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Abstract

During the impact between the free surface of a liquid and a solid structure, air might be
entrapped. The air can then be compressed and radically affect the behaviour of the slamming
event. The knowledge about the physical effects governing slamming with air entrapment
is sparse compared to the knowledge about slamming without air entrapment. Uncertainty
related to the governing physical mechanisms generates uncertainty related to scaling laws
when model scale experiments are carried out.

In order to obtain new knowledge about the physical effects governing the air pocket
impact, idealized studies of an entrapped air pocket was performed. This air pocket impact
took place during sloshing inside a rectangular tank with water at a large filling ratio. The
problem was studied both by dedicated experiments and mathematical methods. The time
history of the pressure measured inside the air pocket resembles the free oscillations of an
under-damped single degree of freedom mass-spring system. Hence, the pressure oscillations
have a characteristic period and amplitude, where the amplitude generally shows decay.

Two mathematical models have been applied to describe this air pocket slamming event:
The Mixed Eulerian-Lagrangian (MEL) method and the semi-analytical air pocket model
(SAM). The MEL method, is an existing method often applied to free surface problems
where the liquid can be modelled using potential flow theory assuming incompressible liquid.
The MEL method is applied from the instant when the wave first touches the roof and
during the air pocket impact. The initial conditions to the MEL method is obtained by
a novel numerical method which we denote the boundary-element-finite-difference method
(BEFDM). The second method used to model the air pocket impact was an existing semi-
analytical air pocket model.

The comparison between the mathematical models and the experiments shows that these
existing models can describe the period and maximum pressure of the oscillations. However,
the overall decay trend seen in the experiments cannot be represented by the present models.
Due to this deficiency of the mathematical models, different physical effects believed to cause
decay were investigated. The probable sources of decay were (i) heat exchange between the air
inside the air pocket and the surrounding tank wall and water, (ii) viscous boundary layers in
the water at the tank walls, and (iii) air leakage to and from the air pocket. The effect of heat
exchange to and from the air inside the air pocket and the surrounding water and tank walls
was studied mathematically through a linear, one-dimensional, steady-state and constant
pressure heat exchange model. Based on this it was found that the polytropic gas model
used for the MEL and SAM methods fail to model the damping effect of heat exchange. In
addition the heat exchange modifies the polytropic exponent and hence the stiffness properties
of the air pocket oscillations. However, it was found that a good representation of the air
pocket stiffness can be obtained by assuming adiabatic conditions for the air pockets studied
in this work.

The effect of viscous boundary layers was investigated through a mathematical model
assuming linear unsteady laminar boundary layers. The interaction between the flow field of
the entering water and the flow field of the oscillating air pocket was neglected. Based on
this model a lower bound of the damping ratio was estimated and it was seen that viscous




boundary layers contributes to the damping of the pressure oscillations.

Based on images taken of the air pocket during the experiments we concluded that air
leakage was not present after the first pressure minimum, and could therefore not be the
cause of the overall decay trend. To see the effect of air leakage on air pocket oscillations
in general, differently sized holes in the tank roof were made and the effect of air leakage
studied. Air leakage was seen to cause decay of the pressure oscillations. The damping due
to air leakage can, depending on the leakage area, be the largest source of damping.

In order to scale these types of air pocket impacts a new scaling procedure is proposed.
This is the pressure-amplitude and rise-time scaling procedure (PARTS). The method applies
to the case when air pocket model experiments are performed by maintaining the same Froude
number, applying geometric similarity and using atmospheric reference pressure for the model
as for the prototype. The method is applicable for tank roof impact. However, the method
may be generalized to the impact of breaking waves entrapping air pockets on vertical walls.
Through an existing method by Lundgren only the pressure amplitude can be estimated.
With the present method both the pressure amplitude and the rise time can be found. The
rise time is an important parameter in dynamic structural analysis.
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Chapter 1

Introduction

An impact between a marine structure and a liquid is denoted slamming. FExamples of
slamming are when life boats are dropped into the water, when breaking waves hit sea walls,
when high waves hit the superstructure of oil platforms and when the liquid hits the walls
inside cargo tanks in ships. In these cases slamming effects need to be considered in structural
design.

Roughly speaking slamming phenomena can be divided in two types. This is when gas
is entrapped between the free surface and the structure during impact and when it is not.
The entrapped gas, when present, adds complexity to the problem. The physical problem
then contains two phases of fluid and compressibility of the gas often matters. This makes
the problem harder to model mathematically than if no gas is entrapped. The fact that
compressibility of the gas might be important, leads to extra challenges when experiments in
model scale are performed because Froude number and geometrical similarity in model and
prototype scale is no longer sufficient to obtain geometrical similar flows in model and full
scale. Other non-dimensional numbers, like the Euler number, are also of importance. Fur-
thermore, experiments of slamming including gas entrapment often show poor repeatability.

The present study considers a particular type of slamming event inside a rectangular tank,
filled with water, during sloshing at high filling. This impact scenario is illustrated on the
left side of figure 1.1. Here a rectangular tank filled with water and air is seen. The forced
horizontal tank motion causes a wave which at a certain time instant hits the roof in such a
way that air is entrapped between the free surface and the roof. As the wave entraps the air,
the air is compressed and the entrapped air and surrounding water starts to oscillate. The
pressure inside the air pocket is seen to oscillate in a way that resembles the solution of a
freely oscillating, under-damped, one degree of freedom, mass-spring system. The spring is
associated with the compressibility of the air and the mass is associated with the generalized
added mass effect of the oscillating water. These oscillations have a characteristic period
and amplitude, where the amplitude generally shows decay. In the following, this slamming
event is referred to as the air pocket at the upper corner. The present study is relevant for
other slamming scenarios including entrapped gas, as long as the gas follows the ideal gas
law. Examples are breaking waves inside sloshing tanks at low filling levels or breaking waves
at sea walls.

13



14 Introduction

1.1 Previous work

Present study: Relevant previous studies:

Air pocket slamming during sloshing The impact of aflat plate

Figure 1.1: Left: The present study is a slamming event where air is
entrapped at the roof-wall corner of a rectangular sloshing tank. Right:
Relevant previous studies which have similarities to the present study.

Here previous work on slamming phenomena including entrapped air is reviewed. This
includes the air pocket at the upper corner seen on the left in figure 1.1 and other relevant
slamming events seen on the right in figure 1.1. The other relevant slamming events are the air
pocket entrapped underneath a horizontal flat plate hitting a flat free surface, the entrapped
air pocket between a breaking wave at a vertical wall and the entrapped air pocket under a
marine structure. These different cases are discussed in the following in order to summarize
the knowledge related to these phenomena, with special emphasis on experimental findings,
mathematical modelling and scaling.

The air pocket at a wall is formed when a wave with plunging breaking entraps air as it
approaches a wall. The air pocket is then compressed and can start to oscillate in a similar
way as the air pocket at the upper tank corner. This type of air pocket impact is illustrated
on the right side in figure 1.1. Entrapped air pockets at walls can for instance occur when a
breaking wave entraps an air pocket at a sea wall or at a wall of a prismatic sloshing tank at
low filling. The loads exerted on the tank walls are of concern for some types of tanks like for
instance prismatic liquefied natural gas (LNG) tanks. This type of tanks has an insulating
material attached to the inside of the tank walls. The purpose of this material is to keep the
LNG cold. The insulating material can be damaged due to liquid motion.

The entrapped air pocket between a breaking wave and a wall has been studied extensively
in the past. One of the first researchers investigating air pocket impacts on vertical walls was
Bagnold [1], who investigated the problem both mathematically and experimentally. The
experiments showed lack of repeatability. This is due to the inherent randomness of the




1.1. Previous work 15

Breaking wave at awall Bagnold's piston model

Figure 1.2: Bagnold assumed that water compressing an air pocket at a
wall (left) behaves as a piston compressing an air pocket (right).

breaking wave process. This has later been seen to be a general challenge related to this type
of experiments by for instance Hattori and Arami [2]. Bagnold also presented a mathematical
model where the breaking wave entrapping an air pocket at a wall was assumed to behave
as a rigid piston entrapping an air pocket. This model is illustrated in figure 1.2. The wave
is assumed to arrive at the wall with a certain kinetic energy available to compress the air
pocket. Bagnold represented the entering water as a rigid piston. This piston is then doing
work to compress the air pocket, until its velocity is brought to zero at the time instant of
maximum pressure. The model assumes an adiabatic compression of the air pocket, where
the pressure inside the air pocket is assumed to be uniform.

The pressure time histories reported from experiments for air pocket impacts at walls
generally show a similar type of oscillatory behaviour as the air pocket at the upper corner.
More specifically, the pressure time history does to some extent resemble the free oscillations
of a single degree of freedom, under-damped, mass-spring system. Hence, the pressure time
history has a characteristic period and amplitude, where the amplitude generally show decay.
Explanations for this decay has been suggested. Mitsuashu [3] explained the decay by air
leaking from the air pocket during the oscillations. Here air leakage refers to air flowing into
or out from the air pocket through an opening between the air pocket and the atmosphere
during the time when the air pocket is oscillating. Later Lugni et al. [4] and [5] identified
air leakage for an entrapped air pocket at a wall. The leakage was observed at the tip of
the breaking wave after it had hit the wall. Lugni et al. did not quantify the air leakage.
The breaking wave on a sea wall was modelled mathematically by Zhang et al. [6] assuming
incompressible potential flow for the water. The pressure inside the air pocket was assumed
uniform in space and an adiabatic pressure density relationship was assumed neglecting air
leakage. The pressure time history resulting from their numerical model shows decay of the
pressure time history although no leakage is modelled. This suggests that there might be
other sources for the decay than air leakage.

A flat plate falling on a calm free surface is a simplified problem which is relevant for
many fields in marine hydrodynamics. A relevant application is the impact between the
bottom of a ship and the free surface. Verhagen [7] modelled the impact of a rigid flat plate
onto a free surface both experimentally and numerically. Linear, incompressible potential
flow theory was assumed for the water, while the escaping air during the time before the
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plate hit the liquid was modelled as quasi-one-dimensional and compressible. After the plate
hit the water, the air pressure was assumed uniform in space and the compression adiabatic.
The comparison of the experiments and the mathematical model shows good agreement.
The experimental results show that repeatability is reduced with increasing impact speed.
Verhagen also reports a complicated two phase mixing phenomenon during the impact which
causes leakage of air. Faltinsen and Timokha [8] report the drop test of elastic plates. Large
scatter was seen for the maximum pressure measured for a given impact speed, however the
maximum strain measured in the plate was more repeatable.

The entrapped air pocket at the upper corner, which is the type of air pocket studied in
this work, has previously been studied experimentally by Allers and Rognebakke reported
by Allers [9] and mathematically by Faltinsen and Timokha [8]. The experiments show an
entrapped air pocket slamming event during sloshing. The entrapped air pocket was close
to the corner of the tank. The air pocket was modelled by a semi-analytic model (SAM)
using potential flow theory for the water flow. The model was able to reproduce nearly
the same oscillation frequency, however the pressure amplitude was over predicted and the
mathematical model was not able to predict the overall decay trend of the experimental
pressure oscillations. However, the mathematical model showed decay of the pressure time
history during the first period of oscillation. The source of this decay was nonlinear effects.
The overall decay of the pressure time history from the experiments could not be reproduced.
One reason for this was explained to be possible air leakage from the experimental air pocket.
A leakage model was included in the mathematical (SAM) method and it was concluded that
only a small circular hole could produce large decay of the pressure time history. A different
type of air pocket which also shows decay is an air bubble in water. Devin [10] investigated
the decay of spherical air bubbles in infinite water. He modelled the air pocket using linear
theory and found that the decay of the air bubble oscillations was due to heat exchange,
viscosity and acoustic effects.

When performing model test experiments of slamming events with entrapped air, there
are uncertainty related to scaling laws. What are the non-dimensional numbers which should
be similar for the model and the prototype? Many of the non-dimensional numbers which
have been discussed in the literature in connection with air pocket slamming events are listed
in table 1.1. In the first part of this discussion the emphasis is on model tests where the
prototype contains air and water.

The Froude number Fn = U/+/gL should be maintained in model and full scale when
gravity waves dominate the physical behaviour. Here U is a characteristic velocity, g is the
acceleration due to gravity and L is a characteristic length of the physical problem. In the
case of slamming including entrapped air other non-dimensional numbers are also important.
A non-dimensional version of Bagnold’s piston model shows that, in addition to the Froude
number, the Euler number Eu and the polytropic index x must be equal in model and full
scale in order to obtain similar motions. The Euler number is defined as Eu = py/(pU?),
where pg is the ullage pressure, p is the density of the liquid and U is a characteristic velocity
of the entering wave. The polytropic index x is equal to one if the air pocket undergoes an
isothermal (constant temperature) process and equal to the ratio of specific heats v = ¢, /¢,
if the air pocket undergoes an adiabatic (no heat exchange) process. Here ¢, is the specific
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‘ Non-dim. number | Formula Table 1.1: Non-dimensional numbers dis-
Froude number Fn— U cussed in connection with air pocket slam-
Vol ming events. (L: characteristic length, g¢:
Euler number Eu = % acceleration of gravity, U: characteristic ve-
Cavitation number Ca = poagv locity, po: ullage pressure, p,: vapour pres-
i i ppo sure, p: density of liquid, pgo: density of
Density ratio Dr = % gas, ¢, the specific heat at constant pres-
Ratio of specific heats | v = ;_p sure, ¢,: is the specific heat at constant
° - volume, wp: natural frequency of the air
P w

Péclet number Pe = *p= pocket, Dy: thermal diffusion coefficient of
Mach number M =UJc, .air, co: sp.eed of sound, v: kinemati-c viscos-
- ity coefficient and Y: surface tension coef-

Reynolds number Re = UT ficient)

2
Weber number We = %

heat at constant pressure and ¢, is the specific heat at constant volume.

In the case when water and air at atmospheric conditions are used to model fresh/sea
water and air at atmospheric conditions at full scale, by applying geometrical similarity and
Froude scaling, Lundgren [11] established a scaling procedure for the maximum pressure of
air pocket impacts based on Bagnold’s piston model assuming adiabatic conditions for the
air pocket. A limitation of this procedure is that it does not give any information about
the temporal variation of the pressure, which from a dynamic structural point of view is
important.

The importance of the Euler number is also shown by the work of Greco et al. [12]
who investigated numerically the air pocket entrapped under a very large floating structure
(VLFS). The impact scenario is shown in figure 1.1. The numerical model was a nonlinear
boundary element method, where the water was modelled as incompressible using poten-
tial flow and the air pocket was modelled assuming uniform spatial pressure and adiabatic
compression. They investigated scaling effects by varying the Euler number and compared
their results with the scaling law obtained by linearising Bagnold’s nonlinear piston model
assuming adiabatic conditions for the air pocket. The time ¢, and dynamic pressure p, in
the air pocket in full scale is then related to the model scale values ¢, and p,, as t, = t,, A,
and p, = pmV/\. Here X is given as A = L,/L,, where L, is a characteristic length for the
prototype and L,, is a characteristic length in model scale. The results from Greco et al. [12]
show that this scaling procedure is inaccurate. Faltinsen and Timokha [8] solved for the air
pocket impact in the upper corner using the semi-analytic method and compared the results
with the scaling procedure by Lundgren [11] which was based on Bagnold’s nonlinear piston
model. They found that this scaling procedure was fairly accurate.

If the same Euler number is maintained in model and prototype lower ullage pressure is
needed for the model than for the prototype. The ullage pressure in model scale must then
be set to pj* = ph/A. Here pi* and pj are the ullage pressure for the model and the prototype,
respectively. Experiments varying the Euler number was carried out by Lugni et al. [4] and
[5], for an entrapped air pocket at a wall inside a sloshing tank filled with water and air. The
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ullage pressure py was varied and it was found that the air pocket behaves differently when
the ullage pressure pq is close to the vapour pressure p,. This means that small cavitation
number, defined by Ca = (py — p,)/(pU?), matters. Here p, is the vapour pressure of the
liquid. Further, Lugni et al. investigated the decay of the pressure time history. The decay
calculated from the initial stage of the pressure oscillations, that is the decay calculated from
the two first pressure peaks, showed much more decay than the later pressure oscillations. In
addition the initial decay was seen to be more sensitive to the Euler and cavitation numbers
than the decay observed later in the time series.

It should be noted that the density ratio was not kept constant when the ullage pressure
was varied in Lugni’s work. The reason for this is that reduced ullage pressure leads to
reduced ullage density pyo of the air. This will lead to a different density ratio Dr = pyo/p,
if air and water is used in model and prototype. Here p is the density of the liquid. Stive
[13] then suggests to use a heavier gas in model than in prototype to obtain the same density
ratio at a lower ullage pressure. Maillard and Brosset [14] investigated the importance of
the density ratio on the pressure measured inside a sloshing tank. They concluded that the
density ratio affects the way the air escapes the impact region, and that increasing density
ratio increases the number of gas pocket impacts. This suggests that if the tank is evacuated
in order to obtain the same Euler number, a heavier gas should be used in order to model
slamming including air entrapment correctly.

Compressible effects are of concern when slamming is investigated. In a compressible flow
the density is not constant. The air pocket type of slamming is often governed by uniform
compression. Since the air pocket is uniformly compressed, the density of the air cannot be
treated as constant. The work by Allers [9], also reported by Faltinsen and Timokha [8],
shows that the pressure inside the air pocket is uniform in space. Hence, many mathematical
models, like Bagnold [1], Zhang et al. [6], Greco et al. [12] and Faltinsen and Timokha
[8] assume uniform pressure inside the air pocket. They also assume that the pressure and
density inside the air pocket follow a polytropic gas model assuming adiabatic conditions.
An assumption regarding the heat exchange between the gas and the liquid is required when
using a polytropic gas model. In practice this leads to either an adiabatic or an isothermal
assumption. This assumption significantly affects the results. The work by Devin [10] on the
spherical air bubble shows that the polytropic exponent used in the polytropic gas model,
is dependent on the ratio of specific heats and the Péclet number when linear theory is
assumed. The Péclet number for the entrapped air pocket at the upper corner is defined
as Pe = wyL?/D; where wy is the natural frequency of the air pocket oscillations, L is a
characteristic length of the air pocket and D, is the thermal diffusion coefficient of air. The
Péclet number shows the importance of convection compared to thermal diffusion. Devin’s
model also shows that the polytropic pressure-density model fails to model the damping of the
air pocket oscillations due to heat exchange between air and water. Compressible effects are
also important if the local flow speed is high compared to the sound speed. More specifically,
if the Mach number which is defined as M = U/cy, where U is the local fluid velocity and
¢p is the sound speed, is larger than 0.3 (White [15]) then fluid compressibility is important.
Also compressible effects matter if there are time scales of the flow which trigger acoustic
effects. Acoustic effects inside the air pocket can be disregarded if the frequency of oscillation
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is significantly lower than the lowest natural frequency of the acoustic problem. Based on
this argument, acoustic effects in the air pocket can often be neglected. For acoustic effects
in the water, it should be specified if the slamming event contains a mix of water and air,
because the speed of sound can be much smaller for a mix of water and air, than for pure
water or pure air.

Viscosity is often neglected in slamming analysis, and hence the Reynold’s number is not
similar in model and full scale. The Reynolds number represents the effect of viscosity and is
given as Re = UL/v, where v is the kinematic viscosity coefficient of the fluid. Viscosity is
often neglected in mathematical models of air pocket slamming, like for instance the reported
works by Zhang et al. [6], Verhagen [7] and Greco et al. [12]. For the spherical air bubble
investigated by Devin [10], viscosity was seen to influence the decay of the oscillations of the
bubble. Viscous effects and their influence on the decay of the air pocket at the upper corner
is investigated in chapter 5.

Surface tension effects are represented by the Weber number We = pU?L /Y, where T is
the surface tension coefficient which depends on the two fluids. Surface tension can affect the
shape of a free surface before it impacts a structure if it has large curvature. In the case of a
breaking wave at a wall, Stive [13] recommends that the wave in model scale should exceed
H = 0.5]m].

Fresh water is often used to model seawater at prototype scale. At a seawall the wave hits
the wall periodically, which means that the water can be aerated due to previous impacts.
Aeration refers to the many small air bubbles mixed with the water. These small bubbles
behave differently for salt and freshwater which have implications on the validity of using
fresh water and air to model salt water and air in full scale. Bullock et al. [16] studied
the influence of aeration level on slamming pressures for air and fresh water and air and
salt water. They found that the air bubbles formed in freshwater tend to be larger than air
bubbles formed in seawater, and that they coalesce more easily. Larger bubbles rise faster to
the free surface than small bubbles which leads to less aeration in freshwater than in seawater.

In the case of model tests of sloshing inside LNG tanks the scaling problem gets more
involved. Until recently a mix of air and water at atmospheric conditions has been used to
model the prototype tank containing boiling LNG, where the LNG coexists as both liquid
and vapour. To investigate the effect of phase transition, Maillard and Brosset [14] used
boiling water to model the liquid phase and water vapour to model the gas. They found
that as the wave approached the roof and entrapped the vapour, the vapour was compressed
and changed phase from vapour to liquid state. The resulting pressure time history does
not show oscillations. However, there is large uncertainty related to how water in liquid and
vapour state can model LNG. The role of condensation is a present research topic for the
patent holders of the insulation systems used in prismatic LNG tanks.

In the present discussion the structure is assumed to be rigid. In reality the fluids and
the structure might interact causing hydro-elastic effects. Further information about hydro-
elastic effects is given by Faltinsen and Timokha [8].
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1.2 Objectives

Allers [9], who investigated an air pocket at the upper corner of a sloshing tank during slosh-
ing at high filling, found that the measured pressure showed low repeatability when the water
had hit the roof multiple times. Bagnold [1] experimentally investigating the wave pressures
also experienced repeatability problems. He reports: "It was considered that the most fruitful
method of studying such a problem was likely to be the use of a model wave tank in which the
characteristics of the wave causing the pressures could be maintained under close control.”
Since repeatable air pocket impacts are hard to create experimentally, the first objective of
this work was:

Objective 1: To design experiments of idealized air pocket slamming events in the upper
corner of a liquid filled tank during sloshing at high filling which are as repeatable as possible.

The air pocket impact at the upper corner was investigated mathematically in Faltinsen
and Timokha [8] using the semi-analytic method (SAM). The SAM calculations showed that
nonlinear effects related to the change of the air pocket geometry gave reduction of the am-
plitude of pressure during the first period of oscillation. The SAM calculations showed a
natural frequency close to the frequency of the air pocket oscillations. However, two major
deviations between the experiments and the SAM was identified. The method over predicted
the maximum pressure, and the method could not reproduce the overall decay of the exper-
imental pressure time history.

Objective 2: To investigate the entrapped air pocket impact through experiments and
mathematical models and through this obtain new knowledge regarding the physical effects
governing air pocket slamming events. More specifically, to try to explain the physical mech-
anism behind the decay of the air pocket oscillations often seen experimentally.

Model tests of slamming including entrapped air pockets, when air and water at atmospheric
conditions are used to model full scale problems consisting of air and fresh or salt water at
atmospheric conditions, only maintaining the same Froude number and geometric similarity,
is problematic. This because Bagnold’s mathematical model shows that the Euler number
Ew is an important parameter. To find a scaling procedure when non-dimensional quanti-
ties governing the physical behaviour, is not maintained similar in model and full scale is
ambitious. However, a lot of experiments are carried out at atmospheric conditions, and
the consequences are uncertain, hence, even a crude scaling procedure can help removing
uncertainty related to this practice. This leads to the third objective of the present work:

Objective 3: To investigate the scaling of air pocket impact events, and to describe the errors
made by model experiments where the FEuler number is different in model and prototype.
The objective is also to investigate if there are other non-dimensional numbers which are
important related to slamming including air pockets.
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1.3 Scope

The phenomenon studied is characterized by a free surface entrapping an air pocket at a
structure. Mathematical and experimental models are used to investigate one type of such
entrapped air pockets. This type of impact is the entrapped air pocket in the upper corner of
a sloshing tank at high filling. The fluids used in the study are water and air. The study is
relevant for slamming problems including entrapped air, where the fluids in prototype scale
is fresh/sea water and air. It is an ongoing research task to identify to what extent fresh
water and air represents LNG in full scale (Maillard and Brosset [14]). One question related
to this is the role of condensation. The present work does not contain new knowledge about
the validity of using fresh water and air in model scale to represent LNG in full scale.

The problem is studied in two dimensions using numerical, semi-analytical and experi-
mental methods. The water is modelled as incompressible, irrotational and inviscid, using
potential flow theory. This means that compressible effects of the liquid are neglected. Nu-
merous discretisation methods exist for potential flow. From the experiments the fine detail
of closure is seen to be of importance and hence a numerical method which treats the free
surface as sharp was preferred. In computational fluid dynamics (CFD) there is a family of
methods called surface tracking methods which treats the free surface as sharp. One possible
way to solve the Laplace equation maintaining a sharp free surface is the boundary element
method (BEM). This method was chosen for solving the problem. The effect of surface ten-
sion is neglected all together in the mathematical modeling. No parts of this thesis include
the effect of aerated water. Aeration is the phenomenon when many small air bubbles are
mixed with the water and is often due to previous slamming events.

Although the present study is considering one special case of entrapped air pocket slam-
ming events, the knowledge obtained in terms of experimental results, mathematical mod-
elling and scaling effects are believed to be, to some extent, generalizable to other types of air
pocket events. This includes the case of the horizontal flat plate falling onto a free surface,
the breaking wave at a wall and the entrapped air pocket underneath a marine structure.

1.4 Outline of the thesis

The experimental set up and results are reported in chapter 2. Based on the experiments, the
case studied is split in a sloshing stage an air escape stage, and an air pocket oscillation stage.
The numerical model of the sloshing and air escape stage is derived, tested and applied to
the sloshing and air escape stage in chapter 3. The numerical model of the oscillation stage
is explained, tested and applied to one air pocket impact in chapter 4. After this the semi-
analytic model by Faltinsen and Timokha [8] is extended to include the damping effect of heat
exchange and viscous boundary layers in chapter 5. The different mathematical models are
then compared with the experimental results in chapter 6. Finally a new scaling procedure,
the pressure-amplitude and rise-time scaling procedure (PARTS), is proposed in chapter 7.
Finally, conclusions and suggestions for future work are given in chapter 8 and 9.
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1.5 Contributions of the thesis

A new excitation signal producing an entrapped air pocket at the upper corner of a rectangu-
lar tank at the first contact with the roof is derived based on the linear multimodal method.
One of the air pocket slamming events produced, named air pocket 6, showed quite repeat-
able results. This air pocket was then chosen for comparison with mathematical models. The
experiments are reported in chapter 2.

A new, fully nonlinear and incompressible two phase numerical model for sloshing, where
the air is modelled as quasi-one-dimensional is proposed. The method applies a known
discretisation method, the boundary element method (BEM) for the liquid, and the finite
difference method (FDM) for the air but the present combination is new. This method is
hence denoted the boundary-element-finite-difference method (BEFDM) and is presented in
chapter 3.

The experimental results show that the air leakage into or out of the air pocket during
the pressure oscillations leads to decay of the resulting pressure oscillations. Air leakage was
observed by Lugni et al. [4] and [5] during the air pocket oscillations of an air pocket at a
wall. The leakage was seen to take place through the breaking wave tip after it had hit the
wall. In the present experiments the air pocket is fully closed, and the role of air leakage is
investigated by drilling circular holes in the tank roof with different diameters. The role of
air leakage was seen to be decay of the air pocket oscillations, and the decay increased with
increasing diameter of the hole. However, when the hole in the roof was closed no leakage
was present, but still all air pockets showed a general decay trend. This means that the
overall decay of the presently studied air pockets is not due to air leakage. To find the reason
for the decay Faltinsen and Timokha’s SAM method [8] was extended to include the effect
of heat exchange to and from the air pocket during the air pocket oscillation stage. The
model shows that the heat exchange contributes considerably to the decay of the air pocket
oscillations. Further, Faltinsen and Timokha’s model is extended to investigate damping of
the air pocket oscillations due to viscous boundary layers in the water. The method contains
uncertainties but it is shown that viscous boundary layers also contribute to damping of the
air pocket oscillations. These extensions of the SAM model can be found in chapter 5 and
results are presented in chapter 5 and 6.

A new scaling procedure, the pressure-amplitude and rise-time scaling procedure (PARTS),
for air pocket slamming events is proposed in the case when air and water at atmospheric
conditions is present in both model and prototype. The method further assumes that the
model and prototype are geometric and Froude similar. However, the Euler number is dif-
ferent since atmospheric pressure is the reference pressure in both scales. The method is
based on the same assumptions as Lundgren’s procedure. Lundgren’s scaling procedure can
however only estimate the peak pressure. The advantage of the present procedure is that
information about the rise time of the pressure time history is obtained. This method is
presented in chapter 7.




