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Abstra
tThe main obje
tive of this work is to study wave loads on �oaters of �sh farms. Severalin
idents of major �sh es
apes due to stru
tural 
ollapse of �sh farms in harsh weatherhave motivated this study, as a step towards obtaining better load models for the waveloads on the �oaters. Floaters of �sh farms are typi
ally small 
ompared to dimensioningwaves. The lo
al two-dimensional problem of a �oater subje
t to beam sea regular wavesis 
onsidered. The problem is addressed by means of numeri
al simulations, model testsand simpli�ed numeri
al models. A CFD numeri
al wave tank (NWT) for fully nonlinearwave body intera
tion problems is developed. The numeri
al model applies a one-�uidmodel, where a fra
tional step approa
h is used to solve the in
ompressible Navier-Stokesequations in time on a Cartesian staggered grid. Further, a 
ombined Constrained Inter-polation Pro�le (CIP-) and �nite di�eren
e pro
edure is used. An immersed boundaryte
hnique is applied to impose boundary 
onditions on the �oater.Two sets of model tests have been 
ondu
ted. In the �rst set, wave loads on �xedhorizontal 
ylinders in beam sea waves were studied. The purpose was to obtain validationdata for the numeri
al wave tank. Two models were tested. One with a 
ir
ular 
ross-se
tion and one with a re
tangular 
ross-se
tion. Model draft was varied. Other testparameters were wave period and wave steepness. The primary variables measured werethe 
lamping for
es of the model and the wave elevation at eight positions in the �ume.Numeri
al simulations similar to the physi
al experiments were performed and results
ompared, showing good agreement. Wave over-topping on the models was observed,both in the experiments and in the simulations.In the se
ond set of experiments, a �oating 
ir
ular 
ylinder in beam sea regularwaves was tested. The 
ylinder was moored using pre-tensioned mooring lines, yieldinga natural frequen
y of the sway motion whi
h is representative for �sh farms. Primaryvariables measured here were the model a

elerations used to obtain the body motion,surfa
e elevation and mooring line for
es. Results were 
ompared with linear potential �owtheory, semi-empiri
al theories and simulations with the CIP-based numeri
al wave tank.An instability phenomenon was observed in the experiments when the wave frequen
ywas two times the natural frequen
y in sway, 
ausing large amplitude sway motion whi
his not predi
ted by linear potential �ow theory. The same instability behaviour was alsoobserved in simulations with the CIP-based numeri
al wave tank and is believed to be dueto nonlinear hydrodynami
 e�e
ts. Experiments and numeri
al simulations also showsthat linear potential �ow theory largely over-predi
ts the sway motion near resonan
e.This is explained by e�e
ts of vis
ous �ow separation. It is also shown that higher orderharmoni
s of the wave loads 
an be signi�
ant and should be 
onsidered when fatigueanalyses of �sh farms are performed. iii
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Chapter 1Introdu
tionThe fo
us of this work is wave loads and wave indu
ed motions of the �oaters of open
age �sh farms. Better understanding of the hydrodynami
 loads on �oating �sh farms isne
essary in order to develop more reliable stru
tures for �sh farming at exposed lo
ations.Stru
tural 
ollapse of �oating �sh farms in harsh weather 
onditions, 
ausing large �shes
apes, is still a problem. We have investigated the hydrodynami
 loads by means ofdedi
ated model tests, numeri
al simulations using a presently developed 
omputational�uid dynami
s (CFD) 
ode, in addition to theoreti
al methods.1.1 Ba
kground and motivationIn 2006, the state of world aqua
ulture was presented in a 
omprehensive report by theFood and Agri
ulture Organization of the United Nations (FAO 2006). A

ording toFAO, �shing and harvesting of the o
eans 
an not supply additional landings of mostwild-
aught spe
ies in order to meet the in
reasing demand for sea-food produ
ts inthe world, without endangering the resour
es. In fa
t, many spe
ies are already over-exploited. This has in re
ent years motivated a rapid growth of aqua
ulture around theworld. Aqua
ulture is today probably the fastest growing form of food produ
tion in theworld. We de�ne aqua
ulture as the propagation and rearing of freshwater and saltwaterorganisms in 
ontrolled or sele
ted environments. In 2004, about half of the global totalaqua
ulture produ
tion was from aqua
ulture in marine environments, while the otherhalf was from fresh-water aqua
ulture. The s
ope of �sh farming is in
reasing year byyear. In 2006, about 50% of the worlds food �sh was produ
ed by �sh farms. Based on theproje
ted growth in the world population over the next two de
ades, it is estimated thatat least an additional 40 million tonnes of aquati
 food (67% of the total produ
tion in theworld in 2004) will be required by 2030 to maintain the 
urrent per 
apita 
onsumption(FAO 2006). We will in the following fo
us on �sh farming in marine environments, inparti
ular at exposed 
oastal or o�shore lo
ations.Fish farm installations and te
hnologies whi
h are 
apable of operating pro�tablyat truly o�shore lo
ations are a 
lear fo
us for development in many regions that la
kindented 
oastlines. For example, the U.S. Government plans to in
rease the value ofmarine and freshwater aqua
ulture produ
tion from $ U.S. 900 million in 1999 to $ U.S.5 billion by 2025 (NOAA 2007a). In this plan, marine aqua
ulture in U.S. federal watersplays a 
entral role and development of te
hnologies for sustainable aqua
ulture operations1
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Figure 1.1: Produ
ed amount and 
orresponding landed value of salmon andtrout in Norway from 1992 to 2007 (www.ssb.no).for �sh and shell�sh are emphasized (NOAA 2007b). As U.S. federal waters are 3 to 200miles o� the 
oast, the s
ope of o�shore aqua
ulture in the U.S. is believed to in
reasesigni�
antly in the near future. In Korea, China and Taiwan, marine �sh-farms are ofteninstalled at o�shore lo
ations due to la
k of available sheltered sites with adequate water
onditions. These regions experien
e several typhoons ea
h year, and the �sh farms heremust be designed to 
ope with these in addition to the seasonal monsoons and strongo
ean 
urrents.Atlanti
 salmon (Salmo salar) is by far the dominating breed in Norwegian �sh farm-ing, whi
h in 2007 
ounted for 89% of the total amount of sold farmed �sh. Otherimportant spe
ies in Norwegian aqua
ulture are rainbow trout (On
orhyn
hus mykiss)and Atlanti
 
od (Gadus morhua). We will in the following refer to Atlanti
 salmon,Atlanti
 
od and rainbow trout as salmon, 
od and trout, respe
tively. The produ
edamounts of salmon and trout by Norwegian �shfarms and 
orresponding landed valuesduring the years from 1992 to 2007 are presented in Fig. 1.1. The produ
ed amounts ofespe
ially salmon and 
od have had an explosive growth during the last three de
ades.In 2007 the total produ
tion of farmed salmon and trout in Norway rea
hed 821,000 tons(www.ssb.no). The in
reasing s
ope of �sh farming has lead to a la
k of new availablelo
ations in sheltered areas. Hen
e, there is a trend that �sh farms are installed at moreand more exposed lo
ations. This puts stronger demands on the stru
ture in order towithstand the environmental loads. Many Norwegian �sh farmers have experien
ed thatthe North-Atlanti
 o
ean has a rather harsh weather 
limate, espe
ially in the winterseason. This is exempli�ed in Fig. 1.2, whi
h shows a �sh farm in Flatanger, Nor-way, during the winter storm Narve in January, 2006. Expansion of the Norwegian �shfarming industry has been a

ompanied by a re
ent in
rease in the in
iden
e of es
apes.Several o

urren
es of stru
tural 
ollapse of �sh farms in harsh weather has been reportedduring the years, many whi
h have resulted in large �sh es
apes. Es
aped farmed �shis 
onsidered to be harmful to the wild Atlanti
 salmon. Mainly, this is be
ause thefarmed �sh may bread with the wild salmon and lead to geneti
 pollution of the wild�sh, whi
h have developed through thousands of years to adept to the 
onditions in aparti
ular river. It is also 
laimed that the in
reased s
ope of salmon �sh-farming and thelarge 
on
entration of salmon in the �sh 
ages is the main 
ause to the growing problem
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Figure 1.2: Open 
age �sh farm of the 
ir
ular 
ollar type in Flatanger, Norway.The photo is taken during the winter storm Narve in January 2006. Large elasti
deformations of the stru
ture are seen. (Photo: Marius Dahle Olsen)
of sea-li
e in Norway the re
ent years. Resear
h e�orts have been put into developingmore reliable stru
tures for �sh farming with the result of new regulations for the de-sign and operation of �oating �sh farms, whi
h were introdu
ed in 2003 through NS 9415(Standard Norway 2005). Although the �sh farming industry in Norway has be
ome moremature now sin
e its beginning in the early 1980-ies, the problem of �sh es
ape is still notresolved. In 2007, the total number of es
aped �sh reported from Norwegian �sh farmswas 450,000. The largest single es
ape in Norway o

urred in 2005 and 
ounted nearly500,000 �sh. Number of es
aped salmon and trout from Norwegian �sh farms reportedto the Norwegian Fisheries Dire
torate in (Norwegian Fisheries Dire
torate 2009a) and(Norwegian Fisheries Dire
torate 2009b), for the years from 2001 to 2009 are presentedin Fig. 1.3. However, it is believed that the true numbers of es
aped salmon and trout fromNorwegian �sh farms are higher. Reports by Norwegian �sh farming 
ompanies to the Nor-wegian Fisheries Dire
torate of es
ape events during the period 2001-2006 indi
ate thates
apes of salmon 
an be 
ategorized broadly into stru
tural failure (52%), operational-related failure (31%) and other 
auses (17%). This 
an be es
apes due damage on the net
aused by predators (e.g. seal), damage due to ship 
olliding with the �sh farm, or damage
aused by driftwood. Signi�
ant es
ape events have also o

ured in other major salmonidprodu
ing 
ountries, su
h as S
otland, Chile and Canada (Soto, Jara, and Moreno 2001).In parti
ular, the introdu
tion and rearing of Atlanti
 salmon as a non-native breed inChile has been 
ontroversial, as the environmental e�e
ts of es
apes are unknown. Webelieve that better knowledge on the hydrodynami
s related to the wave loads on the�oaters of �sh farms is ne
essary to improve the stru
tural reliability of �sh farms. Im-proved reliability of the �sh farm stru
tures will in turn redu
e the probability of es
ape.This is the main motivation for the present work.
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2009Figure 1.3: Number of es
aped salmon and trout from Norwegian �sh farms inthe time period 2001 to 2009 reported to the Norwegian Fisheries Dire
torate.The numbers from 2009 are due O
tober 5th.1.1.1 Open 
age �sh farmsOpen 
age �sh farms are the most 
ommon type of plants used for farming Atlanti
 salmonand Atlanti
 
od today. The open 
age �sh farm is 
hara
terized by a slender �oatingstru
ture whi
h forms 
ir
ular or re
tangular 
ages. Ea
h 
age is equipped with a net-pen,where sinkers are used to splay the net-
age. The buoyan
y is obtained by distributedpontoons or by �oating 
ollars. A spread mooring system 
omposed of a larger number ofpre-tensioned mooring lines is used to keep the stru
ture on its lo
ation. However, other
on
epts like single point mooring of plants have been tested. Then the �sh farm is freeto weather vane around the moored buoy. Usually open 
age �sh farms are equipped witha feeding system, often in
luding a feed barge.The stru
tural design of the �sh farms has during the years been modi�ed and im-proved, often on a trial and error basis. About twenty years ago, the �oating stru
turewere typi
ally made of wood, forming small 
ages as shown in Fig. 1.4. Today, �sh farmstru
tures are usually made of steel, aluminium or high density poly-ethylene (HDPE)plasti
. Further, there exists many di�erent 
on
epts of �sh farm stru
tures as des
ribedby Fredheim and Langan (2009). The most 
ommon �sh farm 
on
epts used by the Nor-wegian �sh farming industry today are des
ribed in the following.Cir
ular plasti
 
ollar �sh farmThis type of stru
ture has 
ages formed by pipes with an outer pipe diameter between225mm to 500mm. The pipes made of high-density polyethylene (HDPE) are welded toobtain a preferred length and then wrapped to form a 
ir
le. The two free ends of the pipeare then welded together to form a ring. Usually, a �oating 
ollar is 
omposed of two orthree su
h rings whi
h are 
onne
ted using steel or HDPE 
lamps. Typi
al 
ir
umferen
eof the 
ollar is from 60m to 200m. It is from su
h 
ollars that the �sh farm obtain itsbuoyan
y. Some manufa
turers also deliver walkways whi
h 
an be mounted between thepipes of the 
ollar. The 
ir
ular plasti
 
ollar �sh farms are elasti
 and deforms whensubje
ted to waves and 
urrent (see e.g. Fig. 1.2). An issue for su
h stru
tures is thesafety for personnel in relation to a

ess to the 
ages.
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Figure 1.4: Typi
al old Norwegian �sh farm in a sheltered lo
ation. The superstru
ture is 
hara
terized by wooden frames supported by �oaters or pontoons.Inter
onne
ted hinged steel �sh farmTypi
ally, this is a steel stru
ture 
omposed of more or less sti� bridges that are hingedor inter
onne
ted by �exible joints to form square or re
tangular 
ages. The bridges aretypi
ally 12 meters of length, are made of steel and supported by distributed pontoons.Normally, the hinges only allow for rotation around one axis in the horizontal plane.Limited �exibility of the joints has shown to be a weak part of su
h �sh farms, as largepoint loads may o

ur here for some of the �exible modes of the stru
ture. This 
an resultin fatigue related failures. Further, breaking of only one or a few mooring lines is 
riti
alfor su
h stru
tures due to the limited �exibility of the hinges. Breaking of mooring linesmay 
ause unfavorable loads on the plant due to redistribution of mooring line for
eswhi
h may lead to stru
tural 
ollapse. An illustration of the underwater stru
ture of ahinged steel 
age is shown in Fig. 1.5, whi
h also indi
ates how salmon usually tend to bes
hooling inside the pen. S
hooling is when a group of �sh swim together in a 
oordinatedmanner and in the same dire
tion.Catamaran steel �sh farmCatamaran �sh farm stru
tures are 
omposed of parallel slender steel hulls whi
h are
onne
ted with bridges and hinges into di�erent 
on�gurations. The buoyan
y of su
h�sh farms are provided by the hulls. Catamaran �sh farms are often large and withintegrated feeding barges as shown in Fig. 1.6(a). A better overview of the stru
ture isobtained from Fig. 1.6(b), whi
h shows an instantaneous situation of the visualizationoutput from a 
ommer
ial 
omputer software tool for stru
tural analysis of �sh farmswhen the stru
ture is subje
ted to a uniform steady 
urrent and regular waves. Limited�exibility of the hinges, whi
h may lead to fatigue problems for the bridges, is an issuealso for this type of stru
ture.
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Figure 1.5: Illustration of the underwater stru
ture of a hinged steel type �shfarm. Sinkers are atta
hed to the pen in order to stret
h the net.

(a) (b)Figure 1.6: A modern �sh farm in Norway is shown to the left. To the right is thevisualization from a 
ommer
ial 
omputer software tool for stru
tural analysisof �sh farms (www.pro
ean.no/�shfarms.html).



1.1. Ba
kground and motivation 7Rigid steel �sh farmThis is a large 
ategory with several di�erent �sh farm designs intended for operationat exposed lo
ations. The most 
ommon type of the rigid steel �sh farm is 
omposed ofrobust steel pipes with diameter of order 1m that are welded together to form re
tangularor square 
ages. The �oating 
ollar then appears as semi-submerged 
ir
ular 
ylindersoriented with the 
ylinder axis horizontally in the free surfa
e. Also �sh farms made oftruss work exists. This type of stru
ture is 
hara
terized by a small water-plane area,whi
h implies low natural frequen
ies in heave, pit
h and roll of the stru
ture. Buoyan
yare mainly obtained from submerged pontoons. The submerged pontoons also makes thestru
ture less exposed to wave ex
itation loads. Knowledge and experien
e from o�shoreengineering and the oil-industry have been utilized in the development of this stru
turetype.Submersible �sh farmBy adding a �roof� on the net-pens, the �sh 
age 
an be submerged for some period oftime, e.g. during a storm. Bene�ts of a submerged �sh 
age are redu
ed wave loadson the stru
ture and that problems related to i
ing on the super-stru
ture are avoided.However, there are biologi
al issues related to submerging the �sh 
ages. One is thatsalmon needs a

ess to the free surfa
e for �breathing� in order to supply its swim blad-der with air. Submerging the �sh 
ages for a longer period of time will 
ause the �shto be more stressed. This has a negative e�e
t on the �sh growth and welfare. Theoperation of submerging a plant is performed by a 
ontrolled �lling of water into thepontoons or plasti
 
ollars. Elevation of the plant is done by pumping 
ompressed airba
k into the pontoons while eva
uating the water through valves. Su
h submerge-able�sh farms are still on the development stage. More novel �sh farm systems are presentedin Fredheim and Langan (2009).1.1.2 Norwegian �sh farms at presentCommon for all the previously mentioned types of �sh farms is that the �oating stru
tureforms square or 
ir
ular 
ages to where net pens are mounted. A modern �sh farm 
anhave as mu
h as 16 
ages. The size of the 
ages has in
reased signi�
antly through theyears, and so has the number of �sh in ea
h 
age. An aspe
t of the in
reasing size ofthe �sh farms is that the 
onsequen
es of stru
tural 
ollapse be
ome more severe, bothenvironmentally and e
onomi
ally, as more �sh is likely to es
ape. Today, a typi
al lengthof the sides of a large square 
age is 40m, while a large 
ir
ular 
age 
an have a diameterof 64m. Net 
age volumes are most typi
ally 10,000 m3 to 20,000 m3 and a single 
agemay 
ontain up to 1,000 tons of �sh. This means that if the mean weight of the �sh is �vekilograms, whi
h is a representative value for Atlanti
 salmon when the �sh is ready tobe slaughtered, a single 
age may 
ontain as mu
h as 200,000 �sh. Salmon have a swimbladder whi
h is �lled with air su
h that the �sh be
ome neutrally buoyant. Hen
e, thevolume of the �sh is approximately equal to the total mass of the �sh divided by the massdensity of the water. The upper limit for the average �sh density inside a pen is 25kg/m3,whi
h is kilograms of �sh per 
ubi
 meter of water. This means that about 2.5% of thetotal volume of a �sh 
age 
an be o

upied by the �sh. However, the �sh is usually notevenly distributed within the 
age. For instan
e, salmon often tend to be s
hooling inside
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Figure 1.7: Salmon forming a s
hool inside a �sh 
age. This shows that thelo
al �sh density inside a �sh 
age 
an be relatively high due to the s
hoolingbehaviour.the pen, making the �sh density lo
ally higher than the average value. An example ofsalmon forming a s
hool inside a �sh 
age is shown in Fig. 1.7. Another fa
tor 
ausinghigher �sh density is 
urrent for
es on the net whi
h lead to deformations of the net 
age,yielding a redu
ed en
losed volume of the pen. The verti
al position of the �sh insidethe pen is a fun
tion of feeding time, daylight, water temperature, dissolved oxygen inthe water in addition to 
urrent and waves. A modern Norwegian plant typi
ally has5,000 to 6,000 tons of �sh, totally. However, there exist plants with up to 10,000 tons(Fredheim 2009).1.1.3 ChallengesIn order to design reliable stru
tures for �sh farming at exposed lo
ations, it is 
ru
ial toknow what are the loads the stru
ture will be subje
t to. Figure 1.8 shows an exampleof a damaged �sh farm after a storm, where parts of the �oating 
ollar is below the freesurfa
e. Su
h damages are often 
aused by breaking of mooring lines due to wave and
urrent loads on the stru
ture. This may lead to bu
kling of the �oating stru
ture dueto large point loads 
aused by redistribution of mooring line for
es. Due to the 
hangeof the mooring for
es asso
iated with line breakage, transient motions of the plant willo

ur until a new equilibrium position is rea
hed, or if several mooring lines are broken,the stru
ture might simply drift to the shore. Damage 
an also be 
aused by fatigue from
ontinuous wave loading. An example of fatigue damage is shown in Fig. 1.9. Fatigue ismostly a problem for the joints of hinged or rigidly 
onne
ted steel types of �sh farms,with members being more or less elasti
. Elasti
ity of the stru
ture also implies that thestru
ture will theoreti
ally have an in�nite number of natural frequen
ies in 
ase of nodamping. Although os
illations at higher natural frequen
ies are e�e
tively damped bystru
tural damping, the lower natural frequen
ies are important from a fatigue point ofview. If the stru
ture is regularly ex
ited at a natural frequen
y with small damping, thiswill have a negative e�e
t on the fatigue life of the stru
ture. Resonant elasti
 motionsimply 
y
li
al loads in the stru
ture at a relatively high stress-level. Su
h 
y
li
al stresses
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Figure 1.8: Example of a 
ollapsed �sh farm after a storm, with large �sh es
apeas a result.may over time lead to fatigue damage of the stru
ture. The fatigue life of a given stru
ture
an be estimated from the S-N 
urve, showing the magnitude of a 
y
li
al stress (S) andthe 
orresponding number of 
y
les to failure (N) in logarithmi
 s
ale. At present, linearthree-dimensional (3D) panel methods based on potential �ow theory like e.g. WAMITare not 
ommon to use for response-analysis of �sh farms in waves. Engineering toolsdeveloped for stru
tural analysis of open 
age �sh farms usually apply linear potential�ow theory (long wave theory) and strip theory, where drag for
es as in Morison's equationare added to the potential �ow solution, for simulating the global response of su
h plantswhen subje
ted to waves and 
urrent. Only regular waves are 
onsidered, su
h that thefrequen
y-dependent hydrodynami
 
oe�
ients of the �oaters 
orresponding to the wavefrequen
y 
an be used. For the hinged steel type �sh farm, global hydroelasti
ity of thestru
ture is usually a

ounted for by solving the 
oupled equations of motions for hingedrigid bridges.The approa
h using linear potential-�ow theory for stru
tural analyses of �sh farmsmay yield good results for smaller sea-states. However, for larger sea-states linear theorymay largely over-predi
t the true response near resonan
e, or perhaps more 
ru
ial, missto 
apture important features asso
iated with nonlinear �uid-stru
ture intera
tion. Inaddition, higher order harmoni
s of the wave loads may be important when it 
omes toex
itation of �exible modes of the stru
ture, whi
h eventually may lead to fatigue.A pra
ti
al 
hallenge is related to that salmon requires a high level of dissolved oxygenin the water and are also intolerant of pollution (Monahan 1993). Hen
e, the �ow of waterthrough densely sto
ked pens must be good to maintain adequate oxygen supplies and toremove polluted water. The ex
hange of water in the pens is important for the �sh healthand growth, whi
h means that desired lo
ations for �sh farming should have a su�
ientlevel of 
urrent. One fa
tor that is important to 
onsider relative to water ex
hange isbio-fouling or marine growth on the nets. Bio-fouling on the nets is hard to prevent andwill redu
e the �ow through the net, implying a redu
tion of the water ex
hange in the
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Crack

Figure 1.9: Example of fatigue on a steel type �sh farm. The 
ra
k has propa-gated through the whole se
tion.pens. Bio-fouling also leads to larger wave and 
urrent for
es on the net as the e�e
tivearea of the net 
age in
reases, and in
reased inertial loads due to additional weight onthe pen.1.2 Previous and on-going related workThe purpose of the present work, whi
h addresses the wave loads on �oaters of �sh farms,is to 
ontribute to the higher goal of obtaining more reliable stru
tures for �sh farming.This goal is also shared with other studies, where other 
omponents of �sh farms or moreor less 
omplete �sh farm stru
tures are 
onsidered. In order to get an overview of thebigger pi
ture, we will in the present se
tion also give referen
e to work whi
h is notdire
tly relevant for wave loads on the �oaters but for modelling of �sh farms in general.Design of 
omplete �oating �sh farms and modelling of their response in waves and
urrent is 
hallenging and involves several dis
iplines su
h as hydrodynami
s, stru
turalme
hani
s and ethology. When it 
omes to hydrodynami
 modelling of large 
omplex �shfarms, the literature is limited. Further, existing studies of more or less 
omplete �oating�sh farm stru
tures mostly rely on wave-load models whi
h in general are not validatedfor �oaters of �sh farms. Previous and on-going work relevant for modelling �oating �shfarm stru
tures in waves and 
urrent are given in the following.The net stru
tureOne of the �rst detailed theoreti
al analysis on the hydrodynami
 for
e a
ting on a netpanel suspended in a 
urrent was presented by Tauti (1934). He 
onsidered a stret
hednet panel as a 
ontinuous membrane and proposed di�erential equations for me
hani
alequilibrium of the membrane, based on the assumption that the drag for
e on the net wasproportional to the square of the 
urrent velo
ity. Similarity laws for s
aling of net stru
-
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omprehensive review of theoreti
al and experimental workon hydrodynami
s related to �shing gear, with fo
us on the mathemati
al modelling ofnet stru
tures, was presented by Kawakami (1959). A semi-empiri
al formula expressingthe drag for
e FD on a plane net panel subje
t to a uniform 
urrent in the normal dire
-tion of the panel was proposed by Kawakami (1964) as FD = 0.5ρCDAU2. Here, ρ is thedensity of water, CD is an experimentally determined drag 
oe�
ient, A is the spannedarea of the net panel and U is the �uid velo
ity. A thorough study on the 
urrent for
es onnet 
ages and the resulting net de�e
tions was presented by Aarsnes et al. (1990). Basedon a series of model tests where net panels were towed with di�erent orientation anglesrelative to the towing dire
tion, a mathemati
al model for the 
urrent indu
ed loads onnet panels was proposed. The new mathemati
al model in
luded a lift term in addi-tion to the drag for
e proposed by Kawakami (1964). Løland (1991) modelled the �owthrough �sh farms using the wake �ow equations, whi
h for steady �ow 
an be found inS
hli
hting and Gersten (2000). By utilizing the linearity of the wake �ow equations, hewas able to model the �ow through a s
reen by adding together the wake �ow 
aused bythe individual 
ylinders forming the s
reen. Both steady and unsteady ambient �ow were
onsidered. This method has shown to be appropriate for s
reens with low solidity ratio.The solidity ratio Sn is de�ned as the proje
ted area of the s
reen divided by the totalspanned area of the s
reen. Hen
e, for a square mesh of 
ylinders with diameter d andseparation l we get Sn = 2d/l − (d/l)2. The possibility of hydrodynami
 intera
tion be-tween twines of a net 
an be assessed by the CFD studies by Herfjord (1996). He studiedthe 2D problem of two 
ir
ular 
ylinders in a side-by-side arrangement subje
t to uniform
ross �ow. The 
ylinders were separated a distan
e l in the transverse dire
tion relativeto the in
ident �ow. He found that wake intera
tion o

urs when l < 2d, with d being the
ylinder diameter. This means that when Sn > 0.75 the linearity assumption of the wake�ows is no longer appli
able, and for in
reasing solidity ratio wake intera
tion be
omesin
reasingly important. Typi
al values of the solidity ratio for 
lean unfouled nets of �sh
ages for Atlanti
 salmon is in the range Sn = 0.15− 0.25. Fridman (1998) pointed outthat for small values of the Reynolds number Rn = Ud/ν, where U is the 
urrent velo
ity,
d is the diameter of the twines of the net and ν is the kinemati
 vis
osity 
oe�
ient, thedrag 
oe�
ient CD of a net panel is highly dependent on the Reynolds number (see alsoFaltinsen and Timokha 2009). When Rn < 600 the drag 
oe�
ient CD shows a strong in-
rease with de
reasing Reynolds number, while for Rn > 600 the drag 
oe�
ient is nearlyindependent of the Reynolds number. A typi
al twine diameter of a �sh 
age for salmon is
d = 3mm. With a design 
urrent speed of U = 1m/s and with ν ≈ 10−6 m2/s, this yields
Rn ≈ 3000. This means that the drag 
oe�
ient for a full s
ale net 
age for a typi
aldesign value of the 
urrent speed is nearly independent of the Reynolds number. How-ever, for model testing of �sh farms where geometri
 s
aling of the net is used to obtain amodel s
ale �sh 
age, the Reynolds number dependen
e of the drag 
oe�
ient of the netis important. S
aling laws for net stru
tures were dis
ussed by Hu et al. (2001), and drag
oe�
ients obtained from experiments with trawl nets in model s
ale and full s
ale were
ompared. Good 
omparison was shown when the Reynolds dependen
e of the drag 
oef-�
ient was a

ounted for. Bessonneau and Mari
hal (1998) presented an iterative methodfor 
omputing the deformation of net stru
tures in 
urrent, where a �exible net was mod-elled by a set of rigid bars 
onne
ted through �exible joints. A Morison type of modelwas used to 
ompute the drag for
e and added mass for
e of the individual bar elementsin the transverse dire
tion, while in the tangential dire
tion, a fri
tion for
e was applied.
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tionThe individual bar elements were assumed to be hydrodynami
ally independent. Pre-sented numeri
al simulations of a towed trawl stru
ture were reported to be qualitativelyin agreement with �ume tank observations. Tsukrov et al. (2003) presented a stru
tural�nite element model to 
ompute the response of net panels due to 
urrent loads based onan empiri
al drag formulation. Results from numeri
al simulations were 
ompared withexperiments and analyti
al results and good agreement was observed. An approximatemodel for analysis of 
urrent for
es and 
orresponding response of three-dimensional (3D)net stru
tures with solidity ratios Sn . 0.5 was established by Fredheim (2005), wherethe twines of the net stru
ture was modelled as linear elasti
 due to axial stret
hing. Hefound that elasti
ity of the net stru
ture has a dire
t in�uen
e on the geometry of thedeformed net when exposed to external for
es.Due to bio-fouling, the porosity of the net 
ages will 
hange. The in�uen
e of poros-ity and �sh-indu
ed internal 
ir
ulation on the �ow around �sh 
ages are studied in anongoing PhD-proje
t by Gansel (2009). This study in
ludes both experiments and CFD-simulations.Modelling of a net 
age is 
hallenging also from a stru
tural point of view, as the net
ages vary in raw material, size, stru
ture and surfa
e treatment. Strength analysis ofnet stru
tures typi
al for aqua
ulture 
ages was performed by Moe (2009). The strengthanalysis in
luded experiments with tensile testing of various netting materials and nu-meri
al simulations of a net 
age subje
t to uniform 
urrent. A quasi-stati
 approa
h wasused in the numeri
al simulations, where a Finite Element Method was applied for thestru
ture to 
ompute the net deformations due to the 
urrent loads. Netting materials
an be divided into knotted- and knot-less stru
tures, where the latter is the one mostused for Norwegian �sh 
ages. The stru
ture of the netting material is also relevant forhydrodynami
 modelling of the net. We do not 
onsider net loads in the present work.The �oatersWave indu
ed loads and motions of �oating bodies is a 
lassi
al bran
h of problems inmarine hydrodynami
s dealing with ships and o�shore stru
tures. General aspe
ts andtheoreti
al methods for solving su
h problems are dis
ussed in many text books, e.g. byNewman (1977), Faltinsen (1990), Dean and Dalrymple (1991) and Molin (2002). The�oaters of �sh farms are often 
hara
terized as horizontal 
ylinders �oating in the freesurfa
e. Relevant work for the wave loads and wave indu
ed motions of the �oaters aregiven in the following.The pioneering frequen
y domain theoreti
al work related to wave indu
ed e�e
ts on
ylinders in the free surfa
e was made by Ursell. He studied the two-dimensional (2D)heave added mass and damping of a semi-submerged 
ir
ular 
ylinder, and gave a generalexpression of the potential �ow in terms of �ow singularities satisfying the free surfa
eand radiation 
ondition (Ursell 1949). For the 2D problem of an in�nitely long 
ylinderoriented horizontally below the free surfa
e, Ursell (1950) derived the frequen
y-domainanalyti
al expressions for the wave for
es due to beam sea waves using potential �ow the-ory. Theoreti
al work on the waves generated by a 2D body os
illating in the free surfa
ewas presented by Ursell (1954), where he studied how the wave amplitude at in�nity isdependent on the body geometry and the frequen
y of os
illation. This dependen
e isrelevant for the wave damping for
e of �oating bodies. Based on Ursell's work, theoreti
almethods for 
omputing linear wave indu
ed loads on �xed and moving bodies in the free



1.2. Previous and on-going related work 13surfa
e were presented by Newman in (Newman 1962) and (Newman 1965), respe
tively.Further, based on Ursell (1950), Ogilvie (1963) presented �rst- and se
ond-order for
eson a horizontal 
ylinder submerged below a free surfa
e. Tasai presented two-dimensionalvalues of the hydrodynami
 for
e and moment due to for
ed sway and roll motion of
ylinders with Lewis-form se
tions, whi
h was obtained using linear potential �ow theory(Tasai 1959; Tasai 1961). A Lewis form se
tion assumes the 
ross-se
tional shape 
an beadequately des
ribed by the 
ross-se
tional area, beam and draft (see e.g. Faltinsen (2005)for the geometri
 limitations of su
h a te
hnique). The obtained hydrodynami
 
oe�
ientswere used with a strip theory to give the total sway for
e and roll moment on two a
tualship hulls due to for
ed sway and roll. Results were 
ompared with experiments. Thefrequen
y-domain linear potential �ow asso
iated with the wave ex
itation loads on a
ylinder of arbitrary 
ross-se
tion in oblique sea that is not 
lose to head or following sea
an be des
ribed by the Helmholtz equation (see e.g. Bolton and Ursell (1973)). The headsea 
ase is more 
ompli
ated and was studied by Faltinsen (1971) in his Ph.D. thesis fora ship by using the near-�eld solution by Ursell (1968) as part of his analysis. The above-mentioned work are all in the frequen
y domain. Solutions to transient potential �owproblems in time-domain for a �oating body in waves are des
ribed by Cummins (1962)and Ogilvie (1964).A thorough experimental study on the two-dimensional hydrodynami
 
oe�
ientsfor horizontal 
ylinders in the free surfa
e due to for
ed sway-, heave- and roll mo-tion was presented by Vugts (1968). Measurements of wave ex
itation loads on the
ylinders when being 
lamped and subje
t to regular waves were also presented. Wavefor
es on partially submerged 
ylinders were studied by Dixon et al. (1979) by means ofmodel test experiments and numeri
ally using modi�ed versions of Morison's equation(Morison, O'Brien, Johnson, and S
haaf 1950). An experimental study of nonlinear waveloads on a horizontal 
ir
ular 
ylinder beneath linear deep-water waves for Keulegan-Carpenter numbers 2 . KC . 3, was presented by Chaplin (1984). The 
ylinder wassubmerged below the free surfa
e su
h that intera
tion with the free surfa
e was assumedto be unimportant. For the waves tested, the ratio between the wave lengths λ andthe diameter D of the 
ylinder was in the range λ/D ≈ 3.8 − 15. The non-linearity ofthe measured for
es was believed to be asso
iated with vis
ous �ow separation from the
ylinder surfa
e, and the measured wave for
es on the 
ylinder was observed to be asmu
h as 50% less than that predi
ted by linear potential �ow theory. The potential �owproblem of a horizontal 
ylinder submerged below a free surfa
e has later been addressedusing numeri
al methods by for instan
e Wu and Taylor (2003), who studied nonlinearwave-body intera
tion using a domain de
omposition approa
h. A �nite element method(FEM) was 
oupled with a boundary element method (BEM), where the former methodwas used away from the body while the latter was used in the near-�eld region of the body.BEM was also used by Kristiansen (2009) to 
onstru
t a two-dimensional fully nonlinearnumeri
al wave tank for wave-body intera
tion problems. A ship se
tion by an o�shoreLNG-terminal was 
onsidered where e�e
ts of �ow separation from the bilges of the shipse
tion were studied. The free shear layers were modelled using an invis
id vortex tra
k-ing method. Simulations in 2D of a moving body on the surfa
e of a vis
ous �uid, basedon the in
ompressible Navier-Stokes equations, were presented by Gentaz et al. (1997).They 
omputed the added mass and damping 
oe�
ients in heave, sway and roll, inaddition to the 
oupling 
oe�
ients of roll in sway, for a re
tangular body. Numeri
alresults were 
ompared with experiments (Vugts 1968) and with potential �ow theory re-
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tionsults. Good agreement with experiments and potential �ow theory were observed the
oe�
ients in heave and sway, while the agreement for the added mass and damping 
o-e�
ients due to roll and the 
oupling 
oe�
ients were less good. A 2D numeri
al wavetank (NWT) based on the 
onstrained interpolation pro�le (CIP) method was presentedby Hu et al. (2003). Validation of the NWT was performed by means of simulations offor
ed heave of a wedge and an ellipti
 body. The 2D added mass and damping 
oe�
ientwere obtained from the simulation and 
ompared with potential �ow theory, with reson-able agreement. Further, numeri
al simulations of a �oating body subje
t to nonlinearwaves were presented. A numeri
al wave tank for three-dimensional (3D) simulationswere presented by Hu et al. (2005). The 3D NWT was veri�ed by means of 
omputingthe added mass and damping in heave of a hemisphere. Results from a simulation with aWigley hull at forward speed in head sea waves were also presented.The �oaters of �sh farms 
an generally be 
hara
terized as small volume stru
tures,with 
ross-se
tional dimensions being small relative to the wave lengths of dimensioningwaves. However, the length of the �oaters 
an be large 
ompared to a 
hara
teristi
 wavelength. The relative motion between the stru
ture and the free surfa
e may lo
ally belarge relative to the 
ross-se
tional dimension of the �oater. If the relative motion betweenthe free surfa
e and the �oater be
omes too large, the �oater or parts of the �oating 
ollarmight leave the water for then to re-enter into the water domain. If the relative velo
itybetween the �oater and the water surfa
e is large and the �oater is 
hara
terized by ablunt geometry, signi�
ant for
es may o

ur as the �oater impa
ts with the free surfa
e.This is referred to as water impa
t or slamming, and is 
hara
terized by impulse loadswith high pressure peaks (Faltinsen 1990). Slamming events may 
ause damage to the lo-
al stru
ture, or 
ause global vibrations of the stru
ture whi
h in turn 
an lead to fatigueof steel stru
tures. Water entry and exit of a 
ir
ular 
ylinder was studied experimen-tally and theoreti
ally by Greenhow and Lin (1983) and Greenhow (1988). Water entryof di�erent two-dimensional se
tions has been investigated numeri
ally by Zhu (2006) andVestbøstad (2009) using a CIP-based 
omputational �uid dynami
s (CFD) method andby Sun (2007) using BEM. Another important s
enario whi
h is relevant for the hydro-dynami
 loads on the �oaters of �sh farms is waves over-topping on the �oater geometry.This will be referred to simply as over-topping. Finding the wave ex
itation loads onthe �oater due to over-topping is numeri
ally 
hallenging and 
hara
terized by nonlin-ear e�e
ts. Little work has been done relative to over-topping on slender stru
tures inthe free surfa
e. However, over-topping has similarities to the hydrodynami
 problem ofgreen-water on the de
k of a ship studied by Gre
o (2001).Dynami
 analysis of �sh farmsEngineering tools that have been developed for simulations of the response of �sh farmssubje
t to waves usually applies strip theory together with potential �ow theory to 
om-pute wave for
es on the �oaters. The added mass and damping 
oe�
ients used in thestrip theory formulation 
an be found from potential �ow theory using a boundary ele-ment method (BEM) as the Frank 
lose �t method (Frank 1967), whi
h is a 2D sour
epanel method using a Green fun
tion satisfying the free-surfa
e 
ondition and radiation
ondition in deep water. Another approa
h is to use 
onformal mapping, e.g. a Lewisform te
hnique, to obtain these 
oe�
ients. However, Lewis form te
hnique has limitedappli
ability and is approximate for 
ross-se
tions with sharp 
orners (Faltinsen 1990).



1.3. Outline of the thesis 15Making a long wave assumption relative to the 
ross-se
tional dimension of the �oaters,the di�ra
tion for
es on the �oaters 
an be expressed in terms of the added mass anddamping 
oe�
ients. Vis
ous for
es are then added to the potential �ow solution, simi-larly as the drag term in Morison's equation (Morison et al. 1950). Su
h a hydrodynami
load model for the �oaters was applied together with a �nite element model for the stru
-ture by Ormberg (1991), allowing for �exible deformations of the stru
ture due to wavesand 
urrent loads. A simpli�ed representation of the net 
ages was implemented, wherethe drag and lift for
es on net panels were expressed in terms of a Morison formulation.Good 
omparison with model tests was reported. Higher order harmoni
 
omponents ofthe sway response in regular waves was observed. A fatigue analysis of the �sh farm inirregular long-
rested waves was also presented. Later, Thomassen (2008) studied fatigueof a �sh 
age due to regular waves. Lader et al. (2003) modelled 3D net stru
tures, with
on�guration as an open 
age �sh farm, subje
t to waves and 
urrent. Comparisons be-tween 
age deformations obtained from numeri
al simulations and model test results werepresented, showing good agreement for the intermediate 
urrent speeds. However, forthe lowest 
urrent speed tested, the agreement is less good. Huang, Tang, and Liu (2006)presented results from numeri
al simulations and model tests, where the numeri
al modelwas based on Lader et al. (2003). Dynami
s of a moored spar type �sh 
age in wavesand 
urrents was studied numeri
ally by Fredriksson et al. (2005), using post pro
esseddata for waves and 
urrents obtained from �eld measurements as input to the numeri
almodel.1.3 Outline of the thesisThis thesis is organized as follows. The physi
al 
ase of wave loads on �oaters of �sh farmsis dis
ussed in Chapter 2, where an idealized problem is formulated. In Chapter 3, themathemati
al formulation of the physi
al problem is presented, followed by a des
riptionof the numeri
al representation of the mathemati
al problem and the development ofa numeri
al wave tank (NWT) in Chapter 4. In 
hapter 5, a veri�
ation study of thenumeri
al model is presented. Two sets of dedi
ated model tests are des
ribed in Chapter6, where the �rst set deals with wave loads on �xed horizontal 
ylinders due to regularwaves, while in the se
ond set, wave-indu
ed motions of a moored �oating 
ir
ular 
ylinderin regular waves are 
onsidered. The two main studies of this work are presented inChapter 7 and Chapter 8. First, in Chapter 7, our study on non-linear wave loads on�xed horizontal 
ylinders due to regular waves are presented. Se
ond, our study on thenon-linear wave-indu
ed motions of a moored �oating 
ir
ular 
ylinder is presented inChapter 8. Both studies in
lude 
omparisons between numeri
al results obtained fromCFD-simulations using our NWT and the experiments presented in Chapter 5. Finally,a summary of the present work and suggestions for further resear
h are given in the last
hapter.1.4 Main 
ontributionsA 2D numeri
al wave tank (NWT) was developed as a tool for studying nonlinear waveloads and wave indu
ed motions for �oaters of �sh farms. The NWT was based onthe Navier-Stokes equations for in
ompressible �ow, where a one-�uid formulation with
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tionvarying �uid properties in the domain was used to simulate two-phase �ows. The NWTwas also 
apable of handling both for
ed and free motions of solid bodies.Experiments were 
ondu
ted in 2006 where wave loads on �xed horizontal 
ylindersin the free surfa
e were 
onsidered. Two models were tested. One with a 
ir
ular 
ross-se
tion and one with a re
tangular 
ross-se
tion. The models were �xed and subje
tedto regular waves. Test parameters were wave period, wave steepness and model draft.The 
lamping for
es on the models were measured. Over-topping on the 
ylinders wereobserved for some of the test 
onditions. Some results from the model tests in 2006 werepresented by Kristiansen and Faltinsen (2008b). From Fourier analyses of the measuredfor
e time series, we found that over-topping introdu
e higher order harmoni
s in theverti
al 
omponent of the wave ex
itation for
e. However, the horizontal for
e 
omponentwas nearly linear when over-topping o

urred. When it 
omes to wave ex
itation loads on
ylinders with small draft, we found that the se
ond harmoni
 
omponent is importantfor the horizontal for
e 
omponent.A generalized Morison model (GMM) was implemented and applied using the wave
onditions from the model tests with the �xed 
ylinders. Computed for
es were 
omparedwith measured for
es from the experiments. We found that the GMM is not adequate for
omputation of wave for
es on horizontal 
ylinders in the free surfa
e when over-toppingo

ur. However, good 
omparison was shown for the 
ases without over-topping. TheGMM was presented by Kristiansen and Faltinsen (2008a).Experiments were also 
ondu
ted with a �oating 
ir
ular 
ylinder. The 
ylinder wasmoored with the 
ylinder axis oriented horizontally in the free surfa
e and subje
t toregular waves. An instability-like phenomenon yielding sub-harmoni
 response of thesway motion was dis
overed for the test with the wave period being half the naturalperiod in sway. This wave period was also 
lose to the natural period in heave of the
ylinder. Measured sway motion was about 250% that predi
ted by linear potential �owtheory. It was also found that vis
ous �ow separation matters at sway resonan
e, wherelinear potential �ow theory overpredi
ts the measured sway motion by more than 500%.By Fourier analysis of the measured a

elerations from the model tests, it was found thatthe se
ond harmoni
 
omponent of the verti
al wave ex
itation for
e at sway resonan
edid ex
ite the natural heave frequen
y. This 
aused the Fourier amplitude 
orrespondingto the se
ond harmoni
 
omponent of the body a

eleration in heave to ex
eed the linearharmoni
 
omponent. Results from the study on the moored horizontal 
ylinder in waveswere published by Kristiansen and Faltinsen (2009).Based on the dis
ussion above, we 
onsider the main 
ontributions of the present workto be the following
• Development in
luding veri�
ation and validation of a CIP-based numeri
al wavetank for simulation of fully nonlinear wave-body intera
tion problems in those di-mensions of a vis
ous laminar �ow
• A generalized Morison model is not adequate for wave load 
omputation when over-topping o

urs. However, su
h a model 
an give good for
e predi
tions when over-topping is not present
• Nonlinear e�e
ts due to over-topping are dominant only for the verti
al 
omponentof the wave ex
itation for
e
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• Nonlinear e�e
ts for the wave ex
itation for
es on �oaters with small draft are mostimportant for the horizontal for
e 
omponents
• An instability-like sub-harmoni
 parametri
 resonan
e phenomenon asso
iated withnonlinear hydrodynami
 e�e
ts was dis
overed for the moored horizontal 
ir
ular
ylinder. Numeri
al simulations with linear restoring for
es in sway showed thatthis phenomenon was not asso
iated with nonlinear e�e
ts from the mooring ar-rangement
• Vis
ous damping due to �ow separation is important for limitation of the swaymotion of �oaters at resonan
e
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Chapter 2The physi
al problemWave loads on �oaters of �sh farms is from a hydrodynami
 point of view an extensivetopi
 whi
h 
an be addressed in many ways. When 
on
retising this topi
 into a relevanthydrodynami
 problem, we should elaborate on what are the goals we are aiming for.In previous studies of integrated �sh farm systems in waves, strip theory and potential�ow theory where vis
ous drag for
es are added to the potential �ow solution, have beenused when 
omputing the wave loads on the �oating 
ollars of �sh farms (Ormberg 1991)(Thomassen 2008). However, this method has not been validated for slender stru
tures inthe free-surfa
e zone as the �oating 
ollars of �sh farms. A

ording to Ormberg (1991),there is a la
k of 
on�den
e for this wave load model when applied to slender stru
turesin the free-surfa
e zone. To obtain better 
on�den
e and possibly improve existing loadmodels, he suggested that simple 
ross se
tions subje
ted to well de�ned waves shouldbe 
onsidered. With this in mind, we believe that a �rst step towards obtaining betterwave load models for �oaters of �sh farms is to investigate the wave loads and waveindu
ed motions of �oaters in a 2D situation by means of numeri
al simulations andexperiments. Results 
an then be 
ompared with existing wave load models for the �oatersand eventually la
ks or weaknesses of the existing models 
an be revealed.2.1 A 2D-problem of �oaters in beam sea wavesAs explained in Chapter 1, there exist many di�erent stru
tural 
on
epts of �oating �shfarms. In this work we de
ided to fo
us on the sti� surfa
e steel stru
ture, whi
h isdesigned for use at exposed lo
ations in the 
oastal zone. The �oaters for this type ofstru
ture appear as horizontal 
ylinders with the 
ross-se
tion partly submerged in thefree surfa
e, as 
an be seen in Fig. 2.1. The diameter of the �oater is typi
ally of order1m. A 2D �ow situation o

ur when the 
ylindri
al �oater is subje
ted to beam seawaves. Two �oater geometries will be 
onsidered in the present study, one with a 
ir
ular
ross se
tion and one with a re
tangular 
ross se
tion. A deterministi
 approa
h is usedin the present study where wave loads due to regular waves are investigated. Possible�ow e�e
ts that are believed to be relevant for the �oaters in beam sea waves will nowbe dis
ussed. Su
h a dis
ussion is ne
essary early in a study like the present one in orderto de
ide whi
h tools to apply. By �tools� we here mean mathemati
al models, numeri
almethods or experiments. 19
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Figure 2.1: Floater of a steel type �sh farm. The �oater appears as a semi-submerged horizontal 
ylinder. The �oater has a 
ir
ular 
ross-se
tion with di-ameter 1m. A walkway is mounted to the �oater.2.1.1 Possible physi
al e�e
tsThe most relevant physi
al e�e
ts that may o

ur and whi
h are not 
overed by linearpotential �ow theory are wave over-topping on the stru
ture, vis
ous �ow separation andwater entry and exit with asso
iated for
es. Figure 2.2 illustrates a 2D situation wherethe re
tangular �oater is subje
t to beam sea waves. Vis
ous �ow separation will alwayso

ur at the sharp 
orners of the 
ross-se
tion, meaning that e�e
ts of vis
osity mustbe 
onsidered. Wave over-topping is another s
enario that might o

ur. The wave over-topping pro
ess 
an be dam-break like or it 
ould be like a plunging breaker (Gre
o 2001).The latter may lead to impa
t loads when the breaking wave hits the top of the �oater.Impa
t loads 
an also o

ur when a steep breaking wave hits the side of a �oater. Theplunging breaker may lead to entrapment of air (
f. Fig. 2.2), whi
h 
an result inhigh pressures on the �oater over the area 
overed by the 
avity. When the relative
Viscous flow separation

Wave direction

Wave overtopping

Impact loads

Entrapment of air

Free surface Free surfaceFigure 2.2: Re
tangular �oater in beam sea waves. Some possible physi
al e�e
ts.Vis
ous �ow separation will always o

ur from the sharp 
orners of the 
ross-se
tion, but the extent (and hen
e the importan
e) of the separated �ow willdepend on the KC-number.
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Wave direction

Free surface Free surface

Wave overtopping

Viscous flow separationSeparation pointFigure 2.3: Cir
ular �oater in beam sea waves. Vis
ous �ow separation mayo

ur for large KC-number �ow. The lo
ation of the separation point dependson whether the boundary layer �ow is laminar or turbulent.motion between the �oater and the waves is large, the �oater 
an leave the water domain
ompletely (water exit) for then to dive ba
k into the water (water entry). If the relativevelo
ity between the �oater and the sea surfa
e during water entry is large, water impa
tor slamming may o

ur (Faltinsen 1990). Slamming is 
hara
terized by high pressureswhi
h 
an damage the lo
al stru
ture.A possible �ow s
enario for the 
ir
ular �oater is illustrated in Fig. 2.3. Wave over-topping, water exit and water entry are relevant also for the 
ir
ular �oater. However,air-entrapment is believed not to be an issue, and probably not impa
t for
es due towave breaking over the 
ylinder top. However, over-topping will in�uen
e signi�
antlyon the verti
al for
es. If the relative motion between the �oater and the surroundingwater is su�
iently large, vis
ous �ow separation 
an also o

ur for the 
ir
ular �oater.However, in 
ontrast to the re
tangular �oater where the �ow always separate from thesharp edged 
orners, the lo
ation of the separation point on the 
ir
ular �oater dependson the boundary layer �ow and is not known a priory.2.1.2 Relevant �ow parametersBased on the possible physi
al e�e
ts listed above, the following non-dimensional param-eters are assumed to be relevant for the general hydrodynami
 problem of wave loads on�oaters of �sh farms.Reynolds number: Des
ribes the relative importan
e of the vis
ous for
es and inertiafor
es. The Reynolds number for a 
ylinder with diameter D in separated os
illatory�ow is de�ned as Rn = UD/ν, where U is the undisturbed relative �uid velo
ityat the lo
ation of the 
ylinder and ν is the kinemati
 vis
osity 
oe�
ient. Considera �xed 
ylinder. The �uid velo
ity amplitude due to waves with frequen
y ω andamplitude ζa, is given as U = ωζa exp (ky), where k = ω2/g is the wave number and
y is the verti
al 
oordinate axis with origin at the mean free surfa
e and positivedire
tion upwards. g is the a

eleration of gravity. In atta
hed �ow, the Reynoldsnumber is de�ned as Rn = U2

m/(ων), where Um is the maximum velo
ity outside theboundary layer. The 
riti
al Reynolds number Rncrit indi
ates the limit for whi
hthe boundary layer �ow goes from being laminar to turbulent. For the 
ir
ular
ylinder in os
illatory �ow Rncrit = 105 is used.



