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Abstract

The main objective of this work is to study wave loads on floaters of fish farms. Several
incidents of major fish escapes due to structural collapse of fish farms in harsh weather
have motivated this study, as a step towards obtaining better load models for the wave
loads on the floaters. Floaters of fish farms are typically small compared to dimensioning
waves. The local two-dimensional problem of a floater subject to beam sea regular waves
is considered. The problem is addressed by means of numerical simulations, model tests
and simplified numerical models. A CFD numerical wave tank (NWT) for fully nonlinear
wave body interaction problems is developed. The numerical model applies a one-fluid
model, where a fractional step approach is used to solve the incompressible Navier-Stokes
equations in time on a Cartesian staggered grid. Further, a combined Constrained Inter-
polation Profile (CIP-) and finite difference procedure is used. An immersed boundary
technique is applied to impose boundary conditions on the floater.

Two sets of model tests have been conducted. In the first set, wave loads on fixed
horizontal cylinders in beam sea waves were studied. The purpose was to obtain validation
data for the numerical wave tank. Two models were tested. One with a circular cross-
section and one with a rectangular cross-section. Model draft was varied. Other test
parameters were wave period and wave steepness. The primary variables measured were
the clamping forces of the model and the wave elevation at eight positions in the flume.
Numerical simulations similar to the physical experiments were performed and results
compared, showing good agreement. Wave over-topping on the models was observed,
both in the experiments and in the simulations.

In the second set of experiments, a floating circular cylinder in beam sea regular
waves was tested. The cylinder was moored using pre-tensioned mooring lines, yielding
a natural frequency of the sway motion which is representative for fish farms. Primary
variables measured here were the model accelerations used to obtain the body motion,
surface elevation and mooring line forces. Results were compared with linear potential flow
theory, semi-empirical theories and simulations with the CIP-based numerical wave tank.
An instability phenomenon was observed in the experiments when the wave frequency
was two times the natural frequency in sway, causing large amplitude sway motion which
is not predicted by linear potential flow theory. The same instability behaviour was also
observed in simulations with the CIP-based numerical wave tank and is believed to be due
to nonlinear hydrodynamic effects. Experiments and numerical simulations also shows
that linear potential flow theory largely over-predicts the sway motion near resonance.
This is explained by effects of viscous flow separation. It is also shown that higher order
harmonics of the wave loads can be significant and should be considered when fatigue
analyses of fish farms are performed.
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Chapter 1

Introduction

The focus of this work is wave loads and wave induced motions of the floaters of open
cage fish farms. Better understanding of the hydrodynamic loads on floating fish farms is
necessary in order to develop more reliable structures for fish farming at exposed locations.
Structural collapse of floating fish farms in harsh weather conditions, causing large fish
escapes, is still a problem. We have investigated the hydrodynamic loads by means of
dedicated model tests, numerical simulations using a presently developed computational
fluid dynamics (CFD) code, in addition to theoretical methods.

1.1 Background and motivation

In 2006, the state of world aquaculture was presented in a comprehensive report by the
Food and Agriculture Organization of the United Nations (FAO2006)). According to
FAO, fishing and harvesting of the oceans can not supply additional landings of most
wild-caught species in order to meet the increasing demand for sea-food products in
the world, without endangering the resources. In fact, many species are already over-
exploited. This has in recent years motivated a rapid growth of aquaculture around the
world. Aquaculture is today probably the fastest growing form of food production in the
world. We define aquaculture as the propagation and rearing of freshwater and saltwater
organisms in controlled or selected environments. In 2004, about half of the global total
aquaculture production was from aquaculture in marine environments, while the other
half was from fresh-water aquaculture. The scope of fish farming is increasing year by
year. In 2006, about 50% of the worlds food fish was produced by fish farms. Based on the
projected growth in the world population over the next two decades, it is estimated that
at least an additional 40 million tonnes of aquatic food (67% of the total production in the
world in 2004) will be required by 2030 to maintain the current per capita consumption
(FAG2006). We will in the following focus on fish farming in marine environments, in
particular at exposed coastal or offshore locations.

Fish farm installations and technologies which are capable of operating profitably
at truly offshore locations are a clear focus for development in many regions that lack
indented coastlines. For example, the U.S. Government plans to increase the value of
marine and freshwater aquaculture production from $ U.S. 900 million in 1999 to $ U.S.
5 billion by 2025 (NOAA2007al). In this plan, marine aquaculture in U.S. federal waters
plays a central role and development of technologies for sustainable aquaculture operations
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Figure 1.1: Produced amount and corresponding landed value of salmon and
trout in Norway from 1992 to 2007 (www.ssb.no).

for fish and shellfish are emphasized (NOAA 2007h). As U.S. federal waters are 3 to 200
miles off the coast, the scope of offshore aquaculture in the U.S. is believed to increase
significantly in the near future. In Korea, China and Taiwan, marine fish-farms are often
installed at offshore locations due to lack of available sheltered sites with adequate water
conditions. These regions experience several typhoons each year, and the fish farms here
must be designed to cope with these in addition to the seasonal monsoons and strong
ocean currents.

Atlantic salmon (Salmo salar) is by far the dominating breed in Norwegian fish farm-
ing, which in 2007 counted for 89% of the total amount of sold farmed fish. Other
important species in Norwegian aquaculture are rainbow trout (Oncorhynchus mykiss)
and Atlantic cod (Gadus morhua). We will in the following refer to Atlantic salmon,
Atlantic cod and rainbow trout as salmon, cod and trout, respectively. The produced
amounts of salmon and trout by Norwegian fishfarms and corresponding landed values
during the years from 1992 to 2007 are presented in Fig. [LJl The produced amounts of
especially salmon and cod have had an explosive growth during the last three decades.
In 2007 the total production of farmed salmon and trout in Norway reached 821,000 tons
(www.ssh.no). The increasing scope of fish farming has lead to a lack of new available
locations in sheltered areas. Hence, there is a trend that fish farms are installed at more
and more exposed locations. This puts stronger demands on the structure in order to
withstand the environmental loads. Many Norwegian fish farmers have experienced that
the North-Atlantic ocean has a rather harsh weather climate, especially in the winter
season. This is exemplified in Fig. [2 which shows a fish farm in Flatanger, Nor-
way, during the winter storm Narve in January, 2006. Expansion of the Norwegian fish
farming industry has been accompanied by a recent increase in the incidence of escapes.
Several occurrences of structural collapse of fish farms in harsh weather has been reported
during the years, many which have resulted in large fish escapes. Escaped farmed fish
is considered to be harmful to the wild Atlantic salmon. Mainly, this is because the
farmed fish may bread with the wild salmon and lead to genetic pollution of the wild
fish, which have developed through thousands of years to adept to the conditions in a
particular river. It is also claimed that the increased scope of salmon fish-farming and the
large concentration of salmon in the fish cages is the main cause to the growing problem
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Figure 1.2: Open cage fish farm of the circular collar type in Flatanger, Norway.
The photo is taken during the winter storm Narve in January 2006. Large elastic
deformations of the structure are seen. (Photo: Marius Dahle Olsen)

of sea-lice in Norway the recent years. Research efforts have been put into developing
more reliable structures for fish farming with the result of new regulations for the de-
sign and operation of floating fish farms, which were introduced in 2003 through NS 9415
(Standard Norway 2005|). Although the fish farming industry in Norway has become more
mature now since its beginning in the early 1980-ies, the problem of fish escape is still not
resolved. In 2007, the total number of escaped fish reported from Norwegian fish farms
was 450,000. The largest single escape in Norway occurred in 2005 and counted nearly
500,000 fish. Number of escaped salmon and trout from Norwegian fish farms reported
to the Norwegian Fisheries Directorate in (Norwegian Fisheries Directorate 2009a)) and
(Norwegian Fisheries Directorate 2009b), for the years from 2001 to 2009 are presented
in Fig. [L3 However, it is believed that the true numbers of escaped salmon and trout from
Norwegian fish farms are higher. Reports by Norwegian fish farming companies to the Nor-
wegian Fisheries Directorate of escape events during the period 2001-2006 indicate that
escapes of salmon can be categorized broadly into structural failure (52%), operational-
related failure (31%) and other causes (17%). This can be escapes due damage on the net
caused by predators (e.g. seal), damage due to ship colliding with the fish farm, or damage
caused by driftwood. Significant escape events have also occured in other major salmonid
producing countries, such as Scotland, Chile and Canada (Soto, Jara, and Moreno 2001]).
In particular, the introduction and rearing of Atlantic salmon as a non-native breed in
Chile has been controversial, as the environmental effects of escapes are unknown. We
believe that better knowledge on the hydrodynamics related to the wave loads on the
floaters of fish farms is necessary to improve the structural reliability of fish farms. Im-
proved reliability of the fish farm structures will in turn reduce the probability of escape.
This is the main motivation for the present work.
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Figure 1.3: Number of escaped salmon and trout from Norwegian fish farms in
the time period 2001 to 2009 reported to the Norwegian Fisheries Directorate.
The numbers from 2009 are due October 5th.

1.1.1 Open cage fish farms

Open cage fish farms are the most common type of plants used for farming Atlantic salmon
and Atlantic cod today. The open cage fish farm is characterized by a slender floating
structure which forms circular or rectangular cages. Each cage is equipped with a net-pen,
where sinkers are used to splay the net-cage. The buoyancy is obtained by distributed
pontoons or by floating collars. A spread mooring system composed of a larger number of
pre-tensioned mooring lines is used to keep the structure on its location. However, other
concepts like single point mooring of plants have been tested. Then the fish farm is free
to weather vane around the moored buoy. Usually open cage fish farms are equipped with
a feeding system, often including a feed barge.

The structural design of the fish farms has during the years been modified and im-
proved, often on a trial and error basis. About twenty years ago, the floating structure
were typically made of wood, forming small cages as shown in Fig. [[4 Today, fish farm
structures are usually made of steel, aluminium or high density poly-ethylene (HDPE)
plastic. Further, there exists many different concepts of fish farm structures as described
by [Fredheim and Langan (2009). The most common fish farm concepts used by the Nor-
wegian fish farming industry today are described in the following.

Circular plastic collar fish farm

This type of structure has cages formed by pipes with an outer pipe diameter between
225mm to 500mm. The pipes made of high-density polyethylene (HDPE) are welded to
obtain a preferred length and then wrapped to form a circle. The two free ends of the pipe
are then welded together to form a ring. Usually, a floating collar is composed of two or
three such rings which are connected using steel or HDPE clamps. Typical circumference
of the collar is from 60m to 200m. It is from such collars that the fish farm obtain its
buoyancy. Some manufacturers also deliver walkways which can be mounted between the
pipes of the collar. The circular plastic collar fish farms are elastic and deforms when
subjected to waves and current (see e.g. Fig. [[Z). An issue for such structures is the
safety for personnel in relation to access to the cages.
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Figure 1.4: Typical old Norwegian fish farm in a sheltered location. The super
structure is characterized by wooden frames supported by floaters or pontoons.

Interconnected hinged steel fish farm

Typically, this is a steel structure composed of more or less stiff bridges that are hinged
or interconnected by flexible joints to form square or rectangular cages. The bridges are
typically 12 meters of length, are made of steel and supported by distributed pontoons.
Normally, the hinges only allow for rotation around one axis in the horizontal plane.
Limited flexibility of the joints has shown to be a weak part of such fish farms, as large
point loads may occur here for some of the flexible modes of the structure. This can result
in fatigue related failures. Further, breaking of only one or a few mooring lines is critical
for such structures due to the limited flexibility of the hinges. Breaking of mooring lines
may cause unfavorable loads on the plant due to redistribution of mooring line forces
which may lead to structural collapse. An illustration of the underwater structure of a
hinged steel cage is shown in Fig. [[3 which also indicates how salmon usually tend to be
schooling inside the pen. Schooling is when a group of fish swim together in a coordinated
manner and in the same direction.

Catamaran steel fish farm

Catamaran fish farm structures are composed of parallel slender steel hulls which are
connected with bridges and hinges into different configurations. The buoyancy of such
fish farms are provided by the hulls. Catamaran fish farms are often large and with
integrated feeding barges as shown in Fig. A better overview of the structure is
obtained from Fig. which shows an instantaneous situation of the visualization
output from a commercial computer software tool for structural analysis of fish farms
when the structure is subjected to a uniform steady current and regular waves. Limited
flexibility of the hinges, which may lead to fatigue problems for the bridges, is an issue
also for this type of structure.



Introduction

Figure 1.5: Tlustration of the underwater structure of a hinged steel type fish
farm. Sinkers are attached to the pen in order to stretch the net.

Figure 1.6: A modern fish farm in Norway is shown to the left. To the right is the
visualization from a commercial computer software tool for structural analysis
of fish farms (www.procean.no/fishfarms.html).
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Rigid steel fish farm

This is a large category with several different fish farm designs intended for operation
at exposed locations. The most common type of the rigid steel fish farm is composed of
robust steel pipes with diameter of order 1m that are welded together to form rectangular
or square cages. The floating collar then appears as semi-submerged circular cylinders
oriented with the cylinder axis horizontally in the free surface. Also fish farms made of
truss work exists. This type of structure is characterized by a small water-plane area,
which implies low natural frequencies in heave, pitch and roll of the structure. Buoyancy
are mainly obtained from submerged pontoons. The submerged pontoons also makes the
structure less exposed to wave excitation loads. Knowledge and experience from offshore
engineering and the oil-industry have been utilized in the development of this structure

type.

Submersible fish farm

By adding a “roof” on the net-pens, the fish cage can be submerged for some period of
time, e.g. during a storm. Benefits of a submerged fish cage are reduced wave loads
on the structure and that problems related to icing on the super-structure are avoided.
However, there are biological issues related to submerging the fish cages. One is that
salmon needs access to the free surface for “breathing” in order to supply its swim blad-
der with air. Submerging the fish cages for a longer period of time will cause the fish
to be more stressed. This has a negative effect on the fish growth and welfare. The
operation of submerging a plant is performed by a controlled filling of water into the
pontoons or plastic collars. Elevation of the plant is done by pumping compressed air
back into the pontoons while evacuating the water through valves. Such submerge-able
fish farms are still on the development stage. More novel fish farm systems are presented
in [Fredheim and Langan (2009).

1.1.2 Norwegian fish farms at present

Common for all the previously mentioned types of fish farms is that the floating structure
forms square or circular cages to where net pens are mounted. A modern fish farm can
have as much as 16 cages. The size of the cages has increased significantly through the
years, and so has the number of fish in each cage. An aspect of the increasing size of
the fish farms is that the consequences of structural collapse become more severe, both
environmentally and economically, as more fish is likely to escape. Today, a typical length
of the sides of a large square cage is 40m, while a large circular cage can have a diameter
of 64m. Net cage volumes are most typically 10,000 m® to 20,000 m® and a single cage
may contain up to 1,000 tons of fish. This means that if the mean weight of the fish is five
kilograms, which is a representative value for Atlantic salmon when the fish is ready to
be slaughtered, a single cage may contain as much as 200,000 fish. Salmon have a swim
bladder which is filled with air such that the fish become neutrally buoyant. Hence, the
volume of the fish is approximately equal to the total mass of the fish divided by the mass
density of the water. The upper limit for the average fish density inside a pen is 25kg/m?,
which is kilograms of fish per cubic meter of water. This means that about 2.5% of the
total volume of a fish cage can be occupied by the fish. However, the fish is usually not
evenly distributed within the cage. For instance, salmon often tend to be schooling inside
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Figure 1.7: Salmon forming a school inside a fish cage. This shows that the
local fish density inside a fish cage can be relatively high due to the schooling
behaviour.

the pen, making the fish density locally higher than the average value. An example of
salmon forming a school inside a fish cage is shown in Fig. [[1l Another factor causing
higher fish density is current forces on the net which lead to deformations of the net cage,
yielding a reduced enclosed volume of the pen. The vertical position of the fish inside
the pen is a function of feeding time, daylight, water temperature, dissolved oxygen in
the water in addition to current and waves. A modern Norwegian plant typically has
5,000 to 6,000 tons of fish, totally. However, there exist plants with up to 10,000 tons
((Eredheim 2009).

1.1.3 Challenges

In order to design reliable structures for fish farming at exposed locations, it is crucial to
know what are the loads the structure will be subject to. Figure shows an example
of a damaged fish farm after a storm, where parts of the floating collar is below the free
surface. Such damages are often caused by breaking of mooring lines due to wave and
current loads on the structure. This may lead to buckling of the floating structure due
to large point loads caused by redistribution of mooring line forces. Due to the change
of the mooring forces associated with line breakage, transient motions of the plant will
occur until a new equilibrium position is reached, or if several mooring lines are broken,
the structure might simply drift to the shore. Damage can also be caused by fatigue from
continuous wave loading. An example of fatigue damage is shown in Fig. [C9 Fatigue is
mostly a problem for the joints of hinged or rigidly connected steel types of fish farms,
with members being more or less elastic. Elasticity of the structure also implies that the
structure will theoretically have an infinite number of natural frequencies in case of no
damping. Although oscillations at higher natural frequencies are effectively damped by
structural damping, the lower natural frequencies are important from a fatigue point of
view. If the structure is regularly excited at a natural frequency with small damping, this
will have a negative effect on the fatigue life of the structure. Resonant elastic motions
imply cyclical loads in the structure at a relatively high stress-level. Such cyclical stresses
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Figure 1.8: Example of a collapsed fish farm after a storm, with large fish escape
as a result.

may over time lead to fatigue damage of the structure. The fatigue life of a given structure
can be estimated from the S-N curve, showing the magnitude of a cyclical stress (S) and
the corresponding number of cycles to failure (N) in logarithmic scale. At present, linear
three-dimensional (3D) panel methods based on potential flow theory like e.g. WAMIT
are not common to use for response-analysis of fish farms in waves. Engineering tools
developed for structural analysis of open cage fish farms usually apply linear potential
flow theory (long wave theory) and strip theory, where drag forces as in Morison’s equation
are added to the potential flow solution, for simulating the global response of such plants
when subjected to waves and current. Only regular waves are considered, such that the
frequency-dependent hydrodynamic coefficients of the floaters corresponding to the wave
frequency can be used. For the hinged steel type fish farm, global hydroelasticity of the
structure is usually accounted for by solving the coupled equations of motions for hinged
rigid bridges.

The approach using linear potential-flow theory for structural analyses of fish farms
may yield good results for smaller sea-states. However, for larger sea-states linear theory
may largely over-predict the true response near resonance, or perhaps more crucial, miss
to capture important features associated with nonlinear fluid-structure interaction. In
addition, higher order harmonics of the wave loads may be important when it comes to
excitation of flexible modes of the structure, which eventually may lead to fatigue.

A practical challenge is related to that salmon requires a high level of dissolved oxygen
in the water and are also intolerant of pollution (Monahan 1993)). Hence, the flow of water
through densely stocked pens must be good to maintain adequate oxygen supplies and to
remove polluted water. The exchange of water in the pens is important for the fish health
and growth, which means that desired locations for fish farming should have a sufficient
level of current. One factor that is important to consider relative to water exchange is
bio-fouling or marine growth on the nets. Bio-fouling on the nets is hard to prevent and
will reduce the flow through the net, implying a reduction of the water exchange in the
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Figure 1.9: Example of fatigue on a steel type fish farm. The crack has propa-
gated through the whole section.

pens. Bio-fouling also leads to larger wave and current forces on the net as the effective
area of the net cage increases, and increased inertial loads due to additional weight on
the pen.

1.2 Previous and on-going related work

The purpose of the present work, which addresses the wave loads on floaters of fish farms,
is to contribute to the higher goal of obtaining more reliable structures for fish farming.
This goal is also shared with other studies, where other components of fish farms or more
or less complete fish farm structures are considered. In order to get an overview of the
bigger picture, we will in the present section also give reference to work which is not
directly relevant for wave loads on the floaters but for modelling of fish farms in general.

Design of complete floating fish farms and modelling of their response in waves and
current is challenging and involves several disciplines such as hydrodynamics, structural
mechanics and ethology. When it comes to hydrodynamic modelling of large complex fish
farms, the literature is limited. Further, existing studies of more or less complete floating
fish farm structures mostly rely on wave-load models which in general are not validated
for floaters of fish farms. Previous and on-going work relevant for modelling floating fish
farm structures in waves and current are given in the following.

The net structure

One of the first detailed theoretical analysis on the hydrodynamic force acting on a net
panel suspended in a current was presented by He considered a stretched
net panel as a continuous membrane and proposed differential equations for mechanical
equilibrium of the membrane, based on the assumption that the drag force on the net was
proportional to the square of the current velocity. Similarity laws for scaling of net struc-
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tures were also proposed. A comprehensive review of theoretical and experimental work
on hydrodynamics related to fishing gear, with focus on the mathematical modelling of
net structures, was presented by [Kawakami (1959). A semi-empirical formula expressing
the drag force Fp on a plane net panel subject to a uniform current in the normal direc-
tion of the panel was proposed by [Kawakami (1964) as Fp = 0.5pCp AU?. Here, p is the
density of water, C'p is an experimentally determined drag coefficient, A is the spanned
area of the net panel and U is the fluid velocity. A thorough study on the current forces on
net cages and the resulting net deflections was presented by |Aarsnes et al. (1990). Based
on a series of model tests where net panels were towed with different orientation angles
relative to the towing direction, a mathematical model for the current induced loads on
net panels was proposed. The new mathematical model included a lift term in addi-
tion to the drag force proposed by |[Kawakami (1964). |[Loland (1991) modelled the flow
through fish farms using the wake flow equations, which for steady flow can be found in
Schlichting and Gersten (2000). By utilizing the linearity of the wake flow equations, he
was able to model the flow through a screen by adding together the wake flow caused by
the individual cylinders forming the screen. Both steady and unsteady ambient flow were
considered. This method has shown to be appropriate for screens with low solidity ratio.
The solidity ratio Sn is defined as the projected area of the screen divided by the total
spanned area of the screen. Hence, for a square mesh of cylinders with diameter d and
separation [ we get Sn = 2d/l — (d/l1)?. The possibility of hydrodynamic interaction be-
tween twines of a net can be assessed by the CFD studies by [Herfjord (1996)| He studied
the 2D problem of two circular cylinders in a side-by-side arrangement subject to uniform
cross flow. The cylinders were separated a distance [ in the transverse direction relative
to the incident flow. He found that wake interaction occurs when [ < 2d, with d being the
cylinder diameter. This means that when Sn > 0.75 the linearity assumption of the wake
flows is no longer applicable, and for increasing solidity ratio wake interaction becomes
increasingly important. Typical values of the solidity ratio for clean unfouled nets of fish
cages for Atlantic salmon is in the range Sn = 0.15 — 0.25. [Fridman (1998) pointed out
that for small values of the Reynolds number Rn = Ud/v, where U is the current velocity,
d is the diameter of the twines of the net and v is the kinematic viscosity coefficient, the
drag coefficient Cp of a net panel is highly dependent on the Reynolds number (see also
[Faltinsen and Timokha 2009). When Rn < 600 the drag coefficient C'p shows a strong in-
crease with decreasing Reynolds number, while for Rn > 600 the drag coefficient is nearly
independent of the Reynolds number. A typical twine diameter of a fish cage for salmon is
d = 3mm. With a design current speed of U = 1m/s and with v ~ 1075m?/s, this yields
Rn ~ 3000. This means that the drag coefficient for a full scale net cage for a typical
design value of the current speed is nearly independent of the Reynolds number. How-
ever, for model testing of fish farms where geometric scaling of the net is used to obtain a
model scale fish cage, the Reynolds number dependence of the drag coefficient of the net
is important. Scaling laws for net structures were discussed by |Hu et al. (2001), and drag
coefficients obtained from experiments with trawl nets in model scale and full scale were
compared. Good comparison was shown when the Reynolds dependence of the drag coef-
ficient was accounted for. |[Bessonneau and Marichal (1998) presented an iterative method
for computing the deformation of net structures in current, where a flexible net was mod-
elled by a set of rigid bars connected through flexible joints. A Morison type of model
was used to compute the drag force and added mass force of the individual bar elements
in the transverse direction, while in the tangential direction, a friction force was applied.
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The individual bar elements were assumed to be hydrodynamically independent. Pre-
sented numerical simulations of a towed trawl structure were reported to be qualitatively
in agreement with flume tank observations. [Tsukrov et al. (2003)| presented a structural
finite element model to compute the response of net panels due to current loads based on
an empirical drag formulation. Results from numerical simulations were compared with
experiments and analytical results and good agreement was observed. An approximate
model for analysis of current forces and corresponding response of three-dimensional (3D)
net structures with solidity ratios Sn S 0.5 was established by [Fredheim (2005), where
the twines of the net structure was modelled as linear elastic due to axial stretching. He
found that elasticity of the net structure has a direct influence on the geometry of the
deformed net when exposed to external forces.

Due to bio-fouling, the porosity of the net cages will change. The influence of poros-
ity and fish-induced internal circulation on the flow around fish cages are studied in an
ongoing PhD-project by |Gansel (2009). This study includes both experiments and CFD-
simulations.

Modelling of a net cage is challenging also from a structural point of view, as the net
cages vary in raw material, size, structure and surface treatment. Strength analysis of
net structures typical for aquaculture cages was performed by . The strength
analysis included experiments with tensile testing of various netting materials and nu-
merical simulations of a net cage subject to uniform current. A quasi-static approach was
used in the numerical simulations, where a Finite Element Method was applied for the
structure to compute the net deformations due to the current loads. Netting materials
can be divided into knotted- and knot-less structures, where the latter is the one most
used for Norwegian fish cages. The structure of the netting material is also relevant for
hydrodynamic modelling of the net. We do not consider net loads in the present work.

The floaters

Wave induced loads and motions of floating bodies is a classical branch of problems in
marine hydrodynamics dealing with ships and offshore structures. General aspects and
theoretical methods for solving such problems are discussed in many text books, e.g. by
Newman (1977), [Faltinsen (1990), [Dean and Dalrymple (1991) and The
floaters of fish farms are often characterized as horizontal cylinders floating in the free
surface. Relevant work for the wave loads and wave induced motions of the floaters are
given in the following.

The pioneering frequency domain theoretical work related to wave induced effects on
cylinders in the free surface was made by Ursell. He studied the two-dimensional (2D)
heave added mass and damping of a semi-submerged circular cylinder, and gave a general
expression of the potential flow in terms of flow singularities satisfying the free surface
and radiation condition (Ursell 1949). For the 2D problem of an infinitely long cylinder
oriented horizontally below the free surface, derived the frequency-domain
analytical expressions for the wave forces due to beam sea waves using potential flow the-
ory. Theoretical work on the waves generated by a 2D body oscillating in the free surface
was presented by [Ursell (1954), where he studied how the wave amplitude at infinity is
dependent on the body geometry and the frequency of oscillation. This dependence is
relevant for the wave damping force of floating bodies. Based on Ursell’s work, theoretical
methods for computing linear wave induced loads on fixed and moving bodies in the free
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surface were presented by Newman in (Newman 1962) and (Newman 1965, respectively.
Further, based on |Ursell (1950)} [Ogilvie (1963) presented first- and second-order forces
on a horizontal cylinder submerged below a free surface. Tasai presented two-dimensional
values of the hydrodynamic force and moment due to forced sway and roll motion of
cylinders with Lewis-form sections, which was obtained using linear potential flow theory
(Tasai 1959k [Tasai 1961). A Lewis form section assumes the cross-sectional shape can be
adequately described by the cross-sectional area, beam and draft (see e.g. [Faltinsen (2005 )|
for the geometric limitations of such a technique). The obtained hydrodynamic coefficients
were used with a strip theory to give the total sway force and roll moment on two actual
ship hulls due to forced sway and roll. Results were compared with experiments. The
frequency-domain linear potential flow associated with the wave excitation loads on a
cylinder of arbitrary cross-section in oblique sea that is not close to head or following sea
can be described by the Helmholtz equation (see e.g. |Bolton and Ursell (1973))). The head
sea case is more complicated and was studied by [Faltinsen (1971)|in his Ph.D. thesis for
a ship by using the near-field solution by |Ursell (1968) as part of his analysis. The above-
mentioned work are all in the frequency domain. Solutions to transient potential flow
problems in time-domain for a floating body in waves are described by (Cummins (1962 )|
and Ogilvie (1964 ).

A thorough experimental study on the two-dimensional hydrodynamic coefficients
for horizontal cylinders in the free surface due to forced sway-, heave- and roll mo-
tion was presented by Measurements of wave excitation loads on the
cylinders when being clamped and subject to regular waves were also presented. Wave
forces on partially submerged cylinders were studied by |Dixon et al. (1979)| by means of
model test experiments and numerically using modified versions of Morison’s equation
(Morison, O’Brien, Johnson, and Schaaf 1950)). An experimental study of nonlinear wave
loads on a horizontal circular cylinder beneath linear deep-water waves for Keulegan-
Carpenter numbers 2 < KC' < 3, was presented by [Chaplin (1984)l The cylinder was
submerged below the free surface such that interaction with the free surface was assumed
to be unimportant. For the waves tested, the ratio between the wave lengths A and
the diameter D of the cylinder was in the range A\/D ~ 3.8 — 15. The non-linearity of
the measured forces was believed to be associated with viscous flow separation from the
cylinder surface, and the measured wave forces on the cylinder was observed to be as
much as 50% less than that predicted by linear potential flow theory. The potential flow
problem of a horizontal cylinder submerged below a free surface has later been addressed
using numerical methods by for instance [Wu and Taylor (2003) who studied nonlinear
wave-body interaction using a domain decomposition approach. A finite element method
(FEM) was coupled with a boundary element method (BEM), where the former method
was used away from the body while the latter was used in the near-field region of the body.
BEM was also used by [Kristiansen (2009)| to construct a two-dimensional fully nonlinear
numerical wave tank for wave-body interaction problems. A ship section by an offshore
LNG-terminal was considered where effects of flow separation from the bilges of the ship
section were studied. The free shear layers were modelled using an inviscid vortex track-
ing method. Simulations in 2D of a moving body on the surface of a viscous fluid, based
on the incompressible Navier-Stokes equations, were presented by |Gentaz et al. (1997).
They computed the added mass and damping coefficients in heave, sway and roll, in
addition to the coupling coefficients of roll in sway, for a rectangular body. Numerical
results were compared with experiments and with potential flow theory re-




14 Introduction

sults. Good agreement with experiments and potential flow theory were observed the
coefficients in heave and sway, while the agreement for the added mass and damping co-
efficients due to roll and the coupling coefficients were less good. A 2D numerical wave
tank (NWT) based on the constrained interpolation profile (CIP) method was presented
by |Hu et al. (2003)] Validation of the NWT was performed by means of simulations of
forced heave of a wedge and an elliptic body. The 2D added mass and damping coefficient
were obtained from the simulation and compared with potential flow theory, with reson-
able agreement. Further, numerical simulations of a floating body subject to nonlinear
waves were presented. A numerical wave tank for three-dimensional (3D) simulations
were presented by |Hu et al. (2005). The 3D NWT was verified by means of computing
the added mass and damping in heave of a hemisphere. Results from a simulation with a
Wigley hull at forward speed in head sea waves were also presented.

