the bow thruster since, as previously mentioned, it yielded larger
forces when being commanded positive RPS signals, resulting in a larger force towards
starboard than port when locking the bow thruster to 90◦ and a larger moment clockwise
compared to counter clockwise. This was especially noticeable when moving between the
last two setpoints as seen in Figure 6.11, as both methods lost a significant amount of
accuracy in East and heading in addition to North since the surge, sway and yaw motions
did not exactly align with the NED-frame as the vessel went from a heading of 45◦ towards
0◦.

The DRL method seemed to suffer the most from the bow thruster issue since it had taught
itself to use the bow thruster more actively than the stern thrusters during simulations,
and thus the ramped up bow thruster’s RPS signal cause both more oscillations and larger
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overshoots than with the classic method. The classic method used also used the bow
thruster extensively, however not with oscillatory and spiking commands since it included
restrictions on the thruster’s RPS rate. This could have caused the IPI allocation to calm
down its bow command as the vessel had already started to close in on the setpoint,
avoiding as large overshoots. Interestingly, the DRL method was more accurate in surge
(as seen from the IAE plot in Figure 6.11b), which was not as influenced by the bow
thruster usage, which indicates that its accuracy could have been considerably improved
if solving the bow thruster issue.

7.2.2 Energy Usage

The DRL method consistently proved low energy usage in simulation. Looking at the
commanded RPS signals from the two four corner tests (Figure 6.5a and Figure 6.8a),
the DRL methods outputted instantaneous large RPS signals immediately after setpoint
changes occurred, and reduced the magnitude of the commands rapidly after the vessel
had started to move. The existing motion control law with the IPI and QP allocation
yielded consistently larger RPS signals until the vessel was at rest at the setpoints. The
DRL method with integral effect ended up using between 15%-38% less energy than the
existing methods in the four corner test without environmental loads, and 33%-38% less
energy than the existing methods in the four corner test with environmental loads. The
DRL method without integral effect was even more energy efficient, but was not able to
compensate for steady state errors while using environmental loads.

The results from the sea trial showed a large increase in the energy usage for both the DRL
method and the motion controller with IPI allocation. Since the IPI allocation constrains
the thrusters’ force production rates, it was able to obtain an almost identical energy
usage when compared to the comparative simulation scenario, where the increase mostly
came from the increase in command bow thruster usage. The DRL method on the other
hand increased its energy usage by a factor of 3.1, also being affected by the ramped up
bow thruster’s commanded RPS, but the stern thruster usage was the larger influence, as
they had to compensate from the oscillations caused by the bow thruster. This indicated
that the DRL method learned to achieve energy efficiency in simulations by using the bow
thruster more extensively than the stern thrusters, which in fact resulted in a lower energy
usage for the bow thruster itself when compared to the IPI allocation during the sea trial,
but it suffered largely when compensating for the bow thruster hardware issue with the
stern thrusters.

If inspecting the plots of the pose in Figure 6.11c and the commanded RPS in Figure 6.12a,
it can be observed that the DRL methods’ commanded RPS for all thrusters oscillates
between positive and negative values with the same periodicity as the positional oscilla-
tions. Taking the interval of moving between the first setpoints as an example, a close
inspection of the DRL method’s RPS commands in Figure 6.12a indeed showed how the
stern thrusters compensated for the errors caused by the bow thruster usage. When the
bow thruster received large positive RPS commands, a force was put on the vessel in the
starboard direction, causing a deviation in sway (closely related to the East position as
the yaw deviations were small). Following this positive bow thruster command with a few
seconds, the port side thruster was given positive commanded values, which exerted a force
in the port side direction of the vessel since the port thruster was rotated at approximately
−140◦. At the same instance, the starboard thruster was given positive RPS commands
as well, and since this thruster was rotated at −40◦, it also exerted a force in the port
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side direction of the vessel. The same behavior was observed in the opposite direction as
well, which displayed how both the DRL method used the stern thrusters to compensate
for the extensive bow thruster usage, resulting in a large increase of the energy usage.

Since no limits were set to how large the changes in commanded RPS could be, the out-
puts from the DRL method were breaching the force production rates, which can be seen
in Figure 6.12a when comparing the RPS commands for the stern thrusters against the
commands from the IPI allocation which maintained the rate limitations. This indicated
that in further work with the DRL method could benefit from adding more explicit limita-
tions on the method’s commanded force production rates in order to make it more energy
efficient. In addition, the sea trial displayed a clear drawback of not having a feedback
signal for the actual RPS values, because even though the commanded RPS signals were
more rapidly changing for the DRL method, there were uncertainties connected to the
actual RPS of the propellers which largely decides the actual energy usage.

7.2.3 Wear and Tear

Measuring the wear and tear by using the IADC metric displayed that the DRL method
by far induced less stress on the actuators than the existing methods, resulting in an IADC
value of approximately 10 times less than the QP allocation in both four corner tests in
simulations. It is not clear why the IPI allocation ended up with between 2-3 times as much
IADC as the QP allocation, but it was believed that this could have been due to different
implementation details. As the IPI allocation was delivered though a pre-compiled Java
code in ROS, it was not possible by the author to inspect the implementation details of
it, while the QP allocation was directly implemented by the author himself. But all nodes
was set to output commanded signals at maximum 5 Hz, which should have been enough
for fair comparisons. An interesting note about the IADC values is that the DRL methods
ended up with approximately the same IADC values in both the four corner test with and
without environmental loads, even though the test with environmental loads was longer in
duration. Both the existing methods increased quite noticeably, indicating that the DRL
methods’ wear and tear remains consistently low in various sea states.

What was not directly included in the IADC measure as a metric for wear and tear is
whether or not the rate constraints were satisfied or not for the various methods. The
IPI and QP allocation were both satisfying the rate constraints both for commanded RPS
and angles by explicitly adding this to their respective implementations. Comparing the
DRL method to these commanded signals, it was seen that the DRL method occasionally
looked to be violating the rate constraints. Note that the only explicit restriction put on
the RPS output from the DRL methods was to constrain the output in the range ni ∈
[−100%, 100%], so no formulation was done in terms of ensuring that the rate constraints
were satisfied. For the angular rates, this was no issue for the DRL method due to its
commanded angles being almost constant. In total, the rate constraints seemed to be
respected for the vast majority of time steps in simulations.