Chapter 2

Experimental investigation of idealized
air pockets

Experiments were conducted in order to understand the physics of the air pocket impact
during sloshing at high filling. Some questions about this type of impact were stated during
the initiation of this work: Is it possible to create an experimental set up which creates
repeatable air pocket slamming events? How can the decay of the pressure oscillations from
such air pocket slamming events be explained? And what valid assumptions can be made
when solving such an impact event mathematically? What are the effects of air leakage from
the air pocket during the pressure oscillations? In this chapter the experiments are explained
in detail starting with the experimental set up. Then the excitation signals used to create the
air pocket impacts are described. After this, sections containing results and discussions of the
observed physical phenomena are presented. These experiments motivate the assumptions
used in the mathematical models in chapter 3 and 4. This model is later solved numerically
and compared with the experimental results in chapter 6.

23
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2.1 Experimental setup

One of the objectives of the experiments was to create as two-dimensional flow as possible. To
obtain two-dimensional flow a slim tank was chosen. The interior length, height and width of
the tank was L=1000[mm)], H;;=980[mm] and D=100[mm], respectively. These dimensions
are seen in figure 2.1. The tank was made by 20[mm] thick acrylic plates and the filling level
H was set to 85 % of the tank height (H=0.85H,,;). The tank was mounted on a steel frame
and the frame was mounted on rollers running on steel rails as shown in the left picture in
figure 2.2. The frame was moved horizontally by an excitation mechanism consisting of a
ball screw attached to an electric engine. To measure the pressure inside the air pocket, four

CA3

Htot CA 4 H
< Pressure cells (PC) \

= Hole location
WK Camera angles (CA)

=
D§ /
Figure 2.1: A drawing of the tank including notation for dimensions,

camera views, location of the pressure sensors and definition of coordi-
nate system. The tank was made of 20[mm] acrylic sheets with internal
dimensions L=1000[mm], D=100[mm] and H;,;=980[mm)].

pressure sensors were attached in the roof close to the corner. These pressure sensors can be
seen on the right image in figure 2.2. The pressure sensors were absolute pressure sensors of
the Kulite XTL-190 type with a measuring area of 2x2 [mm]. The numbering of the different
pressure sensors and the locations of the pressure sensors relative to the tank walls are seen
in figure 2.3. An accelerometer was mounted on the tank roof in order to capture possible
deflections of the acrylic plate. The location of the tank roof accelerometer is shown on the
right image in figure 2.3.

To see the evolution of the air pocket a high speed camera was used to film the air pocket
from different angles (see figure 2.1). Camera angle CA 1, CA 2 and CA 3 focus on the air
pocket from the front, the top and the side, while CA 4 views the global sloshing behaviour.
A camera sample frequency of 1000 [Hz| was used for camera angle 1, 2 and 3 to capture the
motion of the air pocket, which had a frequency between 50 and 200 [Hz]. The intention of
camera angle 4 was to capture the overall water motion hence a camera frequency of 100 [Hz|
was found sufficient. The trigger signal from the high speed camera was recorded in order to
synchronise the pressure measurements and the images.
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Figure 2.5: Top: An example of a set of excitation components 7;(t).
Bottom: The corresponding resonant modal amplitudes /BZ(t) The higher
modes 5 and 9 are tuned to be minimum at the time instant when n; = h;.

together with some higher mode like 5,7 or 9 by oscillating the tank with a frequency equal
to the natural frequencies o,,n = 1,5,7,9 of the wanted modes. The sway excitation signal
n(t) is written as a sum:

n® = > ) (2.1)

Here each 7; is responsible of triggering mode number ¢ in the resulting free surface elevation.
7; is written as:
qgmi Hmi

i | C At —tsif) — 1] t >ty '
ni(t) _ {g [COS(U{ }) ] et where: o; = T tanh T (2.2)

Here 7,; is the amplitude and tg; is the start time of the excitation component 7;(t). The
start time tg; is used to tune the different components in time so that the resulting wave
has an air pocket shape at the time of impact ¢ = #y. The resulting free surface elevation is
written as

((x,t) = cos(mn{z + L/2}/L) Z Bi(t). (2.3)

Here (! is the response due to excitation component 7;(t). Using linearised boundary con-
ditions and writing the velocity potential as a sum of the natural sloshing modes, the modal




28 Experimental investigation of idealized air pockets

amplitudes 3¢ () due to 7;(t) can according to Faltinsen and Timokha [8] be found by solving
ﬂ}l + criﬁfl = Jfan cos (o {t — tg}) (2.4)
where ) -
; ™m
P! =1y {mr tanh (L> ({-1}"— 1)] .

An analytical solution to this equation can be found in Faltinsen and Timokha [8] (page 206).

This solution, assuming that all 8 (t = t,;) and .fl(t =) are zero, is given as:

0 t <ty
() = Foi (cos (ai{t — ty}) —cos (op{t —ts}))  t>ty i# (2.5)
n 0'721 - 01'2 Cos (Ot St COS (Opt S Zlsgi 1 n :
%Blgl(t — tsl) sin (O'Z{t — tsz}) t> tsi L=

As the purpose of excitation component 7;(t) is to trigger response in the corresponding mode
Bi(t), it means that the components of the solution corresponding to i # n is unwanted noise
and should be limited. Since the solution for ¢ = n increases linearly with time, it will after
some time, dominate the response. By neglecting all terms @ # n the elevation on the left
hand side in the tank (s can be written as:

Cins = Z Bi(t) (2.6)

Here B3(t) is given in equation 2.5. An example of an excitation signal using this theory can
be seen in figure 2.5. The upper plot shows the three components of the excitation signal
used. That is 7y, 75 and 9. The higher modes are excited prior to mode 1. At the lower plot
the corresponding response in mode 1, 5 and 9 are shown. Mode 5 and 9 are tuned to be
minimum at the instant when S} = h; by choosing appropriate start times ¢,;, .5 and tg.

Due to nonlinear effects and the interference by the unwanted components of the solution,
B for n # i, some ad hoc adjustments of the theoretical excitation signal had to be made
to create air pockets in the experiments. This tuning consisted of adjusting the start time of
mode 1, that is t5;. The experimentally adjusted excitation signal can be seen in figure 2.6,
alongside with images showing the free surface inside the tank at five time instants. This air
pocket is named air pocket 6 (AP6) and is one of six reported air pockets in this work. A close
fit to the measured excitation in figure 2.6 is given by ¢4=3.820[s], ts5=0.5652[s], t;9=0.0]s],
1a1=0.0202[m], 7,5=0.00145[m] and 1,9=0.00077[m]. This analytical excitation signal is fitted
to the measured position in the experiment and must be considered an approximation of the
measured tank motion. By varying the excitation amplitude of the higher modes 5,7,9,11
the shape of the air pocket can be varied. Further, the impact velocity can be varied by
adjusting the excitation amplitude of the first mode of sloshing. In the following section air
pockets of different types are presented based on this variation.
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Figure 2.6: The measured forced sway motion 7n(¢) and pictures of the
free surface flow for the run air pocket 6 run 24. The air pocket seen in
image b5 is created at the first contact with the roof.

2.3 Overview of the different air pockets

Many different types of air pockets were produced by varying the excitation signal. Here six
of these air pockets are discussed in detail. The shape of these air pockets are seen in figure
2.7. The images are taken just prior to the impact. A rough estimate of the initial volume
and vertical velocity of the free surface are given in the images. These estimates are based on
an analysis of the experimental images. The estimate of the vertical velocity is made when
the peak of the free surface is 6imm| from the roof. This velocity is estimated both at the
free surface along the left wall and at the wave crest. The pressure inside the air pocket is
plotted at the lower right corner of the images. The time instant of the image is seen as a
circle (o) in the pressure plots.

The repeatability of the pressure signal from the air pocket impacts are reported in figure
2.8. Each presented plot is an average of the indicated number of runs, for one pressure sensor
inside the air pocket. The pressure curves from all the different runs were aligned so that
the zero down crossing between the first pressure maximum and the first pressure minimum
occurred at the same time instant. This means that the variability of when the pressure
peak occurs in time after the start of the sloshing motion is neglected. The height of the
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Figure 2.9: The pressure inside two different air pockets. The pressure is
nearly spatially uniform for the sample frequency used. Top: All pressure
sensors for air pocket 6 run 18. Bottom: All pressure sensors for air pocket
5 run 25.

error bars indicate the repeatability error using a 95% confidence interval. For comparison
the repeatability of the horizontal tank displacement was investigated for air pocket 6. A
total of 13 runs was filtered digitally using a bidirectional 2.nd order Butterworth low-pass
filter at 10 [Hz| and the standard deviation at different points in time was calculated. The
95% confidence interval of the tank motion measurements at the different time instances was
seen to be approximately 0.08 [mm]. The plots in figure 2.8 show the measurements from
one pressure sensor since the pressure is nearly constant inside the air pockets. In figure 2.9
the pressure from all three pressure sensors inside the air pocket are plotted. The topmost
plot shows air pocket 5 and the lowermost plot shows air pocket 6. The plots show that the
pressure inside the air pocket is very close to spatially uniform for the sampling frequency
used. In the following the measurements from pressure sensor P1 is reported for air pocket 1,
while the measurements from pressure sensor P2 is reported for the other air pockets. Only
the first part of the pressure time history is plotted in figure 2.8. This is because the period of
the pressure time histories from the different runs deviate, which introduces a phase shift of
the pressure time history of the individual runs. This means that the average pressure time
history will contain more decay than the individual pressure time histories and is hence no
longer a representative pressure time history for the corresponding air pocket impact event.
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In addition, the error bars in the later stage of the slamming event will be much larger than
in the beginning of the slamming event due to this phase shift. In the plots in figure 2.8 the
circles (o) indicate the time when the air pockets are closed. These time instants are found by
investigating the high speed camera images taken from above (CA 2) and identifying the time
instant when the roof is continuously wetted across the thickness of the tank (z-direction).

The pressure measurements resemble the free oscillations of some sort of mass-spring
system. This oscillatory behaviour is characterised by the amplitude and the period of the
oscillations. The amplitudes of the pressure time history P; for the first three periods are
plotted in figure 2.10 as a function of the amplitude number j. Here j denotes the amplitude
number where odd numbers of j denotes pressure peaks and even number of j denotes the
amplitude of the pressure minima. In order to compare the decay of the different air pockets
the pressure amplitudes P; are made non-dimensional with respect to the first pressure peak
Py. The pressure amplitudes of all the air pockets show large decay during the time from
the first pressure maximum to the first pressure minimum. The largest decay is seen for air
pocket 5 and 8, the reason for this could be that these air pockets close at a later time instant
than all the other air pockets and thereby cause air leakage damping (see figure 2.8). After
the first pressure minimum j = 2, all air pockets show little or no decay at all from the first
pressure minimum to the second pressure maximum. After the second pressure peak the air
pockets behave in a less uniform fashion, but the trend is that the amplitudes of the pressure
oscillations decay further after the second pressure peak and until the end of the slamming
event.

To investigate the pressure time history at later times the averaged pressure time history
cannot be used as explained previously. Here the pressure time history from one single
run of each type of air pocket is presented. This is seen in figure 2.11 and 2.12. The
left column of plots show the pressure time histories of the different type of air pockets.
All the pressure time histories experience decay during the impact. The oscillations do, to
some extent, resemble the free decay of a under-damped linear mass-spring system. If this
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Figure 2.11: Left: Pressure time histories of air pocket 1 and 4. Right:
The relative amplitude P /5/Py = (P;+P;11)/(2P1) plotted as a function
of the the non-dimensional time ¢; 1 /5/T, = (t;+t;11)/(2T%) in a log-linear
plot.

air pocket behaves according to such a system, then the peaks would follow the formula
P, = Ce/Ta, Here the damping ratio is £ = a/(27) and the parameter C is dependent
of the initial conditions. The damping ratio can then be estimated from the pressure time
history when the pressure amplitude is plotted on a log-linear plot. This is done in the
right column of plots in figures 2.11 and 2.12. These plots show the average amplitude
P, 11/2 = (P;+ P;;1)/2 made non-dimensional with respect to the first pressure amplitude P
as a function of time #; 1 /o = (¢; +t;11)/2 made non-dimensional with respect to the average
period T, of the whole impact. The reason for using the average pressure amplitude P/ is
that the pressure oscillations does not accurately oscillate around zero. The damping ratio
can be found by noting that —« is the slope of the straight line fitted to the peak values
in the log-linear plot. The damping ratio only makes sense to the extent that the pressure
time history really behaves comparable to the free decay of a linear mass-spring system with
small linear damping relative to the critical damping. In this case the pressure amplitudes
should form a straight line in the logarithmic plot. Air pocket 1 is the smallest air pocket
studied and is the one which is closest to fulfilling this criteria. In the upper right plot of
figure 2.11 the exponential function is fitted to the first and fifth pressure peak and shows to
what extent the solution of the free oscillations of a linear under-damped mass-spring system
really fits the experimental results for air pocket 1. The period of the pressure time history
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Figure 2.13: Left: Average period T, of the first five pressure oscillations
for all the air pockets as a function of initial air pocket volume Qq. Right:
The variability of the period for the first 6 pressure oscillations.

was also investigated. The period of the signal 7} is defined as T; = t;.; — t;. Here the
time of the pressure peak 7 is denoted ¢;. In this way the average of the five first periods is
equal to T, = %Zle T;. This average period for all the air pockets is seen on the left plot
of figure 2.13. It is seen that the average period of the oscillations increase with the initial
volume of the air pocket. In the right plot in the same figure 7T; is plotted as a function of the
period number 7. The period is generally seen to increase with time although a large scatter
is observed.

2.4 The air pocket impact divided in stages

In the following the air pocket experiment is divided in stages based on the physics observed.
The air pocket number 6 (AP6) is most repeatable and is therefore a good choice for com-
parison with mathematical models. Based on this, the following discussion mainly follows air
pocket 6 through the different stages, while the other air pockets are commented if physical
effects are observed which are not observed for air pocket 6. The first stage is called the
sloshing stage. It is characterized by the build up of the different sloshing modes. In this
stage the gas flow does not affect the liquid flow. Air escapes the air pocket region at increas-
ing speed as the wave approaches the roof. This stage is therefore called the air escape stage.
When the wave crest touches the roof, the gas flow is cut off, and the air inside the pocket
is compressed and starts to oscillate. This stage is hence denoted the air pocket oscillation
stage.
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Figure 2.14: 3D capillary waves are triggered when the free surface crosses

the random pattern which indicates the dry/wet intersection on the walls.

2.4.1 The sloshing stage

Pictures of air pocket 6 from the sloshing stage are seen in image 1-4 in figure 2.6. The
wave seen in these images is subjected to some damping. One source of damping is viscous
boundary layers. Keulegan [17] used linear potential flow theory to describe the wave motion
outside the thin boundary layers while linear laminar viscous boundary layer theory was used
close to the tank walls. By assuming that the damping was small, he found an analytical
expression for the damping ratio of the first mode of sloshing. The damping ratio due to
boundary layers is dependent on which natural mode which is considered. Here decay tests of
the first natural sloshing mode is investigated. For the first mode, the "bulk” damping, that is
the viscous energy dissipation outside the boundary layers, does not contribute significantly.
However, it is of importance for higher modes.

Keulegan [17] also investigated experimentally the damping of the sloshing motion inside
tanks made of both acrylic and glass. Inside the acrylic tank he observed that the free surface
contained ripples generated by meniscus effects, these ripples was not seen inside a similar
sized glass tank. The ripples in the acrylic tank was suggested to be generated because the
water does not wet the acrylic tank material while it wets the glass material. More important
the damping of the wave motions was seen to be bigger for the acrylic tank than the glass
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tank. It should be noted that the damping of the wave in the glass tank corresponded
well with the results from the mathematical model based on linear laminar boundary layers.
Keulegan later added aerosol to the water in the acrylic tank to make the water wet the
walls. Then the ripples was no longer generated and the acrylic tank showed the same level
of damping as the glass tank. Keulegan then concluded that the larger damping experienced
in the acrylic tank than the glass tank was due to ripples generated by meniscus effects. A
mathematical model of the damping due to meniscus effects does to the author’s knowledge
not exist and the link between the ripples generated by meniscus effects and damping is solely
based on Keulegan’s observations. In the following pictures of the meniscus effect generating
ripples in the present experiments are presented.
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Figure 2.15: Decay test results for a standing wave in the tank. Left:
Time history of the wave elevation on the left hand side of the tank. Right:
Log-linear plot of the wave elevation amplitudes on the left hand side of
the tank.

The meniscus effects generating ripples are connected to how the water wets the acrylic
tank material. This is shown in the images in figure 2.14. These images are taken from
camera angle 5 (CA 5), indicated in the upper left drawing in the figure. Above the images,
qualitative drawings are made of the free surface close to the front wall of the tank in the
y — z-plane. These drawings are taken from different cross sections indicated by the three
dotted vertical lines in the images. At the left image the lines indicating the intersection
between the free surface and the front and rear wall are indicated. Also the image shows
the dry/wet pattern on the front and rear wall. These patterns were left on the wall as the
wave moved down since the water wetting the walls does not fall down as fast as the wave
moves down. The image sequence shows the free surface as it moves up, and crosses this
dry/wet pattern. In the middle image two dotted lines are shown where two y — z-plane
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drawings show the free surface close to the wall. At the right dotted line the free surface has
crossed the dry/wet pattern while at the left it has not. In the area where the free surface
has not crossed the dry/wet pattern the free surface bends upwards as indicated in the left
y — z-plane drawing. As the free surface crosses the dry wet pattern the free surface flips
downwards as indicated in the centre drawing of the y — z-plane. This causes the free surface
to be almost invisible in the present experiments. At the right image the free surface has
crossed the dry/wet pattern for the whole length of the pictured area, and three-dimensional
surface tension waves are seen to travel generally in the z-direction, towards the centre of the
tank.

Decay tests for the first natural sloshing mode were carried out to quantify the damping.
The decay of the wave elevation at & = —L/2 denoted (js(t), can be seen in the left plot in
figure 2.15. The amplitudes of the elevation, denoted A, is plotted non-dimensionally in the
logarithmic plot seen on the right hand side in figure 2.15. Assuming that the amplitudes
follow the motion of a linear under-damped mass-spring system, then A/Aq=e=*""s. Here
a is denoted the modulus of decay and T, is the natural period of the first natural mode
of sloshing. This means that the amplitudes should form a straight line in the logarithmic
plot. The peaks and minima are plotted separately. Linear polynomials were fitted to the
peaks and minima and they suggest a modulus of decay of a = 0.0272 and o = 0.0249,
respectively. The corresponding damping ratio £ of the first mode of sloshing is given as
¢ = a/(2m). Keulegan [17] derived an analytical formulae for the modulus of decay due to
linear laminar boundary layers. Inserting the dynamic viscosity v = 1.01 - 1075[m?/s] this
formula returns a = 0.0209. In the numerical model of the sloshing and air-escape stages
presented in chapter 3, the modulus of decay of the first mode of sloshing is used as input.
The average of the estimates of o from the peaks and minima in the experiments is then
used, that is a = 0.0261.

2.4.2 The air escape stage

During the different runs the air pocket was filmed from different angles using one high speed
camera. The images from the different camera angles are taken at slightly different times.
Figure 2.16 shows images for air pocket 6 from the camera angles 1, 2 and 3 as illustrated
in the upper left corner of the figure. These images originate from three separate runs. The
pressure time histories from pressure sensor P2 of the three runs are plotted in the lower
right corner of the figure. The location of pressure sensor P2 is shown in figure 2.3. The
vertical bars in the pressure plot indicate the time instants when the different pictures were
taken. In image number 1, FSF indicates the line where the free surface intersects the front
wall. Similarly FSR indicates the line where the free surface intersects the rear wall. The
first set of images of air pocket 6 shown in figure 2.16 are taken before the wave touches
the roof. From the pressure measurements it is seen that the dynamic pressure inside the
air pocket is nearly zero. In image 3 the air pocket is seen from the side. The continuous
bright area is the opening where air escapes the air pocket. The variation of the thickness
of the opening is due to a nearly symmetric capillary wave. This wave is seen to have wave
length approximately equal to half the width of the tank, and amplitude of about 1—2[mm)].
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Figure 2.16: Image sequence before the tlme instant when the water
first touches the roof for air pocket 6. The images are taken during three
different runs. Image 1, 2 and 3 are taken from camera angle 1, 2 and 3.
FSF and FSR denote the intersection between free surface and the front
and rear wall respectively.

From image 2 these waves are seen from the top. They are seen to be generally 3D. These
waves cause the air pocket not to close instantly across the width of the tank. This leads to
a period of time when the air pocket is partially open and closed along the width of the tank.
The mechanism triggering this wave was explained in connection with the sloshing stage in
section 2.4.1.

The images of air pocket 6 in the figure 2.17 and 2.18 are taken during the time when
the wave touches the roof for the first time. From the front view images in these two figures,
the wave is seen to be more and more sharpened at the wave crest. The reason for this is
believed to be that the rapidly escaping air starts to affect the liquid flow. The escaping air is
modelled in section 3.6 assuming that the water is rigid and approaching the roof at constant
speed. The results show that there is a negative dynamic pressure at the wave crest. This
is believed to cause the sharpening of the wave crest seen in figure 2.18. At the sharpened
wave crest the curvature of the free surface is large, this indicates surface tension effects.
This suggests that a coupled gas/liquid model should be used to capture this effect. From
the side view (image 3) in figure 2.17 the wave just touches the roof in the middle of the tank
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Figure 2.17: Image sequence towards the time instant when the water
first touches the roof for air pocket 6. The first touch time instant is
approximately the time instant of image nr. 3.
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(around z = 0). This is the first touch time instant and the time is approximately equal to
t = —8.2[ms]. In figure 2.18 the air pocket 6 is shown during the time when the air pocket
is partly closed and partly open across the width of the tank. In image 2 the wet area of the
roof is indicated. Air is seen to escape close to the x — y parallel walls.

The images in figure 2.19 show the air pocket towards closure. In image 2 the tank roof
is seen to be nearly continuously wetted across the thickness of the tank. The time of closure
is defined as the time instant when the full width of the tank roof is continuously wetted.
The time of closure for air pocket 6 is estimated to be around the time instant of image
3, that is ¢ = —6.2[ms]. Air pocket 6 is seen to close just after the first contact with the
roof. This is not a general result applicable to all the other air pockets. From figure 2.8 it
is seen that the air pockets 5 and 8 close at a later time, just after the dynamic pressure is
zero between the first pressure peak and the first pressure minimum. The three-dimensional
leakage of air pocket 5 can be seen in figure 2.20. In image 1 of this figure two symmetrical
wetted areas of the roof are seen. These areas expand throughout the time series, but air
continues to leak out of the air pocket until image 7, where the roof is wetted continuously
across the whole width of the tank. This air leakage is believed to affect the strong decay
of the air pocket oscillation experienced for these two pockets during the time from the first
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Figure 2.18: Image sequence during the time when the air pocket 6 is
partially closed. In image 2 the air can still exit the air pocket close to the
walls.

pressure maximum to the first pressure minimum which was commented in connection with
figure 2.10.

To investigate the role of air leakage on the pressure oscillations, air pocket 6 and 7 was
punctured by opening a hole in the roof. Practically this was done by drilling holes in screws
which were mounted in the hole in the roof of the tank seen in figure 2.2. The diameter of
the hole d was varied as d = 0, 1,2 and 4[mm]. The results for the air pocket 6 and 7 can be
seen in figure 2.21. Here the zero diameter results are the mean of 13 runs, that is the same
curve as in figure 2.8. The curves for d > 0 are the average pressure time history of three
runs at each diameter. As seen from the figure, the effect of leakage is decay of the pressure
peaks. This suggests that the leakage observed for air pocket 5 reduces the amplitude of the
first pressure peak and the first pressure minimum.

From the presented images of air pocket 5 and 6 it is seen that the air pocket does not
close instantaneously across the thickness of the tank. This means that the variation of the
water and air flow in the z-direction is significant during this time period. The goal of the
experiment was to produce 2D flow conditions to ease the mathematical modelling. Tt is seen
that the time period of this 3D closure is about 2[ms] which is significant compared to the
rise time of the pressure signal. Also the pressure inside the air pocket during closure changes
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Figure 2.19: Image sequence of air pocket 6 towards the fully closed air

pocket. The time of closure is approximately at the time of image nr. 3.

with 2[kPa] which is significant compared to the pressure amplitude which is 8[kPa]. Hence,
this 3D closure, induced by the capillary waves and the escaping air, is believed to affect the
later pressure oscillations. Since the effect of adding a hole in the air pocket caused damping,
it is believed that the leakage due to 3D effects reduces the peak pressure P, compared to
the ideal case when the air pocket closes instantly across the full width of the tank. The
fact that leakage of air through holes causes damping of the air pocket oscillations will be
illustrated by a mathematical model in chapter 5.

2.4.3 The air pocket oscillation stage

When the leakage area is reduced, the air cannot easily escape any more and the pressure
inside the air pocket starts to increase until it reaches a peak value and starts to oscillate.
This stage is called the air pocket oscillation stage. Images from the first part of this stage
for air pocket 6 can be seen in figure 2.22. For air pocket 6 the free surface geometry near
the wave crest was nearly symmetrical in the z-y plane before the wave touched the roof
(see image 1 in figure 2.17). As the wave approached the roof the free surface was sharpened
at the wave crest. Later this peak moved up towards the roof during the closure, but also
moved to the right, that is in the direction of the escaping gas flow. In the middle of the
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Figure 2.20:
Bottom: Images showing the 3D closure where the roof is partially wetted
across the thickness of the tank.

right image 2 of figure 2.22 the wave crest has wetted the roof nearly continuously across the
width of the tank. The geometry of the wetted area changes rapidly during the initial stage
of the air pocket oscillation stage. From the right image column, the wetted length of the
roof is increasing during this period.

In the figures 2.23 and 2.24 more images taken during the air pocket oscillation stage of
air pocket 6 are seen. The images are taken close to the time of maximum and minimum
pressure. From the right images the wetted length of the roof is seen to increase while moving
leftwards throughout the image sequence. There is no signs of an inward water jet during the
initial compression of the air pocket and until image 2 for the pressure oscillation stage while
there is a right going jet, during this time period. However, the right image of time instant 3
shows a thin spray of water into the air pocket. This indicates that there is a jet towards the
air pocket at this time instant. This jet is believed to be connected to the negative dynamic
pressure inside the air pocket preceding this time instant. In the right image corresponding
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Figure 2.21: The pressure inside the air pocket for pressure sensor P2.
Top: The effect of different holes for air pocket 6. Bottom: The effect of
different holes for air pocket 7.

to the time instants 4, 5 and 6, a shadow shaped as a vertical bar is seen to the right of the
wetted section. This shadow bar spans the whole width of the tank and is moving to the
right. This shadow is a pulse of water coming out with the jet in the left image corresponding
to time instant 4. This pulse of water is believed to be thrown out of the jet as a consequence
of the pressure maximum preceeding this time instant, that is the time instant of image 3.
In the same way a similar pulse is released in the jet at time instant 6 and is seen to travel
to the right in the same way as the previous pulse. A view of the pulses released in the jet
from camera angle 1 can be seen in figure 2.25.

At the end of the image sequence in figure 2.24, the right intersection line between the
free surface and wetted area of the roof starts to reduce. This indicates that the velocity of
the entering water has changed direction. This can be used to define the time instant when
the air pocket goes from water entry to water exit. Water entry and exit is hence defined
to be the time period of increase and decrease of the wetted tank roof surface, respectively.
Images taken during the water exit stage is shown in figure 2.26 and 2.27. During the water
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exit stage the right going jet stops and the wetted length of the roof is reduced. The right
intersection line between the water and air on the roof forms a characteristic pattern. The
flow is seen to be three-dimensional during water exit.

In appendix A an investigation of the possible fluid-structure interaction effect between
the air pocket impact and the deflection of the roof is made. The measured response of the
roof is seen to be too small to cause any important fluid-structure interaction effects.