The floaters of fish farms can generally be characterized as small volume structures,
with cross-sectional dimensions being small relative to the wave lengths of dimensioning
waves. However, the length of the floaters can be large compared to a characteristic wave
length. The relative motion between the structure and the free surface may locally be
large relative to the cross-sectional dimension of the floater. If the relative motion between
the free surface and the floater becomes too large, the floater or parts of the floating collar
might leave the water for then to re-enter into the water domain. If the relative velocity
between the floater and the water surface is large and the floater is characterized by a
blunt geometry, significant forces may occur as the floater impacts with the free surface.
This is referred to as water impact or slamming, and is characterized by impulse loads
with high pressure peaks ([Faltinsen 1990). Slamming events may cause damage to the lo-
cal structure, or cause global vibrations of the structure which in turn can lead to fatigue
of steel structures. Water entry and exit of a circular cylinder was studied experimen-
tally and theoretically by (Greenhow and Lin (1983)| and |Greenhow (1988). Water entry
of different two-dimensional sections has been investigated numerically by and
|Vestbgstad (2009)| using a CIP-based computational fluid dynamics (CFD) method and
by using BEM. Another important scenario which is relevant for the hydro-
dynamic loads on the floaters of fish farms is waves over-topping on the floater geometry.
This will be referred to simply as over-topping. Finding the wave excitation loads on
the floater due to over-topping is numerically challenging and characterized by nonlin-
ear effects. Little work has been done relative to over-topping on slender structures in
the free surface. However, over-topping has similarities to the hydrodynamic problem of

green-water on the deck of a ship studied by |Greco (2001),

Dynamic analysis of fish farms

Engineering tools that have been developed for simulations of the response of fish farms
subject to waves usually applies strip theory together with potential flow theory to com-
pute wave forces on the floaters. The added mass and damping coefficients used in the
strip theory formulation can be found from potential flow theory using a boundary ele-
ment method (BEM) as the Frank close fit method (Frank 1967), which is a 2D source
panel method using a Green function satisfying the free-surface condition and radiation
condition in deep water. Another approach is to use conformal mapping, e.g. a Lewis
form technique, to obtain these coefficients. However, Lewis form technique has limited
applicability and is approximate for cross-sections with sharp corners ([Faltinsen 1990).
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Making a long wave assumption relative to the cross-sectional dimension of the floaters,
the diffraction forces on the floaters can be expressed in terms of the added mass and
damping coefficients. Viscous forces are then added to the potential flow solution, simi-
larly as the drag term in Morison’s equation (Morison ef al. T950). Such a hydrodynamic
load model for the floaters was applied together with a finite element model for the struc-
ture by Ormberg (1991)|, allowing for flexible deformations of the structure due to waves
and current loads. A simplified representation of the net cages was implemented, where
the drag and lift forces on net panels were expressed in terms of a Morison formulation.
Good comparison with model tests was reported. Higher order harmonic components of
the sway response in regular waves was observed. A fatigue analysis of the fish farm in
irregular long-crested waves was also presented. Later, [Thomassen (2008)|studied fatigue
of a fish cage due to regular waves. |Lader et al. (2003) modelled 3D net structures, with
configuration as an open cage fish farm, subject to waves and current. Comparisons be-
tween cage deformations obtained from numerical simulations and model test results were
presented, showing good agreement for the intermediate current speeds. However, for
the lowest current speed tested, the agreement is less good. [Huang, Tang, and Liu (2006)|
presented results from numerical simulations and model tests, where the numerical model
was based on [Lader et al. (2003). Dynamics of a moored spar type fish cage in waves
and currents was studied numerically by |[Fredriksson et al. (2005), using post processed
data for waves and currents obtained from field measurements as input to the numerical
model.

1.3 Outline of the thesis

This thesis is organized as follows. The physical case of wave loads on floaters of fish farms
is discussed in Chapter 2, where an idealized problem is formulated. In Chapter 3, the
mathematical formulation of the physical problem is presented, followed by a description
of the numerical representation of the mathematical problem and the development of
a numerical wave tank (NWT) in Chapter 4. In chapter 5, a verification study of the
numerical model is presented. Two sets of dedicated model tests are described in Chapter
6, where the first set deals with wave loads on fixed horizontal cylinders due to regular
waves, while in the second set, wave-induced motions of a moored floating circular cylinder
in regular waves are considered. The two main studies of this work are presented in
Chapter 7 and Chapter 8. First, in Chapter 7, our study on non-linear wave loads on
fixed horizontal cylinders due to regular waves are presented. Second, our study on the
non-linear wave-induced motions of a moored floating circular cylinder is presented in
Chapter 8. Both studies include comparisons between numerical results obtained from
CFD-simulations using our NWT and the experiments presented in Chapter 5. Finally,
a summary of the present work and suggestions for further research are given in the last
chapter.

1.4 Main contributions

A 2D numerical wave tank (NWT) was developed as a tool for studying nonlinear wave
loads and wave induced motions for floaters of fish farms. The NWT was based on
the Navier-Stokes equations for incompressible flow, where a one-fluid formulation with
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varying fluid properties in the domain was used to simulate two-phase flows. The NWT
was also capable of handling both forced and free motions of solid bodies.

Experiments were conducted in 2006 where wave loads on fixed horizontal cylinders
in the free surface were considered. Two models were tested. One with a circular cross-
section and one with a rectangular cross-section. The models were fixed and subjected
to regular waves. Test parameters were wave period, wave steepness and model draft.
The clamping forces on the models were measured. Over-topping on the cylinders were
observed for some of the test conditions. Some results from the model tests in 2006 were
presented by |Kristiansen and Faltinsen (2008b). From Fourier analyses of the measured
force time series, we found that over-topping introduce higher order harmonics in the
vertical component of the wave excitation force. However, the horizontal force component
was nearly linear when over-topping occurred. When it comes to wave excitation loads on
cylinders with small draft, we found that the second harmonic component is important
for the horizontal force component.

A generalized Morison model (GMM) was implemented and applied using the wave
conditions from the model tests with the fixed cylinders. Computed forces were compared
with measured forces from the experiments. We found that the GMM is not adequate for
computation of wave forces on horizontal cylinders in the free surface when over-topping
occur. However, good comparison was shown for the cases without over-topping. The
GMM was presented by |Kristiansen and Faltinsen (2008a)l

Experiments were also conducted with a floating circular cylinder. The cylinder was
moored with the cylinder axis oriented horizontally in the free surface and subject to
regular waves. An instability-like phenomenon yielding sub-harmonic response of the
sway motion was discovered for the test with the wave period being half the natural
period in sway. This wave period was also close to the natural period in heave of the
cylinder. Measured sway motion was about 250% that predicted by linear potential flow
theory. It was also found that viscous flow separation matters at sway resonance, where
linear potential flow theory overpredicts the measured sway motion by more than 500%.
By Fourier analysis of the measured accelerations from the model tests, it was found that
the second harmonic component of the vertical wave excitation force at sway resonance
did excite the natural heave frequency. This caused the Fourier amplitude corresponding
to the second harmonic component of the body acceleration in heave to exceed the linear
harmonic component. Results from the study on the moored horizontal cylinder in waves
were published by [Kristiansen and Faltinsen (2009)L

Based on the discussion above, we consider the main contributions of the present work
to be the following

e Development including verification and validation of a CIP-based numerical wave
tank for simulation of fully nonlinear wave-body interaction problems in those di-
mensions of a viscous laminar flow

e A generalized Morison model is not adequate for wave load computation when over-
topping occurs. However, such a model can give good force predictions when over-
topping is not present

e Nonlinear effects due to over-topping are dominant only for the vertical component
of the wave excitation force
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e Nonlinear effects for the wave excitation forces on floaters with small draft are most
important for the horizontal force components

e An instability-like sub-harmonic parametric resonance phenomenon associated with
nonlinear hydrodynamic effects was discovered for the moored horizontal circular
cylinder. Numerical simulations with linear restoring forces in sway showed that
this phenomenon was not associated with nonlinear effects from the mooring ar-
rangement

e Viscous damping due to flow separation is important for limitation of the sway
motion of floaters at resonance
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Chapter 2

The physical problem

Wave loads on floaters of fish farms is from a hydrodynamic point of view an extensive
topic which can be addressed in many ways. When concretising this topic into a relevant
hydrodynamic problem, we should elaborate on what are the goals we are aiming for.

In previous studies of integrated fish farm systems in waves, strip theory and potential
flow theory where viscous drag forces are added to the potential flow solution, have been
used when computing the wave loads on the floating collars of fish farms (Ormberg 1991))
((Chomassen 2008). However, this method has not been validated for slender structures in
the free-surface zone as the floating collars of fish farms. According to Ormberg (1991)
there is a lack of confidence for this wave load model when applied to slender structures
in the free-surface zone. To obtain better confidence and possibly improve existing load
models, he suggested that simple cross sections subjected to well defined waves should
be considered. With this in mind, we believe that a first step towards obtaining better
wave load models for floaters of fish farms is to investigate the wave loads and wave
induced motions of floaters in a 2D situation by means of numerical simulations and
experiments. Results can then be compared with existing wave load models for the floaters
and eventually lacks or weaknesses of the existing models can be revealed.

2.1 A 2D-problem of floaters in beam sea waves

As explained in Chapter 1, there exist many different structural concepts of floating fish
farms. In this work we decided to focus on the stiff surface steel structure, which is
designed for use at exposed locations in the coastal zone. The floaters for this type of
structure appear as horizontal cylinders with the cross-section partly submerged in the
free surface, as can be seen in Fig. 21l The diameter of the floater is typically of order
Im. A 2D flow situation occur when the cylindrical floater is subjected to beam sea
waves. Two floater geometries will be considered in the present study, one with a circular
cross section and one with a rectangular cross section. A deterministic approach is used
in the present study where wave loads due to regular waves are investigated. Possible
flow effects that are believed to be relevant for the floaters in beam sea waves will now
be discussed. Such a discussion is necessary early in a study like the present one in order
to decide which tools to apply. By “tools” we here mean mathematical models, numerical
methods or experiments.
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Figure 2.1: Floater of a steel type fish farm. The floater appears as a semi-
submerged horizontal cylinder. The floater has a circular cross-section with di-
ameter Im. A walkway is mounted to the floater.

2.1.1 Possible physical effects

The most relevant physical effects that may occur and which are not covered by linear
potential flow theory are wave over-topping on the structure, viscous flow separation and
water entry and exit with associated forces. Figure illustrates a 2D situation where
the rectangular floater is subject to beam sea waves. Viscous flow separation will always
occur at the sharp corners of the cross-section, meaning that effects of viscosity must
be considered. Wave over-topping is another scenario that might occur. The wave over-
topping process can be dam-break like or it could be like a plunging breaker (Greco 2001]).
The latter may lead to impact loads when the breaking wave hits the top of the floater.
Impact loads can also occur when a steep breaking wave hits the side of a floater. The
plunging breaker may lead to entrapment of air (cf. Fig. EZ), which can result in
high pressures on the floater over the area covered by the cavity. When the relative

Wave overtopping Entrapment of air

Wave direction Impact loads

Free surface \9\ / Free surface

Viscous flow separation

Figure 2.2: Rectangular floater in beam sea waves. Some possible physical effects.
Viscous flow separation will always occur from the sharp corners of the cross-
section, but the extent (and hence the importance) of the separated flow will
depend on the KC-number.
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Figure 2.3: Circular floater in beam sea waves. Viscous flow separation may
occur for large KC-number flow. The location of the separation point depends
on whether the boundary layer flow is laminar or turbulent.

motion between the floater and the waves is large, the floater can leave the water domain
completely (water exit) for then to dive back into the water (water entry). If the relative
velocity between the floater and the sea surface during water entry is large, water impact
or slamming may occur ([Faltinsen 1990). Slamming is characterized by high pressures
which can damage the local structure.

A possible flow scenario for the circular floater is illustrated in Fig. Wave over-
topping, water exit and water entry are relevant also for the circular floater. However,
air-entrapment is believed not to be an issue, and probably not impact forces due to
wave breaking over the cylinder top. However, over-topping will influence significantly
on the vertical forces. If the relative motion between the floater and the surrounding
water is sufficiently large, viscous flow separation can also occur for the circular floater.
However, in contrast to the rectangular floater where the flow always separate from the
sharp edged corners, the location of the separation point on the circular floater depends
on the boundary layer flow and is not known a priory.

2.1.2 Relevant flow parameters

Based on the possible physical effects listed above, the following non-dimensional param-
eters are assumed to be relevant for the general hydrodynamic problem of wave loads on
floaters of fish farms.

Reynolds number: Describes the relative importance of the viscous forces and inertia
forces. The Reynolds number for a cylinder with diameter D in separated oscillatory
flow is defined as Rn = UD /v, where U is the undisturbed relative fluid velocity
at the location of the cylinder and v is the kinematic viscosity coefficient. Consider
a fixed cylinder. The fluid velocity amplitude due to waves with frequency w and
amplitude (,, is given as U = w(, exp (ky), where k = w?/g is the wave number and
y is the vertical coordinate axis with origin at the mean free surface and positive
direction upwards. ¢ is the acceleration of gravity. In attached flow, the Reynolds
number is defined as Rn = U? /(wv), where U,, is the maximum velocity outside the
boundary layer. The critical Reynolds number Rn..; indicates the limit for which
the boundary layer flow goes from being laminar to turbulent. For the circular
cylinder in oscillatory flow Rng.; = 10° is used.
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Keulegan-Carpenter number: Expresses the convective fluid acceleration relative to
the local fluid acceleration on the cylinder surface when subjected to oscillatory
flow. The Keulegan-Carpenter number is defined as KC = UT/D, where T' = 27 /w
is the period of oscillation and U is ambient velocity. For a semi-submerged cylinder
subject to regular waves, U = w(, and hence KC = 27(,/D. For a circular cylinder
in infinite fluid, flow separation may occur if KC' 2 2 for laminar boundary layer
flow.

Euler number: Expresses the relative importance between pressure loads and hydro-
dynamic pressures and is defined as Fu = py/ (0.5pU?), where p, is atmospheric
pressure and U is the incident fluid velocity. This is important if waves cause air to
be entrapped in a cavity on the body surface.

Froude number: Expresses the relative importance between inertia forces and gravity
forces in the fluid. The Froude number in oscillatory flow is defined as Fn =
wy/D/g.

2.2 The sea environment and design conditions

Fish farms must be designed to withstand environmental loads from waves and current.
Typical wave conditions used for the design of fish farms are presented.

2.2.1 Design conditions for floating fish farms

In the Norwegian regulations for the design and operation of floating fish farms, NS 9415
(Standard Norway 2005)), design wave climates or wave classes are presented. These wave
classes are defined in terms of ranges of significant wave heights H, and wave peak periods
T,. H, is defined as the mean of the one third highest waves in a sea-state, while T}, is
the wave period corresponding to the wave component that contains most energy in the
sea-state. The design wave classes from NS 9415 are quoted in Tab. XTIl It should be

Table 2.1: Definition of design wave classes from NS 9415 (Norwegian Standards
2003) for the design and operation of floating fish farms. H, is significant wave
height and 7, is wave peak period.

| Wave classes | H, [m] | T, [s] | Level of exposure |
A 0.0-0.5| 0.0-2.0 | Small
B 0.5-1.0| 1.6 - 3.2 | Moderate
C 1.0-2.0 | 2.5-5.1 | Large
D 2.0-3.0| 4.0-6.7 | High
E > 3.0 |5.3-18.0 | Huge

noted that state of the art computer programs for simulating floating fish farm systems
in waves usually apply long-crested regular waves in the analyses, where the regular wave
corresponds to the most probable largest wave for the given design sea-state.
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Extreme waves

Based on the PM-spectrum, an estimate of the most probable largest wave height for N
number of waves is found as Hyup = Hpmoy/0.5In(N). H,0 = 4y/my is the significant
wave height estimated from the wave spectrum S(w), where my is the spectral moment
defined as

my, = /OOO wFS(w)dw (2.1)

with & = 0. The number of waves for a sea-state of duration ¢ (seconds) can be approx-
imated as N = t/T,,2, where T,,5 = 2w/ mg/ms is the mean wave period obtained from
the wave frequency spectrum with my found from (1) with &£ = 2. It can be shown that
the relation between the mean wave period and the wave peak period for PM-spectra is
Trne = T,/1.41 (Ealtinsen 1990). Thus, estimates of the most probable largest wave height
based on H, and T}, can be found as

o ~ Hiy /0510 (1411/T,). (2.2)

Estimates of the most probable largest wave height in a sea-state of duration four hours,
using data from Tab. [ZI] are presented in Tab. A rule of thumb is that the

Table 2.2: Estimates of the most probable largest wave height H,,,, in a sea-state
with duration four hours represented by a PM-spectrum. The obtained values
of H,,., are based on the significant wave heights H, and wave peak periods 7,
presented in Tab. X1

‘ Wave classes ‘ Hyppar [m] ‘ Level of exposure ‘

A < 1.1 Small
B 1.1 - 2.1 | Moderate
C 2.1-4.1 | Large
D 4.1 - 6.0 | High
E > 6.0 Huge

most probable largest wave height for a sea-state described by a PM-spectrum and with
duration four hours, is about two times the significant wave height.

Current

Current is an important design parameter. From a fish-health point of view, current is
necessary for replacement of dirty water and for the supply of oxygen to the fish-cage. For
the structure, current means additional loads that must be accounted for in the design
of the fish farm. The current will cause drag forces on the net pens and the floaters. In
addition to the design wave classes, also design classes for current are given in NS 9415
(Standard Norway 2005|). Current loads are not addressed in the present work. However,
some aspects of current loads on fish farms are presented in the following section.
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2.3 Relative importance of hydrodynamic forces on the
floater and the net

It is the total hydrodynamic horizontal force on the fish farm that matters for the mooring
system of a fish farm. However, it is interesting to know the contribution from the floater
and the net to the total hydrodynamic load on the structure. The relative importance of
the horizontal component of the hydrodynamic force on the net cage and on the floater
per unit length of the floater and the net will now be discussed.

Consider the two-dimensional flow problem where the floater and the net is subjected
to a uniform current with speed U. = 1.0m/s and regular beam sea waves with height
H = 2.0m and period T' = 3.6s. The wave frequency is then w = 27/T = 1.76rad/s. This
corresponds to the wave steepness H/A = 1/10, where X is the wave length. The waves
are propagating in the same direction as the current. Consider a semi-submerged circular
cylinder with diameter D = 1.0m, representing the floater. Further, consider a vertical
strip of the net cage with depth h = 25m and unit width. We assume the netting material
is characterized by a knot-less square mesh with solidity ratio Sn = 0.20. The floater and
the net is restrained from moving. An Earth-fixed coordinate system Ozy is introduced
with origin in the free surface, where x is the horizontal coordinate and y is the vertical
coordinate positive upwards.

Wave and current loads on the net

The viscous drag force is the dominating force on the net. Due to the waves, the incident
fluid velocity experienced by the net varies with depth. Under a wave crest, the fluid
velocity can using linear wave theory be expressed as u(y) = U, + w(, exp (ky). The drag
force amplitude on the net is then computed as

0

Fy= 0.5pCd/ u(y)?dy, (2.3)
—h

where h is the depth of the net-panel. The drag coefficient for a knot-less square mesh
with solidity Sn = 0.2 is C; = 0.3 (Leland 1991)). This yields F; = 6.1kN/m as the
amplitude of the wave- and current-induced drag force on the net.

Wave and current loads on the floater

The wave excitation forces on a cylinder in the free surface can according to potential

flow theory be found as
Fa = Ca \V; pg2bkk/w7 (24)

where by, with & = 2, 3 is the frequency-dependent 2D damping coefficient of the cylinder
in sway and heave, respectively (Newman 1962). The damping coefficient in sway of a
semi-submerged circular cylinder with diameter D = 1.0m for infinite water depth, is
for w = 1.75rad/s found to be by = 108.6kg/s. With ¢, = 1.0m, this means the wave
excitation force amplitude in the x—direction is F, = 2.5kN. Now, assume that we can
approximate the drag force on the floater due to current and waves as half the drag force
on the cylinder in infinite fluid as F; = 0.25pCC(l2)DU3, where Uy = U, + w(,. Strictly
speaking this is not a good assumption as we cannot mirror the hydrodynamic problem
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about the free surface and consider the double body in infinite fluid for the general case,
due to a frequency dependent free surface condition (Faltinsen 1990)). The drag coefficient
due to the steady current in combination with the wave induced oscillatory flow is not
known. However, for pure oscillating flow, the drag coefficient for a circular cylinder in
infinite fluid is € = 0.2KC when KC < 10 (Graham 1980). Using KC' = 2m(,/D

we get KC' = 6.3, which yields Cf) = 1.25. For the case of a smooth circular cylinder

in infinite fluid subject to uniform steady flow, the drag coefficient is C’C(f) ~ 1.0 when

Rn ~ 10°. To give a conservative approximation, we use C’C(IQ) as the drag coefficient for
the floater. Hence, we obtain F; = 2.4kN as the horizontal force amplitude caused by
viscous flow separation on the floater. This is about the same as the wave excitation
force on the floater. Due to the long wave length relative to the diameter of the floater
(A~ 20D), we assume that the horizontal component F, of the wave force on the floater
due to potential flow is 90° out of phase relative to horizontal fluid velocity in the wave.
Hence, the total wave and current induced force amplitude per unit length of the floater

is found as Fipater = v/ F7 + F2 = 3.5kN.

Discussion

Based on the simplified analysis above, we see that it is the drag force on the net cage that
gives the largest contribution to the total horizontal force on the fish cage. However, for
this case, we found that the hydrodynamic horizontal force on the floater is of the same
order of magnitude as the drag force on the net panel. Here, the horizontal force due to
wave excitation on the floater was found to be about 28% relative to the total horizontal
force on the floater and net. This indicates that wave forces on the floater should be
considered in the design and dimensioning of mooring systems for such fish farms. It
should be noted that the analysis presented above is very approximate. It is questionable
to consider the fixed structure as the floater and the net structure in reality will be set
in motion due to the waves. However, the analysis is considered to be valuable in the
sense of getting an impression of the relative importance of the hydrodynamic forces on
the floater and on the net cage. Forces on the net cage are not further pursued in this
work. The reason for this is that the aim of our study is a thorough understanding of the
wave induced motions and loads on the floater.

2.4 Problem limitations and discussion

In the previous two sections we discussed relevant physical effects with their associated
flow parameters, and quoted the design wave conditions for fish farms given in NS 9415
(Standard Norway 2005|). We will now discuss the relevant physical effects for the floaters
in waves in the context of these design wave parameters. The flow parameters due to
regular waves corresponding to the most probable largest waves for the design sea-states
are estimated.

Consider a horizontal circular cylinder with diameter D = 1m which is fixed in the
free surface zone. Using the wave heights in Tab. B2, we obtain K'C > 3 for all the design
sea-states. For a circular cylinder in infinite fluid subject to oscillatory flow, viscous flow
separation occur when K C 2 2. Considering the fixed cylinder might not be relevant for
floaters of fish farms for the higher sea-states since then the structure will respond to the
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waves, and the relative motion between the water and the floater should be considered.
However, since the K'C-number is larger than two for all the design sea-states, effects of
viscous flow separation cannot be neglected.

Viscous flow separation will introduce additional drag forces on the floater. For the
circular cylinder, the location of the separation point is affected by whether the boundary
layer flow on the cylinder surface is laminar or turbulent. Again, using the design wave
parameters in Tab. to compute the Reynolds number for the fixed cylinder, we obtain
Rn = 1.0 x 10° — 2.1 x 10%. This suggests that the boundary layer flow on the floater can
be turbulent in reality. Turbulent boundary layers combined with free surface flow will
introduce too much complexity to our numerical model relative to what we believe is the
importance of turbulence. We circumvent this problem by applying a model scale where
the boundary layer flow is laminar. Consequences of this approach when it comes to the
wave induced motions of the floaters in full scale are discussed in Chapter 8.

Slamming is not considered in the present work, neither are the effects of air pocket
formation considered. However, we focus on the fully nonlinear wave loading on 2D
floater sections due to regular waves. The study is performed by means of model tests
and numerical simulations. The numerical simulations are performed with the presently
developed Computational Fluid Dynamics (CFD) code which is used to model the 2D
problem of floaters subjected regular waves.



Chapter 3

Mathematical formulation

In order to study the 2D hydrodynamical problem represented by a cylindrical floater in
beam sea waves, a numerical model of a physical wave-tank as illustrated in Fig. Bl is
developed. This is called a numerical wave-tank (NWT). A floating body is introduced
into the NWT to represent the floater. We define an Earth fixed coordinate system Oxy
in our domain with origin at the initial position of the gravity center of the floater. In
this chapter, the mathematical foundation for the NWT is presented. The mathematical
model includes the governing equations with proper boundary conditions describing the
motions of the water and the air, in addition to the equations of motion for the floating
body. Asin a physical wave flume, a wave maker and a beach is needed also in the NW'T.
The mathematical formulation of the numerical wave-tank is presented below.

3.1 General assumptions

It is not practical to include “all” physical effects in our mathematical model. Hence, the
mathematical problem is simplified by neglecting physical effects that are believed not to
be important for our hydrodynamic problem. With the physical reasoning from Chapter
2 in mind, the following assumptions have been made:

- Incompressible fluid

- Viscous fluid

- Laminar flow

- Surface tension is not important

- 2D-flow conditions

- Planar (2D) floater motion

- No air pockets

- Rigid floater, i.e. no hydroelastic effects

Based on these assumptions, the governing equations are established.

27
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Fixed impermeable walls

Figure 3.1: The domain of the numerical wave-tank. An Earth-fixed coordinate
system Oxy is introduced with origin at the initial position of the body center.
The bottom boundary and the right hand boundary are fixed and impermeable
walls. The left boundary is the wavemaker, while the top boundary is open.

3.2 Governing equations

We will apply a one-fluid formulation for the water and for the air. This means the flow of
both the air and the water is described by the same set of equations, with the coefficients
of the mass density and the dynamic viscosity set according to which fluid is occupying the
region considered. In reality, there is a discontinuity of the mass density and the viscosity
of the fluid at the air-water interface which requires special attention in the derivation of
the governing equations.

3.2.1 The continuity equation

Continuity of fluid mass is a basic concept in classical fluid mechanics, which states that
fluid mass cannot just appear or disappear in the interior of a control volume. This implies
that the amount of fluid mass inside the control volume can only change by means of mass
transport through its boundaries. Mathematical formulation of continuity for the fluid
mass is not trivial when solving two-phase flow using a one-fluid model. Conservation of
the fluid mass for a fixed control volume 2 gives the relation between the rate of change
of the fluid mass in  and the mass flux through its boundary 0¢2 as

where u = [u,v]T is the fluid velocity vector and m is the unit outward normal vector of
). Now consider the case of two-phase fluid flow in €2, where the two phases are separated
by a sharp interface I'. If the density of the two phases is different, the fluid momentum
pu is discontinuous across I'. This is the case for air-water interaction flows in reality.
We want to obtain the differential form of the continuity equation, which requires the
application of Gauss theorem on the second term of (BI). However, the use of Gauss
theorem requires that pu is continuous throughout the domain 2. To circumvent this
problem, we will assume that the interface has a finite but small thickness where the fluid
density varies smoothly, meaning also that the fluid momentum will be continuous. Then
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we get

dp

LV (pu) 32
This is the conservative formulation of the continuity equation. By applying the chain
rule for differentiation to ([BZ) and introducing the material derivative operator £ (-) =

(% +u- V) (+), the non-conservative form of the continuity equation is obtained as

%;erV"u:O. (3.3)
The first term of (B3) expresses the rate of change of the fluid mass density as one follows
a fluid particle. Since the mass density is a fluid property which moves with the fluid
flow, the mass density represented by a fluid particle should be constant if we assume
incompressible flow and that no diffusion of the mass density occur. This means DD—f =
Thus, for two-phase incompressible flow where the fluid density is smeared at the interface,
the continuity equation reduces to

V-ou=0, (3.4)

i.e. that the divergence of the velocity field is zero. This will be referred to as the
divergence-free constraint.

3.2.2 The momentum equations

We have assumed the fluid to be viscous and incompressible. Hence, the governing equa-
tions describing the fluid flow are the incompressible Navier-Stokes equations. Applying
the same assumptions of smoothness as in the derivation of the continuity equation, we
can obtain the incompressible Navier-Stokes equations on differential non-conservative
form. For the case of 2D-flow, we get

%—Fu%—l—v@——l@#—l 9 2 Ou +Q @+@ + f (3.5)
ot oxr Oy  pdxr p|Ox e Oy K Oy  Ox v '

ov ov v  1dp 1[0 ou  Ov 0 282} 16
5t = e lor ((r + )+ ()] + 69
where u and v is the horizontal and vertical components of the fluid velocity, respectively.
Further, p is pressure, p the mass density of the fluid and p the dynamic viscosity coef-
ficient. Finally, f, and f, are volume “forces” acting on the fluid in the horizontal and
vertical direction, respectively. The quotes are added because strictly speaking, f, and

fy do not have the unit of force, but the unit of acceleration. The only volume force in
our model is gravity, acting in the negative y—direction.

3.3 The free surface

We define the free surface as the interface between the air and the water. When using a
one-fluid model to describe two-phase flow, here represented by the air and the water, no
explicit boundary condition is imposed on the free surface, simply because the air-water
interface is not a boundary of the fluid domain. However, the instantaneous position of the
free surface must be found in order to know the material properties of the fluid at a given
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point. As argued in the derivation of the continuity equation, the condition %f = 0 must
be satisfied for all points in the domain. Now, let the fluid mass density in the domain
be described by p(z,y,t) = pwe(r,y,t) + pa (1 —@(x,9y,t)), where p(z,y,t) € [0,1] is
a continuous scalar function similar to a Heaviside function but where the discontinuity
is replaced by a smooth transition. Further, p,, and p, are constants representing the

density of water and air, respectively. This means g—f = (pw — Pa) %f = 0. Hence, the
evolution of p(x,y,t) in time is found by solving
I
e~ -V =0, 3.7
5 Tu VY (3.7)

where u is the fluid velocity vector. One can also simply say that ¢ is a fluid property
which then must satisfy (). The dynamic viscosity of the fluid can similarly be found
as w(z,y,t) = pwp(x,y,t) + pa (1 — o(z,y,t)) where pu,, and p, are the dynamic viscosity
coefficients of water and air in that order. Due to the smeared air-water interface in our
mathematical model, we will have to define what to interpret as the physical free surface.
Here, we define the free surface as the contour represented by ¢(z,y,t) = 0.5.