22 The physi
al problemKeulegan-Carpenter number: Expresses the 
onve
tive �uid a

eleration relative tothe lo
al �uid a

eleration on the 
ylinder surfa
e when subje
ted to os
illatory�ow. The Keulegan-Carpenter number is de�ned as KC = UT/D, where T = 2π/ωis the period of os
illation and U is ambient velo
ity. For a semi-submerged 
ylindersubje
t to regular waves, U = ωζa and hen
e KC = 2πζa/D. For a 
ir
ular 
ylinderin in�nite �uid, �ow separation may o

ur if KC & 2 for laminar boundary layer�ow.Euler number: Expresses the relative importan
e between pressure loads and hydro-dynami
 pressures and is de�ned as Eu = p0/ (0.5ρU2), where p0 is atmospheri
pressure and U is the in
ident �uid velo
ity. This is important if waves 
ause air tobe entrapped in a 
avity on the body surfa
e.Froude number: Expresses the relative importan
e between inertia for
es and gravityfor
es in the �uid. The Froude number in os
illatory �ow is de�ned as Fn =
ω
√

D/g.2.2 The sea environment and design 
onditionsFish farms must be designed to withstand environmental loads from waves and 
urrent.Typi
al wave 
onditions used for the design of �sh farms are presented.2.2.1 Design 
onditions for �oating �sh farmsIn the Norwegian regulations for the design and operation of �oating �sh farms, NS 9415(Standard Norway 2005), design wave 
limates or wave 
lasses are presented. These wave
lasses are de�ned in terms of ranges of signi�
ant wave heights Hs and wave peak periods
Tp. Hs is de�ned as the mean of the one third highest waves in a sea-state, while Tp isthe wave period 
orresponding to the wave 
omponent that 
ontains most energy in thesea-state. The design wave 
lasses from NS 9415 are quoted in Tab. 2.1. It should beTable 2.1: De�nition of design wave 
lasses from NS 9415 (Norwegian Standards2003) for the design and operation of �oating �sh farms. Hs is signi�
ant waveheight and Tp is wave peak period.Wave 
lasses Hs [m℄ Tp [s℄ Level of exposureA 0.0 - 0.5 0.0 - 2.0 SmallB 0.5 - 1.0 1.6 - 3.2 ModerateC 1.0 - 2.0 2.5 - 5.1 LargeD 2.0 - 3.0 4.0 - 6.7 HighE > 3.0 5.3 - 18.0 Hugenoted that state of the art 
omputer programs for simulating �oating �sh farm systemsin waves usually apply long-
rested regular waves in the analyses, where the regular wave
orresponds to the most probable largest wave for the given design sea-state.



2.2. The sea environment and design 
onditions 23Extreme wavesBased on the PM-spe
trum, an estimate of the most probable largest wave height for Nnumber of waves is found as Hmax = Hm0

√

0.5 ln (N). Hm0 = 4
√

m0 is the signi�
antwave height estimated from the wave spe
trum S(ω), where m0 is the spe
tral momentde�ned as
mk =

∫ ∞

0

ωkS(ω)dω (2.1)with k = 0. The number of waves for a sea-state of duration t (se
onds) 
an be approx-imated as N = t/Tm2, where Tm2 = 2π
√

m0/m2 is the mean wave period obtained fromthe wave frequen
y spe
trum with m2 found from (2.1) with k = 2. It 
an be shown thatthe relation between the mean wave period and the wave peak period for PM-spe
tra is
Tm2 = Tp/1.41 (Faltinsen 1990). Thus, estimates of the most probable largest wave heightbased on Hs and Tp 
an be found as

Hmax ≈ Hs

√

0.5 ln (1.41t/Tp). (2.2)Estimates of the most probable largest wave height in a sea-state of duration four hours,using data from Tab. 2.1, are presented in Tab. 2.2. A rule of thumb is that theTable 2.2: Estimates of the most probable largest wave height Hmax in a sea-statewith duration four hours represented by a PM-spe
trum. The obtained valuesof Hmax are based on the signi�
ant wave heights Hs and wave peak periods Tppresented in Tab. 2.1.Wave 
lasses Hmax [m℄ Level of exposureA < 1.1 SmallB 1.1 - 2.1 ModerateC 2.1 - 4.1 LargeD 4.1 - 6.0 HighE > 6.0 Hugemost probable largest wave height for a sea-state des
ribed by a PM-spe
trum and withduration four hours, is about two times the signi�
ant wave height.CurrentCurrent is an important design parameter. From a �sh-health point of view, 
urrent isne
essary for repla
ement of dirty water and for the supply of oxygen to the �sh-
age. Forthe stru
ture, 
urrent means additional loads that must be a

ounted for in the designof the �sh farm. The 
urrent will 
ause drag for
es on the net pens and the �oaters. Inaddition to the design wave 
lasses, also design 
lasses for 
urrent are given in NS 9415(Standard Norway 2005). Current loads are not addressed in the present work. However,some aspe
ts of 
urrent loads on �sh farms are presented in the following se
tion.



24 The physi
al problem2.3 Relative importan
e of hydrodynami
 for
es on the�oater and the netIt is the total hydrodynami
 horizontal for
e on the �sh farm that matters for the mooringsystem of a �sh farm. However, it is interesting to know the 
ontribution from the �oaterand the net to the total hydrodynami
 load on the stru
ture. The relative importan
e ofthe horizontal 
omponent of the hydrodynami
 for
e on the net 
age and on the �oaterper unit length of the �oater and the net will now be dis
ussed.Consider the two-dimensional �ow problem where the �oater and the net is subje
tedto a uniform 
urrent with speed Uc = 1.0m/s and regular beam sea waves with height
H = 2.0m and period T = 3.6s. The wave frequen
y is then ω = 2π/T = 1.76rad/s. This
orresponds to the wave steepness H/λ = 1/10, where λ is the wave length. The wavesare propagating in the same dire
tion as the 
urrent. Consider a semi-submerged 
ir
ular
ylinder with diameter D = 1.0m, representing the �oater. Further, 
onsider a verti
alstrip of the net 
age with depth h = 25m and unit width. We assume the netting materialis 
hara
terized by a knot-less square mesh with solidity ratio Sn = 0.20. The �oater andthe net is restrained from moving. An Earth-�xed 
oordinate system Oxy is introdu
edwith origin in the free surfa
e, where x is the horizontal 
oordinate and y is the verti
al
oordinate positive upwards.Wave and 
urrent loads on the netThe vis
ous drag for
e is the dominating for
e on the net. Due to the waves, the in
ident�uid velo
ity experien
ed by the net varies with depth. Under a wave 
rest, the �uidvelo
ity 
an using linear wave theory be expressed as u(y) = Uc + ωζa exp (ky). The dragfor
e amplitude on the net is then 
omputed as

Fd = 0.5ρCd

∫ 0

−h

u(y)2dy, (2.3)where h is the depth of the net-panel. The drag 
oe�
ient for a knot-less square meshwith solidity Sn = 0.2 is Cd = 0.3 (Løland 1991). This yields Fd = 6.1kN/m as theamplitude of the wave- and 
urrent-indu
ed drag for
e on the net.Wave and 
urrent loads on the �oaterThe wave ex
itation for
es on a 
ylinder in the free surfa
e 
an a

ording to potential�ow theory be found as
Fa = ζa

√

ρg2bkk/ω, (2.4)where bkk with k = 2, 3 is the frequen
y-dependent 2D damping 
oe�
ient of the 
ylinderin sway and heave, respe
tively (Newman 1962). The damping 
oe�
ient in sway of asemi-submerged 
ir
ular 
ylinder with diameter D = 1.0m for in�nite water depth, isfor ω = 1.75rad/s found to be b22 = 108.6kg/s. With ζa = 1.0m, this means the waveex
itation for
e amplitude in the x−dire
tion is Fe = 2.5kN. Now, assume that we 
anapproximate the drag for
e on the �oater due to 
urrent and waves as half the drag for
eon the 
ylinder in in�nite �uid as Fd = 0.25ρC
(2)
d DU2

0 , where U0 = Uc + ωζa. Stri
tlyspeaking this is not a good assumption as we 
annot mirror the hydrodynami
 problem



2.4. Problem limitations and dis
ussion 25about the free surfa
e and 
onsider the double body in in�nite �uid for the general 
ase,due to a frequen
y dependent free surfa
e 
ondition (Faltinsen 1990). The drag 
oe�
ientdue to the steady 
urrent in 
ombination with the wave indu
ed os
illatory �ow is notknown. However, for pure os
illating �ow, the drag 
oe�
ient for a 
ir
ular 
ylinder inin�nite �uid is C
(2)
d = 0.2KC when KC < 10 (Graham 1980). Using KC = 2πζa/Dwe get KC = 6.3, whi
h yields C

(2)
d = 1.25. For the 
ase of a smooth 
ir
ular 
ylinderin in�nite �uid subje
t to uniform steady �ow, the drag 
oe�
ient is C

(2)
d ≈ 1.0 when

Rn ≈ 106. To give a 
onservative approximation, we use C
(2)
d as the drag 
oe�
ient forthe �oater. Hen
e, we obtain Fd = 2.4kN as the horizontal for
e amplitude 
aused byvis
ous �ow separation on the �oater. This is about the same as the wave ex
itationfor
e on the �oater. Due to the long wave length relative to the diameter of the �oater(λ ≈ 20D), we assume that the horizontal 
omponent Fe of the wave for
e on the �oaterdue to potential �ow is 90◦ out of phase relative to horizontal �uid velo
ity in the wave.Hen
e, the total wave and 
urrent indu
ed for
e amplitude per unit length of the �oateris found as Ffloater =

√

F 2
d + F 2

e = 3.5kN.Dis
ussionBased on the simpli�ed analysis above, we see that it is the drag for
e on the net 
age thatgives the largest 
ontribution to the total horizontal for
e on the �sh 
age. However, forthis 
ase, we found that the hydrodynami
 horizontal for
e on the �oater is of the sameorder of magnitude as the drag for
e on the net panel. Here, the horizontal for
e due towave ex
itation on the �oater was found to be about 28% relative to the total horizontalfor
e on the �oater and net. This indi
ates that wave for
es on the �oater should be
onsidered in the design and dimensioning of mooring systems for su
h �sh farms. Itshould be noted that the analysis presented above is very approximate. It is questionableto 
onsider the �xed stru
ture as the �oater and the net stru
ture in reality will be setin motion due to the waves. However, the analysis is 
onsidered to be valuable in thesense of getting an impression of the relative importan
e of the hydrodynami
 for
es onthe �oater and on the net 
age. For
es on the net 
age are not further pursued in thiswork. The reason for this is that the aim of our study is a thorough understanding of thewave indu
ed motions and loads on the �oater.2.4 Problem limitations and dis
ussionIn the previous two se
tions we dis
ussed relevant physi
al e�e
ts with their asso
iated�ow parameters, and quoted the design wave 
onditions for �sh farms given in NS 9415(Standard Norway 2005). We will now dis
uss the relevant physi
al e�e
ts for the �oatersin waves in the 
ontext of these design wave parameters. The �ow parameters due toregular waves 
orresponding to the most probable largest waves for the design sea-statesare estimated.Consider a horizontal 
ir
ular 
ylinder with diameter D = 1m whi
h is �xed in thefree surfa
e zone. Using the wave heights in Tab. 2.2, we obtain KC > 3 for all the designsea-states. For a 
ir
ular 
ylinder in in�nite �uid subje
t to os
illatory �ow, vis
ous �owseparation o

ur when KC & 2. Considering the �xed 
ylinder might not be relevant for�oaters of �sh farms for the higher sea-states sin
e then the stru
ture will respond to the



26 The physi
al problemwaves, and the relative motion between the water and the �oater should be 
onsidered.However, sin
e the KC-number is larger than two for all the design sea-states, e�e
ts ofvis
ous �ow separation 
annot be negle
ted.Vis
ous �ow separation will introdu
e additional drag for
es on the �oater. For the
ir
ular 
ylinder, the lo
ation of the separation point is a�e
ted by whether the boundarylayer �ow on the 
ylinder surfa
e is laminar or turbulent. Again, using the design waveparameters in Tab. 2.2 to 
ompute the Reynolds number for the �xed 
ylinder, we obtain
Rn = 1.0× 106− 2.1× 106. This suggests that the boundary layer �ow on the �oater 
anbe turbulent in reality. Turbulent boundary layers 
ombined with free surfa
e �ow willintrodu
e too mu
h 
omplexity to our numeri
al model relative to what we believe is theimportan
e of turbulen
e. We 
ir
umvent this problem by applying a model s
ale wherethe boundary layer �ow is laminar. Consequen
es of this approa
h when it 
omes to thewave indu
ed motions of the �oaters in full s
ale are dis
ussed in Chapter 8.Slamming is not 
onsidered in the present work, neither are the e�e
ts of air po
ketformation 
onsidered. However, we fo
us on the fully nonlinear wave loading on 2D�oater se
tions due to regular waves. The study is performed by means of model testsand numeri
al simulations. The numeri
al simulations are performed with the presentlydeveloped Computational Fluid Dynami
s (CFD) 
ode whi
h is used to model the 2Dproblem of �oaters subje
ted regular waves.



Chapter 3Mathemati
al formulationIn order to study the 2D hydrodynami
al problem represented by a 
ylindri
al �oater inbeam sea waves, a numeri
al model of a physi
al wave-tank as illustrated in Fig. 3.1 isdeveloped. This is 
alled a numeri
al wave-tank (NWT). A �oating body is introdu
edinto the NWT to represent the �oater. We de�ne an Earth �xed 
oordinate system Oxyin our domain with origin at the initial position of the gravity 
enter of the �oater. Inthis 
hapter, the mathemati
al foundation for the NWT is presented. The mathemati
almodel in
ludes the governing equations with proper boundary 
onditions des
ribing themotions of the water and the air, in addition to the equations of motion for the �oatingbody. As in a physi
al wave �ume, a wave maker and a bea
h is needed also in the NWT.The mathemati
al formulation of the numeri
al wave-tank is presented below.3.1 General assumptionsIt is not pra
ti
al to in
lude �all� physi
al e�e
ts in our mathemati
al model. Hen
e, themathemati
al problem is simpli�ed by negle
ting physi
al e�e
ts that are believed not tobe important for our hydrodynami
 problem. With the physi
al reasoning from Chapter2 in mind, the following assumptions have been made:- In
ompressible �uid- Vis
ous �uid- Laminar �ow- Surfa
e tension is not important- 2D-�ow 
onditions- Planar (2D) �oater motion- No air po
kets- Rigid �oater, i.e. no hydroelasti
 e�e
tsBased on these assumptions, the governing equations are established.27
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al formulation
Free surface

Air
Outlet

Wavemaker
Water

Floater

Fixed impermeable walls

x
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Figure 3.1: The domain of the numeri
al wave-tank. An Earth-�xed 
oordinatesystem Oxy is introdu
ed with origin at the initial position of the body 
enter.The bottom boundary and the right hand boundary are �xed and impermeablewalls. The left boundary is the wavemaker, while the top boundary is open.3.2 Governing equationsWe will apply a one-�uid formulation for the water and for the air. This means the �ow ofboth the air and the water is des
ribed by the same set of equations, with the 
oe�
ientsof the mass density and the dynami
 vis
osity set a

ording to whi
h �uid is o

upying theregion 
onsidered. In reality, there is a dis
ontinuity of the mass density and the vis
osityof the �uid at the air-water interfa
e whi
h requires spe
ial attention in the derivation ofthe governing equations.3.2.1 The 
ontinuity equationContinuity of �uid mass is a basi
 
on
ept in 
lassi
al �uid me
hani
s, whi
h states that�uid mass 
annot just appear or disappear in the interior of a 
ontrol volume. This impliesthat the amount of �uid mass inside the 
ontrol volume 
an only 
hange by means of masstransport through its boundaries. Mathemati
al formulation of 
ontinuity for the �uidmass is not trivial when solving two-phase �ow using a one-�uid model. Conservation ofthe �uid mass for a �xed 
ontrol volume Ω gives the relation between the rate of 
hangeof the �uid mass in Ω and the mass �ux through its boundary ∂Ω as
d

dt

∫∫

Ω

ρ dΩ +

∮

∂Ω

(ρu) · n dS = 0, (3.1)where u = [u, v]T is the �uid velo
ity ve
tor and n is the unit outward normal ve
tor of
Ω. Now 
onsider the 
ase of two-phase �uid �ow in Ω, where the two phases are separatedby a sharp interfa
e Γ. If the density of the two phases is di�erent, the �uid momentum
ρu is dis
ontinuous a
ross Γ. This is the 
ase for air-water intera
tion �ows in reality.We want to obtain the di�erential form of the 
ontinuity equation, whi
h requires theappli
ation of Gauss theorem on the se
ond term of (3.1). However, the use of Gausstheorem requires that ρu is 
ontinuous throughout the domain Ω. To 
ir
umvent thisproblem, we will assume that the interfa
e has a �nite but small thi
kness where the �uiddensity varies smoothly, meaning also that the �uid momentum will be 
ontinuous. Then



3.3. The free surfa
e 29we get
∂ρ

∂t
+∇ · (ρu) = 0. (3.2)This is the 
onservative formulation of the 
ontinuity equation. By applying the 
hainrule for di�erentiation to (3.2) and introdu
ing the material derivative operator D

Dt
(·) =

(

∂
∂t

+ u · ∇
)

(·), the non-
onservative form of the 
ontinuity equation is obtained as
Dρ

Dt
+ ρ∇ · u = 0. (3.3)The �rst term of (3.3) expresses the rate of 
hange of the �uid mass density as one followsa �uid parti
le. Sin
e the mass density is a �uid property whi
h moves with the �uid�ow, the mass density represented by a �uid parti
le should be 
onstant if we assumein
ompressible �ow and that no di�usion of the mass density o

ur. This means Dρ

Dt
= 0.Thus, for two-phase in
ompressible �ow where the �uid density is smeared at the interfa
e,the 
ontinuity equation redu
es to

∇ · u = 0, (3.4)i.e. that the divergen
e of the velo
ity �eld is zero. This will be referred to as thedivergen
e-free 
onstraint.3.2.2 The momentum equationsWe have assumed the �uid to be vis
ous and in
ompressible. Hen
e, the governing equa-tions des
ribing the �uid �ow are the in
ompressible Navier-Stokes equations. Applyingthe same assumptions of smoothness as in the derivation of the 
ontinuity equation, we
an obtain the in
ompressible Navier-Stokes equations on di�erential non-
onservativeform. For the 
ase of 2D-�ow, we get
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+

1

ρ

[

∂

∂x

(

2µ
∂u

∂x

)

+
∂

∂y

(

µ

(

∂u

∂y
+

∂v

∂x

))]

+ fx (3.5)
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂p

∂y
+

1

ρ

[

∂

∂x

(

µ

(

∂u

∂y
+

∂v

∂x

))

+
∂

∂y

(

2µ
∂v

∂y

)]

+ fy (3.6)where u and v is the horizontal and verti
al 
omponents of the �uid velo
ity, respe
tively.Further, p is pressure, ρ the mass density of the �uid and µ the dynami
 vis
osity 
oef-�
ient. Finally, fx and fy are volume �for
es� a
ting on the �uid in the horizontal andverti
al dire
tion, respe
tively. The quotes are added be
ause stri
tly speaking, fx and
fy do not have the unit of for
e, but the unit of a

eleration. The only volume for
e inour model is gravity, a
ting in the negative y−dire
tion.3.3 The free surfa
eWe de�ne the free surfa
e as the interfa
e between the air and the water. When using aone-�uid model to des
ribe two-phase �ow, here represented by the air and the water, noexpli
it boundary 
ondition is imposed on the free surfa
e, simply be
ause the air-waterinterfa
e is not a boundary of the �uid domain. However, the instantaneous position of thefree surfa
e must be found in order to know the material properties of the �uid at a given
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al formulationpoint. As argued in the derivation of the 
ontinuity equation, the 
ondition Dρ
Dt

= 0 mustbe satis�ed for all points in the domain. Now, let the �uid mass density in the domainbe des
ribed by ρ(x, y, t) = ρwϕ(x, y, t) + ρa (1− ϕ(x, y, t)), where ϕ(x, y, t) ∈ [0, 1] isa 
ontinuous s
alar fun
tion similar to a Heaviside fun
tion but where the dis
ontinuityis repla
ed by a smooth transition. Further, ρw and ρa are 
onstants representing thedensity of water and air, respe
tively. This means Dρ
Dt

= (ρw − ρa)
Dϕ
Dt

= 0. Hen
e, theevolution of ρ(x, y, t) in time is found by solving
∂ϕ

∂t
+ u · ∇ϕ = 0, (3.7)where u is the �uid velo
ity ve
tor. One 
an also simply say that ϕ is a �uid propertywhi
h then must satisfy (3.7). The dynami
 vis
osity of the �uid 
an similarly be foundas µ(x, y, t) = µwϕ(x, y, t)+µa (1− ϕ(x, y, t)) where µw and µa are the dynami
 vis
osity
oe�
ients of water and air in that order. Due to the smeared air-water interfa
e in ourmathemati
al model, we will have to de�ne what to interpret as the physi
al free surfa
e.Here, we de�ne the free surfa
e as the 
ontour represented by ϕ(x, y, t) = 0.5.3.4 Initial 
onditionsUnless otherwise spe
i�ed, the initial 
onditions used are that the �uid and the body areat rest initially. This means the velo
ity �eld in the domain is zero. Hen
e, the pressure�eld below the free surfa
e is hydrostati
 and des
ribed by p = −ρwgy. Similarly, dueto the mass density of the air, an aerostati
 pressure distribution p = −ρagy is appliedinitially for the air-part of the domain. Continuity of the initial pressure �eld is ensured.3.5 Boundary 
onditionsIn order to solve the �eld equations in a pres
ribed domain, boundary 
onditions (BC)for the prime variables, i.e. �uid velo
ity and pressure, must be spe
i�ed. We will
onsider a re
tangular domain where the boundaries are �xed in spa
e. In addition,the presen
e of a �oater inside the domain yields an internal or immersed boundary forwhi
h boundary 
onditions must be imposed. Obtaining mathemati
al formulations ofboundary 
onditions for the Navier-Stokes equations is not a simple task in general. Often,the quantities to be pres
ribed on the boundaries are not known. Some 
ommonly used
on
epts are dis
ussed below.Fixed and moving impermeable wallsA no-slip boundary 
ondition is applied on all impermeable walls in the domain, i.e. thebottom and the end wall at the bea
h side of the �ume. The no-slip 
ondition is alsoapplied on the �oating body boundary. No-slip means that the �uid parti
les that areinitially lo
ated at points on the solid boundary, remain atta
hed to the same points ofthe boundary. There are no relative motion between the boundary and the �uid parti
leslo
ated on the boundary. This is an assumption based on physi
al observations of vis
ous�uid �ows near solid boundaries (S
hli
hting and Gersten 2000). Mathemati
ally, the



3.6. Computation of for
es and moments 31no-slip boundary 
ondition on �xed impermeable walls Sw is expressed as
u = 0 on Sw. (3.8)When it 
omes to the �oating body, the no-slip 
ondition implies that �uid parti
les onthe body surfa
e will have to move with the body, i.e. the relative velo
ity between the�uid parti
les at the body surfa
e and the body itself is zero. Mathemati
ally speaking,
u = ub on Sb (3.9)where ub = [ub, vb]

T is the lo
al velo
ity ve
tor of a point on the surfa
e of the �oatingbody. The body velo
ity is either enfor
ed or governed by the equations of motion for thebody. Also the wave maker 
an be modelled as a body with for
ed motion, yielding (3.9)as boundary 
ondition for the wave maker.A boundary 
ondition for the pressure on impermeable no-slip boundaries for the 
aseof time-dependent in
ompressible �ows is not easy to de�ne sin
e the pressure here ingeneral is unknown. The pressure boundary 
ondition must be seen in 
ombination withthe numeri
al method used to solve the governing equations for the �uid �ow. However,the normal 
omponent of the momentum equations to the impermeable boundary suggestsa Neumann BC for the pressure, meaning that ∂p
∂n

should be pres
ribed on the boundary.This issue will be des
ribed more in detail in the next 
hapter.OutletThe 
eiling of the tank is open and thus an outlet boundary 
ondition should be applied.This means the �uid is allowed to �ow out of the domain. The pressure outside thetank is assumed to be atmospheri
, whi
h means the Diri
hlet 
ondition p = patm isimposed on the upper boundary of the domain. In reality, we know little about the �owat the outlet boundary. Therefore, a general 
on
ept is that outlet boundaries shouldbe lo
ated far away from the region of interest (Ferziger and Peri
' 2002). The outletboundary 
ondition whi
h is applied in the 
eiling of the tank will have in�uen
e on theair �ow. However, for our 
ase it is the water �ow that is of interest. Sin
e transfer of�uid momentum from the air to the water is negligible for most 
ases, the requirement ofthe outlet boundary to be lo
ated far away from the region of interest (the free surfa
e)is less important. Further, 
ommonly used 
riterions are that the 
onve
tive and di�usive�uxes through the outlet boundary are zero, meaning the �ow has no velo
ity gradientsin the dire
tion normal to the boundary.3.6 Computation of for
es and momentsThe for
es and moments a
ting on the �oater from the surrounding �uids (water and air)are in general due to the pressure and due to skin fri
tion and normal vis
ous stresses onthe body surfa
e. In the 2D problem, pressure for
es Fp and moments Mp are found byintegrating the total �uid pressure p over the boundary Sb of the body, i.e.
Fp = −

∫

Sb

pndS (3.10)
Mp = −

∫

Sb

p (r× n) dS =

∫

Sb

n× (rp) dS, (3.11)
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al formulationwhere n is the unit normal ve
tor of the body boundary Sb, pointing into the �uid domain.Further, r is the distan
e from the in
remental element dS lo
ated at the point (x, y) onthe body boundary to the 
entre of gravity (xc, yc) of the body, i.e. r = (x−xc)i+(y−yc)j.Sin
e it is the total pressure that is integrated, the pressure loads here are due to bothhydrodynami
 and hydrostati
 pressures.The fa
t that the �uid is vis
ous implies that there is a skin fri
tion for
e a
ting onthe body from the water (and vi
e verse). There is also a for
e 
omponent due to normalvis
ous stresses on the body surfa
e. The vis
ous for
es on the �oater 
an be found byintegrating the produ
t of the vis
ous stress tensor and the unit normal ve
tor of the bodyover the boundary Sb. Hen
e,
Fv =

∫

Sb

τ n dS. (3.12)Similarly, vis
ous stresses also 
ause a roll moment on the body whi
h 
an be expressedas
Mv =

∫

Sb

τ (r× n) dS. (3.13)The vis
ous stress tensor τ for two dimensional �ow is de�ned as
τ =





2µ∂u
∂x

µ
(

∂u
∂y

+ ∂v
∂x

)

µ
(

∂u
∂y

+ ∂v
∂x

)

2µ∂v
∂y



 . (3.14)By prolonging the outer pressure �eld to the inside of the body, an arti�
ial �ow problem
an be solved in the interior of the body. If this arti�
ial pressure �eld inside the bodyis 
ontinuous and di�erentiable, we 
an make use of Gauss theorem to transform theline integrals in the expressions for the pressure for
es and moment, (3.10) and (3.11)respe
tively, to surfa
e integrals over the area en
losed by the body boundary. Then thepressure for
es 
an then be found as
Fp = −

∫∫

Ωb

∇p dA. (3.15)Here, ∇ = i ∂
∂x

+ j ∂
∂y

is the gradient operator and Ωb is the area en
losed by the bodyboundary. Further, the roll moment due to the �uid pressure 
an be written as
Mp =

∫∫

Ωb

∇× (rp) dA

=

∫∫

Ωb

p (∇× r) dA−
∫∫

Ωb

r×∇p dA.Sin
e ∇× r = 0, we arrive at
Mp = −

∫∫

Ωb

r×∇p dA. (3.16)If we introdu
e a s
alar fun
tion ϕ3 de�ned as
ϕ3 =

{

1, ∀ (x, y) ∈ Ωb

0, elsewhere
(3.17)
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an express the pressure for
es and moment in terms of surfa
e integrals over the
omplete domain of 
omputation Ω as
Fp = −

∫∫

Ω

(∇p)ϕ dA (3.18)
Mp = −

∫∫

Ω

(r×∇p)ϕ dA. (3.19)The vis
ous for
es 
annot be treated this way be
ause the vis
ous stress tensor de�ned in(3.14) is not 
ontinuous a
ross the body boundary. The spatial derivatives of the velo
ity�eld has a �nite value at the outer side of the boundary, while the gradient of the arti�
ialvelo
ity �eld in the interior of the body is zero. This is be
ause a uniform velo
ity �eldequal to the rigid body velo
ity is imposed on the interior of the body. Hen
e, this mightexplain the rather poor 
onvergen
e properties for the skin fri
tion for
es when using thesurfa
e integral representation, as reported by Hu and Kashiwagi (2004).3.7 Equations of motion for the �oating bodyWhen the for
es and moments a
ting on the �oater are found, the body motions in aninertial frame of referen
e Oxy are obtained by means of integration of Newton's se
ondlaw. The motion equations for the �oater for planar motion are
mẍc = Fx (3.20)
mÿc = Fy (3.21)

Iθ̈ = M, (3.22)where m is the stru
tural mass per unit length of the body, ẍc and ÿc are the bodya

elerations at the 
enter of gravity in the horizontal dire
tion and verti
al dire
tion,respe
tively. Further, I is roll inertia about the 
enter of gravity, θ̈ is roll a

eleration,while Fx, Fy and M are the total for
es in the horizontal and verti
al dire
tion and theroll moment about COG, in that order.3.8 Wave 
hara
teristi
s and wavemaker theorySome basi
 properties of progressive water waves, whi
h are frequently utilized in thepresent work, are des
ribed below. For intermediate and deep water relative to the wavelength, water is a dispersive medium. This means that the 
elerity or phase speed C ofwater waves is frequen
y dependent. The 
elerity is simply given by C = ω/k, where ω iswave angular frequen
y and k is wave number de�ned as k = 2π/λ, with λ being the wavelength. A relation between ω and k, known as the dispersion relation, is from potential�ow theory found as
ω2 = gk tanh kh, (3.23)where g is the a

eleration of gravity and h is a 
onstant water depth. The group velo
ity

Cg of the wave train is an important parameter, whi
h will be used e.g. when 
onstru
tingthe domain of the numeri
al wave-tank or when evaluating if wave re�e
tions in the �ume
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al formulationare likely to be 
ontaminating the measurements. The group velo
ity is a

ording tolinear potential �ow theory expressed as
Cg =

dω

dk
=

C

2

[

1 +
2kh

sinh 2kh

]

. (3.24)When generating waves either experimentally in a physi
al wave-�ume or numeri
allyin an NWT, it is 
onvenient to know what wavemaker paddle motion that yields a givenwave height of the waves generated. Su
h a relation between the wavemaker paddle motionand the resulting steady state wave height H far away from the wavemaker 
an be founde.g. from linear potential �ow theory (Hughes 1993). For the piston type wavemakerwhere the paddle is a
ting from the bottom of the �ume to the free surfa
e, the waveheight-to-stroke ratio is
H

S0
=

4 sinh2 kh

sinh 2kh + 2kh
, (3.25)where S0 is the piston stroke. Further, h is water depth and k the wave number foundfrom the dispersion relation (3.23). For the �ap type wavemaker hinged at a distan
e lfrom the bottom of the �ume, the wave height-to-stroke ratio is

H

S0
=

4 sinh kh

sinh 2kh + 2kh

[

sinh kh +
(1− cosh kh)

k (h + l)

]

. (3.26)For the �ap type wavemaker, the stroke S0 is de�ned as two times the horizontal motionamplitude of the paddle at the mean free surfa
e.



Chapter 4Numeri
al model
4.1 Dis
retization of the Navier-Stokes equationsIn the previous 
hapter we established a mathemati
al model for our physi
al problem.The obtained mathemati
al model, whi
h is governed by the time-dependent in
ompress-ible Naviér-Stokes equations with proper initial- and boundary 
onditions, must be solvednumeri
ally. Hen
e, a suitable dis
retization method must be found. By dis
retizationmethod is meant a method to approximate the di�erential equations with a set of algebrai
equations for the �ow variables at a dis
rete set of points in time and spa
e. A numeri
algrid de�ning these points or nodes of 
omputation must then be spe
i�ed. However, alsogrid-less methods for solving the in
ompressible N-S equations exists. An example hereis the Smoothed parti
le hydrodynami
s (SPH) method (Gingold and Monaghan 1977;Monaghan 1992). We apply a grid method for our numeri
al wave tank. How the grid isorganized is des
ribed in the following.4.1.1 The numeri
al gridFor grid methods, there is a vast number of ways to arrange the numeri
al grid. Some
on
epts will now be des
ribed. First of all, the grid 
an be �xed in spa
e (Eulerian) orit 
an move with the �ow (Lagrangian). Further, the grid 
an be stru
tured (regular),blo
k-stru
tured or unstru
tured (irregular). Blo
k-stru
tured grids, whi
h are 
omposedof some regions (blo
ks) in where the grid is regular. Some blo
k-stru
tured grids mayhave overlapping blo
ks. Su
h arrangements where e.g. a body-�tted grid (whi
h 
anbe moving) is overlapping a �xed grid are 
alled 
omposite or Chimera grids. Thesetypes of grids have shown to be advantageous for �ow 
omputations with moving bodies(Ferziger and Peri
' 2002), sin
e the body boundary 
ondition then easily 
an be imposed.A new type of grid whi
h has been used in 
ombination with the CIP-method is the so-
alled soroban grid, introdu
ed by Takizawa et al. (2006). For the soroban grids, the gridpoints 
an be moved in a systemati
 manner, similarly as the beads on an aba
us. Infa
t, soroban is the Japanese word for aba
us.The presen
e of the air-water interfa
e is a 
ompli
ating fa
tor in our problem, andmust be 
onsidered when de
iding whi
h type of grid arrangement to apply. Typi
allywhen dealing with free surfa
e �ows, we separate between domain dividing methods anddomain embedding methods. Domain dividing methods apply Lagrangian type of gridswhi
h adept to the free surfa
e. Hen
e, regridding is required as the free surfa
e evolves35
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Figure 4.1: Illustration of the domain embedding method. A �xed Cartesiangrid is used whi
h does not 
onform to the free surfa
e or the �oating body. Thegrid 
overs the air, the water and the �oating body.with time. For violent free surfa
e �ows where large distortions and even fragmentationof the free surfa
e may o

ur, the regridding pro
ess 
an be very 
umbersome and time
onsuming. For su
h �ow problems it is more 
ommon to apply a domain embeddingmethod whi
h is 
hara
terized by a �xed grid that extends from the liquid phase intothe air, as illustrated in Fig. 4.1. Sin
e the grid does not 
onform to the free surfa
eand 
overs both air and water, an interfa
e 
apturing method must be used in orderto lo
ate the free surfa
e within the domain. Due to the good performan
e for violentfree surfa
e �ows, we will base our numeri
al model on a domain embedding method,i.e. using a �xed grid. We have already established a mathemati
al model where thegoverning equations are expressed in Cartesian 
oordinates. Thus, when 
onstru
ting the�nite di�eren
e s
hemes, it is 
onvenient that also the 
omputational nodes are arrangedin a Cartesian manner, i.e. that the nodes are aligned in the 
oordinate dire
tions. Hen
e,a �xed Cartesian grid will be applied on a re
tangular domain. We will use the indi
es iand j to represent the node number in the horizontal and verti
al dire
tion, respe
tively.4.1.2 Staggered grid arrangementOne may think that it is 
onvenient to use a grid where all the primary variables, i.e.horizontal velo
ity u, verti
al velo
ity v and pressure p, are 
al
ulated in the same set ofpoints. Su
h grids are referred to as 
ollo
ated grids. Drawba
ks of 
ollo
ated grids are dif-�
ulties with the pressure-velo
ity 
oupling whi
h then requires interpolation, in addition
omes problems with unphysi
al os
illations of the pressure (Ferziger and Peri
' 2002).This has motivated for other arrangements of Cartesian grids. Harlow and Wel
h (1965)introdu
ed an arrangement where a separate grid was used for ea
h primary variable and



4.1. Dis
retization of the Navier-Stokes equations 37where ea
h primary variable was 
omputed at di�erent sets of points. This resulted in aset of staggered grids. The staggered grids 
an be explained by having one set of grid 
ellswhere horizontal velo
ity nodes are lo
ated on verti
al 
ell fa
es, verti
al velo
ity nodesare lo
ated on horizontal 
ell fa
es while pressure nodes are lo
ated at the geometri
al
ell 
entres, as depi
ted in Fig. 4.2. We use ∆xi to represent the grid line spa
ing in the
ui,j

∆ycj

vi,j

ui−1,j

vi,j−1

∆yj

∆xi

∆xci

pi,j

Figure 4.2: De�nitions of the Cartesian staggered grid whi
h is used in the presentnumeri
al model. Pressure nodes are marked with 
ir
les, while horizontal andverti
al arrows represents horizontal velo
ity nodes and verti
al velo
ity nodes,respe
tively. We use ∆xi and ∆yj to represent spa
ing between grid lines, while
∆xci and ∆ycj represents spa
ing between 
ell 
entres.horizontal dire
tion for the grid 
ell 
ontaining pressure node with index (i, j). Similarlyis ∆yj representing the grid line spa
ing in the verti
al dire
tion for the same grid 
ell.Appli
ation of grid stret
hing 
auses the grid line spa
ings ∆xi and ∆yj to di�er from thespa
ings between 
ell 
entres. For 
onvenien
e, we introdu
e the parameters ∆xci and

∆ycj to represent the horizontal and verti
al spa
ing between 
ell 
entres, respe
tively.The relation between the two are ∆xci = 0.5(∆xi +∆xi+1) and ∆ycj = 0.5(∆yj +∆yj+1).For the primary variables, we use ui,j to represent an approximation to the horizon-tal velo
ity u(xi, ycj) where (xi, ycj) are the 
oordinates of the horizontal velo
ity node
onsidered. Further, vi,j represents v(xci, yj) and pi,j represents p(xci, ycj).4.1.3 Temporal dis
retizationThe dis
retized momentum equations must be integrated in time to obtain the velo
-ity �eld at a later time step. Many methods exists for integrating the Naviér-Stokesequations in time. Methods 
lassi�ed as Fra
tional step approa
hes as �rst suggestedby Harlow and Wel
h (1965) and Chorin (1968) are perhaps the most popular 
lass ofmethods. For these approa
hes, the terms of the N-S equations representing di�erentphysi
al e�e
ts are stepped forward in time separately. In the fra
tional step approa
hby Chorin, a tentative velo
ity �eld is obtained by integrating an in
omplete version ofthe momentum equations where the pressure term is ex
luded. This tentative velo
ity�eld is then not ne
essarily divergen
e free, meaning the velo
ity �eld might not satisfy
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al modelthe 
ontinuity equation (3.4). Then, in order to obtain a divergen
e free velo
ity �eld atthe next time step, an orthogonal proje
tion of the tentative velo
ity �eld onto the planeof zero divergen
e is performed. Hen
e, su
h methods are referred to as proje
tion meth-ods. Chorin's method has later been modi�ed for use with �nite volume methods andstaggered grid arrangements by Kim and Moin (1985). The Harlow and Wel
h approa
hhas lead to the fully impli
it method SIMPLE by Patankar (1980), where all terms aresolved simultaneously and iterates are performed until a velo
ity �eld free of divergen
e isrea
hed. This method was originally developed for solving the steady-state Naviér-Stokesequations but has also been used for solving unsteady problems. We will use a proje
tionmethod similar to that proposed by Kim and Moin, but instead of using �nite volumesfor the spatial dis
retization we will apply �nite di�eren
es.The notation un will be used to represent an approximation to the velo
ity �eld u(tn),where the time tn = n∆t with n being the time step and ∆t the time in
rement. However,adaptive time stepping will sometimes be used. Then the solution time is tn =
∑n

k=1 ∆tk.4.1.4 The adopted fra
tional step approa
hFra
tional step methods are time-splitting s
hemes where approximate fa
torizations ofthe Naviér-Stokes equations are applied, su
h that ea
h term of the equations 
an betreated separately. The underlying method for time integration of the di�erent terms 
anbe either impli
it or expli
it. Here, time integration will be performed using the �rst orderexpli
it Euler method.Proje
tion methods 
an be divided into pressure-free proje
tion methods as that intro-du
ed by Kim and Moin (1985) and in
remental-pressure proje
tion methods as des
ribedby Brown et al. (2001). In the pressure-free proje
tion method, the adve
tion and dif-fusion terms are solved to obtain a tentative velo
ity �eld whi
h is proje
ted onto adivergen
e free plane. Hen
e, no pressure gradient is in
luded in the tentative velo
ity�eld. In the latter method the pressure �eld from the former time step is used to get abetter estimate of the velo
ity �eld before a proje
tion step of the in
remental 
hange inpressure from time tn to tn+1 is performed. The in
remental pressure proje
tion methodwill be used here. Using the expli
it Euler method for time integration, the fra
tionalstep approa
h with in
remental pressure proje
tion 
an be expressed as
un+1 = un +

(

Cn + Dn + P n+1
)

∆t (4.1)where C represents the 
onve
tive terms, D represents di�usive terms, the body for
esand the pressure gradient from time tn. Finally, P is the gradient of the in
rementalpressure 
hange from time tn to tn+1. This leads to a three step approa
h for integratingthe N-S equations, with the following steps
u∗ = un + (Cn) ∆t (4.2)
u∗∗ = u∗ + (Dn) ∆t (4.3)
un+1 = u∗∗ +

(

P n+1
)

∆t. (4.4)The di�erent steps will be referred to as the adve
tion step, non-adve
tion step andin
remental-pressure 
orre
tion step, respe
tively. The non-adve
tion step will be furtherdivided into a di�usion step and a pressure 
orre
tion step. In the in
remental-pressure
orre
tion step, the velo
ity is updated with the in
remental 
hange in the pressure, whi
h
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e free velo
ity �eld. This in
remental-pressure 
orre
tion is unknownand must be found using a proje
tion method leading to a Poisson type equation for thein
remental pressure.4.2 The CIP-methodWhen solving the adve
tion step, a method with small numeri
al di�usion is favorable.Numeri
al di�usion is due to arti�
ial di�usion terms that are 
aused by trun
ation er-rors of the dis
retization. Although numeri
al di�usion stabilizes the numeri
al s
heme,it is unphysi
al and may 
ause erroneous solutions. A typi
al example is rapid de
ayof the wave amplitude in simulations of propagating surfa
e waves. A method withsmall numeri
al di�usion that has shown to work well for �uid-stru
ture intera
tion prob-lems (Hu and Kashiwagi 2004; Hu et al. 2005) is the CIP-method. The CIP-method was�rst introdu
ed by Takewaki et al. (1985) as a solver for one-dimensional hyperboli
-typeequations, then with CIP being the abbreviation for Cubi
 Interpolated Pseudo-parti
lemethod. This method uses the values of the adve
ted variable and its spatial deriva-tives to 
onstru
t an interpolating pro�le, usually a 
ubi
 polynomial, to represent theadve
ted variable in the upstream 
ell. Then the solution is found by moving the interpo-lation pro�le in a Lagrangian manner. The CIP-method has been extended to apply formulti-dimensional problems, and also other interpolating fun
tions than the 
ubi
 poly-nomial have been used. To 
onstru
t a 
ubi
 polynomial, four 
onstraints are needed inthe 1D-formulation, while ten 
onstraints are needed in 2D. This 
ould be done by usinginformation from more than one upwind 
ell. However, in the CIP-method the spatialderivatives of the adve
ted variable are introdu
ed as free variables. This yields a 
ompa
ts
heme where information from only one upwind 
ell is used. Thus, to a

ount for othertypes of interpolating fun
tions, the �rst de�nition of the CIP-method has been 
hangedto the Constrained Interpolation Pro�le method. The CIP-method has been in
orporatedinto N-S solvers where time-splitting algorithms are used (Toro 1999) as a solver for theadve
tion step. CIP has also been used in multiphase �ow simulations for solving theadve
tion equation for density fun
tions, whi
h appear when interfa
e 
apturing methodsare used. A review of the CIP-method for multiphase �ow simulations is presented inYabe et al. (2001).In order to explain the CIP-method, it is 
onvenient to start out with the 1D-formulation.Then, a 2D-formulation whi
h are used in our numeri
al model will be presented. Somemathemati
al ba
kground relevant for the CIP-method is presented in Appendix A.1.1.4.2.1 One-dimensional CIP-formulationThe one-dimensional linear adve
tion equation 
an be written as
∂f

∂t
+ u

∂f

∂x
= 0. (4.5)and des
ribes a fun
tion f(x, t) whi
h is adve
ted with the velo
ity u. For the spe
ial 
aseof 
onstant velo
ity u = u0, the adve
ted fun
tion f(x, t) retains its initial shape and isonly shifted along the x-axis with time. Then the relation of f(x, t) between two di�erenttime instants ∆t apart is f(x, t + ∆t) = f(x − u0∆t, t), as illustrated in Fig. 4.3. For
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(b)Figure 4.3: Relation between the adve
ted fun
tion f(x, t) and the same fun
tionat a later time f(x, t+∆t) when the adve
tion velo
ity u is 
onstant is shown in(a). In (b) the adve
ted variable f(x, t) in the upwind 
ell of xi is approximatedby a 
ubi
 polynomial F n
i (ξ). The solution fn+1

i is then found by moving ξ =
−u∆t along the pro�le F n

i .the general 
ase where u = u(x, t), also the shape of f(x, t) will be a�e
ted during theadve
tion pro
ess. The CIP-method makes use of the spatial derivative of the adve
tedfun
tion, whi
h are introdu
ed as additional free variables. Then, for the 1D-problem weneed one additional equation for the time evolution of the spatial derivative g = ∂f/∂x.Di�erentiating (4.5) with respe
t to x and substituting ∂f/∂x = g yields
∂g

∂t
+ u(x, t)

∂g

∂x
= −∂u

∂x
g. (4.6)Equations (4.5) and (4.6) are the governing equations for the one-dimensional CIP-method. Due to the sour
e term on the RHS, eq. (4.6) is solved by a two-step time-splitting method. First we solve eq. (4.6) with the RHS equal to zero to obtain a tentative

g∗. Then, g∗ is updated by the sour
e term on the RHS of (4.6) to obtain gn+1.The solution pro
edure is as follows. We 
onsider the node xi, for whi
h un
i , fn

i and
gn

i are known. We want to �nd fn+1
i and gn+1

i . First, the upwind node index is found as
iw = i− sign(u), where the fun
tion sign is de�ned as

sign(x) =

{

1, x ≥ 0

−1, x < 0
(4.7)Then, a 
ubi
 polynomial F n

i (ξ), where ξ = x− xi, is 
onstru
ted to represent f(x, tn) inthe upwind 
ell, i.e. in the interval [xi, xiw]. The 
ubi
 polynomial and the 
orrespondingdi�erentiated pro�le is
F n

i (ξ) = C3ξ
3 + C2ξ

2 + C1ξ + C0 (4.8)
Gn

i (ξ) = 3C3ξ
2 + 2C2ξ + C1, (4.9)where Gn

i = dF n
i /dξ. The four unknown 
oe�
ients are now found using the knownvalues of fn and gn in the two nodes of the upwind 
ell as 
onstraints. Details of thederivation of these 
oe�
ients 
an be found in Appendix A.1.2. When the 
oe�
ients arefound, the interpolation pro�les are shifted the distan
e ui∆t to obtain the new values

fn+1
i = F n

i (−ui∆t) (4.10)
g∗

i = Gn
i (−ui∆t). (4.11)