2.5 Experimental findings

e A procedure for creating air pocket slamming events in the upper corner of a rectangular
tank was derived using linear multimodal theory. The pressure time history from the
experimental impacts show varying degree of repeatability. Air pocket 6 is seen to have
good repeatability and is hence most appropriate for comparison with mathematical
models. Some types of air pockets close just after the first contact with the roof, like air
pocket 1 and 6, while other types of air pockets close at the time instant of maximum
pressure, like air pocket 4, or just after the first zero down crossing, like air pocket 5
and air pocket 8. For these two air pockets the leakage took place through the wetted
section of the roof. This means that the tank roof was not continously wet accross the
thickness (z-direction). For all the air pockets interaction between the escaping air and
the water was observed. For air pocket 6 this was seen as a sharpened wave crest just
prior to closure of the air pocket. The closure of the air pocket 6 was also seen not to
be instantanous across the thickness z-direction of the tank.

e All the investigated air pockets show large decay during the time from the first pressure
maximum to the first pressure minimum. This is referred to as the initial decay. After
the first period of oscillation the amplitude of the pressure time history behaves in a
less uniform fashion, however a general decay trend is observed. This decay trend is
to a varying degree exponential. The decay trend after the first period of oscillation is
later referred to as the later decay.

e A separate set of experiments was carried out to investigate the role of air leakage into
or out from the air pocket during the air pocket oscillation stage. This was done by
varying the diameter of a circular hole in the tank roof. Air pocket 6 and 7 were used,
which was seen to close before the first pressure peak. This means that air was only
leaking through the hole in the roof during the air pocket oscillation stage. The air
pocket oscillations show larger decay if air is allowed to leak into or out from the air
pocket during the air pocket oscillations than if such leakage does not exist.

e Air leakage cannot explain the initial and later decay of the air pockets oscillations of
air pocket 1, 5 and 6 because they are closed before the first pressure maximum. These
air pockets show a large initial decay relative to the later decay. However, air leakage
can explain the larger initial decay experienced for air pocket 5 and 8 compared to the
closed air pockets 1, 5 and 6. This because air pocket 5 and 8 show air leakage almost
until the first pressure minimum.
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Figure 2.22: Image sequence during the initial compression of air pocket
6. The left column of images are pictures taken from the front of the air
pocket (CA 1), while the right column are taken from above (CA 2).
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Figure 2.23: Images taken during the air pocket oscillation stage of air
pocket 6. The left column of images are taken from the front of the air
pocket (CA 1), while the right column are taken from above (CA 2).
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Figure 2.24: More images taken during the air pocket oscillation stage
of air pocket 6. The left column of images are taken from the front of the
air pocket (CA 1), while the right column are taken from above (CA 2).
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Figure 2.25: Images taken of the jet during the air pocket oscillation
stage of air pocket 6. The images show the right going jet. The images are

taken from the front of the air pocket (CA 1)
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Figure 2.26: Images taken during water exit of the air pocket oscillation
stage of air pocket 6. The left column of images are taken from the front
of the air pocket (CA 1), while the right column are taken from above (CA

2).
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stage of air pocket 6. The left column of images are taken from the front

of the air pocket (CA 1), while the right column are taken from above (CA
2).




Chapter 3

Numerical model of the sloshing and
air-escape stages

In the previous chapter a subdivision of the air pocket impact event was made into a sloshing
stage, an air-escape stage and an air pocket oscillation stage. In the sloshing stage the
amplitude of the different modes are build up to create the air pocket impact. As the
wave approaches the roof, air escapes the air pocket area at increasing speed. Hence, this
stage is denoted the air-escape stage. Here a mathematical problem of the sloshing and air-
escape stages is proposed and then a new numerical procedure is used to solve it. The new
numerical method is denoted the boundary-element-finite-difference method. After this the
new numerical procedure is compared with different types of test cases. The first being a
linear standing wave inside a tank where an analytical solution exists. Then the method is
compared with the single-dominant nonlinear multimodal method by Faltinsen and Timokha
[8]. This to see the accuracy of the method in the nonlinear case. Finally a comparison with
experiments is made for the same case.

3.1 Physical assumptions in the sloshing stage

In this section relevant physical assumptions for the sloshing stage is made based on the
experiments presented in chapter 2. These assumptions are summarized in figure 3.1. The
water is assumed incompressible as well as irrotational and inviscid, hence potential flow
theory is valid. In the experiments damping of the sloshing waves was observed. This
damping was due to viscous boundary layers and meniscus effects. The damping due to
meniscus was seen to be of importance. Since the author is not aware of any mathematical
model for this effect, a simplified approach is taken. In the present work the damping effect
of viscosity and meniscus is included in the same way as Faltinsen [18] did. This is done
by adding a Rayleigh damping term to the dynamic free surface condition and yields one
parameter which can be fitted to an experimental decay test involving the lowest sloshing
mode. The fact that the damping is sloshing mode dependent cannot be modelled by the
described numerical procedure.

The meniscus effect was also seen to introduce three-dimensional effects in the experi-

33
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Figure 3.1:  The assumptions used for the boundary-element-finite-
difference method which is used to model the sloshing and the air-escape
stages. In addition, the definition of the wave elevation ((z,t) the cross
sectional dimension of the air flow h(z,t) and the distance from the mean
free surface to the roof h; is defined.

ments. These effects are neglected and the numerical method is hence derived in two dimen-
sions. In addition fully nonlinear boundary conditions will be used on the free surface. The
free surface is assumed to be a single-valued function of the horizontal coordinate = and is
identified by the elevation of the free surface (x,t).

In the sloshing stage the air is not assumed to affect the water flow. However, as the wave
approaches the roof, air escapes the region where impact is going to occur at increasing speed.
The experiments show that the air starts to interact with the water when the minimum gap
Bmin, defined as the vertical distance between the maximum wave elevation (. and the
roof, is less than 3 — 4[mm]. In comparison the maximum thickness of the air pocket is
18 [mm|, while the initial length of the air pocket is 89 [mm]|. The air flow is assumed
to be mainly horizontal and can hence be modelled as quasi-one-dimensional. Quasi-one-
dimensional means that the cross section of the air domain h(z,t) in figure 3.1 is assumed
to have small variation in the z-direction, and hence that the y-component of the velocity
can be neglected. This assumption also means that the air velocity is constant over the
cross section. Hence viscous and turbulent flow effects which generally produce variation
of velocity over the cross section are neglected. The density of the air is assumed constant
which means that the air flow in the sloshing stage is assumed incompressible. This means
that compressible effects like shock and acoustic waves are not modelled. As the wave crest
is 3 — 4|mm] from the roof, the air speed increases rapidly and compressible effects might be
of importance. This effect of compressibility is neglected in this section but is investigated
further in section 3.6.
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3.2 A mathematical problem for the sloshing stage

Based on the physical assumptions discussed in the previous section the mathematical bound-
ary value problem in figure 3.2 is established. Here the derivation of the equations in this
figure is presented in detail.
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Figure 3.2: The mathematical problem for the boundary-element-finite-
difference method (BEFDM) used to model the sloshing and the air-escape
stages of air pocket 6.

3.2.1 The boundary integral equation for the water

The velocity in an irrotational flow can be written as the gradient of the potential function ¢,
that is u = V. Mass conservation of an incompressible fluid then leads to Laplace equation,
which can be solved by a distribution of sources, sinks and normal dipoles along the boundary
of a closed domain. Then Laplace equation is not solved directly, but through a boundary
integral equation which is given as:

alog z))  09(§)
— log(r(&,x))ds(&). 3.1
o) = [ oGS - 2o og(r(e @) ds(e) (3.1)
Here & = —27 if the point @ is in the interior of the domain. However, if the point x

is on the boundary then 6 is equal to the negative of the internal angle. m is the normal
vector pointing into the water domain and 7 is the tangential vector pointing in the counter-
clockwise direction along the water boundary. s denotes the arc length coordinate which is
increasing in the counter clockwise direction around the domain. Further, r is the distance
between the field point @ = (z,y) and the integration point & = (£,7). That is

r=+/(z—&2+(y —n)> (3.2)
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Equation (3.1) ensures mass conservation in the water and is later solved numerically using
the boundary element method (BEM).

3.2.2 The free surface conditions

The boundary conditions on the free surface listed in figure 3.2 is derived next. Since no
overturning waves occur during the sloshing stage, the free surface can be represented by a
single-valued function ((z,t). The kinematic free surface condition is seen as equation (3.4)
in figure 3.2. This is obtained by noting that

D(C—y) _0C 099C 99 _
Dt ot owor ay 0 (33)

on the free surface. Here the notation D()/Dt = 9()/0t + V¢ - V() has been used. The
kinematic free surface condition is then given as:

¢ 0¢ 99 I¢

oy Oxdx
This equation is used to step the nodes vertically during the time integration of the math-
ematical problem. The coordinate system defined in figure 3.2, is fixed to the tank and is
hence an accelerated coordinate system. This does not affect the boundary integral equation
(3.1) or the kinematic free surface condition, but it affects the dynamic free surface condition
derived next. The dynamic free surface condition states that the pressure is equal on the
two sides of the free surface. It is seen as equation (3.17) in figure 3.2. Since the coordinate
system used follows the tank motion it means that it is an accelerated coordinate system.
Newton’s second law must be modified in order to be applied to an accelerated coordinate
system. This means that also the Euler equations and Bernoulli’s equation are different for
an accelerated coordinate system. First Bernoulli’s equation is written for a non-accelerating
(inertial) coordinate system:

(3.4)

%+gv¢-wﬁ+pgy:0 (3.5)
Here the coordinate system does not follow the tank motion and origo is on the still water
level with y pointing upwards. V¢ is the velocities in the inertial reference system and p,
p and g are the absolute pressure, the density of the water and the acceleration of gravity,
respectively. In an accelerated system, the term 9¢/0t must be rewritten. All the other
terms are not affected by acceleration of the coordinate system when angular motions of the
coordinate system are neglected. The time derivative at a fixed point in a moving coordinate
system is then written as a function of the time derivative in a non-accelerated coordinate

system as follows:

ptp

0o . [o(x,t + At) — ¢(a,t)
aacc. Al}fglo[ At :|

(;_S(z’, t) + ungIAt — gg(x, t)} (3.6)
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Here uy is the velocity of the forced sway tank motion. It is convenient to operate with
the velocities observed when moving with the tank, u = V¢. The velocity potential for the
relative velocity ¢ is related to the absolute velocity potential ¢ as follows:

¢ =usr+ ¢ (3.7)

Bernoulli’s equation in the sway accelerated coordinate system using relative velocities V¢
then reads:

o p p _

g tEpar = 5u+ 5V Vé+ pgy+p = po. (3.8)
Here the value of C' in equation 3.5 is found by evaluating the equation at y = 0, without
excitation or fluid motions, using the coordinate system defined in figure 3.2. Then the
pressure inside the tank is equal to the ullage pressure py. The Bernoulli’s equation is then
rewritten to express the time rate of change of ¢ on the free surface, as one travels with the
wave vertically. This is denoted d¢/dt, and is given as

dp 09 0pOdx 0oy ¢ ~ 0¢OC

oot Tacor Toger ot Tagar (39)

Here /0t is equal to zero since the free surface is followed in the vertical direction only.
Oy/ot = O( /Ot expresses that the y-coordinate changes according to the wave elevation. By
inserting the kinematic free surface condition equation (3.4) for /0t in equation (3.9) and
inserting the result into Bernoulli’s equation for d¢/0t, the Bernoulli’s equation on the free
surface is written as:

d 1 1
¢——g<—u¢—af.r+u2—<

(3.10)

9o\>  1[/06\* 00pOC py—p
dt 2 2 ) + () + '

ox 2 dy _@%% P

The term —pu¢ has been added to model the damping effect of viscous boundary layers and
meniscus. Faltinsen [18] used a similar type of term to obtain steady state results for sloshing.
The term can be fitted to experimental decay tests. Faltinsen linearised the free surface
conditions and obtained the following relation between the modulus of decay « estimated

from experiments and p:
2«

M:?-

n

(3.11)

Here T, is the first natural frequency of the tank. Details of this derivation can be found in
Faltinsen [18]. A boundary condition towards the rigid tank walls is also required. This is

given as:
09 0

on
Here the notation 9()/0n = n - V() is used. In equation (3.10) the pressure p is equal to the
pressure in the air. At the rightmost point on the free surface (z=L/2) the pressure is set
equal to the ullagem pressure. That is:

(3.12)

D = Do at x = L/2. (3.13)
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This ensures that the resulting mathematical problem does not allow for infinitely many
solutions. This point is explained in detail after the full mathematical problem has been
derived. Since the pressure is known on the free surface at @ = L/2, ¢ can be stepped
forward in time according to equation (3.10) at this point. For the remaining part of the
free surface —L/2 < o < L/2 the pressure in the air is unknown and must be found from
the air equations as explained in the following. The governing equations of the air domain
is the quasi-one-dimensional equations. The mass conservation equation for incompressible
quasi-one-dimensional flow can according to Anderson [19] be written as:

oh 0 0y

— + — —_— =0. 14

8t+8x[h(8x)} 0 (314)
Here ¢4 is the velocity potential of the air, and the velocity in the air can be written as

uy = 0¢y/0x. h denotes the vertical distance between the free surface and the roof as defined
in figure 3.1. At © = —L/2 the wall condition is enforced:

99,

L=0 (o==%L/2). (3.15)

This condition is enforced in the numerical procedure at x = —L/2. Due to global mass
conservation the condition also holds for x = L/2 without enforcing it explicitly in the
numerical procedure.

Anderson [19] showed that the quasi-one-dimensional momentum equation neglecting
viscosity is identical to the one-dimensional Euler’s equation. This means that the pressure
can be found from Bernoulli’s equation. Bernoulli’s equation for an accelerated coordinate
system is seen in equation (3.8). When this equation is applied to the air it reads:

¢ Po 2 Py (095 i
pgﬁitg = —pyas + Equzf - Eg 8—; +po — P (3.16)
From the definition of d()/dt in (3.9), it follows that 9¢,/0t = dp,/dt since ¢, is a func-
tion of x only. This equation is combined with the dynamic free surface condition for the
water (3.10). The combined dynamic free surface condition for incompressible quasi-one-
dimensional air and potential water is then written as:

g 1, 1706\ 1[0¢\> 9¢0p0C
=0 moarn =5 (50) 5 (5)

2
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+p{afx 2uf+2(8x .

Here 8 = ¢ — (py/p)dy- The quantity 8 can be stepped forward if the fluid velocities V¢,

0y /0z, ¢(x,t), , and tank motion xs,uys,a; are known at a time instant. The air domain

is connected to the water domain through the term dh/0t in equation (3.14). Here the goal

is to express this term as a function of 0¢/0n and the known variable 5 on the free surface.
In the following d¢/dn is denoted o for simplicity. Then the resulting mass conservation

ox

Oy Or Ox (3.17)
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equation for the air (3.14), can be inserted into the mass conservation equation for the water
(3.1) to form a fully coupled mass conservation equation where ¢, is the unknown on the
free surface. Next, h = hy — ( is inserted in equation (3.4). Here h; is the vertical distance
between the still water level and the roof. This yields:
oh_ oo _owon 19
ot Jdy Oz 0z
Here the velocity components ¢, and ¢, are expressed through the velocity component normal
to the free surface ¢,, which is denoted o, and the velocity component in the tangential
direction ¢,. When the subscript 7 and n are used it means 7 - V() and n - V(). Using the
relation ¢, = Ta¢; + nady, and ¢, = 110, + n1¢, the result is:

oh oh oh
i _U(n2+n18x> —¢T<72+ﬁax)- (3.19)
Here ¢, is unknown, but by inserting ¢ = 5 + (p,/p)¢, into the equation it reads:
oh oh P oh
E = —0 (TLQ + ny %) - (ﬁ‘[‘ + ngbgs) <7—2 + T1 %) . (320)

Inserted in the mass conservation equation (3.14), it yields:

O'(TLQ + mg—ﬁ) + <5T + %%s) (T2 + T1%> - C% [h<%>] =0. (3.21)

This is the mass conservation equation for the air written in a form convenient when the
equations are discretized. This equation takes a simpler form at the right and left end of the
air domain. The derivation is similar to the derivation leading to (3.21) with the following
two modifications. At the right and left edge of the free surface ¢, = 0. This is inserted
in equation (3.18). The other modification is that ¢, = 0 at the edges. This is due to
the boundary conditions in (3.15) and the quasi-one-dimensional assumption ¢4, = 0. The
resulting mass conservation equation at the right and left side of the air domain then reads:

ong + 1P — % l:h(%)] =0. (3.22)

Choosing proper boundary conditions for a mathematical problem is not trivial. As
commented after deriving the dynamic boundary condition, the pressure is set equal to the
atmospheric pressure at « = L/2. This is done for a particular reason. Imagine if this
condition was not enforced. Then the dynamic condition (3.17) is valid for all points on
the free surface, while the rest of the mathematical problem is similar. Then if ¢, ¢4 solves
this mathematical problem at one time instant, then also ¢ — p,/pc, ¢, + ¢ solves the same
problem. The resulting numerically discretized equation system should reflect this fact by
allowing for infinitely many solutions. The solution of the equation system can only be found
up to a constant. This problem does not exist if the pressure is fixed on one side, because
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then ¢, + c is no longer a valid solution at this point in the domain. This is why the pressure
is set equal to the ullage pressure at « = L/2 and it is as if a hole where present in the tank
at this position. There was no hole at z = L/2 in the tank used in the experiments, however
there was a hole in the tank roof at « &~ 0.15[m]. However, this difference is not believed to
be important, since the pressure in the air domain outside the pocket area is believed to be
close to atmospheric pressure.

3.3 The numerical method

The numerical solution of the mathematical problem in figure 3.2 has similarities with the
mixed Eulerian-Lagrangian method frequently used for free surface problems. This method
was originally proposed by Ogilvie [20] and has later been used by, for instance, Longuet-
Higgins and Cokelet [21], Faltinsen [18], Dommermuth and Yue [22] and Tanizawa [23]. The
method solves the mathematical problem by dividing it into an Eulerian and a Lagrangian
stage. During the Eulerian stage the equation representing mass conservation is solved.
During the Lagrangian stage the location of the nodes on the free surface and the velocity
potential is stepped forward using the boundary conditions. The word Lagrangian is however
not correct for the present method since the nodes on the free surface are only stepped in
the vertical direction and do not follow the fluid particles.

In the same way the new numerical procedure, solves an equation system representing
mass conservation during the Eulerian stage. This mass conservation equation system ex-
presses mass conservation in the air and water. This equation system is constructed as
follows. The differential equations expressing mass conservation in the air domain are the
equations (3.22) and (3.21). The finite-difference method (FDM) is used to discretize these
equations and yields an equation system for the air. This equation system is inserted in
the equation system which represents mass conservation in the water domain. This is the
equation system which is obtained by applying the boundary element method (BEM) to the
boundary integral equation (3.1). The new numerical procedure is named the boundary-
element-finite-difference method (BEFDM).

The stage equivalent to the Lagrangian stage of the mixed Eulerian-Lagrangian method
consists of integrating the boundary conditions in time. The dynamic and the kinematic
boundary conditions (3.4) and (3.17) are used to step the variable § and the free surface
elevation ¢ forward in time. The time integration method chosen here is the explicit Runge-
Kutta method of fourth order as defined by Kreyszig [24]. Using this integration method the
equation system needs to be solved four times during one time step.

3.3.1 The coupled mass conservation equation

In the water domain the mass conservation is satisfied through the boundary integral equation
(3.1). This equation is discretized using the linear boundary element method (BEM). The
discretization method of the water domain is similar to the method applied by Lu et al.
[25] and Kristiansen [26]. In figure 3.3 the boundary of the water domain is divided into
linear segments. These segments are called boundary elements and the end points of the
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Figure 3.3: The numerical dlSCerl?dthn of the mathematical problem.
The water is discretized using the boundary element method where the
collocation points are seen as e and the air is discretized using the finite-
difference method (M). The nodes on the free surface (o) only moves verti-
cally. The nodes of the air domain (M) share the same horizontal coordinate
as the free surface nodes.

elements are called collocation points (nodes) where the boundary conditions are satisfied.
The collocation points are indicated as black circles (e) in figure 3.3. The linear boundary
element method assumes linear variation of the source and dipole strengths over each element.
For element j, the variation of ¢ is written as

o=1-g5% oo @} {¢1}] = [N{e}. (3.23)

Here ¢ is coordinates in the local coordinate system in figure B.1. Here the subscript 1 and
2 on ¢ refer to the value of ¢ on the ends of the element. Similar representation is used for
d¢/dn, that is,
d¢
dn

When these expressions are inserted into equation (3.1), then

o Z/ alog { } Z/ | log(r {Z;}J (3.25)

These integrals can be rewritten and expressed through four basic integrals [”, ILZJ, VE] ; and
i
I} as follows:

/S]Lleog(T)dS—{LlJ_fﬁll 5( - &1, ) v ( — &I} )} (3.26)

1 .
T e & [Geally = I I = §15] = —leij, dig). (3.27)
>] >]

= [NH{o}. (3.24)
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Similarly we get,

/S_LNngi( Dlog(r) 4, —[z e @( — &I ) s ( — &I )} (3.28)

J

J J

Here the integrals are given as
I} = / logrdS (3.30)

Sj
dlogr

I} = ds 3.31
T 3.31)
I} = / ¢logrds (3.32)

/ glogT (3.33)

The analytical solution to these integrals are presented in appendix B. Equation number i
can now be written as:

Ne Ne
Oihi + Y _(aib; + bijhoy) = Y _(Cijor; + dijoz;)- (3.34)
J=1 J=1

The boundary element equations are now written in matrix notation,

[Gl{¢} = [H]{o}. (3.35)

Here [G] and [H] are coefficient matrices and {¢} and {o} are column vectors containing
nodal values of ¢ and o. This equation system, which represents mass conservation of the
water domain, is also used in the numerical method for the air pocket oscillation stage of the
air pocket experiment which is presented in detail in chapter 4. To ease the presentation of
the numerical method in this chapter the equation system (3.35) is conveniently rewritten

as: ¢1 o
[G1 Gf GS} ¢f = [Hl Hf HS] gy . (336)
@5 o

The numbering of the unknowns starts at the free surface node located at (z = L/2) and
continues in the counter-clockwise direction. The subscript 1 in for instance ¢; and oy
denotes this start point. The subscript f denotes all the other nodes on the free surface
while the subscript s denotes nodes on the structure. Next the equation system expressing
mass conservation in the air domain is derived.

The equations (3.21) and (3.22) express mass conservation for the air. These equations
are discretized using the finite difference method (FDM). The black squares (H) seen in
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figure 3.3 are the nodes of the air domain and are used to discretize the equations. The free
surface contains Ny nodes, hence the leftmost node on the free surface is node number Ny.
The numerical discretization of the different terms in (3.21) follows starting with the second
order derivative of ¢,. The discretization is done on a general node number 2 < i < Ny
shown in figure 3.3:

9 o

()]

[wzx/ *hi_1y2) — qsf;,;l/?(hm)]
Al’i

~ hi—1/2 i1 L hi—1/2 n hivipa | hiy1/2 i1
AwiAfEi—lﬂ g Ax; Axi—l/? A’Jlfi-s-1/2 g A«TiAl'iH/z g

= @iyt + bigy, + iy

Q

(3.37)

Here the Awx;_y/0, Awi, Awiy1yo and hi_i/2, hiy1/2 are geometrical parameters of equation
(3.37) which are defined in figure 3.3. The local truncation error of equation (3.37) is of
first order in Az;. To further discretize equation (3.21) the normal and tangential vectors n
and 7 on the free surface are needed. For the nodes 2 <1i < Ny, the normal and tangential
vectors are defined as the normal and tangential vector of a quadratic function fitted through
the nodes located at x;_1, ;, x;+1. The quadratic function for node 7 can be seen in figure
(3.4) together with the normal and tangential vector.

Figure 3.4: Two boundary elements on the free surface. A second order
polynomial is fitted to the three node positions x;_1, ;, ;1. This is used
to calculate the normal vector n; and the tangential vector 7.

To find the derivatives h,, ¢, and G, in (3.21), the value of h,¢, and § is fitted to

a quadratic polynomial. Then the derivative of this quadratic polynomial is found. The
formula for ¢4, is then given as:

% _ A8i71 ¢i+1 _ Asi,l — ASZ‘ ¢z _ Asz ¢i71
or ASI(AS»L + Asi_l) g ASZ'ASZ'_l g Asz_l(Asl + ASi_l) g

0i0y "+ midl + @iy

(3.38)
The same formula is used for h, and (3.. This scheme reduces to the central difference scheme
when As; = As;_;. The approximations of the terms ny + nl% and 7 + 7'1% in equation
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(3.21) are named d; and e;. That is:

oh
) 3.39
ng ““ax (3.39)
oh
T2+T1a—x’f\‘4€i- (3.40)

Then a discretized form of equation (3.21) at node ¢ reads,

a; P €;0; i bz Pg €iTNy; i C; Pg €iqi i
a = tlae [ e -

.

i p d; di p d;
ezoz i—1 G o Cili niqg
P d; rad 4" (3.41)

= aidh " + b, + Gl + .

For node ¢ = 1 the pressure is known and hence ¢, can be stepped forward in time using
equation (3.16). Then ¢, is known at node 1 and can hence be inserted in the equation (3.37)
when i = 2. At node i = Ny, the combined mass conservation equation for the air is simpler
and given by equation (3.22). In this equation (h¢,,), is discretized using equation (3.37).
This is possible since a ghost node to the left of node N is introduced. This ghost node is
referred to as node number Ny + 1 and is seen in figure 3.3. The boundary condition of the
air domain at © = —L/2, that is, ¢, = 0 is discretized using a central difference stencil.
This leads to ¢y = ¢y' "' which is inserted into equation (3.37) when i = N;. The normal
and tangential vector components in equation (3.22) are set equal to the normal and the
tangential vector of the closest free surface element. [, in equation (3.22) is discretized using
a first order difference stencil using information on node Ny and Ny — 1. The discretized
version of equation (3.22) is then given as,

Ty (B, — Bn,—1 (an; +cng) nNp—1 by, N
oy = =2 (PPt T T O g g 3.2)
N9 SNy—1 ng N2

Based on (3.41) and (3.42) the relation between ¢ and ¢, is expressed in matrix notation as

follows:

{o7} = [A{¢g} — {by}- (3.43)
In addition the relation 8 = ¢ — (py/p)dy is known from the dynamic free surface condition
(3.17). Written in matrix notation it reads:

{67} = {85} + %{qsg}. (3.44)

The equation system (3.43) represents mass conservation in the air domain. Inserting this
equation system and the relation (3.44) into the equation representing mass conservation for
the water (3.36) and sorting unknowns variables to the left and known variables to the right
the following equation system is obtained:

[A{x} = {b}. (3.45)
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Where:

[H][A,] - 5G] | -Gl = idglg

j ®s

[A] = | {H:}

{b} = ¢ [Hj{b} — [Hi{o} +[G{Bs} +{Giid

This is the coupled mass conservation equation system for the air and the water and is in
this work solved by using a direct method.

3.3.2 The time integration procedure

The time integration is performed using the explicit fourth order Runge-Kutta method as
specified by Kreyszig [24]. The equations containing a time derivative in the mathematical
problem (figure 3.2) are the equations (3.17), (3.10), (3.16) and (3.4). The time derivative
in these equations are collected in the vector ¥ = {8, ¢1, ¢41,(}. The right hand side of
these equations are collected in the vector f accordingly. So that ¢ = f(t, 4, x), where the
apostrophe denotes time derivative. If 1 and y are known then all the variables ¢, ¢g, ¢z, 0y,
¢z can be found and hence f can be evaluated. The procedures for obtaining ¢, o, ¢g.¢,. (;
from ¢ and x are explained next. Along the free surface, ¢ is found by using relation (3.44)
while o on the free surface is obtained from (3.43). The velocity components ¢, and ¢, are
found by decomposing ¢ and the tangential velocity component ¢,.. To do this the normal
vector n and the tangential vector 7 is needed. These parameters are calculated in the same
way as in connection with the equations (3.21) and (3.22).

Figure 3.5: Illustration of the two boundary elements connecting the
free surface and the structure.

However, when finding ¢, and ¢, at the nodes in the ends of the free surface the knowledge
of the boundary condition on the walls is exploited in the manner explained by Tanizawa
[27]. This method solves a 2 x 2 equation system for u = [u,v] given as:

{gf} - {sz} (3.46)
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The terms in this equation are illustrated in figure 3.5. Here o, is the fluid velocity component
normal to the wall element and oy is the fluid velocity component normal to the free surface
element. Further, w is the fluid velocity vector with components in the x- and y-direction.
Finally, ns and n is the corresponding normal vector on the wall and on the fluid element.
Equation (3.46) is two equations which can be solved to obtain w = [u,v] for the nodes on
the free surface intersecting the walls. ¢- is calculated using the same method as for ¢, in
(3.38). At the end nodes one sided finite-differences are used. ¢, is obtained by the same
method as ¢,, in equation (3.38) just exchanging As with Az. At the end nodes one sided
finite-differences are used.

