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This paper demonstrates an exclusive design methodology in Cellular Manufacturing (CM)
considering machine usage percentage as ratio data. This research correctly emphasized the
fundamental of ratio data and proposed a novel and precise mathematical formulation of the design
problem. This multi-objective model carefully optimizes the total exceptional utilization (TEU),
number of voids and total cell utilization (TCU). Due to the novelty in the model, a new data
generation technique is proposed. The test datasets are obtained and tested using IBM CPLEX tool
successfully. The contribution of this research is twofold. First; the ratio data concept is correctly
emphasized and a precise mathematical model is developed. Second, since the model is new and
datasets are not readily available, therefore a dedicated data generation model is proposed.
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1. Introduction

In the last few decades manufacturing firms are enhanced enough in terms of productivity,
flexibility and quality of production. In fact manufacturing systems have encountered key
challenges due to the evolution in manufacturing methodologies and policies. 23 In this
regard newer manufacturing philosophies such as Group Technology (GT) and its
application, CM is playing a vital role. 134 Strategically GT forms part families based on
similarities (attributes or processing requirements) and assigns them to the appropriate
machine cells to exploit the benefits of mass production such as reduction in throughput
times, reduction in work in process, reduction in tool requirements, improvement in
product quality and improvement in overall control of operations. As an application of GT,
CM provides a mixed setup of jobshop (variety) and flowshop (higher production) and
demonstrates an alternative form of manufacturing system. 2 The major objective of CM is
to dismantle the production system into several tiny systems that practically utilize the
processing similarities of parts and machines. 333¢ The method of assigning part families
to the machine cells, is described as the cell formation problem (CFP). It is also termed as
machine-part grouping problem (MPGP) which deals with machine-part incidence matrix
(MPIM) and attains block diagonal cellular structure to form cells. An MPIM is packed
with zeroes and non-zeroes depending upon the machining requirement of parts. It is
termed as ‘ratio data’. 2 Binary (0-1) CFPs are mostly explored in the past few decades,
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43618910 however binary (0-1) data ignores important production factors such as
processing time, production volumes, machine hours etc. 12 Therefore ratio data is proposed
in most logical way. Many researchers have used ratio data in their research. 3314 [n the
course of the research, the workload data and ratio data are assumed synonymous and from
this a transformed incidence matrix could be obtained which is known as processing time
matrix. 13 The total processing time on a machine for any part is the product of its
production quantity and its unit processing time. All the non-zeros in the incidence matrix
are switched to ratio values. The subsequent workload values would take any value in the
ratio scale (0-1). However, none of the past articles shows the right way to obtain the
workload ratio (fractional figure) from total processing time. Thus, the available workload
datasets are not prominent and consistent. This discussion is further extended in section #2.
To solve any type of CFPs a large number of solution methodologies are available in
literature of CM since early 80s. These are exact methods, graph theoretic approaches,
mathematical programming, similarity coefficient based techniques, clustering algorithms,
soft-computing techniques such as neural network, meta-heuristics and fuzzy methods etc.
13 However the direction of the research indicates towards soft-computing techniques due
to its robust convergence properties and difficulties in obtaining global optimal solution. 16
Therefore, many meta-heuristic based techniques are being applied to CFPs for better
solutions during past two decades.  These are genetic algorithms (GA), 181220 tabuy search,
2.2 simulated annealing, 32 ant colony optimization (ACO) 225 particle swarm
optimization (PSO), 22627 bee’s algorithm, 28 water flow-like algorithm, 2 firefly-inspired
algorithm, 1 bacteria foraging algorithms 3¢ etc. All of these previous research works are
pointing out towards the need of some reliable mathematical model that can be optimized
with ease. 38

In this work, an attempt is made to develop the cells considering ratio data based on
machine utilization, a real-time production factor. To solve this problem, machine

utilization based real-valued data matrix is considered. A novel mathematical formulation
is also proposed. The said model has been tested using various test problems generated
using universal data generation algorithm proposed here and compared to the solutions
obtained using branch and bound (B&B) algorithm of IBM CPLEX tool successfully.
Next sections demonstrate this research work completely. Problem definition and the
mathematical formulation are provided in section #2. Performance metric is portrayed in
section #3. Section #4 exhibits the results and analysis followed by the conclusions in
section #5.