4.2. The CIP-method 41The spatial derivative g∗ is updated with the sour
e term on the RHS of (4.6) as
gn+1

i = g∗
i −∆t

(

un
i+1 − un

i−1

∆xi + ∆xi+1

)

g∗
i . (4.12)We note that (4.10), (4.11) and (4.12) are 
onsistent with the analyti
al solutions to (4.5)and (4.6) for the 
ase when u is a linear fun
tion in spa
e and 
onstant in time, whi
h isgiven in appendix A.1.1 (equations (A.6) and (A.10), respe
tively).Stability of the 1D CIP-methodWhen solving the adve
tion equation (4.5) numeri
ally, there is usually an upper limit onthe time-step in order to obtain a stable solution. This 
riterion on the time-step for astable solution is expressed in terms of the Courant-Friedri
hs-Lewy (CFL) number, whi
hfor the 1D 
ase is de�ned as CFL = U∆t/∆x. Here U is the maximum �uid velo
ityin the domain, ∆t is the time-step and ∆x is the spatial in
rement. A 
ommonly usedstability 
riterion for the CIP-method is CFL < 1. For a given spatial dis
retization anda given transport velo
ity, we then get ∆t < ∆x/U as a 
onstraint for a stable 
al
ulation.Although no rigorous stability analysis is performed to verify the stability 
riterion, wenote that CFL = 1 marks the limit between interpolation (CFL < 1) and extrapolation(CFL > 1) on the 
onstrained polynomial de�ned by (4.8).4.2.2 Two-dimensional CIP-formulationSeveral variants of the CIP method has been developed for adve
tion 
al
ulations in two-and three- spa
e dimensions, as des
ribed by Zhu (2006). In the methods referred toas C-type and M-type CIP, dire
tional splitting te
hniques are used su
h that the two-or three-dimensional problem is redu
ed to a set of one-dimensional problems whi
h arethen solved by the 1D-solution pro
edure. We will in the following use what is 
alledthe A-type CIP method. This method does not apply dire
tional splitting. Instead, apolynomial surfa
e is 
onstru
ted as the interpolation fun
tion representing the adve
tedvariable. This will now be explained.We want to solve the linear adve
tion equation in two spatial dimensions, whi
h 
anbe expressed as

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
= 0. (4.13)Di�erentiating (4.13) with respe
t to the spatial 
oordinates and introdu
ing the newvariables g = ∂f/∂x and k = ∂f/∂y, we obtain

∂g

∂t
+ u

∂g

∂x
+ v

∂g

∂y
= −∂u

∂x
g − ∂v

∂x
k (4.14)

∂k

∂t
+ u

∂k

∂x
+ v

∂k

∂y
= −∂v

∂y
k − ∂u

∂y
g. (4.15)The hyperboli
 equations (4.14) and (4.15) des
ribing the evolution of spatial derivatives

g and k, are 
oupled due to the sour
e terms on the right hand side (RHS). In order tosolve these equations, a two-step time-splitting te
hnique is used. First, pure adve
tionof the derivatives are 
omputed by setting the RHS to zero. Then the spatial derivativesare updated due to the sour
e terms.
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al modelThe upwind 
ell for a given node is determined by the sign of the two velo
ity 
om-ponents for the node 
onsidered. Sin
e the nodes for the horizontal and verti
al velo
ity
omponents are not 
ollo
ated on a staggered grid (
f. Fig. 4.2), interpolation of thevelo
ities to the node 
onsidered is ne
essary. For adve
tion of horizontal momentum theverti
al velo
ity 
omponent has to be interpolated to the horizontal velo
ity node, whilefor adve
tion of verti
al momentum the horizontal velo
ity 
omponent must be interpo-lated to the verti
al velo
ity node. When adve
tion of the 
olor fun
tion is 
omputed,both velo
ity 
omponents must be interpolated to the 
ell 
entre. The adve
tion velo
ity
omponents will be referred to as uc and vc referring to the horizontal and verti
al 
om-ponent, respe
tively. Now the upwind 
ell for a given node (i, j) is determined based onthe sign of the velo
ity 
omponents u and v. More pre
isely, the upwind node indi
es forthe horizontal and verti
al dire
tion is found as iw = i − sign(u) and jw = j − sign(v),respe
tively. The upwind 
ell is de�ned as the area limited by the four nodes (i, j), (iw, j),
(i, jw) and (iw, jw).When the upwind 
ell is found, the next step in the A-type CIP-method is to approx-imate the adve
ted variable f(x, y, tn) in the upwind 
ell with a 
ubi
 polynomial surfa
e
F n(ξ, η), where ξ = x − xi and η = y − yj are the lo
al 
ell 
oordinates. If the gridspa
ings ∆xi and ∆yj are of the same order of magnitude, i.e. ξ and η are of the sameorder, a 
omplete 
ubi
 polynomial surfa
e is des
ribed by

F n
i,j(ξ, η) = C30ξ

3 + C21ξ
2η + C12ξη

2 + C03η
3 + C20ξ

2 + C11ξη + C02η
2

+ C10ξ + C01η + C00,
(4.16)where by 
omplete is meant that all terms up to third order of ξ and η are in
luded.Further, the di�erentiated pro�les Gn(ξ, η) = ∂F n/∂ξ and Kn(ξ, η) = ∂F n/∂η are foundas

Gn
i,j(ξ, η) = 3C30ξ

2 + 2C21ξη + C12η
2 + 2C20ξ + C11η + C10 (4.17)

Kn
i,j(ξ, η) = C21ξ

2 + 2C12ξη + 3C03η
2 + C11ξ + 2C02η + C01. (4.18)The polynomial in (4.16) 
ontains ten unknown 
oe�
ients that must be determined.These 
oe�
ients are found using the 
onstraints F n(ξp, ηq) = fn

p,q, with (p, q) being theindi
es of the four nodes des
ribing the upwind 
ell and ξp and ηq the 
orresponding 
ell
oordinates. Further, Gn(ξp, ηq) = gn
p,q and Kn(ξp, ηq) = kn

p,q are used for the three nodes
(p, q) = (i, j), (iw, j) and (i, jw). This yields a total of ten 
onstraints. If also the spatialderivatives at the fourth node (iw, jw) were used, we would have twelve 
onstraints butonly ten unknowns. Thus, two more terms must be added to the polynomial (4.16) ifthe spatial derivatives at the fourth node are to be used. However, the additional termswould be of fourth order and are negle
ted in our numeri
al model. When the interpolationpro�le F n

i,j is found, the solution to the linear adve
tion equation (4.13) is obtained as
fn+1

i,j = F n
i,j(−u∆t,−v∆t) (4.19)For the spatial derivatives, a two-step time-splitting approa
h is used as follows. First,due to pure adve
tion of the spatial derivatives we get

g∗
i,j = Gn

i,j(−u∆t,−v∆t) (4.20)
k∗

i,j = Kn
i,j(−u∆t,−v∆t), (4.21)
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Figure 4.4: CIP-method in two-dimensions where a 
ubi
 polynomial surfa
e
F n

i,j(ξ, η) is 
onstru
ted using ten 
onstraints and then shifted a

ording to thesolution of the 
onstant 
oe�
ient linear adve
tion equation to obtain fn+1
i,j .whi
h 
onserves the shape of the di�erentiated pro�le. However, due to the varyingvelo
ity �eld the shape of the di�erentiated pro�le will be modi�ed. This is representedby the sour
e terms on the RHS of (4.14) and (4.15). Updating the derivatives for thesour
e terms yields

gn+1
i,j = g∗

i,j −∆t

(

∂u

∂x
g̃n

i,j +
∂v

∂x
k̃n

i,j

) (4.22)
kn+1

i,j = k∗
i,j −∆t

(

∂u

∂y
g̃n

i,j +
∂v

∂y
k̃n

i,j

)

, (4.23)where the spatial derivatives of the velo
ity is evaluated using 
entral di�eren
es. Dueto the staggered grid, the a
tual sten
il for di�erentiation depends on whi
h variable isbeing adve
ted. The A-type CIP-method is illustrated in Fig. 4.4. As for the 1D CIP-method, no rigorous stability analysis is performed for the 2D CIP-s
heme. However, the1D stability 
riterion (CFL < 1) is used for ea
h of the two spatial dire
tions. Usually,
CFL < 0.5 is used in pra
ti
e.Generally, both the 1D and 2D approa
h 
an be summarized as follows. For ea
h nodeof 
omputation:1. Lo
ate upwind 
ell based on the total velo
ity in the node 
onsidered2. Approximate the adve
ted variable in the upwind 
ell by 
onstru
ting a 
ubi
 poly-nomial 
urve/surfa
e using the node values of the adve
ted variable and its spatialderivatives as 
onstraints3. Shift the approximated pro�le a

ording to the analyti
al solution of the linear
onstant 
oe�
ient adve
tion equation4. Find new spatial derivatives by shifting the di�erentiated pro�le and adding sour
eterms5. Update variables
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al model4.3 Solving the Navier-Stokes equationsThe Naviér-Stokes equations are solved using �nite di�eren
es on a Cartesian staggeredgrid. A fra
tional step approa
h with an in
remental pressure-proje
tion method is ap-plied to step the solution forward in time, as already des
ribed. The di�erent steps willbe explained more in detail in the following.4.3.1 Adve
tion stepThe �rst task in the fra
tional step approa
h used here is to solve the adve
tion equationfor the horizontal and verti
al velo
ity 
omponent. The adve
tion of �uid momentumimplies we have to solve the following nonlinear adve
tion equations
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0 (4.24)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= 0. (4.25)These equations are hard to solve. However, if we use the method of frozen 
oe�
ients (seee.g. Strikwerda (2004)), we 
an approximate the nonlinear equations (4.24) and (4.25) toobtain the linear equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0 (4.26)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= 0, (4.27)where u and v are 
onstant in time during the small time interval of length ∆t. Thevelo
ity 
omponents u and v are evaluated at the node of 
omputation, using the velo
ity�eld un. For the evolution of the spatial derivatives of the adve
ted velo
ity 
omponents,we solve (4.14) and (4.15). Then, using Eqs.(4.19-4.23) the adve
ted variable u∗ and itsspatial derivatives g∗ and k∗ after adve
tion are found.4.3.2 Di�usion stepDue to the vis
osity of the �uid, di�usion of �uid momentum will o

ur. Central di�er-en
es are used for the spatial dis
retization of the vis
ous stress terms. When using thenon-
onservative formulation of the Naviér-Stokes equations, the di�usion equations forthe two spatial dire
tions are 
oupled. For this we introdu
e the indi
es E, W, N, S refer-ring to points to the East, West, North and South relative to the node of 
omputation.At these points, the kinemati
 vis
osity 
oe�
ient ν and the derivatives of the horizontaland verti
al velo
ity 
omponents are to be 
omputed. First we 
onsider di�usion of thehorizontal velo
ity 
omponent, whi
h 
an be written

ũ∗∗
i,j = u∗

i,j +
∆t

ρc

(

2

∆xci

(

µE
∂u∗

∂x

∣

∣

∣

∣

E

− µW
∂u∗

∂x

∣

∣

∣

∣

W

)

+
1

∆yi

(

µN

(∂u∗

∂y

∣

∣

∣

∣

N

+
∂v∗

∂x

∣

∣

∣

∣

N

)

− µS

(∂u∗

∂y

∣

∣

∣

∣

S

+
∂v∗

∂x

∣

∣

∣

∣

S

)

)

)

.

(4.28)
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(b)Figure 4.5: Variables involved in the di�usion 
al
ulation for (a) the horizon-tal velo
ity 
omponent and (b) the verti
al velo
ity 
omponent. The dynami
vis
osity 
oe�
ient is approximated at the points marked with a 
ross.Similarly, for the verti
al velo
ity 
omponent we get the following expression for thedi�usion 
al
ulation, in
luding the e�e
t of gravity,
ṽ∗∗

i,j = v∗
i,j +

∆t

ρc

(

1

∆xi

(

µE

(∂u∗

∂y

∣

∣

∣

∣

E

+
∂v∗

∂x

∣

∣

∣

∣

E

)

− µW

(∂u∗

∂y

∣

∣

∣

∣

W

+
∂v∗

∂x

∣

∣

∣

∣

W

)

)

+
2

∆yci

(

µN
∂v∗

∂y

∣

∣

∣

∣

N

− µS
∂v∗

∂y

∣

∣

∣

∣

S

)

)

− g∆t,

(4.29)where g is the a

eleration of gravity. Details on the evaluation of the kinemati
 vis
os-ity and the velo
ity derivatives are given in appendix A.2. The 
omputational sten
ils
orresponding to (4.28) and (4.29) are illustrated in Fig. 4.5.When the expli
it Euler method is used to time step the e�e
t of the di�usion equation,there is a stability 
onstraint that must be satis�ed. This stability 
onstraint 
an befound from a von Neumann analysis (Roa
he 1976; Strikwerda 2004). However, due tothe 
hange of material properties a
ross the free surfa
e, this is not an easy task. If we
onsider the di�erent phases separately, the following stability 
onstraint for the di�usionstep is obtained
µ∆t

ρ

(

1

∆x2
min

+
1

∆y2
min

)

≤ 1

2
. (4.30)This 
onstraint on the stability of the solution 
an be removed by using an impli
it methodfor the time integration, like the se
ond order Crank-Ni
olson method.4.3.3 Pressure 
ouplingIn the pressure proje
tion method suggested by Chorin, a Poisson equation for the totalpressure is solved. Then the pressure is used to proje
t the velo
ity �eld onto a plane ofzero divergen
e. For methods 
lassi�ed by Brown et al. (2001) as in
remental pressureproje
tion methods, the velo
ity �eld is �rst updated with the old pressure �eld pn to
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al modelobtain a better predi
tion of the velo
ity �eld before the proje
tion is performed. Updatingthe velo
ity �eld with the old pressure is done by
u∗∗

i,j = ũ∗∗
i,j −

∆t

0.5(ρi,j + ρi+1,j)

pn
i+1,j − pn

i,j

∆xci
(4.31)

v∗∗
i,j = ṽ∗∗

i,j −
∆t

0.5(ρi,j + ρi,j+1)

pn
i,j+1 − pn

i,j

∆yci
. (4.32)Then the proje
tion step is done with the in
remental 
hange in pressure δpn+1 = pn+1−pnfrom time step n to the next time step n + 1. Consider the velo
ity update due to thein
remental pressure gradient, whi
h is

un+1 − u∗∗

∆t
= −1

ρ
∇δpn+1 (4.33)Now, taking the divergen
e of (4.33) and imposing the 
ontinuity 
onstraint ∇·un+1 = 0,the unknown velo
ity un+1 is removed from the equation and we obtain a Poisson equationfor the in
remental pressure δpn+1 as

∇ · u∗∗

∆t
= ∇ ·

(

1

ρ
∇δpn+1

)

. (4.34)Due to the one-�uid formulation whi
h implies that the �uid density in the domain isnon-
onstant, Eq. (4.34) is more pre
isely a variable-
oe�
ient Poisson equation. Hen
e,the 
oe�
ient matrix must be 
al
ulated for ea
h time step. When the Poisson equationfor the in
remental pressure is solved using a suitable solver (whi
h will be des
ribed morein detail below), the tentative velo
ity �eld u∗∗ is updated using the in
remental pressuregradient to give the velo
ity �eld at the next time step un+1. Hen
e,
un+1

i,j = u∗∗
i,j −

∆t

0.5(ρi,j + ρi+1,j)

δpn
i+1,j − δpn

i,j

∆xci
(4.35)

vn+1
i,j = v∗∗

i,j −
∆t

0.5(ρi,j + ρi,j+1)

δpn
i,j+1 − δpn

i,j

∆yci
. (4.36)The new velo
ity �eld un+1 will now satisfy the 
ontinuity equation (3.4). Further is thepressure for the next time step found as

pn+1
i,j = pn

i,j + δpn+1
i,j . (4.37)4.3.4 Solving a Poisson equation for the in
remental pressureThe variable-
oe�
ient in
remental-pressure Poisson equation 
an be dis
retized to give

1

∆xi

(

δpi+1,j − δpi,j

ρi+1/2,j∆xci
− δpi,j − δpi−1,j

ρi−1/2,j∆xci−1

)

+
1

∆yj

(

δpi,j+1 − δpi,j

ρi,j+1/2∆ycj
− δpi,j − δpi,j−1

ρi,j−1/2∆ycj−1

)

=

1

∆t

(

u∗∗
i,j − u∗∗

i−1,j

∆xi

+
v∗∗

i,j − v∗∗
i,j−1

∆yj

) (4.38)
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e 
apturing 47where ρi+1/2,j is the �uid density evaluated at the velo
ity node at the right 
ell boundary,i.e. at the velo
ity node ui,j. Similarly, ρi−1/2,j 
orresponds to the density at ui−1,j,while ρi,j+1/2 and ρi,j−1/2 
orresponds to the density at the velo
ity nodes vi,j and vi,j−1,respe
tively. The Poisson equation is an ellipti
al equation, whi
h means that boundary
onditions for the in
remental pressure must be spe
i�ed. We 
onsider two types ofboundary 
onditions. These are the Neumann 
ondition for whi
h the normal velo
ityis spe
i�ed on boundary, and the Diri
hlet 
ondition where the pressure is spe
i�ed onthe boundary. By setting n · u∗∗ = n · un+1 on the boundary, the Neumann 
ondition isexpressed as n ·∇(δpn+1) = 0. This is applied for the rigid wall boundaries. At the upperboundary, the pressure is atmospheri
, meaning the imposed pressure on the boundary is
onstant in time, i.e. pn+1 = pn. This leads to the Diri
hlet boundary 
ondition δpn+1 = 0.Equation (4.38) represents the linear system
Ax = b, (4.39)where x is a ve
tor of the unknown pressure in
rement, A is the 
oe�
ient matrix dueto the dis
retization and b is the divergen
e of the tentative velo
ity �eld, i.e. the righthand side of (4.38). How to obtain the 
oe�
ient matrix A is des
ribed in appendixA.3. The system of equations 
an be very large, whi
h implies that a dire
t solver wouldbe ine�
ient. Thus, an iterative solver is used to solve (4.39). Further, the 
oe�
ientmatrix A will due to the dis
retization be non-symmetri
 when nonuniform grids areused. This puts additional requirements to the iterative solver. An e�
ient solver that isable to handle systems where the 
oe�
ient matrix is non-symmetri
 is the Bi-CGSTABalgorithm (van der Vorst 1992), whi
h will be used here. Due to the moving free surfa
eand the fa
t that the 
oe�
ient matrix depends on the �uid density, the 
oe�
ient matrixmust be 
al
ulated at every time step. Another aspe
t of the moving free surfa
e is thatthe large variation of the density 
auses the eigenvalues λi of the 
oe�
ient matrix Ato be wide spread along the real axis. Hen
e, the 
ondition number κ = |λmax/λmin| islarge and the system is 
alled sti� whi
h means hard to solve. In order to gain faster
onvergen
e of the iteration pro
ess, pre
onditioning of the equation system is favorable.Pre
onditioning means that instead of solving the system represented by (4.39), we solvea modi�ed system

M−1Ax = M−1b, (4.40)where M is a pre
onditioning matrix that approximates A and where the inverse matrix
M−1 is easy to 
ompute. We will use a simple pre
ondition algorithm 
alled D-ILUthat has shown to work well with Bi-CGSTAB (Barrett et al. 1994). Algorithms for thepre
onditioned Bi-CGStab method and the D-ILU pre
onditioner are given in appendixA.3.4.4 Free surfa
e 
apturingWhen solving two-phase �ow with a one-�uid model using an embedded grid method, thefree surfa
e must be 
aptured for ea
h time step to know the material properties in thenode of 
omputation. There exist several methods for free surfa
e 
apturing. The MACs
heme (Harlow and Wel
h 1965) is su
h a method whi
h 
an treat 
omplex phenomenalike wave breaking. In the MAC s
heme, marker parti
les whi
h are adve
ted with the
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al model�ow are used to 
apture the free surfa
e. However, the 
omputational e�ort is large sin
eone has to keep tra
k on a large number of marker parti
les. Another popular method isthe Volume of Fluid (VOF) method by Hirt and Ni
hols (1981). This method makes useof a density fun
tion whi
h numeri
al value is the area fra
tion o

upied by the liquidin ea
h 
ell. The density fun
tion is then used to give a 
ell-averaged estimate of themass density and vis
osity of the �uid. A transport equation for the evolution of densityfun
tion is solved for the whole domain to lo
ate the free surfa
e. The momentum andmass 
onservation equations are then solved for the liquid phase only. A problem withsu
h methods is that due to the dis
ontinuity of the density fun
tion at the interfa
e, thedensity fun
tion will be smeared out here when using a low-order method to solve thetransport equation. Using higher-order methods may lead to over-shoot or under-shootof the density fun
tion. This problem is avoided by the level-set method introdu
ed byOsher and Sethian (1988). In the level-set method, a distan
e fun
tion is introdu
ed.The distan
e fun
tion is a s
alar fun
tion whi
h value is the shortest distan
e to thefree surfa
e whi
h is in the normal dire
tion to the surfa
e. An advantage of the signeddistan
e fun
tion is that it is smooth su
h that problems related to numeri
al di�usion andover- or undershoot, whi
h are typi
al issues for methods applying pure density fun
tions,are avoided. Appli
ations and further details of the level-set method are des
ribed inOsher and Fedkiw (2003).In the present work, we have used 
olor fun
tions for free surfa
e 
apturing. This is asimilar approa
h as the VOF-method.4.4.1 Color fun
tionsSimilar as the density fun
tion in the VOF-method, also the 
olor fun
tion 
an be 
on-sidered as a 
ell averaged density fun
tion. We will use one 
olor fun
tion for ea
h phasepresent in the domain, here represented by the water (liquid phase), the air (gas phase)and the �oating body (solid phase). The 
olor fun
tions for the water, the air and the�oater are denoted ϕ1, ϕ2 and ϕ3, respe
tively. As the node value of a 
olor fun
tionrepresents the area fra
tion of a grid 
ell that is o

upied by a given phase, all 
olorfun
tions takes a value ϕk ∈ [0, 1], where k = 1, 2, 3. Further, the following 
ondition isenfor
ed
3
∑

k=1

ϕk = 1. (4.41)The 
olor fun
tion 
an be 
onsidered as a 
ell averaged material property for the phase itrepresents and thus the 
olor fun
tion for water ϕ1 is adve
ted with the �ow. This meansthat the time evolution of ϕ1 is des
ribed by (3.7), whi
h is solved using the CIP-method.The 
olor fun
tion for the solid body is found dire
tly when the position and orientationof the solid body are known. This is des
ribed more detailed in the next se
tion. Whenthe 
olor fun
tions ϕ1 and ϕ3 are found, the 
olor fun
tion for the air ϕ2 
an be obtainedfrom (4.41).When adve
ting a step-like fun
tion with the CIP-pro
edure, the adve
ted fun
tionwill smear out at the step due to numeri
al di�usion and due to representation of adis
ontinuous fun
tion by a 
ubi
 polynomial. This smearing may also 
ause a wrongphase speed of the 
ontour represented by ϕ1 = 0.5, whi
h de�nes the free surfa
e. Toredu
e this e�e
t, the 
olor fun
tion ϕ1 is repla
ed by a transformed 
olor fun
tion Φ(ϕ1)
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tion of the �oating body 49when solving (3.7). After the adve
tion 
al
ulation, the 
olor fun
tion ϕ1 is re
overedby the inverse transform ϕ1 = Φ−1. Di�erent transforms are used in the literature.Yabe et al. (2001) introdu
ed a tangent transform and its inverse fun
tion de�ned as
Φ = tan (π(1− ε)(ϕ1 − 0.5)) (4.42)
ϕ1 =

tan−1 Φ

π(1− ε)
+ 0.5. (4.43)Here ε is a small positive 
onstant whi
h is used to tune the thi
kness of the air-waterinterfa
e. Usually, ε = 0.02 is used. Sin
e the tangent fun
tion represents an additional
omputational 
ost, a simpler linear transform was proposed by Hu et al. (2005)

Φ = 0.5 + α(ϕ1 − 0.5) (4.44)
ϕ1 = 0.5 + (Φ− 0.5)/α, (4.45)with the tuning parameter α = 1.2. Both the tangent transform and the linear transformare implemented in our numeri
al model. However, in all 
ases presented the lineartransform is used. A parameter study for di�erent 
olor fun
tion transforms used in freesurfa
e 
apturing with the CIP-method is presented in Vestbøstad (2009).After adve
tion of the transformed 
olor fun
tion Φ and when the inverse transformhas been applied to obtain ϕn+1

1 , eventually overshoots or undershoots of ϕn+1
1 that usuallyo

ur when adve
ting a step-like fun
tion using a higher order method are removed. Thisis done by setting ϕn+1 = 1 if ϕn+1 > 1 and ϕn+1 = 0 if ϕn+1 < 0. Then, the density andvis
osity of the �uid in a given 
ell is 
omputed as

ρ =

3
∑

k=1

ρkϕk and µ =

3
∑

k=1

µkϕk, (4.46)where ρk and µk are the mass density and dynami
 vis
osity 
oe�
ients for the phase k,respe
tively. For the grid 
ells o

upied by the solid body, �
titious 
oe�
ients for themass density and dynami
 vis
osity are used with values equal to those of water.4.5 Introdu
tion of the �oating bodyIntrodu
tion of a solid body with arbitrary geometry into the 
omputational domain needsspe
ial treatment when a Cartesian grid is used. Sin
e the Cartesian grid 
annot 
onformto an arbitrary geometry, the velo
ity nodes will in general not be lo
ated on the body sur-fa
e. This means that imposing the body boundary 
ondition on the �oating body wouldrequire spe
ial treatment. Methods that deals with the problem of imposing boundary
onditions on arbitrary geometries when using Cartesian grids are 
alled immersed bound-ary methods and was �rst introdu
ed by Peskin (1972) for representing the e�e
t of anelasti
 membrane of a heart valve on the blood �ow. The main feature of immersedboundary methods is that an extra body for
e is added to the momentum equations inthe vi
inity of the body boundary to represent the e�e
t of the solid body on the �uid�ow. Other approa
hes using the same 
on
ept have later been introdu
ed, and todayimmersed boundary methods are widely used for many appli
ations. Review of immersedboundary methods are given by Mittal and Ia

arino (2005) and de Tullio et al. (2006).
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Figure 4.6: Computation of the 
olor fun
tion ϕ3(i, j) representing the solidbody. The interse
tion points PA and PB between the body geometry and theCartesian grid, whi
h are found by parametrization of the body geometry, is usedto 
ompute the area fra
tion Ai,j of the grid 
ell (i, j) 
overed by the body.Mittal and Ia

arino (2005) divides the group of immersed boundary methods into twomain approa
hes, namely 
ontinuous for
ing approa
h and dis
rete for
ing approa
h de-pending on how the e�e
ts of the immersed boundary are introdu
ed into the governingequations for the �uid �ow. In the 
ontinuous for
ing approa
h, the for
ing is in
orporatedinto the 
ontinuous momentum equations before dis
retization. However, this method in-volves user-spe
i�ed parameters in the for
ing whi
h is undesirable in addition to problemswith instability issues for rigid boundaries. In the dis
rete for
ing approa
h, the for
ing isintrodu
ed after the equations are dis
retized and this method has the major advantagethat user-spe
i�ed parameters in the for
ing are avoided. Here we will use a dis
retefor
ing approa
h similar as the dire
t for
ing method introdu
ed by Mohd-Yusof (1997).Further, we will make use of 
olor fun
tions in the representation of the solid body. Thisis des
ribed in the following.4.5.1 Representing the solid body using 
olor fun
tionsWe use the 
olor fun
tion ϕ3 to represent the solid body. In the same manner as for the
olor fun
tion ϕ1 representing water, the value of ϕ3(i, j) is de�ned as the area fra
tionof the 
ell with indi
es (i, j) that is 
overed by the solid body divided by the total areaof the 
ell. This means ϕ3 ∈ [0, 1]. Mathemati
ally speaking
ϕ3(i, j) =

Ai,j

∆xi∆yj
, (4.47)where Ai,j is the area of 
ell (i, j) 
overed by the solid body, as shown in Fig. 4.6. Thebody geometry is represented by a dis
rete number of straight line segments Sk with

k = 1, 2, ..., N . Ea
h line segment is des
ribed by the two end points (xk
0, y

k
0) and (xk

1, y
k
1).In order to 
ompute the area fra
tion A of the 
ell o

upied by the solid body, we �rst need



4.5. Introdu
tion of the �oating body 51to lo
ate the interse
tion points (xc, yc) between the grid lines and the body boundary.This is done by �walking� along the 
urve de�ning the geometry. Ea
h line segment Sk isparametrized using the parameter t = [0, 1], whi
h means that all points lo
ated on theline segment Sk is de�ned by
x = xk

0 + (xk
1 − xk

0)t (4.48)
y = yk

0 + (yk
1 − yk

0)t. (4.49)We now �nd all horizontal grid lines yj between yk
0 and yk

1 , and all verti
al grid lines xibetween xk
0 and xk

1. These are the grid lines interse
ted by the line segment Sk. If averti
al grid line is interse
ted, we know that the horizontal 
oordinate of the interse
tionpoint is xc = xi. The parameter t = tc for the interse
tion point is then found as
tc = (xi−xk

0)/(xk
1−xk

0) and subsequently the verti
al 
oordinate of the same interse
tionpoint is found from (4.49) with t = tc. Similarly, for the interse
tion of horizontal gridlines yc = yj whi
h yields tc = (yj − yk
0)/(yk

1 − yk
0) and then xc is found from (4.48) with

t = tc. An index ve
tor whi
h tells whether the interse
tion is with a horizontal grid lineor with a verti
al grid line is also stored. Now the order of the interse
tion points asthey appear on the line segment 
an be found by sorting tc in as
ending numeri
al order.We use a sorting algorithm based on Shell's method for this purpose (Press et al. 1992).Hen
e, using the sorted ve
tor of interse
tion indi
es, we 
an now follow the 
urve de�ningthe body geometry through all the interse
ted 
ells and 
ompute ϕ3 using (4.47). Sin
ethe interse
tion points PA and PB are now found, 
al
ulation of Ai,j is only a matter ofgeometry.4.5.2 The body boundary 
onditionWe want to impose the no-slip body boundary 
ondition (3.9) on the immersed boundary,using the dire
t for
ing method similar as that proposed by Mohd-Yusof (1997). Themethod 
an be des
ribed as follows. Dis
retized in time with the �rst order Euler method,the momentum equations (3.5) and (3.6) 
an in 
ompa
t form be written as
un+1 − un

∆t
= RHSn, (4.50)where RHSn 
ontains the 
onve
tive terms, the vis
ous terms and the pressure gradientevaluated at time step n. In order to a

ount for the presen
e of a solid body in thedomain, we modify (4.50) by adding a body for
e fn on the right hand side, a

ordingto the immersed boundary method. This for
e is nonzero only in the vi
inity of the bodyboundary. This yields,

un+1 − un

∆t
= RHSn + fn (4.51)Now the question is what this for
e fn should be? We note that the purpose of adding fnto (4.50) is to satisfy un+1 = un+1

b on the body boundary at the new time step n+1, where
ub is the rigid body velo
ity. By substituting un+1 with un+1

b in (4.51) and rearranging,the for
e fn is found as
fn = −RHSn +

un+1
b − un

∆t
. (4.52)Impli
itly, this means that the e�e
t of the immersed boundary is in
orporated by simplyupdating the velo
ity nodes of the grid 
ells that is partly or totally o

upied by the
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al modelsolid body a

ording to the rigid body velo
ity. Di�erent interpolation te
hniques 
an beused for this purpose as des
ribed by Fadlun et al. (2000). We will use a volume fra
tionweighting approa
h, also used by Hu et al. (2005), where the 
olor fun
tion ϕ3 represent-ing the solid body is utilized to update the velo
ity nodes of the grid 
ells o

upied bythe �oating body. This is done by
un+1 = ϕ̃3u

n+1
b + (1− ϕ̃3)u

∗∗ (4.53)
vn+1 = ϕ̃3v

n+1
b + (1− ϕ̃3)v

∗∗, (4.54)where ϕ̃3 is the 
olor fun
tion for the solid body interpolated linearly to the velo
ity node
onsidered.It is after the velo
ity �eld has been updated a

ording to (4.53) that the proje
tionstep is performed and the in
remental pressure 
hange δp is found, as des
ribed in 4.3.3.When updating the velo
ity �eld due to this in
remental pressure 
orre
tion using (4.35)and (4.36), the �uid velo
ity at the body boundary may be 
hanged su
h that the bodyboundary 
ondition is violated. More simply, the obtained pressure 
orre
tion might
ause the �uid to �ow through the body surfa
e, yielding an in
orre
t solution. Thishas to do with the fa
t that the for
e fn is found using the tentative velo
ity �eld u∗∗(Fadlun et al. 2000). However, it has been shown that the pressure 
orre
tions at theimmersed boundary are always small and that this error 
an be redu
ed to round-o�by two or three iterations of the time advan
ement s
heme (de Tullio et al. 2006). Theiteration pro
ess is simply that after the �rst update of the velo
ity �eld due to thein
remental pressure 
orre
tion, the body boundary 
ondition is again imposed using(4.53) before a �nal pressure proje
tion step for the in
remental pressure is performed.Our experien
e is that two iterations are su�
ient for this approa
h.4.6 Pressure loads on the solid bodyWhen the pressure �eld at the new time step is known, the pressure for
es and momentson the solid body 
an be 
omputed using a dis
retized version of (3.18) and (3.19), respe
-tively, with ϕ being the 
olor fun
tion des
ribing the solid body, ϕ3. In the mathemati
alformulation of the pressure for
e given by Eq. (3.18), the integral is over the 
omplete do-main. However, sin
e ϕ3 = 0 outside the solid body boundary, we 
an make the numeri
alpro
edure more e�
ient by taking the double sum only over a sub-domain en
losing thesolid body. This sub-domain is limited by the indi
es (i1, i2) in the horizontal dire
tionand (j1, j2) in the verti
al dire
tion. For the pressure for
es, this leads to
F n

x = −
i2
∑

i=i1

j2
∑

j=j1

∂pn

∂x

∣

∣

∣

i,j
ϕi,j ∆xi∆yj , (4.55)

F n
y = −

i2
∑

i=i1

j2
∑

j=j1

∂pn

∂y

∣

∣

∣

i,j
ϕi,j ∆xi∆yj , (4.56)



4.6. Pressure loads on the solid body 53where
∂pn

∂x

∣

∣

∣

i,j
=

∆xci p
n
i+1,j

∆xci+1(∆xci+1 + ∆xci)
−

(∆xci+1 −∆xci) pn
i,j

∆xci∆xci+1
+

∆xci+1 pn
i−1,j

∆xci(∆xci+1 + ∆xci)

∂pn

∂y

∣

∣

∣

i,j
=

∆ycj pn
i,j+1

∆ycj+1(∆ycj+1 + ∆ycj)
−

(∆ycj+1 −∆ycj) pn
i,j

∆ycj∆ycj+1

+
∆ycj+1 pn

i,j−1

∆ycj(∆ycj+1 + ∆ycj)
.Here, the pressure gradients are 
orre
t to O (∆x2) and O (∆y2) on a stret
hed staggeredgrid. The roll moment due to the �uid pressure a
ting on the body surfa
e is 
al
ulatedas

Mn = −
i2
∑

i=i1

j2
∑

j=j1

(

(xci − xb)
∂pn

∂y

∣

∣

∣

i,j
− (ycj − yb)

∂pn

∂x

∣

∣

∣

i,j

)

ϕi,j ∆xi∆yj, (4.57)where (xb, yb) are the 
oordinates of the 
entre of gravity of the solid body.4.6.1 Rigid body motionsThe instantaneous body position and orientation is de�ned by the 
oordinates of thegeometri
al 
enter of the body (xb, yb) and the roll angle θ. If the 
enter of gravity islo
ated at the geometri
al 
enter of the body, the rigid body translatory motions 
an befound upon integration of (3.20) and (3.21). Further is the roll angle found by integrationof (3.22). Assuming the pressure for
es and moments are 
onstant during a time interval
∆t = tn+1 − tn, we �nd the instantaneous rigid body velo
ities in heave sway and roll as

Un+1
b = Un

b + ∆tF n
x /m (4.58)

V n+1
b = V n

b + ∆tF n
y /m (4.59)

θ̇n+1 = θ̇n + ∆tMn/I, (4.60)where m is the stru
tural mass per unit length of the body while I is the roll inertia aboutthe 
enter of gravity. If we assume 
onstant body a

elerations during the time step ∆t,this implies that the body velo
ities in the same time interval are linearly varying. Hen
e,using the trapezoidal rule of integration, we �nd the 
oordinates of the mass 
enter of thebody (xb, yb) at the next time step tn+1 as
xn+1

b = xn
b +

∆t

2

(

Un+1
b + Un

b

) (4.61)
yn+1

b = yn
b +

∆t

2

(

V n+1
b + V n

b

) (4.62)
θn+1 = θn +

∆t

2

(

θ̇n+1 + θ̇n
) (4.63)Now we 
an �nd the instantaneous position of the dis
rete set of points (xn+1

k , yn+1
k )des
ribing the body boundary at time step tn+1 as

xn+1
k = xn+1

b + (x0
k − x0

b) cos θn+1 − (y0
k − y0

b ) sin θn+1 (4.64)
yn+1

k = yn+1
b + (x0

k − x0
b) sin θn+1 + (y0

k − y0
b ) cos θn+1, (4.65)where (x0

k, y
0
k) are the initial (referen
e) positions of the set of points de�ning the bodyboundary, and (x0

b , y
0
b ) is the initial position of the body 
entre.
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al model4.7 Time-stepping of the spatial derivatives in the CIP�ow solverWhen the adve
tion step in the adopted fra
tional step method is performed, a tentativevelo
ity �eld u∗ and a 
orresponding set of tentative spatial derivatives g∗ and k∗ of thevelo
ity �eld are obtained, where g = ∂u/∂x and k = ∂u/∂y. After the adve
tion step,the velo
ity �eld is updated due to the di�usion step, the pressure 
oupling and due tothe presen
e of the �oater, before the velo
ity �eld un+1 for the new time step is obtained.These updates of the velo
ity �eld imply possible 
hanges to the spatial derivatives of thevelo
ity �eld. As the spatial derivatives of the velo
ity �eld are used as 
onstraints when
onstru
ting the interpolation polynomial in the CIP-method, the spatial derivatives g∗and k∗ must be updated a

ording to the modi�
ations of the velo
ity �eld to obtain
gn+1 and kn+1, before a new adve
tion step 
an be made. Time-stepping of the spatialderivatives are performed using the expli
it Euler method. For the 
ase of g, we 
anformally write the time stepping as gn+1 = g∗ + ∆t

(

∂g

∂t

). As the new velo
ity �eld un+1is known, we 
an approximate the time derivative as ∂g

∂t
= 1

∆t

[

(

∂u
∂x

)n+1 −
(

∂u
∂x

)∗
]. Thesame approa
h is used for the time-stepping of k. Hen
e, we obtain

gn+1 = g∗ +

[

(

∂u

∂x

)n+1

−
(

∂u

∂x

)∗
] (4.66)

kn+1 = k∗ +

[

(

∂u

∂y

)n+1

−
(

∂u

∂y

)∗
]

. (4.67)Central di�eren
es are used to 
ompute the spatial derivatives inside the parenthesisdire
tly from the tentative velo
ity �eld u∗ and from the new velo
ity �eld un+1. Thedis
retized expressions for time-stepping of the spatial derivatives are given in appendixA.4.4.8 Numeri
al modelling of a wave tankA damping zone is introdu
ed by an adding a volume for
e fy to the momentum equationfor the verti
al dire
tion (Hu and Kashiwagi 2004). This for
e is 
al
ulated as
fy =

1

2∆t

(

xci − xs

xe − xs

)4(

1−
∣

∣

∣

∣

yj − h

H

∣

∣

∣

∣

)

vn
i,j , (4.68)where xs and xs is the start and end points of the damping zone in the horizontal dire
tion,while H is the height of the domain, h is the water depth and (xci, yj) is the 
oordinatesof the verti
al velo
ity node.The wavemaker is modelled in a linear manner by setting the nodes of the horizon-tal velo
ity at the wavemaker boundary equal to the paddle velo
ity. Thus, when thewavemaker is lo
ated on the left side of the domain, we get

un+1
0,j = un+1

wm . (4.69)The wavemaker velo
ity is imposed on the total height H of the domain, i.e. for y = [0, H ].



Chapter 5Veri�
ation studiesVeri�
ation studies are important a
tivities in the pro
ess of developing a CFD-
ode, andrigorous testing of the �ow solver is the key to obtain a reliable 
ode. A validation study ofthe veri�ed 
omputer program is also ne
essary before the 
ode is applied to real problems.In this 
hapter, the most important veri�
ation tests performed in the development ofthe present 
ode are presented. Before we go on with presenting the di�erent test studies,we will explain what is meant by veri�
ation and validation and what is the di�eren
ebetween the two. Guidelines for validation and veri�
ation of CFD-
odes were proposedin ITTC (1990) with the following de�nitions of veri�
ation and validation:Veri�
ation of a 
omputer program means to 
he
k that the program is a
tually a
orre
t representation of the mathemati
al model that forms the basis for it.Validation is the demonstration that the veri�ed 
omputer program is an adequaterepresentation of the physi
al reality.This means that validation is a broader a
tivity whi
h in
ludes veri�
ation. Other de�-nitions of veri�
ation and validation presented by Roa
he (1976) are that veri�
ation �isthe pro
ess of demonstrating that a 
omputer program has solved its equations 
orre
tly�,while validation �is the pro
ess of demonstraing that a 
omputer 
ode is solving the 
or-re
t equations�. The latter is with respe
t to the physi
al problem being studied. Thus,veri�
ation is a purely mathemati
al exer
ise that does not address the physi
s.We will in the following present some of the veri�
ation test studies that have beenperformed for testing the present numeri
al 
ode.5.1 Error norms and order of 
onvergen
eIn the pro
ess of verifying the implemented �ow solver, ea
h step in the numeri
al algo-rithm represented by the fra
tional step pro
edure, is studied separately. For ea
h 
ase,ideal time-dependent problems where analyti
al or exa
t solutions exist are solved numer-i
ally and 
ompared with the exa
t solution at a �xed time instant T = N∆t. We willlet ûN refer to the numeri
al solution to the given problem at a dis
rete set of points inspa
e for the time instant T , while uN is the 
orresponding exa
t solution for the sameset of points at this time instant, whi
h we want to approximate well. The lo
al error ENfor the solution time T = N∆t is de�ned as
EN = ûN − uN . (5.1)55



56 Veri�
ation studiesIn order to quantify this error, a norm in whi
h to measure the error must be 
hosen. Theglobal error 
an be found by integration of the lo
al error over the domain of 
omputation.5.1.1 Choi
e of error normsTo measure the error of a numeri
al solution obtained with some �nite di�eren
e s
hemerelative to an exa
t solution, the standard p−norms are most 
ommonly used (LeVeque 2002).For one-dimensional spa
e, these are
∥

∥EN
∥

∥

p
=

(

∑

i

|ûN
i − uN

i |p∆xi

)1/p

. (5.2)We will in the following use the 1-norm, whi
h is obtained by setting p = 1 in (5.2), as ameasure of the global error when solving the linear and nonlinear adve
tion equation. Forveri�
ation of the di�usion step and the pressure solver, the 2-norm (obtained by setting
p = 2) will be used. In 2D, the global error is found by integration the lo
al error overthe domain of 
omputation as

∥

∥EN
∥

∥

p
=

(

∑

j

∑

i

|ûN
ij − uN

ij |p∆xi∆yj

)1/p

. (5.3)To simplify the notation, we will let εp refer to the error measure ∥∥EN
∥

∥

p
.5.1.2 Order of 
onvergen
eAs an indi
ator for how fast the numeri
al solution approa
h the true solution, we speakof the order of 
onvergen
e. We 
an apply the 
on
ept of order of 
onvergen
e if thetime in
rement ∆t is related to the spatial in
rement ∆x in a �xed manner. Hen
e,when solving the adve
tion equation, the time step ∆t is 
hosen su
h that the Courant-Friedri
hs-Lewy (CFL) number is kept 
onstant when the grid is re�ned. Here, the CFL-number is de�ned as CFL = u∆t/∆x, with u being some referen
e velo
ity. Then theorder of 
onvergen
e of the solution ûN is de�ned to be the number r, if it exists, su
hthat the errors εp vanish like O (∆xr) or as O (∆tr) (Strikwerda 2004). This implies thatthe error 
an be des
ribed as εp = C∆xr, with C being a 
onstant. Taking the naturallogarithm of both sides yields

ln (εp) = ln (C) + r ln (∆x) . (5.4)To �nd the order of 
onvergen
e r, we must get rid of the unknown 
oe�
ient C. Let ε1
p bethe error of the numeri
al solution obtained on a grid represented by the grid in
rement

∆x1. Further, let ε2
p be the error obtained from the �ner grid represented by ∆x2. Theunknown 
oe�
ient C 
an now be removed by subtra
ting Eq. (5.4) expressed in termsof ε1 and ∆x1 from the same equation with ε2 and ∆x2. Then, the order of 
onvergen
ein 1D is found as

r =
ln
(

ε2
p/ε

1
p

)

ln (∆x2/∆x1)
. (5.5)



5.2. Veri�
ation of the 1D CIP-method 57For the 2D 
ase, we assume that the verti
al dis
retization is related to the horizontaldis
retization as ∆y = K∆x, where K is a 
onstant. Then, the order of 
onvergen
e in2D 
an be expressed as
r =

ln
(

ε2
p/ε

1
p

)

2 ln (∆x2/∆x1)
. (5.6)5.2 Veri�
ation of the 1D CIP-methodAlthough the 1D-formulation of the CIP-method is not used as a part of the present�ow-solver, it has been implemented in order to get a better understanding of the CIP-method in general before going on with the CIP-method in two spatial dimensions. Twoveri�
ation tests of the 1D CIP-method are presented in the following. First, a linearadve
tion problem is studied, while thereafter a non-linear adve
tion problem is addressed.5.2.1 Linear adve
tionFirst we will 
onsider the 
ase of linear adve
tion where a fun
tion f(x, t) is transportedwith the velo
ity u along the x−axis. By linear adve
tion is meant that the transportvelo
ity u is independent of the adve
ted variable f . The spatial derivative g = ∂f/∂xis introdu
ed as an additional free variable. We will investigate how the fun
tion f andits spatial derivative g evolves while being adve
ted with the velo
ity u(x) = x. Considerthe initial 
ondition f(x, 0) = f0(x) being de�ned as

f0(x) =

{

sin2(2πx), 0 < x < 0.5

0, otherwise
(5.7)whi
h means that g(x, 0) = g0(x) is des
ribed by

g0(x) =

{

4π sin(2πx) cos(2πx), 0 < x < 0.5

0, otherwise.
(5.8)The governing equations for the problem are the linear adve
tion equation (4.5) and the
orresponding equation of evolution for the spatial derivative (4.6). Taking the materialderivative of the fun
tion f(x, t) along a 
urve C in the x, t−plane yields

df

dt
=

∂f

∂t
+

∂f

∂x

dx

dt
. (5.9)Thus, by 
hoosing dx

dt
= u(x) in (5.9), (4.5) is through (5.9) redu
ed to the following pairof ODE's

df

dt
= 0, f(x, 0) = f0(x) (5.10)

dx

dt
= x, x(0) = ξ. (5.11)Equation (5.10) means that the f is 
onstant along 
urves des
ribed by the solution of(5.11). Thus, for a 
urve that initially passes through the point x = ξ, the solution to



58 Veri�
ation studies(5.10) is simply f(x, t) = f0(ξ) ( see Whitham (1974) for more details). By solving (5.11)we obtain
ξ = xe−t (5.12)Thus, the exa
t solution to (4.5) for the given initial 
onditions is

f(x, t) =

{

sin2(2πxe−t), 0 < x < 0.5et

0, otherwise
(5.13)The exa
t analyti
al solution for g(x, t) is then found by di�erentiating (5.13) with respe
tto x as

g(x, t) =

{

4πe−t sin(2πxe−t) cos(2πxe−t), 0 < x < 0.5et

0, otherwise
(5.14)Equations (5.13) and (5.14) are used to verify the implementation of the 1D CIP-method.Hen
e, Eq. (4.5) with the above mentioned initial 
onditions is solved numeri
ally usingthe 1D CIP-method (see Se
. 4.2.1) and 
ompared with the analyti
al solution. We
hoose the domain of 
omputation to be x ∈ [0, 2m] and t = [0, T ], where T = ln(4) is thetime it takes for the point de�ned by f0(0.5) (and thus also g0(0.5)) to rea
h the end ofthe domain (x = 2m). All 
omputations are performed under the same CFL−
ondition,whi
h is 
hosen to be CFLmax = umax∆t/∆x = 0.5. With the largest adve
tion velo
ity

umax = 2m/s and the spatial in
rement ∆x given, this means that the time in
rementis obtained as ∆t = 0.5∆x/umax. Obtained numeri
al results are 
ompared with theexa
t analyti
al solution (5.13) and the 
orresponding global error ε1 are found from(5.2) with p = 1. Errors of the numeri
al solutions obtained with the 1D CIP-methodfrom 
al
ulations with four di�erent grids are presented in Tab. 5.1. To study theperforman
e of the CIP-method on a linear problem relative to a more 
onventionalnumeri
al s
heme for adve
tion 
al
ulations, relative errors and order of 
onvergen
eobtained with the 
lassi
al �rst order upwind-s
heme (Roa
he 1976) are presented in Tab.5.1 for 
omparison. Comparison of the obtained numeri
al results with the exa
t analyti
alsolution to the linear adve
tion problem are presented in Fig. 5.1, whi
h shows that theresults obtained with the present CIP-solver are in good agreement with the analyti
alsolution while results obtained using the �rst order upwind-s
heme di�ers somewhat fromthe analyti
al solution.5.2.2 Nonlinear adve
tionIn order to study the performan
e of the 1D CIP-model when applied to a nonlinearadve
tion problem, we 
onsider Burger's equation whi
h is de�ned as
∂u