3.4 Initial conditions

Unless otherwise specified, the initial conditions used are that the fluid and the body are
at rest initially. This means the velocity field in the domain is zero. Hence, the pressure
field below the free surface is hydrostatic and described by p = —p,gy. Similarly, due
to the mass density of the air, an aerostatic pressure distribution p = —p,gy is applied
initially for the air-part of the domain. Continuity of the initial pressure field is ensured.

3.5 Boundary conditions

In order to solve the field equations in a prescribed domain, boundary conditions (BC)
for the prime variables, i.e. fluid velocity and pressure, must be specified. We will
consider a rectangular domain where the boundaries are fixed in space. In addition,
the presence of a floater inside the domain yields an internal or immersed boundary for
which boundary conditions must be imposed. Obtaining mathematical formulations of
boundary conditions for the Navier-Stokes equations is not a simple task in general. Often,
the quantities to be prescribed on the boundaries are not known. Some commonly used
concepts are discussed below.

Fixed and moving impermeable walls

A no-slip boundary condition is applied on all impermeable walls in the domain, i.e. the
bottom and the end wall at the beach side of the flume. The no-slip condition is also
applied on the floating body boundary. No-slip means that the fluid particles that are
initially located at points on the solid boundary, remain attached to the same points of
the boundary. There are no relative motion between the boundary and the fluid particles
located on the boundary. This is an assumption based on physical observations of viscous
fluid flows near solid boundaries (Schlichting and Gersten 2000). Mathematically, the
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no-slip boundary condition on fixed impermeable walls S,, is expressed as
u=0 on S,. (3.8)

When it comes to the floating body, the no-slip condition implies that fluid particles on
the body surface will have to move with the body, i.e. the relative velocity between the
fluid particles at the body surface and the body itself is zero. Mathematically speaking,

u=1up, on Sb (39)
where uy, = [uy, vp)7 is the local velocity vector of a point on the surface of the floating
body. The body velocity is either enforced or governed by the equations of motion for the
body. Also the wave maker can be modelled as a body with forced motion, yielding (B3
as boundary condition for the wave maker.

A boundary condition for the pressure on impermeable no-slip boundaries for the case
of time-dependent incompressible flows is not easy to define since the pressure here in
general is unknown. The pressure boundary condition must be seen in combination with
the numerical method used to solve the governing equations for the fluid flow. However,
the normal component of the momentum equations to the impermeable boundary suggests
a Neumann BC for the pressure, meaning that % should be prescribed on the boundary.
This issue will be described more in detail in the next chapter.

Outlet

The ceiling of the tank is open and thus an outlet boundary condition should be applied.
This means the fluid is allowed to flow out of the domain. The pressure outside the
tank is assumed to be atmospheric, which means the Dirichlet condition p = pg, is
imposed on the upper boundary of the domain. In reality, we know little about the flow
at the outlet boundary. Therefore, a general concept is that outlet boundaries should
be located far away from the region of interest (Ferziger and Peric’ 2002). The outlet
boundary condition which is applied in the ceiling of the tank will have influence on the
air flow. However, for our case it is the water flow that is of interest. Since transfer of
fluid momentum from the air to the water is negligible for most cases, the requirement of
the outlet boundary to be located far away from the region of interest (the free surface)
is less important. Further, commonly used criterions are that the convective and diffusive
fluxes through the outlet boundary are zero, meaning the flow has no velocity gradients
in the direction normal to the boundary.

3.6 Computation of forces and moments

The forces and moments acting on the floater from the surrounding fluids (water and air)
are in general due to the pressure and due to skin friction and normal viscous stresses on
the body surface. In the 2D problem, pressure forces F, and moments M,, are found by
integrating the total fluid pressure p over the boundary S, of the body, i.e.

F, = —/ pndS (3.10)
Sh

Mp:—/pr(rxn)dS:/Sbnx(rp)dS, (3.11)
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where n is the unit normal vector of the body boundary Sy, pointing into the fluid domain.
Further, r is the distance from the incremental element dS located at the point (z, y) on
the body boundary to the centre of gravity (z., y.) of the body, i.e. r = (x—z.)i+(y—y.)j.
Since it is the total pressure that is integrated, the pressure loads here are due to both
hydrodynamic and hydrostatic pressures.

The fact that the fluid is viscous implies that there is a skin friction force acting on
the body from the water (and vice verse). There is also a force component due to normal
viscous stresses on the body surface. The viscous forces on the floater can be found by
integrating the product of the viscous stress tensor and the unit normal vector of the body
over the boundary S,. Hence,

Fv:/ TndS. (3.12)
Sh

Similarly, viscous stresses also cause a roll moment on the body which can be expressed
as

M, = [ 7(rxmn)dS. (3.13)
Sh

The viscous stress tensor 7 for two dimensional flow is defined as
2/,4% 1 <g—;‘ + %)

ou v v (314)
w(Gerg)  oud

T =

By prolonging the outer pressure field to the inside of the body, an artificial low problem
can be solved in the interior of the body. If this artificial pressure field inside the body
is continuous and differentiable, we can make use of Gauss theorem to transform the
line integrals in the expressions for the pressure forces and moment, ([BI0) and (BT
respectively, to surface integrals over the area enclosed by the body boundary. Then the
pressure forces can then be found as

F, = —/ VpdA. (3.15)
Qp

Here, V = ia% + ja% is the gradient operator and €, is the area enclosed by the body
boundary. Further, the roll moment due to the fluid pressure can be written as

Mp://ﬂbe(rp)dA
://pr(er)dA—//QbrprdA.

Since V x r = 0, we arrive at

M, = —// r x VpdA. (3.16)
Qp

If we introduce a scalar function (3 defined as

17 V(.T,y) EQb

= 3.17
78 { 0, elsewhere ( )
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we can express the pressure forces and moment in terms of surface integrals over the
complete domain of computation 2 as

F,= —//Q(Vp)go dA (3.18)
M, =— //Q(r x Vp)p dA. (3.19)

The viscous forces cannot be treated this way because the viscous stress tensor defined in
(BI4) is not continuous across the body boundary. The spatial derivatives of the velocity
field has a finite value at the outer side of the boundary, while the gradient of the artificial
velocity field in the interior of the body is zero. This is because a uniform velocity field
equal to the rigid body velocity is imposed on the interior of the body. Hence, this might
explain the rather poor convergence properties for the skin friction forces when using the
surface integral representation, as reported by [Hu and Kashiwagi (2004)L

3.7 Equations of motion for the floating body

When the forces and moments acting on the floater are found, the body motions in an
inertial frame of reference Oxy are obtained by means of integration of Newton’s second
law. The motion equations for the floater for planar motion are

mi. = F, (3.20)
mij. = F, (3.21)
16 =M, (3.22)

where m is the structural mass per unit length of the body, #. and . are the body
accelerations at the center of gravity in the horizontal direction and vertical direction,
respectively. Further, I is roll inertia about the center of gravity, 0 is roll acceleration,
while F,, F,, and M are the total forces in the horizontal and vertical direction and the
roll moment about COG, in that order.

3.8 Wayve characteristics and wavemaker theory

Some basic properties of progressive water waves, which are frequently utilized in the
present work, are described below. For intermediate and deep water relative to the wave
length, water is a dispersive medium. This means that the celerity or phase speed C of
water waves is frequency dependent. The celerity is simply given by C' = w/k, where w is
wave angular frequency and k is wave number defined as k = 27/, with A being the wave
length. A relation between w and k, known as the dispersion relation, is from potential
flow theory found as

w? = gk tanh kh, (3.23)

where ¢ is the acceleration of gravity and A is a constant water depth. The group velocity
C, of the wave train is an important parameter, which will be used e.g. when constructing
the domain of the numerical wave-tank or when evaluating if wave reflections in the flume
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are likely to be contaminating the measurements. The group velocity is according to
linear potential flow theory expressed as

Cy

_dw _C [1 2k } _ (3.24)

Ak 2 sinh 2kh

When generating waves either experimentally in a physical wave-flume or numerically
in an NW'T| it is convenient to know what wavemaker paddle motion that yields a given
wave height of the waves generated. Such a relation between the wavemaker paddle motion
and the resulting steady state wave height H far away from the wavemaker can be found
e.g. from linear potential flow theory (Hughes 1993). For the piston type wavemaker
where the paddle is acting from the bottom of the flume to the free surface, the wave

height-to-stroke ratio is
H 4sinh® kh
e , (3.25)
So  sinh 2kh + 2kh
where Sy is the piston stroke. Further, A is water depth and & the wave number found
from the dispersion relation (B23)). For the flap type wavemaker hinged at a distance [

from the bottom of the flume, the wave height-to-stroke ratio is

H _ 4sinhkh sinh K - (1 — cosh kh)

o 2
So _ sinh 2kh + 2kh AE (3.26)

For the flap type wavemaker, the stroke Sj is defined as two times the horizontal motion
amplitude of the paddle at the mean free surface.



Chapter 4

Numerical model

4.1 Discretization of the Navier-Stokes equations

In the previous chapter we established a mathematical model for our physical problem.
The obtained mathematical model, which is governed by the time-dependent incompress-
ible Naviér-Stokes equations with proper initial- and boundary conditions, must be solved
numerically. Hence, a suitable discretization method must be found. By discretization
method is meant a method to approximate the differential equations with a set of algebraic
equations for the flow variables at a discrete set of points in time and space. A numerical
grid defining these points or nodes of computation must then be specified. However, also
grid-less methods for solving the incompressible N-S equations exists. An example here
is the Smoothed particle hydrodynamics (SPH) method (Gingold and Monaghan 1977
[Monaghan 1992). We apply a grid method for our numerical wave tank. How the grid is
organized is described in the following.

4.1.1 The numerical grid

For grid methods, there is a vast number of ways to arrange the numerical grid. Some
concepts will now be described. First of all, the grid can be fixed in space (Eulerian) or
it can move with the flow (Lagrangian). Further, the grid can be structured (regular),
block-structured or unstructured (irregular). Block-structured grids, which are composed
of some regions (blocks) in where the grid is regular. Some block-structured grids may
have overlapping blocks. Such arrangements where e.g. a body-fitted grid (which can
be moving) is overlapping a fixed grid are called composite or Chimera grids. These
types of grids have shown to be advantageous for flow computations with moving bodies
(Ferziger and Peric’ 2002), since the body boundary condition then easily can be imposed.
A new type of grid which has been used in combination with the CIP-method is the so-
called soroban grid, introduced by [Takizawa et al. (2006). For the soroban grids, the grid
points can be moved in a systematic manner, similarly as the beads on an abacus. In
fact, soroban is the Japanese word for abacus.

The presence of the air-water interface is a complicating factor in our problem, and
must be considered when deciding which type of grid arrangement to apply. Typically
when dealing with free surface flows, we separate between domain dividing methods and
domain embedding methods. Domain dividing methods apply Lagrangian type of grids
which adept to the free surface. Hence, regridding is required as the free surface evolves
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Figure 4.1: Ilustration of the domain embedding method. A fixed Cartesian
grid is used which does not conform to the free surface or the floating body. The
grid covers the air, the water and the floating body.

with time. For violent free surface flows where large distortions and even fragmentation
of the free surface may occur, the regridding process can be very cumbersome and time
consuming. For such flow problems it is more common to apply a domain embedding
method which is characterized by a fixed grid that extends from the liquid phase into
the air, as illustrated in Fig. EEIl Since the grid does not conform to the free surface
and covers both air and water, an interface capturing method must be used in order
to locate the free surface within the domain. Due to the good performance for violent
free surface flows, we will base our numerical model on a domain embedding method,
i.e. using a fixed grid. We have already established a mathematical model where the
governing equations are expressed in Cartesian coordinates. Thus, when constructing the
finite difference schemes, it is convenient that also the computational nodes are arranged
in a Cartesian manner, i.e. that the nodes are aligned in the coordinate directions. Hence,
a fixed Cartesian grid will be applied on a rectangular domain. We will use the indices ¢
and j to represent the node number in the horizontal and vertical direction, respectively.

4.1.2 Staggered grid arrangement

One may think that it is convenient to use a grid where all the primary variables, i.e.
horizontal velocity u, vertical velocity v and pressure p, are calculated in the same set of
points. Such grids are referred to as collocated grids. Drawbacks of collocated grids are dif-
ficulties with the pressure-velocity coupling which then requires interpolation, in addition
comes problems with unphysical oscillations of the pressure (Ferziger and Peric” 2002).
This has motivated for other arrangements of Cartesian grids. [Harlow and Welch (1965)
introduced an arrangement where a separate grid was used for each primary variable and
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where each primary variable was computed at different sets of points. This resulted in a
set of staggered grids. The staggered grids can be explained by having one set of grid cells
where horizontal velocity nodes are located on vertical cell faces, vertical velocity nodes
are located on horizontal cell faces while pressure nodes are located at the geometrical
cell centres, as depicted in Fig. E2 We use Az; to represent the grid line spacing in the

Azc;
+ 1 t t
I I I I
- . - . - . - . R
1 0 % 4
I 1 I I Aycj
Dij
Ay] - . - . Bd . - . -
Ui—1,5 Uj,j
1 1 t 1
! U'L]fl
- . - . - . - . nd
1 + i +
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Figure 4.2: Definitions of the Cartesian staggered grid which is used in the present
numerical model. Pressure nodes are marked with circles, while horizontal and
vertical arrows represents horizontal velocity nodes and vertical velocity nodes,
respectively. We use Az; and Ay; to represent spacing between grid lines, while
Axc; and Ayc; represents spacing between cell centres.

horizontal direction for the grid cell containing pressure node with index (i, 7). Similarly
is Ay; representing the grid line spacing in the vertical direction for the same grid cell.
Application of grid stretching causes the grid line spacings Az; and Ay; to differ from the
spacings between cell centres. For convenience, we introduce the parameters Azc; and
Ayc; to represent the horizontal and vertical spacing between cell centres, respectively.
The relation between the two are Azxe; = 0.5(Ax; +Ax;41) and Aye; = 0.5(Ay; + Ayjiq).

For the primary variables, we use u;; to represent an approximation to the horizon-
tal velocity u(z;,yc;) where (z;,yc;) are the coordinates of the horizontal velocity node
considered. Further, v; ; represents v(xc;,y;) and p; ; represents p(xc;, yc;).

4.1.3 Temporal discretization

The discretized momentum equations must be integrated in time to obtain the veloc-
ity field at a later time step. Many methods exists for integrating the Naviér-Stokes
equations in time. Methods classified as Fractional step approaches as first suggested
by [Harlow and Welch (1965) and |Chorin (1968)| are perhaps the most popular class of
methods. For these approaches, the terms of the N-S equations representing different
physical effects are stepped forward in time separately. In the fractional step approach
by Chorin, a tentative velocity field is obtained by integrating an incomplete version of
the momentum equations where the pressure term is excluded. This tentative velocity
field is then not necessarily divergence free, meaning the velocity field might not satisfy
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the continuity equation (B4). Then, in order to obtain a divergence free velocity field at
the next time step, an orthogonal projection of the tentative velocity field onto the plane
of zero divergence is performed. Hence, such methods are referred to as projection meth-
ods. Chorin’s method has later been modified for use with finite volume methods and
staggered grid arrangements by [Kim and Moin (1985). The Harlow and Welch approach
has lead to the fully implicit method SIMPLE by [Patankar (1980), where all terms are
solved simultaneously and iterates are performed until a velocity field free of divergence is
reached. This method was originally developed for solving the steady-state Naviér-Stokes
equations but has also been used for solving unsteady problems. We will use a projection
method similar to that proposed by Kim and Moin, but instead of using finite volumes
for the spatial discretization we will apply finite differences.

The notation u™ will be used to represent an approximation to the velocity field w ("),
where the time t" = nAt with n being the time step and At the time increment. However,
adaptive time stepping will sometimes be used. Then the solution time is t" = > ;| Aty.

4.1.4 The adopted fractional step approach

Fractional step methods are time-splitting schemes where approximate factorizations of
the Naviér-Stokes equations are applied, such that each term of the equations can be
treated separately. The underlying method for time integration of the different terms can
be either implicit or explicit. Here, time integration will be performed using the first order
explicit Euler method.

Projection methods can be divided into pressure-free projection methods as that intro-
duced by [Kim and Moin (1985)|and incremental-pressure projection methods as described
by [Brown et al. (2001). In the pressure-free projection method, the advection and dif-
fusion terms are solved to obtain a tentative velocity field which is projected onto a
divergence free plane. Hence, no pressure gradient is included in the tentative velocity
field. In the latter method the pressure field from the former time step is used to get a
better estimate of the velocity field before a projection step of the incremental change in
pressure from time " to t"*! is performed. The incremental pressure projection method
will be used here. Using the explicit Euler method for time integration, the fractional
step approach with incremental pressure projection can be expressed as

u" =u"+ (C"+ D"+ P At (4.1)

where C represents the convective terms, D represents diffusive terms, the body forces
and the pressure gradient from time t". Finally, P is the gradient of the incremental
pressure change from time " to t"*!. This leads to a three step approach for integrating
the N-S equations, with the following steps

u =u"+ (C") At (4.2)
u” =u"+ (D") At (4.3)
u" = 4 (P At (4.4)

The different steps will be referred to as the advection step, non-advection step and
incremental-pressure correction step, respectively. The non-advection step will be further
divided into a diffusion step and a pressure correction step. In the incremental-pressure
correction step, the velocity is updated with the incremental change in the pressure, which
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leads to a divergence free velocity field. This incremental-pressure correction is unknown
and must be found using a projection method leading to a Poisson type equation for the
incremental pressure.

4.2 The CIP-method

When solving the advection step, a method with small numerical diffusion is favorable.
Numerical diffusion is due to artificial diffusion terms that are caused by truncation er-
rors of the discretization. Although numerical diffusion stabilizes the numerical scheme,
it is unphysical and may cause erroneous solutions. A typical example is rapid decay
of the wave amplitude in simulations of propagating surface waves. A method with
small numerical diffusion that has shown to work well for fluid-structure interaction prob-
lems (Hu and Kashiwagi 2004} [Hu et al. 2005)) is the CIP-method. The CIP-method was
first introduced by [Takewaki et al. (1985)as a solver for one-dimensional hyperbolic-type
equations, then with CIP being the abbreviation for Cubic Interpolated Pseudo-particle
method. This method uses the values of the advected variable and its spatial deriva-
tives to construct an interpolating profile, usually a cubic polynomial, to represent the
advected variable in the upstream cell. Then the solution is found by moving the interpo-
lation profile in a Lagrangian manner. The CIP-method has been extended to apply for
multi-dimensional problems, and also other interpolating functions than the cubic poly-
nomial have been used. To construct a cubic polynomial, four constraints are needed in
the 1D-formulation, while ten constraints are needed in 2D. This could be done by using
information from more than one upwind cell. However, in the CIP-method the spatial
derivatives of the advected variable are introduced as free variables. This yields a compact
scheme where information from only one upwind cell is used. Thus, to account for other
types of interpolating functions, the first definition of the CIP-method has been changed
to the Constrained Interpolation Profile method. The CIP-method has been incorporated
into N-S solvers where time-splitting algorithms are used ((Toro 1999) as a solver for the
advection step. CIP has also been used in multiphase flow simulations for solving the
advection equation for density functions, which appear when interface capturing methods
are used. A review of the CIP-method for multiphase flow simulations is presented in
|Yabe et al. (2001).
In order to explain the CTP-method, it is convenient to start out with the 1D-formulation.

Then, a 2D-formulation which are used in our numerical model will be presented. Some
mathematical background relevant for the CIP-method is presented in Appendix [ATTl

4.2.1 One-dimensional CIP-formulation

The one-dimensional linear advection equation can be written as

aof . of

— — =0. 4.5

ot Hbax (4:5)
and describes a function f(x,t) which is advected with the velocity u. For the special case
of constant velocity u = ug, the advected function f(x,t) retains its initial shape and is
only shifted along the z-axis with time. Then the relation of f(z,t) between two different
time instants At apart is f(z,t + At) = f(x — upAt,t), as illustrated in Fig. For
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Figure 4.3: Relation between the advected function f(x,t) and the same function
at a later time f(x,t+ At) when the advection velocity u is constant is shown in
(a). In (b) the advected variable f(z,t) in the upwind cell of z; is approximated
by a cubic polynomial F*(£). The solution f/**' is then found by moving ¢ =
—uAt along the profile F".

the general case where u = u(x,t), also the shape of f(z,t) will be affected during the
advection process. The CIP-method makes use of the spatial derivative of the advected
function, which are introduced as additional free variables. Then, for the 1D-problem we
need one additional equation for the time evolution of the spatial derivative g = df/0x.
Differentiating (E3) with respect to x and substituting df/dx = g yields
dg dg Ju
ot + u(x,t)% =59

Equations (LX) and Q) are the governing equations for the one-dimensional CIP-
method. Due to the source term on the RHS, eq. (EH) is solved by a two-step time-
splitting method. First we solve eq. (EEH) with the RHS equal to zero to obtain a tentative
g*. Then, g* is updated by the source term on the RHS of (H) to obtain g™

The solution procedure is as follows. We consider the node z;, for which u}', f* and
g" are known. We want to find f"*! and ¢?*'. First, the upwind node index is found as
iw =i — sign(u), where the function sign is defined as

(4.6)

(2

, 1, >0
sign(x) = { 1 a0 (4.7)

Then, a cubic polynomial F*(¢), where £ = x — x;, is constructed to represent f(z,t") in
the upwind cell, i.e. in the interval [z;, z;,]. The cubic polynomial and the corresponding
differentiated profile is

F7'(€) = C3&® + o8 + i€ + Co (4.8)
G7(€) = 3056”4+ 2C5¢ + (1, (4.9)
where GI' = dF*/d¢. The four unknown coefficients are now found using the known
values of f" and ¢" in the two nodes of the upwind cell as constraints. Details of the

derivation of these coefficients can be found in Appendix [A.T.2 When the coefficients are
found, the interpolation profiles are shifted the distance u; At to obtain the new values

[t = F(—wAt) (4.10)
g9; = Gi' (—w;At). (4.11)
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The spatial derivative g* is updated with the source term on the RHS of (EG) as

gn+1 — g* . A U‘;LJrl - U;Zl g* (4 12)

! ! AI‘Z + AZL‘Z‘_H v ’
We note that (1), (ETT) and [ET2) are consistent with the analytical solutions to (EEH)
and (E£Q) for the case when u is a linear function in space and constant in time, which is

given in appendix [ATTl (equations ([Af) and ([AA10), respectively).

Stability of the 1D CIP-method

When solving the advection equation (LX) numerically, there is usually an upper limit on
the time-step in order to obtain a stable solution. This criterion on the time-step for a
stable solution is expressed in terms of the Courant-Friedrichs-Lewy (CFL) number, which
for the 1D case is defined as CFL = UAt/Axz. Here U is the maximum fluid velocity
in the domain, At is the time-step and Az is the spatial increment. A commonly used
stability criterion for the CIP-method is CFL < 1. For a given spatial discretization and
a given transport velocity, we then get At < Az /U as a constraint for a stable calculation.
Although no rigorous stability analysis is performed to verify the stability criterion, we
note that CF'L = 1 marks the limit between interpolation (C'FL < 1) and extrapolation
(CFL > 1) on the constrained polynomial defined by (ELJ).

4.2.2 Two-dimensional CIP-formulation

Several variants of the CIP method has been developed for advection calculations in two-
and three- space dimensions, as described by In the methods referred to
as C-type and M-type CIP, directional splitting techniques are used such that the two-
or three-dimensional problem is reduced to a set of one-dimensional problems which are
then solved by the 1D-solution procedure. We will in the following use what is called
the A-type CIP method. This method does not apply directional splitting. Instead, a
polynomial surface is constructed as the interpolation function representing the advected
variable. This will now be explained.

We want to solve the linear advection equation in two spatial dimensions, which can

be expressed as
of  of  of

a+u%+va—y = 0. (4.13)

Differentiating (ELI3) with respect to the spatial coordinates and introducing the new
variables g = 0f /0x and k = 0f/Jy, we obtain

dg dg dg  Ou ov k

o 9 Ty T o o (4.14)
Ok Ok Ok v ou

U v = ——k — —g. 4.1
ot +u8x v@y 8yk 8yg (4.15)

The hyperbolic equations ([ET4]) and ({I5) describing the evolution of spatial derivatives
g and k, are coupled due to the source terms on the right hand side (RHS). In order to
solve these equations, a two-step time-splitting technique is used. First, pure advection
of the derivatives are computed by setting the RHS to zero. Then the spatial derivatives
are updated due to the source terms.
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The upwind cell for a given node is determined by the sign of the two velocity com-
ponents for the node considered. Since the nodes for the horizontal and vertical velocity
components are not collocated on a staggered grid (cf. Fig. EZ), interpolation of the
velocities to the node considered is necessary. For advection of horizontal momentum the
vertical velocity component has to be interpolated to the horizontal velocity node, while
for advection of vertical momentum the horizontal velocity component must be interpo-
lated to the vertical velocity node. When advection of the color function is computed,
both velocity components must be interpolated to the cell centre. The advection velocity
components will be referred to as u. and v, referring to the horizontal and vertical com-
ponent, respectively. Now the upwind cell for a given node (i, j) is determined based on
the sign of the velocity components u and v. More precisely, the upwind node indices for
the horizontal and vertical direction is found as iw = i — sign(u) and jw = j — sign(v),
respectively. The upwind cell is defined as the area limited by the four nodes (¢, j), (iw, j),
(1, jw) and (iw, jw).

When the upwind cell is found, the next step in the A-type CIP-method is to approx-
imate the advected variable f(z,y,t") in the upwind cell with a cubic polynomial surface
F™(&,m), where £ = x — x; and ) = y — y; are the local cell coordinates. If the grid
spacings Az; and Ay; are of the same order of magnitude, i.e. { and n are of the same
order, a complete cubic polynomial surface is described by

F(En) = C308” + Cn&n + Chaln® + Cosn® + Coo€” + Craén + Coan?

(4.16)
+ C10€ + Coin + Coo,

where by complete is meant that all terms up to third order of £ and n are included.
Further, the differentiated profiles G™(&,n) = 0F™/0¢ and K™(§,n) = OF"/Jn are found
as

G75(&,m) = 3C308” 4 2C216n + Cran® 4 2C20€ + Cuin + Cio (4.17)
K75(&m) = Cn&? + 2C126n + 3C03n* + Cia& 4 2Coam + Coy. (4.18)

The polynomial in (ZI6) contains ten unknown coefficients that must be determined.
These coefficients are found using the constraints F™(&,,1,) = f,,, with (p, q) being the
indices of the four nodes describing the upwind cell and &, and 7, the corresponding cell
coordinates. Further, G"(§,,1,) = g,, and K"(&,,7,) = k;,, are used for the three nodes
(p,q) = (i,7), (iw, j) and (i, jw). This yields a total of ten constraints. If also the spatial
derivatives at the fourth node (iw, jw) were used, we would have twelve constraints but
only ten unknowns. Thus, two more terms must be added to the polynomial ([T if
the spatial derivatives at the fourth node are to be used. However, the additional terms
would be of fourth order and are neglected in our numerical model. When the interpolation
profile F}; is found, the solution to the linear advection equation ([ETJ)) is obtained as

= F(—uAt, —vAt) (4.19)
For the spatial derivatives, a two-step time-splitting approach is used as follows. First,
due to pure advection of the spatial derivatives we get

g;; = G (—ult, —vAt) (4.20)
ki, = Ki'j(—ulAt, —vAt), (4.21)
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Figure 4.4: CIP-method in two-dimensions where a cubic polynomial surface

F7(€, n) is constructed using ten constraints and then shifted according to the

n+1

solution of the constant coefficient linear advection equation to obtain f;";

which conserves the shape of the differentiated profile. However, due to the varying
velocity field the shape of the differentiated profile will be modified. This is represented

by the source terms on the RHS of (LI4) and (EIH). Updating the derivatives for the
source terms yields

8u 81}
n 1 ~n
ou ov ~
n+l _ 1.%x
R = kT — A (a iy + 5, ki J) , (4.23)

where the spatial derivatives of the velocity is evaluated using central differences. Due
to the staggered grid, the actual stencil for differentiation depends on which variable is
being advected. The A-type CIP-method is illustrated in Fig. B4 As for the 1D CIP-
method, no rigorous stability analysis is performed for the 2D CIP-scheme. However, the
1D stability criterion (CFL < 1) is used for each of the two spatial directions. Usually,
CFL < 0.5 is used in practice.

Generally, both the 1D and 2D approach can be summarized as follows. For each node
of computation:

1. Locate upwind cell based on the total velocity in the node considered

2. Approximate the advected variable in the upwind cell by constructing a cubic poly-
nomial curve/surface using the node values of the advected variable and its spatial
derivatives as constraints

3. Shift the approximated profile according to the analytical solution of the linear
constant coefficient advection equation

4. Find new spatial derivatives by shifting the differentiated profile and adding source
terms

5. Update variables
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4.3 Solving the Navier-Stokes equations

The Naviér-Stokes equations are solved using finite differences on a Cartesian staggered
grid. A fractional step approach with an incremental pressure-projection method is ap-
plied to step the solution forward in time, as already described. The different steps will
be explained more in detail in the following.

4.3.1 Advection step

The first task in the fractional step approach used here is to solve the advection equation
for the horizontal and vertical velocity component. The advection of fluid momentum
implies we have to solve the following nonlinear advection equations

ou Ou o
ot u@:c U@y
ov ov ov

En + uo + va—y = 0. (4.25)

=0 (4.24)

These equations are hard to solve. However, if we use the method of frozen coefficients (see
e.g. Strikwerda (2004)|), we can approximate the nonlinear equations (E24]) and (E23) to
obtain the linear equations

ou ou ou

gl a5l o 4.2
8t+uax+vﬁy 0 (4.26)
RO (4.27)

E‘i‘uax‘i‘va—y— ,

where @ and ¥ are constant in time during the small time interval of length At. The
velocity components @ and v are evaluated at the node of computation, using the velocity
field u™. For the evolution of the spatial derivatives of the advected velocity components,
we solve (EEI4) and (EEIH). Then, using Eqs.([ETOHELZF) the advected variable u* and its
spatial derivatives g* and k* after advection are found.

4.3.2 Diffusion step

Due to the viscosity of the fluid, diffusion of fluid momentum will occur. Central differ-
ences are used for the spatial discretization of the viscous stress terms. When using the
non-conservative formulation of the Naviér-Stokes equations, the diffusion equations for
the two spatial directions are coupled. For this we introduce the indices E, W, N, S refer-
ring to points to the East, West, North and South relative to the node of computation.
At these points, the kinematic viscosity coefficient v and the derivatives of the horizontal
and vertical velocity components are to be computed. First we consider diffusion of the
horizontal velocity component, which can be written

0=t g 2 ou* - ou*
wy o T pe \ Axc; He oz | Hw or |y
(4.28)
1 ou* ov* ou* ov*
+Ayi<uN<8y Ny Oz N)_MS<8y g Ox s>)>
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Figure 4.5: Variables involved in the diffusion calculation for (a) the horizon-
tal velocity component and (b) the vertical velocity component. The dynamic
viscosity coefficient is approximated at the points marked with a cross.