The IADC increased significantly from simulations during the sea trials for both meth-
ods used as seen in Figure 6.12c. The commanded angles were more oscillating than in
simulations but did not impact the IADC metric nearly as much as the commanded RPS
changes. This might show another weakness of the IADC metric as the weighting done by
dividing the RPS commands’ derivatives with 100% and the commanded angles’ deriva-
tives with 180 degrees gave a benefit to the DRL method as it keeps the angle commands
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nearly constant. However, Figure 6.12c showed that the RPS contribution was still the
largest by far, indicating that the IPI allocation commands a more oscillatory command
on the low-level in between the rate constraints, while the DRL method’s oscillating RPS
commands did not have large derivatives when analyzing it over time. However, the largest
increase of the IADC metric in the sea trials compared to simulations was by the DRL
method. Due to the lack of feedback of the actual RPS of the thrusters’ propellers as
mentioned, the wear and tear could in reality be lower than what was measured by using
the commanded values as in this thesis. On full-scale vessels, the resulting wear and tear
becomes a result of the actual RPS output of a low-level propeller controller whose input
would be the commanded signals, and thus the changes in the actual RPS values would
most likely be smaller than what was observed when calculating the IADC metric with
the commanded RPS values.

7.2.4 Robustness

Although robustness has no metric of its own, it is still a relevant parameter for DP
systems. The robustness was tested in several ways, through large setpoint changes,
station-keeping in a large sea state, and through deploying the DRL model trained in
simulation to the real ship model.

The test with large setpoint changes showed that the DRL method, with and without
integral effect, had a mean IAE of 19% less than the mean of the classic methods. In
addition, the behavior of the vessel was more constant in terms of reducing body-frame
errors in a stable fashion, only overshooting the largest setpoint change in yaw angle at
190 seconds, but without any oscillations in general. It was also seen from the pose plots
in Figure 6.2c that the DRL method consistently and quickly prioritized to reduce errors
in yaw.

The station-keeping test showed that the DRL method with integral effect was quite
positionally accurate. This was not expected since the DRL method was trained in still
water. As can be seen from both the plots of the pose in Figure 6.9 and the resulting IAE
in Figure 6.10, the IPI allocation suffered a loss of positional accuracy, and especially the
boundaries set for the yaw-range was violated both often, and with quite a margin. It
could therefore be questioned whether or not the IPI allocation’s result is valid for the test,
since the main task was to station-keep within some set boundaries. Sacrificing positional
accuracy for low energy usage must be a priority of the operator of the DP system, but
in the case of DNVGL’s standard in which the station-keeping test was built upon, these
boundary violations was not satisfactory. As previously mentioned, this was believed to
be an error related to the existing motion controller instead of the IPI allocation itself.

The entire sea trial itself demonstrated that the DRL method was rather robust for solving
the four corner task with a model which was only trained in simulation, despite the
hardware issues with the bow thruster. Even though the performance worsened in terms
of both lower positional accuracy and larger actuator usage due to the hardware issue, the
results showed that the DRL method was able to reach all setpoints, and that the largest
increases in IAE when compared to simulations came from the overshoots in sway and
particularly yaw. It was hypothesized that the DRL method, learning in simulations that
yielding a certain RPS in the negative direction affected the vessel’s motion as much as
yielding positive RPS signals, could have been retrained in simulation with unsymmetrical
bow thruster coefficients in order to properly compensate for this difference. This could
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have resulted in the DRL method learning to command larger RPS signals in the negative
direction when needed, in order to control the sway and yaw motions more effectively
on the physical model. Altogether, taking into account that the DRL method was only
trained in a simulator with still water, the actual hardware issues, and the bow thruster’s
parameter mismatch, the method proved quite robust to the transition from simulator to
real life application. However, robustness vulnerabilities of the DRL method were exposed
when the differences between the actuators of the digital twin and the ship model was of
the magnitude during these tests, as the performance of the motion controller with IPI
allocation was closer to the simulation results which were performed with symmetrical
coefficients for the bow thruster. To make the DRL method more robust, rate constraints
could be explicitly be enforced, but this would also change the dynamic of the DRL
method, requiring retraining the model. However, the exclusion of these constraints were
on purpose since the thesis was to investigate the capability of employing DRL as directly
as possible.

7.3 DRL Control Scheme Characteristics

From looking at the results, some main characteristics were possible to extract from the
way that the DRL method completed its DP tasks. As seen in all the plots of commanded
thruster angles, the DRL method taught itself to position the port thruster around −140◦

and the starboard thruster at around −40◦. This configuration is showed in Figure 7.1,
where a screenshot was taken from the simulator during one of the simulations.

Figure 7.1: A screenshot of how the mean thruster angles were set by the DRL method.

In commercial systems, such configurations are usually referred to as ”bias allocation”,
where the operator might activate a bias allocation mode in which the azimuth angles
are not allowed to follow each other. This is done to prevent the azimuth angles from
”hunting” the direction of the environmental loads, potentially pointing all thrusters in
the same direction, and therefore the available force and moment production might be
drastically reduced. Commercial systems solve this by adding additional objectives in the
optimization formulation which favors certain thruster angles [76]. Interestingly, as can
be seen from Figure 6.5b and Figure 6.8b, the classic methods also ended up on many
occasions choosing similar thruster configurations with some oscillations after closing in
on the setpoints, but between the setpoints, they rotated the thrusters a lot more. As
mentioned in the previous work by Leavitt [10], optimization methods seemingly suffer
from extensive thruster rotations, which was confirmed in the tests in this thesis as well.
The QP allocation seemed to calculate quite similar angles for the two stern thrusters,
while it was observed that the stern thrusters rotated more independently from each other
for the IPI allocation.
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By locking the stern thrusters’ angles, the DRL method made an accuracy versus capability
trade-off by prioritizing a thruster setup which made positional accuracy easier, but in turn
not utilizing the full potential of the thruster setup. This was however to be expected by
the way the model was trained, as the reward function only rewarded positional accuracy,
and included no components related to capability. What was however interesting to note
by this specific angle lock was that the method avoided at any point in time to angle the
stern thrusters towards each other, indicating that it learned that such a thruster setup
was inefficient both in terms of positional accuracy and energy efficiency. This supports
the inclusion of forbidden zones in classic thrust allocation methods, where thrusters are
given some areas of rotation in which they are not allowed to exert thrust within in order
to avoid flow disturbances around neighboring thrusters.

In simulations, the DRL method proved energy efficient by acting slightly different than
the motion controller + thrust allocation methods. When a setpoint change occurred,
the DRL method was yielding commanding large RPS initially, followed by allowing the
vessel to slowly drift towards the setpoint with minor RPS commands, slightly increasing
the magnitude of the commands for small adjustments when closing in on the setpoint.
This was believed to be the main reason as to why the DRL methods’ performance was
reduced between the simulation of the four corner test with and without ocean current
enabled. As the DRL method was trained in still water, the strategy of letting the vessel
drift towards setpoints while commanding small RPS values showed inefficient when the
ocean current was enabled until the state integrator was added, but the integrator also
caused the method to display some overshoots. The classic methods commanded more
fluctuating and large RPS values over time, which resulted in that their energy usage was
higher.