∂t
+ u

∂u

∂x
= µ

∂2u

∂x2
, (5.15)where µ is a 
onstant. The non-linearity in Burger's equation is that the adve
ted variablealso de�nes the transport velo
ity, whi
h means the transport velo
ity is a priory unknown.As 
an be seen from the right hand side (RHS) of (5.15), Burger's equation also 
ontainsa di�usion term. The di�usion term has a stabilizing e�e
t whi
h 
ountera
ts the sho
k-formation that may o

ur for the invis
id Burger equation, whi
h is de�ned by (5.15)



5.2. Veri�
ation of the 1D CIP-method 59
Table 5.1: Convergen
e test of linear adve
tion 
al
ulations with the 1D CIP-method and the �rst order upwind method. Global errors ε1 relative to the exa
tanalyti
al solution at solution time T = ln(4), obtained from (5.2) with p = 1,are presented. The time in
rement ∆t is 
hosen su
h that CFLmax = 0.5. N istotal number of time steps. CIP Upwind
∆x [m℄ ∆t [s℄ N ε1 Order (r) ε1 Order (r)
1/50 1.00× 10−2 138 1.48× 10−2 2.06× 10−1

1/100 5.00× 10−3 277 7.10× 10−3 1.06 1.23× 10−1 0.750
1/200 2.50× 10−3 554 3.50× 10−3 1.02 6.83× 10−2 0.846
1/400 1.25× 10−3 1109 1.74× 10−3 1.01 3.63× 10−2 0.910
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Figure 5.1: Veri�
ation of the implemented 1D CIP-method. Numeri
al solutionto the linear adve
tion problem obtained with the CIP-s
heme when ∆x = 1/50are 
ompared with the exa
t analyti
al solution for the solution time t ≈ 1.39s.Results obtained with the �rst order upwind-s
heme are added for 
omparison.
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ation studieswith µ = 0 (see (LeVeque 1992)). An exa
t analyti
al solution to (5.15) on the domain
x = [0, 1m] with the initial 
ondition

u0(x) =
2µπ sin(πx)

a + cos(πx)
, (5.16)with a being a 
onstant, and boundary 
onditions

u(0, t) = 0 and u(1, t) = 0, (5.17)is given by Wood (2005) as
u(x, t) =

2µπ exp (−π2µt) sin (πx)

a + exp (−π2µt) cos (πx)
. (5.18)Equation (5.15) is solved numeri
ally in the domain de�ned by x = [0, 1m] using the 1DCIP-method, with initial- and boundary 
onditions de�ned by (5.16) and (5.17), respe
-tively. Due to the presen
e of the di�usion term on RHS of (5.15), a two-step time-splittingte
hnique is applied. First an adve
tion step is solved using the 1D CIP-method. Then,a di�usion step is solved using 
entral di�eren
es in spa
e. The �rst order expli
it Eulermethod is used for time-stepping of the di�usion equation. Sin
e the CIP-method appliesthe spatial derivative of the adve
ted variable g(x, t) = ∂u

∂x
in its formulation, an initial
ondition for g(x, 0) = g0 is also needed. This is simply found by di�erentiation of (5.16)with respe
t to the spatial variable x, whi
h yields

g0(x) =
2µπ2 cos(πx) (a + sin(πx) + cos(πx))

(a + cos(πx))2 (5.19)In order to verify the evolution in time of the new variable g(x, t), the exa
t solution isfound by di�erentiation of (5.18) as
g(x, t) =

2µπ2 cos(πx) exp (−2π2µt) (a + sin(πx) + cos(πx))

(a + exp (−π2µt) cos(πx))2 . (5.20)We easily verify that g(x, 0) = g0(x) by setting t = 0 in (5.20). The boundary 
onditionsfor g 
an now be found from (5.20) as
g(0, t) =

2µπ2 exp (−2π2µt)

a + 1
and g(1, t) =

2µπ2 exp (−2π2µt)

1− a
(5.21)We will in the following 
onsider this 
ase using µ = 10−4s−1 and a = 1.1, whi
h yields themaximum initial velo
ity u0

max = max [u(x, 0)] = 1.37×10−3m/s. For a given dis
retizationof the spatial domain with 
onstant spa
ing ∆x between the nodes, the time in
rement
∆t is here 
hosen su
h that CFLmax = 0.1, initially. The time in
rement is then found as
∆t = 0.1∆x/u0

max. Error of numeri
al solutions obtained using the 1D CIP-method andthe upwind method for the solution time t = 100s, relative to the exa
t analyti
al solutionare presented in Tab. 5.2. Order of 
onvergen
e of the numeri
al solutions are also shown.The adve
ted variable u and its spatial derivative g obtained with the implemented 1DCIP-s
heme for the time instant t = 100s are 
ompared with the analyti
al solution inFig. 5.2.
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Table 5.2: Convergen
e test of nonlinear adve
tion 
al
ulations with the 1D CIP-method and the �rst order upwind method. Global errors ε1 relative to the exa
tanalyti
al solution at solution time T = 100s, obtained from (5.2) with p = 1,are presented. The time in
rement ∆t is 
hosen su
h that CFLmax = 0.1. N istotal number of time steps. CIP Upwind

∆x [m℄ ∆t [s℄ N ε1 Order (r) ε1 Order (r)
1/10 7.30 14 1.51× 10−5 2.32× 10−5

1/20 2.36 42 1.07× 10−6 3.81 1.34× 10−5 0.799
1/40 0.787 127 4.20× 10−7 1.35 8.03× 10−6 0.735
1/80 0.262 381 8.52× 10−8 2.30 4.24× 10−6 0.921
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ation of the 1D CIP-method to nonlinear adve
tion. Compar-ison between the exa
t solution and numeri
al solution at time t = 100s. Thenumeri
al solution is obtained using time-splitting with the 1D CIP-method forthe adve
tion step and 
entral di�eren
es for the di�usion step for the 
ase when

∆x = 1/20. Results obtained with the �rst order upwind-s
heme are plotted for
omparison.
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ation studies5.3 Veri�
ation of the 2D CIP-methodIn this se
tion veri�
ation tests of the implemented 2D CIP-s
heme, whi
h is used inthe present �ow solver, are presented. Two test 
ases are 
onsidered, with the �rst 
asebeing linear adve
tion of a smooth fun
tion while the se
ond 
ase is linear adve
tion of adis
ontinuous fun
tion. In both 
ases, the domain of 
omputation is (x, y) = [0, 1].5.3.1 Linear adve
tion of a smooth fun
tionThe linear problem represented by a smooth fun
tion f(x, y, t) with initial 
ondition
f(x, y, 0) = f0(x, y) being adve
ted due to a uniform, 
onstant velo
ity �eld u = [u, v] is
onsidered, sin
e analyti
al solutions are available for su
h 
ases. The equation des
ribingthe evolution of f in time and spa
e is the 2D linear adve
tion equation (4.13), with the
oe�
ients u and v being 
onstants. When solving (4.13) using the CIP-method, wealso need to solve for the spatial derivatives ∂f/∂x = g and ∂f/∂y = k, as they areintrodu
ed as free variables used as 
onstraints for the interpolation fun
tion F (x, y),whi
h is de�ned in (4.16). The equations of evolution for the spatial derivatives g and
k for the 
ase of a uniform velo
ity �eld are (4.14) and (4.15), respe
tively, with theright hand side set to zero in both equations. The exa
t analyti
al solution to (4.13) is
f(x, y, t) = f0(x− ut, y − vt), meaning the initial pro�le f0 is shifted a distan
e ut in thehorizontal dire
tion and vt in the verti
al dire
tion. The shape of the adve
ted pro�le fis 
onserved.We have 
onsidered the 
ase where the initial 
ondition for the adve
ted fun
tion isgiven as

f0(ξ, η) =

{

cos(πξ)2 cos(πη)2, ∀ (ξ, η) ∈ [−0.5, 0.5;−0.5, 0.5]

0, elsewhere
(5.22)where ξ = 4x/L − 3/2 and η = 4y/H − 3/2. Here, L = 1m and H = 1m is the lengthand height of the 
omputational domain, respe
tively. The velo
ity �eld was uniform and
onstant, and de�ned as u = v = 0.2m/s. Computations with the two di�erent CFL-
onditions CFL = 0.1 and CFL = 0.5 were performed. Sin
e the CFL-number re�e
tsthe relative position on the interpolation fun
tion F n from where the new value fn+1 isobtained, the CFL-number is an important parameter. With the velo
ity �eld and thespatial dis
retization given, the time step was adjusted to give the wanted CFL-number.Convergen
e of the numeri
al solution towards the exa
t solution for the solution time

t = 2 were tested using four di�erent grids. The global error of the numeri
al solutionrelative to the exa
t solution was 
omputed using (5.3) with p = 1, while the order of
onvergen
e was 
omputed from (5.6). Obtained global errors and 
orresponding ordersof 
onvergen
e are presented in Tab. 5.3. The results shows that the order of 
onvergen
efor the present problem is r ≈ 1.3. A 
omparison between the numeri
al solution and theexa
t solution for a horizontal 
ut through the domain at y = 0.775m is presented in Fig.5.3. The 
ut goes through the point where the solution at time t = 2s has its maximumvalue. Undershoots of the numeri
al solution relative to the exa
t solution are observedin regions where the gradient of the adve
ted pro�le is large, as is seen in the zoomedview in Fig. 5.3. This is a typi
al problem for many higher order numeri
al methods forhyperboli
 problems, in
luding the present CIP-method, and is(5.2) with p = 1 furtherdis
ussed in the next se
tion.
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e test of linear adve
tion 
al
ulations with the 2D CIP-method. At solution time t = 2s, global errors ε1 relative to the exa
t analyti
alsolution and orders of 
onvergen
e r are obtained from (5.3) with p = 1 and (5.6),respe
tively. The time in
rement ∆t is 
hosen to give the wanted CFL-
onditionfor the given velo
ity �eld and spatial dis
retization.CIP, CFL = 0.1 CIP, CFL = 0.5
∆x, ∆y [m℄ ∆t [s℄ ε1 Order (r) ∆t [s℄ ε1 Order (r)

1/25 0.0200 4.15× 10−3 0.1000 2.73× 10−3

1/50 0.0100 8.91× 10−4 1.11 0.0500 5.95× 10−4 1.10
1/100 0.0050 1.52× 10−4 1.28 0.0250 9.85× 10−5 1.30
1/200 0.0025 2.58× 10−5 1.28 0.0125 1.63× 10−5 1.305.3.2 Linear adve
tion of a non-smooth pro�leThe 
olor fun
tion whi
h is used to de�ne the water in the 
omputational domain inthe present numeri
al wave tank appear initially as dis
ontinuous Heaviside fun
tions.Generally, the traditional CIP-method is not adequate for su
h problems, as the solutionis assumed to be des
ribed by a 
ubi
 polynomial fun
tion. To test the implemented 2DCIP-method for linear adve
tion of non-smooth fun
tions, a step-like fun
tion is adve
tedin the uniform velo
ity �eld u = v = 0.2m/s. The initial 
ondition for the adve
tedfun
tion is

f0(ξ, η) =

{

1, ∀ (ξ, η) ∈ [−0.5, 0.5;−0.5, 0.5]

0, elsewhere
(5.23)where ξ = 4x/L − 3/2 and η = 4y/H − 3/2. Dimensions of the 
omputational domainare L = 1 and H = 1 for the x− and y−dire
tion, respe
tively. Numeri
al solutionsobtained from four di�erent grids are 
ompared with the exa
t analyti
al solution for thesolution time t = 2. Global error ε1 is 
omputed from (5.3) with p = 1, and the order of
onvergen
e r is estimated from (5.6). Results are presented in Tab. 5.4. As expe
ted,Table 5.4: Convergen
e test of linear adve
tion of a non-smooth fun
tion usingthe 2D CIP-method. Global errors ε1 relative to the exa
t analyti
al solution atsolution time t = 2 and order of 
onvergen
e r are obtained from (5.3) with p = 1and (5.6), respe
tively. The time in
rement ∆t is 
hosen su
h that CFL = 0.5.

N is total number of time steps. CIP
∆x, ∆y [m℄ ∆t [s℄ N ε1 Order (r)

1/25 0.1000 25 2.61× 10−2

1/50 0.0500 50 1.12× 10−2 1.22
1/100 0.0250 100 8.80× 10−3 0.35
1/200 0.0125 200 5.26× 10−3 0.74
onvergen
e properties of the numeri
al solution towards the exa
t dis
ontinuous solutionis poor. Contour plots of the initial pro�le and the numeri
al solution after 400 time stepsare presented in Fig. 5.4, and shows that numeri
al di�usion o

ur as the 
ontour lines
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Figure 5.3: Veri�
ation of the 2D CIP-method when ∆x = ∆y = 1/100m and
CFL = 0.5. Comparison with exa
t solution at time t = 2s for a horizontal 
utthrough the domain at y = 0.775m. This is where the solution has its maximumvalue. Undershoot of the numeri
al solution relative to the exa
t solution isobserved.of the solution after 400 time steps are more spread than the 
ontour lines of the initialpro�le. The numeri
al solution for the 
ase when ∆x = ∆y = 1/100 and CFL = 0.5 are
ompared with the exa
t solution for a horizontal 
ut through the domain at y = 0.775at the solution time t = 2s in Fig. 5.5. Over- and undershoots of the numeri
al solutionrelative to the exa
t solution are observed to be more pronoun
ed for this 
ase than forthe 
ase with linear adve
tion of a smooth pro�le presented in Fig. 5.3.5.4 Veri�
ation of the di�usion 
al
ulationLinear laminar boundary layer �ows generally represent good test 
ases for veri�
ationof the di�usion step in our CFD-
ode, be
ause they are simple to model and the fa
tthat analyti
al solutions exist. An example of laminar boundary layer �ow is the se
ondStokes problem, whi
h des
ribes the �ow of a vis
ous �uid above an os
illating wall.The �uid is set into motion due to vis
ous shear for
es in the �uid. The analyti
alsteady state solution of the se
ond Stokes problem 
an be found in many text bookse.g. S
hli
hting and Gersten (2000). When solving Stokes se
ond problem numeri
allyusing a time-domain �ow solver, it is 
onvenient from a modelling point of view to startwith the �uid being at rest initially. Thus, in order to 
ompare the numeri
ally obtainedvelo
ity �eld with the steady state solution, one must be sure that the numeri
al solutionhas rea
hed a steady state. However, there also exists an analyti
al solution for thetransient start-up of Stokes se
ond problem (Panton 1968) whi
h would be better suitedfor veri�
ation purposes of the time-dependent �ow solver. We will in the following se
tionuse the transient se
ond Stokes problem as a veri�
ation test for the implementation ofthe di�usion terms in our numeri
al 
ode.
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Figure 5.4: Linear adve
tion in 2D for a uniform velo
ity �eld u = v = 0.2m/s.Left, initial 
ontour. Right, 
ontour after 400 time steps. ∆x = ∆y = 1/100mand CFL = 0.5.
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tion in 2D of a step-like fun
tion in a uniform velo
ity�eld u = v = 0.2m/s. Comparison with exa
t solution at time t = 2s for ahorizontal 
ut through the domain at y = 0.775m. ∆x = ∆y = 1/100m and
CFL = 0.5. Both undershoots and overshoots are observed near the step.
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ation studies5.4.1 The transient se
ond Stokes problemFirst, we will give a brief des
ription of the mathemati
al problem. Consider a semi-in�nite domain bounded an impermeable wall along the x−axis (y = 0), where the upperhalf plane is o

upied by a vis
ous �uid. Initially, the �uid is at rest. At time t = 0the wall abruptly starts to move with an os
illatory motion in the horizontal dire
tion.Due to adhesion for
es between the �uid and the wall, a no-slip 
ondition is applied onthe wall. Together with vis
ous shear for
es in the �uid, the no-slip 
ondition will 
auseenergy to be transferred from the wall into the �uid domain. The surrounding �uid isthen set into an os
illatory motion. The in�nite length of the wall means there are noend-e�e
ts present, and the horizontal �uid velo
ity u is only a fun
tion of the normaldistan
e from the wall y in addition to time t. The verti
al �uid velo
ity 
omponentis zero due to 
ontinuity. The mathemati
al problem is de�ned by the time-dependentdi�usion equation
∂u

∂t
= ν

∂2u

∂y2
, (5.24)where ν = µ/ρ is the kinemati
 vis
osity 
oe�
ient, with µ and ρ being the dynami
vis
osity 
oe�
ient and the mass density of the �uid, respe
tively. When �nding theanalyti
al solution to (5.24) the time dependent velo
ity �eld u(y, t) is divided into asteady-state part Us and a transient part U t as

u(y, t) = Us + U t, (5.25)where the analyti
al steady state solution obtained from Prandtl's boundary layer equa-tions is given as
Us(η, T ) = U0 exp(−η) sin(T − η), (5.26)with the non-dimensional parameters T = ωt and η = y

√

ω
2ν

(see Appendix). Theanalyti
al solution to the transient part presented by Panton (1968) is
U t(η, T ) = U0ℑ

{

−0.5 exp [Cη − iT ] erfc
[√

0.5T (C + η/T )
]

+ 0.5 exp[−Cη − iT ]erfc
[√

0.5T (C − η/T )
]}

,
(5.27)where ℑ{z} refers to the imaginary part of a 
omplex argument z = x + iy. Further, erf
is the 
omplementary error fun
tion with 
omplex argument due to the 
omplex 
onstant

C = 1− i (see Appendix for further details).Numeri
ally we 
annot handle unbounded or semi-in�nite domains. Hen
e we 
onsidera limited re
tangular domain of length L along the wall and height H in the normaldire
tion from the wall. As in the mathemati
al formulation, the 
omputational domainis limited by an impermeable wall at the lower boundary (y = 0), where a no-slip 
onditionis applied. The remaining three boundaries are the top boundary at y = H , and the sideboundaries at x = 0 and x = L, whi
h are all open boundaries. To minimize end-e�e
tson the resulting velo
ity �eld due to the limited 
omputational domain, the dimensionsof the domain are 
hosen to be large 
ompared to a 
hara
teristi
 length of the problem.The boundary layer thi
kness for steady-state is de�ned as
δ0.99 = 4.6

√

2ν

ω
, (5.28)
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ulation 67Table 5.5: Parameters used in the numeri
al solution of Stokes se
ond problem.Material properties of the �uid are those representative for water.Parameter Symbol Value UnitFrequen
y of os
illation ω 5.317 rad/sWall velo
ity amplitude U0 0.025 m/sMass density ρ 1000 kg/m3Dynami
 vis
osity µ 1.52× 10−3 kg/(ms)with ω being the os
illation frequen
y of the wall, is a suitable measure of 
hara
teristi
length (S
hli
hting and Gersten 2000). This is the normal distan
e from the wall to wherethe absolute value of the �uid velo
ity in the steady state solution is redu
ed to 1% ofthe wall velo
ity amplitude U0. For later purposes, the frequen
y of os
illation of the wallwas 
hoosen equal to the natural frequen
y for the �rst mode of a standing wave in a 1mlong tank with 0.5m water depth. For the kinemati
 vis
osity 
oe�
ient, respe
tively,representative values for water are used. The parameters used in the 
al
ulations arelisted in Tab. 5.5. Using the data from Tab. 5.5, the boundary layer thi
kness is foundto be δ0.99 = 0.0035. With the boundary layer thi
kness in mind, the domain-length and-height are 
hosen to be L = 0.5m and H = 0.025m, respe
tively. Hen
e, the distan
ebetween the mid-point of the os
illating wall and the ends of the domain are more than
70 × δ0.99, whi
h is believed enough to avoid end e�e
ts. Further, the distan
e to theupper boundary of the domain is about 7 × δ0.99. Although the distan
e from the wallto the upper boundary is ten times shorter than the distan
e to the end-boundaries, it isassumed that the upper boundary will have no in�uen
e on the boundary layer �ow, asthe velo
ity at the upper boundary is zero.In order to e�
iently resolve the vis
ous �ow inside the thin boundary layer, gridstret
hing is applied in the y−dire
tion where the grid is divided into three regions. Inthese regions, di�erent gridding te
hniques are used. Sin
e the envelope of the velo
itypro�le of the boundary layer �ow is exponential, we use an exponential distribution ofgrid points in the y−dire
tion inside the boundary layer. Far away from the wall, 
onstantgrid spa
ing is used, while a quadrati
 distribution is used to mat
h the exponential gridregion with the 
onstant grid region. Constant grid spa
ing is applied in the x−dire
tion.More details on the grid generation for this 
ase is presented in appendix B.1.3.Grid 
onvergen
eConvergen
e tests of the numeri
al solution are performed, where three grids with di�erentboundary layer resolution were tested. Grid parameters for the three grids are given inTab. B.1.3. The error of the numeri
al solution relative to the analyti
al solution at thesolution time t/T = 1.07, where T is the period of os
illation of the wall, is 
omputedfor a 
ut along the y−axis in the middle of the domain. The error ǫ2 is 
omputed usingthe 1D error norm de�ned in (5.2) with p = 2, but with using ∆yj = ∆y1 whi
h is thegrid spa
ing at the wall. When 
al
ulating the error norm, the sum is taken only overthe velo
ity nodes lo
ated inside the boundary layer (y < δ0.99). The time t/T = 1.07for when the error is 
omputed is when the largest error ǫ2(t) is obtained with the �nest.The order of 
onvergen
e r of the numeri
al solution is estimated using (5.5). Obtained
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ation studieserror estimates and 
orresponding order of 
onvergen
e towards the analyti
al solution arepresented in Tab. 5.6. Results presented in Tab. 5.6 shows that the order of 
onvergen
eTable 5.6: Test of grid 
onvergen
e for the transient se
ond Stokes problem forthe horizontal velo
ity inside the boundary layer. Solutions are 
ompared attime t/T = 1.07. The error ε2 is 
omputed from eq.(5.2) with p = 2 and using
∆y1 whi
h is the grid in
rement at the wall as a referen
e. Nbl is number of gridpoints inside the boundary layer.

Nbl ∆y1 [m℄ ε2 Order (r)6 2.55× 10−4 9.54× 10−68 1.54× 10−4 3.52× 10−6 1.9815 6.27× 10−5 6.27× 10−7 1.92is r ≈ 2. Snapshots from the transient start-up phase of Stokes se
ond problem arepresented in Fig. 5.6 where the numeri
al solution for the 
ase when Nbl = 8 is 
omparedwith the analyti
al solution. Nbl is the number of grid points inside the boundary layerin the 
ut from where the error ǫ2 is 
omputed. Good 
omparison between the numeri
aland analyti
al solution is shown. Note the overshoot of the transient solution relative tothe envelope of the steady state solution.5.5 Veri�
ation of the pressure solverIn order to verify the implementation of our pressure solver, we �rst 
onsider the Poissonequation with 
onstant 
oe�
ients whi
h formally 
an be written
∇2f = h, (5.29)where f(x, y) is unknown while h(x, y) is a known for
ing. For one-phase �ow problemswhere the mass density of the �uid is 
onstant, (5.29) is the equation to be solved inorder to �nd the pressure at the new time step when proje
tion methods are used. Totest our Poisson solver, we utilize trigonometri
 test fun
tions to de�ne a Poisson problemfor whi
h analyti
al solutions easily are obtained. This will now be dis
ussed.Consider a square domain where [x, y] ∈ [0, 1m]. Further, assume the mass density ofthe �uid is 
onstant with ρ = 1 throughout the domain. Then we 
onsider a test fun
tionof the form

f(x, y) = cos(πx) sin(πy) (5.30)with the Diri
hlet boundary 
ondition f(x, y) = 0 on y = [0, 1m] and Neumann boundary
ondition ∂f/∂x = 0 on x = [0, 1m]. Then, inserting (5.30) into (5.29) yields the followingexpression for the for
ing
h(x, y) = −2π2 cos(πx) sin(πy). (5.31)We dis
retize the square domain into Nx and Ny number of points in the x− and

y−dire
tion, respe
tively. Further, eq. (5.29) is dis
retized as des
ribed in se
tion 4.3.4to yield the linear system of equations Ax = b where the elements of b are obtained asthe values of h at the node points. Solving this Poisson problem with the given boundary
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Figure 5.6: Comparison of numeri
al solution to the transient se
ond Stokesproblem obtained with the present �ow solver and the analyti
al solution. Num-ber of elements inside the boundary layer in the normal dire
tion from the wallis Nbl = 8. The envelope of the steady state solution is shown by the stippledlines.
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onditions, the solution ve
tor x should be equal to the values of (5.30) at the node points.This Poisson problem is solved both on a uniform grid and on a nonuniform (stret
hed)grid, using the present implementation of the Bi-CGSTAB algorithm. For the nonuniformgrid, the grid spa
ings ∆xi are obtained as
∆xi =

L (1− β cos2(πti))
∑Nx

i=1 (1− β cos2(πti))
(5.32)where L = 1m is the length of the domain, β = 0.9 is a stret
hing 
oe�
ient and ti ∈

[0, 1s]. The verti
al grid spa
ings ∆yj is found in the same way. Convergen
e tests areperformed for both the uniform grid and the nonuniform grid. As a measure of error inthe numeri
al solution when testing for 
onvergen
e, we use the normalized error
ε =
‖xex − xnum‖

‖b‖ . (5.33)Results for both the uniform grid 
ase and the nonuniform grid 
ase are presented in Tab.5.7. The rate of 
onvergen
e towards the exa
t solution is found to be of se
ond order forboth 
ases.Table 5.7: Convergen
e of the Poisson solver applied on a non-uniform grid. Theobtained rate of 
onvergen
e is of se
ond order. The 
onvergen
e rate dependson how the grid stret
hing is performed relative to the nature of the solution.The normalized error ε is de�ned in (5.33).Uniform grid Stret
hed grid
Nx ×Ny ε Order ε Order

8× 8 7.02× 10−4 6.66× 10−4

16× 16 1.49× 10−4 2.24 1.46× 10−4 2.19
32× 32 3.15× 10−5 2.24 3.15× 10−5 2.21
64× 64 6.40× 10−6 2.30 6.50× 10−6 2.285.6 Veri�
ation of the �ow solver for one-phase �owIn the previous se
tions, the implementation of the main parts of the �ow solver has beenveri�ed separately. Next step is to verify the 
omplete �ow solver for one-phase �ow withno interior body inside the domain. For this purpose, the 
lassi
al lid-driven 
avity �owproblem presented by Ghia et al. (1982) has been studied.5.6.1 Lid-driven 
avity �owThe lid-driven 
avity �ow problem is a good veri�
ation test 
ase for one-phase �ow solversdue to simple boundary- and initial 
onditions, and the fa
t that all terms in the Navier-Stokes equations matter for this 
ase. The physi
al domain of 
omputation has length

L = 1m and height H = 1m and is 
ompletely �lled with a vis
ous and in
ompressible�uid with density ρ and dynami
 vis
osity µ. A no-slip boundary 
ondition is applied on
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t of gravity. Initially, the �uid is at rest. At time t = 0 thetop boundary abruptly starts to move with a 
onstant velo
ity U = 1m/s in the positive
x−dire
tion. As the �ow is driven by vis
ous shear for
es in the �uid, the Reynoldsnumber is an important parameter 
hara
terizing the �ow. Here, the Reynolds number isde�ned as Rn = UL/ν where nu = µ/ρ is the kinemati
 vis
osity 
oe�
ient while U and
L are velo
ity and length of the top boundary, respe
tively. We 
onsider the 
ase with
Rn = 100. Thus, the density and the dynami
 vis
osity are 
hosen su
h that ν = 0.01.Numeri
ally, the moving top boundary is modelled by imposing ui,N = 2.0−ui,N−1 at thehorizontal velo
ity nodes of the top boundary ghost 
ells. Further, the spatial derivativesare set to gi,N = −gi,N−1 and ki,N = ki,N−1 in the same ghost 
ells.As the domain is totally en
losed by rigid non-permeable walls, the pressure is un-known at all boundaries and the Poisson equation for the pressure represents a 
ompleteNeumann problem. In the dis
retized problem, this implies that the 
oe�
ient matrix forthe linear system of equations is singular. To over
ome this problem, an arti�
ial pressureis spe
i�ed in one grid 
ell inside the domain at the bottom boundary.Three uniform grids are tested. The spatial in
rements and 
orresponding time in
re-ment used in the simulations are listed in Tab. 5.8. At time t = 25s of simulation, theTable 5.8: Spatial- and time in
rements used in the 
omputations.

Nx ×Ny ∆x [m℄ ∆y [m℄ ∆t [s℄
20× 20 0.05 0.05 0.02
64× 64 0.0156 0.0156 0.002

129× 129 0.0078 0.0078 0.001�uid motion has 
onverged to a steady state where a primary vortex is rotating 
lo
kwiseand two se
ondary vorti
es at the lower 
orners are rotating 
ounter 
lo
kwise as shown inFig. 5.7. Lo
ation of the vortex 
enter of the primary vortex is 
ompared with numeri
alresults by Ghia et al. (1982) in Tab. 5.9. Results obtained with the present �ow solverseems to 
onverge towards the 
omparison data. However, results obtained with the �nestgrid with the present �ow solver deviates from the 
omparison data for the same grid by1.4% and 2.1% for the horizontal and verti
al 
oordinate, respe
tively.Table 5.9: Convergen
e test for the steady state position of the vortex 
enter(xc, yc) of the primary vortex.
Nx ×Ny xc[m] yc[m]Present 20× 20 0.6699 0.8001- 64× 64 0.6375 0.7673- 129× 129 0.6258 0.7500Ghia et al. (1982) 129× 129 0.6172 0.73445.6.2 Cir
ular 
ylinder in uniform 
ross �owTo verify the implementation of the immersed boundary method used for introdu
ing asolid body inside the 
omputational domain, a 
ase with a �xed 
ir
ular 
ylinder subje
t
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Figure 5.7: Computed stream-lines for the lid-driven 
avity �ow with Rn = 100at time t = 25s obtained from simulation with the �nest grid using the present
ode is shown to the left. Corresponding results presented by Ghia et al. (1982)for Rn = 100 is shown to the right. Se
ondary vorti
es at ea
h of the two lower
orners of the domain are observed in the present results as in results by Ghiaet al.to an in
ident uniform �ow is studied. The 
ylinder has a diameter D = 1.0m and is �xedinside a re
tangular domain of length L = 45D and height H = 20D. The position ofthe 
ylinder axis is X = 10D and Y = 10D measured from the lower left 
orner of thedomain. Initially, the �uid is at rest. At time t = 0 a uniform velo
ity U = 1.0m/s inthe x−dire
tion and V = 0 in the y−dire
tion is imposed on the left, bottom and topboundaries of the domain. An outlet boundary 
ondition is applied at the right handboundary, where a uniform referen
e pressure is spe
i�ed. A no-slip 
ondition is imposedon the 
ylinder surfa
e. The 
omputational domain with boundary 
onditions is depi
tedin Fig. 5.8.The non-dimensional parameter des
ribing the �ow for this 
ase is the Reynolds num-ber Rn = UD/ν. We 
onsider the 
ase with Rn = 100, whi
h is obtained by using thekinemati
 vis
osity 
oe�
ient ν = 0.01m2/s. The boundary layer �ow on the 
ylindersurfa
e is laminar for this Reynolds number.The 
omputational gridA good resolution of the boundary layer on the 
ylinder surfa
e is ne
essary for an a

uratepredi
tion of the �ow separation points. The position of the separation points on the
ylinder surfa
e is important for the lift and drag for
es on the 
ylinder. From the studyof the se
ond Stokes problem in se
tion 5.4.1 we found that a number of 6-10 grid 
ellsinside the boundary layer in the normal dire
tion from the no-slip boundary was su�
ientin order to 
apture the os
illating �ow in the boundary layer. We assume that 10 grid 
ellsinside the boundary layer is su�
ient also for this 
ase. The boundary layer thi
kness isestimated as δ ≈ D/
√

Rn. For the 
ase when Rn = 100, this yields δ = 0.1D. Hen
e, the
ylinder is dis
retized by 100 grid 
ells over the diameter in both the x− and y−dire
tion.
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U = 1 m/s V = 0 m/sXFigure 5.8: Domain and boundary 
onditions used for simulation of a 
ir
ular
ylinder in uniform 
ross �ow. The 
ylinder axis is lo
ated at X = Y = 10D,where D is the 
ylinder diameter. Di�erent grid zones are indi
ated by stippledlines.In order to keep the CPU-time on an a

eptable level, stret
hing of the 
omputationalgrid is applied. The 
omputational domain is divided into three regions in both the x−and y−dire
tion as indi
ated by the stippled lines in Fig. 5.8. Constant grid line spa
ingis used in L2 and H2, while a quadrati
 variation of the spatial in
rements is used inthe remaining regions. Smooth variation of the grid in
rements are ensured between the
onstant grid zones and the quadrati
 grid zones.Table 5.10: Number of grid 
ells in x− and y−dire
tion for the di�erent regionsof the domain. This yields a total of 100,000 grid 
ells in the domain.
L1 L2 L3 H1 H2 H3

N 100 100 200 75 100 75Results and dis
ussionIn the beginning, the �ow is symmetri
 with a growing re
ir
ulation zone behind the 
ylin-der. A 
lose view of the 
ylinder at this stage is shown in Fig. 5.9. The no-slip 
onditionon the 
ylinder surfa
e is veri�ed by inspe
tion of the 
omputed velo
ity �eld. Symmetryof the �ow in the early stage of the simulation supports a 
orre
t implementation of thebody boundary 
ondition. After some time of simulation (here at Ut/D ≈ 80), in
eptionof �ow instability o

ur in the wake. This 
auses vorti
es to be shed from the 
ylindersurfa
e, yielding a so-
alled von Karman street in the wake �ow. Su
h vortex sheddingleads to an os
illating pressure on the 
ylinder surfa
e, whi
h yields a time-dependentfor
e on the 
ylinder. This for
e is de
omposed into an in-line for
e 
omponent Fx (drag),and a transverse for
e 
omponent Fy (lift). The drag- and lift for
es due to the pres-sure are 
omputed from (4.55) and (4.56), respe
tively. In addition 
omes 
ontributionsfrom skin fri
tion for
es on the 
ylinder surfa
e. An expression for the drag 
oe�
ient
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Figure 5.9: Pressure-�eld and stream tra
es obtained from simulation of 
ylinderin uniform 
ross-�ow at time t = 56s with Rn = 100. This is before vortexshedding o

ur. We note that the arti�
ial pressure �eld inside the 
ylinder issmooth.due to skin fri
tion on a smooth 
ir
ular 
ylinder in uniform 
ross-�ow was presented byHenderson (1995) as Cd,v(Rn) = 2.5818/Rn0.4369, as a �t to his numeri
al results. For
Rn = 100, this yields Cdv

= 0.345. Skin fri
tion is not in
luded in the present 
ode. Thelift for
e os
illates with the vortex shedding frequen
y f , while the drag for
e os
illateswith the frequen
y 2f . When the �ow has rea
hed a steady state, the mean pressure drag
oe�
ient CD,p and the peak-to-peak lift 
oe�
ient CL are obtained as
CD,p =

Fx

0.5ρU2D
and CL =

F A+
y +

∣

∣F A−
y

∣

∣

0.5ρU2D
, (5.34)where Fx is the mean pressure drag for
e, while F A+

y and F A−
y are the mean positiveand mean negative lift for
e amplitudes, respe
tively. Obtained drag and lift 
oe�
ientsare 
ompared with numeri
al results presented by Berthelsen and Faltinsen (2008) andHenderson (1995) in Tab. 5.11.Table 5.11: Computed mean drag 
oe�
ient CD and peak-to-peak lift 
oe�
ient

CL due to pressure for
es only, for the 
ase of a 
ir
ular 
ylinder in uniform 
ross�ow with Rn = 100. Skin fri
tion for
es are not in
luded.Sour
e CD,p CLBerthelsen and Faltinsen (2008) 1.028 0.596Henderson (1995) 1.005 -Present 1.015 0.580
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h is the non-dimensional vortex shedding frequen
y, isfound as
St =

fD

U
, (5.35)where f is 
al
ulated as the zero up-
rossing frequen
y from the 
omputed time-seriesof the lift for
e. For the present 
ase, St = 0.170 is obtained. This is in agreementwith numeri
al results found in the literature (Engelman and Jamnia 1990; Herfjord 1996;Berthelsen and Faltinsen 2008).The presently obtained results are in agreement with numeri
al results from the liter-ature, whi
h indi
ate that the adopted immersed boundary method and the for
e 
al
u-lation routines are 
orre
tly implemented.5.7 Veri�
ation of the �ow solver for two-phase �owSo far we have only 
onsidered one-phase �ow in our veri�
ation tests. Next step is toverify the implemented �ow solver for two-phase �ow problems. Here the two phases arerepresented by water and air. A numeri
al issue is numeri
al di�usion asso
iated with the�nite thi
kness air-water interphase. We 
ontinue our veri�
ation study by 
onsideringthe two-phase problem of small amplitude sloshing in a square tank. Free surfa
e �owproblems inside tanks are also referred to as sloshing and has many appli
ations in marinehydrodynami
s.5.7.1 Small amplitude sloshingThe free de
ay of a small amplitude standing wave inside a square tank is studied, with theobje
tive to investigate the e�e
t of numeri
al di�usion in our �ow solver. This problemwas introdu
ed as a veri�
ation test 
ase by Vestbøstad et al. (2007). Vis
ous dissipationof energy in the boundary layers along the tank bottom and side walls will 
ause theamplitude of the standing wave to de
rease with time. However, when this problem issolved numeri
ally there 
an also be dissipation of energy 
aused by numeri
al di�usion,whi
h is unphysi
al. This is an important issue for a numeri
al wave tank, as numeri
aldi�usion may 
ause the generated waves to have an unphysi
al de
ay in amplitude. Hen
e,in order to rely on results to be obtained with our numeri
al wave tank, we must verifythat the numeri
al dissipation of energy is negligible relative to the physi
al dissipation ofenergy. The 
ause of numeri
al energy dissipation 
an be dis
retization errors or smearingof the 
olor fun
tions at the interphase between the di�erent phases.Numeri
al setupConsider a square tank of length L = 1m and height H = 1m. The tank has verti
alside walls, open tank top and is partially �lled with water and air. The �ll level is 50%,yielding a water depth h = 0.5m. We de�ne a 
oordinate system Oxy with origin inthe 
alm free surfa
e with a distan
e L/2 from the side walls. The y−axis is pointingupwards. Consider a free standing wave represented by the �rst natural mode. The wavelength of the �rst mode is λ = 2L and thus the wave number is k = π/L. A

ordingto linear potential �ow theory, the wave frequen
y is found to be ω = 5.32rad/s fromthe dispersion relation for �nite water depth (3.23). The 
orresponding wave period is
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T = 1.18s. Further, the free surfa
e pro�le ζ(x, t) and the 
orresponding velo
ity potential
φ(x, y, t) for a standing wave of the �st mode with amplitude ζA is

ζ(x, t) = ζA sin kx sin ωt (5.36)
φ(x, y, t) =

gζA

ω

cosh k(y + h)

cosh kh
sin kx cos ωt. (5.37)The horizontal- and verti
al velo
ity 
omponents are derived from the velo
ity potentialas

u(x, y, t) =
∂φ

∂x
= ωζA

cosh k(y + h)

sinh kh
cos kx cos ωt (5.38)

v(x, y, t) =
∂φ

∂y
= ωζA

sinh k(y + h)

sinh kh
sin kx cos ωt (5.39)Using Bernoulli's equation, the linear hydrodynami
 pressure is found to be

pD(x, y, t) = −ρ
∂φ

∂t
= ρgζA

cosh k(y + h)

cosh kh
sin kx sin ωt. (5.40)At time t = 0 the free surfa
e pro�le obtained from (5.36) is ζ(x, 0) = 0. This providesa simple implementation. Further, from (5.40) we see that the hydrodynami
 pressureis zero, initially. Hen
e the initial pressure �eld is des
ribed by the hydrostati
 pressure

ps = −ρgy below the 
alm free surfa
e. The initial velo
ity �eld is found from (5.38) and(5.39) using ζA = 0.025m.Theoreti
al de
ay rate of the wave amplitudeIn order to quantify the numeri
al energy dissipation, we must know what is the physi
aldissipation of energy in the tank. A theoreti
al estimate of the physi
al energy dissipationis obtained as follows. Linear potential �ow theory is used to derive the invis
id velo
ity�eld in the water, as de�ned in (5.38) and (5.39). This yields the velo
ity outside theboundary layers along the tank bottom and side walls. For small amplitude waves, theboundary layer �ow along the tank walls will be laminar. This means we 
an utilize these
ond Stokes problem to obtain an estimate of the rate of vis
ous energy dissipationinside the boundary layers. The theoreti
al de
ay rate for the amplitude of the standingwave is found to be
ζA

ζA0

= exp
(

− α

T
t
)

, (5.41)where
α = π

√

2ν

ωL2

(

1 +
k(L− 2h)

sinh 2kh

)

. (5.42)The 
omputational gridThere are basi
ally two 
autions to take when 
onstru
ting the grid for this problem.One is the resolution of the boundary layer and the other is the resolution of the �nitethi
kness air-water interphase. Good resolution of the boundary layers at the tank bottomand side walls are ne
essary in order to 
apture the physi
al energy dissipation. Further, tominimize the numeri
al dissipation of energy due the �nite thi
kness air-water interphase,
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Figure 5.10: Complete grid with grid re�nement in the interphase zone used forsimulating small amplitude sloshing.the interphase should be kept as thin as possible. This means also the free surfa
e zoneneeds to be well resolved by the grid.Dis
retization of laminar boundary layers in os
illatory �ow was dis
ussed when solvingthe se
ond Stokes problem in se
tion 5.4.1. By using an exponential variation of gridin
rements in the normal dire
tion from the wall inside the boundary layer, good resultswere obtained for the boundary layer �ow. Hen
e, an exponential variation of the gridin
rements inside the boundary layer is used also for the present problem. However, herethe exponential grid is extended outside the boundary layer to mat
h the 
oarser 
onstantgrid in the main bulk of the domain without a quadrati
 mat
hing zone as used for these
ond Stokes problem.To obtain a �ne grid at the air-water interphase, a squared 
osine variation of theverti
al grid in
rements is used in the interphase zone. The grid in
rements here arefound as
∆yj = ∆y0(1− β cos2(0.5πsj)), (5.43)where ∆y0 is the verti
al grid in
rement in the 
onstant grid zone, β < 1 is a 
lustering
oe�
ient and s ∈ [−1, 1] is a linearly spa
ed parameter. A 
omplete grid with a squared
osine variation of grid in
rements in the wave zone and exponential variation of gridin
rements in the boundary layers is shown in Fig. 5.10.
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Figure 5.11: Comparison between theoreti
al and 
omputed energy dissipationof the �rst sloshing mode. The domain is resolved by 200 grid 
ells in boththe x− and the y−dire
tion. The boundary layers are resolved by 8 grid 
ellsin the normal dire
tion from the boundary, while an interphase zone of height
hwz = 0.35 
entered about the mean free surfa
e is resolved by 86 grid 
ells.ResultsDuring the simulation, the potential- and kineti
 energy in the water is 
omputed. Thekineti
 energy in the wave is found as

Ek =
ρw

2

Nx
∑

i=1

Ny
∑

j=1

(

û2
i,j + v̂2

i,j

)

ϕi,j∆xi∆yj , (5.44)where ϕ = ϕ1 is the 
olor fun
tion for the water and
ûi,j = 0.5(ui,j + ui−1,j) (5.45)
v̂i,j = 0.5(vi,j + vi,j−1) (5.46)are the �uid velo
ity 
omponents in the 
ell 
enter. Further, is the potential energy inthe wave found as

Ep = ρwg

Nx
∑

i=1

Ny
∑

j=1

(ycj − 0.5h) ϕi,j∆xi∆yj. (5.47)The total energy in the wave is then 
omputed as E = Ek +Ep. Initially, the total energyof the standing wave is given as E0 = ρwgζ2
A/4. The de
ay of the total energy from asimulation with a 200× 200 grid and time step ∆t = 0.0015s is averaged over one periodof os
illation and 
ompared with the theoreti
al de
ay rate in Fig. 5.11. Os
illations ofthe 
omputed total energy of the wave is observed. This 
an be due to transfer of energybetween the water and air, or due to e�e
ts of the �nite thi
kness air-water interphase.However, the trend of the 
omputed energy de
ay rate seems to be in agreement with thetheoreti
al de
ay rate.5.8 Veri�
ation of for
ed motionsIn order to verify the adopted immersed boundary method for moving boundaries, sim-ulations of for
ed heave motions of 
ylinders in the free surfa
e were performed with the
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ode. Two geometries were tested, one 
ir
ular and one re
tangular, for whi
h theadded mass and damping 
oe�
ients were obtained from the 
omputed pressure for
eson the body. The os
illation amplitudes of the heave motion were small, su
h that linearpotential �ow theory 
ould be used for an adequate 
omparison of the obtained 
oe�-
ients. The hydrodynami
 
oe�
ients obtained from the simulations were also 
omparedwith data from model tests by Vugts (1968).5.8.1 Added mass and damping 
oe�
ients in heaveFor the 2D hydrodynami
 problem of a body performing for
ed os
illatory heave mo-tions in the free surfa
e, the verti
al hydrodynami
 for
e a
ting on the heaving body 
ana

ording to linear potential �ow theory be expressed as
F HD

3 = −a33η̈3 − b33η̇3. (5.48)Here, a33 and b33 are the 2D 
oe�
ients in heave for added mass and potential damping,respe
tively. Further, η̈3 is the heave a

eleration and η̇3 is the heave velo
ity of the body.The hydrodynami
 
oe�
ients a33 and b33 
an be found from linear potential �ow theoryby solving a boundary value problem for the velo
ity potential φ using e.g. a boundaryelement method (BEM). Then, the hydrodynami
 pressure is a

ording to Bernoulli'sequation found from the velo
ity potential as p = −ρ∂φ
∂t
, where ρ is the density of waterand t is time. By integrating the hydrodynami
 pressure over the mean wetted surfa
e ofthe body F HD

3 is obtained, from whi
h the added mass and damping 
oe�
ients 
an bedetermined. When expressing the equation of motion for the body, also the hydrostati
restoring for
e F HS
3 = −c33η3 must be in
luded. η3 is the heave motion and c33 = ρgBis the 2D restoring 
oe�
ient in heave, where B is the mean wetted beam of the body.A

ording to Newton's se
ond law, the equation des
ribing the heave motion of the bodyis

mη̈3 = F HD
3 + F HS

3 + F E
3 , (5.49)with m being the 2D stru
tural mass and F E

3 the external for
e applied to the body inorder to perform steady harmoni
 os
illations.If the added mass and damping 
oe�
ients are to be found from experiments, usuallythe for
e F E
3 applied to the model is measured. Let the body motion be expressed as

η3(t) = η3a cos ωt, where η3a is the motion amplitude and ω is frequen
y of os
illation.Further, assume the measured for
e applied to the body is F E
3 = F3a cos (ωt + δ), where

F3a is the for
e amplitude per unit length of the body and δ is the phase angle betweenthe measured for
e and the body motion. Then, from (5.48) and (5.49), the 2D addedmass and damping 
oe�
ients in heave are found as
a33 = −F3a cos δ − c33η3a

ω2η3a

−m (5.50)
b33 =

F3a sin δ

ωη3a
. (5.51)The experiments by VugtsHydrodynami
 
oe�
ients obtained from an extensive set of model tests with for
edos
illations of 
ylinders in the free surfa
e was presented by Vugts (1968). Several 
ross-se
tional geometries were tested and the added mass and damping 
oe�
ients due to small
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ation studiesamplitude os
illations were dedu
ed. Test parameters were the frequen
y of os
illationand os
illation amplitude. The experiments were 
ondu
ted in the main basin of the DelftShipbuilding Laboratory, whi
h measures 142m of length and 4.2m of width. Here, wehave only 
onsidered tests with a 
ir
ular model and a re
tangular model. The 
ir
ularmodel had a diameter of 0.300m with draft 0.150m at the mean position, su
h that the
ylinder axis was lo
ated in the 
alm free surfa
e. The re
tangular model had breadth0.400m and draft 0.200m at the mean position. Further, the re
tangular model hadrounded bilges with bilge radius r = 0.0025m. The water depth for all tests was in therange 1.80m - 2.25m. However, the exa
t water depth for the individual test runs was notreported.Numeri
al setupSimulations in 2D of bodies in the free surfa
e when for
ed to os
illate in heave have beenperformed with the present numeri
al 
ode. A 
ir
ular body and a re
tangular body weretested, where the body dimensions 
orresponded to that of the 
ir
ular 
ylinder and there
tangular 
ylinder tested by Vugts. However, the re
tangular body in the numeri
alsimulations had sharp 
orners and not rounded bilges as the re
tangular model in Vugtsexperiments. Dimensions of the 
ir
ular and the re
tangular body are presented in Tab.5.12. The length of the 
omputational domain used in the simulations was L = 76m,Table 5.12: Dimensions of the 
ir
ular model and re
tangular model used in thenumeri
al simulations. The model dimensions are equal to those for the modelstested by Vugts (1968). Re
tangle Cir
leBreadth (B) 0.40 m 0.30 mDraft (d) 0.20 m 0.15 mwhi
h is shorter than the a
tual length of the basin in where Vugts experiments were
ondu
ted. By appli
ation of damping zones, wave re�e
tions from the side boundariesof the domain were avoided. The e�
ien
y of the damping zones depends on their length
Ldz relative to the wave length λ of the wave to be damped. When 
onstru
ting thedamping zone, λ = 2π/k was estimated using the dispersion relation (3.23) for the os-
illation frequen
y tested. For all simulations Ldz = 3λ was used, ex
ept for the lowestos
illation frequen
y tested where the length of the damping zone was Ldz = 2λ. Theheight of the domain was 3.00m and the water depth was h = 1.80m for all tests, whi
h
orresponded to the smallest water depth reported in the experiments by Vugts. A sket
hof the 
omputational domain is presented in Fig. 5.12. For ea
h of the two bodies,six di�erent os
illation frequen
ies of the heave motion were tested 
orresponding to thenon-dimensional frequen
ies ω

√

B/2g = [0.25, 0.50, 0.75, 1.00, 1.25, 1.50]. For ea
h testfrequen
y, the three os
illation amplitudes η3A = 0.01m, η3A = 0.02m and η3A = 0.03mwere tested. The simulations started from 
alm 
onditions with η3(0) = η3a and η̇3(0) = 0,being the initial verti
al body position and velo
ity, respe
tively.
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Damping zone

Fine grid
Damping zone

Ldz
Ldz

∆y = Const.

x

y

∆x = Const.