Similarly, for the vertical velocity component we get the following expression for the
diffusion calculation, including the effect of gravity,
J)

o At 1 <8u* ) B <8u*
w0 A My ooy
42 N L — gAt
Ayci 120\ 8y s ay < g )

where ¢ is the acceleration of gravity. Details on the evaluation of the kinematic viscos-
ity and the velocity derivatives are given in appendix The computational stencils
corresponding to [L28) and ([@29) are illustrated in Fig. L3

When the explicit Euler method is used to time step the effect of the diffusion equation,
there is a stability constraint that must be satisfied. This stability constraint can be
found from a von Neumann analysis (Roache T976; Strikwerda 2004). However, due to
the change of material properties across the free surface, this is not an easy task. If we
consider the different phases separately, the following stability constraint for the diffusion

step is obtained
AL 1 1 1
< —. 4.30

man

ov*

p Or

ov*

w  Ox

(4.29)

N

This constraint on the stability of the solution can be removed by using an implicit method
for the time integration, like the second order Crank-Nicolson method.

4.3.3 Pressure coupling

In the pressure projection method suggested by Chorin, a Poisson equation for the total
pressure is solved. Then the pressure is used to project the velocity field onto a plane of
zero divergence. For methods classified by [Brown et al. (2001) as incremental pressure
projection methods, the velocity field is first updated with the old pressure field p" to
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obtain a better prediction of the velocity field before the projection is performed. Updating
the velocity field with the old pressure is done by

At n P
ult =i — Py — Py (4.31)
’ T 0.5(pig+ pivry) Az
At L — P
o = Pijr1 — Pij. (4.32)

" b 0.5(pi; + piji1)  Ayc

Then the projection step is done with the incremental change in pressure dp"*! = pntt—pr

from time step n to the next time step n + 1. Consider the velocity update due to the
incremental pressure gradient, which is

*k

un+1 —u

1 +1
== g 4.
A7 pVép (4.33)

Now, taking the divergence of ([E33) and imposing the continuity constraint V-u""! = 0,
the unknown velocity w"*! is removed from the equation and we obtain a Poisson equation

for the incremental pressure dp"*! as

Veou™ 1 ntl
N V. (;Vép ) ) (4.34)
Due to the one-fluid formulation which implies that the fluid density in the domain is
non-constant, Eq. (34 is more precisely a variable-coefficient Poisson equation. Hence,
the coefficient matrix must be calculated for each time step. When the Poisson equation
for the incremental pressure is solved using a suitable solver (which will be described more
in detail below), the tentative velocity field ™ is updated using the incremental pressure
gradient to give the velocity field at the next time step u”*!. Hence,

ntl ek At 5p?+17]‘ — 5]);1,] 4.35
g Ui A (4.35)
0.5(pij + pivrg)  Axe
At oplti . — opl
ot = o — Pojir = OPsj. (4.36)

W 0.5(pij + pij+1) Ayc;

The new velocity field w™™! will now satisfy the continuity equation (Bd). Further is the
pressure for the next time step found as

piyt =P+ Pl (4.37)

4.3.4 Solving a Poisson equation for the incremental pressure
The variable-coefficient incremental-pressure Poisson equation can be discretized to give

1 (5pz‘+1,j - 5pz‘,j _ 5pz‘,j - 5]7@'1,]') i 1 (5pz‘,j+1 - 5pz‘,j _ 5pz‘,j - 5pi,j71 ) _
Ax; ,0@'+1/2,]A$Ci pi71/2,jA1‘Ci—1 ij Pi,j+1/2Aij Pi,j71/2Aij—1

kok kok ko kok
Loy — Uity 4 Vg~ i

(4.38)
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where p;; /9 ; is the fluid density evaluated at the velocity node at the right cell boundary,
i.e. at the velocity node wu;;. Similarly, p;_1/2; corresponds to the density at u;_; j,
while p; jy1/2 and p; j_1/2 corresponds to the density at the velocity nodes v; ; and v; ;_1,
respectively. The Poisson equation is an elliptical equation, which means that boundary
conditions for the incremental pressure must be specified. We consider two types of
boundary conditions. These are the Neumann condition for which the normal velocity
is specified on boundary, and the Dirichlet condition where the pressure is specified on
the boundary. By setting n - u** = n - u"*! on the boundary, the Neumann condition is
expressed as - V(dp"™) = 0. This is applied for the rigid wall boundaries. At the upper
boundary, the pressure is atmospheric, meaning the imposed pressure on the boundary is
constant in time, i.e. p"** = p®. This leads to the Dirichlet boundary condition dp"*! = 0.
Equation (EZ38) represents the linear system

Ax = b, (4.39)

where x is a vector of the unknown pressure increment, A is the coefficient matrix due
to the discretization and b is the divergence of the tentative velocity field, i.e. the right
hand side of (E38). How to obtain the coefficient matrix A is described in appendix
The system of equations can be very large, which implies that a direct solver would
be inefficient. Thus, an iterative solver is used to solve (E39). Further, the coefficient
matrix A will due to the discretization be non-symmetric when nonuniform grids are
used. This puts additional requirements to the iterative solver. An efficient solver that is
able to handle systems where the coefficient matrix is non-symmetric is the Bi-CGSTAB
algorithm (van der Vorst 1992), which will be used here. Due to the moving free surface
and the fact that the coefficient matrix depends on the fluid density, the coefficient matrix
must be calculated at every time step. Another aspect of the moving free surface is that
the large variation of the density causes the eigenvalues \; of the coefficient matrix A
to be wide spread along the real axis. Hence, the condition number & = |A00/Amin| is
large and the system is called stiff which means hard to solve. In order to gain faster
convergence of the iteration process, preconditioning of the equation system is favorable.
Preconditioning means that instead of solving the system represented by (E3d), we solve
a modified system

M 'Ax = M 'b, (4.40)

where M is a preconditioning matrix that approximates A and where the inverse matrix
M~! is easy to compute. We will use a simple precondition algorithm called D-ILU
that has shown to work well with Bi-CGSTAB (Barretf et al. 1994). Algorithms for the
preconditioned Bi-CGStab method and the D-ILU preconditioner are given in appendix
A

4.4 Free surface capturing

When solving two-phase flow with a one-fluid model using an embedded grid method, the
free surface must be captured for each time step to know the material properties in the
node of computation. There exist several methods for free surface capturing. The MAC
scheme (Harlow and Welch 1965)) is such a method which can treat complex phenomena
like wave breaking. In the MAC scheme, marker particles which are advected with the
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flow are used to capture the free surface. However, the computational effort is large since
one has to keep track on a large number of marker particles. Another popular method is
the Volume of Fluid (VOF) method by [Hirt and Nichols (1981). This method makes use
of a density function which numerical value is the area fraction occupied by the liquid
in each cell. The density function is then used to give a cell-averaged estimate of the
mass density and viscosity of the fluid. A transport equation for the evolution of density
function is solved for the whole domain to locate the free surface. The momentum and
mass conservation equations are then solved for the liquid phase only. A problem with
such methods is that due to the discontinuity of the density function at the interface, the
density function will be smeared out here when using a low-order method to solve the
transport equation. Using higher-order methods may lead to over-shoot or under-shoot
of the density function. This problem is avoided by the level-set method introduced by
|Osher and Sethian (1988). In the level-set method, a distance function is introduced.
The distance function is a scalar function which value is the shortest distance to the
free surface which is in the normal direction to the surface. An advantage of the signed
distance function is that it is smooth such that problems related to numerical diffusion and
over- or undershoot, which are typical issues for methods applying pure density functions,
are avoided. Applications and further details of the level-set method are described in
[Osher and Fedkiw (2003).

In the present work, we have used color functions for free surface capturing. This is a
similar approach as the VOF-method.

4.4.1 Color functions

Similar as the density function in the VOF-method, also the color function can be con-
sidered as a cell averaged density function. We will use one color function for each phase
present in the domain, here represented by the water (liquid phase), the air (gas phase)
and the floating body (solid phase). The color functions for the water, the air and the
floater are denoted @1, w9 and 3, respectively. As the node value of a color function
represents the area fraction of a grid cell that is occupied by a given phase, all color
functions takes a value p, € [0, 1], where k = 1,2,3. Further, the following condition is
enforced

]

k=1

The color function can be considered as a cell averaged material property for the phase it
represents and thus the color function for water ¢, is advected with the flow. This means
that the time evolution of ¢ is described by ([B), which is solved using the CIP-method.
The color function for the solid body is found directly when the position and orientation
of the solid body are known. This is described more detailed in the next section. When
the color functions ¢, and 3 are found, the color function for the air (5 can be obtained
from (EATI).

When advecting a step-like function with the CIP-procedure, the advected function
will smear out at the step due to numerical diffusion and due to representation of a
discontinuous function by a cubic polynomial. This smearing may also cause a wrong
phase speed of the contour represented by ¢, = 0.5, which defines the free surface. To
reduce this effect, the color function ¢ is replaced by a transformed color function ®(¢)
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when solving ([B). After the advection calculation, the color function ¢, is recovered
by the inverse transform ¢; = ®~!. Different transforms are used in the literature.
|Yabe et al. (2001)| introduced a tangent transform and its inverse function defined as

¢ = tan (m(1 —¢)(p1 — 0.5)) (4.42)
tan~! @
Y1 = m +0.5. (4.43)

Here ¢ is a small positive constant which is used to tune the thickness of the air-water
interface. Usually, ¢ = 0.02 is used. Since the tangent function represents an additional
computational cost, a simpler linear transform was proposed by Hu et al. (2005)|

¢ = 0.5+ a(p; —0.5) (4.44)
o1 =05+ (& —0.5)/a, (4.45)

with the tuning parameter v = 1.2. Both the tangent transform and the linear transform
are implemented in our numerical model. However, in all cases presented the linear
transform is used. A parameter study for different color function transforms used in free
surface capturing with the CIP-method is presented in [Vestbgstad (2009).

After advection of the transformed color function ® and when the inverse transform
has been applied to obtain ¢!, eventually overshoots or undershoots of ¢! that usually
occur when advecting a step-like function using a higher order method are removed. This
is done by setting "t =1 if "™ > 1 and "™ = 0 if "™ < 0. Then, the density and
viscosity of the fluid in a given cell is computed as

3 3
p=> prpr and =Yk, (4.46)
k=1 k=1

where pp and py are the mass density and dynamic viscosity coefficients for the phase k,
respectively. For the grid cells occupied by the solid body, fictitious coefficients for the
mass density and dynamic viscosity are used with values equal to those of water.

4.5 Introduction of the floating body

Introduction of a solid body with arbitrary geometry into the computational domain needs
special treatment when a Cartesian grid is used. Since the Cartesian grid cannot conform
to an arbitrary geometry, the velocity nodes will in general not be located on the body sur-
face. This means that imposing the body boundary condition on the floating body would
require special treatment. Methods that deals with the problem of imposing boundary
conditions on arbitrary geometries when using Cartesian grids are called immersed bound-
ary methods and was first introduced by for representing the effect of an
elastic membrane of a heart valve on the blood flow. The main feature of immersed
boundary methods is that an extra body force is added to the momentum equations in
the vicinity of the body boundary to represent the effect of the solid body on the fluid
flow. Other approaches using the same concept have later been introduced, and today
immersed boundary methods are widely used for many applications. Review of immersed
boundary methods are given by [Mittal and laccarino (2005)| and [de Tullio et al. (2006).
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Figure 4.6: Computation of the color function ¢3(i,j) representing the solid
body. The intersection points P4 and Pg between the body geometry and the
Cartesian grid, which are found by parametrization of the body geometry, is used
to compute the area fraction A; ; of the grid cell (4, j) covered by the body.

[Mittal and laccarino (2005)| divides the group of immersed boundary methods into two
main approaches, namely continuous forcing approach and discrete forcing approach de-
pending on how the effects of the immersed boundary are introduced into the governing
equations for the fluid flow. In the continuous forcing approach, the forcing is incorporated
into the continuous momentum equations before discretization. However, this method in-
volves user-specified parameters in the forcing which is undesirable in addition to problems
with instability issues for rigid boundaries. In the discrete forcing approach, the forcing is
introduced after the equations are discretized and this method has the major advantage
that user-specified parameters in the forcing are avoided. Here we will use a discrete
forcing approach similar as the direct forcing method introduced by [Mohd-Yusof (1997).
Further, we will make use of color functions in the representation of the solid body. This
is described in the following.

4.5.1 Representing the solid body using color functions

We use the color function ¢3 to represent the solid body. In the same manner as for the
color function ¢; representing water, the value of ¢3(7, j) is defined as the area fraction
of the cell with indices (7, j) that is covered by the solid body divided by the total area
of the cell. This means ¢3 € [0, 1]. Mathematically speaking

,]) = —>— 4.47

¥3 (27 j) AxlAy] ) ( )

where A, ; is the area of cell (¢, j) covered by the solid body, as shown in Fig. The
body geometry is represented by a discrete number of straight line segments Sy with
k=1,2,...,N. Each line segment is described by the two end points (xf, y¥) and (2%, yF).
In order to compute the area fraction A of the cell occupied by the solid body, we first need
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to locate the intersection points (z.,y.) between the grid lines and the body boundary.
This is done by “walking” along the curve defining the geometry. Each line segment S}, is
parametrized using the parameter ¢ = [0, 1], which means that all points located on the
line segment Sy is defined by

T =k + (aF — 2kt (4.48)
Y=o+ (Ui —yo)t. (4.49)

We now find all horizontal grid lines y; between y§ and yf, and all vertical grid lines z;
between xf and x%. These are the grid lines intersected by the line segment S;. If a
vertical grid line is intersected, we know that the horizontal coordinate of the intersection
point is z. = x;. The parameter ¢ = t. for the intersection point is then found as
t. = (x; —xf)/(x% — k) and subsequently the vertical coordinate of the same intersection
point is found from (EZY) with ¢ = ¢.. Similarly, for the intersection of horizontal grid
lines y. = y; which yields ¢, = (y; — v¥)/(y¥ — y¥) and then z, is found from [EZY) with
t = t.. An index vector which tells whether the intersection is with a horizontal grid line
or with a vertical grid line is also stored. Now the order of the intersection points as
they appear on the line segment can be found by sorting ¢. in ascending numerical order.
We use a sorting algorithm based on Shell’s method for this purpose (Press et al. 1992).
Hence, using the sorted vector of intersection indices, we can now follow the curve defining
the body geometry through all the intersected cells and compute ¢3 using ([EZT). Since
the intersection points P4 and Pp are now found, calculation of A;; is only a matter of
geometry.

4.5.2 The body boundary condition

We want to impose the no-slip body boundary condition (BH) on the immersed boundary,
using the direct forcing method similar as that proposed by |[Mohd-Yusof (1997) The
method can be described as follows. Discretized in time with the first order Euler method,
the momentum equations (BI) and ) can in compact form be written as

unJrl —u”

At

where RHS™ contains the convective terms, the viscous terms and the pressure gradient
evaluated at time step n. In order to account for the presence of a solid body in the
domain, we modify [X0) by adding a body force f™ on the right hand side, according
to the immersed boundary method. This force is nonzero only in the vicinity of the body
boundary. This yields,

— RHS", (4.50)

unJrl —unr

A7 =RHS" + f" (4.51)
Now the question is what this force f” should be? We note that the purpose of adding f"
to (A is to satisfy u"*! = up™ on the body boundary at the new time step n+1, where
uyp, is the rigid body velocity. By substituting w"*! with w}*" in ([Z31) and rearranging,

the force f™ is found as
ultt —un
"= _RHS"+ 2%
! Y

Implicitly, this means that the effect of the immersed boundary is incorporated by simply
updating the velocity nodes of the grid cells that is partly or totally occupied by the

(4.52)
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solid body according to the rigid body velocity. Different interpolation techniques can be
used for this purpose as described by [Fadlun et al. (2000). We will use a volume fraction
weighting approach, also used by [Hu et al. (2005), where the color function y3 represent-
ing the solid body is utilized to update the velocity nodes of the grid cells occupied by
the floating body. This is done by

"™ = Gaup T + (1 — @3)u™ (4.53)
" = Gauttt (1 — @3)u*, (4.54)

where 3 is the color function for the solid body interpolated linearly to the velocity node
considered.

It is after the velocity field has been updated according to [ER3) that the projection
step is performed and the incremental pressure change dp is found, as described in L33
When updating the velocity field due to this incremental pressure correction using (FE30)
and (34, the fluid velocity at the body boundary may be changed such that the body
boundary condition is violated. More simply, the obtained pressure correction might
cause the fluid to flow through the body surface, yielding an incorrect solution. This
has to do with the fact that the force f" is found using the tentative velocity field u**
(Eadlun et al. 2000). However, it has been shown that the pressure corrections at the
immersed boundary are always small and that this error can be reduced to round-off
by two or three iterations of the time advancement scheme (de Tullio et al. 2006]). The
iteration process is simply that after the first update of the velocity field due to the
incremental pressure correction, the body boundary condition is again imposed using
(ED3) before a final pressure projection step for the incremental pressure is performed.
Our experience is that two iterations are sufficient for this approach.

4.6 Pressure loads on the solid body

When the pressure field at the new time step is known, the pressure forces and moments
on the solid body can be computed using a discretized version of (BIX) and (BI9), respec-
tively, with ¢ being the color function describing the solid body, 3. In the mathematical
formulation of the pressure force given by Eq. (BI8), the integral is over the complete do-
main. However, since 3 = 0 outside the solid body boundary, we can make the numerical
procedure more efficient by taking the double sum only over a sub-domain enclosing the
solid body. This sub-domain is limited by the indices (i1,72) in the horizontal direction
and (j1,72) in the vertical direction. For the pressure forces, this leads to

2 2
n op"
Fr==2.> D |, P ALY, (4.55)
i=il j=j1 ’
2 42 op"
Fy=- Z Z By |7 Az Ay;, (4.56)




4.6. Pressure loads on the solid body 53

where
@ B Axc; p?—i—l,j _ (ASL’CZ'+1 - AZL’CZ) ij Axciy p?—l,j
Or lij  Azcin(Awcip + Axc;) Azc;Axciyy Awey(Aweip + Axc)
| Ayc; P _ By m AYe)py AP
Iy lij  Aycj(Aycj + Aycy) Ayc;AYcj Ayci(Bycjer + Ayc;)

Here, the pressure gradients are correct to O (Ax?) and O (Ay?) on a stretched staggered
grid. The roll moment due to the fluid pressure acting on the body surface is calculated

as
n

ZZ Z ve; — ) o — (yej — yb)al
’ oy i ! oz

=il j=41

2%)

where (x,y,) are the coordinates of the centre of gravity of the solid body.

4.6.1 Rigid body motions

The instantaneous body position and orientation is defined by the coordinates of the
geometrical center of the body (x,,v,) and the roll angle §. If the center of gravity is
located at the geometrical center of the body, the rigid body translatory motions can be
found upon integration of (B220) and (BZI]). Further is the roll angle found by integration
of (B2ZJ). Assuming the pressure forces and moments are constant during a time interval
At = "1 — " we find the instantaneous rigid body velocities in heave sway and roll as

UMt = U + ALE? /m (4.58)
Vi = Vit + ALF) /m (4.59)
Ot = 0" + AtM™ /1, (4.60)

where m is the structural mass per unit length of the body while I is the roll inertia about
the center of gravity. If we assume constant body accelerations during the time step At,
this implies that the body velocities in the same time interval are linearly varying. Hence,
using the trapezoidal rule of integration, we find the coordinates of the mass center of the
body (3, ys) at the next time step t"*! as

At

gt =2 + > (Ut + Uy (4.61)
At

=y 4+ = (Vb”+1 + Vb") (4.62)
At

Now we can find the instantaneous position of the discrete set of points (z}*!, y7")

describing the body boundary at time step t"*! as

Tt =yt 4 (af — af) cos 0" — (y) — ) sin 6" (4.64)
yrtt =yt (2 — 2)) sin 0" 4 (yf — uy) cos 07, (4.65)

where (22, y?) are the initial (reference) positions of the set of points defining the body
boundary, and (20, 4?) is the initial position of the body centre.
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4.7 Time-stepping of the spatial derivatives in the CIP
flow solver

When the advection step in the adopted fractional step method is performed, a tentative
velocity field w* and a corresponding set of tentative spatial derivatives g* and k* of the
velocity field are obtained, where g = du/0x and k = Ju/0y. After the advection step,
the velocity field is updated due to the diffusion step, the pressure coupling and due to
the presence of the floater, before the velocity field w"** for the new time step is obtained.
These updates of the velocity field imply possible changes to the spatial derivatives of the
velocity field. As the spatial derivatives of the velocity field are used as constraints when
constructing the interpolation polynomial in the CIP-method, the spatial derivatives g*
and k* must be updated according to the modifications of the velocity field to obtain
g"t! and k", before a new advection step can be made. Time-stepping of the spatial
derivatives are performed using the explicit Euler method. For the case of g, we can
formally write the time stepping as g"*! = g* + At (%—f). As the new velocity field w"*!

ot At ox ox
same approach is used for the time-stepping of k. Hence, we obtain

is known, we can approximate the time derivative as 29 = L [(8—“)n+1 — (8—“)*} The

ou\ " ou\ "
n+l % et o s
g =g+ (8:5) (8:5) (4.66)
[ ou\ " ou\ "]
kMl = k¥ — — | — . 4.
" (011) (011) (4.67)

Central differences are used to compute the spatial derivatives inside the parenthesis
directly from the tentative velocity field u* and from the new velocity field u"*. The
discretized expressions for time-stepping of the spatial derivatives are given in appendix
A4

4.8 Numerical modelling of a wave tank

A damping zone is introduced by an adding a volume force f, to the momentum equation
for the vertical direction (Hu and Kashiwagi 2004). This force is calculated as

fy = ! (xci - x8)4 (1 % hD ol

2At \ x. — x5 H 7

where z, and z, is the start and end points of the damping zone in the horizontal direction,

while H is the height of the domain, h is the water depth and (x¢;, y;) is the coordinates
of the vertical velocity node.

The wavemaker is modelled in a linear manner by setting the nodes of the horizon-

tal velocity at the wavemaker boundary equal to the paddle velocity. Thus, when the
wavemaker is located on the left side of the domain, we get

(4.68)

n+l _  n+l
uO,j — uwm .

(4.69)

The wavemaker velocity is imposed on the total height H of the domain, i.e. for y = [0, H].



Chapter 5

Verification studies

Verification studies are important activities in the process of developing a CFD-code, and
rigorous testing of the flow solver is the key to obtain a reliable code. A validation study of
the verified computer program is also necessary before the code is applied to real problems.
In this chapter, the most important verification tests performed in the development of
the present code are presented. Before we go on with presenting the different test studies,
we will explain what is meant by verification and validation and what is the difference
between the two. Guidelines for validation and verification of CFD-codes were proposed

in ['TTC (1990)| with the following definitions of verification and validation:

Verification of a computer program means to check that the program is actually a
correct representation of the mathematical model that forms the basis for it.

Validation is the demonstration that the verified computer program is an adequate
representation of the physical reality.

This means that validation is a broader activity which includes verification. Other defi-
nitions of verification and validation presented by |Roache (1976)| are that verification “is
the process of demonstrating that a computer program has solved its equations correctly”,
while validation “is the process of demonstraing that a computer code is solving the cor-
rect equations”. The latter is with respect to the physical problem being studied. Thus,
verification is a purely mathematical exercise that does not address the physics.

We will in the following present some of the verification test studies that have been
performed for testing the present numerical code.

5.1 Error norms and order of convergence

In the process of verifying the implemented flow solver, each step in the numerical algo-
rithm represented by the fractional step procedure, is studied separately. For each case,
ideal time-dependent problems where analytical or exact solutions exist are solved numer-
ically and compared with the exact solution at a fixed time instant 7' = NAt¢. We will
let " refer to the numerical solution to the given problem at a discrete set of points in
space for the time instant 7', while u” is the corresponding exact solution for the same
set of points at this time instant, which we want to approximate well. The local error EVY
for the solution time T'= NAt is defined as

EY =aY —u. (5.1)
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In order to quantify this error, a norm in which to measure the error must be chosen. The
global error can be found by integration of the local error over the domain of computation.

5.1.1 Choice of error norms

To measure the error of a numerical solution obtained with some finite difference scheme
relative to an exact solution, the standard p—norms are most commonly used ((LeVeque 2002).
For one-dimensional space, these are

1/p
B = (D —u;vm) | o)

We will in the following use the 1-norm, which is obtained by setting p = 1 in (22), as a
measure of the global error when solving the linear and nonlinear advection equation. For
verification of the diffusion step and the pressure solver, the 2-norm (obtained by setting
p = 2) will be used. In 2D, the global error is found by integration the local error over
the domain of computation as

1/p
‘ENH (Z Z | leAfviij> . (5.3)

To simplify the notation, we will let €, refer to the error measure HENHP.

5.1.2 Order of convergence

As an indicator for how fast the numerical solution approach the true solution, we speak
of the order of convergence. We can apply the concept of order of convergence if the
time increment At is related to the spatial increment Az in a fixed manner. Hence,
when solving the advection equation, the time step At is chosen such that the Courant-
Friedrichs-Lewy (CFL) number is kept constant when the grid is refined. Here, the CFL-
number is defined as CFL = uAt/Ax, with u being some reference velocity. Then the
order of convergence of the solution " is defined to be the number r, if it exists, such
that the errors ¢, vanish like O (Az") or as O (At") (Strikwerda 2004). This implies that
the error can be described as ¢, = CAz", with C being a constant. Taking the natural
logarithm of both sides yields

In(e,) =In(C) 4+ rin(Az). (5.4)

To find the order of convergence r, we must get rid of the unknown coefficient C. Let 611) be
the error of the numerical solution obtained on a grid represented by the grid increment
Axy. Further, let 5§ be the error obtained from the finer grid represented by Axy. The
unknown coefficient C' can now be removed by subtracting Eq. (B4 expressed in terms
of e; and Az; from the same equation with 5 and Axy. Then, the order of convergence
in 1D is found as

n (e5/¢p)

" In (Azo/Axy) (5:5)
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For the 2D case, we assume that the vertical discretization is related to the horizontal
discretization as Ay = KAz, where K is a constant. Then, the order of convergence in
2D can be expressed as
2/.1
In (£5/<p)

"= 2In (Azy/Axy)

(5.6)

5.2 Verification of the 1D CIP-method

Although the 1D-formulation of the CIP-method is not used as a part of the present
flow-solver, it has been implemented in order to get a better understanding of the CIP-
method in general before going on with the CIP-method in two spatial dimensions. Two
verification tests of the 1D CIP-method are presented in the following. First, a linear
advection problem is studied, while thereafter a non-linear advection problem is addressed.

5.2.1 Linear advection

First we will consider the case of linear advection where a function f(x,t) is transported
with the velocity u along the xr—axis. By linear advection is meant that the transport
velocity u is independent of the advected variable f. The spatial derivative g = 0f/0x
is introduced as an additional free variable. We will investigate how the function f and
its spatial derivative g evolves while being advected with the velocity u(x) = z. Consider
the initial condition f(z,0) = fo(z) being defined as

.2
sin®(2rz), 0<x<0.5
_ 5.7
Jolz) { 0, otherwise (67)
which means that g(x,0) = go(x) is described by

dmsin(27x) cos(2rx), 0<x<0.5
go(x) = , (5.8)

0, otherwise.

The governing equations for the problem are the linear advection equation (EE3) and the
corresponding equation of evolution for the spatial derivative (LH). Taking the material
derivative of the function f(z,t) along a curve C in the z,t—plane yields

df _0f  ofde
dt ot Oz dt’

Thus, by choosing % = u(z) in (E0), [E3) is through (&) reduced to the following pair
of ODE’s

(5.9)

df
E =0, f(%o) = fo@) (5-10)
dx
n =z, x(0)=¢. (5.11)

Equation (BEIT) means that the f is constant along curves described by the solution of
(EETT). Thus, for a curve that initially passes through the point z = &, the solution to
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(1) is simply f(z,t) = fo(&) ( see Whitham (1974) for more details). By solving (E1T])

we obtain

£ =xe (5.12)

Thus, the exact solution to (EH) for the given initial conditions is

. (5.13)
0, otherwise

102 —t t

sin“(2rze™), 0 <z <0.5e

- |

The exact analytical solution for g(x,t) is then found by differentiating (I3]) with respect
to x as

(5.14)

4re " sin(2mre ") cos(2mwe), 0 < x < 0.5¢’
g(z,t) = .
0, otherwise

Equations (13)) and (2I4)) are used to verify the implementation of the 1D CIP-method.
Hence, Eq. (EX) with the above mentioned initial conditions is solved numerically using
the 1D CIP-method (see Sec. E2l) and compared with the analytical solution. We
choose the domain of computation to be = € [0,2m] and ¢ = [0, 7], where 7' = In(4) is the
time it takes for the point defined by fo(0.5) (and thus also g¢(0.5)) to reach the end of
the domain (x = 2m). All computations are performed under the same C'F L—condition,
which is chosen to be CFLyax = UmaxAt/Az = 0.5. With the largest advection velocity
Umax = 2m/s and the spatial increment Az given, this means that the time increment
is obtained as At = 0.5Ax/upax. Obtained numerical results are compared with the
exact analytical solution (EI3) and the corresponding global error ; are found from
(&2)) with p = 1. Errors of the numerical solutions obtained with the 1D CIP-method
from calculations with four different grids are presented in Tab. BEJl To study the
performance of the CIP-method on a linear problem relative to a more conventional
numerical scheme for advection calculations, relative errors and order of convergence
obtained with the classical first order upwind-scheme (Roache T976) are presented in Tab.
BTl for comparison. Comparison of the obtained numerical results with the exact analytical
solution to the linear advection problem are presented in Fig. Bl which shows that the
results obtained with the present CIP-solver are in good agreement with the analytical
solution while results obtained using the first order upwind-scheme differs somewhat from
the analytical solution.