Now, the evaluation of f based on the knowledge of ) and x has been explained. The
fourth order Runge-Kutta method applied to the current problem is written in figure 3.6. The

Time integration procedure:
Forn=1.N
= Atf(tn, Y, Xn)
Atf(t, + SO Yy + ki, [A]7'0(Y, + 1K)
Atf(tn + 5O Yy + ko, [A]70(Pn + 3K2))
= Atf(tn + At b, + ks, [A]70(¢y, + k3))
="+ At
Y =+ L (ky A+ 2k + 2ks + ky)
Regridding
X" = (AT (y )

End

Figure 3.6: The 4 th order Runge-Kutta time integration procedure as
defined by Kreyszig [24] applied to the boundary-element-finite-difference
method.

procedure is explicit in time and evaluates f four times to obtain the variables ki, ko, k3, ky.
This implies solving the equation system (3.45) four times per time step. The regridding is
performed before obtaining y"*!.

3.3.3 Regridding of the free surface

In the time integration procedure in figure 3.6 regridding is performed. This is necessary
when solving a problem in the fully nonlinear case, where the free surface is subjected to
large deformations. In this work regridding is performed in the same way as presented by
Sun [28]. Figure 3.7 shows a segment of the free surface before and after regridding. New
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————— Cubic spline

Polygonal line
(e} Old nodes
New nodes

Figure 3.7: A cubic spline is fitted to the old nodal locations (O) in
order to obtain new nodal locations (X) during regridding.

nodal locations (X) are obtained by fitting a cubic spline function to the old nodes (O). In
the same way values of the variable § at the new nodes are also found. Here this procedure
is summarized in three steps:

1. First a cubic spline representation of the free surface geometry is made based on the
old nodal locations (Zoq, Yoiq)- In this way a general point on the free surface (z,y)
is expressed as a function of the cubic arc length along the free surface s.. That
is (z(s¢),y(sc)). In the same way the velocity potential at the old nodal locations
d(Tod, Youa) 1s expressed as a cubic spline function in terms of the cubic arc length
s.. This means that ¢ at a certain location s. along the free surface can be found by
evaluating the cubic spline at this location. That is ¢(s.).

2. Then new nodal locations are found based on the concept of mesh density functions.
The result is an array of new nodal locations s.ey.

3. The cubic spline representation is used to find new nodal locations ey (Senew ) s Unew (Scnew )
and values of the velocity potential at the new nodal positions ¢(Semew)-

New nodal positions s. are needed in point 2 above. In the present work the concept of
mesh density functions are used as explained by Tanizawa [27]. For the sloshing stage the
grid used was uniform along all borders of the domain. The procedure of making the array
of new nodal locations S.,e is simple in this case. As the wave approaches the roof it is
necessary to resolve the interaction effect between the water and the roof. The grid is then
refined at the wave crest. Element density functions is used to create a grid which is refined
towards the wave crest. An element density function f(s.) is defined to be the number of
elements per unit length of the boundary. The element length function g(s.) is the inverse
of that and is the element length function. Both these functions are continuous. A smooth
transition of the element size can be achieved by choosing a linear function for the element
length function g(s.) = as.+b. The location of the nodal points can be found as the integral
of the corresponding element density function as follows,

/0 md&c =1 i=1...N. (347)
Here } 0
o= 90=90) ), (3.48)
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N denotes the number of elements along the segment. The integral is solved which yields:

ai __ b
s = L (3.49)
a
This expression cannot be used when a = 0 which is not a problem since a grid with constant
element density along the length is easy to create. In figure 3.8 two examples of element

refinement based on equation (3.49) are shown. The left plot shows a linear element length

g(s,)
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Figure 3.8: An element distribution corresponding to a linear element
length function g(s.) (left) and piecewise linear element length function

(right).

function, while the right plot shows a piecewise linear mesh function. The latter method is
later used when modelling the air-escape stage of air pocket 6 in section 3.5 to refine the
wave peak as it approaches the roof.

3.4 Test cases

The boundary-element-finite-difference method was applied to a test case consisting of a
linear standing wave. The analytical solution for this wave is given in appendix C. The
analytical solution is found for both the water and the air, where the air can interact with
the water. This is hence a two-phase problem. The standing wave consists of the first mode
of sloshing. To obtain the natural modes a linearised mathematical problem is solved for.
The wave elevation is then written as ((t,2) = —(,sin(wit) cos (m(xz + L/2)/L). Then the
analytical solution for ¢, is given as

by = C’;:l (i) cos (m(x+ L/2)/L) cos (wit). (3.50)

Here wy is the first natural frequency of the sloshing motion. This is

2
wi= % (%) where C) = —Wihl. (3.51)
Py =P L tanh (”LH)
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Figure 3.9: Left: Comparison of the velocity potential in the air ¢, for the
boundary-element-finite-difference method (BEFDM) and the analytical
solution of the two-phase standing wave. Right: Spatial convergence study
of the unknowns on the free surface intersecting the walls in the BEFDM.

The wave amplitude (,, the water density p and the air density p, were set equal to 0.01[m],
1000[kg/m®] and 1.2[kg/m®], respectively. The tank dimensions were chosen as L = 1.0[m],
H = 1.0[m] and hy = 0.1[m]. The time integration procedure in figure 3.6 was used with
the following modifications. The free surface conditions in the numerical procedure were
linearised in the same way as the analytical solution. Also the boundary elements were put
on the mean free surface and hence no regridding was required.

A convergence test of the spatial problem in equation (3.45) was then performed using
the analytical solution for t = 0. Then {8} ¢1, ¢ and {o,} from the analytical solution
were inserted into the right hand side of the equation system (3.45). Then this equation
system was solved to obtain o1, {¢,} and {¢,}. Five different uniform grids with 10, 20,
40, 80 and 120 elements along each side were used to investigate the convergence speed of
the solution. Here the corner nodes are investigated in detail because the boundary element
method often shows lower order convergence here compared to other areas of the domain.
The results of the convergence test are seen in figure 3.9. On the left plot the air velocity
potential ¢, is plotted for Ny = 20. On the right hand side of figure 3.9 a convergence study

of the unknowns in the upper corners of the water domain, oy and ¢gx, is seen. The error in

Iytical B
BEFDM _ mavie “ooes to zero with linear convergence speed,

normal velocity, defined as |o 4

while the error of ¢gy,, defined as [pp}"M — qﬁzrﬁ}y“mw, goes to zero with nearly quadratic
speed. The numerical method described in chapter 4, that is the Mixed Eulerian-Lagrangian
(MEL) method, was used to solve a similar type of problem for comparison. Again the wave
consisted of the first mode of sloshing but this time the air flow was neglected. This method
also uses linear boundary elements. This method solves for ¢ on the free surface. The results
from this method shows first order convergence of o at x = +1L/2, while the internal nodes

on the free surface shows second order convergence. The new method hence shows similar
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Figure 3.10: Comparison of the boundary-element-finite-difference

method (BEFDM), with analytical solution of the two phase linear stand-

ing wave. Top: p, = 1.2[kg/m?]. Bottom: p, = 500[kg/m?].

type of convergence as the mixed Eulerian-Lagrangian method on this test case.

The time integration was tested on the linear two-phase standing wave test case. Then the
spatial problem, solved for previously, were used as initial condition. The time integration is
made by 20 time steps per second, and 50 elements along each side of the tank. A comparison
of the resulting wave elevation on the left hand side (g is shown in figure 3.10 for two different
values of the air density, p, equal to 1.2[kg/m"] and 500[kg/m®]. The comparison shows good
agreement.

Next, the nonlinear implementation of the boundary-element-finite-difference method
(BEFDM) including regridding is tested. A good choice for comparison is the single-dominant
nonlinear multimodal theory (SDNM) as described by Faltinsen and Timokha [8] for single-
phase flow. The tank dimensions were chosen similar to the experiments, that is L = 1|m]
and filling height H = 0.833|m|. The water was fresh water, that is p = 1000[kg/m"] and
acceleration of gravity was set to g = 9.81[m/82}. The excitation signal used was:

M (t) = na1 (1 — cos(at))). (3.52)
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Figure 3.11: Top: Comparison of the boundary-element-finite-difference
method (BEFDM) and the single-dominant nonlinear multimodal method
(SDNM). Bottom: The effect of varying the modulus of decay « in the
Rayleigh damping model in the BEFDM.

Here 7, = 0.00465[m], and o = 6.075[m/s]. Since the first mode of sloshing dominates the
response in this case a uniform grid with 40 elements along the free surface was found to
be sufficient. For the time integration 150 time steps per second were found to be enough
through a convergence study. For the single-dominant nonlinear multimodal method 20
modes and 150 time steps per second were sufficient. Comparison of the elevation ¢ on the
left side of the tank is shown in the upper plot in figure 3.11. The new numerical procedure
(BEFDM) agrees well with the single-dominant nonlinear multimodal method. However,
the wave amplitude of the new numerical procedure is seen to be somewhat lower than the
wave amplitude of the single-dominant nonlinear multimodal method. In the lower plot the
new numerical procedure is compared when the damping due to viscous boundary layers and
meniscus is taken into account and not. Based on the experimental decay tests reported
in figure 2.15, the average of the estimated « from the maxima and the minima are used.
This results in @ = 0.0261. This is then inserted in equation (3.11) to obtain the Rayleigh
damping parameter p. The results show that the damping reduces the wave amplitude of
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Figure 3.12: Comparison of the experiments and the boundary-element-
finite-difference method (BEFDM) including Rayleigh damping.

the sloshing motion as expected.

Also the new numerical procedure was compared with the experimental results for the
same case. The experimental excitation signal was used directly in the new numerical pro-
cedure and not the analytical signal used previously. A comparison of the wave elevation on
the left hand side of the tank is seen in figure 3.12. The numerical procedure agrees well
with the experiments but the wave amplitude of the numerical procedure is seen to be a little
lower than for the experiments.

3.5 Numerical solution of the sloshing and air-escape stages

Air escape stage

Sloshing stage

Figure 3.13: The grid used for the boundary-element-finite-difference
method (BEFDM) during the sloshing and air-escape stages. The dots
indicate every 4 th grid point for the grid denoted grid 1 (G1).




3.5. Numerical solution of the sloshing and air-escape stages 73

0.15

o °
3 viml

05 048 046 044 042 04 ximl -0.38

04T 0408 0406 0404 0402  xImi-04
Figure 3.14: The free surface at the time instances when the Mach num-
ber M = ug*® /co varies from 0.1 to 1 in steps of 0.1.

Now, the boundary-element-finite-difference method is used to solve for the sloshing and
air-escape stages of air pocket 6. The size of the tank and the filling level is set equal
to the values of the experimental tank in chapter 2. The density of the water is set to
p = 1000[kg/m?], the density of the air is set set to p, = 1.2[kg/m?® and the modulus of
decay is set to & = 0.0261. To simulate the sloshing and the air-escape stages of air pocket 6,
numerical settings which resolve the important physics of the problem needs to be specified.
Here the spatial and temporal discretization is discussed. The air pocket experiment is made
up of stages containing different spatial and temporal scales. The time-scale of the sloshing
motion is the period of the gravity waves. While the air-escape stage occurs on the time scale
of the rapidly escaping air just before closure. This means that the time step and the grid
must be adjusted during the simulation to resolve these different spatial and temporal scales.
The numerical settings are based on physical reasoning, and these settings are denoted grid 1
or G1. Then convergence studies are carried out in order to see the sensitivity of element and
time step size on the solution. Characteristic element sizes are introduced for the sloshing
and air-escape stages and are named As,, As,., where the subscripts s and ae denote the
sloshing and air-escape stages. In the same way characteristic time step sizes Atg, At,. are
introduced. These numerical parameters are chosen based on physical reasoning. The G1
grid is then refined to see the sensitivity of the grid size on the solution.

For the sloshing stage the element and time step size As, and At should resolve the
shortest important wave component of the problem. From Dommermuth and Yue [22] 40
elements were used per wave length and 40 time steps were used per wave period. The
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Figure 3.15: Top: The air velocity u, relative to the tank in the area of
the air pocket. Bottom: The vertical component of the velocity at the free
surface in the air pocket area. The right images show close up plots of the
peak in the left images.

spatial discretization method and the time integration method are comparable to the methods
applied herein. Other researchers like Greco [29] also report the same number of elements
to be satisfactory. Therefore 40 elements are used to resolve the shortest wave length of the
problem during the sloshing stage. For air pocket 6 the smallest wave length of importance
is the 9 th natural mode of sloshing. Its wavelength is A9 = 2L/9 = 0.222[m]. Choosing
40 elements per wave length yield approximately 180 elements along the free surface, which
yields a characteristic element size of As; = 5.56[mm]. This is used as the grid size along the
free surface for the grid G1 seen in figure 3.13. Since the velocities of deep water waves are
negligible at a depth larger than the wave length, fewer elements are used along the bottom
than on the free surface. The ratio between the number of elements on the free surface and
the number of elements on the bottom is set to 2. The element density function is chosen
as linear along both vertical walls. The natural period for the different sloshing modes can
be used to obtain information about the smallest important time scale of the sloshing stage.
Utilizing equation 2.2 on page 27 yields Ty = 0.3772[s]. Using 40 time steps per period results
in approximately 110 time steps per second or Aty = 9.09[ms].

For the air-escape stage sufficient spatial and temporal refinements of the escaping air
are important. Smaller grid size is then required around the wave crest while the grid size
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Figure 3.16: Top: The free surface elevation for the air pocket during
the air-escape stage. Middle: The vertical velocity of the free surface. The
results show small dependence on relatively large variations of time step
and grid size.

outside the air pocket region can be increased. As the wave reaches the roof, air escapes
the air pocket shape at increasing speed and the air starts to affect the free surface. The
characteristic time-scale of this process is very small compared to the time-scale of the gravity
waves. This means that a smaller time step must be applied. Here the time step size is set
smaller than Az; /ug;, where u,; is the air velocity at node i. The time step criteria is changed
when the wave crest crosses 0.11 [m] which is defined as the start of the air-escape stage.
The time step criteria for the sloshing and air-escape stages are then written as:

At, for the sloshing stage,

At < (3.53)

Jeagil

min <Ats,min(%)> for 1 < ¢ < Ny in the air-escape stage.

Here Ax; is the grid spacing of the finite-difference method used to discretize the air and is
defined in figure 3.3. C' is a parameter which for the grid G1 is assumed to be 1.
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the wave peak at the time of closure of the air pocket. Middle: Temporal
convergence study of the air-escape stage, that is the grids G1, G1d and
Gle

In the experiments of chapter 2 the escaping air was seen to affect the wave peak as the
wave approached the roof. The spatial scale of this interaction is seen from the upper left
image of figure 2.22 to be approximately 2[mm]. To capture this spatial scale a grid size of
the wave crest is set to As,. = 0.55[mm)]. To resolve the inside of the air pocket, the grid was
also refined at the wall at © = —L/2, where the element size was set to 3.3[mm]. To avoid
too many elements the grid had to be coarsened at other areas of the domain. The resulting
G1 grid in the air-escape stage is seen in figure 3.13. The grid and time step sizes are seen
in figure 3.16. Here ny,, and ny, refer to the number of elements along the free surface and
the tank bottom at the time ¢ = 0. The time step frequency is fa; = 1/At,.

The results using the G1 grid is presented in the following. As the wave approaches the
roof air escapes at increasing speed. In figure 3.14, The air pocket is shown at different
time instances when the wave peak is very close to the roof. These are the time instants
corresponding to Mach numbers, defined as M = ug‘m‘/co, from 0.1 to 1 in steps of 0.1. Here
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Figure 3.18: The effect of varying the modulus of decay « in the Rayleigh
damping model on the free surface geometry and the impact velocity. Top:
The shape of the free surface just prior to impact. Bottom: The vertical
velocity on the free surface just prior to impact.

ug™ is the maximum speed of the air, and ¢y is the speed of sound for the air. The numerical
solution shows interaction between the water and the air when the distance between the
wave peak and the roof is less than 0.5 [mm]. In the experiments a sharpened peak is also
formed as seen in the images in figure 2.18. For the experiments the air pocket did not close
instantaneously across the width of the tank, which is the case in the numerical model.

The air velocity and vertical component of the free surface velocity is plotted for the air
pocket region in figure 3.15. The solution for both the air velocity and the vertical velocity
of the free surface is dominated by a peak at the wave crest.

A grid convergence study was performed in order to identify if the solution was sensitive
to spatial and temporal refinement as the wave approached the roof. These grids denoted
G2 and G3 are defined in the table in figure 3.16. The effect of this variation on the free
surface ((z,t) and vertical velocity v(z,(,t) on the free surface in the impact region can be
seen in figure 3.16. The spatial refinement results in small vertical oscillations close to both
ends of the free surface. Similar type of oscillations have been identified for other numerical
methods where the water domain is discretized using the boundary element method (BEM).
For instance it Tanizawa [27] reported that intersection points between the free surface and
the structure can contain stability problems when a numerical wave tank is modelled in time
domain using the BEM method. This is due to the inaccuracy in the calculated velocities at
these points. This suggests that the oscillations seen in the present method originates from
the BEM discretization of the water. The spatial refinement yields some change of the free
surface elevation and suggests that the solution contains some sensitivity to further spatial
refinement. The temporal refinement (grid G3) is seen not to deviate from the basic grid
(G1), which indicates that the G1 solution is not sensitive to further temporal refinement.
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Figure 3.19: Test of global mass cons[e]rvation of the water and the air.
Top: Change of mean water level AH (t). The o denotes the time instant
when the grid at the wave crest is refined. Bottom: The air velocity at the
right hand side of the tank wu,(x = L/2) estimated using first order and

second order backward differences in space.

A grid convergence study was also performed in order to enlight the sensitivity of grid and
time step size on the resulting free surface geometry at the time instant of closure. Sensitivity
to the wave crest grid resolution As,. and the time step parameter C' on the solution was
studied. The other parameters were set similar to the G1 grid defined previously. The grid
parameters for these grids can be seen in the table presented alongside the results in figure
3.17. A comparison of the free surface geometry at the wave crest at the time of closure is
also seen in the figure. In the upper plot the effect of grid refinement is seen and the lower
plot shows the effect of time step refinement. From this investigation it is concluded that the
solution is grid sensitive, especially to spatial refinement.

A Rayleigh damping term —u¢ was added to Bernoulli’s equation (3.10), to model the
damping effect of viscous boundary layers and meniscus effects. The Rayleigh damping
parameter ;i can be estimated from equation (3.11) using a modulus of decay « from experi-
ments. The Rayleigh damping term has no physical meaning in the air pocket region during
the air-escape stage. It was tested to set this damping term to zero when the wave crest was
less than 10mm| from the roof. The solution was seen not to be sensitive to whether the
Rayleigh damping term was active during the air-escape stage or not.

The effect of changing the value of the modulus of decay in the Rayleigh damping model
in the sloshing stage on the solution was also investigated. The free surface geometry and
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the vertical velocity of the free surface is compared before impact in figure 3.18. The effect
of increasing the modulus of decay « in the Rayleigh damping term from zero to 0.0522 is
seen to be smaller initial volume and lower impact velocity.

Global mass conservation of the water was investigated. In order to have no mass loss or
gain in the code, the integral of the free surface elevation along the tank length should be
zero. This means that the mean water level AH should remain zero during the simulation.
This is defined as:

1 (L2
AH = —/ ((z, t)dx (3.54)
LJ 1)
This quantity is calculated every time step and is shown in the topmost plot in figure 3.19.
The change of mean water level due to mass gain or loss is very small compared to the gap
between the mean water level and the roof, h;. The change of the first natural period of the
sloshing motion due to the changed mean water level is also very small, that is about 1079[s].
From this the mass loss or gain is believed not to affect the wave motions. Further, mass
conservation of the air is checked. From global mass conservation it is found that the air
velocity u, at # = L/2 should be zero. This is not enforced in the numerical method. This
condition is checked by numerically differentiating ¢, using first and second order backward
differences in space. For the second order finite difference the horizontal distance between
the first and second node is assumed to be equal. The result is shown in the lower plot in
figure 3.19. The air velocity at the right hand side is seen to be small, which indicates that
mass is close to be conserved.

3.6 Compressible effects of the escaping air flow

Figure 3.20: The domain of the compressible numerical model of the air-
escape stage. The free surface is assumed rigid and approaching the roof
at constant speed.

In this section a detailed study of the air escaping the air pocket prior to closure is made.
The air flow is assumed compressible while the wave profile approaching the roof is assumed
rigid. Ideally, the fact that the air flow affects the water flow should have been taken into
account in the compressible calculations. However, this is a challenging problem and is not
solved in this work.
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Figure 3.21: The pressure from the solution of the quasi-one-dimensional
calculations before closure. The Mach number M = ug*®/cy. Top: Com-
pressible solution. Bottom: Incompressible solution.

The domain solved for can be seen in figure 3.20. Quasi-one-dimensional flow is assumed
for the air since the variation of the cross section dimension & in the z-direction is small. The
approaching free surface profile is rigid and hence does not deform due to the air flow. The
shape of the entering free surface is taken from the boundary element solver and is shown
in figure 3.20. Only the part from z = 0 to z = L. of the free surface is modelled. At
the truncated end of the domain, at + = L., an outlet is modelled by requiring that the
absolute pressure is equal to the atmospheric pressure p = py. On the left hand side the
wall condition uy = 0 is applied. The rigid free surface profile approaches the wall with the
speed V,=0.39[m/s|. The ullage pressure is set to po=1.01-10°[Pa]. The density of air at this
pressure is set to p, = 1.204[kg/m’]. The length of the domain L, is set equal to 0.18 [m].

The computer code used to solve the problem is named CLAWPACK and is described in
Leveque [30]. The computer code solves the compressible quasi-one-dimensional equations
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Figure 3.22: The velocity of the air from the solution of the quasi-one-
dimensional calculations before closure. The Mach number M = ug'®* /co.
Top: Compressible solution. Bottom: Incompressible solution.
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using a fractional-step method. The method is further described in appendix E. The initial
conditions of the problem are taken from the incompressible solution which can be found
analytically. The analytical solution of the incompressible problem is given in appendix D.
The maximum velocity of the air must be much smaller than the speed of sound in order for
the incompressible solution to be valid. The ratio between a maximum air velocity and the
speed of sound at atmospheric conditions is the Mach number defined as M = u;“a"/co. If the
Mach number is larger than approximately 0.1, compressibility effects start to matter. Based
on this it is reasonable to start the calculation when the gap distance hy, = 4[mm], which
yields an initial Mach number of 0.04. This means that the flow is close to incompressible at
the start of the simulation (¢ = 0).

A convergence study of the solution of the compressible solver is presented in appendix E.
This convergence study shows that a uniform grid of 12000 cells is satisfactory to obtain an
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Figure 3.23: The solution of the water hammer problem. Left: The
initial conditions of the water hammer problem. Right: The velocity and
the pressure inside the pipe a time t after closing the valve. The valve
experiences a pressure difference of 2pcoVjp.

accurate solution for Mach numbers less than unity. Hence, the present results are not valid
for Mach numbers larger than unity. At the time instant when the Mach number was equal
to unity, the vertical distance between the wave crest and the roof was hpyy, = 0.108mm].
Since the air velocity is subsonic for Mach number less than unity, there are no shock waves
in the presented solutions.

The solution for 12000 grid cells was then compared with the solution obtained from in-
compressible theory. This is seen in figure 3.21 and 3.22. The pressure from the compressible
and the incompressible model are seen in the top and bottom plot of figure 3.21. The pressure
from the compressible model agrees well with the incompressible results up to about M=0.2.
This is in accordance with White [15] who writes that the incompressible theory is invalid
if the Mach number is larger than about M=0.3. For Mach numbers higher than 0.6 the
compressible calculations show a rising pressure peak just to the left of the narrowest point at
£=0.092[m]. The corresponding air velocities are plotted in figure 3.22. The velocity profiles
are quite similar for both the compressible and the incompressible model. The velocity is
rapidly increasing at the narrowest point.

At some point the quasi-one-dimensional inviscid model does not resemble the physical
problem anymore. The singular-like behaviour is an indication of that. At some time instant
there will be important viscous effects slowing down the air at the narrowest point. There
will also be important interaction effects between the water and the air which produces a
distorted free surface prior to closure. This can be seen in the experiments reported in
chapter 2. From the experimental images in figure 2.18 it is seen that there is a rise-up of
water at the narrowest point just prior to closure. The present calculations suggests that
this is a consequence of the low pressure in this region. The rise-up causes the air pocket to
close rapidly and hence it serves as a valve mechanism. This is also supported by the results
from the boundary-element-finite-difference method presented in the previous section. This
closing mechanism suggests that the compressible effects after closure can be investigated in
a simplistic way.

The rise-up of water at the wave crest resembles the boundary condition of a closing valve
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Figure 3.24: After closure of the air pocket two travelling pressure pulses
are seen to travel in opposite directions away from the closure point. Top:
The initial pressure peak just after closure. Bottom: The corresponding
gas velocity.

in a pipeline. If the flow inside a pipeline is suddenly closed the compressible phenomenon
called a "water hammer” can occur. The phenomenon called water hammer is described
thoroughly by Wylie and Streeter [31]. A brief description is presented here in connection
with figure 3.23. On the upper left drawing an infinitely long horizontal pipe is seen where
a fluid is seen to flow at constant speed for all times ¢ < 0. The velocity of the fluid V; is
assumed to be small compared to the sound velocity. At ¢ = 0 the pipe is suddenly closed.
This is the situation at the right hand side drawing. The information about the blockage is
transferred upstream and downstream at a speed equal to the speed of sound. The amplitude
of the pressure pulse is given by the formula:

P = 2p4coVh. (3.55)

However, the formula is not useful for our problem since the velocity before blockage is
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Figure 3.25: The pressure is plotted for sudden closure at M=1.0 and
M=0.5. The time instances are the same as investigated at the upper right
plot of figure 3.24.

time dependent, and rapidly changing during closure. To investigate the role of compress-
ibility just after closure of the air pocket, the flow in the case studied previously was stopped
instantly at the time when hyi,=—0.108mm] and M = 1.00. At this time instant the con-
dition of zero air velocity is set at the narrowest point and the vertical motion of the rigid
free surface Vj is set to zero.

The results are seen in figure 3.24. The left hand side of the plot shows the pressure and
the velocity close to the narrowest point just after closing the air pocket. The right hand side
shows the pressure and velocity at later times as the information of the closure travels up-
and downstream. The pressure peaks decay as they leave the narrow region. This is due to
the expansion of the domains on both sides of the closure point. The pressure and velocity
have similarities with the "fluid hammer” model. Neglecting the travelling pressure peaks the
solution is seen to form a step function at the closing point. From the velocity it is seen that
the air is nearly stopped in the area between the peak pressure and the closing point.
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The air pocket was suddenly closed when the Mach number was equal to unity. The
convergence study presented in appendix E shows that the grid resolution of 12000 cells is
not sufficient to continue simulation after a Mach number of unity is reached. The sensitivity
of the time of closure was investigated by closing the air pocket when the Mach number was
0.5. A comparison of the resulting pressure in the air pocket for the time instances shown in
the upper right plot of figure 3.24 are seen in figure 3.25. The results show some dependence
of when the pocket is suddenly closed. The most important deviation is that the pressure
at x = 0 is lower when the pocket is closed at M = 0.5 than when the pocket is closed at
M = 1.0. This pressure difference is comparable to the pressure difference at z = 0 before
closure, seen in figure 3.21.

The present investigation shows a clear effect of compressibility for A, < 0.5[mm] which
corresponds to Mach numbers M > 0.2. Based on the compressible model it is possible to
estimate the average pressure inside the air pocket at the time of closure. The mean pressure
is of importance because it is used as a parameter in the lumped air pocket model used in the
numerical model of the air pocket oscillation stage which is presented in the next chapter.
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Chapter 4

Numerical solution of air pocket 6

In the previous chapter a two-dimensional numerical model called the boundary-element-
finite-difference method was established to model the sloshing and air-escape stages of the
air pocket experiment. In this chapter a numerical model of the air pocket oscillation stage is
presented. First the mathematical problem is posed and then it is solved numerically. This
numerical solution uses many of the ingredients already presented in the previous chapter.
After this the numerical procedure is applied to a test case before it is applied to the simula-
tion of the air pocket oscillation stage of air pocket 6. The numerical solution of the sloshing
and air-escape stages presented in the previous chapter, using the boundary-element-finite-
difference method, is used as initial conditions for the numerical simulation of the air pocket
oscillation stage. The numerical method used for the air pocket oscillation stage is called the
mixed Eulerian-Lagrangian method (MEL). This way of solving the mathematical problem
was originally proposed by Ogilvie [20].

4.1 Mathematical problem of the oscillation stage

The boundary-element-finite-difference method presented in the previous chapter is used to
solve for air pocket 6 until the wave hits the roof. As the wave crest hits the roof, the
assumptions of a quasi-one-dimensional flow is invalid. Here the air pocket is closed in
an ad-hoc manner which makes it possible to simulate the air pocket oscillation stage. The
mathematical problem for the numerical model of the air pocket oscillation stage is presented
here alongside the physical assumptions behind it.