L1 L3

H2

H3

H1

L2Figure 5.12: Domain used for the numeri
al solution to the hydrodynami
alproblem of a 
ir
ular 
ylinder whi
h is for
ed to os
illate in heave. The 
ylinderis situated in the air-water interphase. Damping zones are introdu
ed to avoidwave re�e
tions.The numeri
al gridA non-uniform numeri
al grid was 
onstru
ted as follows. By dividing the 
omputationaldomain into sub-regions where di�erent gridding strategies were used, a �ne grid regionwas 
reated at the body position. More pre
isely, both the x−axis and the y−axis weredivided into the three sub-regions Li and Hi where i = 1, 2, 3 as shown in Fig. 5.12. Thehorizontal grid line spa
ings ∆x were small and 
onstant in L2. Similarly, the verti
algrid line spa
ings ∆y were small and 
onstant in H2. Stret
hing of the grid by a quadrati
fun
tion was performed outside the �ne grid regions for both the horizontal and verti
aldire
tion, su
h that the grid be
ame 
oarser when moving away from the free surfa
ein the verti
al dire
tion and away from the �oater position for the horizontal dire
tion.A smooth variation of the grid spa
ings was ensured. The 
omputational domain wasdis
retized using 500 grid 
ells in the horizontal dire
tion and 200 grid 
ells in the verti
aldire
tion. The time in
rement was ∆t/T = 1/2000, with T = 2π/ω being the period ofos
illation. Grid parameters for the a
tual grid are presented in Tab. 5.13.Table 5.13: Grid parameters for the �ne grid zone used when simulating for
edheave motions of the 
ir
ular and re
tangular body. B is the mean wetted beamof the body and d is the mean draft. ∆x and ∆y are the 
onstant grid in
rementsin L2 and H2, respe
tively.
∆x/B ∆y/dCir
ular body 0.0100 0.0133Re
tangular body 0.0075 0.0100High frequen
y vis
ous dampingPotential �ow theory was used for 
omparison with the numeri
al results. For high fre-quen
ies of os
illation, the potential damping approa
hes zero as no waves are generated.However, for the re
tangular body, �ow separation from the bilges yields a damping for
e.In the following, a theoreti
al high frequen
y vis
ous damping is presented.For linear potential �ow theory, the kinemati
- and dynami
 free surfa
e 
onditionsfor harmoni
 steady state os
illations 
an be 
ombined to give −ω2φ + g∂φ/∂y = 0,where φ is the velo
ity potential. Taking the limit ω → ∞, we obtain φ = 0 on the free
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ation studiessurfa
e. This means no waves are generated and the �uid velo
ity on the free surfa
e isonly verti
al. From symmetry properties of the for
ed high frequen
y heave problem, we
an by mirroring the submerged part of the body about the mean free surfa
e, transformour problem into the problem of the double body os
illating in in�nite �uid. Now, onemay argue that due to vortex separation at the 
orners of the 
ylinder, the assumptionof irrotational �ow is violated. However, by assuming that all vorti
ity is 
ompressedinto thin free shear layers we 
an still use potential �ow theory with the asymptoti
 freesurfa
e 
ondition outside the free shear layers. The analogy between the re
tangular
ylinder in the free surfa
e and the double body in in�nite �uid makes it possible to useMorison's equation (5.52) to estimate the verti
al hydrodynami
 for
es for high frequen
iesof os
illation. For the double body we get
F 2D

y = ρACM η̈3 + 0.5ρBCD|η̇3|η̇3. (5.52)Here, A is the area of the 
ross-se
tion of the double body, CM is the mass 
oe�
ient, η̈3is heave a

eleration of the body, B is the breadth, CD is the drag 
oe�
ient and η̇3 is theheave velo
ity of the body. First term on the right hand side of (5.52) is the added massfor
e while the se
ond term is the vis
ous drag for
e due to �ow separation. Equivalentlinearization of the drag term gives FD = Bv|ηA|ω 8
3π

η̇3 (Faltinsen 1990), where the vis
ousdamping 
oe�
ient is Bv = 0.5ρCDB. By assuming that the drag for
e on the heavingbody in the free surfa
e is half the value of the drag for
e on the double body in in�nite�uid, we obtain the linear damping 
oe�
ient bv
33 = 0.5FD/η̇3. The non-dimensionaldamping 
oe�
ient for high frequen
ies is then

lim
ω→∞

bv
33

ρA

√

B

2g
=

2CD

3πd
ω̂η3a (5.53)where d is the mean draft of the 
ylinder and ω̂ = ω
√

B/2g. The drag 
oe�
ient is ingeneral dependent on Keulegan-Carpenter number KC = UT/B ≈ 2πη3a/B and on theReynolds number for os
illatory �ow Rn = U2
m/ων, where Um is maximum velo
ity outsidethe boundary layer. For low KC-number �ow (KC < 10), the drag 
oe�
ient for anos
illating fa
ing square 
ylinder in in�nite �uid is CD ≈ 3.0, found from experiments byBearman et al. (1985). Using the present test parameters for the re
tangular body, KC <

0.5 was obtained. Hen
e, CD = 3.0 was used in (5.53) to obtain the non-dimensionalvis
ous damping 
oe�
ient. This high frequen
y vis
ous damping was used for 
omparisonwith the damping 
oe�
ients obtained from the numeri
al simulations and the damping
oe�
ients presented by Vugts.Results and dis
ussionFrom the numeri
al simulations, the fully nonlinear verti
al for
e F p
y on the os
illatingbody due to the total pressure was 
omputed. As we wanted to 
ompare obtained addedmass and damping 
oe�
ients with those from linear potential �ow theory, band-pass�ltering of the fully nonlinear for
es time-series were performed su
h that the linear har-moni
 
omponent was retained. Band-pass �ltered was performed using 0.8/T and 1.5/Tas the low and high 
ut-frequen
ies, respe
tively. Here, T is the os
illation period of thebody for the 
ase 
onsidered. As the verti
al for
e obtained from the numeri
al simula-tions was found by integration of the total pressure over the body boundary, the 
omputed
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e 
orresponded to the sum of the hydrodynami
 for
e F HD
y and the hydrostati
 for
e

F HS
y from potential �ow theory. Hen
e, the hydrostati
 for
e was subtra
ted from the
omputed for
e time-series F p

y to obtain F HD
y , from whi
h the added mass and damping
oe�
ients 
ould be dedu
ed. The hydrodynami
 
oe�
ients obtained from the presentnumeri
al simulations were 
ompared with the 
oe�
ients a

ording to linear potential�ow theory for in�nite water depth. The potential �ow theory results for in�nite waterdepth were provided by Skeji
 (2008), where the hydrodynami
 
oe�
ients for the re
t-angular body were obtained with a sharp-edged body. Also the 
oe�
ients presentedby Vugts (1968) were used for 
omparison. Added mass and damping 
oe�
ients forthe 
ir
ular 
ylinder are presented in Figs. 5.8.1 and 5.8.1, respe
tively. Results fromsimulations with the re
tangular 
ylinder are presented in Figs. 5.8.1 and 5.8.1.Obtained 
oe�
ients from simulations with the 
ir
ular model were in good agreementwith both experiments and theory, ex
ept for the lowest frequen
ies where some deviationsfrom the potential �ow theory were observed. This was also observed for the resultsobtained with the re
tangular body. Deviations in the low frequen
y range are believedto be due to e�e
ts of �nite water depth in both the experiments and in the numeri
alsimulations. The lowest test frequen
y in the simulations was ω

√

B/2g = 0.25. Usingthe dispersion relation (3.23) where k = 2π/λ, this means that the wave length λ of thewave generated for this os
illation frequen
y is λ = 13.7m for the re
tangular 
ylinder and
λ = 11.42m for the 
ir
ular 
ylinder. Taking the un
ertainty of the a
tual water depth
h in Vugts experiments into a

ount, h/λ = 0.132 − 0.165 and h/λ = 0.158 − 0.197 forthe re
tangular and 
ir
ular 
ylinder, respe
tively. Using h/λ = 0.5 as the deep waterlimit, we should expe
t an e�e
t of �nite water depth for both 
ylinders at the lowesttest frequen
y and also for ω

√

B/2g = 0.50. This may explain the deviations betweensimulations and experiments for the lowest frequen
ies. In addition, Vugts (Vugts 1968)reported experimental ina

ura
ies, espe
ially for the added mass in the low frequen
yrange (ω√B/2g < 0.50).The damping 
oe�
ients for the re
tangular body obtained from both experimentsand simulations show some s
atter in the high frequen
y range (ω√B/2g > 1.40) anddeviates 
onsiderably from the potential (wave making) damping, whi
h goes to zero whenthe frequen
y of os
illation goes to in�nity. This is explained by vortex shedding fromthe sharp edges of the re
tangular body. The high frequen
y vis
ous damping 
oe�
ientobtained from (5.53) was added to the non-dimensional potential damping 
oe�
ient inFig. 5.8.1. The high frequen
y theory shows reasonable agreement with experiments. Thenumeri
ally obtained damping 
oe�
ients deviates some from this high frequen
y theoryand the deviations in
rease for de
reasing amplitude of os
illation. For low KC-numbers,the vorti
es separated from a sharp edged body are small 
ompared to the dimensionof the body (Bearman et al. 1985). We also note that the edges of our re
tangle is notperfe
tly sharp, while the high frequen
y theory is for a sharp edged body. A

ording toFaltinsen (1990), the bilge radius be
omes important for the drag at small KC−values.This means that e�e
ts of �nite bilge radius may 
ontribute to the deviation betweenthe numeri
ally obtained damping 
oe�
ient and that from the high-frequen
y theory.However, we believe that the main explanation for the deviation between the numeri
alresults and the high frequen
y theory is related to the fa
t that the same grid was usedfor all tested amplitudes of the body motion. Hen
e, the grid resolution relative to themotion of the body de
reases for de
reasing motion amplitude, su
h that the vis
ous �owmight not be fully resolved by the grid for the smallest heave amplitudes tested. As
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ted, vis
ous �ow separation was not observed for the 
ir
ular body, where the smallheave amplitudes yielded KC < 1.0.Skin fri
tion was not in
luded in the numeri
al model. However, the numeri
al resultshas shown to be able to give good estimates of the hydrodynami
 for
es on os
illating
ylinders in the free surfa
e for the frequen
y range 0.75 < ω̂ < 1.25.
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(b) DampingFigure 5.13: Added mass and damping 
oe�
ients in heave for the semi-submerged 
ir
ular 
ylinder with diameter D = 0.3m. Obtained resultswith the present numeri
al 
ode are 
ompared with experiments (Vugts,1968) and linear deep water potential �ow theory results (Skeji
, 2007).Here, A = πB2/8 is area of the semi-submerged 
ir
ular 
ross-se
tion.In the �gure, a is the heave motion amplitude.
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(b) DampingFigure 5.14: Added mass and damping 
oe�
ients for the re
tangular
ylinder obtained with the present 
ode 
ompared with experimentsby Vugts (1968) and linear deep water potential �ow theory by Skeji
(2007). Here, A = Bd is the area of the semi-submerged re
tangular
ross-se
tion. Beam-to-draft ratio is B/d = 2. In the �gure, a is theheave motion amplitude.
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ation of free motions 875.9 Veri�
ation of free motionsIn order to verify the numeri
al model for 
omputation of free motion of �oaters, i.e. theimplementation of the equations of motions for the �oater, we have studied free de
aytests of the heave mode of motion. Free de
ay tests for the sway mode are 
onsidered inChapter 8. Both a re
tangular body and a 
ir
ular body are tested in the simulationswith free de
ay of the heave motion, and the 
omputed heave motions were 
ompared withpotential �ow theory results. Simulations of the re
tangular body �oating at equilibriumwere 
onsidered.Numeri
al setup and grid arrangementThe 
omputational domain was re
tangular with height H and length L, as illustrated inFig. 5.15. The domain was partially �lled with water and air. The water depth h was
L1 L2 L3

h

H2

H3

H1

L

γB

y

xH

Figure 5.15: Grid arrangement used for numeri
al simulations of freely �oatingbodies. Constant grid spa
ing ∆x was applied at the body position in the regionof length γB, and in L1 and L3. Grid stret
hing was used to merge the �ne gridat the model position with the 
oarser grid at L1 and L3. In the verti
al dire
tion,grid stret
hing is applied over H1 and H2, while a �ne grid with 
onstant spa
ingis applied over H2.varied in the tests and is spe
i�ed for ea
h 
ase 
onsidered. A 
oordinate system Oxywas de�ned in the middle of the domain with origin in the 
alm free surfa
e. Positive
x−dire
tion was de�ned to the right, while positive y−dire
tion was upwards. Simulationswhere a re
tangular �oater or a 
ir
ular �oater was introdu
ed into the domain wereperformed. The re
tangular �oater had breadth B = 2.0m and height Hb = 1.0m, whilethe diameter of the 
ir
ular �oater was D = 2.0m. The mass of the �oater was spe
i�edas input to the simulations, and the 
enter of gravity (COG) was de�ned to be at thearea 
enter of the body. Heave motion of the body η3(t) was then de�ned to be theverti
al 
oordinate of the instantaneous position of the COG for the body tested. Ano-slip 
ondition for the �uid velo
ity was imposed on the bottom boundary and on theside boundaries of the domain. No-slip was also imposed on the body boundary. Thetop boundary of the 
omputational domain was modelled open with a 
onstant referen
epressure equal to the atmospheri
 pressure.
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Figure 5.16: Verti
al position η3(t) of COG of the �oater obtained from numeri
alsimulations with theoreti
al equilibrium position as the initial position. Resultssuggests that the numeri
al equilibrium position 
onverges to the theoreti
alequilibrium position. The heave motion is normalized by H/2 of the �oater.Grid stret
hing was applied in order to redu
e the CPU time for the simulations. Asfor the grids used in the simulations of bodies with for
ed motions in the previous se
tion,the 
omputational domain was also here divided into regions Li and Hi with i = 1, 2, 3,where di�erent gridding strategies were applied. The di�erent grid zones are depi
ted inFig. 5.15. The horizontal grid line spa
ing ∆y was kept 
onstant in the free surfa
e zone
H2, while the grid line spa
ing was des
ribed by an exponential fun
tion in H1 and H3.The spa
ings between the verti
al grid lines, ∆x, was 
onstant over a region γB at themodel position. Away from the model position, in L1 and L3, 
onstant but larger gridline spa
ings were used. Stret
hing of the grid was used in L2 to merge the �ne grid atthe model position with the 
oarser grid in L1 and L3. Smooth variations of the gridin
rements ∆x and ∆y were ensured.5.9.1 Test of equilibriumFirst we 
onsider the most simple veri�
ation test 
ase for a freely �oating body, whi
his the hydrostati
 problem of a body �oating at its equilibrium position. The re
tangularbody was pla
ed with the COG at the origin, i.e. η3(0) = 0. As the COG was pla
ed atthe area 
enter of the body, the initial draft was d = 0.5m. For this to be the draft atequilibrium of the body, the body mass was estimated using Ar
himedes law. Ar
himedeslaw states that the weight of a body �oating in water is equal to the weight of the waterdispla
ed by the body. Hen
e, the body mass was found as m = ρwBd, where ρw isthe mass density of water. Numeri
al simulations with the given initial 
onditions wereperformed on three grids of di�erent resolution in order to 
he
k for grid 
onvergen
e of the
omputed equilibrium position. Computed time-series of the verti
al position η3(t) of theCOG of the re
tangular body are 
ompared in Fig. 5.16. The results shows that the �oaterstarts to os
illate as in a free de
ay test. This means that the initial position of the body
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orrespond to the equilibrium position of the body with the given mass. Althougha steady state 
ondition of the verti
al position was not rea
hed within the length of thesimulations, the 
omputed heave motion η3 seemed to 
onverge towards a positive valueless than 1mm or 0.15% relative to the draft. This 
an be explained as follows. Due tothe mass density of the air, ρa, also the part of the 
omputational domain o

upied by theair represents a pressure gradient �eld. Hen
e, also displa
ement of air by the body yieldsa buoyan
y for
e. Balan
e of stati
 for
es on the re
tangular body �oating with zero rollangle at equilibrium with draft de 
an be expressed as mg = ρagB(Hb − de) + ρwgBde,where g is a

eleration of gravity. Thus, the theoreti
al draft of the re
tangular bodywhen �oating with zero roll angle at equilibrium is
de =

m− ρaA

B(ρw − ρa)
, (5.54)where A = BHb is the area en
losed by the body boundary. The theoreti
al equilibriumposition is then η3(t→∞) = d−de, whi
h is shown in Fig. 5.16 as the straight horizontalline. We observe that the heave motion of the re
tangular body seems to 
onverge towardsa value in agreement with the theoreti
al equilibrium position.5.9.2 Free de
ay of the heaving motionWhen simulating free de
ay tests in heave of the �oaters, we wanted the draft at equi-librium for the re
tangular body and the 
ir
ular body to be de = 0.5Hb and de = 0.5D,respe
tively. Based on the above dis
ussion, the body mass for the free de
ay tests wasobtained as m = 0.5A(ρa+ρw) where A = BHb for the re
tangular �oater and A = πD2/4for the 
ir
ular �oater. Then η3 = 0 
orresponds to the equilibrium position.Simulations were performed with the �oaters initially being positioned in the freesurfa
e with a verti
al o�set from the equilibrium position and with x = 0 as the horizontal
oordinate of the COG. At time t = 0 the �oater was released and started an os
illatoryheave motion until equilibrium was rea
hed. The frequen
y of os
illation approa
hedthe heave natural frequen
y for the model 
onsidered. For the 
ase of the re
tangular�oater with beam to draft ratio B/d = 4 at equilibrium, the natural period in heave is

Tn = 2.195s a

ording to potential �ow theory.The os
illation amplitude of the verti
al motion obtained from numeri
al simulationswill de
ay due to wave radiation damping and due to vis
ous e�e
ts from �ow separationat the sharp 
orners of the model.Skin fri
tion may also have 
ontributed to the damping of the heave motion, but isnot in
luded in the numeri
al model.Obtained time series of the heaving motion of the �oaters are 
ompared with potentialtheory results provided by Yeung (1982) for the 
ase of a re
tangular model, and resultsby Maskell and Ursell (1970) based on previous work by Ursell (1964) for the 
ase of the
ir
ular model. The data used for 
omparison are obtained from deep water 
onditions.In�uen
e of water depthThree simulations where the water depth h is varied from h/λ = 0.5 to h/λ = 1.0 are
ompared with data from Yeung (1982) in Fig.5.18. Here λ is the wave length of the lineardeep water wave with wave frequen
y is equal to the natural frequen
y of the heaving
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Figure 5.17: Verti
al motion η3(t) of COG of the 
ir
ular �oater obtained fromnumeri
al free de
ay tests. The verti
al motion is normalized by the initialverti
al o�set from equilibrium position, whi
h is 5% of the radius of the 
ylinder.motion of the �oater. The resulting time series of the verti
al motion shows that a waterdepth of h = 0.5λ, whi
h is 
ommonly used as a limit for deep water 
onditions, is notsu�
ient to give a water depth-independent solution. The length of the domain is hereset to L = 7λ.
In�uen
e of domain lengthInitially when the �oater starts to move, all wave frequen
ies will be ex
ited theoreti
ally.This means there is a possibility for some of the radiated waves to travel to the end of the
omputational domain and rea
h ba
k to the model position within the time window ofsimulation. Further is the data used for 
omparison for the free de
ay tests obtained fromBEM-
al
ulations with deep water 
onditions. Hen
e the length of the 
omputationaldomain and the water depth are physi
al parameters that will in�uen
e the results of theheaving motion if they are taken too small. A parameter study is performed for the 
aseof the heaving re
tangular 
ylinder, where the length of the 
omputational domain andthe water depth is varied systemati
ally. This is dis
ussed in the following.Now, the water depth is kept 
onstant at h/λ = 1.0, while the length of the domain isvaried. The grid spa
ing ∆x is held 
onstant when the length of the domain is extended,su
h that the resolution of the radiated waves is not a�e
ted by the domain elongation.Results for the heaving motion of the re
tangular 
ylinder obtained using three di�erentdomain lengths L = [5λ, 7λ, 9λ] are presented in Fig.5.19. The obtained time seriesdeviates from the theory towards the end of the simulation. Sin
e this deviation dependson the domain length, it is reasonable to believe that wave re�e
tions from the side wallsof the domain in�uen
e the results.
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Figure 5.18: Verti
al motion η3(t) of COG of the re
tangular �oater obtainedfrom numeri
al simulations of free de
ay tests for di�erent water depths h. Theverti
al motion is normalized by the initial verti
al o�set from equilibrium posi-tion, whi
h is 2.5% of the draft.
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Figure 5.19: Verti
al motion η3(t) of COG of the re
tangular �oater obtainedfrom numeri
al simulations of free de
ay tests for di�erent lengths L of the do-main of 
omputation. The verti
al motion is normalized by the initial verti
alo�set from equilibrium position, whi
h is 2.5% of the draft.
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ation studies5.10 Summary of the veri�
ation testsIn this 
hapter, we have presented many of the 
ases that have been tested to verify theimplementation of the present numeri
al model. First, the di�erent steps of the adoptedfra
tional step method were tested separately, where we 
on
luded that the implementa-tion of all steps was 
orre
t as obtained results were in agreement with theory. Then, the
omplete �ow solver was tested for one-phase �ow and for two-phase �ow problems. Theintrodu
tion of a solid body inside the domain was tested, and satisfa
tion of the no-slipboundary 
ondition on the body boundary was 
he
ked. The implemented method for
al
ulation of pressure for
es on the body was veri�ed. Further, the heave equation ofmotion for the body was veri�ed through simulations of free de
ay tests.Based on the results from all of these veri�
ation tests, we feel 
on�dent that our nu-meri
al model is 
orre
tly implemented. Hen
e, if our mathemati
al model is an adequaterepresentation of the reality, we believe that our numeri
al wave tank (NWT) will be agood tool for investigation of wave for
es and wave indu
ed motions of the �oaters of �shfarms.



Chapter 6Model testsAs a part of the present study, two sets of model tests have been 
ondu
ted. The �rst setwas a

omplished in November 2006 and the other in September-O
tober 2008. In bothexperiments the models tested were 
ylinders oriented with the 
ylinder axis horizontallyin the free surfa
e zone and subje
ted to regular waves. Two-dimensional �ow 
onditionswere sought, su
h that measurements 
ould be 
ompared with results from numeri
alsimulations with the 2D numeri
al wave tank.In the model tests 
ondu
ted in 2006, the wave loads on �xed horizontal 
ylinders inthe free surfa
e were studied. Fo
us were put on nonlinear e�e
ts like wave over-topping onthe models and how su
h events in�uen
e the wave loading. Measurements were intendedfor use as validation data to the 2D NWT for 
omputations of wave loads on �xed bodiesin the free surfa
e. Results from these experiments have been published in two 
onferen
epapers (Kristiansen and Faltinsen 2008a; Kristiansen and Faltinsen 2008b). Some resultshave also been utilized by Vestbøstad et al. (2007).The experiments from 2008 were addressing the wave indu
ed motions of a moored
ir
ular 
ylinder in regular waves. Again we wanted to obtain validation data for theNWT, but now with respe
t to the 
omputation of nonlinear wave-indu
ed body motions.Results from these experiments were published in Kristiansen and Faltinsen (2009).6.1 Over-topping on �xed horizontal 
ylinders in wavesModel tests addressing wave loads on �xed horizontal 
ylinders in regular waves were
ondu
ted in November 2006. Wave ex
itation for
es on the models in the horizontalin-line dire
tion and in the verti
al dire
tion were measured. Also measurements of thewave elevation at some positions in the �ume were performed. As the measurements wereto be used for 
omparison with results from numeri
al simulations with the 2D NWT, wewanted the �ow 
onditions in the model tests to be two-dimensional. We found that anappropriate wave �ume for our model tests was the narrow wave �ume at the Division ofMarine Civil Engineering, NTNU. This �ume is 26.5m long and 0.60m wide and has side-walls of transparent Plexiglas, whi
h is bene�
ial for good visual observation of the waves.The maximum possible water depth in the �ume is 0.65m. The �ume is equipped with apiston-type wavemaker from DHI (www.dhi.
om), with the wave-board ranging from thebottom of the �ume to above the free surfa
e. An a
tive wave absorber 
ontrol system(AWACS) is in
luded in the wavemaker software, whi
h absorbs the waves re�e
ted from93
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Figure 6.1: S
hemati
 view of the test setup in the �ume from the model testsin 2006. On top a side view of the �ume is shown, while a top view is depi
tedbelow. Positions of the eight wave gauges (WG) are marked by verti
al lines and�×�.Table 6.1: Main dimensions of the two models used in the experiments. Bothmodels are made of aluminium and are sti� stru
tures.Quantity Symbol ValueCir
ular 
ylinder: Diameter [m℄ D 0.300Length [m℄ l 0.590Re
tangular 
ylinder: Breadth [m℄ a 0.300Height [m℄ b 0.250Length [m℄ l 0.590the model to the wavemaker. This allows for long test runs without the time limitation
aused by waves being re�e
ted from the model to the wavemaker and ba
k to the modelposition. In addition, the AWACS showed to be e�e
tive for damping out waves andmaking the water surfa
e 
alm after ea
h test run, redu
ing the waiting time betweenthe runs. At the opposite end of the �ume from the wavemaker a 5m long paraboli
bea
h is mounted for wave absorption. The bea
h is 
overed by a rough, porous mat toin
rease its energy dissipation ability. A qualitative sket
h of the �ume is presented in Fig.6.1. The wavemaker software applies linear wavemaker theory to estimate the ne
essarystroke of the wave board for generating waves with a given wave height. However, thepredi
ted stroke is often not su�
ient for generating waves with the input wave height.One explanation of this problem is leakage around the wave board, whi
h 
auses a redu
ede�
ien
y of the wavemaker (Hughes 1993). To 
ompensate for the redu
ed e�
ien
y, thesoftware provides a fudge fa
tor Cs for tuning the stroke of the wave board su
h that theinput wave height is obtained.6.1.1 Models, test setup and instrumentationTwo 
ylindri
al models were tested. One model had a 
ir
ular 
ross-se
tion, while theother had a re
tangular 
ross-se
tion. The length (transverse dimension) of both modelswas l = 0.590m, leaving a 5mm 
learan
e to both side-walls of the �ume to avoid 
onta
t.Model dimensions are listed in Tab. 6.1. The model tested was �xed at a distan
e
Lm = 14.31m from the wavemaker, measured from the mean position of the paddle to
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Figure 6.2: From the wave laboratory. The 
ir
ular model, seen to the far left,is mounted to the rig. The photo is taken towards the wavemaker side of the�ume.the 
ylinder axis. This means the distan
e from the model to the start of the bea
h wasabout 7.2m. It was ensured that the 
ylinder axis was perpendi
ular to the side walls ofthe �ume and hen
e parallel to the wave 
rests of the in
oming waves. The water depthduring all tests was h = 0.54m.Choi
e of test parametersTest parameters were the wave period T , wave steepness ε and model draft d. Onlyregular waves were 
onsidered. Ten wave periods were dedu
ed from wave lengths λ0 ofdeep water waves, linearly spa
ed from 5 to 15 times the beam of the models. This yieldedwave periods in the range from 0.98s to 1.70s. Three wave steepnesses were tested. Thewave steepness were based on deep water waves as ε = H0/λ0, where H0 is the deep waterwave height. For long waves relative to the water depth, e�e
ts of �nite water depthwill in�uen
e on the wave height and the wave length and make a wave generally steeperthan the 
orresponding deep water wave. This 
auses the a
tual wave steepness in the�ume to di�er, in
reasingly with the wave period, from the 
orresponding deep waterwave steepness. Ten wave periods and three wave steepnesses yielded 30 di�erent wave
onditions, whi
h are presented in Tab. 6.2. Ea
h model was tested at three di�erentdrafts for all wave 
onditions. The non-dimensional parameter κ was introdu
ed, whi
his the draft normalized by the height of the model 
ross-se
tion. This means that for the
ir
ular 
ylinder κ = d/D, while for the re
tangular 
ylinder κ = d/b. For both modelsand all the wave 
onditions, κ = [0.2, 0.5, 0.8] were tested. A test matrix was madebased on the three test parameters whi
h was wave period, wave steepness and modeldraft. A run index was 
omposed of four numbers, where the �rst one was used to spe
ify



96 Model testsTable 6.2: Chara
teristi
s of the test waves. Due to e�e
ts of �nite water depth,the height, length and hen
e also the steepness of the generated waves will bemodi�ed. ε = H0/λ0 is the deep water wave steepness, while H and λ are the
omputed wave height and wave length from linear potential �ow theory for �nitewater depth (h = 0.54m).
ε = 1/50 ε = 1/30 ε = 1/20

T [s℄ λ0 [m℄ λ [m℄ H [m℄ H/λ H [m℄ H/λ H [m℄ H/λ0.981 1.503 1.474 0.029 0.0197 0.048 0.0329 0.073 0.04931.084 1.835 1.760 0.035 0.0198 0.058 0.0329 0.087 0.04941.179 2.170 2.026 0.041 0.0200 0.068 0.0333 0.101 0.04991.266 2.502 2.267 0.046 0.0204 0.077 0.0339 0.115 0.05091.348 2.837 2.492 0.052 0.0209 0.088 0.0348 0.130 0.05221.425 3.170 2.701 0.058 0.0214 0.097 0.0357 0.145 0.05361.498 3.504 2.898 0.064 0.0221 0.107 0.0368 0.160 0.05521.568 3.839 3.082 0.070 0.0228 0.117 0.0380 0.176 0.05691.634 4.169 3.256 0.076 0.0235 0.127 0.0391 0.191 0.05871.698 4.502 3.423 0.083 0.0242 0.138 0.0403 0.207 0.0605geometry and submergen
e, ex
ept for the 8000-series whi
h is the wave 
alibration tests.The se
ond number indi
ated the wave steepness while the third referred to the waveperiod. Finally, the last number in the run index was reserved for repetition tests orre-runs. Some 
auses of re-runs were deleted values during data a
quisition be
ause themeasured for
es or wave elevation 
aused voltage signals that were out of range relativeto that spe
i�ed in the 
alibration �le for the logging system software. The test matrixis presented in Tab. C.1 in appendix C.1.Data a
quisitionWave ex
itation for
es on the model for the verti
al dire
tion and the horizontal in-linedire
tion were measured. Free surfa
e elevation was also measured. Data a
quisition wasperformed as des
ribed below.Surfa
e elevationwas measured with eight wave gauges distributed in the �ume. Thewave gauges are denoted WG 1 - WG 8 and their position in the �ume are qualitativelyshown in Fig. 6.1. The wave gauges were of the 
apa
itan
e type and 
omposed of twoparallel steel rods, ea
h 3mm thi
k, 7mm apart. Close to the model, two wave gaugeswere pla
ed at the same longitudinal position but at di�erent positions in the transversedire
tion in order to 
he
k for two-dimensionality of the waves. This was done on boththe wavemaker side and the bea
h side of the model.Wave run-up was measured using two strips of 
opper tape that were glued onto themodel surfa
e on the side fa
ing the wavemaker. The 
opper tape was 12mm wide andthe strips were separated by 7mm.Ex
itation for
es were measured as the 
lamping for
es of the models. For thispurpose, three for
e transdu
ers (for
e rings) were mounted between two 12 mm thi
k
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ylinders in waves 97aluminium plates. All three for
e transdu
ers were aligned in the same dire
tion. Ea
hfor
e transdu
er was able to measure for
es in three dire
tions. Due to la
k of 
hannelson the ampli�er, for
es were only measured in the verti
al dire
tion and in the horizontalin-line dire
tion.Lo
al free surfa
e elevation at the model position were 
aptured by a high speed
amera of type IDT, using a sampling frequen
y of 200 frames per se
ond (fps). For ea
hrun, 600 frames were re
orded, whi
h for the given sampling frequen
y 
overs 3 se
ondsin real time. During re
ording with the high speed 
amera, a voltage signal was sent tothe logging system su
h that the exa
t time window of the re
ording within the test run
ould be obtained.Wavemaker piston motion was logged. At start-up, the wave-board had a linear gainup of the piston motion, lasting for 5 se
onds, until full gain was rea
hed.A Hottinger-Balwin KWS ampli�er was used to amplify the voltage signals from thefor
e transdu
ers, while a separate Hottinger ampli�er was used for the wave probes. ADHI Filter Cabinet 154/IF was used for analog to digital 
onversion of the signals. No�ltering of the signals was performed before logging. A
quisition data were stored witha sampling frequen
y of 200Hz by the DHI Wave Synthesizer software, ex
ept from thewave-maker motion whi
h was logged with a sampling frequen
y of 60Hz. Typi
al testduration (duration of data a
quisition) was 60 se
onds. That in
ludes 10 se
onds of dataa
quisition before the linear gain up of the wave maker.6.1.2 Measurements and observationsAll measurements were band pass �ltered with flow = 0.35Hz and fhigh = 6.0Hz as thelower and higher 
ut-o� frequen
ies, respe
tively. A one sided Gaussian envelope wasused at the 
ut-o� frequen
ies in order to avoid beating e�e
ts in the reprodu
ed timeseries. The linear-, se
ond- and third order harmoni
 
omponents of the measured signalswere studied. Repetition tests were 
ondu
ted for �ve of the test 
onditions, where �verepetitions were performed for ea
h test. To quantify the repeatability of a measuredvariable, the relative error de�ned as σ/µ · 100% was used, where µ is the mean value and
σ is the standard deviation of the variable 
onsidered. Relative error of the for
e amplitudein the steady state regime was less than 1.5%, even for 
ases where wave overtopping onthe model o

ured. For the measured wave elevation, the relative error was 4% or less.Thus, the obtained time series showed good repeatability. Statisti
s from the repetitiontests are presented in appendix C.1.1. Measured stroke of the steady state piston motion
S and the resulting fully non-linear wave amplitudes ζ+

A and ζ−
A measured with wave gaugeWG3 from the wave 
alibration tests are listed in Tab. 6.3. Here, ζ+

A and ζ−
A refer tothe positive and the negative wave amplitude, respe
tively. WG 3 is lo
ated 0.356m fromthe 
ylinder axis towards the wavemaker. The fudge fa
tor Cs = 1.1 in the wave makersoftware was ne
essary in order to obtain the wanted wave height. The need for s
alingof the piston stroke estimated by linear potential �ow theory (linear wavemaker theory)is explained by energy loss due to leakage through the gap between the wave board andthe �ume walls (Hughes 1993).Fully non-linear for
e amplitudesA+ and A− (positive and negative respe
tively) in the



98 Model testsTable 6.3: Measured wave maker stroke S and measured resulting fully non-linearwave amplitudes (positive ζ+
A and negative ζ−

A ) at wave gauge 3 from the wave
alibration tests. H0/λ0 is the 
orresponding deep water linear wave steepness.
H0/λ0 = 1/50 H0/λ0 = 1/30 H0/λ0 = 1/20

Tp [s℄ λ [m℄ S [m℄ ζ+
A [m℄ ζ−

A [m℄ S [m℄ ζ+
A [m℄ ζ−

A [m℄ S [m℄ ζ+
A [m℄ ζ−

A [m℄0.981 1.472 0.017 0.015 -0.014 0.030 0.025 -0.023 N.A. N.A. N.A.1.084 1.760 0.023 0.018 -0.017 0.038 0.032 -0.027 0.057 0.051 -0.0391.179 2.024 0.029 0.020 -0.019 0.048 0.036 -0.032 0.072 0.059 -0.0441.266 2.267 0.034 0.024 -0.022 0.057 0.041 -0.034 0.086 0.064 -0.0491.348 2.491 0.041 0.025 -0.023 0.069 0.042 -0.038 0.103 0.072 -0.0501.425 2.700 0.048 0.027 -0.026 0.080 0.047 -0.042 0.121 0.081 -0.0541.498 2.896 0.055 0.030 -0.027 0.092 0.051 -0.044 0.139 0.088 -0.0571.568 3.081 0.063 0.032 -0.028 0.104 0.057 -0.045 N.A. N.A. N.A.1.634 3.257 0.070 0.034 -0.030 0.117 0.065 -0.044 0.176 0.096 -0.0651.698 3.424 0.079 0.038 -0.031 0.131 0.063 -0.052 N.A. N.A. N.A.steady state regime for the 
ir
ular 
ylinder are plotted in Fig. 6.3 and for the re
tangular
ylinder in Fig. 6.4. Measured for
es are normalized by the hydrostati
 buoyan
y for
e
FB = ρgV0 
orresponding to the fully submerged model. Thus, V0 = (π/4)D2l for the
ir
ular 
ylinder and V0 = abl for the re
tangular 
ylinder. Figures 6.5 and 6.6 show thatwhen κ = 0.5, the measured for
es are nearly linear with respe
t to the wave steepnessfor both models. Nonlinearities of the wave ex
itation for
es are observed when κ = 0.2and κ = 0.8. The nonlinearities are most pronoun
ed for the 
ir
ular 
ylinder.Over-topping did o

ur on both models for all wave periods when H0/λ0 = 1/20 and
κ = 0.8. For the 
ir
ular 
ylinder, the over-topping wave was atta
hed to the modelsurfa
e during the whole over-topping pro
ess as shown in Fig. 6.7. Over-topping on there
tangular 
ylinder was somewhat di�erent. The over-topping wave had a dam-breaklike behaviour, until the front of water separated at the leeward top edge of the model.6.1.3 Dis
ussion of possible errorsWhen using model tests for validation of numeri
al models, it is easy, but dangerous, to
onsider model test results as the �true story�. Generally, as for numeri
al 
omputations,also model test results may 
ontain some or 
onsiderable errors. Thus it is importantto identify the possible sour
es of errors in the experiments and quantify these. Wedistinguish between pre
ision errors and biased errors. Pre
ision errors are somewhateasy to handle sin
e they are sto
hasti
 of nature and 
an be estimated by repetitiontests. From the 
omputed relative error in the repetition tests presented, we see thatpre
ision errors are small. Biased errors are systemati
 errors that 
an be di�
ult todis
over. However, there are general pro
edures for how to pro
eed in order to dis
overbiased errors. One pro
edure is to repeat the experiment at di�erent repli
ation levels(Ersdal 2004), e.g. by repeating the experiment after re-rigging, or by repeating theexperiment in a di�erent laboratory. We will now dis
uss some possible sour
es to errorsin the experiments.Two-dimensional �ow 
onditions were sought in the tests. This means 3D �ow e�e
tsmay lead to biased errors in the measured free surfa
e elevation as well as in the measured
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e amplitudes for the re
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ylinder asfun
tion of mean in
ident wave amplitude.for
es. Examples of su
h 3D e�e
ts are transverse sloshing, whi
h is standing waves inthe transverse dire
tion of the �ume. The natural periods of the �rst, se
ond and thirdsloshing mode is T t
1 = 0.880s, T t

2 = 0.620s and T t
3 = 0.506s. These sloshing periods are allsmaller than the test wave periods. However, these natural periods 
ould still be ex
itedby higher harmoni
 
omponents of the tested waves in 
ombination with imperfe
tions ofthe wavemaker or the model. An example of su
h imperfe
tions are the gaps between themodel and the side walls of the �ume, whi
h may 
ause disturban
es on the free surfa
e.There is also a gap between the wave-board and the tank walls whi
h is of order 1
mthat may ex
ite the transverse sloshing. To 
he
k if transverse sloshing did appear in theexperiments, two wave gauges were distributed in the transverse dire
tion of the �ume
lose to the model position. This was done on both sides of the model (
f. Fig. 6.1).Transverse sloshing was observed for some of the tests with the steepest waves (ε = 1/20).The se
ond sloshing mode was observed for some tests with the wave periods T = 1.43sand T = 1.50s. The �rst sloshing mode was observed for some tests with wave period

T = 1.57s, whi
h is 
lose to two times the sloshing period for the �rst mode. Sloshing
an also o

ur in the longitudinal dire
tion of the �ume. The �rst sloshing mode for thelongitudinal dire
tion is referred to as sei
hing. Due to the length of the �ume relative tothe water depth, sei
hing is 
hara
terized by a shallow water wave. The sei
hing periodof the �ume (�rst natural period of longitudinal sloshing) is T s
1 = 23s. No sei
hing ofsigni�
an
e was observed in the experiments.6.1.4 Summary of resultsWave 
alibration tests was performed for all test wave 
onditions and a fudge fa
tor of

Cs = 1.1 to s
ale the stroke of the wave board was needed to obtain the input waveheight. The generated waves showed good repeatability, with a relative error less than4% for the wave heights measured from the repetition tests. Waves overtopping on the
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(a) t = t0 (b) t = t0 + T/6

(
) t = t0 + 2T/6 (d) t = t0 + 3T/6

(e) t = t0 + 4T/6 (f) t = t0 + 5T/6Figure 6.7: Over-topping on the 
ir
ular 
ylinder for d/D = 0.8, T = 1.348s and
H0/λ0 = 1/20. The wave is propagating from the right to the left. In (b), air issu
ked from the surfa
e into the water domain due to a low pressure zone at theright hand side of the model. The surfa
e of the over-topping wave is smoothand the wave does not separate from the body.
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ured for some of the test 
onditions. However, no out-of-water event wasobserved. Also the repeatability of the measured for
es were good with relative errors lessthan 1.5%, even for the tests with overtopping.
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ed motions of a moored horizontal 
ylin-derModel tests were performed in the turn of the month from September to O
tober 2008with the purpose to study the wave indu
ed motions of a moored horizontal 
ylinder, andto obtain validation data for the NWT. Only regular waves were 
onsidered.We wanted to investigate the wave-indu
ed motions of �oaters of �sh farms. Thereexist many 
on�gurations of �oaters and �oating 
ollars for �sh farms, so we de
idedto 
hoose a geometry for our model whi
h was representative for �sh farms. Hen
e our
hoi
e felt on a 
ylinder with a 
ir
ular 
ross-se
tion. The model s
ale was based onan existing steel-stru
ture �sh farm designed for exposed lo
ations. This stru
ture is
hara
terized by square �oating 
ollars that are formed by four 
ir
ular 
ylinders that arerigidly 
onne
ted. The diameter of the 
ylinders in full s
ale is 1m. The global stru
tureis elasti
, and typi
al values for the wet natural period of the �rst elasti
 mode of the�oater are in the order of 2-3 se
onds (Lien 2009). This is 
onsidered when de
iding the
hara
teristi
s of the mooring line system in the experiments.6.2.1 The laboratory, model and test setupThe experiments were 
ondu
ted in a narrow wave �ume at the Department of MarineTe
hnology, NTNU. The �ume is 
onstru
ted from steel frames with glass-plates for thewalls and bottom. This makes the �ume very suitable for visual observations of waves,whi
h in addition to availability and low 
ost was the main reason for 
hoi
e of laboratory.Further, the fa
t that the �ume is narrow makes it also bene�
ial for tests where 2D �ow
onditions are wanted. The �ume measures 13.67m of length, 0.60m of breadth and 1.30mof height, and is designed for a water depth of 1.0m. For wave generation, the �ume isequipped with a single-�ap wavemaker where the paddle is hinged 10
m above the bottomof the �ume and extends through the free surfa
e. The wavemaker is 
omputer-
ontrolledand 
apable of generating regular waves as well as irregular waves. Unfortunately, thewavemaker software do not provide an a
tive wave absorption 
ontrol system. This puta limit on the duration of the test runs. At the opposite end from the wavemaker, a
onventional bea
h with a paraboli
-ar
 shape is mounted for wave absorption.The model s
ale was 1/10 and a 
ylindri
al model with a 
ir
ular 
ross-se
tion ofdiameter D = 0.100m was tested. The model was 
omposed of a 0.580m long 
ir
ularpipe of transparent plexi-glass with a inner 
ore of diviny
ell. Wall thi
kness of the pipewas 3.1mm. The model was 
onsidered rigid. We wanted the model mass to be 
onstantduring the tests, whi
h means we had to avoid water to enter the interior of the model.Sin
e diviny
ell absorbs water, the pipe had to be sealed at the ends. For this purposetight plugs of polyethylene were 
ut on the lathe su
h that they perfe
tly entered the pipe.In addition, waterproof 
lay was used for sealing the joints. Due to the transparen
y ofthe pipe, any leakage would easily be dis
overed. However, 
ontrol weighing of the modelafter several hours in water was performed to 
he
k for waterproofness. To redu
e 3D-�ow e�e
ts at the ends of the model, end-plates made from transparent plexi-glass wereapplied. The end-plates were 5mm thi
k and shaped 
ir
ular with diameter of 0.30m.This means the overall length of the model with the end-plates was L = 0.590m and a5mm gap was obtained between the end-plates and the tank walls to avoid 
onta
t. The
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Figure 6.8: The model when moored and ready for testing. The bla
k 
ables are
onne
ted to the a

elerometers inside the model.dry mass of the model was measured to be M = 2.50kg.The model was pla
ed a distan
e 6.50m from the hinge of the wave paddle and kepton its position by four mooring lines. A pi
ture of the moored �oating model in pla
e atthe desired lo
ation is shown in Fig. 6.8. The mooring lines were fastened to the edge ofthe end-plates of the model, yielding an in
reased sti�ness in roll. Two lines were appliedon the wave maker side of the model, while for the side of the model fa
ing the bea
h,two lines whi
h were atta
hed to the model met to form a 
rowfoot. Thus, the totalnumber of mooring lines atta
hed to the rig was three. Ea
h mooring line were pointingnearly horizontally from the model position, making an angle α = 3.2◦ with the 
almwater surfa
e. Three pulleys were used to dire
t the mooring lines upwards before theywere atta
hed to linear springs. The springs were then loaded in the verti
al dire
tion.This was to avoid transverse dynami
s due to the mass of the spring, whi
h 
ould have
ontaminated the for
e measurements. Although not observed, transverse dynami
s ofthe springs 
ould still o

ur due to Mathieu-instability (M
La
hlan 1964). The upperend of the springs were mounted to for
e transdu
ers of type Hottinger Baldwin (18kg).A qualitative sket
h of the mooring system is given in Fig. 6.9.6.2.2 Choi
e of test 
onditionsWe wanted the test waves in the experiments to be representative for a typi
al designwave 
ondition for �oating �sh farms. Design wave 
onditions for �oating �sh farms aredes
ribed in se
tion 2.2. Only regular waves were 
onsidered. For the most extreme designwaves presented in Tab. 2.2, the waves are long 
ompared to the 
ylinder diameter. Thismeans that if the full s
ale �oater was exposed to su
h waves, the �oater would be in thesti�ness dominated regime of the heave response 
urve and only �oat on top of the waves.This is not very interesting from a hydrodynami
 point of view. More interesting are the
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Figure 6.9: Model test setup for the �oating 
ir
ular 
ylinder. The model is kepton its lo
ation by mooring lines atta
hed to springs. Spring for
es are measuredby for
e transdu
ers. Pulleys are used to dire
t the mooring lines to the 
ylinderwhile keeping the springs oriented verti
ally.wave periods that leads to resonant motion of the �oater. The test waves were 
hosen to
over the regions where resonan
e of the heave motion and the sway motion o

ur. Thenatural periods in heave and sway for the model were estimated using linear potential�ow theory and were found as the peaks of the response 
urve for the 
onsidered mode ofmotion. The response 
urves were found as follows. We assumed that the heave and swaymodes were un
oupled, su
h that the un
oupled linear equations of motion 
ould be used.Further, roll is negligible as the 
enter of gravity (COG) of the body is lo
ated at the
ylinder axis, meaning that the pressure for
es on the 
ylinder surfa
e 
annot yield a rollmoment about the COG. This yielded the following expression for the response amplitude
ηka relative to the in
ident wave height H ,

ηka

0.5H
=

Fka/ (0.5H)
√

(ckk − ω2 (m + akk))
2 + ω2b2

kk

, (6.1)with k = 2, 3 referring to the sway and heave mode of motion, respe
tively. Further, m isthe stru
tural mass of the model per unit length, akk and bkk are the frequen
y dependent2D added mass and damping 
oe�
ients from potential �ow theory (Skeji
 2008), ckkis the 2D restoring 
oe�
ient, ω is wave frequen
y, ρ is mass density of water while
g is the a

eleration of gravity. The 2D ex
itation for
e amplitude Fka is related to thepotential damping 
oe�
ient bkk as Fka = 0.5H

√

ρg2bkk/ω (Newman 1962). The restoring
oe�
ient for heave is c33 = ρgD, where D is the 
ylinder diameter. The natural periodin heave was predi
ted to be Tn3 = 0.518s, when the e�e
t of the mooring lines wasnegle
ted. For sway, the 2D restoring 
oe�
ient is found by dividing the sum of the givenspring 
oe�
ients by the model length as c22 = (k1 + k2 + k3)/Lm. In order to obtain anatural frequen
y in sway representative for the elasti
 modes of a steel type �sh farm,the spring sti�nesses were 
hosen to be k1 = 43.7N/m and k2 = 43.5N/m for the twosprings at the wavemaker side, while for the spring on the bea
h side the sti�ness was
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k3 = 88.2N/m. Using the given spring 
oe�
ients in the sway natural period of the modelwas found to be Tn2 = 1.09s. Based on the obtained response 
urves for heave and swayof the model, ten test wave periods were 
hosen. For ea
h wave period, the two wavesteepnesses H/λ = 1/14 and H/λ = 1/10 were tested. This yielded a total of twenty testwave 
onditions whi
h are tabulated in Tab. 6.4.Table 6.4: Chara
teristi
s of the waves used in the experiments with the moored�oating 
ir
ular 
ylinder. Ten di�erent wave periods and two wave steepnessesyielded twenty test wave 
onditions.