2. Problem Formulation
Venugopal and Narendran 12 were first to describe ratio data scientifically. It is re-defined

here as,

tij = unit processing time (hour/unit) of part j on machine i; / <i<gand / <j<p
n; = production volume of part j
MH; = available machine hours of machine i



U = [u;] is an (p xg)-machine-component incidence matrix where
u;; = Percentage utilization of machine i induced by part j

(tyj x ;)
=t JJ 1
ij MHL' ( )
where,
_ { zero, if part jis not being processed by machine i )
Y =1 non zero, if partj is being processed by machine i (2)

Eq. (1) produces an MPIM U, which is generally acknowledged as operational time.
Ideally, the elements (u;;) of U do not actually point to any absolute values. These elements
are spotted as some ratio/fractional values (Hours + Hours). Hence, these are unit-less by
character. Hence these elements are not ‘operational time’ definitely. Wu 3! has termed this
as ‘capacity percentage’, which is also imprecise as the ‘capacity’ of a machine is identified
as ‘available machining hours’ however ‘capacity percentage’ is an ambiguous idiom.
According to the production engineering personnel, this is termed as ‘utilization’ of the
machine expressed in ‘percentage value’. Moreover, Wu’s work is more focused on the
existence of identical machines in the system whereas in ratio data based CFP; all the
machines are separately considered as standalone items.

uy states a fractional value of machining hours of i machine to process the total volume
of j* part. This indicates “percentage utilization of machine”, which is more reasonable
and appropriate terminology than the “operational time”.

Mahapatra and Pandian 14 (p. 637) stated ‘The real valued matrix is produced by assigning
random numbers in the range of 0.5 to 1 as uniformly distributed values by replacing the
ones in the incidence matrix and zeros to remain in its same positions.’, which generates
random ratio valued matrix without any restriction. However, this procedure is ambiguous
and unscientific, which do not realistically impose the practical assumptions and
limitations.

To correctly present this phenomenon a constraint (Eq. 3) is recommended with Eq. (1).

Constraint:
Eq. (3) depicts that the sum of percentage utilization of all the parts over i machine is
required to be less than or equal to 1. This is because; the total utilization of i machine

would never exceed 100% in reality.
P

Zui,- <1 3)

j=1



4

In spite of this fact, a particular machine rarely runs all the time in a particular work shift
(8 hours). 32 Thus the total machine utilization for a particular machine practically never
reaches 100% and generally remains in the range of 0.1 to 0.9 (10%-90%).

In experience closely all the previous articles based on ratio data, ignored the above
indicated constraint (Eq. 3) which is a critical issue while generating the test datasets. Even
the pioneer research by Venugopal and Narendran 2 did not particularly consider this
phenomenon. Therefore picking up the published test problems from the past literature
would be an incorrect step for this research. To rectify this issue, a novel ‘real valued data
generation algorithm’ is proposed in this article. The algorithm is,

Input:

A. Option 1 will generate the number of machines (¢) and number of parts (p) randomly
B. Option 2 would ask users to specify the number of Machines and Parts (g, p)

Output:

q xp real valued incidence matrix

Steps:
Generate random ratio matrix of size (qxp),

if (0<q<10)
Restrict density of zeroes in the range of 40-50% in generated matrix
else if (10 <q<20)
Restrict density of zeroes in the range of 60-70% in generated matrix
else
Restrict density of zeroes in the range of 80-90% in generated matrix
end

end
end
Restrict each row sum < 1

This above stated algorithm not only includes Eq. (3) in data generation method but also
controls the number of zeroes in the matrix. Percentage of zeroes must remain in the range
of 40-50% in small size datasets (¢ < 10), 60-70% in medium size datasets (/0 < g < 20)
and 80-90% in large datasets (¢ > 20), which is also included in the algorithm to attain
more realistic test problems.

This technique would definitely eliminate the difficulty of unavailability of the test data
henceforth. Any researcher/student can generate datasets of any size based on their choice
for research or study purpose.

2.1. Mathematical Model

Designing manufacturing cells is generally a multi-objective problem. Researchers while
designing a mathematical formula of the said problem, consider various objectives.
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Objectives such as intra-cell and inter-cell material handling costs, cell load variations,
grouping efficiencies, exceptional elements (bottleneck machines) etc. are usually
considered in the mathematical models of real valued CFPs. However machine utilization
has never been practiced as ratio data for CFPs in past. Therefore, a new mathematical
formulation is required for the problem considered in this paper. For that matter a novel
mathematical formulation, which is multi-objective minimization type, is proposed in Eq.
(10). This problem minimizes total utilization of exceptional elements (TEU), maximizes
total in-cell utilization (TCU) and minimizes total number of voids.