An advantage of the DRL method when compared to the classic methods was that it was
able to learn directly from the dynamic system, and not from a parameterized, explicit
formulation of the hull dynamics, the thrusters’ configuration and their parameters. A
clear example of such an advantage can be discussed from looking at the Bollard test from
Alfheim and Muggerud in Figure 5.2. The thruster force from a thruster was assumed
to follow a quadratic shape according to Ti ∝ Kini|ni|, whereas the results from the
actual Bollard test showed that this quadratic relation did not hold for the entire range of
the commanded |ni|-values, especially for the stern thrusters. Where the classic methods
depends on simplifications such as the quadratic relationship between a thruster’s force
and RPS by using constant Ki-values, the DRL method might learn the actual relationship
by itself. In reality, the Ki-values depends on the advance number J = Va/nD, which again
depends on the inflow velocity Va to the propeller, the RPS value n and the propeller
diameter D. In the classic methods, such a dependency could be formulated by storing
a table of the Ki-values and adjusting them according to the advance number in the
optimization problems, but the DRL method might learn this by itself. Therefore, the
DRL methods’ ability to learn more accurate thruster models including more complex,
non-linear interactions between the vessels’ velocity and orientation, the commanded RPS,
and the resulting thrust force might explain why the DRL method turned out to be energy
efficient in simulations, while at the same time being quite accurate.

A disadvantage of using the DRL method as it was implemented in this thesis is that if
a change to the thrusters was to occur, e.g. by moving some of the thruster’s locations,
changing their characteristics, or a thruster malfunction as shown during the sea trials in
this thesis, there would be a need of training a new model. This would take time both
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in terms of the training process itself, but also in terms of time consumed by validating
and testing the new performance. For allocation methods such as those based on the
pseudoinverse or optimization, only a few lines of code would suffice in order to adapt
the software to these thruster configuration changes, making them more flexible and easy
to handle for not only changes to the current thruster configuration, but to applications
on completely new ones as well. The classic method is likely to need tuning as well,
but it could be performed straight away, whereas the DRL method would need time
to first be retrained, followed by validation of performance. If the performance is not
found satisfactory, then another training session would consume even more time. This
disadvantage could however become a smaller issue if retraining is used efficiently, where
the trained network is directly applied as the initial network used during training as
apposed to training a Neural Network from scratch.

Another disadvantage of the DRL method is that the rate constraints could be hard to
enforce, and by using the outputs from the Neural Network directly, this thesis showed that
rate constraints can easily be violated, causing more wear and tear on the actuators. In
addition, a disadvantage in general is that it could be hard to perform stability analysis and
to give other performance guarantees apart from performing various tests. Classic methods
has been developed and tested for a long time, and mathematical stability guarantees could
be given by e.g. Lyapunov Analysis. This is discussed more in the recommendations for
further work in Chapter 9.
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Chapter 8

Conclusion

In this thesis, the Deep Reinforcement Learning algorithm Proximal Policy Optimization
was used in order to develop a control scheme for Dynamic Positioning of a marine surface
vessel using Neural Networks to calculate various thruster commands. Various network
architectures and state- and action vector representations was tested. Larger networks
tended to give more stable learning results, and the inclusion of the previous time steps’
commanded signals in the state vector made the agent learn the Dynamic Positioning tasks
well in addition to reducing the actuator usage. Especially the inclusion of predicting sines
and cosines of the thruster angles in the action vector helped the learning algorithm to yield
more stable angle commands. A considerable amount of experimentation with different
reward functions for positional accuracy was also done, where an analysis was carried out
considering the performance of the Deep Reinforcement Learning agent between using a
multivariate, Gaussian reward function instead of the sum of multiple, univariate Gaussian
reward functions. The multivariate Gaussian reward function was constructed in a way
which lowered sparsity, and aided the learning process in a way that to the author’s
knowledge is new to the field. By creating this smooth reward function which was to be
optimized by the Deep Reinforcement Learning agent, the entire learning process itself
became quick and stable, yielding a model which was able to perform well both in terms
of positional accuracy, energy efficiency, robustness, and wear and tear of the actuators.

In addition to presenting the work of applying Deep Reinforcement Learning to solve Dy-
namic Positioning tasks, several test scenarios was constructed and presented, including
comparisons to existing methods for Dynamic Positioning. The resulting Deep Reinforce-
ment Learning control scheme was able to perform the Dynamic Positioning tasks well
when tested on the large variety of test scenarios in simulations, in addition to proving ca-
pable during sea trials. In simulations, the Deep Reinforcement Learning method yielded
better positional accuracy while being considerably more energy efficient than the methods
it was tested against. These methods consisted of a motion controller consisting of both a
feedforward control law and a Proportional-Integral-Derivative feedback control law, us-
ing two different thrust allocation methods for translating the desired forces into thruster
commands. A station-keeping task displayed that the station-keeping ability of the Deep
Reinforcement Learning method was quite good in rough sea states, even though the Deep
Reinforcement Learning method had only been trained in still water. Even though the
quality of the comparisons was discussed due to the seemingly sub-optimal implementation
of the existing motion control law, it was proposed that the Deep Reinforcement Learning
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method was a strong contender when looking for new methods to perform station-keeping
and low speed maneuvering in a way that encapsulates both the motion control and thrust
allocation tasks, instead of separating them into separate entities like existing methods
does today. The Neural Network which calculated the thruster commands, which was
trained only in a simulator, was employed to a physical ship model. It was found to per-
form positionally accurate Dynamic Positioning, hence proving quite robust despite issues
related to the bow thruster’s hardware. In addition, due to the controller consisting of a
Neural Network, the computational time used by the control system was negligible, com-
bating the problem of computational complexity which most existing optimization based
methods are facing today.

The thesis therefore concludes with that Deep Reinforcement Learning’s potential for
accurate and energy efficient control is not only theoretically possible. It was shown to
perform well when compared to classic methods in simulations, in addition to performing
well in a real life sea trial by directly applying the model which was trained in simulations.
However, as with all Deep Reinforcement Learning applications, it is hard to give stability
and performance guarantees, although this was tested to a certain degree by exposing
the Deep Reinforcement Learning method to setpoint changes and sea states which it
had not been previously trained to handle. In addition, it proved less robust to actuator
malfunctions when compared to a classic method. This is an area which is especially
important for industrial applications and crucial for the classification societies. Therefore,
the recommendations for further work includes pointers to relevant work done within the
field of safe learning, in addition to how Deep Reinforcement Learning agents can be
trained to adapt to differences between the dynamic system in simulation and in real life.
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Chapter 9

Further Work

This chapter focuses on recommendations for further work on the DRL topic for control
of marine vessels. It should be emphasized that, as discussed, the methods used for
comparison most likely suffers from a sub-optimal motion control law, so further work
could go into improving these for more fair comparisons. However, this chapter only
discusses the way forward using the DRL method.

9.1 Increasingly Complex Thruster Configurations

Further work which directly builds on top of this thesis is to test the PPO algorithm on
vessels which contains a lot more complex thruster configurations that ReVolt does with its
3 thrusters. This could include setups with rudders behind the stern propellers, multiple
tunnel thrusters, etc. Such elements would make the learning task more difficult, but
would also give rise to a more complex situation for optimization based thrust allocation
schemes, creating interesting cases for comparative studies.