H/λ = 1/14 H/λ = 1/10
T [s℄ λ [m℄ H [m℄ H [m℄ CG [m/s℄0.423 0.279 0.020 0.028 0.3300.457 0.326 0.023 0.033 0.3570.497 0.386 0.028 0.039 0.3880.544 0.462 0.033 0.046 0.4250.601 0.564 0.040 0.056 0.4690.672 0.705 0.050 0.071 0.5250.761 0.904 0.065 0.090 0.5940.878 1.204 0.086 0.120 0.6861.038 1.680 0.120 0.168 0.8131.132 1.993 0.142 0.199 0.8916.2.3 Instrumentation and measurementsThe main purpose with the experiments was to study the wave-indu
ed motions of themoored 
ylinder. However, the motions of the 
ylinder were not measured dire
tly, buthad to be dedu
ed from re
orded time-series of the body a

elerations. The a

elerationsof the model in heave, sway and roll were measured using six a

elerometers. Thesea

elerometers were mounted in grooves that were 
arved in the polyethylene end-plugs ofthe 
ylinder. Three a

elerometers were pla
ed at ea
h end of the model in order to verifythat the motion was 2D. A sket
h that shows the positions of the three a

elerometersrelative to the body-�xed 
oordinate system Ox′y′ in a 
ross-se
tional 
ut of the model ispresented in Fig. 6.10(a), where r1, r2 and r3 are the normal distan
es from the 
ylinderaxis to the position of the a

elerometers. The relation between the body-�xed 
oordinatesystem and the Earth-�xed 
oordinate system Oxy de�ned in Fig. 6.9 is shown in Fig.6.10(b). For the Earth-�xed 
oordinate system, the x−axis is in the 
alm water surfa
eand points in the wave propagation dire
tion while the y−axis is the verti
al 
oordinatewith positive dire
tion upwards. The z−axis represents the transverse 
oordinate withpositive dire
tion given by the right hand rule. We wanted the body motion to be planarand des
ribed by heave, sway and roll in the xy−plane.Tension in the mooring lines were measured by Hottinger Baldwin (18kg) for
e trans-du
ers that were �xed to the rig. These for
e transdu
ers proved to be very a

urate andstable.Traditional 
apa
itan
e wave gauges were used for measuring the free surfa
e elevationat six positions in the �ume. As for the model tests in 2006, 
lose to the model position two
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elerometers are positioned in the 
ross-se
tion as shown tothe left. Relation between the Earth-�xed 
oordinate system Oxyz and body-�xed 
oordinate system Ox′y′z′ is shown in the right �gure. It is only the angularmotion of the body-�xed 
oordinate system that has in�uen
e on the measureda

elerations relative to the Earth-�xed frame of referen
e.wave gauges were pla
ed at the same longitudinal (x−)position but at di�erent positionsin the transverse (z−) dire
tion in order to 
he
k for two-dimensionality of the waves.This was done on both the wavemaker side and the bea
h side of the model. Positionsof the six wave gauges used are listed in Tab. 6.5. For the longitudinal dire
tion, theposition of the wave gauges are given both relative to the wavemaker xwm and relative tothe model position x.Table 6.5: Position of wave gauges in the �ume relative to the mean position ofthe wavemaker xwm and relative to the initial model position x.Wave gauge xwm [m℄ x [m℄ z [m℄WG 1 4.00 -2.50 0.000WG 2 6.00 -0.50 -0.155WG 3 6.00 -0.50 0.155WG 4 7.00 0.50 -0.145WG 5 7.00 0.50 0.145WG 6 9.00 2.50 0.000Re
ordings of the model with a high-speed 
amera of type IDT Dante
 Dynami
s wereperformed, using an image sampling ratio of 50 frames per se
ond. The reason for therather low sampling frequen
y was to obtain longer re
ordings in real-time. For all test
ases, a time-window of 30 se
onds was re
orded, starting from 
alm water 
onditionssu
h that the transient build up of the body motions was 
aptured.The measured signals from all sensors went through a Hottinger Baldwin ampli�erof type MGCplus and the data a
quisition was performed with a sampling frequen
y of300Hz. All signals were �ltered using an analog Butterworth low-pass �lter with 
ut-o�frequen
y 80Hz. The Hottinger Baldwin software Catman was used for logging of themeasured data. All sensors were 
alibrated before measurements.
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ylinder 1096.2.4 Post-pro
essing of measured a

elerationsSin
e the a

elerometers are �xed to the moving body, they will measure a

elerations ax′and ay′ in the dire
tions given by the body-�xed 
oordinate system (x′, y′) as shown inFig. 6.10(a). Here, ay′ = 0.5 (ay′2 + ay′1). To obtain the body a

elerations at the 
enterof gravity of the body in the Earth-�xed 
oordinate system Oxy, the measured time-seriesof a

eleration must be mapped from the dire
tions given by the body-�xed 
oordinatesystem into the Earth-�xed frame of referen
e (see Fig. 6.10(b)). The e�e
t of angular(roll) a

eleration θ̈ = 0.5 (ay′2/r3 − ay′1/r2) must be a

ounted for. Further, if the body-�xed 
oordinate system is rotated with a roll angle θ relative to the Earth-�xed 
oordinatesystem, the measured a

elerations must be 
orre
ted for the a

eleration of gravity g.The instantaneous roll angle θ is found from time-integration of the roll a

eleration θ̈.A

elerations in the Earth-�xed referen
e frame, ax and ay referring to the horizontal andverti
al 
omponent respe
tively, are then 
al
ulated as
[

ax

ay

]

=

[

cos θ − sin θ
sin θ cos θ

] [

ax′

ay′

]

+ g

[

sin θ
cos θ − 1

]

+ θ̈

[

r1

r2 − r3

]

, (6.2)Details on the derivation of these expressions are given in Appendix C.2.1.Obtaining the body motionsThe body motions were obtained by time integration of the measured body a

elerations.One important aspe
t with integration of measured a

elerations is that measured timere
ords usually 
ontain noise at all frequen
ies. Espe
ially low-frequen
y noise is a problemwhen measured a

elerations are used to dedu
e the body motions. This is exempli�ed inthe following. Assume the measured horizontal a

eleration 
an be des
ribed by a Fourierseries as ẍ(t) =
∑N

j=1(Aj + ǫj) cos(ωjt + δj), where Aj is the Fourier amplitude for thefrequen
y interval represented by ωj of the model a

eleration, ǫj is the Fourier amplitudedue to noise in the measured signal and δj is the phase angle. Then, by integration weobtain the position x(t) = −
∑N

j=1 ω−2
j (Aj + ǫj) cos(ωjt+ δj). For low frequen
ies ωj ≪ 1,it is 
lear that noise in the measured a

eleration will have a major e�e
t on the errorof the 
omputed position if the noise amplitude ǫj is of the same order of magnitudeas the physi
al Fourier amplitude Aj . This means �ltering of the re
orded a

elerationsprior to integration is ne
essary. An estimate of the noise in the measured a

elerationsis obtained by taking the Fourier transform of the re
ordings in a time-window beforethe wavemaker is started and while the model is at rest. The noise level for the di�erentfrequen
ies are 
ompared with the Fourier transform of the 
omplete time-series of thea

elerations. This is then used to judge whi
h lower 
ut-frequen
y to apply when �ltering,whi
h is the lowest frequen
y where the Fourier amplitude of the noise is of 
omparableorder as the Fourier amplitude obtained from the total time-series. By inspe
tion ofthe Fourier transforms, we found that a lower 
ut-frequen
y fcut = 0.65fw, where fw isthe wave frequen
y, yielded good results for most 
ases (Fig. 6.11(a)). The ex
eptionwas when sub-harmoni
 response did o

ur at nearly half the wave frequen
y. Then alower 
ut-frequen
y fcut = (0.65fw)/2 was used, su
h that the physi
al sub-harmoni

omponents of the response were not removed when �ltering the signals (Fig. 6.11(b)).When the measured time-series of a

eleration is band-pass �ltered as des
ribed above,the a

eleration of the model in an Earth-�xed frame of referen
e is found using (C.1).
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(b) With sub-harmoni
sFigure 6.11: Fourier amplitude spe
tra used when 
hoosing the lower 
ut-frequen
y. When there is no sub-harmoni
 response, the lower 
ut-frequen
yis taken as fcut = 0.65fw whi
h is represented by the verti
al line in (a). For
ases when sub-harmoni
 response o

ur, the 
ut-frequen
y fcut = (0.65fw)/2 isused as shown in (b).The obtained body a

eleration ẍ(t) = [ax, ay]
T , where T is the transpose operator, isthen integrated numeri
ally using the trapezoidal rule (Kreyszig 1999) with the initial
ondition ẋ(0) = 0 to obtain the velo
ity of the model. The time-series of the modelvelo
ity is then band-pass �ltered, using the same pass-band as for the a

elerations.Repeating the integration pro
edure with initial 
ondition x(0) = x0, the body motion isobtained.An estimate of the sway motion 
ould also be obtained by dividing the measuredmooring line tension with the spring 
oe�
ient for the mooring line 
onsidered. Dueto small angles between the mooring lines and 
alm water surfa
e and the fa
t thatthe mooring lines were long relative to the 
ylinder diameter (
f. Fig. 6.9), this wouldyield a good estimate of the sway motion. As the mooring line for
es and the bodya

elerations are measured independently, this provides a possibility to 
ross-
he
k the
omputed sway motion and to verify our pro
edure for 
al
ulating the body motions fromthe measure a

elerations. Applying the same band-pass �lter for the spring for
es asfor the a

elerations, an estimation of the horizontal position of the model is found as

η2 = Fs/k, where Fs is the measured mooring line tension and k is the spring 
oe�
ient
orresponding to the mooring line 
onsidered. Time series of the obtained sway motionfrom the two di�erent approa
hes presented are 
ompared in Fig. 6.12 and shows goodagreement. More pre
isely, the mean di�eren
e of the estimated motion amplitudes (bothpositive and negative) in the time window t = 15s to t = 25s is less than 1% for the 
ase
onsidered. The obtained body motions were also veri�ed by 
omparison with imagesfrom the high-speed 
amera re
ordings.6.2.5 Dis
ussion of errors in the experimentsPossible sour
es of systemati
 errors in the experiments 
ould be wave re�e
tions fromthe bea
h or from the wavemaker or 3D �ow e�e
ts, e.g. due to ex
itation of transversesloshing modes in the �ume. The natural periods for the �rst and se
ond transverse
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Figure 6.12: Comparison of sway motion obtained from integration of measuredhorizontal a

elerations with that obtained from measured mooring line tensions.The test wave period and wave steepness was T = 0.601s and H/λ = 1/14,respe
tively.sloshing mode was T t
1 = 0.877s and T t

2 = 0.620s, respe
tively. Large transverse standingwaves (similar to the se
ond sloshing mode) were seen 
lose to the model in the tests withwave period T = 0.544s and steepness H/λ = 1/10, although this wave period does not
orrespond to the sloshing period for the se
ond mode.Conta
t between model and tank wallsSin
e we wanted a 2D �ow 
ondition in the experiments, the gap between the modeland the side walls of the �ume should be as small as possible. However, a narrow gapin
reases the possibility of 
onta
t between the model and the tank walls. Wall 
onta
twill introdu
e unknown for
es to our system whi
h is highly unwanted. Unfortunately, forsome tests where the model motion be
ame large and violent, wall 
onta
t was visuallyobserved. Hen
e, before we 
ould use the measurements for validation purposes, we hadto be able to dete
t with a high level of 
on�den
e if and eventually when 
onta
t dido

ur. A good indi
ator for sudden 
onta
t between the �ume walls and the model is thetime derivative of the measured a

eleration time-series. This parameter is also knownas jerk (Boore and Bommer 2005). Figure 6.13 shows the measured a

eleration of themodel and the 
orresponding jerk for a test 
ase where 
onta
t between model and tankwalls was observed. Conta
t is seen as spikes in the jerk time-series.E�e
ts of the mooring systemThe pulleys used for the mooring system may have an e�e
t on the motions of the model.As the pulleys have a �nite mass, the inertia of the pulleys will add to the total inertiaof the system in motion. The e�e
t of the pulley inertia is quanti�ed by performing freede
ay tests in sway of the model suspended in air. As the added mass e�e
t due to theair is small 
ompared to the stru
tural mass and 
an be negle
ted, the system 
an besimply modelled as a harmoni
 os
illator represented by a mass and a spring. The massis the stru
tural mass of the model while the spring is the e�e
tive spring sti�ness due tothe mooring lines. Hen
e, the natural period of the system 
an be estimated. Pra
ti
ally,
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onta
t identi�
ation by the use of jerk. Sudden
onta
t between the model and the tank walls leads to spikes in the jerk time-series.free de
ay in air was done by suspending the model in a long line su
h that the modelappeared as a long pendulum. The natural period of the pendulum had to be far higherthan the natural period due to the mooring lines. The natural period of the pendulummotion is for small amplitudes of os
illation found as T p
n = 2π

√

L/g, where L = 2.20m isthe length of the pendulum and g is a

eleration of gravity. This yielded a natural period
T p

n = 2.98s for the pendulum motion. The natural period due to the restoring for
es fromthe mooring lines when the model is suspended in air is found as
Tn = 2π

√

M

keff
, (6.3)where keff = (k1 + k2) + k3 = is total e�e
tive spring sti�ness. For the given springsti�nesses used, the e�e
tive spring sti�ness is found to be keff = 176.4N/m. The massof the 
ylinder is M ≈ 2.500 ± 0.005kg. This approximate des
ription of the stru
turalmass is due to the 
ables 
onne
ting the a

elerometers to the logging system and theun
ertainty of how mu
h of the 
ables weight that 
ontributes to the os
illatingmass. Thisyields a dry natural period in the range T dry

n = 0.747s − 0.749s. The measured naturalperiod from free de
ay tests in air was found to be Tn = 0.778s, whi
h is 3.8% higher thanthe theoreti
al value where the mass of the pulleys is ex
luded. This di�eren
e betweenmeasured and theoreti
al natural period means the mass of the pulleys 
ontributes 8.2%to the os
illating mass. Hen
e, the natural period in sway in the model tests is modi�eddue to the inertia of the pulleys. However, when the model is os
illating in water theadded mass will be of the order of the stru
tural mass of the model. This means that therelative importan
e of the pully inertia is signi�
antly redu
ed. There is also an e�e
t offri
tion in the ball bearings of the pulleys. This e�e
t is dis
ussed in Chapter 8.
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ed motions of a moored horizontal 
ylinder 113We wanted the springs in the mooring line system to be linear, meaning that thereis a linear relation between the for
e applied to the spring and its resulting elongation.Linearity of the springs were tested by loading the springs using known weights andmeasuring the spring elongation. Results from this test are shown in Appendix C.2. Allsprings proved to be linear when loaded below their reported �oating limit, whi
h for allthree springs was 30N.Pre
ision errors of the in
ident wave heights and model response amplitudes are es-timated from repetition tests, whi
h were 
ondu
ted for some of the test wave periods.For the in
ident waves, an average wave height H is found from the steady state regionof the wave elevation time-series for ea
h test run. Then a measure for the random errorof the generated wave heights is the relative error εrel = σ̂H/µ̂H , where the experimentalmean σ̂H and experimental standard deviation µ̂H of the average wave heights obtainedfrom N repetition tests are de�ned as
µ̂H =

N
∑

i=1

H i

N
, (6.4)

σ̂H =

[

N
∑

i=1

(Hi − µ̂H)2

N − 1

]1/2

. (6.5)Mean of the averaged wave heights and 
orresponding relative errors obtained from thewave 
alibration tests are listed in Tab. 6.6. The relative error εtot
rel of the mean total waveheight H is less than 2% for all wave periods where repetition tests are 
ondu
ted.Table 6.6: Mean averaged wave height µ̂H and relative error εrel of the total,linear- and se
ond harmoni
 
omponent of the wave height obtained from �verepetition tests at steady state 
ondition.

T [s℄ Hinput [m℄ µ̂H [m℄ εtot
rel ε1.harm

rel ε2.harm
rel

0.497 0.028 0.029 1.46× 10−2 1.57× 10−2 4.83× 10−2

0.761 0.065 0.069 2.45× 10−3 1.65× 10−3 3.74× 10−2

1.132 0.142 0.137 1.83× 10−2 1.26× 10−2 1.09× 10−26.2.6 Summary of resultsWave 
alibration tests were 
ondu
ted for all test wave periods and both wave steepnesses.The quality of the generated wave pro�les for the two shortest wave periods was lessgood, due to some transverse disturban
es on the free surfa
e. This was observed to bemainly 
aused by the gap between the wavemaker paddle and the side-walls of the �ume,whi
h measured about 2
m on ea
h side of the paddle. For larger wave periods, thesedisturban
es were less pronoun
ed.Steady-state of the 
ylinder motion was rea
hed in all the test runs, ex
ept for thetests for whi
h the wave period was T = 0.544s. For these tests, the response amplitudesof the sway mode of motion were observed to in
rease in an instability-like manner. Forsome tests, the sway motion was limited due to 
onta
t between the model and the sidewalls of the �ume. Measured sway motion from repetition tests with the wave period
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Figure 6.14: Experimentally obtained sway response from repetition tests whenthe moored 
ir
ular 
ylinder is subje
t to regular beam sea waves with waveperiod T = 0.544s. Di�eren
es between obtained time-series seen after 25s forwhen H/λ = 1/14 are explained by wall-
onta
t problems.
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T = 0.544s are 
ompared in Fig. 6.14. The repetition tests shows that this 
hara
teristi
sway motion was repeatable until wall-
onta
t o

urred. Resulting sway motion for thiswave period are observed to be slightly di�erent for the two wave steepnesses tested, asshown in Fig. 6.14. This instability-like phenomenon was observed to be 
hara
terizedby a �nal shift in the sway response frequen
y. In the �rst stage after the wave train hasrea
hed the model, the 
ylinder started to os
illate in heave and sway with period equalto the wave period, as expe
ted. However, after a build-up through 18 - 20 wave periods,the sway motion frequen
y had be
ome half the wave frequen
y, su
h that the frequen
yof the sway motion was equal to the natural frequen
y in sway. Tra
e plots of the modelmotion in heave and sway for this 
ase are presented in Fig. 6.15.
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) t = (29s, 33s)Figure 6.15: Tra
e plots of the 
ylinder motion from three di�erent time windowsfor the 
ase when sway instability o

urs (
f. Fig. 6.14). Wave period and wavesteepness is T = 0.544s and H/λ = 1/14, respe
tively.



Chapter 7A study of �xed 
ylinders in regularwavesIn this 
hapter results from our study on horizontal 
ylinders whi
h are �xed in the freesurfa
e zone and subje
t regular waves are presented. The study is based on the modeltests from 2006. Numeri
al simulations with our 2D NWT has been performed, wherethe test 
onditions from the experiments was modelled. The wave ex
itation for
es dueto regular waves where studied, with fo
us on the nonlinear e�e
ts. Nonlinearities areasso
iated with model geometry and model dimensions relative to the amplitude of thein
oming waves.In order to perform adequate 
omparisons of time-series for the 
omputed wave for
eswith the measured wave for
es, it was ne
essary to verify that the wave 
onditions simu-lated with the NWT were in agreement with the a
tual wave 
onditions in the experiments.This was done by performing numeri
al wave 
alibration tests with the NWT. Compar-isons of the measured and 
omputed time-series of free surfa
e elevation are presented.Convergen
e studies of the generated waves from the numeri
al wave 
alibration testsand the 
omputed wave for
es from simulations with the model present were performed.In addition to dire
t 
omparison of time-series from the measured and 
omputed wavefor
es on the models, Fourier analysis of both the measured and 
omputed wave for
es areperformed and obtained Fourier amplitudes are 
ompared. At the end of this 
hapter, ageneralized Morison type of model is proposed and applied to some of the test 
onditionsfrom the model tests.Our study on �xed horizontal 
ylinders in regular waves has resulted in two publi
a-tions (Kristiansen and Faltinsen 2008a; Kristiansen and Faltinsen 2008b).7.1 Numeri
al modelling of the 2006-experimentsIn order to perform numeri
al simulations of �xed horizontal 
ylinders subje
t to regularwaves with the same test 
onditions as in the experiments from 2006, a numeri
al modelof the physi
al wave �ume was 
onstru
ted using the presently developed 2D �ow solver.De�nition of the 
omputational domain and arrangement of the numeri
al grids used inthe 
al
ulations will now be des
ribed. 117



118 A study of �xed 
ylinders in regular waves7.1.1 The 
omputational domainThe narrow wave �ume used in the experiments from 2006 is modelled numeri
ally withour 2D �ow solver on a re
tangular domain. At the right hand boundary of the domain apiston-type wavemaker was introdu
ed. The wavemaker was modelled linearly, meaningthe piston velo
ity was imposed on the horizontal velo
ity nodes lo
ated at the boundarywhi
h was �xed in spa
e. The piston velo
ity was imposed over the total height of thedomain. A numeri
al bea
h or damping zone was applied at the left end of the domainto damp out the waves that rea
hed the end of the �ume.Ideally, the length of the NWT should be equal to the length of the physi
al �ume.However, this was not bene�
ial from a 
omputational point of view. First of all, sin
ewe did not have any wave absorption system for the wavemaker in our NWT, we had tomake sure that the distan
e from the wavemaker to the model was su�
ient to avoid thedi�ra
ted waves from the model towards the wavemaker being re�e
ted ba
k to the model.Next, in order to properly resolve the generated waves with the numeri
al grid, a 
ertainnumber of grid 
ells are needed relative to the wave length and wave height. Hen
e, if thedomain of 
omputation has the dimensions of the physi
al �ume and we require that alltest waves are equally resolved with respe
t to wave length, a large number of elementswill be needed for simulation of the shortest waves 
ompared to that needed to simulatethe longest waves. Based on these arguments, we found it 
onvenient to de�ne the lengthof the NWT in terms of the wave length λ, whi
h was predi
ted by linear potential �owtheory as the wave length 
orresponding to the test wave period T for the a
tual waterdepth in the �ume. The water depth in the NWT was h = 0.543m, as in the experiments.For simulations where a body was present in the NWT, there was a limit on thesimulation time due to wave re�e
tions rea
hing the model position. Sin
e a dampingzone was applied at the far end of the �ume while there was no wave absorption on thewavemaker, it was re�e
tions from the wavemaker of the di�ra
ted waves from the modelthat limited the simulation time. Theoreti
ally, all wave frequen
ies will be ex
ited duringthe transient start-up of the wavemaker. This 
auses small disturban
es to be generatedin the �uid whi
h for the 
ase of an in
ompressible �uid propagate at an in�nite velo
ity.However, the surfa
e waves 
ontaining energy of signi�
an
e are gravity waves whi
h arebounded by the wave front propagating with a �nite velo
ity Cg, known as the groupvelo
ity. This means that the limit of the simulation time before waves were re�e
tedba
k to the model position 
ould be estimated as tr ≈ 3Lwm/Cg, with Lwm being distan
efrom the wavemaker to the 
ylinder axis. Alternatively, given a wanted simulation time
tr, an estimate of the ne
essary length Lwm to avoid wave re�e
tions rea
hing the modelposition within the time window 
onsidered 
ould be found. However, for steep waves thegroup velo
ity will be higher than that predi
ted by linear potential �ow theory. Further,due to nonlinear e�e
ts, some of the wave frequen
ies asso
iated with the transient wavefront will also propagate faster than the linear group velo
ity. The estimated time forre�e
tions tr was only used as a guideline when 
hoosing the length of the domain. In thesimulations with �xed models, Lwm = 4.5λ was used. Hen
e, for deep water waves where
Cg = 0.5λ/T a

ording to linear potential �ow theory, we obtain tr ≈ 27T . When e�e
tsof �nite water depths matter, tr will be less. The distan
e from the 
ylinder axis to the farend boundary of the NWT, in
luding the damping zone, was 5.5λ. The e�
ien
y of thedamping zone depends on its length Ldz relative to the wave length of the wave that is tobe damped. For the damping zone applied in our NWT, Ldz = 4λ was su�
ient to avoid
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Figure 7.1: Arrangement of the grid in the NWT. A �ne grid region is appliedat the �oater position. Grid stret
hing is used to redu
e the CPU time whilekeeping the grid resolution high in regions where large variations of the �owo

ur.wave re�e
tions. As our �ow solver applies a one-�uid model and a surfa
e 
apturingmethod to simulate surfa
e waves, also the air above the free surfa
e had to be in
ludedin the 
omputational domain. Total height of the domain for all tests was 1.23m. Withthe given water depth, the distan
e from the 
alm water surfa
e to the upper boundary,where an outlet boundary 
ondition was applied, was 0.68m. Due to the large di�eren
ein mass density between air and water, the air �ow has negligible in�uen
e on the �ow ofwater. Hen
e, modi�
ations of the air �ow 
aused by the outlet boundary has minor e�e
ton the hydrodynami
 problem. For the bottom boundary, a no-slip 
ondition is applied.The two bodies tested the NWT had geometry and dimensions as the 
ross-se
tions of the
ylindri
al models used the experiments. Hen
e, the diameter of the 
ir
ular model was
D = 0.300m, while the breadth and the height of the re
tangular model were a = 0.300mand b = 0.250m, respe
tively. Both models were rigid and �xed at a given position in thefree surfa
e zone. A no-slip 
ondition was imposed on the model surfa
e. The di�erentboundary 
onditions are de�ned in se
tion 3.5. Based on the previous dis
ussion, the
omputational domain depi
ted in Fig. 7.1 was used for simulations of �xed bodies inregular waves.7.1.2 The numeri
al gridWe use a non-uniform Cartesian staggered grid as de�ned in 4.1.1 for dis
retization ofthe 
omputational domain. As our problem is 
hara
terized by several �ow e�e
ts withlarge di�eren
es in asso
iated length s
ales, spe
ial attention is needed when 
onstru
tingthe numeri
al grid. Examples of length s
ales here are the length of the generated waveswhi
h is of the order of meters, the model dimensions in the order of 
entimeters, and theboundary layer thi
kness on the model surfa
e whi
h is of the order of millimeters. Gridstret
hing is applied to keep the grid resolution relatively high in the regions of the domainwhere large variations of the �ow is expe
ted, whi
h is lo
ally at the model position inaddition to the free surfa
e zone in general. Important grid parameters relative to thewaves are the ratio between the wave length λ and the horizontal grid spa
ing ∆xi andthe ratio between the wave height H and the verti
al grid spa
ing ∆yj . As Cartesian gridswere used, a 
ompli
ating fa
tor was how to obtain a �ne grid resolution at the modelposition, whi
h should be based on the dimensions of the model (or the boundary layer onthe model surfa
e) and not on the waves. When using a single Cartesian grid and whenthe model was lo
ated in the wave zone, it was not possible to keep the relation betweenthe grid parameters H/∆yj and b/∆yj 
onstant for the di�erent test wave 
onditions.



120 A study of �xed 
ylinders in regular wavesHen
e, the stru
ture of the grids did vary slightly from test to test.The grid was 
onstru
ted as follows. For ea
h spatial dire
tion, the domain of 
ompu-tation was divided into three sub-regions where di�erent gridding strategies were applied.These sub-regions are denoted Li for the horizontal dire
tion and Hi for the verti
al dire
-tion with i = 1, 2, 3, as illustrated in Fig. 7.1. For the horizontal dis
retization startingfrom the wavemaker boundary, the grid in
rement ∆xi was 
onstant and expressed interms of the wave length λ in the sub-region L1 = 4λ. In the sub-region L2 = λ 
enteredabout the model position, a 
osine squared stret
hing of the grid was used to merge a�ne grid region of length γD inside L2 with the 
oarser grid on ea
h side of L2. Here, theparameter γ = 2 was used. In the �ne grid region, ∆xi was 
onstant and based on themodel breadth. A paraboli
 stret
hing of the grid was applied in L3, su
h that ∆xi wasin
reasing when moving in the positive x−dire
tion. This was in order to in
rease thenumeri
al di�usion of energy in the damping zone. For the verti
al dire
tion, a �ne gridwith 
onstant grid spa
ings ∆yj was applied in the interfa
e zone de�ned by H2. Theheight of the interfa
e zone H2 was two times the height of the model tested. Paraboli
grid stret
hing was used outside H2, su
h that ∆yj was in
reasing when moving awayfrom the interfa
e zone. All grid stret
hing was performed su
h that the grid in
rements
∆xi and ∆yj varied smoothly over the domain.The following grid parameters are introdu
ed for des
ribing the numeri
al grid. NBis the number of verti
al grid lines relative to the beam of the model 
ross-se
tion, Nλis the number of verti
al grid lines per wave length and NI is number of horizontal gridlines in the air-water interfa
e zone H2. Four di�erent grids were 
onstru
ted for ea
htest 
ondition in order to perform 
onvergen
e tests. Grid parameters des
ribing thesegrids are listed in Tab. 7.1. Grid 3 was used as the base 
ase grid.Table 7.1: Grid parameters for the four grids used in 
onvergen
e tests. NB isnumber of grid 
ells over the breadth of the model, Nλ number of grid 
ells perwave length, while NI is number of grid 
ells verti
ally in the interfa
e zone.Grid 3 is used as the base 
ase grid.Name NB Nλ NI Nx NyGrid 1 60 40 80 431 120Grid 2 80 45 100 512 145Grid 3 90 50 120 572 170Grid 4 110 60 130 690 1857.2 Numeri
al wave 
alibration testsNumeri
al wave 
alibration tests were performed in order to verify that the waves gener-ated in our NWT for some given input wave period and wave height were is in agreementwith the measured wave elevation in the wave 
alibration tests from the experiments in2006. By numeri
al wave 
alibration we mean numeri
al simulations of wave generationwithout any model present in the domain. This was performed using wave parameters forthe test wave 
onditions in the experiments as input to our NWT. The input parameterswere wave period and wave height. However, as for wave-making in the physi
al �ume,the height of the waves generated with the NWT 
ould not be pres
ribed dire
tly, but



7.2. Numeri
al wave 
alibration tests 121was 
ontrolled indire
tly through the imposed velo
ity at the wavemaker boundary. Frompotential �ow theory, a linear relation between the stroke of a piston-type wavemaker andthe resulting wave height far away from the wave board 
an be found as given in (3.25).To obtain a smooth wave front a linear ramp of the piston motion amplitudes were usedduring the �rst 5 se
onds of simulation, before full gain of the wavemaker was rea
hed.Three of the wave periods from the steepest waves (H/λ = 1/20) tested in the exper-iments in 2006 were 
hosen, for whi
h numeri
al wave 
alibration tests were performedwith the NWT. These were also the wave 
onditions used when simulations with the mod-els were performed. Sin
e the 
omputational domain was de�ned in terms of the wavelength λ, three di�erent domains had to be 
onstru
ted. For ea
h domain, four grids were
reated using the grid parameters from Tab. 7.1. The grid used in numeri
al wave 
ali-bration for a given wave 
ondition was identi
al to the grid used when simulations withthe models for this wave 
ondition were performed. Temporal dis
retization was relatedto the input wave period T . Typi
ally, a time step ∆t = T/1000 was used. However,adaptive time stepping was applied to avoid numeri
al instabilities and break-down ofthe simulations. Obtained wave heights from the numeri
al wave 
alibration tests arepresented in Tab. 7.2.Table 7.2: Input wave periods T , wave heights Hinput and asso
iated amplitude
Sa of the piston wavemaker. Resulting mean wave heights H obtained by theNWT and and He from the experiments, are also given.

T [s℄ Hinput [m℄ Sa [m℄ H [m℄ He [m℄1.084 0.087 0.026 0.079 0.0881.348 0.130 0.050 0.120 0.1211.568 0.176 0.082 0.156 -7.2.1 Grid 
onvergen
e of the generated wavesGrid 
onvergen
e are tested for numeri
al wave 
alibration with the wave period T =
1.568s, using the four grids de�ned in Tab. 7.1. Computed time-series of the free surfa
eelevation were band-pass �ltered using the low 
ut-frequen
y flow = 0.4/T and the high
ut-frequen
y fhigh = 8/T . The band-pass �ltered time-series of the wave elevation at
x = 0.342m obtained with the di�erent grids are 
ompared in Fig. 7.2. For this waveperiod, this is 17.29m from the wavemaker boundary. Fourier transforms of the 
omputedwave elevation time-series are found from the time window t = [18s, 28s] using FFT.Resulting Fourier amplitudes are 
ompared in Fig. 7.3. Both the se
ond- and thirdharmoni
 
omponents are observed in addition to the linear harmoni
. No signi�
antdi�eren
es are observed between the transforms of the time-series obtained with the fourgrids. In order to test for grid 
onvergen
e of the 
al
ulations, a measure of the error isneeded. For this purpose we use the mean wave height H from a time window where thesolution is 
lose to steady state. An error measure is de�ned as the di�eren
e between Hand the 
orresponding mean wave height obtained with the �nest grid H

∗. The error isnormalized with the mean wave height from the �nest grid. Hen
e, a normalized error isde�ned as
εH =

H −H
∗

H
∗ . (7.1)
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Figure 7.2: Comparison of time-series of the free surfa
e elevation at x = 0.342m,obtained from 
onvergen
e testing of the in
ident waves. The wave period is
T = 1.568s and input wave steepness is H0/λ0 = 1/20. N is the total number ofgrid 
ells.
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Figure 7.3: Convergen
e test of 
omputed free surfa
e elevation at x = 0.342mfrom numeri
al wave 
alibration with wave period T = 1.568s and wave steepness
H0/λ0 = 1/20. Fourier amplitudes are obtained using FFT for the time window
t = [18s, 28s] of the 
omputed time-series. The frequen
y is normalized by thewave frequen
y ωw = 2π/T .
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Figure 7.4: Convergen
e rate for the mean wave height H from wave 
alibrationwith wave period T = 1.568s and wave steepness H/λ = 1/20.Normalized errors εH of the 
omputed waves for the time interval t = [18s, 28s] obtainedwith the four di�erent grids, are presented in Fig. 7.4. The di�eren
e between thenormalized error obtained with the base 
ase grid (grid 3) relative to that obtained withthe �nest grid is only 0.5%. Although we 
annot 
on
lude that the 
omputed waves arefully 
onverged, we observe that the di�eren
es of the results from the simulations withthe two �nest grids are small.7.2.2 Comparisons with the experimentsNow, as we have veri�ed that the grid sensitivity of the generated waves is small forthe base 
ase grid, the 
omputed time-series of the free surfa
e elevation 
an adequatelybe 
ompared with the free surfa
e elevation measured in the physi
al wave 
alibrationtests. Due to the di�eren
e in length of the NWT and the physi
al �ume, the waves willrea
h the �ne grid region where the model is to be pla
ed at di�erent times. We use thestarting time of the wavemaker in the NWT as the referen
e time when time-series fromthe numeri
al simulations are 
ompared with the measured time-series.First, results from numeri
al and physi
al wave 
alibration for the wave with period
T = 1.084s and input wave height Hinput = 0.087m are 
onsidered. The base 
ase grid isused in the simulation. Figure 7.5 shows time-series of the free surfa
e elevation 
al
ulatedat the position x = −0.356m in the NWT 
ompared with the measured free surfa
eelevation by WG 3 from the experiments. In the physi
al �ume, WG 3 was lo
ated 13.96mfrom the wavemaker. The 
omparison shows some deviation between the 
omputed time-series from that measured, in parti
ular for the wave front. It is also observed thatthe 
omputed wave heights towards the end of the simulated time window is somewhatlower that the 
orresponding measured wave heights. The frequen
y 
ontents of thesimulated and measured wave elevation was obtained from the Fourier transforms of thetime-series presented in Fig. 7.5. To avoid leakage when 
omputing the dis
rete Fouriertransform from the wave elevation time-signal, the Fourier transform was 
omputed froman integral number of wave periods from the time interval t = [15s, 20s] (Ambardar 1995).The Fourier amplitudes obtained from the simulated time-series are 
ompared with thoseobtained from the measurements in Fig. 7.6, whi
h shows a 8.2% underpredi
tion of
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Figure 7.5: Time-series of the free surfa
e elevation obtained with the NWT
ompared with measured free surfa
e elevation from experiments. Wave periodis T = 1.084s and input wave height is Hinput = 0.087m.
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Figure 7.6: Comparison of Fourier amplitudes obtained from FFT of measuredand 
omputed free surfa
e elevation in the wave 
alibration tests. The FFT is
omputed from the time window t = [15s, 20s]. The frequen
y is normalized withthe input wave frequen
y ωw = 2π/T . Wave period is T = 1.084s and input waveheight is Hinput = 0.087m.the linear harmoni
 
omponent from the 
omputed time-series relative to that from themeasured time-series. Good agreement between simulations and measurements is observedfor the se
ond harmoni
 
omponent of the free surfa
e elevation.Next, we 
onsider results from wave 
alibration tests for the wave period T = 1.348and input wave height Hinput = 0.130m. Time-series of 
omputed free surfa
e elevationat x = −0.356m are 
ompared with measured waves from WG 3 in Fig. 7.7. The
omputed free surfa
e elevation is obtained from simulation with the base 
ase grid.Corresponding Fourier amplitudes 
al
ulated from the time window t = [16s, 24s] arepresented in Fig. 7.8. The Fourier amplitude of the linear harmoni
 
omponent obtainedfrom the simulation is 2.6% smaller than the 
orresponding Fourier amplitude obtainedfrom the measurements. Computed free surfa
e elevation shows good agreement withmeasurements for this 
ase. However, some deviations are observed for the wave front.
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Figure 7.7: Time-series of the free surfa
e elevation obtained with the NWT
ompared with measured free surfa
e elevation from experiments. Wave periodis T = 1.348s and input wave height is Hinput = 0.130m.
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Figure 7.8: Comparison of Fourier amplitudes obtained from FFT of measuredand 
omputed free surfa
e elevation time-series in the wave 
alibration tests.The FFT is 
omputed from the time window t = [16s, 24s]. The frequen
y isnormalized with the input wave frequen
y ωw = 2π/T . Wave period is T = 1.348sand input wave height is Hinput = 0.130m.
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Figure 7.9: Convergen
e test of wave for
es for 
ase with wave period T = 1.348s,
H0/λ0 = 1/20. N is total number of grid 
ells.7.3 Nonlinear wave for
es on �xed 
ylindersThe in
ident waves have been studied by means of wave 
alibration tests, both numeri
allyand experimentally. If the kinemati
s of the in
ident waves obtained from simulationsagree with the measured waves, a

ordingly, also the 
omputed wave for
es should agreewith the measurements if our model representation of the physi
al experiments is adequateand the numeri
al results are 
onverged. Thus, in the same manner as we 
on�rmed thatthe grid sensitivity for the in
ident waves are small, we must also verify that the 
omputedwave for
es are 
onverged. This is done in the following. The horizontal and verti
alfor
e 
omponents are denoted Fx and Fy, respe
tively. Further, we de�ne the horizontalfor
e 
omponent to be positive in the wave propagation dire
tion, while the verti
al for
e
omponent is de�ned positive upwards.7.3.1 Grid 
onvergen
e for the 
omputed wave for
esA 
onvergen
e study of the 
omputed wave for
es are presented for the 
ase of the 
ir
ularmodel with draft d/D = 0.5 when subje
ted to waves with period T = 1.348s and in
identheight H = 0.120m as found from the numeri
al wave 
alibration test. In the same manneras for the 
onvergen
e tests of the in
ident waves, four grids are 
onstru
ted using the gridparameters from Tab. 7.1. Time-series of the 
omputed wave for
es obtained with thefour grids are 
ompared in Fig. 7.9, whi
h shows that the resulting time-series are almostidenti
al. As a measure for 
onvergen
e, we use the mean peak-to-peak for
e amplitudes

F whi
h are 
omputed from the time interval t = [17s, 23s] where the time-series appear tobe 
lose to steady state. We de�ne the relative error of the 
omputed mean peak-to-peakfor
e amplitudes as the deviation from the mean peak-to-peak for
e amplitude obtainedfrom simulation with the �nest grid F
∗. Similarly as for the wave heights, the normalized
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Figure 7.10: Test on 
onvergen
e of mean peak-to-peak for
e amplitudes obtainedfrom the time window t = [17, 23]s for tests with the 
ir
ular 
ylinder withsubmergen
e d/D = 0.5, T = 1.348s and H0/λ0 = 1/20.error for the peak-to-peak for
e amplitudes is then de�ned as
εF =

F − F
∗

F
∗ . (7.2)Resulting normalized errors εF 
orresponding to the time-series shown in Fig. 7.9 obtainedwith the four grids are presented in Fig. 7.10. Although no monotone 
onvergen
eis obtained, the peak-to-peak for
e amplitudes obtained with the di�erent grids are allwithin 1.3% from that obtained with the �nest grid. Hen
e, we 
on
lude that the gridsensitivity for the 
omputed wave for
es is small.The free surfa
e elevation at three positions in the NWT obtained with the four gridsare 
ompared in Fig. 7.11. We see that di�ra
ted waves from the model 
learly intera
twith the in
oming waves. It is mainly where the in
oming waves and the di�ra
tedwaves forms anti-nodes, and the resulting waves be
ome lo
ally steep, that the largestdi�eren
es in the 
omputed free surfa
e elevation are observed. This 
an be explained bywave breaking whi
h is not adequately modelled by the smeared air-water interfa
e.7.3.2 Dis
ussion of vis
ous e�e
tsWe will now try to estimate what �ow behaviour we should expe
t at the model position.The in
oming waves 
ause an os
illatory �ow around the model. An important parameterfor 
ylinders in os
illatory �ow is the Keulegan-Carpenter number KC = UT/B ≈ πH/B,where H is wave height and B is the model breadth. This yields KC < 2.0 for allwave 
onditions in Tab. 6.3. Thus, we assume the �ow is atta
hed for the 
ir
ular
ylinder and that the vortex shedding from any edge of the re
tangular 
ylinder is small
ompared to the model dimensions (Bearman et al. 1985). Another important parameteris the Reynolds number for os
illatory �ow de�ned as Rn = U2

m/ων, where Um is themaximum tangential velo
ity outside the boundary layer. For a fully submerged 
ir
ular
ylinder in atta
hed �ow we get Rn ≈ 4ωζ2
A/ν, where ζA is the mean wave amplitude.Here we have negle
ted the exponential de
ay with depth of the �uid parti
le velo
itydue to the waves. Transition from laminar to turbulent boundary layer �ow o

ur at
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Figure 7.11: Convergen
e test of free surfa
e elevation with wave period T =
1.348s, H0/λ0 = 1/20.
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Rncrit ≈ 105 for a smooth 
ir
ular 
ylinder in in�nite �uid. Data from Tab. 6.3 yieldsat most Rn ≈ 7.9 · 104 < Rncrit. Due to e�e
ts of roughness at the 
ylinder surfa
e thea
tual Rncrit will be lower. Hen
e, transition to turbulen
e may still o

ur. However,we have assumed laminar boundary layer �ow. Then the boundary layer thi
kness insteady-state 
ondition is found from δ0.99 = 4.6

√

2ν/ω (S
hli
hting and Gersten 2000).Table 6.3 yields δ0.99 = 3.2 · 10−3 − 4.2 · 10−3m, whi
h is about 1% of the beam of the
ir
ular 
ylinder. For the 
ase of the re
tangular 
ylinder, turbulen
e will always developin the free shear layers separated from the sharp edges.Estimation of skin fri
tion for
e on the 
ir
ular modelAs the skin fri
tion for
es are not 
omputed with our numeri
al model, an estimate theorder of magnitude of the skin fri
tion for
e on the 
ir
ular 
ylinder is found. First 
onsidera fully submerged 
ir
ular 
ylinder in os
illatory �ow. We assume laminar boundary layersand that the �ow is atta
hed. This problem was studied thoroughly by Stokes (1851).Here we follow a pro
edure from Faltinsen (1990). A similar approa
h was also usedby Molin (2004) to 
ompute the fri
tional damping in roll of ship se
tions. Here, we
onsider the boundary layer �ow u(y, t) due to an os
illating 
urrent above a �xed wall.Assume the outer �ow is only a fun
tion of time and des
ribed by U(t) = U∞ cos(ωt).Substituting u(y, t) = U(t)− ũ(y, t) in the boundary layer equations a di�usion equationfor ũ is obtained. The solution pro
edure is the same as for the 
lassi
al Se
ond Stokesproblem (S
hli
hting and Gersten 2000). The steady state solution of the velo
ity pro�lein the boundary layer is des
ribed by u(y, t) = U∞

[

cos(ωt)− exp(−η) cos(ωt−η)
], where

η = y
√

ω/2ν. The wall shear stress on an impermeable wall is given by τw = µ∂u/∂y|y=0,and we get τw = µU∞

√

ω/ν cos(ωt + π
4
). Long wave approximation yields the lo
alvelo
ity distribution outside the boundary layer expressed in polar 
oordinates as U∞(θ) =

2UA sin(θ). The velo
ity amplitude in the waves is UA ≈ ωH/2. This yields the in-lineskin fri
tion for
e per unit length of the 
ylinder
Fv =