Based on the time scale of the pressure oscillations it is reasonable to assume that the
water is incompressible. The model of the water is further simplified by assuming inviscid,
irrotational flow. This means that potential flow theory can be used for the water. The
water is therefore treated in the same way as for the sloshing stage, by solving the boundary
integral equation (3.1). This equation is hence given in the mathematical problem of the
air pocket oscillation stage posed in figure 4.1. Boundary conditions on all boundaries are
required to solve this equation. On the walls and the wetted part of the roof the same
boundary condition as for the sloshing stage applies, that is (3.12). From the experiments
presented in chapter 2, the wave elevation is seen not to be a single-valued function of the
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% =3Vo-Vo - gz — zag + %u% + p—ofpﬁ(t) (4.2)

Tk =Vo (4.1)

06 = [, 62" — 52 10g(r)ds (3.1)

Figure 4.1: The mathematical problem of the air pocket oscillation stage
solved for by the mixed Eulerian-Lagrangian method (MEL). The equations
inside the box are used for the time integration.

horizontal coordinate in the jet areas. Hence the nodes on the free surface is set to follow the
free surface particles in both the vertical and the horizontal direction. The kinematic free
surface condition is then given as:

D, (t)

Here x,(t) is the position of a fluid particle on the free surface. The notation D()/Dt =
9()/0t + V¢ - V() has been used. Evaluating Bernoulli’s equation (3.8) on the free surface
and inserting the pressure in the air, the dynamic boundary condition appears as:

D 1 1
—¢:§V¢~V¢—gz—xa¢+§u?+

po — D(t)
Dt '

(4.2)

Here pg is the ullage pressure inside the tank defined as the uniform pressure when there is no
liquid motion. In this work the ullage pressure is set equal to the atmospheric pressure, that
is po = 1.01-105[Pal. p(#) is here equal to the absolute gas pocket pressure at the free surface
inside the air pocket or equal to the ullage pressure at the free surface outside the air pocket.
As seen from the experiments the pressure was seen to be spatially uniform inside the air
pocket for the sample frequency used. Hence the pressure is assumed to be uniform in space
for the mathematical model of the air pocket. The air pocket can then be modelled using
only one unknown. This model is denoted the "lumped” air pocket model and is explained as
follows. Before the air pocket is closed it is assumed that the absolute pressure is equal to the
unknown initial pressure denoted py,. If the compression is assumed adiabatic or isothermal,
then there is a simple relation between the density and the pressure given by,

) = () (43)

gp
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Here pg, is the gas density inside the air pocket at the time when the air pocket is closing.
If the gas is air and the compression is adiabatic then x = 1.4. However, if the compression
is isothermal x = 1. Mass conservation of the air pocket assuming no air leakage, is written
as pgQ2 = pgp€l. Here Q(t) is the volume of the air pocket and € is the volume of the air
pocket at the time of closure. A relation between the absolute pressure inside the air pocket
and the volume of the air pocket can then be written as

0= (515) - (14)

It is not easy to state whether the compression is adiabatic or isothermal. This depends on
the heat flow between the air pocket and the surrounding water. Verhagen [7] and Koehler
and Kettleborough [32] studied the impact of a flat plate onto an undisturbed free surface.
Verhagen assumed the compression to be adiabatic while Koehler and Kettleborough assumed
it to be isothermal. For their problem the air pocket was thin which increases the heat
exchange between the air and the water. In addition, experimental observations by Verhagen
[7] suggests that mixing of water and air occur during the compression. This phenomena also
increases the heat exchange between the air and the water. In reality the heat flow between
the air pocket and the liquid needs to be modelled in order to find the correct pressure-volume
relationship. This is done in chapter 5 under the assumption of linear theory, one-dimensional
heat flow and uniform pressure inside the air pocket. It should be noted that equation (4.3)
does not model the effect of the air pocket correctly under dynamic conditions, even with
an optimally fitted value for the polytropic index. The reason is that the damping due to
exchange flow is not included. The thermodynamic aspects of the air pocket is studied in
detail in chapter 5. The results from the thermodynamic analysis show that an adiabatic
assumption is more appropriate than an isothermal assumption. When using equation 4.4 in
the mixed Eulerian-Lagrangian method (MEL) adiabatic conditions are assumed. Adiabatic
conditions yield k = v, where « is the ratio of specific heats v = ¢,/c,.

In addition, the polytropic gas model also does not account for the acoustic effects present
just after closure of the air pocket. These effect was denoted the "fluid hammer” effect in
section 3.6. In the following the initial pressure inside the air pocket is set equal to the ullage
pressure, that is, pg, = po. This means that the increased pressure inside the air pocket,
which is caused by the escaping air prior to closure, is neglected. From the compressible
model of the escaping air prior to closure, in section 3.6, the increased air pressure inside the
air pocket due to the escaping air was found to be about 1 [kPa]. The sensitivity of the initial
pressure pg, inside the air pocket on the resulting pressure oscillations is later investigated
in section 4.2.

4.2 Numerical solution of the air pocket oscillation stage

The numerical method used for the oscillation stage has similarities with the numerical
method used by Zhang et. al. [6] to investigate the plunging wave impact on a vertical wall.
This means that it is based on the Mixed Eulerian-Lagrangian method pioneered by Ogilvie
[20] and later developed by Longuet-Higgins and Cokelet [21] and Faltinsen [18]. Using the
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same boundary element description for the liquid as for the boundary-element-finite-difference
method, equation (3.35) is expressed as:

6 ) {3} = 1w m {7 (@.5)
The unknown variables of this equation system are moved to the left hand side and the known
variables to the right. From the dynamic free surface condition (4.2) the velocity potential
on the free surface ¢ can be integrated in time in an explicit fashion, and is hence known
when the equation system (4.5) is solved. From the boundary condition on the wall (3.12)
o is known. The unknowns of (4.5) are then oy and ¢,. The following equation system is

then obtained:
[H; -G.] {Z,f} =[-H. G/ {gf} (4.6)

Here ¢y is stepped forward using the same integration method as used for the boundary-
element-finite-difference method in chapter 3, that is the explicit Runge-Kutta method of
fourth order as defined by Kreyszig [24]. The position of the free surface is updated using
(4.1) for each of the four sub-steps in the Runge-Kutta time integration procedure. This
numerical method is denoted the mixed Eulerian-Lagrangian method (MEL).

4.3 Test case
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Figure 4.2: Comparison of the water elevation £(¢) on the left hand side
tank wall of a sloshing tank for the mixed Eulerian-Lagrangian method

(MEL) and the single-dominant nonlinear multimodal method (SDNM).

The numerical implementation of the mixed Eulerian-Lagrangian method (MEL) was
compared with the single-dominant nonlinear multimodal method (SDNM) as described by
Faltinsen and Timokha [8]. This is the same nonlinear sloshing test case as used for the
boundary-element-finite-difference method (BEFDM) in section 3.4. The tank dimensions
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Figure 4.3: Left: The right going jet formed during the air pocket
oscillation stage. Right: A close view of the jet. The jet is cut by moving
the indicated node onto the roof.

were set equal to the size of the tank used in the experiments, that is L = 1[m| and filling
height H = 0.833[m]. The water density was set to p = 1000[kg/m®] and acceleration of
gravity g = 9.81[m/s°]. Since the first mode is dominating the response, 40 element over the
free surface and 150 time steps per second were found to be enough through a convergence
study. The excitation signal defined in connection with equation (3.52) was used, and the
same solution of the single-dominant nonlinear multimodal method was used for comparison.
Comparison of the wave elevation on the left side of the tank & is shown in figure 4.2. The
two methods are in good agreement.

4.4 Numerical trick: Jet cutting

Just after the initial contact between the free surface and the roof, very thin jets are formed.
These very thin initial jets are not believed to be important for the behaviour of the air
pocket. However, as observed by Zhao and Faltinsen [33], they need to be discretized using
small elements in order to avoid numerical instability. Regridding is hence required and is
performed using the same procedure as Sun [28]. The regridding is performed every time
step to avoid distortion of the grid. The jets also need to be cut to avoid breakdown of the
numerical procedure. Zhao and Faltinsen [33] cut the jet when the angle between free surface
and the structure at the jet tip was less than a certain value. Here the jet is cut based on
two geometric properties defined in figure 4.3. Here §, is the shortest distance between the
leftmost node on the free surface and the roof and is called the root thickness. s, is the
length of the free surface between the root node and the tip. J; is the distance between the
node and the roof, for all nodes in the region defined by s,. Based on this set of parameters
two geometrical jet cutting criteria are defined:

1. The jet is cut if it is too thin. If one node on the free surface of the jet is closer to the
roof than a certain fraction of the characteristic element length As of the jet then that
node is moved to the roof and all elements on the right of this node is deleted. This
means that for all nodes i between the jet root node and the jet tip node it is checked
if 6; < As/ny. If this condition is satisfied, then all nodes to the right of this node are
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deleted and the first node satisfying the criteria is moved to the roof. (The value used
for ny in this work was 40.)

2. The jet is cut if the jet is too long compared to the root thickness. If s, > §,C, then
the jet is cut at the node which is closest to sye,, = 6,C5 from the jet root. See figure
4.3 for dimensions. (The values of C; = 2.7 and Cy = 1.5 were seen to work fine for
the simulation of air pocket 6 presented here.)

After moving the node vertically onto the roof, the same value of ¢ as before the transfer is
used. This can be justified by the fact that the flow is horizontal in the jet and hence that
the velocity potential does not vary significantly through the thickness of the jet.

01465 5406 -0.4055 -0405 04085 x[m] -0404
Figure 4.4: The ad-hoc procedure for closing the air pocket at the end
of the air-escape stage. The grid G1 before closure is seen as squares (OJ)
and after closure is seen as diamonds (o).

4.5 Numerical solution of the air pocket oscillation stage

Pressure oscillation stage

Figure 4.5: The grid used by the mixed
Eulerian-Lagrangian method for the air
pocket oscillation stage. The grid is re-
fined in the area of the jet roots. The
dots indicate every fourth node of the
grid G1.

To start the numerical simulation using the mixed Eulerian-Lagrangian method a finite
length of the roof needs to be wet. This can be achieved in many ways. Greco and Faltinsen
[12] used an analytical solution to step the solution onto a very large floating structure
(VLFS). However, the experiments in chapter 2 show that for the present problem there
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are interaction effects with the air which complicates the work of finding such an analytical
solution. A pragmatic ad-hoc procedure is hence used to step the solution onto the roof
before the oscillation stage. At the end of the air-escape stage, when the peak node has just
crossed the roof, the two highest nodes (largest y-value) are moved to the roof.
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Figure 4.6: Top: Results from the mixed Eulerian-Lagrangian method

using grid 1 (G1) showing the right going jet during the time from initial
contact until the time of maximum pressure. Middle: A closer view of the
jet during the time it is inside the dashed box in the upper image. Bottom:
A closer view of the initial jet during the time the jet is inside the solid
box of the middle image.

This procedure is seen in figure 4.4 where the area close to the wave crest touching the
roof is seen. The squares (O) are the solution from the boundary-element-finite-difference
method using the G1 grid settings. The peak node has crossed the roof marginally. This
makes the boundary-element-finite-difference method invalid since it requires a finite height
of the air domain h. However, to start the mixed Eulerian-Lagrangian solver, a finite wetted
section of the roof needs to be defined. The vertical velocity of the free surface was seen to
be larger at the top of the wave crest, both in the experiments and in the numerical solution
for the air-escape stage. This suggests that fictitiously moving the closest neighbouring node
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onto the roof and continue the simulation might be accurate enough to capture the later air
pocket oscillations. The grid used as initial conditions for the mixed Eulerian-Lagrangian
method (MEL) is seen as diamonds (¢) in figure 4.4. On the roof the grid is resolved using
three boundary elements to roughly capture the solution which contains a right and a left
going jet. These jets are formed in each direction and are cut as described in section 4.4.
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Figure 4.7: Top: Results from the mixed Eulerian-Lagrangian method

using grid 1 (G1) showing the left going jet between the time of closure and
the time of maximum pressure. Middle: A closer view of the jet during
the time it is inside the dashed box in the upper image. Bottom: A closer
view of the initial jet during the time the jet is inside the solid box of the
middle image.

In section 3.5 the sloshing and air-escape stages were simulated using the boundary-
element-finite-difference method. The time step size and grid resolution was argued on a
physical basis and a standard setting of the numerical parameters was defined and was
denoted G1. Here the spatial and temporal discretization of the air pocket oscillation stage
are defined. This means that the characteristic element and time step size As, and At, of
the air pocket oscillation stage will be defined.

During the air pocket oscillation stage, thin jets are formed. As previously mentioned
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Figure 4.8: Results from the mixed Eulerian-Lagrangian method using

grid 1 (G1) showing the free surface geometry during the air pocket oscil-

lation stage. The time instances of the pressure oscillations are seen on the

lower right plot.

these jets must be resolved in order for the numerical method not to break down. In order
to have a stable jet it requires that the jet root is resolved with enough elements. If this
is not the case the angle between neighbouring elements become too large and the mixed
Eulerian-Lagrangian method breaks down. The G1 grid is shown in figure 4.5. Here the
characteristic element size of the jet is As, = As,./21 resulted in a numerical solution that
did not break down. The velocities of the jets and the corresponding time scale As,/u must
be resolved in order to avoid numerical instability problems. The time step criteria for the
air pocket oscillation stage is hence written as:

At, < min (Atos, min(ijf)) For both jet tips. (4.7)
Here At,; is the time scale of the air pocket oscillation, that is 15 [ms|, divided by 100.

The evolution of the right and left going jets are seen in the figures 4.6 and 4.7, respec-
tively. The topmost images in the two figures show the jet geometry during the time from
the moment when the mixed Eulerian-Lagrangian method (MEL) simulation starts (¢t = o)
and until the pressure reaches its peak value p = P; at the time t = ¢y +T. The duration
of this period T is denoted the rise time. The time between the different jets are 7'/9. The
topmost images of the two figures contain a rectangle (dashed). This rectangle contains the
area where the jet is during the time ¢y <t < to+7/9. This area is shown in full size in the
second images. Here the time between the different jets are 7'/81. The second images again
contain a smaller rectangle showing the jets during the time to <t < ¢, + 7/81. A full size
image of this region is shown in the third (bottom) image where the time between each jet is
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T/729. From the bottom image of figure 4.6 it is seen that the free surface develops a wrin-
kled pattern on the jet. These wrinkles can lead to breakdown of the numerical simulation.
These wrinkles are sensitive to both the grid size and the time step, which makes it difficult
to do a proper convergence study of the air pocket oscillation stage. However, it is believed

that these wrinkles of the jet do not affect the global behaviour of the air pocket oscillations
significantly.

121
_ _MELp, =p
or MEL . 0+1 [kPa]
8 o . Pop~Po
r . »
!
6 ! ‘\ -
’ ' J P N N
4+ i . { : ’ s /o /
i { ‘ 7 4 / \ /
' i J 4 ’ i , \ /
2r \ / 0 f N
—_ i . g i \ s
< / ! / : i /
x O0r ! . ! : 7 : / ! /
& 2 \* ! \\ -7 ‘x ! \\ /
-2 r J / 1/
y ! ; h p ! \ !
_4 |- ’ x L) / /
Lo NS N N
-6 b\ K et X / N2
_8 1 1 1 Il Il Il J
-10 0 10 20 30 40 50 t[ms] 60
12
ol - - MEL 3=0.0000
o — = — MEL §=0.0261
8r oy O  MEL 4=0.0522
N o X
6 'I,O a 7./ \\ » -~
4 ./O % ! \ //. \\ / \\ // N
1° & )8{ \\ / \ / \ /
*0 d / /
2r ! : J \ / \ \
= “0 ] ! / \ /
© " q‘ \ Je \ /
& or b °® g e e \ / \\ /
Z ® . \e ;e \ , ;
-2} o qq- \e ;e \ ; \ h
b ()/. \e / : \\ , \\ /
-4+ [} OO/.' ' // A . / N //
%ﬁ/, . N N [
-6 Al s/ - ~7 N~
. ones®
_8 1 1 1 1 1 1 J
10 0 10 20 30 40 50 t[ms] 60

Figure 4.9: Top: The effect of changing the initial pressure pg, on the
pressure time history. Bottom: The effect of changing the Rayleigh damp-
ing parameter 0 on the pressure time history. The solution breaks down at
the time instant denoted X.

The pressure inside the air pocket is found from the volume of the air pocket as seen from
equation 4.4. However, when the left going jet is cut the volume is increased which results
in a fictitious pressure drop inside the air pocket. This means that the volume of the jet
which is removed should be subtracted from the later calculated volume in order to obtain
the correct pressure.

The air pocket geometry during the air pocket oscillation stage from the MEL results
using the grid settings G1 is seen in figure 4.8. The lower right plot shows the pressure
time history and the time instants where the air pocket geometry is shown. The free surface
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geometry is changing during the air pocket oscillations. An instability is seen to grow inside
the air pocket next to the left going jet. This instability grows and causes the simulation to
break down at ¢ = 76[ms].

The initial pressure inside the air pocket pg, in equation (4.4) is set to atmospheric pressure
po for the calculations using the G1 grid. In section 3.6 the air flow out of the air pocket
prior to closure was modelled assuming that the free surface profile was rigid. The resulting
pressure inside the air pocket can be seen in figure 3.21. It is seen that the pressure increases
inside the air pocket as the wave profile approaches the roof. Based on these pressure curves
the effect of increasing the initial pressure inside the air pocket with 1[kPa] was investigated.
This is presented in the upper plot of figure 4.9. The effect on the resulting pressure time
history is seen to be small.

In section 3.5 the effect of varying the Rayleigh damping coefficient on the inflow con-
ditions was investigated. Here the effect of varying the Rayleigh damping coefficient on the
resulting pressure oscillations is investigated. The results are seen in the lower plot in figure
4.9. From the inflow conditions seen in figure 3.18 it is seen that an increased § value reduces
the impact speed and the volume of the air pocket. The effect of increased § on the pressure
oscillations is seen to be decreased pressure amplitude and increased oscillation frequency.
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Figure 4.10: The initial conditions for the mixed Eulerian-Lagrangian
method using grid 1 (G1) is varied to check the sensitivity to the ad-hoc
closing procedure. Top: The grids used as initial condition for the MEL
simulation. Bottom: Pressure time history resulting from the calculations.

To investigate how sensitive the pressure time history was to the ad-hoc closing procedure
seen in figure 4.4, the initial wetted length of the roof was varied. In the topmost plot in
figure 4.10 the nodes of the new grids are seen as e and o, while the previous results from
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grid G1 is seen as ——. The resulting pressure time history can be seen in the lower plot in
the same figure. The pressure time history is seen not to be sensitive to the perturbations.




Chapter 5

Semi-analytical model of the air pocket
oscillation stage

In the previous chapter it was shown that the mixed Eulerian-Lagrangian method (MEL)
broke down after about four periods of the air pocket oscillation stage. In the present chapter
the whole air pocket oscillation stage is solved for using the semi-analytical method (SAM)
of Faltinsen and Timokha [8]. This method is extended to include the damping effect of heat
transfer to and from the air pocket and the damping effect due to viscous boundary layers
in the liquid at the tank walls.

5.1 Background of the semi-analytical model (SAM)

A brief background of the original semi-analytical air pocket model (SAM) is given next.
For a more thorough description of the method see Faltinsen and Timokha [8]. The semi-
analytical method (SAM) uses potential flow theory to describe the liquid motion. The
velocity potential is written as ¢+ Vgy. The solution domain and the coordinate system used
are seen in figure 5.1. The free surface conditions are enforced at the line y = 0. The free
surface condition for z < —a is ¢ = 0, which is commonly used in slamming analysis and for
high-frequency oscillation problems. Along the wetted section of the roof —a < x < —b the
boundary condition is d¢/0y = —Vj. The hydrodynamic pressure is linearised and is given
as p=—pd¢/0t. Since the pressure is assumed uniform inside the air pocket, the velocity
potential is constant along the projected free surface on y = 0 for —b < x < 0. The velocity

—a —b ﬂ\y T
AP @

TV

Figure 5.1: Drawing of the air pocket and coordinate system used for
the semi-analytical method (SAM).
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potential is then found analytically. The dynamic pressure, in the liquid on the free surface
inside the air pocket, must be set equal to the dynamic pressure inside the air pocket. This
yields the following equation:

0

9 _ P (5.1)

ot P
Here p is the dynamic pressure and p is the density of the liquid. The time derivative of the
volume of the air pocket is equal to the integral of the vertical velocity component from z
equal to —b to = equal to zero. This yields the following equation:

%:V( Ja[K (b/a) — E(b/a)] — (¢ap+av(t)E( (1—(b/a>2))

K(b/a) (52)
K(y/(1 = (b/a)?)

Here K (k) and E(k) are the complete elliptic integrals of the first and second kind, respec-
tively. The definition of these integrals are given in Gradshteyn and Ryzhik [34] as:

(k)_/l\/1x211k2x2)dx
- [VET,

V1—t2

(5.3)

Air leakage is included in the mass conservation equation for the air pocket and results in
the following equation:

dQ) . 9
dpq = ng(Qm Qout) = *0.61ngAL51gn(p) M
Pg0

(5.4)

The last equality relates the mass flux out of the air pocket to the dynamic pressure inside
the air pocket. The air leakage model is a quasi-steady model and the hole must be small
compared to the length and the height of the air pocket. A relation between the density
and the pressure inside the air pocket is needed. Here the polytropic relation given by
equation (4.3) is applied assuming adiabatic conditions for the compressed air which yields
K=vy=14.

Linearising these equation further yields the natural frequency of the air pocket oscil-
lations wg. Assuming that the impacting velocity V' and the wetted length parameters a
and b are constant in time and in addition linearising the pressure-volume relationship (4.4)
assuming pg, = po, then according to Faltinsen and Timokha [8], the natural frequency of
the air pocket can be written as:

K(b
= () (55)
Qop) K(\/1— (b/a)?)
In the nonlinear case the equations (5.1), (5.2) and (5.4) are integrated in time using a

numerical time integration procedure. Initial conditions are needed to solve the problem.
These are:
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Figure 5.2: The measured wetted length parameters a and b from the
experimental results of air pocket 6.

Gap =0 at t=20
Qpg = Qopgo at t=0.

A fourth order Runge-Kutta method is used for time integration of the equations. Some
parameters of the model are found from experiments in order to apply it to the air pocket
oscillation stage. These parameters are the wetted length parameters a(t),b(t), the initial
volume of the air pocket Qq and the impact velocity V(¢). « and b are estimated from
the experimental pictures of air pocket 6 taken from above (CA 2) and are plotted as a
function of time in figure 5.2. The wetted section of the roof vary in the z-direction due to
three-dimensional effects. From the experimental pictures in figure 2.22, the wetted length is
varying substantially before the first pressure maximum. Because of this the wetted length
parameters a and b are estimated at the first pressure peak. It is assumed to vary linearly
with time before this time instant. The initial values b(¢t = 0), a(t = 0), are uncertain due to
the three-dimensional closure of the air pocket. Here a(t = 0) — b(t = 0) is set to 1 [mm].
After the first pressure peak, the wetted length parameters are well defined. The wetted
length parameters a and b are plotted in figure 5.2. The water exit stage is three-dimensional
leading to large variation of a and b in the z-direction of the tank. Hence it is hard to estimate
the wetted length. Again a linear variation of @ and b with time is assumed in the areas where
the wetted length is varying a lot in the z-direction. The initial volume of air pocket 6 was
in the experimental chapter estimated to be Q) = 810[mm?], and the initial flow velocity was
estimated to be V5 = 0.395[m/s]. The semi-analytical method (SAM) assumes a time varying
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Figure 5.3: The semi-analytical method (SAM) for air pocket 6 when the
hole in the roof is closed d = O[mm]. The SAM does not capture the overall

decay trend after the first pressure minimum observed in the experiments.

entering velocity. The temporal variation is uncertain in this case. Faltinsen and Timokha
[8] assumed that the time variation of the velocity was linear that is V' = Vj + Vit. Here it is
assumed that the vertical position of the fluid particles far down in the fluid should return
to the initial position at the end of the slamming event then: fotap V(t)dt = 0. Using that
the duration of the impact is t,, = 240 |ms|, then V; = —3.29[m/s’|. All the parameters in
the semi-analytical method are then established.

The results of the semi-analytical method is presented in figure 5.3. The pressure ampli-
tudes are seen to be overestimated compared to the experimental results for air pocket 6 seen
in figure 2.8 and 2.12. Also a period of the pressure oscillations are slightly overestimated.
Further discussion of the reasons for these deviations are found in chapter 6. In figure 5.3 an
initial decay is seen during the time from the first pressure peak to the first pressure mini-
mum. The reason for this is reported by Faltinsen and Timokha [8] to be nonlinear effects
connected with the temporal variation of the wetted length parameters a and b. However,
the results from semi-analytical method in figure 5.3 do not show an overall decay trend
after the first pressure minimum as seen for the experiments in figure 2.12. Hence, there are
physical effects causing decay, which are not included in the mathematical model. Physical
mechanisms explaining the decay trend after the first pressure minimum is the topic in the
remaining of this chapter. The investigated damping mechanisms are the damping effect
from viscous boundary layers in the liquid and the damping effect of heat exchange between
the air inside the air pocket and the liquid. Finally, the damping effect of air leakage from
the air pocket is investigated.
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5.2 [Effect of heat exchange on the pressure oscillations

So far the compression of the air pocket was assumed to follow an adiabatic gas law. This
gives a simple relationship between pressure and density given by equation (4.3). By assuming
that the air is compressed adiabatically or isothermally the polytropic exponent x for air is
given as 1.4 or 1.0. At these limits there are no heat exchange between the water and the air.
However, when the air inside the air pocket is compressed the temperature increases. The
temperature difference between the air inside the air pocket and the surrounding water and
tank wall leads to heat exchange to and from the air pocket. This heat exchange affects both
the stiffness and the damping properties of the pressure oscillations. In this section a steady
state thermodynamic analysis in one dimension of an oscillating air pocket is presented. A
similar type of analysis was made by Devin [10] in the case of an oscillating spherical air
bubble in infinite water.

5.2.1 Linear steady state thermodynamic analysis

In the following a linear steady state thermodynamical analysis assuming assuming that the
pressure p inside the air pocket is uniform in space and that the velocity of the air inside the
air pocket is neglected. Since the vertical dimension of the air pocket is much smaller than
its horizontal dimension the vertical temperature gradients are assumed to be much bigger
than the horizontal temperature gradients. This suggests that a one-dimensional model in
the vertical direction (y-direction) can be applied. To analyse the problem analytically the
height of the air pocket A is assumed constant in the z-direction and equal to hy. The
linearised energy equation can then according to White [35] be written as:

a9 %0 dp

P _ 7 5.7
PgoCp ot 13y2 + dt (57)

dy
| || |
I [ | >
y=—ho y=0 Yy
€
Ll | ] | >
I [ |
y=—h y=20 y

Figure 5.4: The coordinate system used for the one-dimensional heat
problem assuming spatially uniform pressure.