5.2.2 Nonlinear advection

In order to study the performance of the 1D CIP-model when applied to a nonlinear
advection problem, we consider Burger’s equation which is defined as

ou ou 0%u
Fu— =

o tugr T o (5.15)

where p is a constant. The non-linearity in Burger’s equation is that the advected variable
also defines the transport velocity, which means the transport velocity is a priory unknown.
As can be seen from the right hand side (RHS) of (1), Burger’s equation also contains
a diffusion term. The diffusion term has a stabilizing effect which counteracts the shock-
formation that may occur for the inviscid Burger equation, which is defined by (EIH)
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Table 5.1: Convergence test of linear advection calculations with the 1D CIP-
method and the first order upwind method. Global errors €, relative to the exact
analytical solution at solution time 7" = In(4), obtained from (B2 with p = 1,
are presented. The time increment At is chosen such that CFL,,« = 0.5. N is
total number of time steps.

CIP Upwind
Az m] At [s] N £1 Order (r) £1 Order (r)
1/50  1.00 x 1072 138 | 1.48 x 1072 2.06 x 1071
1/100  5.00 x 1073 277 | 7.10 x 1073 1.06 1.23 x 107! 0.750
1/200  2.50 x 1073 554 | 3.50 x 1073 1.02 6.83 x 1072 0.846
1/400 1.25 x 1073 1109 | 1.74 x 1073 1.01 3.63 x 1072 0.910
i el |6 - Initial -
—Exact Lo —Exact
0.8¢ « CIP | 4r/ . CcP 1

06 !

o Upwind

0.4} !
0.2’ ’/’ _4,
O W S -6
0 0.5 1 15 2 0 0.5 1 15 2
X X

Figure 5.1: Verification of the implemented 1D CIP-method. Numerical solution
to the linear advection problem obtained with the CIP-scheme when Az = 1/50
are compared with the exact analytical solution for the solution time t ~ 1.39s.
Results obtained with the first order upwind-scheme are added for comparison.
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with 1 = 0 (see (LeVeque 1992)). An exact analytical solution to (E213) on the domain
x = [0, 1m] with the initial condition

_ 2umsin(nx)

= 5.16
to(@) a+ cos(mx)’ (5.16)

with a being a constant, and boundary conditions
u(0,¢) =0 and wu(l,t) =0, (5.17)

is given by [Wood (2005) as

(2.1) 2umexp (—m?ut) sin () (5.18)
u(x, t) = : :
’ a + exp (—m2ut) cos (mx)

Equation (BI3) is solved numerically in the domain defined by = = [0, 1m] using the 1D
CIP-method, with initial- and boundary conditions defined by (I8 and (X)), respec-
tively. Due to the presence of the diffusion term on RHS of (I3, a two-step time-splitting
technique is applied. First an advection step is solved using the 1D CIP-method. Then,
a diffusion step is solved using central differences in space. The first order explicit Euler
method is used for time-stepping of the diffusion equation. Since the CIP-method applies
the spatial derivative of the advected variable g(z,¢) = % in its formulation, an initial
condition for g(z,0) = go is also needed. This is simply found by differentiation of (BTG

with respect to the spatial variable x, which yields

_ 2um? cos(mx) (a + sin(rx) + cos(mz))
(a + cos(mz))*

90(2) (5.19)

In order to verify the evolution in time of the new variable g(z,t), the exact solution is
found by differentiation of (BIX) as

rf) — 2um? cos(mr) exp (—2m%ut) (a + sin(rz) + cos(mx))
9(w.1) (a + exp (—72put) cos(mx))? ' (5.20)

We easily verify that g(x,0) = go(z) by setting ¢ = 0 in (ZZ0). The boundary conditions
for g can now be found from (B20) as

2um? exp (—2m%ut) 2um? exp (—2m%ut)

a—+1

g(0,t) = and g¢g(1,t) = (5.21)

1—a
We will in the following consider this case using ¢ = 10~4s™! and @ = 1.1, which yields the
maximum initial velocity u¥ = max[u(z,0)] = 1.37x10">m/s. For a given discretization
of the spatial domain with constant spacing Az between the nodes, the time increment
At is here chosen such that CFL,,,, = 0.1, initially. The time increment is then found as
At = 0.1Az/u®, .. Error of numerical solutions obtained using the 1D CIP-method and
the upwind method for the solution time ¢ = 100s, relative to the exact analytical solution
are presented in Tab. B2 Order of convergence of the numerical solutions are also shown.
The advected variable u and its spatial derivative g obtained with the implemented 1D
CIP-scheme for the time instant ¢ = 100s are compared with the analytical solution in

Fig. 2
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Table 5.2: Convergence test of nonlinear advection calculations with the 1D CIP-
method and the first order upwind method. Global errors £, relative to the exact
analytical solution at solution time 7' = 100s, obtained from (E2) with p = 1,
are presented. The time increment At is chosen such that CFL,,x = 0.1. N is
total number of time steps.

CIP Upwind

Az [m| At[s] N €1 Order (r) €1 Order (r)
/10 730 14 | 151 x107° 2.32 x 107°
1/20 236 42 | 1.07x 1075  3.81 1.34 x 107> 0.799
1/40  0.787 127 | 4.20 x 1077 1.35 8.03 x 107¢ 0.735
1/80  0.262 381 | 8.52x 1078 2.30 4.24 x 1076 0.921

-3 -3
1.5x 10 ‘ ‘ ‘ 5x 10
- - -Initial
—Exact
* CIP
1r ¢ Upwind
u
O
0.5t
| ---Initial
15 —Exact
20 * CIP .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 5.2: Application of the 1D CIP-method to nonlinear advection. Compar-
ison between the exact solution and numerical solution at time ¢ = 100s. The
numerical solution is obtained using time-splitting with the 1D CIP-method for
the advection step and central differences for the diffusion step for the case when
Az = 1/20. Results obtained with the first order upwind-scheme are plotted for
comparison.
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5.3 Verification of the 2D CIP-method

In this section verification tests of the implemented 2D CIP-scheme, which is used in
the present flow solver, are presented. Two test cases are considered, with the first case
being linear advection of a smooth function while the second case is linear advection of a
discontinuous function. In both cases, the domain of computation is (x,y) = [0, 1].

5.3.1 Linear advection of a smooth function

The linear problem represented by a smooth function f(x,y,t) with initial condition
f(z,y,0) = fo(z,y) being advected due to a uniform, constant velocity field u = [u, v] is
considered, since analytical solutions are available for such cases. The equation describing
the evolution of f in time and space is the 2D linear advection equation ([EI3), with the
coefficients u and v being constants. When solving ([EI3) using the CIP-method, we
also need to solve for the spatial derivatives 0f/Jdxr = g and 0f/0y = k, as they are
introduced as free variables used as constraints for the interpolation function F(z,y),
which is defined in (IH). The equations of evolution for the spatial derivatives g and
k for the case of a uniform velocity field are [I4) and ([IH), respectively, with the
right hand side set to zero in both equations. The exact analytical solution to (I3 is
f(z,y,t) = fo(x — ut,y — vt), meaning the initial profile fy is shifted a distance ut in the
horizontal direction and vt in the vertical direction. The shape of the advected profile f
is conserved.

We have considered the case where the initial condition for the advected function is
given as

fo(En) = { cos(w&)“cos(mn)*, ¥V (&n) € [-0.5,0.5;—0.5,0.5] (5.22)

0, elsewhere

where ¢ = 4z/L — 3/2 and n = 4y/H — 3/2. Here, L = 1lm and H = 1m is the length
and height of the computational domain, respectively. The velocity field was uniform and
constant, and defined as v = v = 0.2m/s. Computations with the two different CFL-
conditions CFL = 0.1 and CFL = 0.5 were performed. Since the CFL-number reflects
the relative position on the interpolation function F™ from where the new value f"*! is
obtained, the CFL-number is an important parameter. With the velocity field and the
spatial discretization given, the time step was adjusted to give the wanted CFL-number.
Convergence of the numerical solution towards the exact solution for the solution time
t = 2 were tested using four different grids. The global error of the numerical solution
relative to the exact solution was computed using (B3)) with p = 1, while the order of
convergence was computed from (B6). Obtained global errors and corresponding orders
of convergence are presented in Tab. The results shows that the order of convergence
for the present problem is r ~ 1.3. A comparison between the numerical solution and the
exact solution for a horizontal cut through the domain at y = 0.775m is presented in Fig.
B3 The cut goes through the point where the solution at time ¢ = 2s has its maximum
value. Undershoots of the numerical solution relative to the exact solution are observed
in regions where the gradient of the advected profile is large, as is seen in the zoomed
view in Fig. B3 This is a typical problem for many higher order numerical methods for
hyperbolic problems, including the present CIP-method, and is(Z2) with p = 1 further
discussed in the next section.
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Table 5.3: Convergence test of linear advection calculations with the 2D CIP-
method. At solution time ¢ = 2s, global errors £; relative to the exact analytical
solution and orders of convergence r are obtained from (B3)) with p = 1 and (&4,
respectively. The time increment At is chosen to give the wanted CFL-condition
for the given velocity field and spatial discretization.

CIP, CFL = 0.1 CIP, CFL = 0.5
Az, Ay [m] | At [s] €1 Order (r) | At [s] €1 Order (r)
1/25 0.0200 4.15 x 1073 0.1000 2.73 x 1073

1/50 0.0100 891 x 10~ 111 |0.0500 5.95x107%  1.10
1/100 | 0.0050 1.52x10~*  1.28 | 0.0250 9.85x10~°  1.30
1/200 | 0.0025 258 x107°  1.28 | 0.0125 1.63x107°  1.30

5.3.2 Linear advection of a non-smooth profile

The color function which is used to define the water in the computational domain in
the present numerical wave tank appear initially as discontinuous Heaviside functions.
Generally, the traditional CIP-method is not adequate for such problems, as the solution
is assumed to be described by a cubic polynomial function. To test the implemented 2D
CIP-method for linear advection of non-smooth functions, a step-like function is advected
in the uniform velocity field u = v = 0.2m/s. The initial condition for the advected
function is

0, elsewhere

A ):{1, YV (&) €[-0.5,0.5;—0.5,0.5] (5.2

where ¢ = 4x/L — 3/2 and n = 4y/H — 3/2. Dimensions of the computational domain
are L = 1 and H = 1 for the z— and y—direction, respectively. Numerical solutions
obtained from four different grids are compared with the exact analytical solution for the
solution time ¢ = 2. Global error &; is computed from (B3)) with p = 1, and the order of
convergence r is estimated from (&8). Results are presented in Tab. B4l As expected,

Table 5.4: Convergence test of linear advection of a non-smooth function using
the 2D CIP-method. Global errors e, relative to the exact analytical solution at
solution time ¢t = 2 and order of convergence r are obtained from (E3) with p = 1
and (E20), respectively. The time increment At is chosen such that CFL = 0.5.
N is total number of time steps.

CIP

Az, Ay [m|] Atl[s] N €1 Order (r)
1/25 0.1000 25 | 2.61 x 1072
1/50 0.0500 50 | 1.12 x 1072 1.22
1/100 0.0250 100 | 8.80 x 1073 0.35
1/200 0.0125 200 | 5.26 x 103 0.74

convergence properties of the numerical solution towards the exact discontinuous solution
is poor. Contour plots of the initial profile and the numerical solution after 400 time steps
are presented in Fig. 24 and shows that numerical diffusion occur as the contour lines
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| — Exact

0 0.2 0.4 0.6 0.8 1

Figure 5.3: Verification of the 2D CIP-method when Az = Ay = 1/100m and
CFL = 0.5. Comparison with exact solution at time ¢ = 2s for a horizontal cut
through the domain at y = 0.775m. This is where the solution has its maximum
value. Undershoot of the numerical solution relative to the exact solution is
observed.

of the solution after 400 time steps are more spread than the contour lines of the initial
profile. The numerical solution for the case when Az = Ay = 1/100 and CFL = 0.5 are
compared with the exact solution for a horizontal cut through the domain at y = 0.775
at the solution time ¢ = 2s in Fig. B3 Over- and undershoots of the numerical solution
relative to the exact solution are observed to be more pronounced for this case than for
the case with linear advection of a smooth profile presented in Fig. B3

5.4 Verification of the diffusion calculation

Linear laminar boundary layer flows generally represent good test cases for verification
of the diffusion step in our CFD-code, because they are simple to model and the fact
that analytical solutions exist. An example of laminar boundary layer flow is the second
Stokes problem, which describes the flow of a viscous fluid above an oscillating wall.
The fluid is set into motion due to viscous shear forces in the fluid. The analytical
steady state solution of the second Stokes problem can be found in many text books
e.g. Schlichting and Gersten (2000). When solving Stokes second problem numerically
using a time-domain flow solver, it is convenient from a modelling point of view to start
with the fluid being at rest initially. Thus, in order to compare the numerically obtained
velocity field with the steady state solution, one must be sure that the numerical solution
has reached a steady state. However, there also exists an analytical solution for the
transient start-up of Stokes second problem (Panfon 1968) which would be better suited
for verification purposes of the time-dependent flow solver. We will in the following section
use the transient second Stokes problem as a verification test for the implementation of
the diffusion terms in our numerical code.
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Figure 5.4: Linear advection in 2D for a uniform velocity field u = v = 0.2m/s.
Left, initial contour. Right, contour after 400 time steps. Az = Ay = 1/100m
and CFL = 0.5.
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Figure 5.5: Linear advection in 2D of a step-like function in a uniform velocity
field v = v = 0.2m/s. Comparison with exact solution at time ¢ = 2s for a
horizontal cut through the domain at y = 0.775m. Az = Ay = 1/100m and
CFL = 0.5. Both undershoots and overshoots are observed near the step.
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5.4.1 The transient second Stokes problem

First, we will give a brief description of the mathematical problem. Consider a semi-
infinite domain bounded an impermeable wall along the z—axis (y = 0), where the upper
half plane is occupied by a viscous fluid. Initially, the fluid is at rest. At time ¢ = 0
the wall abruptly starts to move with an oscillatory motion in the horizontal direction.
Due to adhesion forces between the fluid and the wall, a no-slip condition is applied on
the wall. Together with viscous shear forces in the fluid, the no-slip condition will cause
energy to be transferred from the wall into the fluid domain. The surrounding fluid is
then set into an oscillatory motion. The infinite length of the wall means there are no
end-effects present, and the horizontal fluid velocity u is only a function of the normal
distance from the wall y in addition to time ¢. The vertical fluid velocity component
is zero due to continuity. The mathematical problem is defined by the time-dependent
diffusion equation

0 0?

S (5.24)

ot Oy?
where v = p/p is the kinematic viscosity coefficient, with p and p being the dynamic
viscosity coefficient and the mass density of the fluid, respectively. When finding the
analytical solution to (24 the time dependent velocity field u(y,t) is divided into a

steady-state part U® and a transient part U! as
u(y,t) = U + U, (5.25)

where the analytical steady state solution obtained from Prandtl’s boundary layer equa-
tions is given as
U*(n,T) = Uyexp(—n) sin(T" —n), (5.26)

with the non-dimensional parameters 7' = wt and 1 = y,/55 (see Appendix). The
analytical solution to the transient part presented by |[Panton (1968) is

Ut(n, T) = UsS {—0.5 exp [C — iT) erfe [\/W(C + ’r]/T)}

5.27
+ 0.5 exp[—Cn — iTerfc [\/ 0.57(C — 'r]/T)} } , 21
where 3{z} refers to the imaginary part of a complex argument z = x +iy. Further, erfe
is the complementary error function with complex argument due to the complex constant
C' =1—1i (see Appendix for further details).
Numerically we cannot handle unbounded or semi-infinite domains. Hence we consider
a limited rectangular domain of length L along the wall and height H in the normal
direction from the wall. As in the mathematical formulation, the computational domain
is limited by an impermeable wall at the lower boundary (y = 0), where a no-slip condition
is applied. The remaining three boundaries are the top boundary at y = H, and the side
boundaries at x = 0 and x = L, which are all open boundaries. To minimize end-effects
on the resulting velocity field due to the limited computational domain, the dimensions
of the domain are chosen to be large compared to a characteristic length of the problem.
The boundary layer thickness for steady-state is defined as

>
So.g9 = 4.6¢/ =2, (5.28)
w
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Table 5.5: Parameters used in the numerical solution of Stokes second problem.
Material properties of the fluid are those representative for water.

Parameter Symbol Value Unit
Frequency of oscillation w 5.317 rad/s
Wall velocity amplitude Uy 0.025 m/s
Mass density p 1000 kg/m?
Dynamic viscosity 0 1.52 x 1073 kg/(ms)

with w being the oscillation frequency of the wall, is a suitable measure of characteristic
length (Schlichting and Gersten 2000]). This is the normal distance from the wall to where
the absolute value of the fluid velocity in the steady state solution is reduced to 1% of
the wall velocity amplitude Uy. For later purposes, the frequency of oscillation of the wall
was choosen equal to the natural frequency for the first mode of a standing wave in a 1m
long tank with 0.5m water depth. For the kinematic viscosity coefficient, respectively,
representative values for water are used. The parameters used in the calculations are
listed in Tab. BEO Using the data from Tab. X3, the boundary layer thickness is found
to be dg.99 = 0.0035. With the boundary layer thickness in mind, the domain-length and
-height are chosen to be L = 0.bm and H = 0.025m, respectively. Hence, the distance
between the mid-point of the oscillating wall and the ends of the domain are more than
70 X d9.99, which is believed enough to avoid end effects. Further, the distance to the
upper boundary of the domain is about 7 X dgg99. Although the distance from the wall
to the upper boundary is ten times shorter than the distance to the end-boundaries, it is
assumed that the upper boundary will have no influence on the boundary layer flow, as
the velocity at the upper boundary is zero.

In order to efficiently resolve the viscous flow inside the thin boundary layer, grid
stretching is applied in the y—direction where the grid is divided into three regions. In
these regions, different gridding techniques are used. Since the envelope of the velocity
profile of the boundary layer flow is exponential, we use an exponential distribution of
grid points in the y—direction inside the boundary layer. Far away from the wall, constant
grid spacing is used, while a quadratic distribution is used to match the exponential grid
region with the constant grid region. Constant grid spacing is applied in the x—direction.
More details on the grid generation for this case is presented in appendix

Grid convergence

Convergence tests of the numerical solution are performed, where three grids with different
boundary layer resolution were tested. Grid parameters for the three grids are given in
Tab. B3 The error of the numerical solution relative to the analytical solution at the
solution time t/T" = 1.07, where T is the period of oscillation of the wall, is computed
for a cut along the y—axis in the middle of the domain. The error €, is computed using
the 1D error norm defined in (2)) with p = 2, but with using Ay; = Ay; which is the
grid spacing at the wall. When calculating the error norm, the sum is taken only over
the velocity nodes located inside the boundary layer (y < dgg9). The time ¢/T = 1.07
for when the error is computed is when the largest error €;(t) is obtained with the finest.
The order of convergence r of the numerical solution is estimated using (EX). Obtained
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error estimates and corresponding order of convergence towards the analytical solution are
presented in Tab. L8l Results presented in Tab. shows that the order of convergence

Table 5.6: Test of grid convergence for the transient second Stokes problem for
the horizontal velocity inside the boundary layer. Solutions are compared at
time ¢/7" = 1.07. The error £, is computed from eq.(B2) with p = 2 and using
Ay; which is the grid increment at the wall as a reference. N, is number of grid
points inside the boundary layer.

Ny, Ay [m] €9 Order (r)
6 2.55 x 107% 9.54 x 107°

8 1.54 x 107* 3.52 x 1076 1.98
15 6.27x107° 6.27 x 107" 1.92

is 7 &~ 2. Snapshots from the transient start-up phase of Stokes second problem are
presented in Fig. B6l where the numerical solution for the case when Ny = 8 is compared
with the analytical solution. Ny is the number of grid points inside the boundary layer
in the cut from where the error €3 is computed. GGood comparison between the numerical
and analytical solution is shown. Note the overshoot of the transient solution relative to
the envelope of the steady state solution.

5.5 Verification of the pressure solver

In order to verify the implementation of our pressure solver, we first consider the Poisson
equation with constant coefficients which formally can be written

V2f =h, (5.29)

where f(x,y) is unknown while A(z,y) is a known forcing. For one-phase flow problems
where the mass density of the fluid is constant, ([2Z9) is the equation to be solved in
order to find the pressure at the new time step when projection methods are used. To
test our Poisson solver, we utilize trigonometric test functions to define a Poisson problem
for which analytical solutions easily are obtained. This will now be discussed.

Consider a square domain where [z,y] € [0, lm]. Further, assume the mass density of
the fluid is constant with p = 1 throughout the domain. Then we consider a test function
of the form

f(z,y) = cos(mx) sin(my) (5.30)

with the Dirichlet boundary condition f(z,y) = 0 on y = [0, Im] and Neumann boundary
condition df /0x = 0 on x = [0, lm]. Then, inserting ([30) into (E29) yields the following
expression for the forcing

h(z,y) = —272 cos(mx) sin(my). (5.31)

We discretize the square domain into N, and N, number of points in the z— and
y—direction, respectively. Further, eq. (29) is discretized as described in section EE34
to yield the linear system of equations Ax = b where the elements of b are obtained as
the values of h at the node points. Solving this Poisson problem with the given boundary
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Figure 5.6: Comparison of numerical solution to the transient second Stokes
problem obtained with the present flow solver and the analytical solution. Num-
ber of elements inside the boundary layer in the normal direction from the wall

is Ny = 8. The envelope of the steady state solution is shown by the stippled
lines.
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conditions, the solution vector & should be equal to the values of (E30) at the node points.
This Poisson problem is solved both on a uniform grid and on a nonuniform (stretched)
grid, using the present implementation of the Bi-CGSTAB algorithm. For the nonuniform
grid, the grid spacings Ax; are obtained as

L (1 — Bcos®(mt;))
> (1= Beos(nt;))
where L = 1m is the length of the domain, # = 0.9 is a stretching coefficient and t; €
0, 1s]. The vertical grid spacings Ay, is found in the same way. Convergence tests are

performed for both the uniform grid and the nonuniform grid. As a measure of error in
the numerical solution when testing for convergence, we use the normalized error

ASL’Z' =

(5.32)

_ ||mea: - mnum”

ol (5.33)

Results for both the uniform grid case and the nonuniform grid case are presented in Tab.
B The rate of convergence towards the exact solution is found to be of second order for
both cases.

Table 5.7: Convergence of the Poisson solver applied on a non-uniform grid. The
obtained rate of convergence is of second order. The convergence rate depends

on how the grid stretching is performed relative to the nature of the solution.
The normalized error ¢ is defined in (B33)).

Uniform grid Stretched grid
N, x N, € Order € Order
8x8 |7.02x107* 6.66 x 10~*

16 x16 | 1.49x 107" 224 | 1.46 x 107* 2.19
32x32 [ 3.15x107° 224 |3.15x107° 221
64 x 64 | 6.40x 107 2.30 | 6.50x 107¢  2.28

5.6 Verification of the flow solver for one-phase flow

In the previous sections, the implementation of the main parts of the flow solver has been
verified separately. Next step is to verify the complete flow solver for one-phase flow with
no interior body inside the domain. For this purpose, the classical lid-driven cavity flow
problem presented by |Ghia et al. (1982) has been studied.

5.6.1 Lid-driven cavity flow

The lid-driven cavity flow problem is a good verification test case for one-phase flow solvers
due to simple boundary- and initial conditions, and the fact that all terms in the Navier-
Stokes equations matter for this case. The physical domain of computation has length
L = 1m and height H = 1m and is completely filled with a viscous and incompressible
fluid with density p and dynamic viscosity p. A no-slip boundary condition is applied on
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all boundaries. There is no effect of gravity. Initially, the fluid is at rest. At time ¢ = 0 the
top boundary abruptly starts to move with a constant velocity U = 1m/s in the positive
x—direction. As the flow is driven by viscous shear forces in the fluid, the Reynolds
number is an important parameter characterizing the flow. Here, the Reynolds number is
defined as Rn = UL/v where nu = pi/p is the kinematic viscosity coefficient while U and
L are velocity and length of the top boundary, respectively. We consider the case with
Rn = 100. Thus, the density and the dynamic viscosity are chosen such that v = 0.01.
Numerically, the moving top boundary is modelled by imposing u; y = 2.0 —u,; y_; at the
horizontal velocity nodes of the top boundary ghost cells. Further, the spatial derivatives
are set to g; v = —g; n—1 and k; x = k; y_1 in the same ghost cells.

As the domain is totally enclosed by rigid non-permeable walls, the pressure is un-
known at all boundaries and the Poisson equation for the pressure represents a complete
Neumann problem. In the discretized problem, this implies that the coefficient matrix for
the linear system of equations is singular. To overcome this problem, an artificial pressure
is specified in one grid cell inside the domain at the bottom boundary.

Three uniform grids are tested. The spatial increments and corresponding time incre-
ment used in the simulations are listed in Tab. B8 At time ¢t = 25s of simulation, the

Table 5.8: Spatial- and time increments used in the computations.
N, x N, | Az [m] | Ay [m] [ At [3]
20 x 20 0.05 0.05 0.02

64 x 64 | 0.0156 | 0.0156 | 0.002
129 x 129 | 0.0078 | 0.0078 | 0.001

fluid motion has converged to a steady state where a primary vortex is rotating clockwise
and two secondary vortices at the lower corners are rotating counter clockwise as shown in
Fig. B Location of the vortex center of the primary vortex is compared with numerical
results by (Ghia et al. (1982) in Tab. BEE9 Results obtained with the present flow solver
seems to converge towards the comparison data. However, results obtained with the finest
grid with the present flow solver deviates from the comparison data for the same grid by
1.4% and 2.1% for the horizontal and vertical coordinate, respectively.

Table 5.9: Convergence test for the steady state position of the vortex center
(¢, ye) of the primary vortex.

| No x Ny | we[m]  yc[m]

Present 20 x 20 | 0.6699 0.8001
- 64 x 64 | 0.6375 0.7673

- 129 x 129 | 0.6258  0.7500
Ghia et al. (1982) | 129 x 129 | 0.6172 0.7344

5.6.2 Circular cylinder in uniform cross flow

To verify the implementation of the immersed boundary method used for introducing a
solid body inside the computational domain, a case with a fixed circular cylinder subject
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Figure 5.7: Computed stream-lines for the lid-driven cavity flow with Rn = 100
at time ¢t = 25s obtained from simulation with the finest grid using the present
code is shown to the left. Corresponding results presented by Ghia et al. (1982)
for Rn = 100 is shown to the right. Secondary vortices at each of the two lower
corners of the domain are observed in the present results as in results by Ghia
et al.

to an incident uniform flow is studied. The cylinder has a diameter D = 1.0m and is fixed
inside a rectangular domain of length L = 45D and height H = 20D. The position of
the cylinder axis is X = 10D and Y = 10D measured from the lower left corner of the
domain. Initially, the fluid is at rest. At time ¢ = 0 a uniform velocity U = 1.0m/s in
the x—direction and V' = 0 in the y—direction is imposed on the left, bottom and top
boundaries of the domain. An outlet boundary condition is applied at the right hand
boundary, where a uniform reference pressure is specified. A no-slip condition is imposed
on the cylinder surface. The computational domain with boundary conditions is depicted
in Fig. &8

The non-dimensional parameter describing the flow for this case is the Reynolds num-
ber Rn = UD/v. We consider the case with Rn = 100, which is obtained by using the
kinematic viscosity coefficient v = 0.01m?/s. The boundary layer flow on the cylinder
surface is laminar for this Reynolds number.

The computational grid

A good resolution of the boundary layer on the cylinder surface is necessary for an accurate
prediction of the flow separation points. The position of the separation points on the
cylinder surface is important for the lift and drag forces on the cylinder. From the study
of the second Stokes problem in section AT we found that a number of 6-10 grid cells
inside the boundary layer in the normal direction from the no-slip boundary was sufficient
in order to capture the oscillating flow in the boundary layer. We assume that 10 grid cells
inside the boundary layer is sufficient also for this case. The boundary layer thickness is
estimated as 0 & D/\/ﬁ For the case when Rn = 100, this yields 6 = 0.1D. Hence, the
cylinder is discretized by 100 grid cells over the diameter in both the x— and y—direction.
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Figure 5.8: Domain and boundary conditions used for simulation of a circular
cylinder in uniform cross flow. The cylinder axis is located at X =Y = 10D,
where D is the cylinder diameter. Different grid zones are indicated by stippled
lines.

In order to keep the CPU-time on an acceptable level, stretching of the computational
grid is applied. The computational domain is divided into three regions in both the z—
and y—direction as indicated by the stippled lines in Fig. B8 Constant grid line spacing
is used in L, and H,, while a quadratic variation of the spatial increments is used in
the remaining regions. Smooth variation of the grid increments are ensured between the
constant grid zones and the quadratic grid zones.

Table 5.10: Number of grid cells in z— and y—direction for the different regions
of the domain. This yields a total of 100,000 grid cells in the domain.
| Ly Ly Ly |H, H, Hs
N ‘ 100 100 200 ‘ 75 100 75

Results and discussion

In the beginning, the flow is symmetric with a growing recirculation zone behind the cylin-
der. A close view of the cylinder at this stage is shown in Fig. 9 The no-slip condition
on the cylinder surface is verified by inspection of the computed velocity field. Symmetry
of the flow in the early stage of the simulation supports a correct implementation of the
body boundary condition. After some time of simulation (here at Ut/D ~ 80), inception
of flow instability occur in the wake. This causes vortices to be shed from the cylinder
surface, yielding a so-called von Karman street in the wake flow. Such vortex shedding
leads to an oscillating pressure on the cylinder surface, which yields a time-dependent
force on the cylinder. This force is decomposed into an in-line force component F, (drag),
and a transverse force component F, (lift). The drag- and lift forces due to the pres-
sure are computed from (L5H) and (ERG), respectively. In addition comes contributions
from skin friction forces on the cylinder surface. An expression for the drag coefficient
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Figure 5.9: Pressure-field and stream traces obtained from simulation of cylinder
in uniform cross-flow at time t = 56s with Rn = 100. This is before vortex
shedding occur. We note that the artificial pressure field inside the cylinder is
smooth.

due to skin friction on a smooth circular cylinder in uniform cross-flow was presented by
Henderson (1995) as Cy,(Rn) = 2.5818/Rn%43% as a fit to his numerical results. For
Rn = 100, this yields C;, = 0.345. Skin friction is not included in the present code. The
lift force oscillates with the vortex shedding frequency f, while the drag force oscillates
with the frequency 2f. When the flow has reached a steady state, the mean pressure drag
coefficient Cp , and the peak-to-peak lift coefficient (', are obtained as

Cpp=—"— d Cp=-"2t—0-t— 5.34

De = o502D M YT T 05p02D (5:34)
where F, is the mean pressure drag force, while F;H and F;‘_ are the mean positive
and mean negative lift force amplitudes, respectively. Obtained drag and lift coefficients

are compared with numerical results presented by [Berthelsen and Faltinsen (2008)f and
[Henderson (1995)in Tab. BTT1

Table 5.11: Computed mean drag coefficient C'p and peak-to-peak lift coefficient
C', due to pressure forces only, for the case of a circular cylinder in uniform cross
flow with Rn = 100. Skin friction forces are not included.