π

2
µωHD

√

ω

ν
cos(ωt +

π

4
). (7.3)The skin fri
tion for
e takes its largest value for the highest frequen
y. Using data fromTab. 6.3 in (7.3) gives Fv/(ρgV0) = 0.012 for a fully submerged 
ir
ular 
ylinder. Assum-ing the skin fri
tion for d/D = 0.5 is Fv/(ρgV0) ≈ 0.5 · 0.012 and 
omparing this estimatewith measured for
es from model tests, we see that the estimated skin fri
tion is at most7.3% of the measured horizontal for
e.7.3.3 Comparison of 
omputed and measured wave for
esWe will now investigate how the 
omputed wave for
es obtained from simulations withour NWT agree with the measured 
lamping for
es from the experiments. This is doneby 
omparing time-series of the wave for
es dire
tly. Also the Fourier amplitudes fromthe dis
rete Fourier transforms of the 
omputed and measured for
e time-series, whi
hare found using FFT, are 
ompared. In the following, results from the di�erent test 
aseswill be dis
ussed.
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ular 
ylinder with d/D = 0.2First we 
onsider the 
ir
ular �oater being �xed with draft d/D = 0.2. Computed andmeasured time-series of the horizontal in-line wave for
e Fx and the verti
al wave for
e Fyare 
ompared in Fig. 7.12. The 
orresponding Fourier amplitudes, found using FFT overan integral number of wave periods in the time interval t = [16s, 21s] are 
ompared also
ompared in the �gure. After 16 se
onds of simulation time we see from the time-seriesof 
omputed and measured wave for
es that the system is 
lose to a steady state. In this�steady state� regime, the horizontal wave for
e amplitudes obtained from simulationswith our NWT are somewhat larger than the horizontal for
e amplitudes measured. Thisis also observed from the Fourier transforms, whi
h shows an over-predi
tion of the linearharmoni
 
omponent from the 
omputed horizontal for
e relative to the measured hori-zontal for
e. The 
omputed verti
al for
e 
omponent shows in the steady state regime abetter agreement with the measurements. However, in the transient phase, larger devia-tions are seen for the verti
al for
e than for the horizontal for
e. In the Fourier transformsof the horizontal for
e, we observe that there in addition to the linear harmoni
 
ompo-nent is a pronoun
ed se
ond harmoni
 
omponent. With pronoun
ed is here meant thatthe magnitude of the se
ond harmoni
 
omponent is signi�
ant relative to magnitude ofthe linear harmoni
 
omponent. A non-zero se
ond harmoni
 
omponent of the Fourieramplitudes is also present for the verti
al for
e. Although the magnitude of this se
ondharmoni
 is of 
omparable order as that for the horizontal for
e (61% for the measuredfor
es), its magnitude relative to the linear harmoni
 of the verti
al for
e is marginal. Thefree surfa
e elevation measured at three positions 
lose to the model are 
ompared withthe free surfa
e elevation from the present simulation in Fig. 7.13. Here, the horizontalposition of the wave gauge xm is given relative to the model position whi
h is representedby the 
ylinder axis. The agreement is satisfa
tory.Now we 
onsider the tests with wave period T = 1.348s for the same draft d/D = 0.2and wave steepness H0/λ0 = 1/20. For
e time-series obtained from the model test andfrom the simulation are 
ompared in Fig. 7.14(a). The 
orresponding Fourier amplitudesof the horizontal and verti
al for
es, 
al
ulated from the time interval t = [18s, 24s], arepresented in 7.14(b) and 7.14(
), respe
tively. The time-series are in good agreement,although some di�eren
es of the peak-to-peak for
e amplitudes are observed. When we
onsider the Fourier amplitudes for the horizontal for
e 
omponent presented in Fig.7.14(b), we see that also for this wave period there is a signi�
ant 
ontribution from these
ond harmoni
 
omponent on the total for
e. In addition, a third harmoni
 
omponent isalso present. Both the linear harmoni
 and se
ond harmoni
 
omponent of the 
omputedhorizontal for
es are larger than the 
orresponding harmoni
 
omponents obtained fromthe experiments. In the time-series of the horizontal for
e 
omponent, this is seen as thedi�eren
es in the peak-to-peak for
e amplitudes.The largest period simulated for the 
ir
ular 
ylinder with draft d/D = 0.2 is T =
1.568s. Obtained time-series of the 
omputed wave for
es for this 
ase are 
omparedwith the measured for
es in Fig. 7.15(a). The 
omputed and measured for
e time-seriesshows the same trends, but the 
omputed peak-to-peak for
e amplitudes, in parti
ular forthe horizontal for
e 
omponent, are 
onsiderably larger than those in the measured for
etime-series. This deviation is also re�e
ted by the Fourier amplitudes presented in Fig.7.15(b), whi
h are 
al
ulated from the time interval t = [17s, 24s].
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)Figure 7.12: Comparison of time-series and 
orresponding Fourier amplitudes ofwave for
es on the 
ir
ular 
ylinder obtained from simulations and model tests.The test parameters are d/D = 0.2, T = 1.084s and H0/λ0 = 1/20.
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Figure 7.13: Computed and measured free surfa
e elevation at WG 2, WG 3 andWG 5 from tests with the 
ir
ular 
ylinder with draft d/D = 0.2. Wave periodis T = 1.084s and 
orresponding deep water wave steepness is H0/λ0 = 1/20.
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)Figure 7.14: Comparison of time-series and 
orresponding Fourier amplitudes ofwave for
es on the 
ir
ular 
ylinder obtained from simulations and model tests.Test parameters are d/D = 0.2, T = 1.348s, H0/λ0 = 1/20.
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)Figure 7.15: Comparison of time-series and 
orresponding Fourier amplitudes ofwave for
es on the 
ir
ular 
ylinder obtained from simulations and model tests.Test parameters are d/D = 0.2, T = 1.568s, H0/λ0 = 1/20.
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ular 
ylinder with d/D = 0.5We 
ontinue on the study of the 
ir
ular 
ylinder, but now with the draft being in
reasedto d = 0.5D. The same wave periods and wave heights as tested in the previous 
aseare also tested here. Comparisons of for
e time-series are shown in Fig. 7.16(a) while
orresponding Fourier amplitudes of the horizontal for
e and verti
al for
e are presentedin Figs. 7.16(b) and 7.16(
), respe
tively, for the test when the wave period is T = 1.084s.The Fourier amplitudes are obtained from the interval t = [16s, 21s] of the time-seriespresented. For this 
ase, the Fourier amplitude spe
trum 
al
ulated from the time-seriesof the horizontal for
e and verti
al for
e are very similar. The amplitude of the se
ondharmoni
 
omponent relative to the amplitude of the linear harmoni
 is 15% for both thehorizontal for
e and for the verti
al for
e, based on the measured data. A small thirdharmoni
 
omponent is also present in the verti
al for
e signal.The for
e time-series obtained from the experiments and simulations with wave period
T = 1.348s are 
ompared in Fig. 7.17(a) whi
h shows good agreement, although the
omputed for
e amplitudes of the horizontal for
e are somewhat larger than the measuredamplitudes. In the Fourier amplitude spe
tra presented in Figs. 7.17(b) and 7.17(
), weobserve that while the amplitude of the se
ond harmoni
 
omponent of the horizontal for
ehas in
reased, the same 
omponent has nearly vanished from the amplitude spe
trum ofthe verti
al for
e. In fa
t, for the measured verti
al for
e, the amplitude of the thirdharmoni
 
omponent ex
eeds the amplitude of the se
ond harmoni
.Cir
ular 
ylinder with d/D = 0.8Finally, we 
onsider the 
ir
ular 
ylinder at the largest draft d = 0.8D subje
t to regularwaves of period T = 1.348s and steepness H0/λ0 = 1/20. For this 
ase, wave over-toppingon the �oater was observed both in the experiments and in the numeri
al simulations.A 
omparison of 
omputed and measured wave ex
itation for
es are presented in Fig.7.19(a), whi
h shows good agreement. We note from the time-series (Fig. 7.19(a)) thatthe verti
al for
e 
omponent has two lo
al maxima's for ea
h wave load 
y
le in thesteady state regime. This is asso
iated with the over-topping wave. When the free surfa
eelevation at the model position in
reases, the model experien
e a positive verti
al for
edue to the hydrodynami
 pressure. When the wave elevation be
omes so large that over-topping o

ur, the pressure due to the water running on top of the model 
auses a negativeverti
al for
e that 
ountera
ts the positive for
e from the hydrodynami
 pressure on thelower side of the model. As we see from the Fourier amplitude spe
trum of the verti
alfor
e 
omponent in Fig. 7.19(
), over-topping leads to large nonlinearities of the verti
alwave loads. However, the horizontal for
e 
omponent for whi
h the Fourier amplitudes arepresented in Fig. 7.19(b), is almost entirely des
ribed by the linear harmoni
. Snapshotsof the lo
al �ow kinemati
s at two time instants from simulations with our NWT arepresented in Figs. 7.20 and 7.21 showing the velo
ity magnitude and the z−vorti
ity,respe
tively. We observe that vorti
ity is indu
ed in the water due to �ow separationfrom the boundary layer on top of the 
ylinder during over-topping. Further, vorti
ity isgenerated both in front of and behind the body at the end of the over-topping pro
ess,when the water runs o� the body on both sides. The indu
ed vortex at the right handside of the body is rotating 
lo
k-wise, while the vortex generated on the left side isrotating 
ounter 
lo
k-wise. In addition, some vorti
ity is observed 
lose to the body
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(
)Figure 7.16: Comparison of time-series and 
orresponding Fourier amplitudes ofwave for
es on the 
ir
ular 
ylinder obtained from simulations and model tests.Test parameters are d/D = 0.5, T = 1.084s, H0/λ0 = 1/20.
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)Figure 7.17: Comparison of time-series and 
orresponding Fourier amplitudes ofwave for
es on the 
ir
ular 
ylinder obtained from simulations and model tests.Test parameters are d/D = 0.5, T = 1.348s, H0/λ0 = 1/20.
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Figure 7.18: Computed and measured 
lamping for
es from tests with 
ir
ular
ylinder at d/D = 0.5, T = 1.568s, H0/λ0 = 1/20.boundary due to the no-slip 
ondition and some 
lose to the free surfa
e away from themodel. By 
omparing the numeri
al results against the re
orded movies from the modeltest experiment, the latter is assumed to be a false e�e
t due to the �nite thi
kness of theair-water interfa
e.
Re
tangular 
ylinder with d/b = 0.2Simulations are performed with the NWT for the re
tangular model with draft d/b = 0.2when subje
ted to waves with period T = 1.348s and steepness H0/λ0 = 1/20. Timeseries of the 
omputed wave ex
itation for
es for
es are 
ompared with time series of themeasured 
lamping for
es in Fig. 7.22(a). The 
omputed for
e amplitudes of the horizon-tal for
e are observed to be larger than the measured for
e amplitudes. CorrespondingFourier amplitudes obtained from the time window t = [15s, 20s] of the 
omputed andmeasured wave for
es are 
ompared in Figs. 7.22(b) and 7.22(
) for the horizontal for
eand verti
al for
e, respe
tively. The Fourier amplitude of the se
ond harmoni
 
omponentof the horizontal for
e is of the same order of magnitude as the Fourier amplitude of thelinear harmoni
 
omponent for this 
ase. A pronoun
ed se
ond harmoni
 
omponent ofthe horizontal for
e was also observed in tests with the 
ir
ular 
ylinder for d/D = 0.2.However, the total verti
al for
e amplitude is mu
h larger than the total horizontal for
eamplitude. This is be
ause the proje
ted pressure area in the verti
al dire
tion is propor-tional to the model breadth, while the proje
ted pressure area in the horizontal dire
tionis proportional to the model draft whi
h is less than 20% of the breadth.
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)Figure 7.19: Comparison of time-series and 
orresponding Fourier amplitudes ofwave for
es on the 
ir
ular 
ylinder obtained from simulations and model tests.Test parameters are d/D = 0.8, T = 1.348s, H0/λ0 = 1/20.
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Figure 7.20: Snapshots of the lo
al �ow near the �xed model. The air-phase isex
luded. Test parameters here are d/D = 0.8, T = 1.348s, H0/λ0 = 1/20. The
ontour values for the velo
ity are given in units of meters per se
ond.
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Figure 7.21: Snapshots of the z−vorti
ity in the lo
al �ow near the �xed model.The air-phase is ex
luded. Test parameters here are d/D = 0.8, T = 1.348s,
H0/λ0 = 1/20. Contour values for the z−vorti
ity are given in 1/s.
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Figure 7.22: Comparison of time-series and 
orresponding Fourier amplitudesof wave for
es on the re
tangular 
ylinder obtained from simulations and modeltests. Test parameters are d/b = 0.2, T = 1.348s, H0/λ0 = 1/20.
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Figure 7.23: Comparison of time-series and 
orresponding Fourier amplitudesof wave for
es on the re
tangular 
ylinder obtained from simulations and modeltests. Test parameters are d/b = 0.5, T = 1.084s, H0/λ0 = 1/20.Re
tangular 
ylinder with d/b = 0.5Time-series of 
omputed wave for
es on the re
tangular 
ylinder with draft d/b = 0.5 dueto waves with period T = 1.084s and steepness H0/λ0 = 1/20 is 
ompared with 
orre-sponding measured for
es in Fig. 7.23(a). Corresponding Fourier amplitudes obtainedfrom the time interval t = [16s, 21s] are presented in Figs. 7.23(b) and 7.23(
). The linearharmoni
 
omponent dominates for both the horizontal for
e and the verti
al for
e. Goodagreement between measured and 
omputed for
es are observed for this 
ase.Re
tangular 
ylinder with d/b = 0.8Finally, we 
onsider the re
tangular 
ylinder with draft d/b = 0.8 when subje
ted to waveswith period T = 1.084s and steepness H0/λ0 = 1/20. Wave over-topping on the modelwas observed both in the experiments and in the numeri
al simulation with the NWT
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ylinders in regular wavesfor this test 
ondition. Time series of the 
omputed and measured wave ex
itation for
esare 
ompared in Fig. 7.24(a). Obtained Fourier amplitudes of the horizontal and verti
alfor
es are 
ompared in Figs. 7.24(b) and 7.24(
), respe
tively. Due to short length of thetime series from the numeri
al simulation, the Fourier transform of the for
e time-seriesare relatively 
oarse. However, we observe that the horizontal for
e is almost entirelydes
ribed by the linear harmoni
 
omponent. Further, we observe for the verti
al for
ethat the importan
e of the se
ond harmoni
 
omponent relative to the linear harmoni

omponent in
reases when over-topping o

ur.
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Figure 7.24: Comparison of time-series and 
orresponding Fourier amplitudesof wave for
es on the re
tangular 
ylinder obtained from simulations and modeltests. Test parameters are d/b = 0.8, T = 1.084s, H0/λ0 = 1/20. Over-toppingis observed in the model test and in the simulation. Due to short time series,the resolution of the dis
rete Fourier transform is 
oarse.
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ylinders in regular waves7.4 A generalized Morison modelIn the following, a simpli�ed numeri
al model for 
omputation of wave for
es on 
ylindersare dis
ussed. It is 
ommon engineering pra
ti
e to apply the Morison's equation whenwave ex
itation for
es on verti
al 
ylinders are sought, whi
h yields the in-line hydrody-nami
 for
e on the 
ylinder. Morison's equation is expressed in terms of a mass 
oe�
ient
CM and a drag 
oe�
ient CD whi
h generally has to be determined empiri
ally. Further,Morison's equation applies for large wave lengths λ relative to the 
ross-se
tional dimen-sion D of the 
ylinder. For a verti
al 
ylinder, the wave is 
onsidered long if λ/D > 5.A 
onsequen
e of this is that both a

eleration and velo
ity in the in
ident wave do notvary mu
h over the 
ross-se
tion of the 
ylinder and 
an be evaluated at the 
ylinderaxis as if the 
ylinder was not there. The mass 
oe�
ient in Morison's equation hastwo 
omponents. One 
omponent is due to the undisturbed pressure �eld whi
h yieldsthe Froude-Krilo� for
e, while the other 
omponent is due to the di�ra
tion e�e
t of the
ylinder. We propose a generalization of Morison's equation where the term in
ludingthe mass 
oe�
ient is repla
ed by an expli
it expression for the di�ra
tion for
e and theFroude-Krilo� for
e as

Fi = F D
i + F FK

i +
1

2
ρCDD |ui| ui, (7.4)where F D

i and F FK
i is the 2D di�ra
tion for
e and the 2D Froude-Krilo� for
e, respe
-tively, on the 
ylinder 
ross-se
tion. The index i indi
ates the dire
tion of the for
e, where

i = 2 refers to the horizontal (x−) dire
tion and i = 3 refers to the verti
al (y−) dire
tion.Further, ρ is mass density of water, D is the proje
ted dimension of the 
ylinder in thefor
e dire
tion and ui is the �uid parti
le velo
ity evaluated at the position of the 
ylinderaxis as if the 
ylinder was not there. This approa
h is 
onsistent with the linear potential�ow analysis of a semi-submersible as des
ribed by Faltinsen (1990). How the di�erentterms in (7.4) are obtained are dis
ussed in the following.Froude-Krilo� for
esThe Froude-Krilo� for
es are found by integrating the hydrodynami
 pressure p from thein
ident wave over the wetted surfa
e S of the 
ylinder, i.e.
F FK

i = −
∫

S

pnidS. (7.5)Here ni is the i-th 
omponent of the unit normal ve
tor n pointing into the �uid domain.To �rst order in the wave slope ε = kζA, the Froude-Krilo� for
e is found by integratingthe linear hydrodynami
 pressure p1 = −ρ∂φ1

∂t
, found from Bernoulli's equation, overthe mean wetted surfa
e of the 
ylinder S0. Here φ1 is the �rst order velo
ity potentialof a regular wave. Moving to se
ond order in ε, the hydrodynami
 pressure is fromBernoulli's equation found to be p2 = −ρ∂φ2

∂t
− 0.5ρ |∇φ1|2, where φ2 is the velo
itypotential 
orre
t to se
ond order (see e.g. Dean and Dalrymple (1991)). Integrating these
ond order pressure over the mean wetted surfa
e yields a se
ond order for
e. Wemust also a

ount for the time-varying wetted surfa
e of the 
ylinder, whi
h is done byintegrating the linear hydrodynami
 pressure from y = 0 to y = ζ1(x, t). ζ1 is the �rstorder free surfa
e elevation. By Taylor expansion of Bernoulli's equation from y = 0, thelinear hydrodynami
 pressure in the wave zone is found to be p1 = ρg (ζ1 − y). This yields
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e 
orre
t to O (ε2). It should be noted that it is questionableto separate out a nonlinear Froude-Krilo� for
e from a nonlinear analysis as des
ribedabove.Di�ra
tion for
esDue to the presen
e of the 
ylinder, the hydrodynami
 pressure �eld in the in
identwave will be modi�ed. This yields the di�ra
tion for
e. The di�ra
tion potential 
an befound either numeri
ally of analyti
ally and then used to 
al
ulate the di�ra
tion for
esdire
tly. We will use a simpler approa
h as des
ribed by Newman (1977). By means of
onsisten
y with 
al
ulation of the Froude-Krilo� for
es, also the di�ra
tion for
es shouldbe evaluated to O (ε2) and the nonlinear intera
tion with the in
ident waves should be
onsidered. Despite of this, a linear approa
h is used here for the di�ra
tion for
es. Usinglinear potential �ow theory, the di�ra
tion potential 
an be related to the in
oming wavepotential and the radiation potentials through the Haskind relation. This means thedi�ra
tion for
es on a se
tion of the 
ylinder 
an be written in terms of two-dimensionaladded mass and damping 
oe�
ients as
F D

i = aiiu̇i + biiui. (7.6)Here, u̇i and ui is the parti
le a

eleration and parti
le velo
ity of the in
ident wave inthe i-th dire
tion, respe
tively. One important question here is: where do we evaluatethe velo
ity and a

eleration for a horizontal 
ylinder in the free surfa
e? To answer thisquestion, one should go ba
k to the derivation of the Haskind relation. Then one shouldfo
us on what are the relations between the body boundary 
ondition in the di�ra
tionproblem and the body boundary 
ondition in the radiation problem. Intuitively, thevelo
ity and a

eleration used should represent the body boundary 
onditions in thedi�ra
tion problem. But, sin
e both parti
le a

eleration and velo
ity is spa
e-varyingunder a wave, representative values should be used. Hen
e, for the verti
al di�ra
tionfor
e 
omponent on the re
tangular 
ylinder, the velo
ity and a

eleration is evaluated at
[x, y] = [0,−d] where d is the model draft. For the horizontal di�ra
tion for
e 
omponent,the velo
ity and a

eleration is found from a weighted average over the 
enter-plane ofthe model, i.e. by integrating the depth dependen
y of the a

eleration and velo
ity from
y = −d to y = 0. The added mass and damping 
oe�
ients are a priory unknown and hasto be found either by means of tabulated values or from 
omputations. Sin
e we assume2D �ow in the xy-plane, this implies we have to solve the radiation problem in heave andsurge to �nd the added mass and damping 
oe�
ients. Added mass and damping aregenerally dependent on the frequen
y of os
illation, body geometry and the water depth.The radiation problem for heave and sway motion of a re
tangular 
ylinder at �nite waterdepth is solved using a linear time domain boundary element method (BEM) 
omputerprogram. Dimensionless 
oe�
ients are listed in Table 7.3. Lo
ally near the model, thefree surfa
e elevation will be modi�ed due to the presen
e of the 
ylinder. Ampli�
ationof the lo
al free surfa
e elevation due to di�ra
tion e�e
ts may 
ause the in
oming waveto over-top on the re
tangular 
ylinder, even when the in
ident wave amplitude is smallerthan the freeboard. Over-topping will naturally have an e�e
t on the verti
al for
e timehistory of the wave ex
itation for
e whi
h will be dependent on the nature of the over-topping wave (see Gre
o et al. (2007)). Over-topping is not modelled expli
itly by ourmodel.
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ylinders in regular wavesTable 7.3: Non dimensional added mass and damping 
oe�
ients in heave andsway for a re
tangular 
ylinder with beam B and draft d os
illating with thenon-dimensional frequen
y ω
√

B/g = 1.014 at �nite water depth h/B = 1.81.
B/d h/d a33

ρBd
b33

ρωBd
a22

ρBd
b22

ρωBd2.40 4.43 0.8850 0.5592 0.9108 1.04011.50 2.72 0.6512 0.6737 0.2392 1.5109Vis
ous drag for
esSin
e the pressure distribution on the 
ylinder is modi�ed due to separation of vorti
esat the sharp edged 
orners of the re
tangular 
ylinder, the 
ylinder will experien
e a dragfor
e. This drag for
e is represented by the last term in (7.4). The Reynolds number andsurfa
e roughness dependen
e of CD for sharp edged bodies 
an be negle
ted. However,the KC-number dependen
e should be assessed. For a fa
ing square 
ylinder in in�nite�uid at low KC-number �ow (KC < 10), experiments shows that the drag 
oe�
ient
CD ≈ 3.0, i.e. KC-independent (Bearman et al. 1984). Vis
ous drag for
e is in
luded inthe horizontal dire
tion for the whole wave 
y
le, and in the verti
al dire
tion only whenthe verti
al velo
ity at the 
ylinder 
entre is negative.7.4.1 Comparisons with CFD-simulations and experimentsTo test the proposed method, two test 
onditions from the experiments in 2006 are 
on-sidered. The �rst 
ase 
onsidered is where the re
tangular 
ylinder with draft d = 0.125mis subje
t to regular waves with period T = 1.084s and wave height H = 0.088m. Thismeans KC ≈ πH/B = 0.92. Over-topping was not observed in the experiments for this
ase. Numeri
al simulation with the CIP-based NWT using the base 
ase grid and thesame input parameters as in the experiments has been performed. The verti
al for
es
omputed with the NWT was in good agreement with experiments, meaning the dif-feren
e between 
omputed for
e amplitudes and measured for
e amplitudes is less than5%. Comparing peak-to-peak for
e amplitudes ((F+

y +
∣

∣F−
y

∣

∣)/2) shows that the NWTunderpredi
ts the measured values from experiments by 1.5%. When it 
omes to hor-izontal for
es obtained with the NWT, the agreement with experimental results is lessgood. Computed horizontal for
e amplitudes di�er from the measured horizontal for
eamplitudes by 15%. Peak-to-peak for
e amplitudes di�er by 14%. One should note herethat the time series of the for
es obtained with the NWT are relatively short, meaningfor
es from 2-3 wave 
y
les are used for 
omparison. This is due to the length of the
omputational domain and the fa
t that no wave absorber is used on the wave maker inthe simulations to take 
are of the re�e
ted waves from the model, whi
h puts a limiton the simulation time. Hen
e, 
omputed for
es with the NWT might not give a goodrepresentation of the steady-state values. In addition 
omes the e�e
t of in
reased wa-ter depth during the simulation due to the linear imposition of boundary 
ondition onthe wave maker. As in the experiments, overtopping was not observed in the numeri
alsimulation with the NWT for this 
ase. The generalized Morison model (GMM) gives agood representation of the measured for
es, relative to the simpli
ity of the model. Thedi�eren
e in verti
al for
e amplitudes obtained with the GMM 
ompared to experimentsis less than 5.5%. This is also the 
ase for the horizontal for
e amplitudes. A

ording



7.4. A generalized Morison model 149Table 7.4: Measured and 
omputed wave ex
itation for
e amplitudes ([N/m℄) insway and heave for the test 
ase 1 and 2 with the re
tangular model. Beam-to-draft ratio for 
ase 1 is B/d = 2.4, while for 
ase 2 B/d = 1.5.Case 1 Case 2
F+

x F−
x F+

y F−
y F+

x F−
x F+

y F−
yExperiments 80.27 -73.26 53.03 -73.52 107.7 -111.8 41.85 -60.53CIP 92.30 -82.34 51.73 -76.66 118.0 -117.9 43.66 -53.32Gen. Morison 84.65 -70.23 50.61 -69.60 116.8 -98.90 37.04 -52.21Newman, eq. (7.7) 89.96 -89.96 65.95 -65.96 137.2 -137.2 54.56 -54.56to Newman (1962), the wave ex
itation for
e amplitude for the mode given by k = 2, 3,referring to the sway and heave mode respe
tively, 
an be related to the potential �owdamping 
oe�
ient bkk for the mode in question as

Fka = 0.5H
√

ρg2bkk/ω. (7.7)This relation yields for
e amplitudes in sway and heave whi
h are at most 25% o� themeasured value in the experiments for the present 
ase. For
e amplitudes, both positiveand negative, of the in-line horizontal for
e and the verti
al for
e obtained from measure-ments and from the di�erent numeri
al methods are given in Table 7.4. Time series ofthe free surfa
e elevation at the model position from wave 
alibration tests and the for
esmeasured in the experiments, are 
ompared with 
orresponding numeri
ally obtained timeseries from the CIP-based NWT and the generalized Morison model in Figure 7.25. The
omputed for
e time history show the same behaviour as the measured time series fromexperiments.In the se
ond 
ase the draft was in
reased to d = 0.200m, yielding a free-board of0.050m. The 
ylinder was subje
t to regular waves with the same wave parameters as inCase 1. Over-topping was observed in the experiments for this 
ase, despite the fa
t thatthe in
ident wave amplitude was lower than the free-board. This means lo
al di�ra
tione�e
ts are important. The over-topping wave had a dam-breaking-like behaviour. Simu-lations with the CIP-based NWT was performed with the draft in
reased to d = 0.200musing the same grid, 
omputational domain and wave maker signal input as for Case 1.Over-topping was also seen in the numeri
al simulations, with the same dam-breaking-likebehaviour as observed in the model test. An e�e
t of over-topping on the wave ex
itationfor
es is seen to be a bump on the positive half 
y
les of the verti
al for
e time history,asso
iated with the pressure from the over-topping wave on the top-side of the 
ylinder.This e�e
t of over-topping on the verti
al for
e is 
aptured by our NWT. As in Case 1,the generalized Morison model is applied to obtain for
e time series for Case 2. Resultingtime series of measured and 
omputed for
es for the 
ase of d/Hm = 0.8 are 
omparedin Figure 7.26. Sin
e the in
ident wave amplitude is lower than the freeboard of the
ylinder, the generalized Morison model obviously does not predi
t over-topping. Thisexplains why the obtained time series of the verti
al wave ex
itation for
e from the GMMdo not show the same trend as the measured time series and time series obtained withthe CIP-based NWT of the verti
al for
e. Positive and negative wave ex
itation for
eamplitudes are 
ompared in Tab. 7.4. The generalized morison model is not tested forthe 
ir
ular model.
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7.5. Summary 1517.5 SummaryOur study on horizontal 
ylinders �xed in the free surfa
e zone and subje
t to largeamplitude regular waves has been presented. Numeri
al wave 
alibration was performedwith the CIP-based NWT for all test wave 
onditions used in simulations with modelspresent. As in the experiments from 2006, both a 
ir
ular and a re
tangular geometrywere tested with our NWT. Fourier analysis of the measured and 
omputed for
e time-series showed that the se
ond harmoni
 
omponent of the horizontal for
e is importantwhen the draft is small relative to the beam of the model. Further, when over-toppingo

ur, the horizontal for
e is almost entirely des
ribed by the linear harmoni
 
omponent,while the se
ond harmoni
 
omponent be
omes pronoun
ed for the verti
al for
e. Thiswas observed for both models tested.A generalized Morison model (GMM) for 
omputation of wave ex
itation for
es on
ylinders in the free surfa
e was proposed. The model was tested using test parametersfrom the experiments for a re
tangular 
ylinder. For
es obtained with the GMM were
ompared with results from experiments and simulations with the NWT. The GMMyielded good results for the 
ase when over-topping did not o

ur. However, when over-topping o

ur, the GMM is no longer adequate.The CPU-time for ea
h of the numeri
al simulations performed with the CIP-basedNWT from whi
h results have been presented, were of the order of 30 hours on an Intel R©CoreTM Duo 2.4GHz pro
essor.
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Chapter 8A study of a �oating 
ir
ular 
ylinderin regular wavesIn this 
hapter we investigate the nonlinear wave-indu
ed motions of a moored 
ir
ular
ylinder. Time-series of the body motions in heave and sway obtained with the CIP-based NWT are 
ompared with measured time-series from the model tests. This workhas resulted in a journal paper (Kristiansen and Faltinsen 2009).8.1 Numeri
al modelling of the 2008-experimentsThe experiments from 2008 was 
hara
terized by a �oating 
ir
ular 
ylinder orientedhorizontally in the free surfa
e, whi
h was moored and subje
t to regular waves. Nonlinearwave indu
ed motions of the 
ylinder were studied. In the following, a numeri
al modelrepresentation of the experiments from 2008 is presented.8.1.1 The 
omputational domain and grid arrangementsA numeri
al model of the �ume used in the experiments from 2008 was 
onstru
ted. Withthe same argumentation as in the previous 
hapter, the domain length was based on thewave length λ estimated from potential �ow theory, 
orresponding to the wave periodtested. The 
ir
ular model with diameter D = 0.100m was for most 
ases pla
ed at adistan
e 4.5λ from the wavemaker boundary. The ex
eption was one 
ase where the modelwas lo
ated 9.5λ from the wavemaker boundary in order to run longer simulations. Thewater depth was h = 1.00m as in the experiments. Domain height was 
hosen to be 1.90m,meaning the distan
e from the 
alm water surfa
e to the top boundary was 0.90m. Forwave generation, the physi
al �ume is equipped with a �ap-type wavemaker. In the NWT,the �ap wavemaker was modelled linearly by imposing the horizontal velo
ity 
omponentof the paddle onto the left hand boundary of the domain, whi
h was �xed in spa
e. The�ap motion amplitude needed for generation of waves with a given wave height H wasestimated from (3.26). A damping zone with length Ldz = 4λ was applied at the righthand side of the domain. The top boundary was modelled as an open boundary withatmospheri
 pressure, while at the bottom boundary a no-slip 
ondition was imposed. Ano-slip 
ondition was also applied on the �oating body. In Fig. 8.1 a qualitative sket
hof the 
omputational domain is presented. 153



154 A study of a �oating 
ir
ular 
ylinder in regular waves
W

av
e 

m
ak

er
 c

on
tr

ol
 s

ur
fa

ce

Coarse grid

Damping zoneFine grid

∆x 
onstant L3 = 5λL1 = aλ

∆y 
onstant
H2

H3

H1

h = 1.00m Ldz = 4λ

L2 = λ

γD

y

x

Figure 8.1: Sket
h of the domain used in the simulations with the moored �oating
ylinder. Here λ is wave length, D is model diameter, h is water depth, ∆x and
∆y are horizontal and verti
al grid spa
ing, respe
tively. The parameter γ = 2for most 
ases, while a = 4 for all tests ex
ept when T = 0.544s for where a = 9was used.Table 8.1: Grid parameters used to obtain three grids with di�erent resolution forsimulations of the moored �oating 
ylinder in waves. Due the gridding te
hniquewill the total number of grid 
ells vary from 
ase to 
ase.

NB Nλ NIGrid 1 55 40 80Grid 2 60 45 90Grid 3 70 45 100Non-uniform staggered Cartesian grids were used. Grid-stret
hing was applied inorder to in
rease the grid resolution in regions of the domain where large gradients of thesolution o

ur, while keeping the CPU-time at an a

eptable level. The 
omputationaldomain was divided into sub-regions where di�erent gridding strategies were applied.In the longitudinal dire
tion, the domain was divided in to three sub-regions Li with
i = 1, 2, 3 as shown in Fig. 8.1. Constant spa
ing ∆xi between the verti
al grid lineswas applied in L1, where ∆xi was based on the wave length λ. In L2, ∆xi varied ina squared 
osine manner in order to mat
h the relatively 
oarse grid in L1 with a �negrid region at the model position. Constant grid line spa
ing was used in the �ne-gridregion of width γD inside L2, where γ = 2 for most 
ases. In L3, the grid in
rement ∆xivaried as a quadrati
 fun
tion. For the verti
al dire
tion, quadrati
 grid stret
hing areused in H1 and H3, while ∆yj is 
onstant in the interfa
e zone de�ned by H2. The heightof the interfa
e zone is for the majority of the tests H2 = 0.20m, ex
ept for 
ases withlarge body motions, where a larger value of H2 is used to avoid that the model goes outof the �ne grid region. Smooth variations of the grid in
rements between the di�erentgrid regions are ensured. For ea
h test 
ondition, three grids with di�erent resolution are
onstru
ted su
h that grid sensitivity of the results 
ould be tested. Grid parameters forthe three grids are listed in Tab. 8.1. Due to the gridding method des
ribed above, thetotal number of grid 
ells in the domain will vary from 
ase to 
ase.



8.1. Numeri
al modelling of the 2008-experiments 155Table 8.2: Computed mean wave height Hnum from numeri
al wave 
alibrationtests and measured mean wave height, HWG2
exp and HWG3

exp 
orresponding to WG2and WG3, from the physi
al wave 
alibration tests. Linear wavemaker theory isused to 
al
ulate the ne
essary �ap amplitude for the input wave height Hinput.
T [s℄ Hinput [m℄ Hnum [m℄ HWG2

exp [m℄ HWG3
exp [m℄0.457 0.023 0.021 0.023 0.0230.497 0.028 0.024 0.029 0.0290.544 0.033 0.029 0.035 0.0330.601 0.040 0.036 0.044 0.0420.761 0.065 0.060 0.069 0.0620.878 0.086 0.081 0.085 0.0851.038 0.120 0.116 0.120 0.1191.132 0.143 0.139 0.138 0.1398.1.2 Numeri
al wave 
alibrationNumeri
al wave 
alibration tests are performed, whi
h are simulation of wave generationwith the NWT when the model is not present. Obtained wave heights from the numer
ialwave 
alibration tests and measured wave heights from the physi
al wave 
alibration testsare presented in Tab. 8.2. The obtained wave heights in the NWT are generally lowerthan the input wave height used when estimating the ne
essary �ap amplitude of thewavemaker. Computed time-series of the free surfa
e elevation at x =m and x =m forthe two wave periods T = 1.038s and T = 1.132s are 
ompared with measured freesurfa
e elevation from the physi
al wave 
alibration tests in Figs. 8.2 and 8.3. Goodagreement between the 
omputed and measured free surfa
e elevation is observed for thesteady state region of the time-series, while some deviations are observed in the wavefronts. It is in general di�
ult to reprodu
e the exa
t transients of the front of thewave train in the experiments with the NWT. This has di�erent reasons. First of all,when the generated waves are short, it is 
omputationally 
ostly to resolve the wavesin a domain with dimensions of the physi
al �ume. Thus, we have used a shorter wavetank in the numeri
al simulations than the a
tual physi
al wave �ume. Se
ond, when
omparing time-series of the free surfa
e elevation from �umes with di�erent dimensions,there are two important wave 
hara
teristi
s that has to be a

ounted for. These arethe phase velo
ity and the group velo
ity. If one travels with the wave front, linearlythe wave-front kinemati
s repeat itself when the wave front has propagated an integralnumber of wave lengths. Hen
e, when the 
omputed free surfa
e elevation in the wavefront is 
ompared with measurements done in the larger physi
al �ume, the di�eren
e ofthe distan
e between the wavemaker and wave probe in the physi
al �ume and that inthe numeri
al �ume should also be an integral number of wave lengths. However, in thefully nonlinear problem the wave-front kinemati
s 
an be di�erent even for two positionslo
ated an integral number of wave lengths apart. This means that if the dimensionsof the NWT are di�erent from the dimensions of the physi
al wave tank, the transientbehaviour of the wave front will not be 
aptured well.In the adopted free surfa
e 
apturing method where the step-like 
olor fun
tion φ1(x, y, t)is used to de�ne the water phase, the free surfa
e is found from the 
olor fun
tion as the
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Figure 8.2: Comparison between free surfa
e elevation obtained from numeri
aland experimental wave 
alibration tests. Wave period is T = 1.038s and inputwave height is H = 0.120m.
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Figure 8.4: Contour levels of the 
olor fun
tion φ1 representing water duringnumeri
al wave 
alibration for 
ase with wave period T = 1.038s and wave height
H = 0.120m. The free surfa
e is represented by the 
ontour φ1 = 0.5.
ontour φ1 = 0.5. Due to numeri
al di�usion at the steep gradients of the 
olor fun
tion,some smearing of the 
olor fun
tion is observed during the simulation. This is exempli�edin Fig. 8.4, where the verti
al position in time of the 
ontours de�ned by φ1 = 0.05,

φ1 = 0.5 and φ1 = 0.95 at the two positions x =m and x =m are shown. Numeri
al di�u-sion is observed as in
reasing distan
e between the 
ontour lines in time for the dire
tiongiven by the steepest gradient.
8.1.3 Modelling of the mooring line arrangementThe mooring system was modelled as straight linearly elasti
 lines where in the simulationsthe far end were pin-pointed at the 
oordinates of the 
onta
t point between the mooringline and the pulley from the experimental test setup. The other end of the mooring linewas lo
ated at the model 
enter, i.e. the 
ylinder axis, and was thus moving with thebody. Two mooring lines were applied and the line geometry was symmetri
 about theverti
al y-axis through the 
ylinder axis when the model was resting at its equilibriumposition. Then, the horizontal and verti
al extent of ea
h mooring line was lx = 2.43mand ly = 0.136m, and the mooring lines made an angle α = 3.2◦ with the 
alm free surfa
eas in the experiments. The mooring lines had pre-tension Fs0 = 38.1N and an equivalentspring sti�ness ke = 151.2 N/m2 in the 2D model. Mooring line for
es were de
omposedto yield 
omponents in both horizontal dire
tion and verti
al dire
tion, depending on theinstantaneous position of the model.
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ir
ular 
ylinder in regular waves8.1.4 Equivalent mass of the 
ir
ular 
ylinder with end-platesIn the model tests presented, the model was a 
ir
ular 
ylinder equipped with 
ir
ularend-plates. These end-plates were made of plexi-glass and 
ontributed to 33.7% of thetotal mass of the model, but their 
ontribution to the total buoyan
y were only 13.4%.Sin
e the NWT is a 2D 
ode, it 
annot in
lude these end-plates into the 
al
ulations.Further, modelling the 
ylinder with the same 
ross-se
tional dimensions and measuredmass divided by the model length, as in the experiments, will give an in
ongruity be-tween model weight and hydrostati
 for
es on the model. Hen
e, an equivalent mass ofthe model has to be introdu
ed when numeri
al simulations of the model tests are per-formed. This e�e
tive mass is found by balan
e of stati
 for
es in the verti
al dire
tion,dedu
ed from observations and measurements in the model tests. When the model in theexperiments was moored and in its equilibrium position, the 
ylinder axis was observed tohave a positive verti
al o�set ∆y = 4mm from the 
alm water surfa
e, whi
h means thesubmerged area A of the 
ir
ular 
ross-se
tion 
an be determined. Then the buoyan
yfor
e of the model, ex
luding the end-plates, is found as B = ρgALm, where Lm is thelength of the model. The three mooring lines, whi
h all made an angle α = 3.2◦ with the
alm water surfa
e, had a pre-tension measured to be F01 = 10.53N, F02 = 11.20N and
F03 = 21.67N. Thus the equivalent mass of the 
ylinder is found, using Newton's �rst law,as Me =

(

B +
∑3

i=1 F0i sin(α)
)

/ (gLm) = 3.940kg. This equivalent mass is used as inputto the NWT.8.2 Identi�
ation of damping in the experimentsFree de
ay tests of the sway motion of the moored 
ylinder are 
ondu
ted, both numer-i
ally and experimentally, in order to identify the di�erent sour
es of damping in theexperiments. The numeri
al free de
ay tests was performed using the same initial 
ondi-tions as in the experiments. The initial horizontal o�set of the model from equilibriumwas η2(0) = 0.047m. Numeri
al and experimental results are 
ompared in the followingand deviations are dis
ussed. The relative importan
e of di�erent physi
al e�e
ts 
ausingde
ay rates of the motion amplitudes are also presented.In Fig. 8.5(a), time-series of the sway motion obtained from CIP-simulations are
ompared with sway motion dedu
ed from the mooring line for
es measured in the ex-periments. Corresponding de
ay rates of the sway motion amplitudes are shown in Fig.8.5(b). Both in the experiments and in the simulations, the period of the sway motionwas found to be T ≈ 1.09s, whi
h is the natural period in sway from linear potential �owtheory. In Fig. 8.5(b) the theoreti
al de
ay rate due to linear wave radiation damping isplotted for 
omparison. While the de
ay rate of the sway motion obtained from numeri-
al simulations seems to approa
h that due to linear wave radiation damping, there is anin
rease in the de
ay rate of the sway motion amplitudes obtained from the experiments.This in
rease in the damping level with de
reasing amplitude of os
illation is hard toexplain in terms of hydrodynami
 e�e
ts. If the model os
illates with an amplitude η2aequal to the initial horizontal displa
ement at its natural frequen
y, the Reynolds numberfor os
illatory �ow is Rn =
ωη2

2a

ν
≈ 104 whi
h means the boundary layer is laminar inatta
hed �ow (Faltinsen 1990). Changes in the damping level are thus not likely to beasso
iated with transitions in the boundary layer �ow. In the following, vis
ous e�e
ts are
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160 A study of a �oating 
ir
ular 
ylinder in regular wavesdis
ussed. Investigation of the Keulegan-Carpenter number, de�ned as KC = 2πη2a/D,shows that KC > 2 for the two �rst periods of os
illation in the free de
ay test. Thismeans vis
ous �ow separation is likely to o

ur, whi
h is also seen in the numeri
al sim-ulations where the �ow separates and vorti
es are shed from the body surfa
e during thetwo �rst periods of os
illation. The damping term due to vis
ous �ow separation are al-ternatively estimated as follows. By assuming that the free surfa
e a
ts as a wall and thatthe boundary layer �ow is laminar, a linearized vis
ous damping for
e FD = −bv
22η̇2 due to�ow separation is added to the sway motion equation. Equivalent linearization is appliedto obtain bv

22 = 2
3π

ρCDDωη2aLm, where CD ≈ 0.2KC (Graham 1980). The boundarylayer �ow on the model surfa
e will also 
ontribute to the damping of the body motion.If the �ow is assumed atta
hed to the body surfa
e an estimate of the damping level inthe experiments due to skin fri
tion on the half submerged 
ir
ular 
ylinder of length
Lm = 0.58m with end-plates 
an be found by linear theory. For harmoni
 os
illationswith 
onstant amplitude η2a = 0.02m at the natural sway frequen
y ωn2 = 5.75 rad/s, the
ontribution from skin fri
tion, i.e. tangential stresses on the 
ylindri
al part of the model,
an be shown to be |Fv| = π

2
µωη2a

√

ω
ν
DLm ≈ 0.03N (Bat
helor 1967). There is also ane�e
t from normal vis
ous stresses on the surfa
e, whi
h a

ording to Stokes (Stokes 1851)yields an equal 
ontribution as that from tangential stresses on the surfa
e of the 
ir
u-lar 
ylinder. The skin fri
tion drag on the end-plates used to ensure 2D-
onditions arefound through Stokes' se
ond problem to 
ontribute |F EP

v | ≈ 0.03N to the vis
ous dragfor
e. The in�uen
e due to the narrow gap between the end-plates and tank walls on thevis
ous e�e
ts is negligible. Thus, the total damping for
e due to the boundary layer onthe model in the physi
al free de
ay test is of order |F bl
v | ≈ 0.09N. This damping for
eis shown to de
ay linearly with η2a. In 
omparison, the linear wave radiation dampingfor this 
ase is |Fw| = 0.27N. If the �ow does not separate, this means that about 25%of the total theoreti
al hydrodynami
 damping for
e is due to boundary layer e�e
ts atthe natural period in sway. Theoreti
al de
ay rate of the sway motion amplitudes due tovis
ous damping and linear wave radiation damping is shown in Fig.8.5(b). The obtaineddamping 
oe�
ients shows that initially, damping due to vis
ous �ow separation is of thesame order as the linear wave radiation damping. However, the in
reasing de
ay rate seenin the later stage of the experiments 
ould not be explained in terms of vis
ous e�e
ts.Damping due to wall 
onta
t 
ould be another explanation, but investigation of the jerkparameter for the measured a

eleration time-re
ords does not indi
ate any wall 
onta
tevents that 
ould have explained the in
reased damping level. However, fri
tion in thepulleys used in the mooring line arrangement will introdu
e damping to the system. Freede
ay tests of the model in air was performed in order to investigate the damping fromthe mooring line arrangement. Physi
ally, this was done by suspending the model usinga long line from the roof and then draining the �ume, su
h that the model appeared asa long pendulum. The sway motion amplitudes from free de
ay in air also showed thesame tenden
y as seen for free de
ay of the sway motion for the semi-submerged 
ylin-der, namely an in
reasing de
ay rate with de
reasing amplitude. This means that thein
reasing damping level in the last part of the free de
ay test is not related to hydro-dynami
 e�e
ts, but most probably asso
iated with nonlinear damping due to fri
tion inthe pulleys used in the mooring line arrangement. By using the experimentally obtainedde
ay rate for the largest sway motion amplitudes from the free de
ay test in air, a lin-ear approximation of the damping 
oe�
ient due to pulley-fri
tion was estimated. Theobtained damping 
oe�
ient, bp

22, yielded a 
orresponding damping ratio in water due to



8.3. Comparisons between model tests and simulations 161the pulleys as ξ = bp
22/ (2ωn(m + a22)) ≈ 0.012. In 
omparison, the damping ratio due toskin fri
tion on the semi-submerged 
ylinder in atta
hed �ow is ξ = 0.0091. The theo-reti
al de
ay rate of the sway motion amplitudes when all damping terms dedu
ed aboveare in
luded is presented in Fig. 8.5(b). Sin
e the damping 
oe�
ient due to vis
ous�ow separation depends on the motion amplitude, the de
ay rate is found by iteration.Neither skin fri
tion drag, nor damping due to pulley-fri
tion is in
luded in the numeri
alsimulations with the NWT. However, the for
es from normal stresses due to the bound-ary layer on the 
ylinder surfa
e are impli
itly in
luded in the pressure for
es. What theresults in Fig. 8.5(b) indi
ate is that the very good agreement between the experimentsand the CIP shown in Fig. 8.5(a) for the initial os
illations is 
oin
idental. Even thoughthe pulley-fri
tion and the skin-fri
tion are not dominant, their e�e
ts should appear asa visible di�eren
e between the experiments and CIP-simulations.8.3 Comparisons between model tests and simulationsThe wave-indu
ed sway and heave motion of the 
ylinder are obtained by integrationof the measured a

elerations. Further are the obtained model motion from numeri
alsimulations band-pass �ltered using the same 
ut-o� frequen
ies as for the measurements.Roll motion of the 
ir
ular 
ylinder is not 
onsidered in the present study. Comparisonsbetween numeri
al simulations and experiments are dis
ussed in the following.8.3.1 A model based on linear potential �ow theorySin
e we are dealing with nonlinear motions, we de�ne the sway and heave motion am-plitudes used for 
omparison as ηka = 0.5(η+

k + η−
k ), where k = 2, 3 refers to the swayand heave mode, respe
tively. Here η+

k is the positive amplitude and η−
k is the negativeamplitude in steady state 
ondition. The motion amplitudes were made dimensionlessusing the in
ident wave height H measured in the wave 
alibration tests. Sway and heaveresponse of the model predi
ted by linear potential �ow theory with additional dampingdue to vis
ous and pulley e�e
ts, was used for 
omparison and is derived as follows. The2D ex
itation for
e amplitude Fka has been related to the potential damping 
oe�
ient

bw
kk as Fka = 0.5H

√

ρg2bw
kk/ω (Newman 1962). We assume that roll motion is negligible.Then, it follows from the un
oupled linear equations for sway and heave that
ηka

0.5H
=

Fka/ (0.5H)
√

(ckk − ω2 (m + akk))
2 + ω2b2

kk

. (8.1)Here, m is the stru
tural mass of the model per unit length, akk and bkk are the frequen
ydependent 2D added mass and damping 
oe�
ients, ckk is the 2D restoring 
oe�
ient,
ω is wave frequen
y, ρ is mass density of water while g is the a

eleration of gravity.For the heave mode, i.e. k = 3, only linear wave radiation damping is in
luded andhen
e b33 = bw

33 in (8.1). The added mass and potential damping 
oe�
ients (akk and
bw
kk) for in�nite water depth was provided by Skeji
 (Skeji
 2008). As observed from thefree de
ay tests, vis
ous damping gives a signi�
ant 
ontribution to the total damping atthe natural period in sway. Thus, in addition to the linear wave radiation damping, thevis
ous damping terms due to boundary layer e�e
ts and �ow separation from the semi-submerged 
ir
ular 
ylinder, bbl

22 and bv
22 respe
tively, are in
luded in b22. The boundary
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Figure 8.6: Heave and sway response amplitudes, η3a and η2a respe
tively, ob-tained from experiments and normalized by in
ident wave height H from wave
alibration tests. Results are 
ompared with linear potential �ow theory andtheory where vis
ous damping and pulley fri
tion damping are in
luded. Alsoresults based on the CIP-method are shown.
layer damping is found as bbl

22 = πµD
√

ω/ν + µ
√

ω/(2ν)Sw/Lm. Here, the �rst term isdue to skin-fri
tion and normal-stresses on the 
ylindri
al part of the model while thelast term is due to skin-fri
tion on the end-plates of the model. Further, Sw is the totalwetted area of the end-plates. The hydrodynami
 damping 
oe�
ient in (8.1) for thesway mode is then b22 = bw
22 + bv

22 + bbl
22. Also damping due to fri
tion in the pulleys(bp

22) is added for 
omparison. Sin
e the vis
ous damping 
oe�
ient bv
22 depends on theamplitude of the sway motion, the sway motion equation in
luding the vis
ous dampingterm is solved by iteration to �nd the sway motion amplitude for a given wave height. InFig. 8.6, the heave and sway motion amplitudes from the experiments are presented and
ompared with linear potential �ow theory using Eq. (8.1). In addition, the sway motionamplitudes are 
ompared with theory where the linearized vis
ous damping and linearizedpulley damping are in
luded. Two noti
eable features are observed. One feature was largeamplitude sway motion that o

urred when the wave period was half the sway naturalperiod, whi
h also was 
hara
terized by a shift in the response frequen
y. The se
ondfeature is the very large dis
repan
y between measured sway motion and that predi
tedby linear potential �ow theory 
lose to the sway natural period. These two parti
ularsare dis
ussed in the following.
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Figure 8.7: An xy−plot of the heave and sway motion of the 
ylinder in thetime interval t ∈ [22, 25]s obtained with the NWT 
ompared with measuredresponse in the experiments for the 
ase when T = 0.544s and wave steepness is
H/λ = 1/14. The arrows indi
ates the dire
tion of the motion.8.3.2 Subharmoni
 responseSteady-state of the 
ylinder motion was rea
hed in all the test runs, ex
ept for the testsfor whi
h the wave period was T = 0.544s. For these tests, the response amplitudes ofthe sway mode of motion were observed to in
rease until the motion be
ame so largeand violent that 
onta
t between the model and the side walls of the �ume o

urred.In Fig. 6.14, time-series of the sway motion from repetition tests with the wave period

T = 0.544s are 
ompared. The repetition tests shows that this 
hara
teristi
 sway motionwas repeatable until wall-
onta
t, but the sway response had di�erent behaviour for thetwo wave steepnesses tested. Sin
e no steady-state was rea
hed for tests with T = 0.544s,the maximum response amplitude before 
onta
t o

urred is used for 
omparison here,whi
h explains the s
atter of the sway response in Fig. 8.6 for this wave period. Theinstability phenomenon was also observed to be 
hara
terized by a shift in the swayresponse frequen
y. In the �rst stage after the wave train has rea
hed the model, the
ylinder started to os
illate in heave and sway with period equal to the wave period,as expe
ted. However, after a build-up through 18 - 20 wave periods, the sway motionfrequen
y had be
ome half the wave frequen
y, su
h that the frequen
y of the sway motionwas equal to the natural frequen
y in sway. In order to get a better impression of themotion, an xy−plot of the heave and sway motion is presented in Fig. 8.7. Su
h sub-harmoni
 response 
annot be explained in terms of linear potential �ow theory. Resultsshows that the largest sway motion amplitude obtained from experiments for some ofthe repetition tests was more than 250% of that predi
ted by linear theory for this waveperiod. Body motion obtained from numeri
al simulations for this parti
ular 
ase is
ompared with experiments in Fig. 8.8 for the smallest wave steepness H/λ = 1/14.
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Figure 8.8: Heave and sway motion of the 
ylinder obtained with the NWT and
ompared with measured response from experiments when T = 0.544s. Inputwave steepness was H/λ = 1/14.Due to the di�erent length of the NWT relative to the physi
al �ume, there is a phasedi�eren
e between the measured and simulated time-series. The 
omputed time-series ofthe body motion is thus tuned su
h that the wave front rea
h the model at the sametime as in the experiments. The referen
e time is measured from the startup of thewavemaker in the physi
al model tests. The heave motion shows good agreement. It isalso noted that for the sway motion the numeri
al simulations also show a subharmoni
os
illation with frequen
y half the for
ing frequen
y. The 
learly seen in Fig. 8.9 wherethe power spe
tra obtained from 
omputed and measured time-series of the sway motionare 
ompared. Moreover, the 
al
ulations are limited in time. The reason is the length ofthe 
omputational domain in 
onne
tion with wave re�e
tions. It is after the numeri
alsimulation time that the experimental sway amplitudes shows to in
rease strongly. Inthe experiments, the sway response showed to be quite di�erent for the two wave heightstested (see Fig. 6.14). This indi
ates that the sway response for this wave period iseither sensitive to the wave steepness dire
tly, or more likely, sensitive to the transientsasso
iated with the wave front. Thus, if the wave front in the experiments is not wellreprodu
ed in the simulations, deviations of the resulting sway motion should be expe
ted.A hypothesis is that the phenomenon is due to instabilities. An analogy is whathappens with the Mathieu equation whi
h formally 
an be expressed as mẍ + c(1 +
δ cos ωt)x = 0. Instabilities happen for instan
e in the vi
inity of ωn/ω = 0.5, wherethe natural frequen
y ωn =

√

c/m (M
La
hlan 1964). The apparent instability in thepresent 
ase also happens for ωn/ω = 0.5. However, the present 
oupled equation ofmotion for the system 
annot simply be expressed as the Mathieu equation. One initialspe
ulation was that the mooring system 
auses a time-dependent restoring 
oe�
ientthat leads to instabilities. However, numeri
al simulations with the present NWT using a
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Figure 8.9: Comparison of power spe
tra from 
omputed and measured swaymotion of the 
ylinder for when subharmoni
 response o

ur. Wave period is
T = 0.544s and input wave steepness is H/λ = 1/14.
onstant restoring 
oe�
ient also showed a subharmoni
 
omponent of the sway motionwhen Tn2/T = 2. Sub-harmoni
 
omponents of the sway response was also observed inthe tests with wave period T = 0.497s, both in the experiments and in the numeri
alsimulations (see Figs. 8.10 and 8.11). However, the 
hara
teristi
 growth of the swaymotion amplitudes as observed for when T = 0.544s was not seen here, and a steady stateof the model motion was rea
hed.8.3.3 Sway resonan
eThe experiments further indi
ate that linear potential �ow theory largely over-predi
tsthe sway motion around resonan
e. The peak value of η2a/(0.5H) from linear potential�ow theory is of order 10, while in the experiments η2a/(0.5H) < 2. This means linearpotential �ow theory over-predi
ts the sway motion at resonan
e by more than 500%.Figure 8.13 shows time-series of the response from numeri
al simulations by the NWT
ompared with experiments when the wave period is T = 1.038s. This wave period is 
loseto the sway natural period. The wave height obtained from the numeri
al wave 
alibra-tion test was H = 0.116m, while the wave height from experimental wave 
alibration testswas H = 0.114m. The 
omputed time-series of the body motion agree satisfa
torily withmeasurements. This means the simulations support what is seen from the experimentalresults, namely that linear potential �ow theory highly over-predi
ts the sway responsenear resonan
e. However, the sway motion is still 
onsidered large with amplitudes of theorder of the diameter of the model. Figure 8.6 shows by using Eq. (8.1) that the dis-
repan
y between predi
ted sway motion and experiments near sway resonan
e is mainlyexplained by vis
ous e�e
ts due to �ow separation. It should be noted that in full-s
ale
onditions the boundary layer �ow will be turbulent and the vis
ous drag 
oe�
ient due toseparation will be lower. Hen
e, Froude-s
aling of the sway motion amplitudes presented
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Figure 8.10: Sway and heave motion of 
ylinder obtained with the NWT 
om-pared with measured response from experiments when T = 0.497s. Input wavesteepness was H/λ = 1/14. Subharmoni
 e�e
ts of the response in sway isobserved.
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Figure 8.11: Power spe
trum of sway motion obtained from model tests. Waveperiod is T = 0.497s and input wave steepness is H/λ = 1/14. Subharmoni

omponents of the response is seen around half the wave frequen
y.
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Figure 8.12: Sway and heave motion of 
ylinder obtained with the NWT 
om-pared with measured response from experiments when T = 1.038s. Input wavesteepness was H/λ = 1/14.will be non-
onservative for the region around resonan
e.8.3.4 Higher order harmoni
s of wave ex
itation for
esA

elerations of the 
ylinder are dire
tly asso
iated with the hydrodynami
 for
es a
tingon the body through Newton's se
ond law. Thus, in order to study the frequen
y 
on-tent of the hydrodynami
 for
es a
ting on the model, the Fourier amplitudes obtainedfrom the a

eleration time-series are studied. A 
omparison of Fourier amplitudes of thebody a

elerations obtained from simulations with the NWT and from measurementsare presented in Figs. 8.14, 8.15 and 8.16. Sub-harmoni
 
omponents in the Fourieramplitudes of the sway a

eleration are seen in the tests with wave period T = 0.497sand T = 0.544s. The latter test wave period is where the instability phenomenon ofthe sway motion o

urs. Pronoun
ed higher order harmoni
 
omponents are seen in themodel a

elerations when the model is ex
ited near the sway natural frequen
y as shownin Fig. 8.17. Band-pass �ltering is applied to isolate the body a

elerations in heaveand sway asso
iated with the linear-, se
ond- and third-harmoni
 
omponents. Then byintegration, the body motion due to the di�erent 
omponents are 
al
ulated separatelyand then 
ompared. Now 
onsider the 
ase where T = 1.032s and H = 0.120m. Here,the linear- and the third harmoni
 
omponents of the sway a

eleration are the mostpronoun
ed. The large third-harmoni
 
omponent in the measured a

elerations, thusalso in the for
ing, is believed to be 
aused by vis
ous drag due to �ow separation. It isobserved in the free de
ay tests presented that the e�e
t of �ow separation is importantfor larger motion amplitudes at the sway natural frequen
y. Further, Fourier analysis ofthe drag term in Morison's equation shows that the drag term 
ontains most of its energy
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Figure 8.13: Lo
al �ow at the model position at sway resonan
e. Vis
ous �owseparation o

ur from the body surfa
e. Wave period is T = 1.038s and wavesteepness is H/λ = 1/14.
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Figure 8.14: Comparison between Fourier amplitudes of sway and heave a

el-erations of the 
ylinder, obtained from simulations with the NWT and measure-ments. Wave period is T = 0.457s and input wave steepness is H/λ = 1/14.
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Figure 8.15: Comparison between Fourier amplitudes of sway and heave a

el-erations of the 
ylinder, obtained from simulations with the NWT and measure-ments. Wave period is T = 0.601s and input wave steepness is H/λ = 1/14.
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Figure 8.16: Comparison between Fourier amplitudes of sway and heave a

el-erations of the 
ylinder, obtained from simulations with the NWT and measure-ments. Wave period is T = 0.761s and input wave steepness is H/λ = 1/14.
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Figure 8.17: Comparison between Fourier amplitudes of sway and heave a

el-erations of the 
ylinder, obtained from simulations with the NWT and measure-ments. Wave period is T = 1.038s and input wave steepness is H/λ = 1/14.