9.2 Continuous Learning

It is possible to load the Neural Networks for enabling retraining of the DRL models,
meaning that the training can continue from where it left of in the simulator and thus
be a big time saver when training control policies for real life applications. Since the
state-vector was formulated in terms of error states, the training could be performed
efficiently by determining a region to sample new setpoints from after each trajectory
in order to emulate resetting the environment in the simulator. This could enable the
learning algorithm to tweak the Neural Networks’ weights and biases to details that differ
between the digital twin and the real model that are difficult to mathematically model,
such as experienced during the real life experiments in this thesis where the thrusters was
not complying to the commanded signals properly.

Recent work on this area has shown big effect: work published in April 2020 by Julian et
al. [77] tried to answer their own formulated question ”Can we efficiently adapt previously
learned behaviors to new environments, objects and percepts in the real world?”. The
work demonstrated an efficient method with real life results on continuous learning, using
a pre-trained model of a robotic gripper arm whose task was to grasp and manipulate
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various objects. They showed that, by including changes to the real life environment
such as changes in background, the shape and appearance of the objects, various lighting
conditions, and changes to the robot morphology, their method efficiently re-trained the
model to adapt in a short period of time, making it flexible to a large variety of changes
in the environment compared to what it was initially trained on. Work like this becomes
highly relevant for marine applications for several reasons, probably the most important
one being that the mathematical modeling of the vessel and thruster dynamics includes
errors which could be re-learned on board the real vessel. As this could be time consuming,
it is also important to utilize methods that considerably lower the necessity of the amount
of data, which this work achieved with a stated necessity of only 0.2% of data for reaching
the end performance compared with training a model from scratch to solve the same tasks
on the various augmentations of environment.

9.3 Safe Learning

Work by Achiam et al. [78] on ”Constrained Policy Optimization” sought to find safe ways
of performing exploration for an RL agent, and combined reward shaping with constraint
shaping in order to ensure a low bound of the worst performance. The performance of
an RL agent might look good at first glance, but that is given that the environment
it is trained in is a good replica of the environment it is going to be used in. For the
agent trained in this thesis, if the changes in setpoints were large, the vessel seemed to
be controlled in a reasonable manner by looking at the results from Figure 6.2, but it
is hard to evaluate if it would behave similarly for any combination of setpoint changes
that are larger than what the model was trained on. Therefore, further investigations
into how to constrain the agent to be more safe is recommended, as this is crucial for the
applications of DRL methods into real life industrial usage, in addition to being crucial for
enabling continuous learning as explained above. It is also recommended to investigate if
Constrained Policy Optimization could be used in order to enforce rate constraints of the
thrusters, as using the output of the Neural Network directly as in this thesis might cause
the thruster commands to violate the thrusters’ physical limitations.

Ways of providing a sense of safety and/or stability was also investigated by Richards
et al. [79], providing a framework for performing Lyapunov Analysis on Neural Networks
as a way of ensuring safe performance on safety-critical systems learning the safest region
of the state-space. Also Berkenkamp et al. [80] provided a method for model-based RL
with stability guarantees by considering safety in terms of stability guarantees during
training, combining Lyapunov Analysis and statistical models of the dynamics to obtain
well performing policies with provable stability certificates. All of the above mentioned
work may be of interest of exploring, especially for the classification society, on the path
to providing performance guarantees of DRL methods.
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Appendix A

Hydrodynamic Coefficients

This appendix gives the hydrodynamic coefficients of the ReVolt ship model which was
found during the work from Alfheim and Muggerud [33].

The system inertia matrix M in 3DOF is the sum of the rigid body inertia,

MRB =

 m 0 0
0 m mxg
0 mxg Iz

 =

 257 0 0
0 257 0
0 0 298

 , (A.1)

and the added mass:

MA =

 −Xu̇ 0 0
0 −Yv̇ −Yṙ
0 −Yṙ −Nv̇

 =

 6.930 0 0
0 49.440 7.007
0 7.028 24.556

 . (A.2)

Their respective sum then becomes

M = MRB +MA =

 263.93 0 0
0 306.44 7.00
0 7.03 322.15

 . (A.3)

The Coriolis and centripetal matrix is also separated into rigid body and added mass
elements:

C(ν) = CRB(ν) +CA(ν) =

 0 0 −m (xgr + v)
0 0 mu

m (xgr + v) −mu 0


+

 0 0 Yiv + Yir
0 0 −Xiu

−Yijv − Yir Xiu 0

 (A.4)

I



The numerical values found was the following:

C(ν) =

 0 0 −207.56v + 7.00r
0 0 250.07u

207.56v − 7.00r −250.07u 0

 . (A.5)

Lastly, the damping matrix found (being linear) was

D =

 −Xu 0 0
0 −Yv −Yr
0 −Nv −Nr

 =

 50.66 0 0
0 601.45 83.05
0 83.10 268.17

 . (A.6)
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Appendix B

New Motion Controller Bounds

The various thruster configurations used for the calculations are shown in Figure B.1.
The calculations was done by finding the maximum producible force in one dimension,
while still reaching equilibrium in the two others. For the maximum surge force, the
bow thruster produced zero force, while the two stern thrusters produced their maximum
force at 0◦, giving that the sum of forces in sway and sum of moments in yaw were
zero. For the maximum sway force, the bow thruster produced its maximum force, while
the two stern thrusters each produced enough force to give equilibrium in yaw while
staying at 90◦, meaning that no force was applied in surge. This force was found through
(2 · f · 1.12 m− 9 N · 1.08 m = 0) =⇒ f = 4.34 N . See Figure 4.2 for dimensions used.
For the yaw moment, the bow thruster yielded maximum thrust, while the two stern
thrusters were placed at two angles mirrored along the sway axis of the vessel in order
for the sum of forces in surge to be zero. The angle was chosen from using Pythagoras’
theorem for them to be placed at a 90◦ intercept where they are able to produce the largest
yaw moment (being α′ = ± arctan(0. 15 m/1. 12 m) = ±7.6◦). For their sum of forces in
sway to cancel the bow thruster’s force, the force they had to be producing was found
through 2 · f cos(α′) − 9 N = 0 =⇒ f = 4.54 N . The calculations of the values are
shown in in Equation (B.1), resulting in the maximum force/moment vector τmax shown
in Equation (5.4).

Xmax = 0 N + 2 · 20.5 N = 41.0 N (B.1a)

Ymax = 9 N + 2 · 4.34 N ≈ 17.7 N (B.1b)

Nmax = 9 N · 1.08 m+ 2 · 4.54 N ·
√

(0.15 m)2 + (1.12 m)2 ≈ 20.0 Nm (B.1c)
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Figure B.1: Thruster configurations for calculation of motion controller output boundaries.
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Appendix C

Arctan2 Angle Continuity

This table shows that the chosen action vector, calculating the sines and cosines of the
thruster angles instead of the raw angles as shown in Equation (5.8b), is able to represent
angles as continuous, or rather circular, values.