Source | Cp, Oy
Berthelsen and Faltinsen (2008) | 1.028 0.596
Henderson (1995) 1.005 -
Present 1.015 0.580
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The Strouhal number, which is the non-dimensional vortex shedding frequency, is
found as
_ /D

U
where f is calculated as the zero up-crossing frequency from the computed time-series
of the lift force. For the present case, St = 0.170 is obtained. This is in agreement
with numerical results found in the literature (Engelman and Jamnia 1990} |Hertjord 1996;
IBerthelsen and Faltinsen 20083).

The presently obtained results are in agreement with numerical results from the liter-
ature, which indicate that the adopted immersed boundary method and the force calcu-
lation routines are correctly implemented.

St (5.35)

5.7 Verification of the flow solver for two-phase flow

So far we have only considered one-phase flow in our verification tests. Next step is to
verify the implemented flow solver for two-phase flow problems. Here the two phases are
represented by water and air. A numerical issue is numerical diffusion associated with the
finite thickness air-water interphase. We continue our verification study by considering
the two-phase problem of small amplitude sloshing in a square tank. Free surface flow
problems inside tanks are also referred to as sloshing and has many applications in marine
hydrodynamics.

5.7.1 Small amplitude sloshing

The free decay of a small amplitude standing wave inside a square tank is studied, with the
objective to investigate the effect of numerical diffusion in our flow solver. This problem
was introduced as a verification test case by [Vestbgstad et al. (2007). Viscous dissipation
of energy in the boundary layers along the tank bottom and side walls will cause the
amplitude of the standing wave to decrease with time. However, when this problem is
solved numerically there can also be dissipation of energy caused by numerical diffusion,
which is unphysical. This is an important issue for a numerical wave tank, as numerical
diffusion may cause the generated waves to have an unphysical decay in amplitude. Hence,
in order to rely on results to be obtained with our numerical wave tank, we must verify
that the numerical dissipation of energy is negligible relative to the physical dissipation of
energy. The cause of numerical energy dissipation can be discretization errors or smearing
of the color functions at the interphase between the different phases.

Numerical setup

Consider a square tank of length . = 1m and height H = 1m. The tank has vertical
side walls, open tank top and is partially filled with water and air. The fill level is 50%,
yielding a water depth h = 0.5m. We define a coordinate system Oxy with origin in
the calm free surface with a distance L/2 from the side walls. The y—axis is pointing
upwards. Consider a free standing wave represented by the first natural mode. The wave
length of the first mode is A = 2L and thus the wave number is k = 7/L. According
to linear potential flow theory, the wave frequency is found to be w = 5.32rad/s from
the dispersion relation for finite water depth (BZZ3). The corresponding wave period is
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T = 1.18s. Further, the free surface profile {(x, ¢) and the corresponding velocity potential
¢(z,y,t) for a standing wave of the fist mode with amplitude (4 is

C(z,t) = Casin ka sinwt (5.36)
h k h
o(z,y,t) = gf}A COScosﬁlykZ ) sin kz cos wt. (5.37)

The horizontal- and vertical velocity components are derived from the velocity potential
as

h
u(z,y,t) = % = wCA% cos kx cos wt (5.38)
0 inh & h
v(x,y,t) = a—z = wCA% sin kz cos wt (5.39)

Using Bernoulli’s equation, the linear hydrodynamic pressure is found to be

cosh k(y + h)
cosh kh

At time ¢ = 0 the free surface profile obtained from (E36) is ((z,0) = 0. This provides
a simple implementation. Further, from (B40) we see that the hydrodynamic pressure
is zero, initially. Hence the initial pressure field is described by the hydrostatic pressure
ps = —pgy below the calm free surface. The initial velocity field is found from (E38) and

(E39) using 4 = 0.025m.

pp(x,y,t) = —p% = pgCa sin kx sin wt. (5.40)

Theoretical decay rate of the wave amplitude

In order to quantify the numerical energy dissipation, we must know what is the physical
dissipation of energy in the tank. A theoretical estimate of the physical energy dissipation
is obtained as follows. Linear potential flow theory is used to derive the inviscid velocity
field in the water, as defined in (E38) and (BE39). This yields the velocity outside the
boundary layers along the tank bottom and side walls. For small amplitude waves, the
boundary layer flow along the tank walls will be laminar. This means we can utilize the
second Stokes problem to obtain an estimate of the rate of viscous energy dissipation
inside the boundary layers. The theoretical decay rate for the amplitude of the standing
wave is found to be

C—A = exp ( — %t), (5.41)
- [w (1 k(L — 2h)) -
A R T R (5.42)

There are basically two cautions to take when constructing the grid for this problem.
One is the resolution of the boundary layer and the other is the resolution of the finite
thickness air-water interphase. Good resolution of the boundary layers at the tank bottom
and side walls are necessary in order to capture the physical energy dissipation. Further, to
minimize the numerical dissipation of energy due the finite thickness air-water interphase,

where

The computational grid
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Figure 5.10: Complete grid with grid refinement in the interphase zone used for
simulating small amplitude sloshing.

the interphase should be kept as thin as possible. This means also the free surface zone
needs to be well resolved by the grid.

Discretization of laminar boundary layers in oscillatory flow was discussed when solving
the second Stokes problem in section By using an exponential variation of grid
increments in the normal direction from the wall inside the boundary layer, good results
were obtained for the boundary layer flow. Hence, an exponential variation of the grid
increments inside the boundary layer is used also for the present problem. However, here
the exponential grid is extended outside the boundary layer to match the coarser constant
grid in the main bulk of the domain without a quadratic matching zone as used for the
second Stokes problem.

To obtain a fine grid at the air-water interphase, a squared cosine variation of the
vertical grid increments is used in the interphase zone. The grid increments here are
found as

Ay; = Ayo(1 — Bcos®(0.5ms;)), (5.43)

where Ayyg is the vertical grid increment in the constant grid zone, 5 < 1 is a clustering
coefficient and s € [—1, 1] is a linearly spaced parameter. A complete grid with a squared
cosine variation of grid increments in the wave zone and exponential variation of grid
increments in the boundary layers is shown in Fig. 210
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Figure 5.11: Comparison between theoretical and computed energy dissipation
of the first sloshing mode. The domain is resolved by 200 grid cells in both
the z— and the y—direction. The boundary layers are resolved by 8 grid cells
in the normal direction from the boundary, while an interphase zone of height
hy. = 0.35 centered about the mean free surface is resolved by 86 grid cells.

Results

During the simulation, the potential- and kinetic energy in the water is computed. The
kinetic energy in the wave is found as

z NZJ

pw Z Z u + U QOZ‘JAIL'Z‘ij, (544)

i=1 j=1

where ¢ = ¢y is the color function for the water and

'LALZ‘J = 05(’&27] + ui_l,j) (545)
’lAJi,j = 0-5<Ui,j —+ U@',jfl) (546)

are the fluid velocity components in the cell center. Further, is the potential energy in

the wave found as
Nz Ny

Ey=pug > (ye; — 0.5h) ¢ j Az Ay;. (5.47)
i=1 j=1

The total energy in the wave is then computed as ¥ = Ej, + E,. Initially, the total energy
of the standing wave is given as Fy = p,g(3/4. The decay of the total energy from a
simulation with a 200 x 200 grid and time step At = 0.0015s is averaged over one period
of oscillation and compared with the theoretical decay rate in Fig. [Tl Oscillations of
the computed total energy of the wave is observed. This can be due to transfer of energy
between the water and air, or due to effects of the finite thickness air-water interphase.
However, the trend of the computed energy decay rate seems to be in agreement with the
theoretical decay rate.

5.8 Verification of forced motions

In order to verify the adopted immersed boundary method for moving boundaries, sim-
ulations of forced heave motions of cylinders in the free surface were performed with the
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present code. Two geometries were tested, one circular and one rectangular, for which the
added mass and damping coefficients were obtained from the computed pressure forces
on the body. The oscillation amplitudes of the heave motion were small, such that linear
potential flow theory could be used for an adequate comparison of the obtained coeffi-
cients. The hydrodynamic coefficients obtained from the simulations were also compared

with data from model tests by [Vugts (1968)}

5.8.1 Added mass and damping coefficients in heave

For the 2D hydrodynamic problem of a body performing forced oscillatory heave mo-
tions in the free surface, the vertical hydrodynamic force acting on the heaving body can
according to linear potential flow theory be expressed as

F{™P = —aggijs — bagis. (5.48)

Here, as3 and b33 are the 2D coefficients in heave for added mass and potential damping,
respectively. Further, 75 is the heave acceleration and 73 is the heave velocity of the body.
The hydrodynamic coefficients azz and b3z can be found from linear potential flow theory
by solving a boundary value problem for the velocity potential ¢ using e.g. a boundary
element method (BEM). Then, the hydrodynamic pressure is according to Bernoulli’s
equation found from the velocity potential as p = —p%, where p is the density of water
and t is time. By integrating the hydrodynamic pressure over the mean wetted surface of
the body FJ'P is obtained, from which the added mass and damping coefficients can be
determined. When expressing the equation of motion for the body, also the hydrostatic
restoring force FgHS = —c33n3 must be included. 73 is the heave motion and c33 = pgB
is the 2D restoring coefficient in heave, where B is the mean wetted beam of the body.
According to Newton’s second law, the equation describing the heave motion of the body
is

mily = Fy'P + F1% + Y, (5.49)

with m being the 2D structural mass and F¥ the external force applied to the body in
order to perform steady harmonic oscillations.

If the added mass and damping coefficients are to be found from experiments, usually
the force FF applied to the model is measured. Let the body motion be expressed as
n3(t) = mM3q coswt, where 73, is the motion amplitude and w is frequency of oscillation.
Further, assume the measured force applied to the body is F¥ = Fj, cos (wt + §), where
F3, is the force amplitude per unit length of the body and ¢ is the phase angle between
the measured force and the body motion. Then, from (£48) and (EZ9), the 2D added
mass and damping coefficients in heave are found as

F5,c080 — c33M34

w27]3a

a33 = —

(5.50)

bys = (5.51)

The experiments by Vugts

Hydrodynamic coefficients obtained from an extensive set of model tests with forced

oscillations of cylinders in the free surface was presented by Vugts (1968). Several cross-
sectional geometries were tested and the added mass and damping coefficients due to small
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amplitude oscillations were deduced. Test parameters were the frequency of oscillation
and oscillation amplitude. The experiments were conducted in the main basin of the Delft
Shipbuilding Laboratory, which measures 142m of length and 4.2m of width. Here, we
have only considered tests with a circular model and a rectangular model. The circular
model had a diameter of 0.300m with draft 0.150m at the mean position, such that the
cylinder axis was located in the calm free surface. The rectangular model had breadth
0.400m and draft 0.200m at the mean position. Further, the rectangular model had
rounded bilges with bilge radius » = 0.0025m. The water depth for all tests was in the
range 1.80m - 2.25m. However, the exact water depth for the individual test runs was not
reported.

Numerical setup

Simulations in 2D of bodies in the free surface when forced to oscillate in heave have been
performed with the present numerical code. A circular body and a rectangular body were
tested, where the body dimensions corresponded to that of the circular cylinder and the
rectangular cylinder tested by Vugts. However, the rectangular body in the numerical
simulations had sharp corners and not rounded bilges as the rectangular model in Vugts
experiments. Dimensions of the circular and the rectangular body are presented in Tab.
The length of the computational domain used in the simulations was L = 76m,

Table 5.12: Dimensions of the circular model and rectangular model used in the
numerical simulations. The model dimensions are equal to those for the models
tested by Vugts (1968).

‘ Rectangle ‘ Circle

Breadth (B) | 0.40m | 0.30 m
Draft (d) 020m |0.15m

which is shorter than the actual length of the basin in where Vugts experiments were
conducted. By application of damping zones, wave reflections from the side boundaries
of the domain were avoided. The efficiency of the damping zones depends on their length
Ly, relative to the wave length A of the wave to be damped. When constructing the
damping zone, A\ = 27/k was estimated using the dispersion relation (BZZ3) for the os-
cillation frequency tested. For all simulations L;, = 3\ was used, except for the lowest
oscillation frequency tested where the length of the damping zone was L;. = 2\. The
height of the domain was 3.00m and the water depth was A = 1.80m for all tests, which
corresponded to the smallest water depth reported in the experiments by Vugts. A sketch
of the computational domain is presented in Fig. For each of the two bodies,
six different oscillation frequencies of the heave motion were tested corresponding to the
non-dimensional frequencies wy/B/2g = [0.25,0.50,0.75,1.00, 1.25,1.50]. For each test
frequency, the three oscillation amplitudes 734 = 0.01m, 134 = 0.02m and 734 = 0.03m
were tested. The simulations started from calm conditions with 73(0) = 13, and 73(0) = 0,
being the initial vertical body position and velocity, respectively.
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Damping zone
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Figure 5.12: Domain used for the numerical solution to the hydrodynamical
problem of a circular cylinder which is forced to oscillate in heave. The cylinder
is situated in the air-water interphase. Damping zones are introduced to avoid
wave reflections.

The numerical grid

A non-uniform numerical grid was constructed as follows. By dividing the computational
domain into sub-regions where different gridding strategies were used, a fine grid region
was created at the body position. More precisely, both the r—axis and the y—axis were
divided into the three sub-regions L; and H; where i = 1,2, 3 as shown in Fig. The
horizontal grid line spacings Ax were small and constant in L,. Similarly, the vertical
grid line spacings Ay were small and constant in H,. Stretching of the grid by a quadratic
function was performed outside the fine grid regions for both the horizontal and vertical
direction, such that the grid became coarser when moving away from the free surface
in the vertical direction and away from the floater position for the horizontal direction.
A smooth variation of the grid spacings was ensured. The computational domain was
discretized using 500 grid cells in the horizontal direction and 200 grid cells in the vertical
direction. The time increment was At/T = 1/2000, with 7" = 27 /w being the period of
oscillation. Grid parameters for the actual grid are presented in Tab.

Table 5.13: Grid parameters for the fine grid zone used when simulating forced
heave motions of the circular and rectangular body. B is the mean wetted beam
of the body and d is the mean draft. Az and Ay are the constant grid increments
in Ly and Hj, respectively.

Ax/B Ay/d
/ /

Circular body 0.0100 0.0133
Rectangular body | 0.0075 0.0100

High frequency viscous damping

Potential flow theory was used for comparison with the numerical results. For high fre-
quencies of oscillation, the potential damping approaches zero as no waves are generated.
However, for the rectangular body, flow separation from the bilges yields a damping force.
In the following, a theoretical high frequency viscous damping is presented.

For linear potential flow theory, the kinematic- and dynamic free surface conditions
for harmonic steady state oscillations can be combined to give —w?¢ + gd¢/dy = 0,
where ¢ is the velocity potential. Taking the limit w — oo, we obtain ¢ = 0 on the free



82 Verification studies

surface. This means no waves are generated and the fluid velocity on the free surface is
only vertical. From symmetry properties of the forced high frequency heave problem, we
can by mirroring the submerged part of the body about the mean free surface, transform
our problem into the problem of the double body oscillating in infinite fluid. Now, one
may argue that due to vortex separation at the corners of the cylinder, the assumption
of irrotational flow is violated. However, by assuming that all vorticity is compressed
into thin free shear layers we can still use potential flow theory with the asymptotic free
surface condition outside the free shear layers. The analogy between the rectangular
cylinder in the free surface and the double body in infinite fluid makes it possible to use
Morison’s equation (B52) to estimate the vertical hydrodynamic forces for high frequencies
of oscillation. For the double body we get

F}P = pAChyijs + 0.5pBCplig|its. (5:52)

Here, A is the area of the cross-section of the double body, C'; is the mass coefficient, 7j;
is heave acceleration of the body, B is the breadth, Cp is the drag coefficient and 73 is the
heave velocity of the body. First term on the right hand side of (E52) is the added mass
force while the second term is the viscous drag force due to flow separation. Equivalent
linearization of the drag term gives Fp = By|nalws=1s (Faltinsen 1990), where the viscous
damping coefficient is B, = 0.5pCpB. By assuming that the drag force on the heaving
body in the free surface is half the value of the drag force on the double body in infinite
fluid, we obtain the linear damping coefficient b33 = 0.5Fp/n3. The non-dimensional
damping coefficient for high frequencies is then

b B 2C
ggﬁ;@:g%% (5.53)

where d is the mean draft of the cylinder and @ = w+/B/2g. The drag coefficient is in
general dependent on Keulegan-Carpenter number KC' = UT/B = 273,/ B and on the
Reynolds number for oscillatory flow Rn = U2 /wv, where U,, is maximum velocity outside
the boundary layer. For low KC-number flow (KC' < 10), the drag coefficient for an
oscillating facing square cylinder in infinite fluid is Cp ~ 3.0, found from experiments by
|[Bearman et al. (1985), Using the present test parameters for the rectangular body, KC' <
0.5 was obtained. Hence, Cp = 3.0 was used in (Z23) to obtain the non-dimensional
viscous damping coefficient. This high frequency viscous damping was used for comparison
with the damping coefficients obtained from the numerical simulations and the damping
coefficients presented by Vugts.

Results and discussion

From the numerical simulations, the fully nonlinear vertical force F}' on the oscillating
body due to the total pressure was computed. As we wanted to compare obtained added
mass and damping coefficients with those from linear potential flow theory, band-pass
filtering of the fully nonlinear forces time-series were performed such that the linear har-
monic component was retained. Band-pass filtered was performed using 0.8/7 and 1.5/T
as the low and high cut-frequencies, respectively. Here, T' is the oscillation period of the
body for the case considered. As the vertical force obtained from the numerical simula-
tions was found by integration of the total pressure over the body boundary, the computed
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force corresponded to the sum of the hydrodynamic force FyHD and the hydrostatic force
FyHS from potential flow theory. Hence, the hydrostatic force was subtracted from the
computed force time-series FI' to obtain FyHD, from which the added mass and damping
coefficients could be deduced. The hydrodynamic coefficients obtained from the present
numerical simulations were compared with the coefficients according to linear potential
flow theory for infinite water depth. The potential flow theory results for infinite water

depth were provided by |Skejic (2008), where the hydrodynamic coefficients for the rect-
angular body were obtained with a sharp-edged body. Also the coefficients presented

by were used for comparison. Added mass and damping coefficients for
the circular cylinder are presented in Figs. B8] and L8l respectively. Results from
simulations with the rectangular cylinder are presented in Figs. B8 and 28Tl

Obtained coefficients from simulations with the circular model were in good agreement
with both experiments and theory, except for the lowest frequencies where some deviations
from the potential flow theory were observed. This was also observed for the results
obtained with the rectangular body. Deviations in the low frequency range are believed
to be due to effects of finite water depth in both the experiments and in the numerical
simulations. The lowest test frequency in the simulations was w+/B/2g = 0.25. Using
the dispersion relation (BZZ3) where &k = 27/\, this means that the wave length A of the
wave generated for this oscillation frequency is A = 13.7m for the rectangular cylinder and
A = 11.42m for the circular cylinder. Taking the uncertainty of the actual water depth
h in Vugts experiments into account, h/A = 0.132 — 0.165 and h/X = 0.158 — 0.197 for
the rectangular and circular cylinder, respectively. Using h/A = 0.5 as the deep water
limit, we should expect an effect of finite water depth for both cylinders at the lowest
test frequency and also for w+/B/2g = 0.50. This may explain the deviations between
simulations and experiments for the lowest frequencies. In addition, Vugts
reported experimental inaccuracies, especially for the added mass in the low frequency
range (w+/B/2g < 0.50).

The damping coefficients for the rectangular body obtained from both experiments
and simulations show some scatter in the high frequency range (w+/B/2g > 1.40) and
deviates considerably from the potential (wave making) damping, which goes to zero when
the frequency of oscillation goes to infinity. This is explained by vortex shedding from
the sharp edges of the rectangular body. The high frequency viscous damping coefficient
obtained from (B53]) was added to the non-dimensional potential damping coefficient in
Fig. R8Tl The high frequency theory shows reasonable agreement with experiments. The
numerically obtained damping coefficients deviates some from this high frequency theory
and the deviations increase for decreasing amplitude of oscillation. For low K C-numbers,
the vortices separated from a sharp edged body are small compared to the dimension
of the body (Bearman et al. 1985). We also note that the edges of our rectangle is not
perfectly sharp, while the high frequency theory is for a sharp edged body. According to
[Faltinsen (1990), the bilge radius becomes important for the drag at small KC—values.
This means that effects of finite bilge radius may contribute to the deviation between
the numerically obtained damping coefficient and that from the high-frequency theory.
However, we believe that the main explanation for the deviation between the numerical
results and the high frequency theory is related to the fact that the same grid was used
for all tested amplitudes of the body motion. Hence, the grid resolution relative to the
motion of the body decreases for decreasing motion amplitude, such that the viscous flow
might not be fully resolved by the grid for the smallest heave amplitudes tested. As
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expected, viscous flow separation was not observed for the circular body, where the small
heave amplitudes yielded KC < 1.0.

Skin friction was not included in the numerical model. However, the numerical results
has shown to be able to give good estimates of the hydrodynamic forces on oscillating
cylinders in the free surface for the frequency range 0.75 < w < 1.25.
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Figure 5.14: Added mass and damping coefficients for the rectangular
cylinder obtained with the present code compared with experiments
by Vugts (1968) and linear deep water potential flow theory by Skejic
(2007). Here, A = Bd is the area of the semi-submerged rectangular
cross-section. Beam-to-draft ratio is B/d = 2. In the figure, a is the
heave motion amplitude.
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5.9 Verification of free motions

In order to verify the numerical model for computation of free motion of floaters, i.e. the
implementation of the equations of motions for the floater, we have studied free decay
tests of the heave mode of motion. Free decay tests for the sway mode are considered in
Chapter Both a rectangular body and a circular body are tested in the simulations
with free decay of the heave motion, and the computed heave motions were compared with
potential flow theory results. Simulations of the rectangular body floating at equilibrium
were considered.

Numerical setup and grid arrangement

The computational domain was rectangular with height H and length L, as illustrated in
Fig. IO The domain was partially filled with water and air. The water depth h was
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Figure 5.15: Grid arrangement used for numerical simulations of freely floating
bodies. Constant grid spacing Ax was applied at the body position in the region
of length vB, and in L; and L3. Grid stretching was used to merge the fine grid
at the model position with the coarser grid at L; and L3. In the vertical direction,
grid stretching is applied over H; and Hy, while a fine grid with constant spacing
is applied over Hs.

varied in the tests and is specified for each case considered. A coordinate system Oxy
was defined in the middle of the domain with origin in the calm free surface. Positive
x—direction was defined to the right, while positive y—direction was upwards. Simulations
where a rectangular floater or a circular floater was introduced into the domain were
performed. The rectangular floater had breadth B = 2.0m and height H, = 1.0m, while
the diameter of the circular floater was D = 2.0m. The mass of the floater was specified
as input to the simulations, and the center of gravity (COG) was defined to be at the
area center of the body. Heave motion of the body 73(¢) was then defined to be the
vertical coordinate of the instantaneous position of the COG for the body tested. A
no-slip condition for the fluid velocity was imposed on the bottom boundary and on the
side boundaries of the domain. No-slip was also imposed on the body boundary. The
top boundary of the computational domain was modelled open with a constant reference
pressure equal to the atmospheric pressure.
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Figure 5.16: Vertical position n3(t) of COG of the floater obtained from numerical
simulations with theoretical equilibrium position as the initial position. Results
suggests that the numerical equilibrium position converges to the theoretical
equilibrium position. The heave motion is normalized by H/2 of the floater.

Grid stretching was applied in order to reduce the CPU time for the simulations. As
for the grids used in the simulations of bodies with forced motions in the previous section,
the computational domain was also here divided into regions L; and H; with ¢+ = 1,2, 3,
where different gridding strategies were applied. The different grid zones are depicted in
Fig. T3 The horizontal grid line spacing Ay was kept constant in the free surface zone
Hy, while the grid line spacing was described by an exponential function in H; and Hj.
The spacings between the vertical grid lines, Ax, was constant over a region vB at the
model position. Away from the model position, in L; and L3, constant but larger grid
line spacings were used. Stretching of the grid was used in Ly to merge the fine grid at
the model position with the coarser grid in L; and L3. Smooth variations of the grid
increments Az and Ay were ensured.

5.9.1 Test of equilibrium

First we consider the most simple verification test case for a freely floating body, which
is the hydrostatic problem of a body floating at its equilibrium position. The rectangular
body was placed with the COG at the origin, i.e. 73(0) = 0. As the COG was placed at
the area center of the body, the initial draft was d = 0.5m. For this to be the draft at
equilibrium of the body, the body mass was estimated using Archimedes law. Archimedes
law states that the weight of a body floating in water is equal to the weight of the water
displaced by the body. Hence, the body mass was found as m = p,Bd, where p, is
the mass density of water. Numerical simulations with the given initial conditions were
performed on three grids of different resolution in order to check for grid convergence of the
computed equilibrium position. Computed time-series of the vertical position 7n3(¢) of the
COG of the rectangular body are compared in Fig. The results shows that the floater
starts to oscillate as in a free decay test. This means that the initial position of the body
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does not correspond to the equilibrium position of the body with the given mass. Although
a steady state condition of the vertical position was not reached within the length of the
simulations, the computed heave motion 73 seemed to converge towards a positive value
less than Imm or 0.15% relative to the draft. This can be explained as follows. Due to
the mass density of the air, p,, also the part of the computational domain occupied by the
air represents a pressure gradient field. Hence, also displacement of air by the body yields
a buoyancy force. Balance of static forces on the rectangular body floating with zero roll
angle at equilibrium with draft d. can be expressed as mg = p,gB(H, — d.) + p,gBd.,
where ¢ is acceleration of gravity. Thus, the theoretical draft of the rectangular body
when floating with zero roll angle at equilibrium is

m — p,A
B(pw = pa)’

where A = BH, is the area enclosed by the body boundary. The theoretical equilibrium
position is then n3(t — o0) = d—d,, which is shown in Fig. as the straight horizontal
line. We observe that the heave motion of the rectangular body seems to converge towards
a value in agreement with the theoretical equilibrium position.

d, = (5.54)

5.9.2 Free decay of the heaving motion

When simulating free decay tests in heave of the floaters, we wanted the draft at equi-
librium for the rectangular body and the circular body to be d. = 0.5H, and d. = 0.5D,
respectively. Based on the above discussion, the body mass for the free decay tests was
obtained as m = 0.5A(p,+ p,,) where A = BH, for the rectangular floater and A = 7D?/4
for the circular floater. Then n3 = 0 corresponds to the equilibrium position.

Simulations were performed with the floaters initially being positioned in the free
surface with a vertical offset from the equilibrium position and with x = 0 as the horizontal
coordinate of the COG. At time ¢t = 0 the floater was released and started an oscillatory
heave motion until equilibrium was reached. The frequency of oscillation approached
the heave natural frequency for the model considered. For the case of the rectangular
floater with beam to draft ratio B/d = 4 at equilibrium, the natural period in heave is
T, = 2.195s according to potential flow theory.

The oscillation amplitude of the vertical motion obtained from numerical simulations
will decay due to wave radiation damping and due to viscous effects from flow separation
at the sharp corners of the model.

Skin friction may also have contributed to the damping of the heave motion, but is
not included in the numerical model.

Obtained time series of the heaving motion of the floaters are compared with potential
theory results provided by for the case of a rectangular model, and results
by Maskell and Ursell (1970)| based on previous work by for the case of the
circular model. The data used for comparison are obtained from deep water conditions.

Influence of water depth

Three simulations where the water depth h is varied from h/A = 0.5 to h/A = 1.0 are
compared with data from [Yeung (1982)|in FigliT8 Here A is the wave length of the linear
deep water wave with wave frequency is equal to the natural frequency of the heaving
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Figure 5.17: Vertical motion 75(t) of COG of the circular floater obtained from
numerical free decay tests. The vertical motion is normalized by the initial
vertical offset from equilibrium position, which is 5% of the radius of the cylinder.

motion of the floater. The resulting time series of the vertical motion shows that a water
depth of h = 0.5\, which is commonly used as a limit for deep water conditions, is not
sufficient to give a water depth-independent solution. The length of the domain is here
set to L =T\,

Influence of domain length

Initially when the floater starts to move, all wave frequencies will be excited theoretically.
This means there is a possibility for some of the radiated waves to travel to the end of the
computational domain and reach back to the model position within the time window of
simulation. Further is the data used for comparison for the free decay tests obtained from
BEM-calculations with deep water conditions. Hence the length of the computational
domain and the water depth are physical parameters that will influence the results of the
heaving motion if they are taken too small. A parameter study is performed for the case
of the heaving rectangular cylinder, where the length of the computational domain and
the water depth is varied systematically. This is discussed in the following.

Now, the water depth is kept constant at h/\ = 1.0, while the length of the domain is
varied. The grid spacing Az is held constant when the length of the domain is extended,
such that the resolution of the radiated waves is not affected by the domain elongation.
Results for the heaving motion of the rectangular cylinder obtained using three different
domain lengths L = [5\, 7\, 9\ are presented in FighhTd The obtained time series
deviates from the theory towards the end of the simulation. Since this deviation depends
on the domain length, it is reasonable to believe that wave reflections from the side walls
of the domain influence the results.
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Figure 5.18: Vertical motion 7n5(t) of COG of the rectangular floater obtained
from numerical simulations of free decay tests for different water depths h. The
vertical motion is normalized by the initial vertical offset from equilibrium posi-
tion, which is 2.5% of the draft.
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Figure 5.19: Vertical motion n3(t) of COG of the rectangular floater obtained
from numerical simulations of free decay tests for different lengths L of the do-
main of computation. The vertical motion is normalized by the initial vertical
offset from equilibrium position, which is 2.5% of the draft.
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5.10 Summary of the verification tests

In this chapter, we have presented many of the cases that have been tested to verify the
implementation of the present numerical model. First, the different steps of the adopted
fractional step method were tested separately, where we concluded that the implementa-
tion of all steps was correct as obtained results were in agreement with theory. Then, the
complete flow solver was tested for one-phase flow and for two-phase flow problems. The
introduction of a solid body inside the domain was tested, and satisfaction of the no-slip
boundary condition on the body boundary was checked. The implemented method for
calculation of pressure forces on the body was verified. Further, the heave equation of
motion for the body was verified through simulations of free decay tests.

Based on the results from all of these verification tests, we feel confident that our nu-
merical model is correctly implemented. Hence, if our mathematical model is an adequate
representation of the reality, we believe that our numerical wave tank (NWT) will be a
good tool for investigation of wave forces and wave induced motions of the floaters of fish
farms.