Decision variables:
xit defines machine 7 in cell k, y; defines part j in cell &, a; defines mapping between
machine i and part j

Total Utilization on Exceptional Elements (TEU) is expressed as,

c b

q
minimize f1 = 0.5 X Z Z (xik - yjk)z u 4)
1i=1

k=1)= )

Eq. (4) provides real value. In order to convert this into ratio value, it is divided with the
total utilization of the plant. The new expression becomes,

2
S X 3 (xu—yy) u
j=14i=1 jk ij
minimize Z1 = 0.5 x (5)
RS
j=12aj=1 Uij

Total Utilization of all Cells (TCU) is the sum of utilization of each cell. This is expressed
as,

c b q
maximize f2 = Z Z XikYjkUij (6)

k=1j=1i=1
Eq. (6) is also converted into ratio valued expression and provided in Eq. (7).

e X T X Vi
]p lq (7)

j=12ai=1 Uij

maximize Z2 =

Total No. of Voids are expressed using Eq. (8),

c P

q
minimize f3 = z Z(l — Qi) Xix Vjk ®

k=1j=1i=1

Eq. (8) provides integer solutions. Thus, it is also converted into ratio-valued function of
eq. (10).
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minimize Z3 = T 9
j=1 =1 Fij
Weighted Sum Objective Function of objectives Z1, Z2, Z3:
Minimize F
c 14 q 2
Zic=1 Zj:l Zi=1 (xik ~Yj ) uij Yie=1 Z?:l 21 XucYjilij
=wlx0.5 X PN o, —w2 X TN g,
j=14&i=1 "] j=14i=1 "1
Yhoa X X (= ag) xpe y;
w3 xR TR (10)
j=1%i=1%j
w1, w2, w3 are the weight factors. The sum of weight factors,
wl+w2+w3=1 11

_ (non — zero,if part j is processed in machine i,
U ™ | zero,if part j is not processed in machine i

— zeros are machine utilizations 1<i<q1<j
<p (12)

a5y = { 1,if part j is processed in machine i, 1<i<qgl<|

0,if part j is not processed in machine i

<p (13)
Xix = 1if machineiisincell k,else 0 Vi, k (14)
Yjk = Llif partjisincell k,else 0 vj, k (15)
Cc
Z X =1 vi (16)
k=1
q
ink > 1 Yk (17)
i=1
[
Yie =1 vj (18)



Vi = 1 vk (19)

e

Jj=1

Eq. (12)-(15) are the incidence matrices and decision variables and Eq. (16)-(19) are the
assignment constraints, ensure that each machine/part is assigned to only one cell and each
cell contains at least one machine/part. The value of the constants wi, w2, w3 assign
different load to the different objective. These are fixed in the range of 0 <w <[ and should
satisfy eq. (11). In reality, the number of voids has lesser impact than TEU or TCU while
attaining near-best solutions. However, in this study, same weights are assigned to all the
objectives, TEU, TCU and total number of voids. These share the same importance and
maintain simplicity in the model.

3. Performance Metric

A novel performance measure is recently proposed which is known as Utilization-based
grouping efficiency (UGE). 3 This performance metric can competently deals with
percentage utilization with all the facts ignored in all the previously published performance
measures. This UGE is also a proven metric when compared with the previous metrics.

The new performance measure UGE is depicted in Eq. (20),

(Z;Cc=1 [Ué(ell (1 - g_Z)D (1 B ﬁ)

UGE = cell (20)
Uplant
mic Pic k
Uy = Z Z Uyj (21)
i=1 j=1
moc Poc
Uge = U;j (22)
i=1 j=1
mtp ptp
Uplant = U;j (23)
i=1 j=1

c¢: number of cells

m: number of parts

p: number of machines

k: index of cell {k=1,2,... ¢}

i: index of machines {i=1,2,... m}
Jj: index of parts {i=1,2,... p}
ULl Total utilization of & cell
Upiani: Total utilization of plant
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U..: Total utilization outside the block diagonal cell structure

u;; = utilization of machine i induced by partj; / <i<gand / <j<n
Vi: Total number of voids in cell k {k=1,2,... ¢}

Ej: Total number of elements in cell k£ {k=1,2,... ¢}

mic: number of machines in cell

pic: number of parts in cell

moc: number of machines outside of cells

poc: number of parts outside of cells

mitp: Total number of machines in plant

ptp: Total number of parts in plant

4. Computational Results

In order to verify the proposed mathematical model, real valued datasets are required.
Therefore required utilization based datasets are generated using the data generating
algorithm described in section #2. The proposed model is programmed in AMPL IBM
ILOG CPLEX tool using an Intel 2.4 GHz i3 computer. Eighteen datasets of small to
medium sizes ranging from 4x7 to 2035 are tested and the solutions obtained are shown
to be competitive.