Table C.1: α = arctan2(sin(α̂), cos(α̂)) for various sine and cosine values, in degrees.

sin(α̂)
cos(α̂)

-1.0 -0.67 -0.33 0.0 0.33 0.67 1.0

-1.0 -135 -123.7 -108.4 -90.0 -71.6 -56.3 -45
-0.67 -146.3 -135.0 -116.6 -90.0 -63.4 -45 -33.7
-0.33 -161.6 -153.4 -135.0 -90.0 -45 -26.6 -18.4
0.0 180.0 180.0 180.0 0.0 0.0 0.0 0.0
0.33 161.6 153.4 135.0 90.0 45.0 -26.6 18.4
0.67 146.3 135.0 116.7 90.0 63.4 45 33.7
1.0 135 123.7 108.4 90.0 71.6 56.31 45
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Appendix D

Neural Network Training Plots

This appendix shows the training progress of different DRL agents using varying net-
work sizes, activation functions and actor vector representations. For ease of inspection,
they have been given their separate pages in the following. The results could briefly be
summarized as:

• Network size: Both the architectures with 1 layer with 400 nodes, 2 layers with
100 nodes, and 3 layers with 80 nodes converged to stable average episodal returns
and average value function estimations rather quickly, but the latter architecture
displayed less variance. It also displayed better results during validation (according
to tests as explained in Section 5.4.11), giving the reasoning for it being selected.

• Activation function: For all tests using 2 layers with 80 nodes, the leaky ReLU
activation function converged the fastest to stable average episodal returns as well
as value function estimates. The same was observed for the tests using 3 layers with
80 nodes; thus, the leaky ReLU activation function was chosen.

• Action vector: For both tests using the ”continuous angle” representation in the
action vector, the convergence time for both stable episodal returns and value func-
tion estimates was significantly faster compared to using networks which directly
predicted the ”raw” azimuth angles. The latter did not even seem to converge to
particularly stable values over time, thus giving a simple choice for which actor vector
representation to choose.
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Network Size

In the following, the various training sessions with different network architectures are
shown.
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Figure D.1: Training results from various neural network architectures.
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Activation Functions

In the plots below, ”l” refers to layers, ”n” refers to nodes, and ”leaky”, ”relu” and ”tanh”
refers to activation functions ”leaky ReLU”, ”ReLU” and ”hyperbolic tangent”.
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Figure D.2: Training results from various activation functions.

VIII



Action Vector Shape

These plots shows the training results from varying the actor vector representations be-
tween Equation (5.8a) (represented as ”non-continuous”, and Equation (5.8b) (represented
as ”continuous”). The action penalty coefficients in the final reward function as presented
in Section 5.4.4 was tweaked to slightly higher and lower values than used during the
training of the final DRL model just to observe if that would have an impact on the con-
vergence of the different action vectors, which it did not (at least on the objective, which
was to evaluate the two different action vector representations against each other; clearly,
it affected the training progress of each action vector independently).
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Figure D.3: Training results from the different action vector proposals.
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Appendix E

Reward Function Components

In the following, all components of the reward function for Rη is shown as explained in
Section 5.4, using cgauss = 2.0, σd = 1.0, σψ̃ = 5.0, cAS = 0.1 and cconst = 0.5.
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Figure E.1: Components of final reward function for pose.
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Appendix F

Setpoint Test for Time Horizon

This plot shows the test of the existing control system, using the existing PID and IPI
thrust allocation on a challenging DP-task, used as baseline for choosing episode lengths
for the training of the DRL model. The set point was set to [6 m, 6 m,−45◦] away from
initial pose, and was set back to [0 m, 0 m, 0◦] after 90 seconds. It was observed that it took
approximately 60 seconds before the deviation from the set point change was eliminated,
setting a lower bound for the DRL method’s time horizon.
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Figure F.1: Pose of setpoint test for DRL time horizon, using the setpoint [+6, +6, -45]
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Appendix G

Draft to Ocean Engineering

This appendix presents the publication planned for submission to the International Jour-
nal of research and development, Ocean Engineering. Due to the COVID-19 pandemic,
conferences was difficult to attend. The date of submission was not yet decided upon the
delivery of this thesis.
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Abstract - This paper demonstrates the implementa-
tion and performance testing of a Deep Reinforcement
Learning based control scheme used for Dynamic Posi-
tioning of a marine surface vessel. The control scheme
was trained on a digital twin in simulation without
any prior knowledge of the system dynamics, using
the Proximal Policy Optimization learning algorithm.
By using a multivariate Gaussian reward function for
rewarding small body-frame errors between the vessel
and the setpoint, in addition to encourage small ac-
tuator outputs, the system displayed good positional
accuracy while being energy efficient when compared
to classic methods in simulation. The system was also
directly employed to a physical ship model, and de-
spite some hardware issues, the Dynamic Positioning
task was solved efficiently.

1 Introduction

Today’s methods for solving Dynamic Positioning (DP) often
consist of a control system which includes a motion control
law, and a thrust allocation (TA) method. The motion con-
troller calculates the desired forces and moments τd to put on
the vessel in order to move it towards a setpoint, while the TA
translates these forces and moments into thruster commands,
resulting in the actual forces τ on the vessel. In commercial
systems, the motion controller usually contains the combina-
tion of a feedforward and a feedback control law [1]. The feed-
forward uses the states from a reference filter in combination
with the modeled system dynamics in order to calculate the
desired forces, while the feedback control law corrects for any
deviations. The goal of the TA method is to output actuator
forces which are as close to the desired forces as possible, that
is minimizing τ − τd. Therefore, TA methods are typically
based on optimization [2], which for complex actuator setups
and objective functions can be computationally demanding to
solve online.

For TA, the application of an extended thrust formulation for
calculating a pseudoinverse of the linear actuator model has
become fairly standard in the industry [3; 4], while a variety of
Quadratic Programming (QP) formulations has been displayed
[2; 5]. Also Model Predictive Control (MPC) has become a
viable option for the allocation of actuator commands [6; 7],
while also being applicable for combining the motion controller
and the TA into one entity [8].

Among newer methods, Reinforcement Learning (RL) algo-
rithms has been used with promising results in various path-
following and stationkeeping tasks, for dynamic systems rang-
ing from aerial vehicles [9; 10] to underwater vehicles [11; 12]
and surface vessels [13; 14; 15]. These methods were all results
of combining RL with Deep Neural Networks (DNN), giving
rise to Deep Reinforcement Learning (DRL).