Here py is the density of the gas at atmospheric conditions, ¢, is the specific heat co-
efficient at constant pressure and K is the thermal conductivity of air. € is the relative
temperature 6 = T, — Ty, where T, is the absolute temperature and Ty is the temperature
at atmospheric conditions in degrees Kelvin. This equation is solved for in the area between
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y = —hg and y = 0 illustrated in figure 5.4. The energy equation (5.7) is analysed assuming
harmonic pressure oscillations. Then the pressure can be written as p = Pe™°! and the equa-
tion can be solved by writing the solution as a product of one time and one space varying
function as follows:

0 = F(y)e™o’. (5.8)
Inserted in equation (5.7) it reads:
Pr Pi
DS —iwF = — 0 (5.9)
ay Cpng

Here Dy = K /(c,pq0) is the thermal diffusivity of the air. Equation (5.9) has the general
solution: b

CpPg0

a—\/E—(lnLi)\/QTDOl. (5.11)

Here the first term is a particular solution and the two other terms are homogeneous solu-
tions. To find the constants A; and A,, boundary conditions are required. Since water and
acrylic have much larger heat capacity and thermal conductivity compared to air, the relative
temperature 6 will be nearly zero at y = —h and y = 0. This means that the constants A;, Ay
are found as:

F(y) =

(1 + Ae® + A2eay> . (510)

Here:

Al =—-A,—1 (5.12)
1 — e o

efah[) — e(xho :

Ay = (5.13)
Now that the temperature inside the air pocket is known, the density inside the air pocket
can be found as a function of time through the ideal gas law. The ideal gas law is expressed
as:

D = pgRT s (5.14)

Here R is the gas constant whos value is dependent on the specific gas. The goal is to express
a relation between the displacement € and the pressure inside the air pocket. To obtain this
relation the principle of mass conservation is applied to a differential element dy which after
the deformation is denoted dh. The change of length of this element is denoted de, so that
de = dh — dy. Mass conservation for this element yields pyody = p,dh = py(dy + de). This
leads to pyde = (pg0 — pg)dy. The displacement e can then be written as:

0
ez/ de (5.15)
—ho

The ideal gas law (5.14) is then expressed in therms of density p,(p,d) and linearised. The
displacement € can then be written as

Y179 P . }
€= — — ™ot dy. 5.16
/[T et ay (5.16)
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The solution is written as:

Ve = p. (5.17)
Where ¥ is a complex quantity:
-1
T = pyocy {TL (ho + A1 —emoho) — A2(1 — eah0>> - ﬂ (5.18)
-1
U= {”W” <1 AL (L — o) — A2 (1 — e"‘ho)) — 1] : (5.19)

This is the linear steady state pressure-volume relationship when heat flow is taken into
account and pressure is assumed uniform in space. Now the pressure in (5.17) is related to
the hydrodynamic problem. The hydrodynamical problem is two-dimensional, that is the
thickness of the air pocket A vary in the x-direction. Here hg as a characteristic thickness
when the air pocket is assumed rectangular hpb = Qy. Where b is the length of the air pocket
at the time of maximum pressure p = P. Since the thermodynamical model is a steady-state
type of model, the mathematical model for the semi-analytical method is simplified in the
following fashion. Firstly the entering liquid velocity V4 and the wetted length parameters
a and b are assumed to have no time dependence. Introducing these two assumptions into
equation (5.2) and using the relation (5.1) it results in:

&e
Here I is given by
K[y1—(b/a)?]
L =——7T". 5.21
1 Ko/l (5.21)
Then introducing the thermodynamic relation (5.17) results in:
d*e
This equation is then compared with a general freely oscillating, damped mass-spring system:
d*e de
M—+B—+ Ke=0. 5.23
TER TR (5.23)
Now, assuming that the response is given as € = €ue?* a comparison of the different terms
yield:
M = plib
1
B=——S(7) (5.24)
Wo
K = —-R(V).

The mass of this system is a property of the hydrodynamical problem and is proportional to
the density of the liquid. The stiffness and damping terms are a function of the thickness
of the air pocket, the atmospheric pressure pg, the ratio of specific heats v and the diffusion
coefficient D;. In the following the stiffness and damping terms of this equation system are
discussed in detail.
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5.2.2 Calculating the effective polytropic exponent

A linearised relation between dynamic pressure p and displacement e based on the polytropic
gas model (4.4) is derived in the following. In one dimension (4.4) yield:

h K
P+ Do =po(f) : (5.25)

Linearising this relation around p = 0 and introducing the displacement ¢ = h — h the result
is:
K
p= Dok, (5.26)
ho
The model has no pressure term proportional to the time derivative of the displacement, that
is €, and hence the model does not include any source of damping. By comparison with the

thermodynamic mass-spring system it is evident that:

h
k= ——R(V). (5.27)
Do
Now, W is rewritten introducing the thermal boundary layer thickness dp. The thermal
boundary layer thickness o7 is defined by Leighton [36] as dr = y/D1/(2wp). This means
that ¥ can be written as:

-1 2A _(t) n 24 REDW -t
\pro{(’y )(1+ ~1h(17€ = 5;)772(1761; 5;))1} . (5.28)
hol v (1+1)5-

The resulting polytropic exponent is given as:

k= §R{ {(7;1) (1+ i iil)%(le(lr)%)(1?3%(16@)%)) 1]_1}. (5.29)

This is the polytropic exponent predicted by linear theory assuming one dimension, uniform
pressure and conduction heat flow only. The polytropic exponent is plotted as a function of
h/ér for air, that is v = 1.4, in figure 5.5. It is seen that the polytropic exponent is between
1<k <.

In figure 5.5 the values of ho/dr are indicated for the different air pockets from the
experiments in section 2.3. From this a volume equivalent air pocket thickness denoted
ho = /b is obtained from the experimental results. The thermal diffusivity is set to
Dy =2.2160 - 1075[m?/s]. The period T,, is estimated as the average of the first five periods
taken from the right plot in figure 2.13. When using a polytropic air pocket model (4.4) the
heat flow of the air pocket does not need to be solved for. However, the compression of the
air pocket must be assumed to be either adiabatic or isothermal. From figure 5.5 it is seen
that the adiabatic value of the polytropic exponent is most appropriate for the air pockets
studied here. However, the polytropic model suffers from a deficiency in the case of a time
dependent problem like the oscillating air pocket. This is the case when the compression of
the air is not close to adiabatic or isothermal. This is because the imaginary part of W is
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Figure 5.5: The polytropic exponent as a function of the ratio between
the thickness of the air pocket and the thermal boundary layer thickness
ho/dér. The values of hg/dp for the air pockets investigated experimentally
are indicated by symbols.
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Figure 5.6: The damping ratio as a function of the ratio between the
thickness of the air pocket and the thickness of the thermal boundary layer
ho/ér. The value of hy/dp for the air pockets investigated experimentally
are indicated by symbols.
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non-zero, and hence there is a damping mechanism related to the heat flow. This damping
effect cannot be captured by the polytropic gas model (4.4). The damping ratio resulting
from the present one-dimensional, linear, steady state and uniform pressure model is written
as £ = Bwp/(2K). The damping ratio is plotted in figure 5.6 as a function of ho/dr. The
plot shows that the damping of air pocket oscillations due to heat flow can be as high as 7%
of the critical damping and also that it is significant thermal damping for the air pockets
studied in this work.

It is possible to plot the temperature variation from equation (5.8) since the parameter
ho/dr for the experimentally investigated air pockets are known. Here the temperature is
made non-dimensional in the following way; § = Ty and y = hey. The results show that
the temperature is spatially varying towards the water and the roof, while the temperature
is fairly constant in space in the middle of the air pocket.

0.35
0.3
0.25
= 02r
Po
=10l
0.15
0.1F
——AP1
0.05- — — -AP6
AP7
--— AP8
0 L L L L Il L L L L
-0.5 -0.45 -04 -0.35 -0.3 —0.35 -0.2 -0.15 -0.1 -0.05 0

Y
Figure 5.7: The non-dimensional temperature plotted as a function of the

non-dimensional thickness of the air pocket g. The solution is symmetric
about y = —0.5.

The energy equation (5.7) is now written in non-dimensional form to investigate which
non-dimensional numbers it contains. Introducing the following non-dimensional parameters
0 = Toh, p = peowdhip and t = i/wy, and rewriting the equation using the ideal gas law
(5.14), and the thermodynamical relations R = ¢, — ¢, and v = ¢,/c, the energy equation
(5.7) yields:

a0 920 ap
= Pe—— + M?*(v - 1)=. 5.30
o o5 (v=1) 5 (5.30)
Here Pe is the Péclet number defined as:
D,
Pe= —— 5.31
e= o (531)

and M is the Mach number written in terms of the natural frequency, the thickness of the
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air pocket hg and the speed of sound ¢, that is:

M= woho

5.32
. (532)
The polytropic exponent and the damping ratio in figure 5.5 and 5.6 is only dependent on
one parameter hg/d7 which again is only dependent on the Péclet number:

ho 2
— =\l 5 5.33
(ST Pe ( )

This means that the Mach number does not affect the polytropic exponent and the damp-
ing ratio. From appendix F it is seen that assuming constant pressure is the first order
asymptotic solution of the linear problem in the small parameter C'. Here C'is proportional
to the Mach number M squared.

5.3 Effect of viscous boundary layers

The damping effect of the viscous boundary layers in the liquid at the tank walls is estimated
by using laminar boundary layer theory. The mathematical problem solved for in the semi-
analytical method contains two temporal scales. One time scale is slow and due to the
entering water. The other time scale is fast and due to the flow field of the pulsating air
pocket. In reality there will be an interaction effect between these two flow fields which
will affect the damping caused by the viscous boundary layers. This effect could have been
modelled by coupling a three-dimensional boundary element method with a two-dimensional
boundary layer model as described by Faltinsen and Timokha [8].

Here a simplified approach is followed by assuming free oscillations of the air pocket
oscillations, hence, the interaction effect between the slowly varying flow field of the entering
water and the oscillatory flow field due to the air pocket oscillations are neglected. The
calculation is performed in a similar fashion as Keulegan’s [17] derivation of viscous damping
of the lowest mode of sloshing in a rectangular tank.

If the mathematical problem of the semi-analytical method is linearised, by assuming
constant inflow velocity V' and wetted length parameters a and b, the solution represents free
oscillations of a linear mass-spring system. Here Stokes” 2 nd. problem is used to estimate
the energy dissipated by laminar boundary layers during one oscillation period. The energy
loss is then associated with a damping term of a linear damped mass-spring system assuming
a small damping ratio.

Potential energy due to gravity is not present since the semi-analytical model neglects the
effect of gravity. During compression, work is made to compress the air pocket. The velocity
field of the semi-analytical method due to the free oscillations of an air pocket is given by
Faltinsen and Timokha [8] as:

iA cos (wot + €)

V=) =)

u— 1 =

(5.34)
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In this expression i = /—1, z = x + iy and A is a constant. The coordinate system used is
the same as in figure 5.1. The velocity obtained from (5.34) is used as the velocity outside
the boundary layers. To illustrate the boundary layers on the different walls the coordinate
system and the tank is drawn in figure 5.8. To obtain the velocity field at a point (x,y) from
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Figure 5.8: A drawing of the tank includ- — <
ing the coordinate system used in the semi-
analytical method. The tank has internal
dimensions L=1000[mm], D=100[mm] and
Htot:980 [mm} .
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equation (5.34) it needs to be evaluated as explained by Faltinsen and Timokha [8]. The
energy content of the air pocket oscillations is equal to the amplitude of the kinetic energy
of the liquid, which can be found to be:

p P
;[ vo-veao =5 [ v v

= g/g n - (¢Ve)dS (5.35)

D 0
= L¢ap / vdx.
2 -b

Here S, is the area of the free surface towards the air pocket. The generalized Gauss theorem
as given by Faltinsen and Timokha [8] is used to transform the volume integral of the first line
to a surface integral in the second line. Because of the boundary conditions of the problem
only the surface integral inside the air pocket contributes. The velocity potential ¢,, and
the vertical component of the velocity v at the surface S,, can according to Faltinsen and
Timokha [8] be written as:

bup = T g (T o) (5.36)

and N
t
v Acoslutte (5.37)

Vi@ =) =)

The amplitude of the kinetic energy is equal to the total amount of energy in the system and

can hence be written as: 2
ng;fhﬂ—QMMLD (5.38)
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Here I is the integral

I = [ Z[ \/(aQ—x;)(bQ—xQ) da. (5.39)

The dissipation from the boundary layers of the different wetted tank surfaces are considered
next. The tank and the coordinate system used is illustrated in figure 5.8. Since the semi-
analytical method does not satisfy the boundary conditions on the tank bottom and the y— z
parallel wall at z = —L, the viscous boundary layers there are neglected. The walls included
are the closest y — z parallel wall at x = 0, the large front and back walls parallel to the
x — y plane and the roof of the tank. From Stokes 2 nd. problem, the following equation
represents the average viscous energy dissipation for one period of oscillation per unit area:

Ll el A s
B = =57\ 52V @), (5.40)

Here 1 and v are the dynamic and kinematic viscosity coefficients, respectively. Vy(z) is the
velocity of the fluid outside the boundary layer and can be found from (5.34) if evaluated
as by Faltinsen and Timokha [8] on the different walls. First the y — z parallel side wall at
x = 0 is analysed. The the rate of energy dissipation from this wall is:

. DA% [w
wdl = — — 1. A1
Eudl 2 2% 2 (5 )

b= /OH [(aQ + ?ﬂ)l(b2 + yz)] w (542)

For one of the plates parallel to the z — y plane the energy dissipation can be written as:

Here

. A% fw
Fppp = —— | —1s. 5.43
o [, (543

Here:

0 0 1
I3 = dzdy. (5.44
/—L /—H [\/ [(z —a)? +y?][(z + a)? + y?][(z — b)? + ¥?][(z + b)* + ¢?] v o

The energy dissipation from the wetted part of the roof for —a < x < —b is given as:

. DA?
Bus = ——=E 0 [201

. 5.45
2 ot (545

Here

I 040

If the integration is performed from x = —a to x = —b, the integral is singular and yields
infinitely large damping ratio. This is non-physical and is related to the fact that the math-
ematical model does not represent the real flow around x = —a and x = —b. To avoid this
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problem the area close to a and b are not included in the integration by introducing the §
in the integration. There is ambiguity related to the distance 0. Here the boundary layer
thickness as defined by Faltinsen and Timokha [8] is used. This is defined as

2
§ =46/ (5.47)
Wo

In the previous derivation the amplitude of the oscillations was assumed constant in time
since no damping was present in the mathematical problem. From here on a slight amplitude
change is allowed, based on the assumption that the amplitude reduction per period is small.
From the experiments in chapter 2 this is not entirely correct since the observed decay of
the oscillations is large during the time from the first pressure maximum to the first pressure
minimum. From the results of the present mixed Eulerian-Lagrangian method and results
from the semi-analytical method given by Faltinsen and Timokha [8] it was seen that the
source of this decay was of nonlinear origin. The nonlinearity is mainly due to the geometrical
change of the air pocket. After the first period of oscillation the change of amplitude over
one period can be assumed small. The amplitude of a freely oscillating, under-damped mass-
spring system decays exponentially. Assuming that the pressure amplitude P(t) behaves in
this manner then

P t

— =D, 5.48
b= (5.48)
Here the pressure amplitude P can be related to the velocity potential since p = —pdg,,/0t.
Using equation (5.36) it is evident that P/P; = A/A;. From the expressions for the damping

it follows that: )
B = (A> = ¢ 2at/To, (5.49)
En Ay
Taking the time derivative of this equation results in an equation for o based on the derived
energy expressions, then: ‘
1T B
2 B
From the known solution of a damped mass-spring system, « can be related to the damping
ratio &,q as:

a= (5.50)

@

T
The damping ratio &,4 is written as a sum of the contributions from the different walls in the

following way

Evd = fvdl + gde + 51)(13- (552)
Here &,q1 , &uae and &,q3 are the contributions to the damping ratio from the side wall
(y — z parallel), the front and back wall (x — y parallel) and of the roof. They are given as:
Soar = B1 D1y, Svaz = 2B1 13, Svas = B1D1y. (5.53)

Where

oo 2Lw<2DhK[ﬁ—<W]>'




5.4. Damping included in the semi-analytical method 113

To evaluate the damping ratio the kinematic viscosity v is set equal to 0.89 - 1075[m?/s] and
the density is set equal to p = 997[kg/m?| corresponding to a temperature of Ty = 25°C.
The initial volume of the air pocket is set to {2y = 810[mm?] according to the experiments
reported in chapter 2. The damping ratio is varying in time during the air pocket oscillation
stage, this is due to the temporal variation of a and b according to figure 5.2. Hence, the
damping ratio is plotted as a function of time. The contributions to the damping ratio from
the different walls &,q1, a2 and &,q3 are seen in the left plot in figure 5.9. The damping

0.08 T T 0.08 T
_F;Vm: side plate (y-z paral.) gvd=§vm+ém2+ Evd:&
007L--- gvdzz front-back plates (x-y paral.) 0071 - - _gvd1+évd2
R F;Vdaz roof plate (x-z paral.) '
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Figure 5.9: The damping ratio as a function of time illustrating the
damping ratio dependence on the wetted length parameters a and b.

contributions from the front and back wall and the roof, that is &,4o and £,43, are seen to
dominate. There is uncertainty related to &,43, this is due to the singular integral. If the
damping contribution due to the roof is neglected, an estimate of the lower bound of the
damping ratio can be obtained as £,q > min (&g + Euao) = 0.0059. If the roof is included,
the damping can amount to &,q & min (€,q1 + Euaz + Evaz) = 0.012.

5.4 Damping included in the semi-analytical method

The damping effect of viscous boundary layers and heat flow is now included in the semi-
analytical method. Here this is done by adding a term denoted F(€), where €; is the
volume fluctuation Q; = Q — g, on the right hand side of equation (5.2). This term is then
chosen so that it damps the air pocket oscillations. Now equation (5.2) including the not yet
determined linear term F'(§2;) is linearised by assuming that a, b and V' are constant in time.
Then the following equation is arrived at:

dy K(b/a)

a _¢apm + F() (5.54)
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Figure 5.10: Results from the semi-analytical method for air pocket 6,
showing the damping effect due to heat exchange and viscous boundary
layers on the air pocket oscillations.

The pressure-volume relationship (4.4) is linearised assuming that the initial pressure inside
the air pocket is atmospheric pg, = py and that there is no air leakage. Then:

p=——1. (5.55)
The linearised hydrodynamical pressure is connected to the velocity potential through p =

—p@y. Then the following mass-spring like system follows:

d*Q  dF()  pok K(b/a)

a? dt | pQ K(\/1— (b/a)2)

|
—
ot
Ut
D
=

For F(£2;) to represent a damping term in a linearised sense, then

_ar _ d, (
a Pt '

ot
ot
=1
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Integration of this equation leaves a constant which needs to be quantified. The initial
conditions of the oscillations should not change because of the damping term. The initial
condition €; = 0 then forces this constant to be zero. Then F = —udS), /dt. Tt still remains
to relate 4 to the damping ratio . This is done through the well known formula:

t=—~ (5.58)

Here the mass M and stiffness K can be identified in equation (5.56) as the term in front of
Qy and  respectively. p can then be written as:

1 = b/a (5.59)

This way of modelling is only valid to the extent that the solution of the nonlinear model
is close to the solution of a linear under-damped mass-spring system. In the following the
nonlinear semi-analytical method, including the damping effect of heat exchange and viscous
boundary layers, is applied to air pocket 6. To calculate the damping ratio due to heat
exchange the ratio hg/dr needs to be determined. This means that the period of oscillations
needs to be estimated. This is calculated using equation (5.5) where the experimental value
of the initial volume €y, and a and b in figure 5.2 is inserted. The ullage pressure is set to
po = 1.01 - 105[Pa] and the density of the water is set to p = 997[kg/m?]. Since a and b
vary throughout the time series the period 7,, used to establish hq/d7 is the average natural
period of the impact given as 14.9 [ms]. To estimate the average thickness of the air pocket
then the average value of b during the time series is used, that is 0.0847 [m]. This leads to
a value of hg/dr = 51.0 which from figure 5.6 and 5.5 lead to a thermal damping ratio of
&n = 0.00772 and a polytropic exponent of k = 1.378. The resulting pressure time histories
are compared in figure 5.10. The first is when no damping mechanisms are modelled. The
second, & = 0.00772, is due to heat exchange only. The third, £ = 0.01362, is due to heat
exchange and viscous boundary layer damping from all walls except the roof. The fourth,
& = 0.01972, is the damping effect of heat exchange and viscous boundary layers from all
walls including the roof.

The results show that both heat exchange and viscous boundary layers contribute to the
damping of the air pocket oscillations. From equation (5.5) it is seen that a reduction of the
polytropic index yields a reduced natural frequency of the air pocket oscillations. However,
the reduction of the polytropic exponent is small, and does not modify the pressure oscillation
frequency significantly.

5.5 The effect of air leakage

In the experiments the effect of air leakage was investigated by drilling holes in the roof
above the air pocket. The air pockets studied were air pocket 6 and 7, which were both seen
to close before the first pressure peak. The experiments show that when air was allowed
to flow through a circular hole in the roof the resulting pressure oscillations show increased
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Figure 5.11: The semi-analytical method (SAM) when solving for air
pocket 6. The model shows the effect of a small leakage through a hole in
the roof over the air pocket with diameter d.

decay. For air pocket 6, this is plotted in figure 2.21. The role of air leakage through a
hole in the air pocket was then investigated using the original semi-analytical method as
proposed by Faltinsen and Timokha [8]. The diameter of the holes have equal size as for the
experiments, that is d = 0,1,2,4[mm]|. The results are plotted in figure 5.11. The results
from the original SAM confirm the experimental findings that air leakage cause decay of the
air pocket oscillations.

5.6 Findings from the semi-analytical method

Under the assumption of heat flow due to conduction the damping due to heat exchange
between the water and the air was seen to contribute to the decay of the air pocket oscillations.
Also the heat exchange modified the polytropic exponent compared to its adiabatic value.
The one-dimensional heat exchange model shows that the damping ratio due to heat exchange
can be as high as 6.8%. But a question is if this damping can be observed in reality. Here
the thickness is modified for air pocket 6 in order to obtain this damping ratio. Using the
formula for hy/dr in figure 5.6 and inserting the natural frequency from equation (5.5) and
assuming that a and b for the modified air pocket is equal to a and b for air pocket 6, then
it yields a thickness for the modified air pocket of 0.44 [mm]. This is a very thin air pocket.
Carrying out the same procedure for air pocket 1, yields a characteristic air pocket thickness
of 0.29 [mm].
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The mathematical model of the damping effect due to laminar viscous boundary layers
assumed no interaction between the flow field of the entering water and the flow field of the
air pocket oscillations. There is uncertainty related to the damping effect of the roof, due
to a singular integral. A lower bound of the damping ratio was estimated by excluding the
contribution from the roof. Even when this lower bound was used in the calculations the
viscous boundary layer contributed to the damping of the pressure oscillations.

The viscous boundary layers and the heat exchange between the air pocket and the liquid
were seen to cause damping of the pressure time history. This means that if the damping
mechanisms should be similar in model and full scale, then the non-dimensional parameters
governing the damping must be equal in model and prototype. The thermodynamical analysis
then shows that the Péclet number and the ratio of specific heats v needs to be equal in model
and prototype. The viscous calculations show that the Reynolds number Re needs to be equal
in model and full scale in order to have the same viscous boundary layer damping. However,
maintaining the same Reynolds number in model and full scale is hard in marine problems
when the Froude number is similar in model and full scale and the liquid is water. This is
due to the required viscosity of the liquid in model scale.
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Chapter 6

Comparison of experiments and
mathematical models

In this section the results from the mathematical models are compared to the experiments.
First the results from the boundary-element-finite-difference method (BEFDM), which was
used to model the sloshing and air escape stages in section 3.5, is compared to the exper-
iments. The emphasis is on the inflow conditions just before the wave crest hits the roof.
After this the pressure time histories inside the air pocket are compared and reasons for
the deviations are discussed. The characteristic period of the oscillations and the amplitude
of the pressure is emphasised. A discussion of the reasons for the decay of the air pocket
oscillations is added at the end of the chapter.
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6.1 Comparison of the free surface geometry

-
2
[
[
bl
e
=
o
2
o
o
“
o
)
b o}
=
o
o
=)
)
ol
a2
b |
|
=
E
-
o

y [m]

o
T

t=5.67 [s]

L n n n n 1 n n n n n n n n L
-0.5 -0.25 0 0.25

“Xm] 0.5
Figure 6.1: Comparison of the wave elevation from experiments and the

boundary-element-finite-difference method (BEFDM) using the grid set-
tings G1. Top: Experiments. Bottom: The BEFDM where the arrows
show the velocity of the particles on the free surface relative to the tank.

A comparison of the free surface during the sloshing stage of air pocket 6 from the exper-
iments and the boundary-element-finite-difference method (BEFDM) using the grid settings
1 is seen in figure 6.1. The grid settings G1 uses a Rayleigh damping parameter § = 0.0261.
The free surface geometry is seen to be in reasonable agreement. In the two images on the
left in figure 6.2, the air pocket geometry for the boundary-element-finite-difference method
is compared with the experiments when the wave first touches the roof. In the experimen-
tal images in figure 6.2 both the intersection lines between the free surface and the front
glass (FSF) and the intersection line between the free surface and the rear glass (FSR) is
indicated. When comparing the geometry of the experimental air pocket with the results
from the numerical model the free surface at the front glass (FSF) should be considered. In
the experiments a period of closure lasting about 2 [ms] was observed where the air pocket
was partially open and closed along the width of the tank. The top left image in figure
6.2 is the same image as image one in figure 2.18 and is taken approximately in the mid-
dle of this closure period. This experimental picture show a sharpening of the wave crest
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as it approaches the roof. The boundary-element-finite-difference method (BEFDM) shows
similar type of behaviour, although not as pronounced as in the experiments. The driv-
ing mechanism for this sharpening can be the low pressure generated from the escaping air
which was investigated in section 3.6. This effect should be present in the results from the
boundary-element-finite-difference method (BEFDM) since the air flow is modelled. How-
ever, the free surface geometry at closure is seen not to be similar. Reasons for this deviation
could be one or more of the physical effects neglected in the mathematical problem of the
boundary-element-finite-difference method (BEFDM). Those are viscous- ,compressible-, sur-
face tension- and 3D effects. The two images on the right in figure 6.2 show the air pocket
geometry when the pressure inside the air pocket is maximum. The wetted length is seen to
be overestimated in the mixed Eulerian-Lagrangian method (MEL). Reasons for this devi-
ation can be incomplete modelling of the air-water interaction during closure. The velocity

05 0% Xy B 0.4z EX) xfm] 038 05 0. By o4 0.4z EX) xfm) 038

Figure 6.2: A comparison of the shape of the air pocket. Upper image
row is of the air pocket 6 from experiments, compared to the lower image
row taken from the boundary-element-finite-difference method (BEFDM)
using the G1 grid setting. The intersection line between the free surface
and the front glass (FSF) should be used when comparing the air pocket
geometry. Left: The time instant when the wave crest is first touching the
roof. Right: The time instant when pressure is maximum.

of the entering wave was V; = 0.352[m/s| along the wall and V5 = 0.446 [m/s| at the wave
crest for the boundary-element-finite-difference method (BEFDM) using the grid settings G1.
The velocities are evaluated when the wave crest is 6[mm] from the roof. In the experimental
results reported in figure 2.7 these velocities are given as V) = 0.41|m/s| and V5 = 0.38[m/s].
The boundary-element-finite-difference method (BEFDM) is seen to overestimate the verti-
cal velocity at the wave peak, while underestimating it at the left wall. The average of V}
and Vj; are seen to be of similar magnitude for the boundary-element-finite-difference method
(BEFDM) and the experiments. The mixed Eulerian-Lagrangian method (MEL) using the
grid settings G1, overestimates the initial volume, which is 1076 [mm?| compared to 810|mm?]
in the experiments. An explanation of this deviation can be the Rayleigh damping model
which is a simplified treatment of damping.
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6.2 Comparison of the pressure-time history

The pressure time histories from the numerical methods and the experiments are compared
in figure 6.3. The upper plot shows a comparison between the mixed Eulerian-Lagrangian
method (MEL), the semi-analytical method (SAM) and the average of 13 runs of the exper-
iments.

The results from the mixed Eulerian-Lagrangian method (MEL) overestimate the period
of the pressure time history. The period of the pressure time history for the different numer-
ical methods and the experiments are plotted separately in figure 6.4. The natural period
T, is seen to decrease with the square root of the volume according to equation (5.5). As-
suming that the wetted length parameters in the experiments and in the results from the
mixed Eulerian-Lagrangian method (MEL) is equal, the difference in volume suggests a ratio
between the experimental period and numerical period of T /TP = 1.15. This is in fair
agreement with figure 6.4. The natural periods obtained from equation (5.5) using the ex-
perimentally measured air pocket volume €y and wetted length parameters a and b are also
plotted in figure 6.4. The period is seen to be overestimated. One reason for this deviation
can be the simplified geometry of the air pocket used in the semi-analytical method (SAM),
where the boundary conditions of the free surface was applied to a straight line intersecting
the roof. The free surface in the experiments is not close to horizontal outside the air pocket.
The deviation is an error source in the semi-analytical method (SAM).

Both numerical methods overestimate the maximum pressure P. When the semi-analytical
method (SAM) is linearised the peak pressure is proportional to the impact velocity. The
average of the velocity at the wall V; and the velocity at the crest V5 from the experiments
was used as input to the semi-analytical method (SAM). For the mixed Eulerian-Lagrangian
method (MEL) the average impact velocity was taken from the end of the simulation us-
ing the boundary-element-finite-difference method (BEFDM). The average impact velocity
(V1 + V5)/2 from the BEFDM was seen to be close to the experimental value. However, the
velocity at the crest was seen to be larger, and the velocity at the wall smaller. This might
be the reason for the over-prediction by the mixed Eulerian-Lagrangian method (MEL).
However, one should keep in mind that the experiments show air leakage after the wave
first touches the roof and until the whole width of the roof is wetted. This can in a two-
dimensional sense be seen as air leakage and air leakage was shown both experimentally and
mathematically, through the semi-analytical method (SAM), to cause damping. The overes-
timation of the maximum pressure for the semi-analytical method (SAM) compared to the
mixed Eulerian-Lagrangian method (MEL) is believed to be the simplified geometry of the
semi-analytical method (SAM) on which the boundary conditions are satisfied. The decay
of the air pocket oscillations is discussed next.