Chapter 6

Model tests

As a part of the present study, two sets of model tests have been conducted. The first set
was accomplished in November 2006 and the other in September-October 2008. In both
experiments the models tested were cylinders oriented with the cylinder axis horizontally
in the free surface zone and subjected to regular waves. Two-dimensional flow conditions
were sought, such that measurements could be compared with results from numerical
simulations with the 2D numerical wave tank.

In the model tests conducted in 2006, the wave loads on fixed horizontal cylinders in
the free surface were studied. Focus were put on nonlinear effects like wave over-topping on
the models and how such events influence the wave loading. Measurements were intended
for use as validation data to the 2D NW'T for computations of wave loads on fixed bodies
in the free surface. Results from these experiments have been published in two conference
papers (Kristiansen and Faltinsen 2008al; [Kristiansen and Faltinsen 2008bl). Some results
have also been utilized by [Vestbgstad et al. (2007)}

The experiments from 2008 were addressing the wave induced motions of a moored
circular cylinder in regular waves. Again we wanted to obtain validation data for the
NWT, but now with respect to the computation of nonlinear wave-induced body motions.
Results from these experiments were published in [Kristiansen and Faltinsen (2009).

6.1 Over-topping on fixed horizontal cylinders in waves

Model tests addressing wave loads on fixed horizontal cylinders in regular waves were
conducted in November 2006. Wave excitation forces on the models in the horizontal
in-line direction and in the vertical direction were measured. Also measurements of the
wave elevation at some positions in the flume were performed. As the measurements were
to be used for comparison with results from numerical simulations with the 2D NWT, we
wanted the flow conditions in the model tests to be two-dimensional. We found that an
appropriate wave flume for our model tests was the narrow wave flume at the Division of
Marine Civil Engineering, NTNU. This flume is 26.5m long and 0.60m wide and has side-
walls of transparent Plexiglas, which is beneficial for good visual observation of the waves.
The maximum possible water depth in the flume is 0.65m. The flume is equipped with a
piston-type wavemaker from DHI (www.dhi.com), with the wave-board ranging from the
bottom of the flume to above the free surface. An active wave absorber control system
(AWACS) is included in the wavemaker software, which absorbs the waves reflected from

93
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Figure 6.1: Schematic view of the test setup in the flume from the model tests
in 2006. On top a side view of the flume is shown, while a top view is depicted
below. Positions of the eight wave gauges (WG) are marked by vertical lines and
“ X?’.

Table 6.1: Main dimensions of the two models used in the experiments. Both
models are made of aluminium and are stiff structures.

Quantity Symbol Value
Circular cylinder: Diameter [m] D 0.300
Length [m| [ 0.590
Rectangular cylinder: Breadth [m] a 0.300
Height [m] b 0.250
Length [m| [ 0.590

the model to the wavemaker. This allows for long test runs without the time limitation
caused by waves being reflected from the model to the wavemaker and back to the model
position. In addition, the AWACS showed to be effective for damping out waves and
making the water surface calm after each test run, reducing the waiting time between
the runs. At the opposite end of the flume from the wavemaker a 5m long parabolic
beach is mounted for wave absorption. The beach is covered by a rough, porous mat to
increase its energy dissipation ability. A qualitative sketch of the flume is presented in Fig.
BTl The wavemaker software applies linear wavemaker theory to estimate the necessary
stroke of the wave board for generating waves with a given wave height. However, the
predicted stroke is often not sufficient for generating waves with the input wave height.
One explanation of this problem is leakage around the wave board, which causes a reduced
efficiency of the wavemaker (Hug 993)). To compensate for the reduced efficiency, the
software provides a fudge factor C for tuning the stroke of the wave board such that the
input wave height is obtained.

6.1.1 Models, test setup and instrumentation

Two cylindrical models were tested. One model had a circular cross-section, while the
other had a rectangular cross-section. The length (transverse dimension) of both models
was [ = 0.590m, leaving a 5mm clearance to both side-walls of the flume to avoid contact.
Model dimensions are listed in Tab. BJIl The model tested was fixed at a distance
L,, = 14.31m from the wavemaker, measured from the mean position of the paddle to
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Figure 6.2: From the wave laboratory. The circular model, seen to the far left,
is mounted to the rig. The photo is taken towards the wavemaker side of the
flume.

the cylinder axis. This means the distance from the model to the start of the beach was
about 7.2m. It was ensured that the cylinder axis was perpendicular to the side walls of
the flume and hence parallel to the wave crests of the incoming waves. The water depth
during all tests was A = 0.54m.

Choice of test parameters

Test parameters were the wave period T, wave steepness £ and model draft d. Only
regular waves were considered. Ten wave periods were deduced from wave lengths \g of
deep water waves, linearly spaced from 5 to 15 times the beam of the models. This yielded
wave periods in the range from 0.98s to 1.70s. Three wave steepnesses were tested. The
wave steepness were based on deep water waves as € = Hy/\g, where Hy is the deep water
wave height. For long waves relative to the water depth, effects of finite water depth
will influence on the wave height and the wave length and make a wave generally steeper
than the corresponding deep water wave. This causes the actual wave steepness in the
flume to differ, increasingly with the wave period, from the corresponding deep water
wave steepness. Ten wave periods and three wave steepnesses yielded 30 different wave
conditions, which are presented in Tab. BB Each model was tested at three different
drafts for all wave conditions. The non-dimensional parameter x was introduced, which
is the draft normalized by the height of the model cross-section. This means that for the
circular cylinder k = d/D, while for the rectangular cylinder k = d/b. For both models
and all the wave conditions, x = [0.2,0.5,0.8] were tested. A test matrix was made
based on the three test parameters which was wave period, wave steepness and model
draft. A run index was composed of four numbers, where the first one was used to specify
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Table 6.2: Characteristics of the test waves. Due to effects of finite water depth,
the height, length and hence also the steepness of the generated waves will be
modified. € = Hy/\g is the deep water wave steepness, while H and \ are the
computed wave height and wave length from linear potential flow theory for finite
water depth (h = 0.54m).

e =1/50 e=1/30 e=1/20

TIls|] X[m|] ANm]|H[m| H/A |H|[m| H/\N |H]|m| H/\
0.981 1.503 1.474 | 0.029 0.0197 | 0.048 0.0329 | 0.073 0.0493
1.084 1.835 1.760 | 0.035 0.0198 | 0.058 0.0329 | 0.087 0.0494
1.179 2.170 2.026 | 0.041 0.0200 | 0.068 0.0333 | 0.101 0.0499
1.266 2.502 2.267 | 0.046 0.0204 | 0.077 0.0339 | 0.115 0.0509
1.348 2.837 2.492 | 0.052 0.0209 | 0.088 0.0348 | 0.130 0.0522
1.425 3.170 2.701 | 0.058 0.0214 | 0.097 0.0357 | 0.145 0.0536
1.498 3.504 2.898 | 0.064 0.0221 | 0.107 0.0368 | 0.160 0.0552
1.568 3.839 3.082 | 0.070 0.0228 | 0.117 0.0380 | 0.176 0.0569
1.634 4.169 3.256 | 0.076 0.0235 | 0.127 0.0391 | 0.191 0.0587
1.698 4.502 3.423 | 0.083 0.0242 | 0.138 0.0403 | 0.207 0.0605

geometry and submergence, except for the 8000-series which is the wave calibration tests.
The second number indicated the wave steepness while the third referred to the wave
period. Finally, the last number in the run index was reserved for repetition tests or
re-runs. Some causes of re-runs were deleted values during data acquisition because the
measured forces or wave elevation caused voltage signals that were out of range relative
to that specified in the calibration file for the logging system software. The test matrix
is presented in Tab. in appendix

Data acquisition

Wave excitation forces on the model for the vertical direction and the horizontal in-line
direction were measured. Free surface elevation was also measured. Data acquisition was
performed as described below.

Surface elevation was measured with eight wave gauges distributed in the flume. The
wave gauges are denoted WG 1 - WG 8 and their position in the flume are qualitatively
shown in Fig. &Il The wave gauges were of the capacitance type and composed of two
parallel steel rods, each 3mm thick, 7mm apart. Close to the model, two wave gauges
were placed at the same longitudinal position but at different positions in the transverse
direction in order to check for two-dimensionality of the waves. This was done on both
the wavemaker side and the beach side of the model.

Wave run-up was measured using two strips of copper tape that were glued onto the
model surface on the side facing the wavemaker. The copper tape was 12mm wide and
the strips were separated by 7mm.

Excitation forces were measured as the clamping forces of the models. For this
purpose, three force transducers (force rings) were mounted between two 12 mm thick
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aluminium plates. All three force transducers were aligned in the same direction. Each
force transducer was able to measure forces in three directions. Due to lack of channels
on the amplifier, forces were only measured in the vertical direction and in the horizontal
in-line direction.

Local free surface elevation at the model position were captured by a high speed
camera of type IDT, using a sampling frequency of 200 frames per second (fps). For each
run, 600 frames were recorded, which for the given sampling frequency covers 3 seconds
in real time. During recording with the high speed camera, a voltage signal was sent to
the logging system such that the exact time window of the recording within the test run
could be obtained.

Wavemaker piston motion was logged. At start-up, the wave-board had a linear gain
up of the piston motion, lasting for 5 seconds, until full gain was reached.

A Hottinger-Balwin KWS amplifier was used to amplify the voltage signals from the
force transducers, while a separate Hottinger amplifier was used for the wave probes. A
DHI Filter Cabinet 154/IF was used for analog to digital conversion of the signals. No
filtering of the signals was performed before logging. Acquisition data were stored with
a sampling frequency of 200Hz by the DHI Wave Synthesizer software, except from the
wave-maker motion which was logged with a sampling frequency of 60Hz. Typical test
duration (duration of data acquisition) was 60 seconds. That includes 10 seconds of data
acquisition before the linear gain up of the wave maker.

6.1.2 Measurements and observations

All measurements were band pass filtered with f,, = 0.35Hz and fp;g, = 6.0Hz as the
lower and higher cut-off frequencies, respectively. A one sided Gaussian envelope was
used at the cut-off frequencies in order to avoid beating effects in the reproduced time
series. The linear-, second- and third order harmonic components of the measured signals
were studied. Repetition tests were conducted for five of the test conditions, where five
repetitions were performed for each test. To quantify the repeatability of a measured
variable, the relative error defined as o/ -100% was used, where y is the mean value and
o is the standard deviation of the variable considered. Relative error of the force amplitude
in the steady state regime was less than 1.5%, even for cases where wave overtopping on
the model occured. For the measured wave elevation, the relative error was 4% or less.
Thus, the obtained time series showed good repeatability. Statistics from the repetition
tests are presented in appendix Measured stroke of the steady state piston motion
S and the resulting fully non-linear wave amplitudes ¢} and ¢ measured with wave gauge
WG3 from the wave calibration tests are listed in Tab. Here, ¢} and ¢ refer to
the positive and the negative wave amplitude, respectively. WG 3 is located 0.356m from
the cylinder axis towards the wavemaker. The fudge factor Cs = 1.1 in the wave maker
software was necessary in order to obtain the wanted wave height. The need for scaling
of the piston stroke estimated by linear potential flow theory (linear wavemaker theory)
is explained by energy loss due to leakage through the gap between the wave board and
the flume walls (Hughes 1993).

Fully non-linear force amplitudes A* and A~ (positive and negative respectively) in the
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Table 6.3: Measured wave maker stroke S and measured resulting fully non-linear
wave amplitudes (positive (} and negative ;) at wave gauge 3 from the wave
calibration tests. Hy/)\g is the corresponding deep water linear wave steepness.

Ho/Ao = 1/50 Ho/Xo = 1/30 Ho/Xo = 1/20

Tyls] Afm]| S[m] ¢i[m] ¢4 [m| | Sfm] ¢f[m] ¢4 [m]|S[m| ¢f[m] ¢ [m]
0.981 1.472[0.017 0.015 -0.014 | 0.030 0.025 -0.023 | N.A. N.A. N.A.
1.084 1.760 | 0.023 0.018 -0.017 | 0.038 0.032 -0.027 | 0.057 0.051 -0.039
1179 2.024 [ 0.020 0.020 -0.019 | 0.048 0.036 -0.032 | 0.072 0.059 -0.044
1.266 2.267 | 0.034 0.024 -0.022 | 0.057 0.041 -0.034 | 0.086 0.064 -0.049
1.348 2491 [ 0.041 0.025 -0.023 | 0.069 0.042 -0.038 | 0.103 0.072 -0.050
1.425 2.700 | 0.048 0.027 -0.026 | 0.080 0.047 -0.042 | 0.121 0.081 -0.054
1.498 2.896 | 0.055 0.030 -0.027 | 0.092 0.051 -0.044 | 0.139 0.088 -0.057
1.568 3.081 [ 0.063 0.032 -0.028 | 0.104 0.057 -0.045 | N.A.  NA.  NA.
1.634 3257 [ 0.070 0.034 -0.030 | 0.117 0.065 -0.044 | 0.176  0.096 -0.065
1.698 3.424 | 0.079 0.038 -0.031 | 0.131 0.063 -0.052 | N.A.  N.A.  NA.

steady state regime for the circular cylinder are plotted in Fig. and for the rectangular
cylinder in Fig. B4 Measured forces are normalized by the hydrostatic buoyancy force
Fg = pgV, corresponding to the fully submerged model. Thus, Vy = (7/4)D?] for the
circular cylinder and Vy = abl for the rectangular cylinder. Figures and show that
when x = 0.5, the measured forces are nearly linear with respect to the wave steepness
for both models. Nonlinearities of the wave excitation forces are observed when x = 0.2
and x = 0.8. The nonlinearities are most pronounced for the circular cylinder.
Over-topping did occur on both models for all wave periods when Hy/\g = 1/20 and
k = 0.8. For the circular cylinder, the over-topping wave was attached to the model
surface during the whole over-topping process as shown in Fig. Over-topping on the
rectangular cylinder was somewhat different. The over-topping wave had a dam-break
like behaviour, until the front of water separated at the leeward top edge of the model.

6.1.3 Discussion of possible errors

When using model tests for validation of numerical models, it is easy, but dangerous, to
consider model test results as the “true story”. Generally, as for numerical computations,
also model test results may contain some or considerable errors. Thus it is important
to identify the possible sources of errors in the experiments and quantify these. We
distinguish between precision errors and biased errors. Precision errors are somewhat
easy to handle since they are stochastic of nature and can be estimated by repetition
tests. From the computed relative error in the repetition tests presented, we see that
precision errors are small. Biased errors are systematic errors that can be difficult to
discover. However, there are general procedures for how to proceed in order to discover
biased errors. One procedure is to repeat the experiment at different replication levels
(Ersdal2004), e.g. by repeating the experiment after re-rigging, or by repeating the
experiment in a different laboratory. We will now discuss some possible sources to errors
in the experiments.

Two-dimensional flow conditions were sought in the tests. This means 3D flow effects
may lead to biased errors in the measured free surface elevation as well as in the measured
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Figure 6.3: Measured positive and negative fully non-linear force amplitudes from
experiments with the circular cylinder. Here, Vi = (7/4)D?. F, is the measured
in-line horizontal force in the positive wave propagation direction, while F, is

the measured vertical force positive upwards.
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Figure 6.4: Measured positive and negative fully non-linear force amplitudes
from experiments with the rectangular cylinder. Vy = abl. F, is the measured
in-line horizontal force in the positive wave propagation direction, while F}, is
the measured vertical force positive upwards.
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Figure 6.5: Mean peak-to-peak force amplitudes for the circular cylinder as func-
tion of mean incident wave amplitude. Nonlinearities of the measured forces are
observed when the normalized draft is d/D = 0.2 and d/D = 0.8.



6.1. Over-topping on fixed horizontal cylinders in waves 101

d/b=0.2 d/b=0.5 d/b=0.8

60 150 200

2 e
x -1,

- 20 0 100 — A T=1.43s
5 —%— T=1.57s

0 0 0

200 200 150
= 100 —6— T=1.08s
. —e—T=1.27s
L 100 100 / — A T=1.43s
20 O/@/O —v—T=1.57s

0 0 0
0 0.03 006 O 0.03 006 O 0.03 0.06
H/A H/A H/A

Figure 6.6: Mean peak-to-peak force amplitudes for the rectangular cylinder as
function of mean incident wave amplitude.

forces. Examples of such 3D effects are transverse sloshing, which is standing waves in
the transverse direction of the flume. The natural periods of the first, second and third
sloshing mode is T} = 0.880s, T3 = 0.620s and T% = 0.506s. These sloshing periods are all
smaller than the test wave periods. However, these natural periods could still be excited
by higher harmonic components of the tested waves in combination with imperfections of
the wavemaker or the model. An example of such imperfections are the gaps between the
model and the side walls of the flume, which may cause disturbances on the free surface.
There is also a gap between the wave-board and the tank walls which is of order lcm
that may excite the transverse sloshing. To check if transverse sloshing did appear in the
experiments, two wave gauges were distributed in the transverse direction of the flume
close to the model position. This was done on both sides of the model (cf. Fig. BI).
Transverse sloshing was observed for some of the tests with the steepest waves (¢ = 1/20).
The second sloshing mode was observed for some tests with the wave periods T" = 1.43s
and T = 1.50s. The first sloshing mode was observed for some tests with wave period
T = 1.57s, which is close to two times the sloshing period for the first mode. Sloshing
can also occur in the longitudinal direction of the flume. The first sloshing mode for the
longitudinal direction is referred to as seiching. Due to the length of the flume relative to
the water depth, seiching is characterized by a shallow water wave. The seiching period
of the flume (first natural period of longitudinal sloshing) is 77 = 23s. No seiching of
significance was observed in the experiments.

6.1.4 Summary of results

Wave calibration tests was performed for all test wave conditions and a fudge factor of
Cy = 1.1 to scale the stroke of the wave board was needed to obtain the input wave
height. The generated waves showed good repeatability, with a relative error less than
4% for the wave heights measured from the repetition tests. Waves overtopping on the
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(c) t =to+2T/6 (d) t = to + 3T/6

(€) t = to +4T/6 (f) t = to + 5T/6

Figure 6.7: Over-topping on the circular cylinder for d/D = 0.8, T' = 1.348s and
Hy/Xo = 1/20. The wave is propagating from the right to the left. In (b), air is
sucked from the surface into the water domain due to a low pressure zone at the
right hand side of the model. The surface of the over-topping wave is smooth
and the wave does not separate from the body.
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models occured for some of the test conditions. However, no out-of-water event was
observed. Also the repeatability of the measured forces were good with relative errors less
than 1.5%, even for the tests with overtopping.
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6.2 Wave induced motions of a moored horizontal cylin-
der

Model tests were performed in the turn of the month from September to October 2008
with the purpose to study the wave induced motions of a moored horizontal cylinder, and
to obtain validation data for the NWT. Only regular waves were considered.

We wanted to investigate the wave-induced motions of floaters of fish farms. There
exist many configurations of floaters and floating collars for fish farms, so we decided
to choose a geometry for our model which was representative for fish farms. Hence our
choice felt on a cylinder with a circular cross-section. The model scale was based on
an existing steel-structure fish farm designed for exposed locations. This structure is
characterized by square floating collars that are formed by four circular cylinders that are
rigidly connected. The diameter of the cylinders in full scale is 1m. The global structure
is elastic, and typical values for the wet natural period of the first elastic mode of the
floater are in the order of 2-3 seconds (Lien 2009). This is considered when deciding the
characteristics of the mooring line system in the experiments.

6.2.1 The laboratory, model and test setup

The experiments were conducted in a narrow wave flume at the Department of Marine
Technology, NTNU. The flume is constructed from steel frames with glass-plates for the
walls and bottom. This makes the flume very suitable for visual observations of waves,
which in addition to availability and low cost was the main reason for choice of laboratory.
Further, the fact that the flume is narrow makes it also beneficial for tests where 2D flow
conditions are wanted. The flume measures 13.67m of length, 0.60m of breadth and 1.30m
of height, and is designed for a water depth of 1.0m. For wave generation, the flume is
equipped with a single-flap wavemaker where the paddle is hinged 10cm above the bottom
of the flume and extends through the free surface. The wavemaker is computer-controlled
and capable of generating regular waves as well as irregular waves. Unfortunately, the
wavemaker software do not provide an active wave absorption control system. This put
a limit on the duration of the test runs. At the opposite end from the wavemaker, a
conventional beach with a parabolic-arc shape is mounted for wave absorption.

The model scale was 1/10 and a cylindrical model with a circular cross-section of
diameter D = 0.100m was tested. The model was composed of a 0.580m long circular
pipe of transparent plexi-glass with a inner core of divinycell. Wall thickness of the pipe
was 3.1mm. The model was considered rigid. We wanted the model mass to be constant
during the tests, which means we had to avoid water to enter the interior of the model.
Since divinycell absorbs water, the pipe had to be sealed at the ends. For this purpose
tight plugs of polyethylene were cut on the lathe such that they perfectly entered the pipe.
In addition, waterproof clay was used for sealing the joints. Due to the transparency of
the pipe, any leakage would easily be discovered. However, control weighing of the model
after several hours in water was performed to check for waterproofness. To reduce 3D-
flow effects at the ends of the model, end-plates made from transparent plexi-glass were
applied. The end-plates were 5mm thick and shaped circular with diameter of 0.30m.
This means the overall length of the model with the end-plates was L = 0.590m and a
Smm gap was obtained between the end-plates and the tank walls to avoid contact. The
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Figure 6.8: The model when moored and ready for testing. The black cables are
connected to the accelerometers inside the model.

dry mass of the model was measured to be M = 2.50kg.

The model was placed a distance 6.50m from the hinge of the wave paddle and kept
on its position by four mooring lines. A picture of the moored floating model in place at
the desired location is shown in Fig. B8 The mooring lines were fastened to the edge of
the end-plates of the model, yielding an increased stiffness in roll. Two lines were applied
on the wave maker side of the model, while for the side of the model facing the beach,
two lines which were attached to the model met to form a crowfoot. Thus, the total
number of mooring lines attached to the rig was three. Each mooring line were pointing
nearly horizontally from the model position, making an angle o = 3.2° with the calm
water surface. Three pulleys were used to direct the mooring lines upwards before they
were attached to linear springs. The springs were then loaded in the vertical direction.
This was to avoid transverse dynamics due to the mass of the spring, which could have
contaminated the force measurements. Although not observed, transverse dynamics of
the springs could still occur due to Mathieu-instability (MclLachlan 1964). The upper
end of the springs were mounted to force transducers of type Hottinger Baldwin (18kg).
A qualitative sketch of the mooring system is given in Fig. B9

6.2.2 Choice of test conditions

We wanted the test waves in the experiments to be representative for a typical design
wave condition for floating fish farms. Design wave conditions for floating fish farms are
described in section Only regular waves were considered. For the most extreme design
waves presented in Tab. EZ2 the waves are long compared to the cylinder diameter. This
means that if the full scale floater was exposed to such waves, the floater would be in the
stiffness dominated regime of the heave response curve and only float on top of the waves.
This is not very interesting from a hydrodynamic point of view. More interesting are the



106 Model tests

Force transducer Force transducer
Spring i
- PuIIey End-plate  Pulley < Spring
T
0.14m7 T > ! 70.13 m
T |
258 m | 258 m
h = 1.00m
Side view
<— Towards wavemaker Towards beach—
Pulley
™ pulley Model __:: N 0.60m
S x
Top view

Figure 6.9: Model test setup for the floating circular cylinder. The model is kept
on its location by mooring lines attached to springs. Spring forces are measured
by force transducers. Pulleys are used to direct the mooring lines to the cylinder
while keeping the springs oriented vertically.

wave periods that leads to resonant motion of the floater. The test waves were chosen to
cover the regions where resonance of the heave motion and the sway motion occur. The
natural periods in heave and sway for the model were estimated using linear potential
flow theory and were found as the peaks of the response curve for the considered mode of
motion. The response curves were found as follows. We assumed that the heave and sway
modes were uncoupled, such that the uncoupled linear equations of motion could be used.
Further, roll is negligible as the center of gravity (COG) of the body is located at the
cylinder axis, meaning that the pressure forces on the cylinder surface cannot yield a roll
moment about the COG. This yielded the following expression for the response amplitude
Nke Telative to the incident wave height H,

Nka _ Fka/ <O5H)
ot \/(Ckk — w2 (m+ )’ + w0,

(6.1)

with k = 2,3 referring to the sway and heave mode of motion, respectively. Further, m is
the structural mass of the model per unit length, a, and by, are the frequency dependent
2D added mass and damping coefficients from potential flow theory (Skejic 2008), cx
is the 2D restoring coefficient, w is wave frequency, p is mass density of water while
g is the acceleration of gravity. The 2D excitation force amplitude Fy, is related to the
potential damping coefficient by as Fy, = 0.5H /pg?bix,/w (Newman 1962)). The restoring
coefficient for heave is c33 = pgD, where D is the cylinder diameter. The natural period
in heave was predicted to be T,3 = 0.518s, when the effect of the mooring lines was
neglected. For sway, the 2D restoring coefficient is found by dividing the sum of the given
spring coefficients by the model length as coy = (k1 + ko + k3)/L,,. In order to obtain a
natural frequency in sway representative for the elastic modes of a steel type fish farm,
the spring stiffnesses were chosen to be k; = 43.7N/m and ky = 43.5N/m for the two
springs at the wavemaker side, while for the spring on the beach side the stiffness was
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k3 = 88.2N/m. Using the given spring coefficients in the sway natural period of the model
was found to be 7,5 = 1.09s. Based on the obtained response curves for heave and sway
of the model, ten test wave periods were chosen. For each wave period, the two wave
steepnesses H/A = 1/14 and H/X = 1/10 were tested. This yielded a total of twenty test
wave conditions which are tabulated in Tab.

Table 6.4: Characteristics of the waves used in the experiments with the moored
floating circular cylinder. Ten different wave periods and two wave steepnesses
yielded twenty test wave conditions.

H/x=1/14 | H/A = 1/10
T [s] A [m] H |m] H [m] Co [m/s]
0.423 0.279 0.020 0.028 0.330
0.457 0.326 0.023 0.033 0.357
0.497 0.386 0.028 0.039 0.388
0.544 0.462 0.033 0.046 0.425
0.601 0.564 0.040 0.056 0.469
0.672 0.705 0.050 0.071 0.525
0.761 0.904 0.065 0.090 0.594
0.878 1.204 0.086 0.120 0.686
1.038 1.680 0.120 0.168 0.813
1.132  1.993 0.142 0.199 0.891

6.2.3 Instrumentation and measurements

The main purpose with the experiments was to study the wave-induced motions of the
moored cylinder. However, the motions of the cylinder were not measured directly, but
had to be deduced from recorded time-series of the body accelerations. The accelerations
of the model in heave, sway and roll were measured using six accelerometers. These
accelerometers were mounted in grooves that were carved in the polyethylene end-plugs of
the cylinder. Three accelerometers were placed at each end of the model in order to verify
that the motion was 2D. A sketch that shows the positions of the three accelerometers
relative to the body-fixed coordinate system Ox’y’ in a cross-sectional cut of the model is
presented in Fig. [6.10(a), where 71, ro and r3 are the normal distances from the cylinder
axis to the position of the accelerometers. The relation between the body-fixed coordinate
system and the Earth-fixed coordinate system Ozy defined in Fig. is shown in Fig.
For the Earth-fixed coordinate system, the x—axis is in the calm water surface
and points in the wave propagation direction while the y—axis is the vertical coordinate
with positive direction upwards. The z—axis represents the transverse coordinate with
positive direction given by the right hand rule. We wanted the body motion to be planar
and described by heave, sway and roll in the xy—plane.

Tension in the mooring lines were measured by Hottinger Baldwin (18kg) force trans-
ducers that were fixed to the rig. These force transducers proved to be very accurate and
stable.

Traditional capacitance wave gauges were used for measuring the free surface elevation
at six positions in the flume. As for the model tests in 2006, close to the model position two
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Figure 6.10: The accelerometers are positioned in the cross-section as shown to
the left. Relation between the Earth-fixed coordinate system Ozyz and body-
fixed coordinate system Oxz’y’z’ is shown in the right figure. It is only the angular
motion of the body-fixed coordinate system that has influence on the measured

accelerations relative to the Earth-fixed frame of reference.

wave gauges were placed at the same longitudinal (z—)position but at different positions
in the transverse (z—) direction in order to check for two-dimensionality of the waves.
This was done on both the wavemaker side and the beach side of the model. Positions
of the six wave gauges used are listed in Tab. For the longitudinal direction, the
position of the wave gauges are given both relative to the wavemaker x,,,, and relative to
the model position .

Table 6.5: Position of wave gauges in the flume relative to the mean position of
the wavemaker x,,,, and relative to the initial model position .

Wave gauge Zym m| « [m] 2z [m]

WG 1 4.00 -2.50  0.000
WG 2 6.00 -0.50  -0.155
WG 3 6.00 -0.50  0.155
WG 4 7.00 0.50 -0.145
WG 5 7.00 0.50  0.145
WG 6 9.00 2.50  0.000

Recordings of the model with a high-speed camera of type IDT Dantec Dynamics were
performed, using an image sampling ratio of 50 frames per second. The reason for the
rather low sampling frequency was to obtain longer recordings in real-time. For all test
cases, a time-window of 30 seconds was recorded, starting from calm water conditions
such that the transient build up of the body motions was captured.