This paper presents work on utilizing the Proximal Policy Opti-
mization (PPO) [16] algorithm for training a DRL-based model
for solving DP of a marine surface vessel. It also presents re-
sults from simulations and a sea trial to demonstrate its per-
formance. Section 2 gives a description of the DP task, the
vessel model, and DRL, while Section 3 explains the develop-
ment of the DRL framework. Section 4 displays results from
both simulations and the sea trial, while Section 5 concludes
the work.

2 System Description

2.1 Dynamic Positioning

Dynamic Positioning is concerned with maintaining a vessel’s
position and heading while using a computer program to con-
trol the vessel’s actuators. To analyze the vessel’s motions, the
geographical reference frame North-East-Down (NED) and the
body-fixed reference frame was used. NED is chosen as a tan-
gent plane to the surface of the earth, and positions within
the frame is denoted (xn, yn, zn), where the xn-axis points
towards true North, the yn-axis points East and the zn-axis
points downwards. The body-fixed reference frame is denoted
(xb, yb, zb), and as defined in this paper, the positive direction
was defined for the xb-axis to point in the forward direction
of the vessel, the yb-axis towards starboard, the zb-axis down-
wards, with the origin placed in the Center of Gravity (CG) of
the vessel.

A control plant model (CPM) is a simplified mathematical
model of the vessel in the relevant DOFs for the control sys-
tem being designed. When neglecting roll, pitch and heave
motions for low-speed DP applications, the CPM consists of
surge, sway and yaw. The motion can be described in the
body-frame through the vessels’ pose ηb = [x, y, ψ] and veloc-

ity νb = [u, v, ψ̇]1. The non-linear equations of motion can be
presented as in Equation (1), where C(ν) ∈ R3x3 is the Coriolis
and centripetal matrix, D(ν) ∈ R3x3 is the damping matrix,
M ∈ R3x3 is the system inertia, consisting of the added mass
and the rigid body inertia. τi represents the different forces
acting on the system, ηn is the NED-frame position, while νb

is the vessels’ body-frame velocity. The numeric values of these
matrices for ReVolt were found experimentally in [17]. Due to
negligible roll and pitch motions during DP, the kinetic equa-
tion of motions is restricted to rotation about the z-axis such
that the rotation matrix used to transform velocities from the
body-frame (νb) to the NED-frame (η̇n) becomes as in Equa-
tion (2).

η̇n = R(ψ)νb,

Mν̇b +C(νb)νb +D(νb)νb =
∑

i

τi.
(1)

R(ψ) =

[
cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

]
. (2)

The body-frame errors represents the deviation between the
vessel’s current pose and the desired pose, and a DP system
should work to eliminate these deviations. By taking the errors
in the NED-frame, η̃n = ηn − ηnd = [Ñ , Ẽ, ψ̃]>, the body-
frame errors are calculated as shown in Equation (3a) and
Equation (3b). Figure 1 gives a visual representation of the
errors. [

x̃
ỹ

]
=

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

]> [
Ñ

Ẽ

]
. (3a)

ψ̃ = ψ − ψd. (3b)

1To avoid confusion with a reward which is used widely in Reinforce-
ment Learning terminology, the yaw rate is denoted ψ̇ instead of r in
this work.
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Figure 1: A display of body-frame error (green arrows), showing
desired pose in dark gray.

2.2 The ReVolt Ship Model

The ReVolt ship model was used as demonstration platform. It
is a 3 meter long ship model, representing a 1:20 scale model of
the 60 meter long ReVolt ship concept [18], for which a digital
twin has been developed for running simulations in DNVGL’s
CyberSea simulation environment. The physical model runs a
Tank-720 computer on board powered by two 12V batteries,
using the Robot Operating System (ROS) for communication
between the sensors, software, and the thruster hardware, be-
ing three azimuth thrusters, positioned as shown in Figure 2.

1
3

2

Figure 2: ReVolt model ship illustration.

2.3 Reinforcement Learning

In RL, it it usually assumed that the environment and the inter-
actions with it can be described as a Markov Decision Process
(MDP) [19]. An MDP consists of a set of states defining the
state space; s ∈ S, a set of actions defining the action space;
a ∈ A, a probability matrix relating the selection of an ac-
tion a in a certain state s and ending up in a new state s′;
P ∈ P(s′|s, a), and a scalar reward function that weights the
reward of taking action a in state s; r ∈ R(s, a). The goal of
the RL algorithm (or the agent) is to find an optimal policy π∗

which maximizes the rewards over time. Letting the return of a
certain time period following time t be denoted Gt, a common
formulation is the infinite-horizon undiscounted return:

Gt := rt+1 + γrt+2 + γ2rt+3 + ... =
∞∑

k=0

γkrt+(k+1), (4)

where 0 ≤ γ ≤ 1 is the discount rate, a weighting factor be-
tween rewards accumulated immediately, and reward accumu-
lated in future time steps. Since the RL agent does not have
a perfect model of the world, the task is to maximize the ex-
pected return. An objective function J(π) to be maximized can
be formulated as in Equation (5). It expresses the expected re-
turn over the trajectories τ of state-action pairs, following the
action-selection of the agent’s policy π, interacting with the en-
vironment by observing a state, taking an action, and getting
a reward.

J(π) = E
τ∼π

[
G(τ)

]
(5)

Commonly used in RL algorithms is the notion of a value func-
tion, describing the estimated value of the return by starting
in state st and following the actions taken by the policy π into
the future,

V (st) := E
τ∼π

[G(τ)|s0 = st]. (6)

Various RL algorithms combines the policy and value function
in different ways in order to approximate the optimal policy.
By the inclusion of DNNs for approximation, RL algorithms’
expressive powers has increased when solving MDPs with con-
tinuous state- and action spaces. Where actor-only algorithms
only approximate the policy by using a DNN, actor-critic al-
gorithms uses DNNs for approximating both the policy, called
the actor, and the value function estimator, called the critic.
In this work, the actor’s output, being an action when given a
state st, is denoted πθa(st), while the value function estimate

from the critic is denoted V̂θc(st).

The algorithm used in this paper is called Proximal Policy Op-
timization (PPO) by Schulman et al. [16] and uses the actor-
critic structure to learn the policy with the help of a value
function. Through PPO, Schulman et al. presented an objec-
tive function for training the actor’s DNN in a way that was
data efficient, robust with respect to hyperparameter changes,
and easy to implement. It was based on maximizing the ex-
pected return while limiting the magnitude of the updates to
the actor’s DNN by using the idea of trust regions. PPO was
built from the conservative estimate of the expected return of
a state-action pair (st, at) as shown in Equation (7).

Et
[
Gt
]
≈ Et

[
r̄(θa)tÂt

]
. (7)

Here, r̄(θa)t is the probability ratio between taking an action
in a current state with the old network parameters, θa,old, and
the new ones, θa. Note that r̄(θa) ≥ 0 ∀ θ and r̄(θa,old)t = 1.0.

r̄(θa)t =
πθa(at|st)
πθa,old(at|st)

. (8)

Ât denotes the estimate of the advantage function, which rep-
resents how much better it was to select action at in state st,
compared to the average return of all actions available in state
st. Generalized Advantage Estimation [20] was used for esti-
mating the advantage as shown in Equation (9a), where the

critic was used through calculating δ
Vθc
t .