6.3 Damping of the pressure time history?
For the air pocket oscillations to behave as the free decay of a linear under-damped mass-

spring system the decay of the oscillations should be exponential and the frequency of oscil-
lations should be constant and equal to the natural frequency during the whole impact. The
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Figure 6.3: Top: Comparison of the initial part of the pressure time
history for air pocket 6 from experiments (average of 13 runs), the mixed
Eulerian-Lagrangian method (MEL) using grid setting G1 and the semi-
analytical method (SAM) including damping. Bottom: Comparison of the
pressure time history for air pocket 6 for run 18 of the experiment, and the
SAM method including damping.

experiments reported in chapter 2 show to what extent the air pocket at the upper corner
deviates from the free decay of an under-damped mass-spring system. This is seen as non-
exponential decay of the pressure amplitudes in figure 2.11 and 2.12 and non-constant period
T; in the figure 6.4, of the pressure time history. A general trend is that the decay is espe-
cially large during the time from the first pressure maximum to the first pressure minimum.
The ratio of the first two pressure amplitudes, P/ P; is 0.73 for the semi-analytical method
(SAM) including damping from heat exchange, and viscous boundary layers from the walls
not including the roof. The same ratio is 0.74 for the mixed Eulerian-Lagrangian method
(MEL), while the average line of 13 experimental runs give 0.58. The reason for the decay of
the semi-analytical method (SAM) during the first period is the change of the wetted length
parameters a and b, which changes the natural frequency. The change of the natural period
during the initial stage is evident from figure 6.4. The change of a and b during the time of
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oscillations is a nonlinear effect, and this nonlinear effect is seen to cause substantial decay
during the initial stage of the impact. From the undamped semi-analytical method (SAM) it
is also evident that this nonlinear effect increases the amplitude at the end of the impact (see
figure 5.10). This effect is not seen in the experiments where an overall decay trend of the
pressure oscillations are observed. From the results of the semi-analytical method it is seen
that the overall decay trend of the experimental pressure time histories can be explained by
thermal and boundary layer damping.

Jets are formed just after impact. The kinetic energy which enters these jets follow the
roof for some time before it falls down on the underlying water as "rain”. This energy can
be considered lost or destroyed. The jets in the mixed Eulerian-Lagrangian method (MEL)
are cut, and hence the kinetic energy assosiated with the jets are lost. The jet cutting is
however not seen to cause any significant decay of the pressure time history. This suggests
that the jets does not serve as a damping mechanism of significance for air pocket 6 during
the time before the mixed Eulerian-Lagrangian method (MEL) breaks down. To summarize
the present study, the decay of the air pocket oscillations are found to be affected by nonlinear
effects, heat conduction, viscous dissipation and if present; air leakage.




Chapter 7

Scaling of air pocket impacts

The scaling of pressure time histories of air pocket slamming events is investigated. The
experiments carried out in chapter 2 consisted of air and freshwater under atmospheric con-
ditions. This experimental set-up is often used to represent full scale problems consisting of
air and seawater at atmospheric conditions. The presence of waves requires that the Froude
number F'n must be similar in model and full scale. However, since nearly the same fluids are
used in model and full scale and the same atmospheric pressure is maintained, the model has
a different Euler number Fu. Since the Euler number is important for air pocket slamming
events, the air pocket behaviour will not be similar in model and full scale, and hence the
pressure measured in model experiments cannot be scaled to full scale using Froude scaling.
So what kind of scaling procedure can be applied for this problem?

Lundgren [11] established a scaling procedure for the maximum pressure of air pocket
impacts based on Bagnold’s piston model [1]. The input to this scaling procedure is the peak
pressure in model scale and the result is the peak pressure in prototype scale. Hence, the
procedure does not give any information about the temporal variation of the pressure, which
from a structural response point of view is important. A new scaling procedure called the
pressure-amplitude and rise-time scaling procedure (PARTS) is proposed which also yields
information about the temporal variation of the pressure. This means that information about
the rise time T can be found. In the new procedure a simplified nonlinear mathematical
problem for the air pocket is established. This mathematical problem is a nonlinear ordinary
differential equation (ODE) in terms of the absolute pressure p. The input to the present
method is the pressure time history from the model. No other information is required like the
air pocket geometry or impact speed. The mathematical problem of the air pocket contains
two parameters. The values of these two parameters are obtained from the measured pressure-
amplitude and the rise-time in experiments. Then the mathematical problem is scaled to
prototype scale and solved to obtain the pressure time history in prototype scale. From this
pressure time history the peak pressure and rise time for the prototype can be found. The
pressure amplitudes obtained from this scaling procedure is equal to the pressure amplitudes
obtained using LLundgren’s scaling procedure based on Bagnold’s piston model. The validity of
the new scaling procedure is investigated by comparison with the mixed Eulerian-Lagrangian
method (MEL) for air pocket 6.

125



126 Scaling of air pocket impacts

p [kPa]

-10 ! ! ! ! !
-10 0 10 20 30 40 50

t [ms]
Figure 7.1: Pressure measurements in model scale from air pocket 1

run 10. The rise time 7, = 2[ms] and peak dynamic pressure is P, =
16.630|kPal.

7.1 A mathematical model of an air pocket

In the following the mathematical problem is posed. Here the semi-analytic air pocket model
(SAM) by Faltinsen and Timokha [8] is used as presented in chapter 5. To arrive at a scaling
procedure for the pressure, simplifications to this mathematical problem is introduced in the
following way. The first simplification is that air leakage must be neglected. The second
simplification is that the entering liquid velocity V' has no time dependence. This can be
justified by the fact that the origin of the entering velocity is often the first mode of sloshing
which varies slowly in time compared to the pressure oscillations. The third requirement
imposed is that the geometry parameters a and b of the air pocket seen in figure 5.1 do not
vary during the oscillations. Introducing these two conditions into Faltinsen and Timokha’s
equations result in

0%Q Q \"
Phﬁ _pOKQ(t)) - 1]- (7.1)
Here I is given by
YT K b/d '

The function K (k) is defined in equation (5.3). The initial conditions for the equation are:

Q=0 t=0

49 (7.3)
s -Vl t=0.
Here I, is given by
I, =a[E(b/a) — K(b/a)]. (7.4)

The function E(k) is defined in equation (5.3). The polytropic gas law is used in the present
method. There are several assumptions that need to be valid in order to use this mathematical
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model to scale the pressure time history to prototype scale. These assumptions are listed
next for clarity.

e The compression of the air pocket must be assumed either adiabatic or isothermal. In
general the heat exchange between the air inside the air pocket and the surroundings
may matter as described in chapter 5.

e There cannot be any boiling or condensation phenomena associated with the air pocket
oscillations.

e There cannot be any significant air leakage to and from the air pocket during the air
pocket impact.

e The hydrodynamic problem must be well described through a linearised model, and
this linearised hydrodynamic problem must be geometrically similar in model and in
prototype scale.

e The oscillation needs to be free. This is true if the problem of the entering water varies
slowly in time corresponding to the time scale of the air pocket oscillations.

e At the time instant when the air pocket is closing, the pressure inside the air pocket
needs to be close to the ullage pressure.

e The pressure inside the air pocket is uniform in space. The time scale of the pressure
oscillations must be longer than the acoustic time scale of the air pocket.

The assumptions only need to be valid during the time from ¢ = 0 to ¢ = T in order for
the scaling procedure to give information about the pressure amplitude P and the rise time
T. The proposed procedure can be generalized to, for instance, entrapped air pocket impacts
due to breaking waves on vertical walls.

7.2 Procedure for scaling

The proposed method, the pressure-amplitude and rise-time scaling procedure (PARTS),
does not make use of energy considerations as Lundgren’s procedure based on Bagnold’s
piston model [11], but instead solves the ordinary differential equation (7.1) and the initial
conditions (7.3). Since the procedure aims to scale pressure measurements this problem is
rewritten so that the primary unknown is the absolute pressure p and not the volume .
Equation (4.4) is then expressed as:

1

Q=0 (p]z(t’)) " (7.5)

@ _ _Qopoﬁ_z < Po >K1dp (7 6)

dt ko \p(t) dt

Which means that
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Figure 7.2: The graphical procedure which fits the nonlinear problem
to experimental measurements. The upper left and upper right plots show
the isocontours of the functions Fp(P;,T;) and Fp(P;,T;). The intersection
between the zero contours of these two functions is plotted on the lowermost
plot. The intersection point of these lines is the optimal values of P, =
P, T, =1,
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d*Q o _Qopo

ar ok

[{—2p_3 (i;) »111_1 - (% -1) (];0) i_zpop_‘l} (7.7)
(i) + (3) i)

In this way the pressure can be used as the primary unknown in the differential equation:

-G HEOD ) o

Now, initial conditions for p and dp/dt are needed. The initial pressure is set equal to the
ullage pressure po and the initial condition for dp/dt is found from (7.6). The initial conditions
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are then given as:

P =DPo t=20
dp Voly (7.9)
— = pok| —— t=0
dt Qo
30 R P|=Pe and T|=Te
5L o F’=Po and T|=T0
20k Experiments

p [kPa]

t [ms]
Figure 7.3: The nonlinear mathematical problem fitted to experiments

using parameters from experiments (7; = T., P, = P.) and the optimal
parameters from the graphical procedure (7; = T,, P, = P,).

In order to obtain the same pressure time history when solving (7.8) using (7.9), then the
parameters I1Qy, Vola/, po, £ and p needs to be equal. The two first parameters, 11,
Vol /90, are kinematic parameters originating from the geometry and the velocity field of
the air pocket. These two parameters can be fitted to one particular air pocket. The other
three parameters py, k£ and p are in this work assumed to be equal at all scales. However,
in general they can be different and the present procedure can be generalized to include
this fact. The nonlinear mathematical problem can be solved numerically using a standard
numerical procedure. Here an explicit Runge-Kutta method is used for this purpose.

The solution of the nonlinear problem (7.8), (7.9) is now fitted to experiments. This is
done by finding values for the two kinematic parameters which produces the same maximum
dynamic pressure and rise time. The maximum dynamic pressure and rise time obtained when
solving (7.8), (7.9) is denoted P and T. Since no analytical solution exists for the nonlinear
problem, no analytical relation between (P,T) and (119, Vola/€) can be found. However,
if the problem is linearised, analytical relations can be found. Introducing Q2 = Qy + AQ and
linearising equation (7.1) leads to the following linear differential equation for the dynamic
pressure p:

d’p  por

@b —0 7.10
a2 10" (7.10)

The solution to this equation is p(t) = Psin(wet). Here P, is the pressure amplitude for the
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solution of the linear problem and wy is the natural frequency given by:

Pok T
= = —. 7.11
TN o T 21 (7.11)

Where T; is the rise time of the linear problem. Now we have a linear estimate of the
parameter ;) from equation (7.11):

4T pok
w2p

Ly = (7.12)

By taking the time derivative of the solution of the linear problem (7.10) and inserting wy
through equation (7.11), a value for the second parameter is found as:
Vil 1 R
Q  2por T

(7.13)

Now, linear estimates of the parameters for the nonlinear problem are established. If exper-
imental values of the maximum dynamic pressure P, and rise time T, is inserted in equation
(7.12) and (7.13), then the value of these parameters can be inserted in the nonlinear problem
(7.8) and (7.9). The solution to this problem will have a dynamic pressure amplitude P and
rise time T', which will be different from P,,T,. However, P,T will be close to P,, T, if the
compression of the air pocket is close to linear.

2,
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The procedure of inserting linear estimates of the maximum dynamic pressure P, and rise
time 7; and solving the nonlinear problem (7.8) and (7.9), obtaining nonlinear maximum
dynamic pressure P and rise time T', can be seen as evaluating the functions P(P;,T;) and
T(P,T;). Different values of P, T} are then solved for around the experimental values P,, T,
in order to find the optimal values of the input parameters P, T; which produces P = P, and
T =T,. These optimal values of P;,T; are denoted P,,T,.

The maximum dynamic pressure P, and rise time 7, is taken from the pressure measure-
ments in figure 7.1. The rise time is estimated as two times the time between p = P,/2 and
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Figure 7.5: The pressure
time history after the pressure-
amplitude and rise-time scaling
procedure (PARTS) has been ap-
plied to air pocket 1 run 10. The
results are made non-dimensional
based on the analytical scal-
ing resulting from a linearised
polytropic air pocket model. A
is the geometric scaling factor
A = L,/L,, where L,, and L, are
the same characteristic dimension
for the model and prototype,

respectively.

p = P,. This results in T, = 2.0[ms] and maximum dynamic pressure P, = 16.630[kPa]. The
ullage pressure is set to pg = 101[kPal, x = 1.4 and p = 1000[kg/m’]. Two functions are then
defined as

P(P.T)) — P,
Fo(, By = T =T (7.14)

and T(P,T, T.
FT(TlaIDl):i( Z’Tl)f <. (7.15)

The nonlinear problem is then solved using values for F,,7; ranging from
0.7P, < B, < 1.3PF, and 0.77T, < T; < 1.3T,. In the upper left and right plot in figure
7.2 the functions Fp and Fp are seen. On the lower most plot the optimal values P,, T, is
seen as the intersection between the zero contour of the function Fp and the zero contour of
Fr. This point is P,/P. = 0.9158 and T,/T. = 1.0569.

The numerical solution of the nonlinear mathematical problem using P, = P, and T; =T,
and optimal values P, = By and T; = T, can be seen in figure 7.3. It is seen that the optimal
values fit the experiments well during the initial compression of the air pocket. Later there
are deviations related to changing natural period and decay of the pressure amplitudes. In
the plot the solution of the nonlinear problem using P, = P, and T; = T, is also seen. This
results in too long rise time and too large maximum pressure.

Now, having fitted the mathematical model to the experiments, the model can be scaled
to prototype scale and then solved. Assuming that the air pocket can be well represented by
a linearised hydrodynamic problem which is geometrically similar at all relevant scales then
I, should be scaled with A, where A is defined as the geometric scale factor A\ = L,/L,,,. Ly,
and L, being the same characteristic length for the model and prototype, respectively. When
using the expression "the linearized hydrodynamic problem” it concerns the parameters a
and b. Tt is emphasized that the nonlinear polytropic gas law is used and that it is the only
source of nonlinearity present in the nonlinear problem. I is equal in all scales since a and b
scales geometrically. Vj is the impact velocity and is connected to the gravity waves, hence
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this velocity follows Froude scaling. Then the two parameters of the nonlinear problem can
be scaled. 1,9 then scales like \> and VyI,/Q scales like A\=1/2.

pIP_1)

05

L
045

z/A

Figure 7.6: Top: Dynamic pressure inside the air pocket from the mixed
Eulerian-Lagrangian method (MEL) using the G1 grid setting applied to

air pocket 6.

The curves are made non-dimensional using the Froude

scaled maximum pressure: P, A and the Froude scaled value of the rise
time T},v/\. Bottom: The free surface profiles for the mixed Eulerian-
Lagrangian method (MEL) at different scales for the time instant of max-
imum pressure p = P. The geometry has been scaled to model scale.

The result can be seen in figure 7.4. Here the pressure is made non-dimensional based on
the Froude scaled maximum pressure P, A. Here P,, denotes the maximum dynamic pressure
in model scale. If Froude scaling was applicable, all curves would lie on top of the curve for
A = 1. For this air pocket it is seen that Froude scaling is conservative, in terms of maximum
pressure, for a scaling parameter less than 600. The rise time measured in terms of the
mentioned definition, is seen to be longer than the Froude estimate for the range of scales
A =1—600. At larger scales the rise time is shorter than the Froude scale estimate.

In the pressure-amplitude and rise-time scaling procedure nonlinearity with respect to the
polytropic air pocket model is maintained. If this relation is linearised, scaling of the pressure
and time can be made analytically. From (7.12) it is evident that the time in prototype scale
t, is related to the time in model scale t,, as t, = t,,A. Then equation (7.13) yields that the




7.3. Comparison with the MEL method 133

pressure is scaled according to the formula p, = pmV/ . Scaling according to these formulas
is denoted linear scaling in the following. Making the results non-dimensional assuming this
scaling is shown in figure 7.5. For air pocket 1 it is seen that the linear scaling law works
for small scaling ratios A < 8 and that it is inaccurate for scaling ratios larger than this.
However, this conclusion is dependent on the maximum pressure in model scale and is not
general.

The horizontal tank dimension (L) was one meter, so interesting prototype tanks inside
ships are less than A = 50. The range of scales investigated exceeds this. However, if a larger
peak pressure was observed for the model scale air pocket, then the critical scale where Froude
scaling is no longer conservative would be reduced. The validity of this kind of scaling is
based on the validity of the assumptions listed in the previous section.

-7 Figure 7.7: Dynamic
el . ©  pressure maxima from
7 - 17 the mixed FEulerian-
— e ° 1 Lagrangian method
£ - {1 (MEL) compared with
A o . ) o | the Froude scaling law,
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Froude scaling and rise-time scaling
~ ~ ~PARTS scaling 1 procedure and the linear
linear scaling | A
o MEL model scahng law.
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7.3 Comparison with the MEL method

To verify the new scaling procedure, the mixed Eulerian-Lagrangian method (MEL) presented
and applied to air pocket 6 in chapter 4 is now used to solve the problem at different scales.
The results are then used to test the new scaling procedure. The input parameters of air
pocket 6 were scaled to different prototype scales assuming Froude scaling only. That is
A=1,2,4,10,20,40,80,120. The ullage pressure was kept equal to the atmospheric pressure
in all scales. This means different Euler numbers for all scales. For the smallest scale the
code runs for many oscillations of the air pocket. For the other scales the model breaks down
after the first half period of oscillation. Therefore only the first half period is included in the
following plots. The different non-dimensional dynamic pressure time histories are shown in
figure 7.6. In this plot the dynamic pressure time history is made non-dimensional by dividing
the pressure by P,A. P, is the maximum dynamic pressure assuming Froude scaling. The
time is made non-dimensional by the time scale T},,v/A, which is the Froude scaled rise time.
The pressure maximum is lower and the rise time is longer than the corresponding Froude
scaled values.
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The free surface geometry is compared for the different scales in the lower plot of figure
7.6 at the time instant of maximum pressure p = P. The geometry of the free surface is
scaled down a factor A\. The flow field and the geometry of the air pocket is not similar
due to the different Euler numbers at the different scales. One of the assumptions of the
pressure-amplitude and rise-time scaling procedure is that the same linearised hydrodynamic
problem should be valid for both the model and the prototype scale.
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In figure 7.7 the pressure amplitude from the mixed Eulerian-TLagrangian method is com-
pared with Froude scaling, the pressure-amplitude and rise-time scaling procedure (PARTS)
and the linear scaling law. The linear scaling law is the scaling law if the pressure-volume
relationship is linearised. When applying the pressure-amplitude and rise-time scaling pro-
cedure (PARTS) the parameters of the mathematical problem was fitted to the pressure
time history in model scale. Then the parameters of the problem were scaled to prototype
scale and the mathematical problem was solved numerically. The rise time was easier to
estimate for the pressure time history than for the experiments in figure 7.1 so the rise time
was defined to be the time from p = 0 to p = P. The results in figure 7.7 show that the
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mixed Eulerian-Lagrangian method is close to the results from the pressure-amplitude and
rise-time scaling procedure. Further, the pressure-amplitude and rise-time scaling procedure
was compared to the mixed Eulerian-Lagrangian method in time domain in figure 7.8. Tt is
seen that the rise time is fairly well captured by the pressure-amplitude and rise-time scaling
procedure.

Bagnold’s piston model of the air pocket suggests that the impulse of the pressure time
curve from the time when the compression starts to the time when the pressure is maximum,
should Froude scale. This means that the quantity fOT p(t)dt should scale like A3/2. In figure
7.9 the mixed Eulerian-Lagrangian method is compared with Froude scaling. The figure
shows that the impulse follows closely the scaling \3/? derived based on Froude scaling.
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Chapter 8

Conclusions

An extensive investigation of the physical behaviour of an air pocket slamming event in the
upper corner of a two-dimensional sloshing tank has been carried out. In this study experi-
mental, numerical and semi-analytical methods have been applied. In the following the work
carried out in connection with the three objectives listed in the introduction is summarized
and concluded upon.

The first objective of this work was to design experiments of idealized air pocket slamming
events in the upper corner of a liquid-filled tank during sloshing at high filling which are as
repeatable as possible. To achieve this objective a new experimental set up was established
in order to create more repeatable, idealized air pocket impact events still showing the same
physical behaviour as air pockets occurring during regular sloshing. The key ingredient was
the derivation of a new excitation signal based on linear multi-modal theory. The excitation
signal was then inserted as forced motion of a tank. Six different air pockets were produced
based on variation of the excitation signal. The pressure time history from the experimental
impacts show varying degree of repeatability.

Conclusion 1: The air pocket which was most repeatable, which is referred to as air pocket
6, had generally the same physical characteristics as the other air pocket slamming events.
Air pocket 6 had also the same characteristics as the air pocket reported by Faltinsen and
Timokha [8] which was obtained during regular sloshing after multiple contacts with the
roof. It is concluded that the experiments made in this work were sufficiently repeatable
for reliable comparison with two dimensional mathematical models. However, air pocket 6
did not close instantly across the width of the tank. This three-dimensional effect must be
considered when comparing the results with two-dimensional mathematical models.

Based on the experiments the air pocket impact was divided into a sloshing stage, an air-
escape stage and an air pocket oscillation stage. The experiments were also used to motivate
the assumptions behind the mathematical problem of the boundary-element-finite-difference
method applied for the sloshing and air-escape stages and the mixed Eulerian-Lagrangian
method applied to the air pocket oscillation stage. In order to describe the physical effects
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governing the air pocket impact, mathematical models were used in combination with experi-
ments. A summary of the mathematical models applied follows. In chapter 3 a new numerical
procedure the boundary-element-finite-difference method (BEFDM) for the sloshing and air-
escape stage was derived, tested and applied to model the sloshing and air-escape stage of
air pocket 6. In chapter 4, a version of the classical mixed Eulerian-Lagrangian method, was
applied to the air pocket oscillation stage. The initial conditions were found from the results
from the boundary-element-finite-difference method (BEFDM) applied to the sloshing and
air-escape stages. At the end of the air-escape stage, one node of the boundary-element-
finite-difference method crosses the roof. In order to continue the simulation using the mixed
Eulerian-Lagrangian method (MEL) the roof needs to have an initial wetted length. Due to
the complexity of the physical effects governing the closure of the air pocket, a pragmatic
ad-hoc approach is used to close the air pocket, so that initial conditions for the mixed
Eulerian-Lagrangian method can be obtained and the simulation continued. Based on a sen-
sitivity analysis the results are seen to be insensitive to this ad-hoc procedure. The mixed
Eulerian-Lagrangian method broke down after some oscillations of the air pocket, due to a
growing instability inside the air pocket. The results from the mixed Eulerian-Lagrangian
method show that the peak pressure can be reasonable well predicted. Due to the breakdown
of the mixed Eulerian-Lagrangian method, the semi-analytical method (SAM) of Faltinsen
and Timokha [8] was applied to model the whole air pocket oscillation stage. The initial
volume, the parameters describing the wetted length and the impact velocity used in the
semi-analytical method were found from experiments. The SAM method was extended to
include the damping effect of heat exchange to and from the air pocket. The method describ-
ing the air pocket assumed one dimension, steady state, linear, uniform pressure and heat
flow through conduction. The SAM method was also extended to include the damping effect
of laminar boundary layers in the water at the tank walls. The mathematical model of the
damping effect due to viscous boundary layers assumed no interaction between the flow field
of the entering water and the flow field of the air pocket oscillations. There is uncertainty
related to the contribution from the boundary layers at the roof, due to a singular integral.
However, a lower bound of the damping ratio was estimated by excluding the contribution
from the roof.

The following conclusions are reached in connection to the second objective of this work
which was to obtain new knowledge regarding the physical effects governing air pocket slam-
ming events. In the following the results from the experiments and mathematical models are
compared for the different stages of the air pocket slamming event.

Conclusion 2: The air pocket slamming event starts when the wave crest approaches the
roof and air escapes at increasing speed. For all the air pockets studied in the experiments,
interaction between the escaping air and the water was observed just before the wave crest
touched the roof. For air pocket 6 this was seen as a sharpened wave crest just prior to
closure of the air pocket. The closure of the air pocket 6 was also seen not to be instantaneous
perpendicular to the two-dimensional plane of the assumed theoretical flow. The sloshing
and air-escape stages were solved by using the boundary-element-finite-difference method.
The results show interaction between the air and the water, however not as pronounced as
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seen in the experiments. This might suggests that there are physical effects missing in the
mathematical model. The compressibility effects of the escaping air were then investigated
in a separate model where the free surface was assumed to be rigid and approaching the
roof at constant speed. The problem was solved using an existing numerical code called
CLAWPACK. The results show that compressibility effects are important when the distance
between the wave crest and the roof is less than 0.5mm]. For comparison the maximum
thickness of the air pocket is 18 [mm], while the initial length of the air pocket is 89 [mml].
The simulation was stopped when the Mach number, defined as M = ug““‘/co was equal to
unity. Here ui™™ is the maximum gas velocity and ¢ is the speed of sound. The air pocket
was closed instantaneously at a Mach number equal to one, and two shock waves were seen to
travel in opposite directions horizontally out from the area of the wave crest. The closure of
the air pocket resembles the "water hammer” effect which is a known problem in connection
to sudden blockage of pipe flows. This physical effect can be of importance for the closure
of the air pocket, however other physical effects can also matter, like viscosity of the air and
water. The time of closure is the time instant when air can no longer escape the air pocket
through any opening. This means that the roof is continously wetted. From the experiments
it was found that the time of closure varied dependent on which type of air pocket which
was studied. Air pocket 1 and 6 closed just after the first contact with the roof. Air pocket
4 closed at the time instant of maximum pressure and air pocket 5 and 8 closed just after
the first zero down crossing. The leakage of air out of air pocket 5 and 8 took place through
the later wetted section of the roof. This means that the tank roof was not continuously wet
across the thickness (z-direction) during the time of leakage. When the wave crest touches
the roof the pressure inside the air pocket increases and starts to oscillate. The pressure
time history of the oscillating air pocket does to some extent resemble the free oscillations of
a linear under-damped mass-spring system. However, the response of such a system should
have a constant period of oscillation and exponential decay. Here a remark is made on the
difference between decay and damping. Decay refer to general reduction of the pressure
amplitude and does not suggest anything about the physical or mathematical reason for the
amplitude reduction. Damping refer to the reduction of the amplitudes due to dissipation
of kinetic and potential energy of the system. For the free oscillations of an under-damped
linear mass-spring system, then the only sources of amplitude reduction is energy leaving the
system or what is denoted damping sources. Examples of damping sources, which remove
energy from the system, are heat exchange and viscous boundary layers. However, for an
air pocket impact the reasons for the decay does not need to be damping sources. The
semi-analytical method by Faltinsen and Timokha [8] shows that the reason for decay can
be nonlinear potential flow effects connected to the change of the wetted length of the roof
or forcing terms. In general, the decay of the air pocket pressure amplitude can be due to
exchange of combined kinetic and potential energy between the air and the water and can
not in general be denoted damping sources. The characteristics of the air pocket oscillations
are the period, maximum amplitude and the decay. In the following these characteristics are
commented.

The following experimental observations related to the decay of the air pocket oscillations
were made. All the experimentally investigated air pockets show large initial decay compared
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to the later decay trend. Here initial decay refers to the decay during the time from the first
pressure maximum to the first pressure minimum and the later decay trend refers to the
the decay after the first pressure minimum. The word trend is used to indicate that the air
pockets generally looses amplitude as a function of time, however irregularities related to this
has been observed, like air pocket 4, where the amplitude increases after about 4 periods of
oscillation. However, also for air pocket 4 the overall trend is decay of the pressure amplitude.
The fact that the decay is not strictly exponential suggests that there are physical effects
which cannot be explained as free oscillations of a one degree of freedom under-damped
mass-spring system. The mechanical system is more complex than this and the reason is
nonlinear effects, as seen in the semi-analytic method. The results from the mixed Eulerian-
Lagrangian method support the conclusions from the original semi-analytical method by
Faltinsen and Timokha [8] where it was concluded that there are nonlinear effects related
to the changing geometry of the air pocket which cause significant decay of the pressure
time history during the first period of oscillation. This nonlinearity also causes the period
of oscillation to change, particularly during the first period of oscillation. After the first
period of oscillation, the mixed Eulerian-Lagrangian method and the original semi-analytical
method, based on a polytropic air pocket model assuming adiabatic conditions, do not show
decay. This indicates that there are physical effects not included in the mathematical problem
which add to the overall decay trend in the experiments. To find effects that could explain
the overall decay of the experimental air pockets the role of heat exchange between the air
pocket and the water, viscous boundary layers in the water at the tank walls and air leakage
were investigated.