170 A study of a �oating 
ir
ular 
ylinder in regular waves
−0.01

−0.005

0

0.005

0.01
η 2 [m

]

 

 

CIP
Exp.

16 17 18 19 20 21 22

−0.01

−0.005

0

0.005

0.01

Time [s]

η 3 [m
]

 

 

CIP
Exp.

Figure 8.18: Sway and heave motion of 
ylinder obtained with the NWT 
om-pared with measured response from experiments when T = 0.457s. Input wavesteepness was H/λ = 1/14.at the linear- and third-harmoni
 
omponent. For the 
ase of heave a

elerations, thelinear- and se
ond harmoni
 
omponents are dominant, and in fa
t the se
ond-harmoni

omponent ex
eeds the linear-harmoni
 
omponent. Further, the heave motion ampli-tude due to the se
ond harmoni
 
omponent is 42% of that due to the linear harmoni

omponent. However, sin
e there is a phase between the motion due to the linear- andse
ond-harmoni
 
omponent, the motion amplitude due to their sum is 121% (and not142%) of the motion amplitude due to the linear-harmoni
 alone. It is noted that thefrequen
y of the se
ond-order harmoni
 
omponent for this wave frequen
y is 
lose to theheave natural frequen
y. Hen
e, the reason why the se
ond-order harmoni
 
omponentof the heave a

eleration ex
eeds the linear-harmoni
 
omponent is asso
iated with thatse
ond-order wave for
es ex
ites the model at the heave natural frequen
y. Then, thisserves as an example that higher order harmoni
s of the hydrodynami
 for
es may ex
iteresonan
e frequen
ies of the stru
ture, whi
h are di�erent from the wave frequen
y.In the 
ontext of open 
age �sh farms, higher-order harmoni
s and even sub-harmoni

omponents of the wave loading on the �oaters are seen to be signi�
ant for moderatedesign wave 
onditions. These nonlinear for
e 
omponents may possibly ex
ite elasti
modes of the stru
ture and must therefore be 
onsidered when fatigue life properties ofthe �sh farm are analyzed.8.4 Summary of resultsSimulations of the moored �oating 
ir
ular 
ylinder with the same test 
onditions as in themodel tests from 2008 have been performed. Time-series of 
omputed body motions due
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Figure 8.19: Sway and heave motion of 
ylinder obtained with the NWT 
om-pared with measured response from experiments when T = 0.601s. Input wavesteepness was H/λ = 1/14.
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Figure 8.20: Sway and heave motion of 
ylinder obtained with the NWT 
om-pared with measured response from experiments when T = 0.761s. Input wavesteepness was H/λ = 1/14.
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Figure 8.21: Sway and heave motion of 
ylinder obtained with the NWT 
om-pared with measured response from experiments when T = 0.878s. Input wavesteepness was H/λ = 1/14.
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Figure 8.22: Sway and heave motion of 
ylinder obtained with the NWT 
om-pared with measured response from experiments when T = 1.132s. Input wavesteepness was H/λ = 1/14.



8.4. Summary of results 173to regular beam sea waves was 
ompared with body motions dedu
ed from the measuredbody a

elerations. The di�erent sour
es of damping in the experiments was studiedby means of free de
ay tests, both physi
ally and numeri
ally with the NWT. It wasfound that fri
tion from the pulleys in the mooring arrangements introdu
ed nonlineardamping to the system. Further, it was found that nonlinear damping due to vis
ous �owseparation matters at sway resonan
e for the system 
onsidered. This also explains whylinear potential �ow theory over-predi
ts the sway response at resonan
e. The instability-like behaviour of the sway motion as observed in the model tests was also obtained insimulations with the NWT when the wave frequen
y was two times the sway naturalfrequen
y. However, what 
auses this parti
ular phenomenon 
ould not be 
on
luded.Fourier analysis of the measured and 
omputed body a

elerations showed that higherorder harmoni
s of the hydrodynami
 for
es are important. It was also shown that higherorder harmoni
 
omponents of the wave ex
itation for
e 
an ex
ite natural frequen
ies ofthe system that are di�erent from the wave frequen
y. This is important for fatigue lifeanalyses of �sh farms.
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Chapter 9Summary and suggestions for furtherwork
9.1 Summary of the present workThe present work on the wave indu
ed e�e
ts on �oaters of aqua
ulture plants was basedmodel tests and numeri
al simulations.A CFD numeri
al wave tank (NWT) for fully nonlinear wave-body intera
tion prob-lems has been developed. The NWT uses a one-�uid formulation to solve the in
ompress-ible Navier-Stokes equations for the air and the water, using CIP-based �nite di�eren
emethod on a Cartesian staggered grid. The NWT 
an handle �oating bodies.Two sets of model tests have been 
ondu
ted. In the �rst set from 2006, �xed horizontal
ylinders in the free surfa
e zone were studied. Two 
ross-se
tion geometries were tested.One 
ir
ular and one re
tangular. The models were subje
t to regular beam sea waves.Test parameters for the two models were wave period, wave steepness and model draft.Clamping for
es on the model were measured in addition to the free surfa
e elevation ateight positions in the �ume. Wave over-topping the models were observed for some of thetest 
onditions.In 2008, model tests with a �oating horizontal 
ir
ular 
ylinder were performed. Themodel was tightly moored and subje
t to regular waves. Test parameters were wave periodand wave steepness. The wave period tested 
overed both the heave resonan
e period andthe sway resonan
e period. Mooring line tension and model a

elerations were measured.Free surfa
e elevation were measured at six positions. A detailed des
ription of how toobtain the rigid body motions by means of integration of measured body a

elerationswas presented. In order to dis
over 
onta
t between the �oating 
ylinder and the tankwalls from the measured signals, the jerk parameter was introdu
ed. The jerk is foundas the time derivative of the measured a

eleration signals. Wall 
onta
t leads to spikesin the jerk time-series. We also dis
overed an instability phenomenon of the sway motion
hara
terized as subharmoni
 resonan
e. This o

urred when the wave frequen
y wastwi
e the sway natural frequen
y. After some time of building up, the sway motionperformed a �nal phase shift from the wave frequen
y to the natural frequen
y in sway.Two separate studies based on the two model tests are performed. In the �rst study, themodel tests from 2006 are 
onsidered. Numeri
al simulations using the test setup from theexperiments are performed with the NWT. Computed time series of the wave ex
itationfor
es are 
ompared with the measured 
lamping for
es on the models. Good 
omparisons175



176 Summary and suggestions for further workare shown. Fourier analysis of the measured and 
omputed for
es are performed, whi
hshows that the relative importan
e of the se
ond harmoni
 
omponent of the horizontalfor
e in
reases with de
reasing model draft. For the verti
al for
e, the se
ond harmoni

omponent is important when over-topping o

urs. A generalized Morison type of modelwas presented and applied to some of the test 
onditions from the experiments. We
on
luded that su
h a model is not adequate for 
ases where over-topping o

ur. However,the method yielded good results when moderate waves were tested.The moored �oating 
ir
ular 
ylinder is 
onsidered in the se
ond study. Also for this
ase, numeri
al simulations using the same test 
onditions as in the experiments wereperformed with our NWT. Time-series of the 
omputed body motions were 
omparedwith measurements and good agreement were shown. We found that linear potential�ow theory over-predi
ts the sway response at resonan
e by more than 500% relative tothe measured sway response. This dis
repan
y was explained in terms of vis
ous �owseparation. When adding a linearized vis
ous damping term as that in Morisons equationto the hydrodynami
 for
es from potential �ow theory, the predi
ted sway motion atresonan
e showed good agreement with the measurements. Subharmoni
 resonan
e asoberved for the sway motion in the model tests was also obtained in simulations with theNWT. Measured sway amplitude in the model tests was at most 250% of that predi
edby linear potential �ow theory for the 
ase when subharmoni
 resonan
e o

ured. Fourieranalysis of the measured and 
omputed body motions was performed. We found that thethird harmoni
 
omponent is important at sway resonan
e, whi
h we showed 
ould berelated to vis
ous �ow separation. We also found that higher harmoni
 
omponents ofthe wave for
es 
an ex
ite natural frequen
ies of the stru
ture. This was ex
empli�ed bythat heave resonan
e was ex
ited for tests where the wave frequen
y was half the heavenatural frequen
y.9.2 Suggestions for further workFurther work that 
ould be done relative to the present study is to improve the numer-i
al model by in
luding a model for turbulen
e su
h that simulations of the full s
ale�oater with turbulent boundary layers 
an be performed. Then the e�e
ts of the tur-bulent boundary layer �ow on the wave indu
ed loads and the resulting motions of the�oater 
ould be investigated. Also an algorithm for 
omputation of the for
es due to skinfri
tion and vis
ous normal stresses on the surfa
e of the �oater should be implemented.Improved methods for free surfa
e 
apturing with less smearing of the free surfa
e shouldbe 
onsidered. The numeri
al 
ode should also be developed to allow for better griddingalgorithms, su
h that the grid 
an be lo
ally re�ned near the body and in the free sur-fa
e zone. A sharp representation of the solid body boundary is also preferable. Oneproblem asso
iated with numeri
al simulation of a �oating body when a no-slip boundary
ondition is applied on the body surfa
e is how to move the 
onta
t point between thefree surfa
e and the body boundary. This problem should be investigated. The 
ombinede�e
ts of 
urrent and waves on the �ow around the �oater and asso
iated hydrodynami
for
es should also be studied.There are still many hydrodynami
 e�e
ts related to the �oaters of aqua
ulture plantsthat 
annot be addressed with a 2D numeri
al model. Examples here are nonlinear 3De�e
ts asso
iated with a horizontal 
ylinder in the free surfa
e when the in
oming waves
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rests are not parallel to the 
ylinder axis. Further, hydroelasti
 e�e
ts for a 
omplete�oating 
ollar in waves should be investigated.
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Appendix ADetails on the numeri
al wave tank
A.1 Adve
tion 
al
ulation using the CIP-methodSome details on the 1D and 2D CIP-method are presented. Also the mathemati
al foun-dation for the CIP-method is des
ribed.A.1.1 Adve
tion in 1D - mathemati
al ba
kgroundMathemati
al ba
kground for the 1D CIP-method will now be presented. Consider the1D adve
tion equation

∂f

∂t
+ u

∂f

∂x
= 0. (A.1)This equation des
ribes the transport of a variable f(t, x) with the transport velo
ity

u(t, x) and is 
lassi�ed as a partial di�erential equation (PDE) of the hyperboli
 type,whi
h is in general hard to solve. We assume that both f and u are 
ontinuous in time tand spa
e x. We will make use of the material derivative whi
h is de�ned as
df(t, x(t))

dt
=

∂f

∂t
+

∂f

∂x

dx

dt
. (A.2)By taking the material derivative of the variable f along a 
urve C in the xt−plane andsay it should be equal to the left hand side of (A.1), we get

df

dt
=

∂f

∂t
+

dx

dt

∂f

∂x

=
∂f

∂t
+ u

∂f

∂x
= 0This means we 
an redu
e the partial di�erential equation (A.1) to the following set ofordinary di�erential equations (ODEs) along the 
urve C.

df

dt
= 0 (A.3)

dx

dt
= u (A.4)The ODE (A.3) implies that f is 
onstant along the 
urve C de�ned by (A.4). Two 
aseswill now be dis
ussed. 187



188 Details on the numeri
al wave tankFirst, assume that the adve
tion velo
ity u is 
onstant in time and spa
e. Further,assume that at time t = 0, the 
urve C passes through the point x(0) = x0 for wherethe adve
ted variable f has the initial value f0(x0). The solution to (A.4) is x = x0 + ut.Further, as (A.3) implies that f(t, x) is 
onstant along the 
urve C, the value of f for pairsof x and t on the 
urve C 
an be related to the initial value of f at x0 as f(t, x) = f0(x0).Hen
e,
f(t, x) = f0(x− ut). (A.5)Next, we 
onsider the 
ase when the adve
tion velo
ity is linearly varying and des
ribedby u = ax, where a is a 
onstant. Again, assuming that for the time t = 0, the 
urve Cpasses through x(0) = x0 for where f has the initial value f0(x0). Then, the solution to(A.4) is x = x0 exp(at). Further, f(t, x) = f0(x0) leads to the solution

f(t, x) = f0(x exp(−at)). (A.6)We note that for small times t≪ 1, using Taylor expansion of the exponential argument,the solution is found approximately as f(t, x) ≈ f(x− ut).Adve
tion with a sour
e termConsider a modi�ed adve
tion equation, where a sour
e term has been introdu
ed to theright hand side of (A.1). The new PDE is
∂g

∂t
+ u

∂g

∂x
= −bg (A.7)Here, g is the transported variable, u is the transport velo
ity and b is a 
onstant. Thematerial derivative of g along a 
urve C in the xt−plane, initially passing through x(0) =

x0, is set equal to the left hand side of (A.7) and we get
dg

dt
=

∂g

∂t
+

dx

dt

∂g

∂x

=
∂g

∂t
+ u

∂g

∂x
= −bg.Hen
e, (A.7) 
an been redu
ed to the following pair of ODEs

dg

dt
= −bg (A.8)

dx

dt
= u. (A.9)Now, assume that u = ax and b = u′(x) = a. Then the solution to (A.9) is x = x0 exp(at).The evolution of g along the 
urve C is des
ribed by the ODE (A.8), whi
h has the solution

g(t, x) = g0(x0) exp(−bt). Substitution yields
g(t, x) = g0(x exp(−at)) exp(−bt). (A.10)For small times t≪ 1, we note that g(t, x) ≈ g0(x− ut)(1− bt).



A.1. Adve
tion 
al
ulation using the CIP-method 189A.1.2 The 1D CIP-s
hemeWhen solving the 1D adve
tion problem using the traditional CIP-s
heme, the adve
tedvariable f(x, t) in the upwind 
ell is approximated by a 
ubi
 polynomial F n
i (ξ), de�nedas

F n
i (ξ) = C3ξ

3 + C2ξ
2 + C1ξ + C0, (A.11)where ξ = x − xi and where C3, C2, C1 and C0 are unknown 
oe�
ients. We alsointrodu
e the di�erentiated pro�leG(ξ) = dF/dξ, whi
h is an approximation to the spatialderivative g of the adve
ted variable f . In order to determine the unknown 
oe�
ients,the following 
onstraints are used:

F n
i (0) = fn

i F n
i (xiw − xi) = fn

iw (A.12)
Gn

i (0) = gn
i Gn

i (xiw − xi) = gn
iw (A.13)This yields a system of four equations for the four unknown 
oe�
ients. To simplify thenotation, we introdu
e the signed node spa
ing ∆x̂ = xiw − xi. Then, after some algebrawe get

C3 =
gn

i + gn
iw

∆x̂2
− 2(fn

iw − fn
i )

∆x̂3
(A.14)

C2 =
3(fn

iw − fn
i )

∆x̂2
− gn

iw + 2gn
i

∆x̂
(A.15)

C1 = gn
i (A.16)

C0 = fn
i . (A.17)When the approximation fun
tion F n
i is found, the adve
ted variable and the tentativevalue of the spatial derivative in the node xi for the next time step 
an be found as

fn+1
i = F n

i (−un
i ∆t) (A.18)

g∗
i = Gn

i (−un
i ∆t). (A.19)The spatial derivative at the new time step is obtained by adding the sour
e term due tothe tentative value after pure adve
tion of the di�erentiated pro�le, as

gn+1
i = g∗

i −∆t

(

un
i+1 − un

i−1

∆xi + ∆xi+1

)

g∗
i . (A.20)A.1.3 The upwind methodThe upwind method, whi
h is a �rst order upwind di�eren
ing s
heme, was implementedfor solving the 1D adve
tion equation and applied to some of the veri�
ation test problems.This was to be able to 
ompare the performan
e of the implemented CIP-s
heme withone of the most simple and well-known numeri
al s
hemes for adve
tion 
al
ulations. Thedis
retized version of the 1D adve
tion equation using the upwind method is

un+1
i − un

i

∆t
+ un

i

(fn
iw − fn

i )

∆x
= 0, (A.21)where f is the adve
ted variable, u is the adve
tion velo
ity, ∆t is the time in
rement and

∆x is the spatial in
rement. Further, the index i refers to the spatial node 
onsidered,
iw refers to the upwind (upstream) node and n is the time step. The upwind method isdes
ribed in most of the textbooks on CFD, e.g. (Roa
he 1976) and (Toro 1999).



190 Details on the numeri
al wave tankA.1.4 2D CIP-
oe�
ientsWhen using the A-type CIP-method for solving the adve
tion equation, usually a 
ubi
polynomial surfa
e F n
i,j(ξ, η) is 
reated to model the adve
ted variable fn(x, y) in theupwind 
ell. A 
omplete 
ubi
 polynomial surfa
e has ten 
oe�
ients that must be deter-mined. For this purpose, the fun
tional values fn

i,j and their spatial derivatives ∂fn

∂x
|i,j = gn

i,jand ∂fn

∂y
|i,j = kn

i,j in the four nodes 
onstru
ting the upwind nodes are utilized. However,the point value of the adve
ted variable plus its two spatial derivatives in four nodes leadsto a total of twelve 
onstraints, while we only have ten unknowns. Thus, we negle
t thespatial derivatives in the node most far away from the node of 
omputation. This yieldsthe following expressions for the 
oe�
ients
C30 =

is2
(

fi,j − fiw,j

)

+ ∆x
(

gi,j + giw,j

)

∆x3
(A.22)

C21 =

(

fi,j − fiw,j − fi,jw + fiw,jw

)

+ is∆x
(

gi,j − gi,jw

)

js∆x2∆y
(A.23)

C12 =

(

fi,j − fiw,j − fi,jw + fiw,jw

)

+ js∆y
(

ki,j − kiw,j

)

is∆x∆y2
(A.24)

C03 =
js2
(

fi,j − fi,jw

)

+ ∆y
(

ki,j + ki,jw

)

∆y3
(A.25)

C20 =
3
(

fiw,j − fi,j

)

− is∆x
(

2gi,j + giw,j

)

∆x2
(A.26)

C02 =
3
(

fi,jw − fi,j

)

− js∆y
(

2ki,j + ki,jw

)

∆y2
(A.27)

C11 =− fi,j − fiw,j − fi,jw + fiw,jw

isjs∆x∆y
+

gi,jw − gi,j

js∆y
+

kiw,j − ki,j

is∆x
(A.28)

=
fi,j − fiw,j − fi,jw + fiw,jw

isjs∆x∆y
− C21is∆x− C12js∆y (A.29)

C10 =gi,j (A.30)
C01 =ki,j (A.31)
C00 =fi,j. (A.32)Here

is = −sign(uc) (A.33)
js = −sign(vc), (A.34)where uc and vc being respe
tively the horizontal and verti
al velo
ity 
omponent inter-polated to the node of 
omputation. Due to the staggered grid there are three 
aseswhi
h needs di�erent interpolation, namely adve
tion of horizontal momentum, verti
almomentum and 
olor fun
tion. The adve
tion velo
ity is interpolated to the node of
omputation for the three di�erent 
ases as follows.Adve
tion of horizontal momentum:

uc = ui,j

vc = 0.25 (vi,j + vi+1,j + vi,j−1 + vi+1,j−1)



A.2. Details on the di�usion 
al
ulation 191Adve
tion of verti
al momentum:
uc = 0.25 (ui,j + ui−1,j + ui−1,j+1 + ui,j+1)

vc = vi,jAdve
tion of 
olor fun
tion:
uc = 0.5 (ui,j + ui−1,j)

vc = 0.5 (vi,j + vi,j−1)A.2 Details on the di�usion 
al
ulationSome details relative to the dis
retization of the di�usion 
al
ulation will now be pre-sented. First we 
onsider the di�usion 
al
ulation for the horizontal velo
ity 
omponentgiven by equation (4.28). The density at the horizontal velo
ity node is found by inter-polation as ρc = 0.5(ρi,j + ρi+1,j). The dynami
 vis
osity 
oe�
ients are found from
µE = µi+1,j

µW = µi,j

µN = 0.25(µi,j + µi+1,j + µi,j+1 + µi+1,j+1)

µS = 0.25(µi,j + µi+1,j + µi,j−1 + µi+1,j−1).The derivatives of the velo
ity 
omponents are 
omputed as
∂u∗

∂x

∣

∣

∣

∣

E

=
u∗

i+1,j − u∗
i,j

∆xi+1

∂u∗

∂x

∣

∣

∣

∣

W

=
u∗

i,j − u∗
i−1,j

∆xi

∂u∗

∂y

∣

∣

∣

∣

N

=
u∗

i,j+1 − u∗
i,j

∆yci

∂u∗

∂y

∣

∣

∣

∣

S

=
u∗

i,j − u∗
i,j−1

∆yci−1

∂v∗

∂x

∣

∣

∣

∣

N

=
v∗

i+1,j − v∗
i,j

∆xci

∂v∗

∂x

∣

∣

∣

∣

S

=
v∗

i+1,j−1 − v∗
i,j−1

∆xci
.Next, we 
onsider the di�usion 
al
ulation for the verti
al velo
ity 
omponent givenby equation (4.29). The mass density is approximated as ρc = 0.5(ρi,j + ρi,j+1), while thedynami
 vis
osity 
oe�
ients are

µE = 0.25(µi,j + µi+1,j + µi,j+1 + µi+1,j+1)

µW = 0.25(µi,j + µi−1,j + µi,j+1 + µi−1,j+1)

µN = µi,j+1

µS = µi,j.Further, 
entral di�eren
es yields
∂u∗

∂y

∣

∣

∣

∣

E

=
u∗

i,j+1 − u∗
i,j

∆yci

∂u∗

∂y

∣

∣

∣

∣

W

=
u∗

i−1,j+1 − u∗
i−1,j

∆yci

∂v∗

∂x

∣

∣

∣

∣

E

=
v∗

i+1,j − v∗
i,j

∆xci

∂v∗

∂x

∣

∣

∣

∣

W

=
v∗

i,j − v∗
i−1,j

∆xci−1

∂v∗

∂y

∣

∣

∣

∣

N

=
v∗

i,j+1 − v∗
i,j

∆yj+1

∂v∗

∂y

∣

∣

∣

∣

S

=
v∗

i,j − v∗
i,j−1

∆yi

.
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nz = 460Figure A.1: Non-zero entries of the 
oe�
ient matrix A due to a 10 × 10 grid.All non-zero entries are lo
ated in �ve diagonals.A.3 Poisson equation for the in
remental pressureThe dis
retized Poisson equation for the in
remental pressure de�ned in (4.38) 
an bewritten as
Ai,jδpi,j−1 + Bi,jδpi−1,j + Ci,jδpi,j + Di,jδpi+1,j + Ei,jδpi,j+1 = fi,j, (A.35)where

Ai,j =
1

ρi,j−1/2∆yj∆ycj−1

(A.36)
Bi,j =

1

ρi−1/2,j∆xi∆xci−1
(A.37)

Di,j =
1

ρi+1/2,j∆xi∆xci
(A.38)

Ei,j =
1

ρi,j+1/2∆yj∆ycj

(A.39)
Ci,j = − (Ai,j + Bi,j + Di,j + Ei,j) . (A.40)These �ve 
oe�
ients represents the �ve non-zero diagonals of the 
oe�
ient matrix A asdepi
ted in Fig. A.1. The 
oe�
ients Ci,j 
orresponds to the main diagonal. Further, Di,jand Ei,j yields the �rst and se
ond non-zero upper o�-diagonals, while Bi,j and Ai,j yieldsthe �rst and se
ond non-zero lower o�-diagonals, respe
tively. This yields a symmetri
dis
retization of the Poisson equation (4.34) on a uniform Cartesian grid. However, for the
ase of a non-uniform grid, the 
oe�
ient matrix is not symmetri
 due to dis
retizationof the divergen
e operator in eq. (4.34).



A.3. Poisson equation for the in
remental pressure 193Due to the small number of non-zero elements in the 
oe�
ient matrix A relative tothe size of the matrix, A is a sparse matrix. From a 
omputational point of view, it iswaste of memory to store the total matrix. Hen
e, instead of solving the total matrix ofsize N×N , we use the Compressed Diagonal Storage format where only the �ve diagonals
ontaining the non-zero elements are stored in a 5× N matrix (Barrett et al. 1994). Asthe o�-diagonals are shorter than the main diagonal of length N , the o�-diagonals arepadded with zeros to �ll the new matrix.



194 Details on the numeri
al wave tankA.3.1 The pre
onditioned Bi-Conjugate Gradient Stabilized MethodA modi�ed version of the Bi-CGStab algorithm with pre
onditioning is presented inBarrett et al. (1994). The algorithm is as follows:Compute r(0) = b− Ax(0) for some initial guess x(0)Choose r̃ (for example, r̃ = r(0))for i = 1, 2, ...
ρi−1 = r̃Tr(i−1)if ρi−1 = 0 method failsif i = 1

p(i) = r(i−1)else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
p(i) = r(i−1) + βi−1(p

(i−1) − ωi−1v
(i−1))endifsolve Mp̂ = p(i)

v(i) = Ap̂
αi = ρi−1/r̃

Tv(i)

s = r(i−1) − αiv
(i)
he
k norm of s; if small enough: set x(i) = x(i−1) + αip̂ and stopsolve Mŝ = s

t = Aŝ
ωi = tT s/tT t
x(i) = x(i−1) + αip̂ + ωiŝ
r(i) = s− ωit
he
k 
onvergen
e; 
ontinue if ne
essaryfor 
ontinuation it is ne
essary that ωi 6= 0endSeveral pre
onditioners are presented in Barrett et al. (1994). We have used the simplein
omplete LU-fa
torization pre
onditioner D-ILU, whi
h is an in
omplete fa
torizationpre
onditioner of level zero. Splitting the 
oe�
ient matrix into its diagonal, lower trian-gular, and upper triangular parts as A = DA + LA + UA, respe
tively, the pre
onditioner
an be written as M = (D + LA)D−1(D + UA), where D is the diagonal matrix 
on-taining the pivots. Note that it is only the diagonal matrix D that needs to be storedsin
e the upper triangular and lower triangular matri
es, UA and LA respe
tively, are leftun
hanged. The pivots are generated as follows:Let S be the nonzero set {(i, j) : aij 6= 0}, where aij are the elements of the 
oe�-
ient matrix Afor i = 1, 2, ...set dii ← aiifor i = 1, 2, ...set dii ← 1/diifor j = i + 1, i + 2, ...if (i, j) ∈ S and (j, i) ∈ S then
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ity �eld 195set djj ← djj − ajidiiaijIn the pre
onditioned Bi-CGSTAB algorithm, we need to solve the system Mx = y,with M = (D + LA)D−1(D + UA) and where y is a known ve
tor. The pre
onditionersolve is des
ribed below.Let M = (D + L)(I + D−1U) and y be given.for i = 1, 2, ...
zi = d−1

ii (yi −
∑

j<i lijzj)for i = n, n− 1, n− 2, ...
xi = zi − d−1

ii

∑

j>i uijxj

A.4 Time-stepping of the spatial derivatives of the ve-lo
ity �eldAs the velo
ity �eld after the adve
tion step u∗ is updated due to the di�usion step,pressure 
oupling and due to for
es from the �oater to obtain the new velo
ity �eld
un+1, also the spatial derivatives of the velo
ity �eld are modi�ed. Hen
e, the spatialderivatives g = ∂u/∂x and k = ∂u/∂y must be updated before a new adve
tion step 
anbe made. We de�ne g = [gu, gv]

T and k = [ku, kv]
T , where gu = ∂u

∂x
, gv = ∂v

∂x
, ku = ∂u

∂y
and

kv = ∂v
∂y
. Time-stepping of the spatial derivatives of the horizontal velo
ity 
omponentare performed as

gn+1
u;(i,j) = g∗

u;(i,j) +
un+1

i+1,j − un+1
i−1,j − u∗

i+1,j + u∗
i−1,j

∆xi + ∆xi+1
(A.41)

kn+1
u;(i,j) = k∗

u;(i,j) +
un+1

i,j+1 − un+1
i,j−1 − u∗

i,j+1 + u∗
i,j−1

∆ycj + ∆ycj−1
. (A.42)Similarly, the spatial derivatives of the verti
al velo
ity 
omponent are updated by

gn+1
v;(i,j) = g∗

v;(i,j) +
vn+1

i+1,j − vn+1
i−1,j − v∗

i+1,j + v∗
i−1,j

∆xci + ∆xci−1
(A.43)

kn+1
v;(i,j) = k∗

v;(i,j) +
vn+1

i,j+1 − vn+1
i,j−1 − v∗

i,j+1 + v∗
i,j−1

∆yj + ∆yj+1
. (A.44)
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Appendix BDetails of the veri�
ation studies
B.1 Os
illating boundary layersHere, some mathemati
al details on the se
ond Stokes problem is 
onsidered, and boththe steady solution as well as the transient solution when the os
illating wall is abruptlystarted initially.B.1.1 Se
ond Stokes Problem, steady-state solutionIn the 
ase of the Se
ond Stokes Problem the outer �ow is Ue = 0, while the wall os
illatesharmoni
ally with frequen
y ω and amplitude U0. A 
onsequen
e of Ue = 0 is that thelinearized Prandtl's boundary layer equations (S
hli
hting and Gersten 2000) are redu
edto the di�usion equation

∂u

∂t
= ν

∂2u

∂y2
. (B.1)Sin
e the liquid atta
h to the wall (no-slip 
ondition), vis
ous shear for
es will set thesurrounding �uid into motion and a vis
ous wave will propagate from the wall into the�uid domain. The no-slip 
ondition implies that the �uid velo
ity at the wall is equal tothe velo
ity of the wall. Thus,

u(0, t) = U0 sin ωt, for y = 0. (B.2)The steady state solution of eq.B.1 whi
h 
an be found in e.g. S
hli
hting and Gersten (2000)is
u(y, t) = U0 exp(−η) sin(ωt− η), (B.3)with

η = y

√

ω

2ν
. (B.4)Here ν = µ/ρ is the kinemati
 vis
osity 
oe�
ient and ω is the frequen
y of os
illation ofthe wall. 197



198 Details of the veri�
ation studiesB.1.2 Se
ond Stokes Problem, transient solutionWe are seeking the unsteady solution of (B.1). First we separate the velo
ity into a steadystate term Us and a transient term U t:
u = Us + U t. (B.5)From (B.5) and (B.3) the initial 
ondition u(y, 0) = 0 leads to

U t(η, 0) = −U0 exp(−η) sin(−η). (B.6)When t → ∞, the transient term must vanish su
h that the steady state solution re-mains. A general solution for the transient term of B.1 in integral form is given inLandau and Lifshitz (2004) as:
U t(y, t) =

1

2
√

πνt

∫ ∞

0

f0(ỹ)

(

exp

[−(y − ỹ)2

4νt

]

− exp

[−(y + ỹ)2

4νt

])

dỹ, (B.7)where f0(ỹ) is the initial 
ondition for U t. Substitution of (B.6) into (B.7) does not leadto a tra
table integral. Hen
e, instead of (B.6) a 
omplex 
ontinuation of (B.6) is used(Panton 1968):
U t(η, 0) = U0ℑ

{

exp[−(1− i)η] sin(−η)
}

. (B.8)Substitution of (B.9) gives integrals whi
h 
an be evaluated by standard te
hniques. Thisyields:
U t(η, T ) = U0ℑ

{

−0.5 exp [Cη − iT ] erfc
[√

0.5T (C + η/T )
]

+ 0.5 exp[−Cη − iT ]erfc
[√

0.5T (C − η/T )
]} (B.9)Here T = ωt and the 
omplex 
onstant C = 1− i. This solution in
ludes the 
omplemen-tary error fun
tion erfc(z) = 1 − erf(z) with 
omplex argument z = x + iy, whi
h mustbe separated into real and imaginary 
omponents to obtain the solution:

erfc(x + iy) = F (x, y) + iG(x, y). (B.10)Unfortunately, an expression for F and G does not exist. Abramowitz and Stegun (1970)gives a series expansion that approximates the 
omplex error fun
tion:
erf(x + iy) = erf(x) +

exp(−x2)

2πx
[(1− cos 2xy) + i sin 2xy]

+
2

π

∞
∑

n=1

exp(−1
4
n2)

n2 + 4x2
[fn(x, y) + ign(x, y)] + ǫ(x, y) (B.11)where

fn(x, y) = 2x− 2x cosh ny cos 2xy + n sinh ny sin 2xy

gn(x, y) = 2x cosh ny sin 2xy + n sinh ny cos 2xy

|ǫ(x, y)| ≈ 10−16 |erf(x + iy)|This is used to evaluate the transient velo
ity �eld.
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s6s4s2 s8 s
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y
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y6

y4
y2
y0Figure B.1: S
hemati
 view of how the grid arrangement 
lose to the os
illatingwall is obtained using the parameter s. An exponential distribution of gridpoints is applied in the normal dire
tion inside the boundary layer. Constantgrid spa
ing is used far from the wall and a quadrati
 distribution of grid pointsis used in a mat
hing zone between the to regions to obtain a smooth transition.B.1.3 Details on the grid generationWhen the se
ond Stokes problem is solved with the present �ow solver, grid stret
hing isapplied 
lose to the os
illating wall. The grid is divided into three grid zones, where thegrid in
rement follows an exponential distribution 
lose to the wall. Far away from thewall the grid line spa
ing is 
onstant, while a quadrati
 variation is used in a mat
hingzone to merge the exponential grid with the 
onstant grid. The distribution of grid pointsin the normal dire
tion to the wall is for the exponential zone found as

yi = β
(

exp(αsi)− 1
) (B.12)where si ∈ [0, 1] is a equidistant distribution ve
tor with Nbl + 1 elements and β is a
lustering parameter. Further, the 
oe�
ient α de�ned as

α = ln
(δ0.99

β
+ 1
)

. (B.13)The paraboli
 distribution fun
tion des
ribing the position of grid points within themat
hing zone is
yi = as2

i + bsi + c, (B.14)where the 
onstraints ystart = δ0.99, yend = kδ0.99 and y′(s)|end = 0 determines the 
oe�-
ients a, b and c. Here, k is the extension of the mat
hing zone relative to the boundarylayer thi
kness. A s
hemati
 view of this mapping is presented in �gure B.1. Using theabove des
ribed pro
edure, three grids with di�erent resolution of the boundary layer areestablished. Grid parameters for the three grids are presented in Tab. B.1.3.
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Table B.1: Grid parameters used for the se
ond Stokes problem. Nx and Ny arethe total number of grid 
ells in the horizontal and verti
al dire
tion, respe
tively.
Nbl is the number of 
ells in the y−dire
tion inside the boundary layer, while
Nmz is the number of grid 
ells in the y−dire
tion in the paraboli
 mat
hingzone. Parameters Nx Ny Nbl Nmz k β/δGrid A 200 30 15 12 5 0.08Grid B 100 20 8 8 5 0.08Grid C 75 15 6 6 5 0.08



Appendix CDetails of the model tests
C.1 The model tests from 2006The test matrix from the model tests from 2006, where wave ex
itation for
es on �xed
ylinders subje
t to regular waves were studied, are presented in Tab. C.1. The run indexis 
omposed as follows. The �rst number refers to the model geometry and draft, these
ond number refers to the wave steepness, while the third number refers to the waveperiod. The last number is reserved for repetition tests and re-runs.Two 
ylindri
al model geometries were tested. One with a 
ir
ular 
ross-se
tion andone with a re
tangular 
ross-se
tion. Both models were made of steel. A sket
h of themodels used in the experiments from 2006 are presented in Fig. C.1.C.1.1 Statisti
s from the 2006-experimentsMean values and relative errors of the mean wave height obtained from repetition testsare presented in Fig. C.2 and C.4. Mean values and relative errors of the measured waveex
itation for
es for the in-line horizontal dire
tion and the verti
al dire
tion, obtainedfrom repetition tests are presented in Fig. C.4.

201



202 Details of the model tests
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ular 
ylinderFigure C.1: Sket
h of models used in the experiments from 2006. The maindimensions are given in the �gure.
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Figure C.2: Mean values of measured free surfa
e elevation obtained from repe-tition tests for the four wave gauges WG 1 to WG 4. Labels 1 to 5 representsrepetition tests for the 
ase numbers 4150, 4250, 5150, 6150 and 7150, respe
-tively. Five repetitions were performed for ea
h 
ase. Corresponding relativeerrors are given above ea
h bar.
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Figure C.3: Mean values of measured free surfa
e elevation obtained from repe-tition tests for the four wave gauges WG 5 to WG 8. Labels 1 to 5 representsrepetition tests for the 
ase numbers 4150, 4250, 5150, 6150 and 7150, respe
-tively. Five repetitions were performed for ea
h 
ase. Corresponding relativeerrors are given above ea
h bar.
0

50

100 0.2 0.1 0.1
0.1 0.2

F
x 

[N
]

Linear harmonic

1 2 3 4 5
0

50

100 0.8 0.0 0.2
0.5 0.2

F
y 

[N
]

0

5

10 0.7 0.3 1.4
7.3 1.0

Second harmonic

1 2 3 4 5
0

20

40 0.5 2.2 0.5
0.5 11.2

0

5

10 0.7 1.2 0.5
2.1 8.9

Third harmonic

1 2 3 4 5
0

5

10 0.1 1.7 0.5
0.8 0.8

0

100

200 0.3 0.7 0.4
0.3 0.5

Max. value

1 2 3 4 5
0

50

100 0.8 0.9 1.1
1.1 0.5

Figure C.4: Mean values of measured 
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ase. Cor-responding relative errors are given above ea
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d/D = 0.2 d/D = 0.5 d/D = 0.8

Tp ε = 1/50 ε = 1/30 ε = 1/20 ε = 1/50 ε = 1/30 ε = 1/20 ε = 1/50 ε = 1/30 ε = 1/20

Cir
ular
yl
inder

0.981 2000 2100 2200 3000 3100 3200 4000 4100 42001.084 2010 2110 2210 3010 3110 3210 4010 4110 42101.179 2021 2121 2220 3020 3120 3220 4020 4120 42201.266 2030 2130 2231 3030 3130 3230 4030 4130 42301.348 2040 2140 2241 3040 3140 3240 4041 4140 42401.348 42411.348 42421.348 42431.348 42441.425 2051 2150 2250 3050 3150 3250 4050 4150 42501.425 41511.425 41521.425 41531.425 41541.498 2060 2160 2260 3060 3160 3260 4060 4160 42601.568 2070 2170 2270 3070 3170 3270 4070 4170 42701.634 2081 2181 2280 3080 3180 - 4080 4180 -1.698 2090 2190 - 3090 3192 - 4090 4190 -

Re
tangular

ylinder

0.981 5000 5100 5200 6000 6100 6200 7000 7100 72001.084 5010 5110 5210 6010 6110 6210 7010 7110 72101.179 5020 5120 5221 6020 6120 6220 7020 7120 72201.266 5030 5130 5230 6030 6130 6230 7030 7130 72301.348 5040 5140 5240 6040 6140 6240 7040 7140 72401.425 5050 5150 5250 6050 6150 6250 7050 7150 72501.425 5151 6151 71511.425 5152 6152 71521.425 5153 6153 71531.425 5154 6154 71541.498 5060 5160 5260 6060 6160 6260 7060 7160 72601.568 5070 5170 5270 6070 6170 6270 7070 7170 72701.634 5080 5180 - 6080 6180 - 7080 7180 -1.698 5090 5190 - 6090 6190 - 7090 7190 -Table C.1: Test matrix. Repetition tests have shaded ba
kground. The param-eter ε = H0/λ0 is the steepness for the 
orresponding deep water wave. Testswhere over-topping did o

ur are labeled red. The tests marked with �-� 
ouldnot be run be
ause of limitations of the wave maker.



206 Details of the model testsC.2 The model tests from 2008Some details from the experiments in 2008 with the moored 
ir
ular 
ylinder are presented.C.2.1 A

eleration measurementsThe total a

eleration relative to the Earth-�xed frame of referen
e in the dire
tion ofthe body 
oordinate y′ is found as a′
y = 0.5 (ay′2 + ay′1), while the angular a

eleration isfound as θ̈ = 0.5 (ay′2/r3 − ay′1/r2). The total a

eleration of the 
ylinder in the Earth-�xed 
oordinate system is thus found by mapping using the Ja
obian and 
orre
ting fora

eleration of gravity, −gey, and angular a

eleration. Now 
onsider the 
ylinder at rest.For θ = 0, all a

elerometers are 
alibrated to measure zero a

eleration. When θ is in-
reased to 90◦, the a

elerometers in the y′ dire
tion will measure g and the a

elerometerin the x′-dire
tion will measure −g, when the 
ylinder is at rest. If we further in
rease theangle θ to 180◦, we get ax′ = 0, ay′1 = 2g and ay′2 = 2g. This must be a

ounted for if wewant to �nd the a

elerations in an Earth �xed frame of referen
e. Further, when there isan angular a

eleration θ̈ due to roll motion of the 
ylinder, we will measure ax′ = −r1θ̈,

ay′1 = −r2θ̈ and ay′2 = r3θ̈, where r1, r2 and r3 are de�ned in Fig.6.10(a). The totala

elerations in the Earth-�xed referen
e frame are thus
[

ax

ay

]

=

[

cos θ − sin θ
sin θ cos θ

] [

ax′

ay′

]

+ g

[

sin θ
cos θ − 1

]

+ θ̈

[

r1

r2 − r3

] (C.1)For small angles θ, Eq.C.1 
an be linearized. Further, applying that r1 = r2 = r3 = r, weget
[

ax

ay

]

=

[

1 −θ
θ 1

] [

ax′

ay′

]

+

[

gθ
0

]

+

[

rθ̈
0

] (C.2)These are the linearized expressions, valid for small roll angles θ, giving the a

elerationsof the model in an Earth-�xed frame of referen
e.Linearity test for the springsThe linearity properties of the springs used in the mooring line arrangement are tested.Measured elongation of the three springs from the linearity test is shown in Fig. C.5. Theresults shows that the springs are linear when loaded below their reported �oating limit,whi
h is indi
ated by the horizontal line in the �gure.
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Appendix DTime series
D.1 Wave elevation from tests with �xed 
ylinders
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Figure D.1: Computed and measured free surfa
e elevation from tests with �xedre
tangular 
ylinder at WG 2, WG 3 and WG 5. d/D = 0.5, T = 1.084s,
H0/λ0 = 1/20. (Model tests from 2006).
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210 Time seriesD.2 Wave elevation from tests with moored 
ylinder
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Figure D.2: Computed free surfa
e elevation in front of 
ylinder is 
ompared withmeasured free surfa
e elevation from model tests with T = 0.457s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for 
omparison.
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Figure D.3: Computed free surfa
e elevation in front of 
ylinder is 
ompared withmeasured free surfa
e elevation from model tests with T = 0.497s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for 
omparison.
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Figure D.4: Computed free surfa
e elevation in front of 
ylinder is 
ompared withmeasured free surfa
e elevation from model tests with T = 0.544s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for 
omparison.
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Figure D.5: Computed free surfa
e elevation in front of 
ylinder is 
ompared withmeasured free surfa
e elevation from model tests with T = 0.601s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for 
omparison.
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Figure D.6: Computed free surfa
e elevation in front of 
ylinder is 
ompared withmeasured free surfa
e elevation from model tests with T = 0.761s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for 
omparison.
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Figure D.7: Computed free surfa
e elevation in front of 
ylinder is 
ompared withmeasured free surfa
e elevation from model tests with T = 0.878s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for 
omparison.
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Figure D.8: Computed free surfa
e elevation in front of 
ylinder is 
ompared withmeasured free surfa
e elevation from model tests with T = 1.038s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for 
omparison.
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Figure D.9: Computed free surfa
e elevation in front of 
ylinder is 
ompared withmeasured free surfa
e elevation from model tests with T = 1.132s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for 
omparison.
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