Ât =
∞∑

i=0

(γλ)iδ
V̂θc
t+i , (9a)

δ
V̂θc
t = rt + γV̂θc(st+1)− V̂θc(st). (9b)

By limiting the magnitude of r̄(θa)t per parameter update,
we can perform improvements on the objective function while
being careful of not making too large parameter updates in
θa-space which might reduce the performance in the policy’s
output space, πθa . The proposed objective function from
Schulman et al. included clipping the size of r̄(θa)t in or-
der to enforce a limitation of the probability ratio so that
r̄(θa)t ∈ [1 − ε, 1 + ε], giving their clipped surrogate objective
function as shown in Equation (10).

J(θa)t = min
(
r̄(θa)tÂt, clip (r̄(θa)t, 1− ε, 1 + ε) Ât

)
. (10)

The critic network performed parameter updates by attempt-
ing to minimize the deviations between its value function pre-
dictions vs. experienced values of being in a state by using the
Mean Squared Error function. Thus the update rule was as
showed in Equation (11) for the critic. The actor attempted to
maximize the expected reward, and therefore used the update
rule as in Equation (12).

θc,k+1 ← argmin
θc

{
1

T

T∑

t=1

(
V̂θc,k (st)−Gt

)2
}
, (11)

θa,k+1 ← argmax
θa

{
1

T

T∑

t=1

J(θa)t

}
. (12)
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3 Implementation

The state vector used as input to the actor and the critic net-
works was developed with the goal of DP in mind, thus adding
the body-frame errors as the first components. Additionally, it
was beneficial for the agent to have access to the body-frame
velocities u, v and ψ̇, which was added next. In addition, the
previous time step’s thruster commands (as a fraction between
-1 and 1) was added to the state vector in order to increase the
agent’s ability to minimize the penalty put on the size of the
output from the network’s thrust-components. The quantities
in the state vector was extracted straight from the simulator
during training, and from the existing observer and reference
filter in ROS during testing. The state vector is shown in
Equation (13).

st = [x̃t, ỹt, ψ̃t, ũt, ṽt,
˜̇
ψt, nb,t−1, np,t−1, ns,t−1]>. (13)

The action vector formulation was found to increase the rate
of learning if letting the policy predict the sines (s(·)) and
cosines (c(·)) of the angles of the port (p) and starboard (s)
thrusters instead of the raw angles directly. Empirically, the
DP ability of the vessel improved by setting the bow thruster
to a fixed angle of 90◦ [17; 21], so the bow thruster’s angle was
not included in the action vector. The resulting action vector
was as shown in Equation (14).

at = [nb,t, np,t, ns,t, s(α̂p,t), c(α̂p,t), s(α̂s,t), c(α̂s,t)]
>. (14)

The shape of the reward function for rewarding small de-
viations from the setpoint in terms of euclidean distance,

d =
√
x̃2 + ỹ2, and heading deviation, ψ̃, was inspired by the

shape out the output layer of the policy network itself, being
a multivariate Gaussian function with covariance matrix Σ:

Σ = diag([σ2
d, σ

2
ψ̃]). (15a)

Rgauss = cgauss exp

(
−1

2

[
d ψ̃

]
Σ−1

[
d

ψ̃

])
. (15b)

To reduce the sparsity of the function since little reward was
given when far away from the setpoint, a function was added by
using a distance measurement φ in the (d, ψ̃)-space for guiding
the agent’s learning process, in addition to a constant as shown
in Equation (16). The resulting reward function for pose was
therefore as shown in Figure 3.

RAS = max (0.0, (1− cAS φ)) + cconst. (16)
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Figure 3: Plots of Rgauss + RAS using cgauss = 2.0, σd = 1.0,
σψ̃ = 5.0, cAS = 0.1 and cconst = 0.5.

To avoid the agent making overshoots of the setpoints, penal-
ties on the velocities was added as

Rvel = −
√
cu(ũ)2 + cv(ṽ)2 + c ˜̇

ψ
(

˜̇
ψ)2. (17)

In order to achieve energy efficiency in addition to low wear and
tear on the actuators, small penalties were put on the magni-

tude of the commanded thrust, in addition to the derivatives of
the commanded actuator outputs as shown in Equation (18),

Ract = −
3∑

i

c|n|,i|ni|+ cṅ,iṅi + cα̇,iα̇i, (18)

giving the total reward function as

Rtot = Rgauss +RAS +Rvel +Ract. (19)

The training was done by randomly initializing the pose of the
vessel around a setpoint, with the agent’s goal being to get
to the setpoint by eliminating all body-frame errors according
to the reward function. Parameter updates to the actor and
critic networks were performed with state-action pairs from
2.4M time steps in total, using an implementation of the PPO
algorithm based on OpenAI’s repository2. The actor-critic ar-
chitecture was set up using independent DNNs for the actor
and the critic, both using st ∈ R9 as input. The networks used
3 fully connected hidden layers with 80 neurons, and the out-
put of the actor at time step t was at ∈ R7, while the output
from the critic was Vθc(st) ∈ R1. Both networks used the leaky
ReLU activation functions for non-linearities, and the ADAM
optimizer for parameter updates. The average return obtained
of the actor per episode (having an optimal value of 1400) and
the value of the objective function of the critic (having an op-
timal value of 0) is shown in Figure 4. Note that the average
episodal return fluctuated a lot due to the random initializa-
tion of the vessel’s state between each trajectory within each
episode, but steadily improved on average.
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Figure 4: Resulting training plots using the PPO algorithm.

4 Results and Discussion

A four corner test was performed in simulation while enabling
current forces to observe the controllers’ robustness external
disturbances. The current was irrotational and non-fluctuating
with velocity νc = 0.2 m/s and βc = 135◦. None of the meth-
ods were given any information about the environmental loads,
and the tests were started when the vessel had been stand-
ing still for 30 seconds. During simulations, an integral effect
was added to the state vector of the DRL method, augment-
ing the body-frame error pose in the state vector according to
η̂t = ηt + η̂ss,t, where the discrete integration was calculated
according to η̂ss,t = η̂ss,t−1+∆tkηt. ∆t is the time step, and k
is a coefficient deciding the speed of the integral accumulation.
A windup guard was also added to prevent overshoots. During
the sea trial, the same four corner test coordinates were used.

The simulation was performed using the DRL method with
and without integral effect (denoted RLI and RL in the plots,
respectively). It was also benchmarked against two other meth-
ods, the first being a motion control law consisting of feedfor-
ward + a PID feedback controller developed in [17], combined
with a pseudoinverse-based TA (denoted IPI in the plots) and
a Quadratic Programming TA (denoted as QP). Due to time
limitations from hardware debugging, only the RL and the IPI
methods were tested during the sea trial.