The results are displayed in Table 1. Computational time is not a focus area of this research
rather it is essential to obtain optimal or near optimal solutions. CPLEX uses branch-&-
bound (B&B) algorithm to find near-optimal solutions for all problems considered. B&B
algorithm was introduced in 1960. 2 For interested readers, the detailed B&B algorithm is
portrayed in Appendix B. For small size problems (#1 to #6) CPLEX obtains solutions
within trivial time, whereas the medium size problems (#7 to #18) CPLEX runs for infinite
time to achieve the near-optimal solutions and the execution is terminated after permissible
computing time (25 minutes) to reduce the usage of computer resources. This infinite
execution happens due to the increasing complexity of the problems, which are NP hard in
nature. 12 Larger the problem size, bigger the number of variables and constraints and
higher the complexity.

Table 1 reveals few significant aspects related to the objective function and performance
measure. For test problem no. 1 and 3 both CPLEX yields global best solution. For test
problemno. 8, 12, 16, 17 the B&B algorithm of CPLEX gives near best solutions. However
influence of voids count is trivial, instead TCU and TEU have greater impact on the design
of UGE. Thus, the solutions attained sometime depicts more number of voids than usual.
It is often observed in Table 1 that the objective function values are greatly influenced by
the number of voids present in the solutions. The reason is the values assigned to the weight
factors of Eq. (11). Since all the three weight factors are equally treated thus, the count of
voids receives similar importance in the design of objective function of the problem.
Therefore, the objective values are reduced with an improved UGE. This fact indicates the
requirement of a systematic procedure to assign weights to the weight factors of Eq. (11).
For an example wi/=0.4, w2=0.4 and w3=0.2 would show consistent changes in objective
values obtained.

Another insight is the dependency of UGE on exceptional elements and voids. For an
example, for the test problem no. 8, the CPLEX B&B technique obtains a good UGE value



but CPLEX B&B solution has less exceptional element. Further, the CPLEX B&B solution
of problem no. 12 again shows improvement in UGE score but the solution has same
number of exceptional elements (ee) while less number of voids.

Table 1. Computational Results of CPLEX B&B

CPU

# Size | Cell# 0bj UGE TCU TEU EE and Voids Time

1 4x7 2 -0.1691 | 55.02 | 2.5191 | 0.5579 ee=35; voids=2 <10 Sec.
2 6x8 2 -0.0745 | 39.59 | 3.7429 1.106 ee=5; voids=7 <10 Sec.
3 7x10 2 -0.1412 | 46.65 | 4.6167 | 1.2737 | ee=15; voids=6 <30 Sec.
4 | 8x15 2 -0.0831 | 46.45 | 5.9656 | 0.973 ee=13; voids=29 | <30 Sec.
5 8x22 2 -0.0812 | 50.63 | 6.6895 | 0.7214 | ee=15; voids=52 | <2 Min.
6 | 10x10 3 -0.1158 | 49.82 | 6.639 1.0831 ee=8; voids=14 <2 Min.
7 | 10x25 3 -0.0251 | 28.06 | 6.4909 | 2.4918 | ee=30; voids=31 | >25 Min.
8 | 12x24 3 0.0272 | 21.19 | 7.3996 | 3.2919 | ee=38; voids=42 | >25 Min.
9 | 12x29 3 0.0205 | 24.79 | 7.5357 | 2.9084 | ee=35; voids=50 | >25 Min.
10 | 14x30 3 0.0267 | 24.17 | 8.8611 | 3.3628 | ee=49; voids=69 | >25 Min.
11 | 14x35 3 0.0345 | 18.99 | 8.2919 | 4.2342 | ee=56; voids=60 | >25 Min.
12 | 16x32 3 0.0546 | 17.7 | 9.3968 | 4.8189 | ee=66; voids=78 | >25 Min.
13 | 17x27 3 0.0649 | 20.39 | 10.1567 | 4.4513 | ee=46; voids=74 | >25 Min.
14 | 18%35 3 0.0576 | 16.57 | 10.6621 | 5.6094 | ee=90; voids=97 | >25 Min.
15 | 18x35 3 0.0632 | 17.69 | 11.156 | 5.4751 | ee=78;voids=97 | >25 Min.
16 | 18x35 3 0.0547 | 14.07 10.18 | 6.0911 | ee=91; voids=88 | >25 Min.
17 | 20x20 4 0.0072 | 15.97 | 10.5876 | 6.3779 | ee=72; voids=37 | >25 Min.
18 | 20x35 4 0.0473 | 8.08 | 10.3456 | 8.0896 | ee=116; voids=63 | >25 Min.