From the linear, one-dimensional, steady state and constant pressure heat conduction
model it is seen that the polytropic gas model fail to model the damping effect of heat flow
on the air pocket oscillations. The heat exchange was found to contribute to the decay of the
pressure oscillations. The damping ratio £ for all the investigated air pockets was between
0.540% < € < 1.26% and for air pocket 6 it was found to be £ = 0.772%. The heat exchange
model also shows that the polytropic index x for all the investigated air pockets was between
1.36 < k < 1.39 and that the polytropic index for air pocket 6 was x = 1.38. This is close
to the adiabatic value of kK = v = 1.4. The heat exchange is in general seen to modify the
stiffness of the air pocket and to damp the air pocket oscillations. This fact is believed to
be important also for other air pocket slamming events discussed in the introduction like
the impact of a horizontal flat plate on an initially calm free surface, the breaking wave
entrapping an air pocket at a vertical wall and the wave entrapping an air pocket underneath
a marine structure.

The mathematical model of the damping effect due to linear, laminar and viscous boundary-
layers assumed no interaction between the flow field of the entering water and the flow field of
the air pocket oscillations. There is uncertainty related to the contribution from the bound-
ary layers at the roof, due to a singular integral. However, a lower bound of the damping
ratio was estimated by excluding the contribution from the roof. Even when this lower bound
was used in the calculations the viscous boundary layers contributed with similar magnitude
as the heat conduction to the damping of the pressure oscillations.

A main finding of the present experiments was that no air was leaking into or out from
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the air pocket after the first pressure minimum for any of the investigated air pockets. This
means that air leakage cannot explain the overall decay trend of the air pocket oscillations
after the first pressure minimum. A separate set of experiments were carried out to investi-
gate the role of air leakage in general. This was done by varying the diameter of a circular
hole in the tank roof. Air pockets 6 and 7, which were seen to close before the first pressure
maximum, were investigated. This means that air was only leaking through the hole in the
roof during the air pocket oscillation stage for these air pockets. The experiments show that
the air pocket oscillations have larger decay if air is allowed to leak into or out from the air
pocket during the air pocket oscillation stage relative to if such air leakage does not occur.
Air leakage cannot explain the initial and later decay of the air pockets oscillations of air
pocket 1, 4, 6 and 7 when the hole in the roof is closed. This is because these air pockets
are totally closed during the pressure oscillation stage. However, air leakage can explain the
larger initial decay experienced for air pocket 5 and 8 compared to the closed air pockets 1,
4, 6 and 7. This because air pocket 5 and 8 show air leakage almost until the first pressure
minimum. The experiments show that air leakage, if present, can very well be the largest
cause of decay of air pocket pressure oscillation amplitudes.

Conclusion 3: The third objective of the present work was to investigate the scaling of
air pocket impact events, and to describe the errors made by model experiments where
the Euler number Fwu is different in model and prototype. In addition the objective was
to investigate if there are other non-dimensional numbers which are important related to
slamming including air pockets. To achieve this objective a scaling procedure for pressure
measurements of air pocket impacts is proposed. The new scaling procedure is denoted
the pressure-amplitude and rise-time scaling procedure (PARTS). This scaling procedure is
applicable for air pocket slamming events where the inflow conditions originate from gravity
waves and hence follow Froude scaling. The model is assumed to be geometrically similar
to the prototype. The Euler number is often different for model and prototype because the
reference pressure in model and prototype is the atmospheric pressure. The method fits
two parameters in a mathematical problem to model experiments using a graphical method.
Then these parameters are scaled and the mathematical problem solved on different scales
using numerical time integration. The polytropic gas model is applied for the air pocket
assuming adiabatic conditions. The method produces the same peak pressures as Lundgren’s
scaling procedure [11] based on Bagnold’s piston model. Contrary to Lundgren’s procedure,
the present scaling procedure also estimates the time variation of the pressure. This is useful
for dynamic structural analysis where the rise time is an important parameter. The proposed
pressure-amplitude and rise-time scaling procedure assumes that the hydrodynamic part of
the air pocket problem can be linearized, and that the air pocket at larger scales can be
represented by a geometrically similar problem. The procedure is validated using the mixed
Eulerian-Lagrangian method. The rise time and peak pressure obtained from the scaling
procedure agrees with the numerical model.

In order to do model tests of air pocket impact events, the governing physical effects of the
air pocket impact and corresponding non-dimensional numbers need to be identified. These
non-dimensional numbers can be identified by a non-dimensional version of the mathematical
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problem, which reproduce the real air pocket slamming event. For the mixed Eulerian-
Lagrangian method (MEL) and the original semi-analytic method (SAM) used in this work
this yields the following non-dimensional numbers. That is the Froude number F'n, the Euler
number Fu and the polytropic exponent x. The polytropic index corresponding to adiabatic
conditions is used in the present work. However, in general the polytropic index is dependent
on the heat exchange between the air inside the air pocket and the water as stated in the
second conclusion of this work. The non-dimensional number connected to heat exchange
was in this work seen to be the Péclet number Pe, and the ratio of specific heats 7.




Chapter 9

Suggestions for future work

A list of suggestions are made for further work on this topic:

e Development of numerical tools that can handle the physical effects during closure of
the air pocket.

e To carry out model experiments maintaining the same Euler number as in prototype
scale, to verify the pressure-amplitude and rise-time scaling procedure (PARTS).

e To create a mathematical model where structural deflections are accounted for. This
would allow to investigate hydroelastic effects, which is not investigated in the present
work.
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Appendix A

Does the flexibility of the tank roof
influence the results?

8- — — —P2AP602
acceleration top plate AP602 I

p [kPa], acc [m/sz]

t[ms
Figure A.1: Acceleration measurelrgent]of the top plate. The acceler-
ations are seen not to create large enough displacements of the roof to
considerably change the air pocket volume and hence affect the pressure
oscillations.

When slamming experiments are performed the structure might deform, and cause im-
portant hydroelastic effects. The latter effect may be important for a real tank in full scale.
However, our objective in the model tests was to consider a rigid tank. Because the elastic
response of the tank interferes with the physical mechanism of the impact event, the cor-
responding bias error must be minimized in the model tests. The physics of the oscillating
air pocket is governed by the spatially uniform pressure inside the air pocket which is di-
rectly related to the volume of the air pocket. Since the roof is the tank surface with the
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150 Does the flexibility of the tank roof influence the results?

largest exposed area towards the air pocket, the acceleration of the roof was monitored by
an accelerometer mounted in the air pocket area. This accelerometer was attached beside
the pressure sensors (see figure 2.3) and the measurements are shown in figure A.1. There is
a tendency that the roof is oscillating with the same frequency as the air pocket. Assuming
that the acceleration fits a sine or cosine function with an amplitude of l[m/SQ] and a period
of 10[ms| the amplitude of the plate oscillations would be approximately 0.0025[mm]. As-
suming that the displacement is uniform for the whole roof plate this causes a volume change
of AQ = 25.1[mm?]. In the following the polytropic gas law (4.4) assuming adiabatic com-
pression £ = 1.4 is used. In this equation the initial pressure is set equal to the atmospheric
pressure pp, = 1.01-10°[Pal, the initial volume is set to €y = 810 - 100[mm?]. From equation
(4.4) the volume change induces a pressure variation of 44 [Pa] which is very small compared
to the amplitude of the pressure oscillations and hence the roof can be considered as rigid
in the experiments. The flexibility of the x — y-parallel side plates were also investigated by
stiffening the tank by adding a clamp over the side plates of the tank. This stiffening did not
alter the pressure signal and hence bias errors related to unwanted fluid-structure interaction
seem negligible.




Appendix B

Analytic solution of the BEM integrals

2 3
Lig Loy,

It

2,77

Here the integrals

I;fj in section 3.3.1 are solved analytically. To solve the integrals

AN Element nr. j

Figure B.1: The local coordinate system used to derive the integrals.

it is convenient to introduce

a rotated and translated coordinate system. This coordinate

system (&, 7) is chosen so that the £-axis is parallel to the element. and the 7-axis is in the
direction of the normal vector. The normal vector is defined to be on the left side, when one
walk in the counter clockwise direction. This coordinate system is shown in figure B.1. The
rotation of the coordinates in the global (z,y) system to the local system is performed using
the following transformation which can be derived by geometric considerations, that is,

€
U

X

y (B.1)

| cosf sinf
" |—sinf cosf
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152 Analytic solution of the BEM integrals

After that a translation of the coordinates is performed. Now the integration is handled. Ifj
is given by

72 dlogr de = /dlogr

dlogrdr
- [ =" /§2+772d€

= arctan § + C.
n

Here we know that
=&+ (B.2)

The I' integral is solved as follows,

:/bgrdg:/l-logrdé

01
=¢logr — /5 ogr partial integration

:510gr—§+narctan§.
Ui

The I? integral is solved as follows,

= /flogrdf

= f/log rd€ —//log rd€d& partial integration
= f{glogr — & + narctan ﬂ — / {flogr — &+ narctan% d€

2 2
= %logrz -

The I* integral is solved as follows,

alogr B & _n 5
/f 777/§2+n27210gr.

When the the limits are taken, the integrals can be written as,

I}, = arctan b2 _ arctan & (B.3)
’ n n

1
L = 5[52 logr — & logry] — (& — &) +nlf; (B.4)
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Appendix C

Derivation of an analytical two-phase
standing wave

Here the analytical solution for a linear two-phase standing wave inside a rectangular tank
is derived in the case where the liquid is assumed two-dimensional, assuming that potential
flow theory is valid and where the gas is assumed quasi-one-dimensional, inviscid and incom-
pressible. In the following the velocity potential in the liquid is denoted ¢ and the velocity
potential in the air is denoted ¢4. The analytical solution of a standing wave is based on
knowing the natural modes and frequencies. The linearised mathematical problem reads:

¢ @:

o + o 0 in the liquid, (C.1)
2 _
w = —pgd, on the free surface, (C.2)
jﬁ =0 on the walls, (C.3)
n
2
hoaa(bzg = ¢, in the gas, (C.4)
i3

Doy _ L

B = 0 on = :I:g. (C.5)

The second equation results from the dynamic free surface condition, requiring that the
pressure is equal on the two sides of the free surface. The fourth equation is the linearised
mass conservation equation in the air. The boundary conditions for the gas at + = £L/2
is the wall condition at both sides. Note that using this boundary condition and not the
boundary condition p = py at the right hand side does not change the velocities or the
wave elevation inside the tank, however the velocity potentials will be different. In the
following it is assumed harmonic time dependence with frequency w, then ¢ = iwe™p(x,y)
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156 Derivation of an analytical two-phase standing wave

and ¢, = iwe™'p,(z,y). This results in a problem for ¢, ¢, which is given as:

2 2
?Tf % —0 in the liquid, (C.6)
T Y
(pgpy — pP)W* = —pgep, on the free surface, (C.7)
d
d_i =0 on the walls, (C.8)
2
ho% =y, in the gas, (C.9)
Dy L
s 0 on x 5 (C.10)

Then the solution is assumed to be:

cosh (mm(y + H)1/L)
cosh (mrmH/L)

p = Cp,cos (mm(x + L/2)/L) (C.11)
g = cos (mm(x + L/2)/L). (C.12)

These solutions satisfies the differential equations inside the liquid and the gas, and the
boundary conditions on the free surface, and at @ = +L/2 for the gas. Then condition C.9
gives

c,, = _Lho' (C.13)
L tanh (anH)
Equation C.7 gives the natural frequencies as:
o pgho  (mm)’ (C.14)
" pg—pC)\ L ) '

An analytical solution can be found for a standing wave with free surface profile given as
C(t,x) = =, sin(wst) cos (m(x + L/2)/L). Since only the elevation is compared and not the
value of the velocity potentials, the normal modes in equation C.11 and C.12 can be used.
We assume ¢ = R(t)p and ¢, = Ry(t)p, . Then equation C.9 results in R, () = R(t) and
equation C.7 results in:

R(t) = &1 <£)2ms (wit). (C.15)

ho ™




Appendix D

Incompressible solution for the escaping
air

Here the incompressible, quasi-one-dimensional gas flow over a rigid free surface is solved
analytically. This means that the effect of the air flow on the water is neglected. The rigid
free surface motion is given as h(x,t) = ho(x) — Vot. Here ho(z) = h(z,t = 0). Further 1}
is constant and not a function of space or time. From the 1D mass conservation equation
(3.14), the horizontal velocity can be found as:

1 * Oh Vox

W) Jo o™ (D-1)

ug(x7t) =

Using the fact that 0h/ot = —Vi. Anderson [19] showed that the quasi-one-dimensional
momentum equation neglecting viscosity is identical to the one-dimensional Euler’s equation.
Then the dynamic pressure can be found as:

L
Ouy(2', 1) Ouy(2', 1)
p(z,t) = pg/w gT + ug(x',t)gaTax'. (D.2)
The derivatives of u, are given as:
Oug _ V'
o h?

%7\/0 Vox Oh

dr  h  h? oz
The following integrals are then solved:

L L
Ougy(2',t 2’
I = Pg/ % = ngOQ/ ﬁdﬂ?l (D.3)

La 2 2 2 A 2
_ Py Ug o 1 PaUs £ _(*
==y » O "= KhL) <h) } (b4
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by realizing that ugug, = .59(u})/0x. The pressure can then be written as:

‘ p ‘/02 LZ 1,2
pla,t) = L+ =5 (h% —53) (D.5)




Appendix E

Background of the compressible gas
solver

The problem of a compressible, quasi-one-dimensional gas escaping a rigid surface approach-
ing the upper corner of a sloshing tank was investigated using the CLAWPACK software
described in the book by Leveque [30]. The equations solved for is the compressible and
quasi-one-dimensional equations as written by Toro[37]:

Opg .~ O(pyusy) 1/ 0h oh
9py __Lfoh_ Oh ok
o ox n\ ot T Mgy )Pe (E-1)
pguy — O(pgui +p) 1/0h oh
I .2
o T or n\ ot T Mgy )Pate (E-2)
OE  Ous(E+p)  1(0h oh
5 + %% =\ + ugax (E+p) (E.3)

Here £ = pg(%u§+e), where e is the specific internal energy. This equation system is written
in a non-accelerated coordinate system and is on the form:

ou  9F[U)
ot oz
CLAWPACK uses a fractional-step method (Leveque [30]) to solve these equations. This

method first finds a solution of the homogeneous equation system, that means S = 0 in
equation (E.4). The problem solved for is then:

= S(U) (E.4)

U  OF(U)

St =0 (E.5)

The solution of this equation system is used as input in the next sub-step, the source step,
which neglects the spatial variation, that is F, = 0:
oUu
—=SWU E.6
=5 (26)
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160 Background of the compressible gas solver

This is a set of ordinary differential equations. The splitting is approximate, but yields the
important benefit that specialized solution methods can be applied for the two steps. Since
h(x,t) does not appear on the left hand side of the equations (E.1) - (E.3), it means that a
specialized solver can be applied to the homogeneous problem. The details of this solver can
be found in Leveque [30]. To solve the source step a second order Runge-Kutta method is
applied. The specific splitting method used is called Strang splitting. Further details about
this method can be found in Leveque [30].
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Figure E.1: Convergence study of the escaping air over an approach-
ing rigid surface. The Mach number M = 1.0 and the minimum height
hmin = 0.108[mm]. The Mach number is here defined as M = uglax/c(].
The topmost plots show the pressure while the lowermost plots show the
horizontal gas velocity. The left hand side plot is a close up view of the
singularity. Some grid dependence is seen on peak values.

A convergence study of the case specified in section 3.6 follows. The solution for the
compressible flow model shows singular-type behaviour at the narrowest point when the gap
between the free surface and the roof approaches zero. The air velocity as a function of
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the z-coordinate then forms a spike with increasing amplitude. Hence a convergence study
was carried out in order to see the cell size dependence at different stages of the simulation.
Three different uniform grids using N = [3000, 6000, 12000] cells along the length of the
domain are used in the investigation. The Courant-Friedrich-Lewy (CFL) number in the
simulation was set to Ccpr, = 0.9. The CFL stability criteria then limits the time step size
to At = OchAx/u‘g“aX. The resulting pressure and velocity is seen in figure E.1 for Mach
number equal to 1.0. The Mach number is here defined as M = u;*/co. The results are
seen to be grid dependent at the the narrowest point, however 12000 grid cells where found
to be satisfactory for M=1.0. If the simulation should be continued further than M = 1.0
then more grid cells are required.
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Appendix F

Complete 1D linear heat analysis

In the one-dimensional, linear, steady-state thermodynamic analysis in section 5.2 the pres-
sure was assumed to be uniform inside the air pocket. Here this assumption is investigated
by performing a complete linear analysis where the pressure is not restricted to be uniform
inside the air pocket. Assuming steady state, equation 5.7 can be written as:
. . 9%0
Pg0Cpiwol = iwop + Klﬁ' (F.1)
Y
Linearising the ideal gas law yields:

p Pg0
= PPy F.2
=R T T (F-2)

Here p; = pg — pgo. The linear equation expressing conservation of mass is:

v
iwopl + Pg0 7~ — 0 (F3)
g ay
Now the velocity potential is introduced, that is p = —p,00¢/0t, and v = d¢/dy, into (F.3)
and (F.2). These two equations combined then yield:

2 2 -
W "¢ dwg
_ o, F.4
ki, o 1,070 (F.4)

Introducing the velocity potential into (F.1), yields:

. 020
Pg0Cpiwnl = paowed + Kla—yQ (F.5)
The boundary conditions are given as:
0
a—j =0 on y=20
—Pgoiwod =pig  on Yy =—hy (F.6)

60=0 on y= —hy
0=0 on y=20
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164 Complete 1D linear heat analysis

Next, non-dimensional variables 6 = Ty, y = hofl, ¢ = woh2p and p = pyow2h2p are
introduced. Using the known relations from section 5.2, that is Dy = Ki/(pgoc,). and
Or = +/D1/(2wp) equation (F.4) and (F.5) can be written as:

Pl P

+——il=0 F.7
Po ¢ 0y* (D)
20921
A v—1 pgowgh?)) - ((5T) %0
W=(—)——)o+2( — - F.8
( v > ( Do ¢ ho) 09° (F8)
Boundary conditions in non-dimensional form are given as:
g—z =0 on =0
—id=pu on  §=-1 (F.9)
6=0 on y=-—1
6=0 on g =0.

Assuming that the solutions have the forms ¢ = Ae®? and § = Be®? the following equation
system is obtained:

(C+a*)A—iB=0 (F.10)
202
Here the following non-dimensional parameters are introduced:
272
¢ — Lol (F.12)
Do
E= ho (F.13)
or
-1
g =b (F.14)
~y

For solutions to exist the determinant of the coefficient matrix has to be zero. This leads to
the following equation:

20! 2C .
o= T (ﬁ —z>a2+(5—1)20204 (F.15)
This has potentially four solutions «;(i = 1...4). The solution can then be written as:
4
b= Aje? (F.16)
j=1
4
0= Bjel. (F.17)




165

A; and B; are related through (F.10) as
Bj = —i(C + o)) A;. (F.18)

The boundary conditions can be used to establish a four by four equation system for A;.
This is:

4
ZAjOéj =0 (Flg)
j=1

4
Z Aj@ia] = 1Pliq (F20)
=1
4
Z(C’ +aj)e W A; =0 (F.21)
j=1
4
Y (C+adA; =o. (F.22)
j=1
Now a relation between the non-dimensional pressure p(Z = —1) and the displacement of

the boundary ¢ needs to be established. ¢ is specified to be positive when the volume of the
piston is increasing (see figure 5.4). The non-dimensional displacement of the piston is € is
defined as € = hpe. The boundary condition at y = —hg is then ¢, = —¢, and pjg = —pgoPs.
The non-dimensional ratio between pressure and displacement is then:

B o B ijl Ajem

¢=2=_2_-_= (F.23)
€ oy Zj:l Ajoem
Then the polytropic exponent « follows from (5.27) as
_ Dty (F.24)

Po

The resulting polytropic index k(ho/dr) is plotted in figure F.1 and is seen to fit the
previous calculated polytropic index from the model in section 5.2 assuming uniform pressure.
But how does the pressure vary inside the air pocket? To investigate this the ratio of the
absolute value of the relative pressure divided by the pressure on the liquid surface |p|/pii,.
given as

- M ZA R (F.25)
pliq pliq plzq i—1

is plotted. This means that F needs to be specified which for air pocket 6 is £ = 51.01.
The ratio of specific heats for air is v = 1.4. The resulting spatial pressure variation is
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14
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ho __ 4
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Figure F.1: The polytropic index based for the spatially varying pressure

for the value for C from AP 6 compared with the results from the uniform
pressure model.

seen in figure F.2. The pressure variation is seen to be very small. In the following the
non-dimensional parameter C' is rewritten in different ways to see its physical origin:

op

= ~vRTj. F.26
8padA 7 0 ( )

2 _
Cy =

Acoustic resonance of the one-dimensional gas chamber will occur at different frequencies the
lowest frequency is connected to a standing first mode inside the chamber which occurs at
the frequency w,.. This is given by Faltinsen and Timokha [8] as:

TTCo

S ) F.27
e = T (F.27)
Using these formulas C' can be given in the following alternative forms:
27,2 2
c =200 _ 22, (ﬂ> = Y M? (F.28)
Co ac

C is seen to be a small parameter in the air pockets studied in chapter 2. For air pocket 6
its value is C' = 0.148e — 3. The last equality of equation F.28 relates the value of C' to the
Mach number expressed in terms of air pocket thickness and oscillation frequency, that is
M = howq/co. If this Mach number is high it means that acoustic effects are of importance.
The fact that M and hence C' is small for the air pockets studied herein is used as a basis in
the next asymptotic analysis.

In the following an asymptotic analysis of the linear problem is performed. In section 5.2
the pressure was assumed uniform inside the air pocket, this was not proved to be a valid
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assumption. The question is under what conditions this is true. In the following C' is assumed
to be a small parameter. From equation F.8 it is for the two limiting cases of isothermal and
adiabatic conditions, true that the term related to heat (the right most term) is negligible.
Therefore it is assumed that the first and the second term are of the same size, which yields
that O( 9) = d)) ¢ and 0 are then written as ¢ = ¢, + ¢o + ... and 0 = 61 + O + .

Here O(¢1) = 1 O(dy) = C Ofy) = C Of,) = C% We then keep leading order terms
in the mathematical problem posed by the equations (F.7), (F.8) and (F.9). This leads to
le = iPiiq, which in fact is equivalent to assuming that the pressure is uniform. This leads to
a temperature solution 91 which is identical to the solution already calculated in section 5.2.
Then keeping terms to second order in the mathematical problem equation (F.7) yields:

0 _—
8—:&2 = —C¢1 + 191 (F29)
Using equation (F.8) leads to the following equation:
96 r\* 9% C -
Y (e A (F.30)
9y? ho) 09* Y
Integration of this equation leads to:
- or\ . C
01 — —ipigd” + A9 + As. F.31
¢2 = (h0> nylplqy + A1y + Az (F.31)
The solution of 6; is given as:
él = —iBQ |:1 + Cleag + Cgeag:| (F32)

Where o = (1 41)4/1/(2B;). The constants are:

B; —2(§)2 (F.33)

B, =-:C¢ (F.34)
Cy =l (F.35)
¢, =—Cy—1. (F.36)

The constants A; and Ay are determined by satisfying the boundary conditions. The bound-
ary condition at the tank roof §y = 0, leads to:

5y 2
0
The boundary condition at § = —1 leads to:

C .
Ag = glpliq + Al. (F38)
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The constants in equation (F.31) are now determined. A comparison of the pressure from
the complete linear solution and the asymptotic solution is seen in figure F.2. Here the ratio
between the amplitude of the pressure inside the air pocket divided by the amplitude of
the pressure at the boundary is plotted. Based on the present findings it is concluded that

1.00007 \ \ \
— AP 6 full linear sol.
— — — AP 6 asymptotic linear sol.
1.00006 1
1.00005 B
1.00004 | =7 1
|p| =
Pig 1.00003 =~ 1
-
1.00002 1
1.00001 - J
1 1 1 1 1 1 1 1 1
-1 -09 -08 -07 -06 -05 04 -03 -02 -01 0
Y
Figure F.2: The spatial variation of the pressure inside the air pocket
for AP 6.

assuming constant pressure is the first order asymptotic solution of the linear problem in the
small parameter C' which is proportional to the Mach number squared, expressed through
the oscillation frequency wy and the characteristic thickness of the air pocket hyg.
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Ship Grounding. Analysis of Ductile Fracture,
Bottom Damage and Hull Girder Response. (PhD-
thesis, IMT)

Experimental Investigation of Sloshing Loading and
Load Effects in Membrane LNG Tanks Subjected to
Random Excitation. (PhD-thesis, CeSOS)

Efficient Prediction of Dynamic Response for
Flexible amd Multi-body Marine Structures. (PhD-
thesis, CeSOS)

Propulsion control and thrust allocation on marine
vessels. (PhD thesis, CeSOS)
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Vestbgstad, Tone Gran

Bruun, Kristine

Holstad, Anders

Ayala-Uraga, Efren

Kong, Xiangjun

Kristiansen, David

Ludvigsen, Martin

Hals, Jorgen

Technical Condition Indexes and Remaining Useful
Life of Aggregated Systems. PhD thesis, IMT

Hydrodynamic Coefficients for Vortex Induced
Vibrations of Flexible Beams, PhD
thesis, CeSOS

Ultimate Strength and Reliability-based Design of
Ship Hulls with Emphasis on Combined Global and
Local Loads. PhD Thesis, IMT

Bond Graph Modelling of Marine Power Systems.
PhD Thesis, IMT

Two-Dimensional Numerical and Experimental
Studies of Piston-Mode Resonance. PhD-Thesis,
CeSOS

Applications of a Standard High Reynolds Number
Model and a Stochastic Scour Prediction Model for
Marine Structures. PhD-thesis, IMT

Simplified Analysis and Design of Ships subjected
to Collision and Grounding. PhD-thesis, IMT

Vortex Induced Vibrations of Free Span Pipelines,
PhD thesis, IMT

Heuristic Methods for Ship Routing and Scheduling.
PhD-thesis, IMT

Experimental Investigation and Numerical in
Analyzing the Ocean Current Displacement of
Longlines. Ph.d.-Thesis, IMT.

A Numerical Study of Wave-in-Deck Impact usin a
Two-Dimensional Constrained Interpolation Profile
Method, Ph.d.thesis, CeSOS.

Bond Graph Modelling of Fuel Cells for Marine
Power Plants. Ph.d.-thesis, IMT

Numerical Investigation of Turbulence in a Sekwed
Three-Dimensional Channel Flow, Ph.d.-thesis,
IMT.

Reliability-Based Assessment of Deteriorating Ship-
shaped Offshore Structures, Ph.d.-thesis, IMT

A Numerical Study of a Damaged Ship in Beam Sea
Waves. Ph.d.-thesis, IMT/CeSOS.

Wave Induced Effects on Floaters of Aquaculture
Plants, Ph.d.-thesis, IMT/CeSOS.

An ROV-Toolbox for Optical and Acoustic
Scientific Seabed Investigation. Ph.d.-thesis IMT.

Modelling and Phase Control of Wave-Energy
Converters. Ph.d.thesis, CeSOS.
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Shu, Zhi

Shao, Yanlin

Califano, Andrea

El Khoury, George

Seim, Knut Sponheim

Jia, Huirong

Uncertainty Assessment of Wave Loads and
Ultimate Strength of Tankers and Bulk Carriers in a
Reliability Framework. Ph.d. Thesis, IMT.
Numerical Potential-Flow Studies on Weakly-
Nonlinear Wave-Body Interactions with/without
Small Forward Speed, Ph.d.thesis, IMT.

Dynamic Loads on Marine Propellers due to
Intermittent Ventilation. Ph.d.thesis, IMT.
Numerical Simulations of Massively Separated
Turbulent Flows, Ph.d.-thesis, IMT

Mixing Process in Dense Overflows with Emphasis
on the Faroe Bank Channel Overflow. Ph.d.thesis,
IMT

Structural Reliability Analysis of Intact and
Damaged Ships in a Collision Risk Analysis
Perspective. Ph.d.-thesis CeSOS.
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