2https://spinningup.openai.com/
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Figure 5: Four corner pose.

Time
[s]

N
[m]

E
[m]

ψ
[deg]

0-10 0 0 0
10-80 5 0 0
80-150 5 -5 0
150-190 5 -5 -45
190-270 0 -5 -45
270-350 0 0 0

Table 1: Coordinates.

To evaluate performance, the Integral of Absolute Error (IAE)
metric was used as a measurement of how accurate the DP
system was in terms of reducing the body-frame error between
the current pose and the desired pose. The measurement ˜̄η was
used, where the deviation in North, East and yaw was normal-
ized for making the IAE a dimensionless number, dividing the
respective deviations with [5 m, 5 m, 25◦], meaning that a 1
meter deviation was weighted equally as a 5 degree deviation.

IAE(t) =

∫ t

τ=0

√
˜̄η> ˜̄η dτ. (20)

The energy usage was calculated by integrating the power for
each of the commanded RPS-signals. The power as a function
of a propeller’s revolution per second (RPS), n, is given as
shown under the integral in Equation (21), where ρ is the sea
water density, D is the propeller diameters, and KQ is the
propeller torque coefficient.

W (t) =

∫ t

τ=0

2πρKQD
5 sgn(n(τ))n(τ)3dτ. (21)

4.1 Simulation

The simulation results are displayed in Figure 6. It was ob-
served that only the DRL method with integral effect was able
to totally remove the steady state body-frame error in all set-
points, while the classic methods displayed a slight steady state
deviation in some setpoints. The DRL method without inte-
gral effect struggled with removing steady-state errors in sway.
The classic methods and the DRL method with integral effect
showed some overshoots of the setpoints, but only the classic
methods showed oscillations (particularly in yaw) before set-
tling on a setpoint. This lead to questioning the quality of the
existing implementation of the motion control law on ReVolt,
which both the IPI and the QP allocation depended on. It was
believed that this came from the fact that the motion controller
was probably tuned on board the physical model of ReVolt in
previous work, thus resulting in sub-optimal performance when
using the digital twin. The QP allocation resulted in having
the highest values of IAE and energy usage. The DRL method
with integral effect resulted in the lowest values of both met-
rics, as it resulted in 15% lower IAE and 38% less energy usage
compared to the QP allocation, while also having 8% lower IAE
and 33% less energy usage compared to the IPI allocation.

4.2 Sea Trial

During the sea trial, a measurement was taken by the DNN to
perform a feedforward pass on the computer on board the ship
model. The maximum time recorded was 0.015 seconds, indi-
cating that control using DNN based approaches is not likely
to suffer from computation time.
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Figure 6: Results of four corner test during simulations.

On the ship model, it was found that the bow thruster’s pro-
peller only rotated when being commanded signals at 50% or
above, without any solutions being found at the spot. In order
to get any results, it was decided to multiply the commanded
bow thrust signals with 2.5 in order to get the signals large
enough for the bow thruster to react more often than not. This
came at the cost of an expected overshoot and/or oscillation
in sway and yaw due to the bow thruster output being much
larger than outputted by the DP algorithms. It was also found
that the bow thruster’s propeller was unsymmetrical, yielding
a maximum force when rotating positively (exerting forces to-
wards starboard when locked to 90◦) of 2.4 times the size of
the maximum when rotating the other way. The DRL method
had however been trained with symmetrical bow thruster pa-
rameters. Due to time constraints following the debugging, it
was only time to perform the four corner test with some of the
previously mentioned methods, in which it was chosen to test
the DRL method in it’s ”purest” form, meaning using no inte-
gral effect on the state vector, and the motion controller + the
pseudoinverse based thrust allocation method as a baseline.

The results from the four corner test in Figure 7 showed that
the DRL method was able to reach all setpoints in approxi-
mately the same time in the sea trial as in the simulation, and
reached the setpoints without much overshoot except when the
vessel was traveling with sway motions (at 80 and 270 seconds),
which was also the case for the baseline method. This was
due to the bow thruster issue, being more severe for the DRL
method which had learned to use the bow thruster more exten-
sively than classic methods in simulation in order to be energy
efficient. The oscillatory movements was both coming from
the bow thruster issue, in addition to that the stern thrusters
had to compensate for in order to follow the reference signal.
Due to this issue, the resulting IAE value was now larger when
compared to the baseline controller. The increased use of all
thrusters also made the DRL method significantly less energy
effective, mainly due to the compensating stern thrusters, both
compared to in simulation and to the baseline controller in the
sea trial.
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Figure 7: Results of four corner test during sea trial.

5 Conclusion

This paper presented the implementation of the PPO algo-
rithm for developing a DRL control scheme for applications
to low speed tasks such as DP. The learning process benefited
greatly from including prediction of sines and cosines of the
stern thrusters’ angles, and by using a multivariate, Gaussian
reward function with an additional element to combat sparsity.

Tests were done through a four corner test with an ocean cur-
rent in simulation, where the DRL method with integral effect
was able to obtain better positional accuracy when compared
to two classic methods for motion control and TA. Especially,
the DRL method proved more energy efficient. Even though
the quality of the comparisons can be discussed due to the
seemingly sub-optimal implementation of the existing motion
control law, it could be proposed that the DRL method is a
strong contender when looking for new methods for station-
keeping and low speed maneuvering in a way that encapsu-
lates both the motion control and TA tasks. The DRL method
also showed good positional accuracy when employing it to
a physical model in a sea trial, albeit being more oscillatory
due to a bow thruster issue which resulted in increased stern
thruster usage to compensate, also reducing the energy effi-
ciency. The result was however deemed excellent considering
that the DRL method was trained in simulation with perfect
information about the vessel’s state, zero environmental forces,
and no thruster issues, which was not the case during the sea
trial. In addition, due to the use of a DNN, the computa-
tional time for the control system was negligible, combating
the problem of computational complexity which classic opti-
mization based methods might face.

The DRL method’s advantage is that it is able to learn details
from the vessel’s dynamics through trial and error, while clas-
sic methods depends on mathematical formulations including
estimations of the vessel’s dynamics which can be inaccurate.
The downside of the method is that it could be less robust to
changes to the dynamic system, and it is hard to give perfor-

mance guarantees of the DNNs, requiring rigorous empirical
tests. In addition, the training process itself might be time
consuming, whilst classic methods could be reconfigured with
only a few lines of code and some tuning.

The work concludes that DRL’s potential for accurate and en-
ergy efficient control is realizable, and suggests that further
work should be focused on providing stability guarantees of
DRL systems, and to explore transfer learning as a method for
retraining a DRL model from simulations to the real life model
in order to adapt to the differences in the system dynamics and
actuator characteristics.
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