Thus, it can be concluded that the count of exceptional elements has a greater influence
than the number of voids but number of voids also shows some significance when the
number of exceptional elements are not differentiable. This fact indicates a careful tradeoff
in the design for the utilization based problems.

5. Conclusions

A novel utilization based cell formation problem is presented in this paper. Ratio data is
widely practiced as ‘processing time’, which is proved to be ‘utilization percentage of
machines’. Naming this as ‘processing time’ could be completely unscientific. Owing to
this confusion of nomenclature most of the researchers are more inclined to produce the
‘processing time’ based incidence matrix using real valued random number generation
method which is irrational and improper from the view of ‘utilization percentage of
machines’. Therefore, a new data generation algorithm is proposed. Hence, availability of
datasets is no longer an issue to the researchers for the problems based on ratio data.
Henceforth a novel multi-objective mathematical formulation is proposed which
minimizes TEU and number of voids and maximizes TCU. This multi-objective utilization
based problem is linearized and solved using B&B method of IBM ILOG CPLEX.
Eighteen datasets are generated of sizes ranging from 4x7 to 2035, using the novel data
generation algorithm. UGE is used as the performance measure, which is an appropriate
measure of efficiency for the utilization based problems. The CPLEX B&B algorithm show
to yield good results.
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Appendix A. AMPL code for utilization based model

### SCALAR PARAMETERS ###
param q:=4; param p:=7; param ¢:=2;

### ARRAY PARAMETERS ###
paramu {1..q,1..p}; parama {1..q,1..p};

### VARIABLES ###
varx {1..q,1..c} binary; var y {1..p,1..c} binary;

### OBJECTIVE ###

Minimize obj_function:

0.33*((0.5 * sum{k in l.c} sum{j in l.p} sum{i in 1.q} X[ik]-y[j,k])*(x[ik]-
yh.kD*u[i,j])/(sum{j in 1..p} sum{iin 1..q} u[i,j])

-(sum{kin 1..c} sum{j in 1..p} sum{i in 1..q} x[i,k]*y[j,k]*u[i,j])/(sum{j in l..p} sum{i in
1..q} ufi,j])

+(sum{k in l..c} sum{j in 1..p} sum{i in 1..q} (1-a[i,j])*x[i,k]*y[j,k])/(sum{j in 1..p}
sum{i in 1..q} a[i,j]));

### CONSTRAINTS ###

Subject to constrl {iin 1..q}: sum{k in 1..c} x[i.k] = 1;
Subject to constr2{j in 1..p}: sum{k in 1..c} y[j.k] = 1;
Subject to constr3{k in 1..c}: sum{iin 1..q} x[i.k] >=1;
Subject to constr4{k in 1..c}: sum{j in 1..p} y[j.k] >=1;

Appendix B. Branch & Bound (B&B) Algorithm

B&B algorithm is a global optimization technique for discrete optimization problems, such
as integer programming (IP), mixed integer programming (MIP) etc., which are known as
NP-hard problem. The algorithm is depicted in Fig. 1. In this technique, the relaxed
problem is considered. Thereafter the partial solutions are identified. B&B algorithm would
create branches for each discrete variables. B&B divide each node (variable) into two new
sub-nodes. This procedure would split the solution space into small subsets with specific
upper and lower bound. An NP-hard problem could possibly have a large number of
solutions, which increases with the size of the problems.
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Fig. 1. B&B Flowchart
(https://optimization.mccormick.northwestern.edu/index.php/File:BB.png)

Therefore, the bounds for the objective functions are coupled with the value of the local
best solution for exploitative search. Branching could be done on, (1) the existing node or
(2) the newly created node with the smallest bound. The former, would generally
investigate minimum sub-problems, which saves computation time with high memory. The
later, would utilize less memory intensive and higher computational time.
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