The measured signals from all sensors went through a Hottinger Baldwin amplifier
of type MGCplus and the data acquisition was performed with a sampling frequency of
300Hz. All signals were filtered using an analog Butterworth low-pass filter with cut-off
frequency 80Hz. The Hottinger Baldwin software Catman was used for logging of the
measured data. All sensors were calibrated before measurements.
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6.2.4 Post-processing of measured accelerations

Since the accelerometers are fixed to the moving body, they will measure accelerations a,-
and a, in the directions given by the body-fixed coordinate system (z',y’) as shown in
Fig. Here, a, = 0.5 (a2 + a,1). To obtain the body accelerations at the center
of gravity of the body in the Earth-fixed coordinate system Oxy, the measured time-series
of acceleration must be mapped from the directions given by the body-fixed coordinate
system into the Earth-fixed frame of reference (see Fig. [6.10(b)]). The effect of angular
(roll) acceleration § = 0.5 (ay2/7s — a1 /72) must be accounted for. Further, if the body-
fixed coordinate system is rotated with a roll angle 6 relative to the Earth-fixed coordinate
system, the measured accelerations must be corrected for the acceleration of gravity g.
The instantancous roll angle 6 is found from time-integration of the roll acceleration 6.
Accelerations in the Earth-fixed reference frame, a, and a, referring to the horizontal and
vertical component respectively, are then calculated as

az|  |cos@ —sinf| |ay sin 0 [y
|fl;| N lsin@ cos b :| |f],yj| 9 |f3089 _ 1:| +0 |f'2 _ 7,3:| ’ (62)
Details on the derivation of these expressions are given in Appendix [C.2.1]

Obtaining the body motions

The body motions were obtained by time integration of the measured body accelerations.
One important aspect with integration of measured accelerations is that measured time
records usually contain noise at all frequencies. Especially low-frequency noise is a problem
when measured accelerations are used to deduce the body motions. This is exemplified in
the following. Assume the measured horizontal acceleration can be described by a Fourier
series as Z(t) = Z;V:l(Aj + €;) cos(w;t + 9;), where A; is the Fourier amplitude for the
frequency interval represented by w; of the model acceleration, ¢; is the Fourier amplitude
due to noise in the measured signal and ¢; is the phase angle. Then, by integration we
obtain the position z(t) = — Z;VZI w; *(Aj +¢€;) cos(w;t +0;). For low frequencies w; < 1,
it is clear that noise in the measured acceleration will have a major effect on the error
of the computed position if the noise amplitude ¢; is of the same order of magnitude
as the physical Fourier amplitude A;. This means filtering of the recorded accelerations
prior to integration is necessary. An estimate of the noise in the measured accelerations
is obtained by taking the Fourier transform of the recordings in a time-window before
the wavemaker is started and while the model is at rest. The noise level for the different
frequencies are compared with the Fourier transform of the complete time-series of the
accelerations. This is then used to judge which lower cut-frequency to apply when filtering,
which is the lowest frequency where the Fourier amplitude of the noise is of comparable
order as the Fourier amplitude obtained from the total time-series. By inspection of
the Fourier transforms, we found that a lower cut-frequency f.,, = 0.65f,,, where f, is
the wave frequency, yielded good results for most cases (Fig. [6.11(a)]). The exception
was when sub-harmonic response did occur at nearly half the wave frequency. Then a
lower cut-frequency fe; = (0.65f,)/2 was used, such that the physical sub-harmonic
components of the response were not removed when filtering the signals (Fig. [6.11(b)).
When the measured time-series of acceleration is band-pass filtered as described above,
the acceleration of the model in an Earth-fixed frame of reference is found using (CTJ).
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Figure 6.11: Fourier amplitude spectra used when choosing the lower cut-
frequency. When there is no sub-harmonic response, the lower cut-frequency
is taken as f.,; = 0.65f, which is represented by the vertical line in (a). For
cases when sub-harmonic response occur, the cut-frequency fe,, = (0.65f,)/2 is
used as shown in (b).

The obtained body acceleration X(¢) = [a,, a,]”, where T is the transpose operator, is
then integrated numerically using the trapezoidal rule (Kreyszig 1999) with the initial
condition x(0) = 0 to obtain the velocity of the model. The time-series of the model
velocity is then band-pass filtered, using the same pass-band as for the accelerations.
Repeating the integration procedure with initial condition x(0) = xg, the body motion is
obtained.

An estimate of the sway motion could also be obtained by dividing the measured
mooring line tension with the spring coefficient for the mooring line considered. Due
to small angles between the mooring lines and calm water surface and the fact that
the mooring lines were long relative to the cylinder diameter (cf. Fig. ), this would
yield a good estimate of the sway motion. As the mooring line forces and the body
accelerations are measured independently, this provides a possibility to cross-check the
computed sway motion and to verify our procedure for calculating the body motions from
the measure accelerations. Applying the same band-pass filter for the spring forces as
for the accelerations, an estimation of the horizontal position of the model is found as
1y = F,/k, where Fy is the measured mooring line tension and k is the spring coefficient
corresponding to the mooring line considered. Time series of the obtained sway motion
from the two different approaches presented are compared in Fig. and shows good
agreement. More precisely, the mean difference of the estimated motion amplitudes (both
positive and negative) in the time window ¢ = 15s to ¢t = 25s is less than 1% for the case
considered. The obtained body motions were also verified by comparison with images
from the high-speed camera recordings.

6.2.5 Discussion of errors in the experiments

Possible sources of systematic errors in the experiments could be wave reflections from
the beach or from the wavemaker or 3D flow effects, e.g. due to excitation of transverse
sloshing modes in the flume. The natural periods for the first and second transverse
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Figure 6.12: Comparison of sway motion obtained from integration of measured
horizontal accelerations with that obtained from measured mooring line tensions.
The test wave period and wave steepness was 7" = 0.601s and H/\ = 1/14,
respectively.

sloshing mode was T} = 0.877s and T3 = 0.620s, respectively. Large transverse standing
waves (similar to the second sloshing mode) were seen close to the model in the tests with
wave period 7" = 0.544s and steepness H/A = 1/10, although this wave period does not
correspond to the sloshing period for the second mode.

Contact between model and tank walls

Since we wanted a 2D flow condition in the experiments, the gap between the model
and the side walls of the flume should be as small as possible. However, a narrow gap
increases the possibility of contact between the model and the tank walls. Wall contact
will introduce unknown forces to our system which is highly unwanted. Unfortunately, for
some tests where the model motion became large and violent, wall contact was visually
observed. Hence, before we could use the measurements for validation purposes, we had
to be able to detect with a high level of confidence if and eventually when contact did
occur. A good indicator for sudden contact between the flume walls and the model is the
time derivative of the measured acceleration time-series. This parameter is also known
as jerk (Boore and Bommer 2005)). Figure shows the measured acceleration of the
model and the corresponding jerk for a test case where contact between model and tank
walls was observed. Contact is seen as spikes in the jerk time-series.

Effects of the mooring system

The pulleys used for the mooring system may have an effect on the motions of the model.
As the pulleys have a finite mass, the inertia of the pulleys will add to the total inertia
of the system in motion. The effect of the pulley inertia is quantified by performing free
decay tests in sway of the model suspended in air. As the added mass effect due to the
air is small compared to the structural mass and can be neglected, the system can be
simply modelled as a harmonic oscillator represented by a mass and a spring. The mass
is the structural mass of the model while the spring is the effective spring stiffness due to
the mooring lines. Hence, the natural period of the system can be estimated. Practically,
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Figure 6.13: Example of wall contact identification by the use of jerk. Sudden
contact between the model and the tank walls leads to spikes in the jerk time-
series.

free decay in air was done by suspending the model in a long line such that the model
appeared as a long pendulum. The natural period of the pendulum had to be far higher
than the natural period due to the mooring lines. The natural period of the pendulum
motion is for small amplitudes of oscillation found as T? = 27/L/g, where L = 2.20m is
the length of the pendulum and g is acceleration of gravity. This yielded a natural period
TP = 2.98s for the pendulum motion. The natural period due to the restoring forces from
the mooring lines when the model is suspended in air is found as

M

T, =27
kery

, (6.3)

where ks = (k1 + ko) + k3 = is total effective spring stiffness. For the given spring
stiffnesses used, the effective spring stiffness is found to be ks = 176.4N/m. The mass
of the cylinder is M =~ 2.500 4+ 0.005kg. This approximate description of the structural
mass is due to the cables connecting the accelerometers to the logging system and the
uncertainty of how much of the cables weight that contributes to the oscillating mass. This
yields a dry natural period in the range 7% = 0.747s — 0.749s. The measured natural
period from free decay tests in air was found to be T), = 0.778s, which is 3.8% higher than
the theoretical value where the mass of the pulleys is excluded. This difference between
measured and theoretical natural period means the mass of the pulleys contributes 8.2%
to the oscillating mass. Hence, the natural period in sway in the model tests is modified
due to the inertia of the pulleys. However, when the model is oscillating in water the
added mass will be of the order of the structural mass of the model. This means that the
relative importance of the pully inertia is significantly reduced. There is also an effect of
friction in the ball bearings of the pulleys. This effect is discussed in Chapter 8.
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We wanted the springs in the mooring line system to be linear, meaning that there
is a linear relation between the force applied to the spring and its resulting elongation.
Linearity of the springs were tested by loading the springs using known weights and
measuring the spring elongation. Results from this test are shown in Appendix All
springs proved to be linear when loaded below their reported floating limit, which for all
three springs was 30N.

Precision errors of the incident wave heights and model response amplitudes are es-
timated from repetition tests, which were conducted for some of the test wave periods.
For the incident waves, an average wave height H is found from the steady state region
of the wave elevation time-series for each test run. Then a measure for the random error
of the generated wave heights is the relative error ,.; = 6 /fiyy, where the experimental
mean 6y and experimental standard deviation jiy of the average wave heights obtained
from N repetition tests are defined as

N J—
H;
iy = Z S (6.4)
1=1 N
N o — 1/2
) (Hi — jim)?
1=1

Mean of the averaged wave heights and corresponding relative errors obtained from the
wave calibration tests are listed in Tab. EG The relative error £ of the mean total wave

height H is less than 2% for all wave periods where repetition tests are conducted.

Table 6.6: Mean averaged wave height /iy and relative error €, of the total,
linear- and second harmonic component of the wave height obtained from five
repetition tests at steady state condition.

TIs] Hinput [m] finr [m] Erel Erel”™" Erel”"

0.497 0.028 0.029 1.46 x 1072 1.57x 1072 4.83 x 1072
0.761 0.065 0.069 2.45x 1073 1.65x 1073 3.74 x 1072
1.132 0.142 0.137  1.83x1072 1.26 x 1072 1.09 x 1072

6.2.6 Summary of results

Wave calibration tests were conducted for all test wave periods and both wave steepnesses.
The quality of the generated wave profiles for the two shortest wave periods was less
good, due to some transverse disturbances on the free surface. This was observed to be
mainly caused by the gap between the wavemaker paddle and the side-walls of the flume,
which measured about 2cm on each side of the paddle. For larger wave periods, these
disturbances were less pronounced.

Steady-state of the cylinder motion was reached in all the test runs, except for the
tests for which the wave period was T = 0.544s. For these tests, the response amplitudes
of the sway mode of motion were observed to increase in an instability-like manner. For
some tests, the sway motion was limited due to contact between the model and the side
walls of the flume. Measured sway motion from repetition tests with the wave period
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Figure 6.14: Experimentally obtained sway response from repetition tests when
the moored circular cylinder is subject to regular beam sea waves with wave
period T" = 0.544s. Differences between obtained time-series seen after 25s for
when H/A = 1/14 are explained by wall-contact problems.
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T = 0.544s are compared in Fig. The repetition tests shows that this characteristic
sway motion was repeatable until wall-contact occurred. Resulting sway motion for this
wave period are observed to be slightly different for the two wave steepnesses tested, as
shown in Fig. ET4l This instability-like phenomenon was observed to be characterized
by a final shift in the sway response frequency. In the first stage after the wave train has
reached the model, the cylinder started to oscillate in heave and sway with period equal
to the wave period, as expected. However, after a build-up through 18 - 20 wave periods,
the sway motion frequency had become half the wave frequency, such that the frequency
of the sway motion was equal to the natural frequency in sway. Trace plots of the model
motion in heave and sway for this case are presented in Fig. ET3
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Figure 6.15: Trace plots of the cylinder motion from three different time windows
for the case when sway instability occurs (cf. Fig. EIdl). Wave period and wave
steepness is T' = 0.544s and H/\ = 1/14, respectively.



Chapter 7

A study of fixed cylinders in regular
waves

In this chapter results from our study on horizontal cylinders which are fixed in the free
surface zone and subject regular waves are presented. The study is based on the model
tests from 2006. Numerical simulations with our 2D NWT has been performed, where
the test conditions from the experiments was modelled. The wave excitation forces due
to regular waves where studied, with focus on the nonlinear effects. Nonlinearities are
associated with model geometry and model dimensions relative to the amplitude of the
incoming waves.

In order to perform adequate comparisons of time-series for the computed wave forces
with the measured wave forces, it was necessary to verify that the wave conditions simu-
lated with the NWT were in agreement with the actual wave conditions in the experiments.
This was done by performing numerical wave calibration tests with the NWT. Compar-
isons of the measured and computed time-series of free surface elevation are presented.
Convergence studies of the generated waves from the numerical wave calibration tests
and the computed wave forces from simulations with the model present were performed.
In addition to direct comparison of time-series from the measured and computed wave
forces on the models, Fourier analysis of both the measured and computed wave forces are
performed and obtained Fourier amplitudes are compared. At the end of this chapter, a
generalized Morison type of model is proposed and applied to some of the test conditions
from the model tests.

Our study on fixed horizontal cylinders in regular waves has resulted in two publica-

tions (Krstiansen and Faltinsen 2008af IKkmstiansen and Faltinsen 2003b).

7.1 Numerical modelling of the 2006-experiments

In order to perform numerical simulations of fixed horizontal cylinders subject to regular
waves with the same test conditions as in the experiments from 2006, a numerical model
of the physical wave flume was constructed using the presently developed 2D flow solver.
Definition of the computational domain and arrangement of the numerical grids used in
the calculations will now be described.

117
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7.1.1 The computational domain

The narrow wave flume used in the experiments from 2006 is modelled numerically with
our 2D flow solver on a rectangular domain. At the right hand boundary of the domain a
piston-type wavemaker was introduced. The wavemaker was modelled linearly, meaning
the piston velocity was imposed on the horizontal velocity nodes located at the boundary
which was fixed in space. The piston velocity was imposed over the total height of the
domain. A numerical beach or damping zone was applied at the left end of the domain
to damp out the waves that reached the end of the flume.

Ideally, the length of the NWT should be equal to the length of the physical flume.
However, this was not beneficial from a computational point of view. First of all, since
we did not have any wave absorption system for the wavemaker in our NW'T, we had to
make sure that the distance from the wavemaker to the model was sufficient to avoid the
diffracted waves from the model towards the wavemaker being reflected back to the model.
Next, in order to properly resolve the generated waves with the numerical grid, a certain
number of grid cells are needed relative to the wave length and wave height. Hence, if the
domain of computation has the dimensions of the physical flume and we require that all
test waves are equally resolved with respect to wave length, a large number of elements
will be needed for simulation of the shortest waves compared to that needed to simulate
the longest waves. Based on these arguments, we found it convenient to define the length
of the NWT in terms of the wave length \, which was predicted by linear potential flow
theory as the wave length corresponding to the test wave period T for the actual water
depth in the flume. The water depth in the NWT was h = 0.543m, as in the experiments.

For simulations where a body was present in the NWT, there was a limit on the
simulation time due to wave reflections reaching the model position. Since a damping
zone was applied at the far end of the flume while there was no wave absorption on the
wavemaker, it was reflections from the wavemaker of the diffracted waves from the model
that limited the simulation time. Theoretically, all wave frequencies will be excited during
the transient start-up of the wavemaker. This causes small disturbances to be generated
in the fluid which for the case of an incompressible fluid propagate at an infinite velocity.
However, the surface waves containing energy of significance are gravity waves which are
bounded by the wave front propagating with a finite velocity Cy, known as the group
velocity. This means that the limit of the simulation time before waves were reflected
back to the model position could be estimated as ¢, &~ 3L,,,/Cy, with L,,,, being distance
from the wavemaker to the cylinder axis. Alternatively, given a wanted simulation time
t,, an estimate of the necessary length L,,, to avoid wave reflections reaching the model
position within the time window considered could be found. However, for steep waves the
group velocity will be higher than that predicted by linear potential flow theory. Further,
due to nonlinear effects, some of the wave frequencies associated with the transient wave
front will also propagate faster than the linear group velocity. The estimated time for
reflections ¢, was only used as a guideline when choosing the length of the domain. In the
simulations with fixed models, L, = 4.5\ was used. Hence, for deep water waves where
Cy, = 0.5\/T according to linear potential flow theory, we obtain ¢, ~ 277. When effects
of finite water depths matter, ¢, will be less. The distance from the cylinder axis to the far
end boundary of the NWT, including the damping zone, was 5.5\. The efficiency of the
damping zone depends on its length L,, relative to the wave length of the wave that is to
be damped. For the damping zone applied in our NWT, L;, = 4\ was sufficient to avoid
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Figure 7.1: Arrangement of the grid in the NWT. A fine grid region is applied
at the floater position. Grid stretching is used to reduce the CPU time while
keeping the grid resolution high in regions where large variations of the flow
occur.

wave reflections. As our flow solver applies a one-fluid model and a surface capturing
method to simulate surface waves, also the air above the free surface had to be included
in the computational domain. Total height of the domain for all tests was 1.23m. With
the given water depth, the distance from the calm water surface to the upper boundary,
where an outlet boundary condition was applied, was 0.68m. Due to the large difference
in mass density between air and water, the air flow has negligible influence on the flow of
water. Hence, modifications of the air flow caused by the outlet boundary has minor effect
on the hydrodynamic problem. For the bottom boundary, a no-slip condition is applied.
The two bodies tested the NWT had geometry and dimensions as the cross-sections of the
cylindrical models used the experiments. Hence, the diameter of the circular model was
D = 0.300m, while the breadth and the height of the rectangular model were a = 0.300m
and b = 0.250m, respectively. Both models were rigid and fixed at a given position in the
free surface zone. A no-slip condition was imposed on the model surface. The different
boundary conditions are defined in section B0 Based on the previous discussion, the
computational domain depicted in Fig. [[1] was used for simulations of fixed bodies in
regular waves.

7.1.2 The numerical grid

We use a non-uniform Cartesian staggered grid as defined in for discretization of
the computational domain. As our problem is characterized by several flow effects with
large differences in associated length scales, special attention is needed when constructing
the numerical grid. Examples of length scales here are the length of the generated waves
which is of the order of meters, the model dimensions in the order of centimeters, and the
boundary layer thickness on the model surface which is of the order of millimeters. Grid
stretching is applied to keep the grid resolution relatively high in the regions of the domain
where large variations of the flow is expected, which is locally at the model position in
addition to the free surface zone in general. Important grid parameters relative to the
waves are the ratio between the wave length A and the horizontal grid spacing Ax; and
the ratio between the wave height H and the vertical grid spacing Ay;. As Cartesian grids
were used, a complicating factor was how to obtain a fine grid resolution at the model
position, which should be based on the dimensions of the model (or the boundary layer on
the model surface) and not on the waves. When using a single Cartesian grid and when
the model was located in the wave zone, it was not possible to keep the relation between
the grid parameters H/Ay; and b/Ay; constant for the different test wave conditions.



120 A study of fixed cylinders in regular waves

Hence, the structure of the grids did vary slightly from test to test.

The grid was constructed as follows. For each spatial direction, the domain of compu-
tation was divided into three sub-regions where different gridding strategies were applied.
These sub-regions are denoted L; for the horizontal direction and H; for the vertical direc-
tion with 7« = 1,2, 3, as illustrated in Fig. [[J For the horizontal discretization starting
from the wavemaker boundary, the grid increment Axz; was constant and expressed in
terms of the wave length X\ in the sub-region L; = 4\. In the sub-region Ly = A centered
about the model position, a cosine squared stretching of the grid was used to merge a
fine grid region of length vD inside Lo with the coarser grid on each side of L,. Here, the
parameter v = 2 was used. In the fine grid region, Az; was constant and based on the
model breadth. A parabolic stretching of the grid was applied in L3, such that Az; was
increasing when moving in the positive x—direction. This was in order to increase the
numerical diffusion of energy in the damping zone. For the vertical direction, a fine grid
with constant grid spacings Ay; was applied in the interface zone defined by H,. The
height of the interface zone H, was two times the height of the model tested. Parabolic
grid stretching was used outside H,, such that Ay; was increasing when moving away
from the interface zone. All grid stretching was performed such that the grid increments
Az; and Ay; varied smoothly over the domain.

The following grid parameters are introduced for describing the numerical grid. Np
is the number of vertical grid lines relative to the beam of the model cross-section, Ny
is the number of vertical grid lines per wave length and N; is number of horizontal grid
lines in the air-water interface zone H,. Four different grids were constructed for each
test condition in order to perform convergence tests. Grid parameters describing these
grids are listed in Tab. [l Grid 3 was used as the base case grid.

Table 7.1: Grid parameters for the four grids used in convergence tests. Np is
number of grid cells over the breadth of the model, Ny number of grid cells per
wave length, while N; is number of grid cells vertically in the interface zone.
Grid 3 is used as the base case grid.

Name [ Ng Ny, N; | N, N,

Grid 1 | 60 40 80 | 431 120
Grid 2 | 80 45 100 | 512 145
Grid 3 | 90 50 120 | 572 170
Grid 4 | 110 60 130 | 690 185

7.2 Numerical wave calibration tests

Numerical wave calibration tests were performed in order to verify that the waves gener-
ated in our NW'T for some given input wave period and wave height were is in agreement
with the measured wave elevation in the wave calibration tests from the experiments in
2006. By numerical wave calibration we mean numerical simulations of wave generation
without any model present in the domain. This was performed using wave parameters for
the test wave conditions in the experiments as input to our NWT. The input parameters
were wave period and wave height. However, as for wave-making in the physical flume,
the height of the waves generated with the NWT could not be prescribed directly, but
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was controlled indirectly through the imposed velocity at the wavemaker boundary. From
potential flow theory, a linear relation between the stroke of a piston-type wavemaker and
the resulting wave height far away from the wave board can be found as given in (B2Z3).
To obtain a smooth wave front a linear ramp of the piston motion amplitudes were used
during the first 5 seconds of simulation, before full gain of the wavemaker was reached.

Three of the wave periods from the steepest waves (H/A = 1/20) tested in the exper-
iments in 2006 were chosen, for which numerical wave calibration tests were performed
with the NWT. These were also the wave conditions used when simulations with the mod-
els were performed. Since the computational domain was defined in terms of the wave
length A, three different domains had to be constructed. For each domain, four grids were
created using the grid parameters from Tab. [[1l The grid used in numerical wave cali-
bration for a given wave condition was identical to the grid used when simulations with
the models for this wave condition were performed. Temporal discretization was related
to the input wave period 7. Typically, a time step At = T//1000 was used. However,
adaptive time stepping was applied to avoid numerical instabilities and break-down of
the simulations. Obtained wave heights from the numerical wave calibration tests are
presented in Tab. [C2A

Table 7.2: Input wave periods 7', wave heights Hi,pue and associated amplitude
S, of the piston wavemaker. Resulting mean wave heights H obtained by the
NWT and and H, from the experiments, are also given.

Tls| Hipu [m] S, [m] H [m] H. [m]
1084  0.087  0.026 0.079 0.088

1.348 0.130 0.050 0.120  0.121
1.568 0.176 0.082  0.156 -

7.2.1 Grid convergence of the generated waves

Grid convergence are tested for numerical wave calibration with the wave period T' =
1.568s, using the four grids defined in Tab. [[1 Computed time-series of the free surface
elevation were band-pass filtered using the low cut-frequency fi,, = 0.4/7 and the high
cut-frequency fyign = 8/7. The band-pass filtered time-series of the wave elevation at
x = 0.342m obtained with the different grids are compared in Fig. [[Z2] For this wave
period, this is 17.29m from the wavemaker boundary. Fourier transforms of the computed
wave elevation time-series are found from the time window ¢ = [18s,28s] using FFT.
Resulting Fourier amplitudes are compared in Fig. [[3 Both the second- and third
harmonic components are observed in addition to the linear harmonic. No significant
differences are observed between the transforms of the time-series obtained with the four
grids. In order to test for grid convergence of the calculations, a measure of the error is
needed. For this purpose we use the mean wave height H from a time window where the
solution is close to steady state. An error measure is defined as the difference between H
and the corresponding mean wave height obtained with the finest grid H . The error is

normalized with the mean wave height from the finest grid. Hence, a normalized error is
defined as

EH — —— - (71)
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Figure 7.2: Comparison of time-series of the free surface elevation at x = 0.342m,
obtained from convergence testing of the incident waves. The wave period is
T = 1.568s and input wave steepness is Hy/Ag = 1/20. N is the total number of

grid cells.
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Figure 7.3: Convergence test of computed free surface elevation at x = 0.342m
from numerical wave calibration with wave period 7" = 1.568s and wave steepness
Hy/Xo = 1/20. Fourier amplitudes are obtained using FFT for the time window
t = [18s,28s| of the computed time-series. The frequency is normalized by the

wave frequency w,, = 27/T.
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Figure 7.4: Convergence rate for the mean wave height H from wave calibration
with wave period 7" = 1.568s and wave steepness H/\ = 1/20.

Normalized errors e of the computed waves for the time interval ¢t = [18s, 28s| obtained
with the four different grids, are presented in Fig. [[4l The difference between the
normalized error obtained with the base case grid (grid 3) relative to that obtained with
the finest grid is only 0.5%. Although we cannot conclude that the computed waves are
fully converged, we observe that the differences of the results from the simulations with
the two finest grids are small.

7.2.2 Comparisons with the experiments

Now, as we have verified that the grid sensitivity of the generated waves is small for
the base case grid, the computed time-series of the free surface elevation can adequately
be compared with the free surface elevation measured in the physical wave calibration
tests. Due to the difference in length of the NWT and the physical flume, the waves will
reach the fine grid region where the model is to be placed at different times. We use the
starting time of the wavemaker in the NWT as the reference time when time-series from
the numerical simulations are compared with the measured time-series.

First, results from numerical and physical wave calibration for the wave with period
T = 1.084s and input wave height Hi,,, = 0.087m are considered. The base case grid is
used in the simulation. Figure [L3shows time-series of the free surface elevation calculated
at the position x = —0.356m in the NWT compared with the measured free surface
elevation by WG 3 from the experiments. In the physical flume, WG 3 was located 13.96m
from the wavemaker. The comparison shows some deviation between the computed time-
series from that measured, in particular for the wave front. It is also observed that
the computed wave heights towards the end of the simulated time window is somewhat
lower that the corresponding measured wave heights. The frequency contents of the
simulated and measured wave elevation was obtained from the Fourier transforms of the
time-series presented in Fig. To avoid leakage when computing the discrete Fourier
transform from the wave elevation time-signal, the Fourier transform was computed from
an integral number of wave periods from the time interval ¢t = [15s, 20s] (Ambardar 1995).
The Fourier amplitudes obtained from the simulated time-series are compared with those
obtained from the measurements in Fig. [CO, which shows a 8.2% underprediction of
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Figure 7.5: Time-series of the free surface elevation obtained with the NWT
compared with measured free surface elevation from experiments. Wave period
is T = 1.084s and input wave height is Hj,py = 0.087m.

o
o
al

u Exp.
. ? —-©CIP
£ 0.04 1
()
°
é 0.03¢
Q.
S
Q2
3
L 0.01f

MQ@—QLGM«W

0 1 2 (n/?.o 4 5 6
w

Figure 7.6: Comparison of Fourier amplitudes obtained from FFT of measured
and computed free surface elevation in the wave calibration tests. The FFT is
computed from the time window ¢ = [15s, 20s]. The frequency is normalized with
the input wave frequency w,, = 27/T. Wave period is T' = 1.084s and input wave
height is Hippus = 0.087m.

the linear harmonic component from the computed time-series relative to that from the
measured time-series. Good agreement between simulations and measurements is observed
for the second harmonic component of the free surface elevation.

Next, we consider results from wave calibration tests for the wave period T' = 1.348
and input wave height Hi,,,, = 0.130m. Time-series of computed free surface elevation
at © = —0.356m are compared with measured waves from WG 3 in Fig. [l The
computed free surface elevation is obtained from simulation with the base case grid.
Corresponding Fourier amplitudes calculated from the time window ¢ = [16s,24s]| are
presented in Fig. [[8 The Fourier amplitude of the linear harmonic component obtained
from the simulation is 2.6% smaller than the corresponding Fourier amplitude obtained
from the measurements. Computed free surface elevation shows good agreement with
measurements for this case. However, some deviations are observed for the wave front.
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Figure 7.7: Time-series of the free surface elevation obtained with the NWT
compared with measured free surface elevation from experiments. Wave period
is T' = 1.348s and input wave height is Hiypys = 0.130m.
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Figure 7.8: Comparison of Fourier amplitudes obtained from FFT of measured
and computed free surface elevation time-series in the wave calibration tests.
The FFT is computed from the time window ¢ = [16s,24s]. The frequency is
normalized with the input wave frequency w,, = 27 /T. Wave periodis T' = 1.348s
and input wave height is Hj,py = 0.130m.
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Figure 7.9: Convergence test of wave forces for case with wave period T' = 1.348s,
Ho/Xo =1/20. N is total number of grid cells.

7.3 Nonlinear wave forces on fixed cylinders

The incident waves have been studied by means of wave calibration tests, both numerically
and experimentally. If the kinematics of the incident waves obtained from simulations
agree with the measured waves, accordingly, also the computed wave forces should agree
with the measurements if our model representation of the physical experiments is adequate
and the numerical results are converged. Thus, in the same manner as we confirmed that
the grid sensitivity for the incident waves are small, we must also verify that the computed
wave forces are converged. This is done in the following. The horizontal and vertical
force components are denoted F, and F,, respectively. Further, we define the horizontal
force component to be positive in the wave propagation direction, while the vertical force
component is defined positive upwards.

7.3.1 Grid convergence for the computed wave forces

A convergence study of the computed wave forces are presented for the case of the circular
model with draft d/D = 0.5 when subjected to waves with period 7" = 1.348s and incident
height H = 0.120m as found from the numerical wave calibration test. In the same manner
as for the convergence tests of the incident waves, four grids are constructed using the grid
parameters from Tab. [[Jl Time-series of the computed wave forces obtained with the
four grids are compared in Fig. [[9, which shows that the resulting time-series are almost
identical. As a measure for convergence, we use the mean peak-to-peak force amplitudes
F which are computed from the time interval ¢ = [17s, 23s] where the time-series appear to
be close to steady state. We define the relative error of the computed mean peak-to-peak
force amplitudes as the deviation from the mean peak-to-peak force amplitude obtained
from simulation with the finest grid . Similarly as for the wave heights, the normalized
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Figure 7.10: Test on convergence of mean peak-to-peak force amplitudes obtained
from the time window ¢ = [17,23]s for tests with the circular cylinder with

submergence d/D = 0.5, T' = 1.348s and Hy/\g = 1/20.

error for the peak-to-peak force amplitudes is then defined as

F-F
ep = ——. 7.2
r=— (7.2

Resulting normalized errors ez corresponding to the time-series shown in Fig. [[9 obtained
with the four grids are presented in Fig. [LT0 Although no monotone convergence
is obtained, the peak-to-peak force amplitudes obtained with the different grids are all
within 1.3% from that obtained with the finest grid. Hence, we conclude that the grid
sensitivity for the computed wave forces is small.

The free surface elevation at three positions in the NWT obtained with the four grids
are compared in Fig. [[TIl We see that diffracted waves from the model clearly interact
with the incoming waves. It is mainly where the incoming waves and the diffracted
waves forms anti-nodes, and the resulting waves become locally steep, that the largest
differences in the computed free surface elevation are observed. This can be explained by
wave breaking which is not adequately modelled by the smeared air-water interface.

7.3.2 Discussion of viscous effects

We will now try to estimate what flow behaviour we should expect at the model position.
The incoming waves cause an oscillatory flow around the model. An important parameter
for cylinders in oscillatory flow is the Keulegan-Carpenter number KC' = UT/B ~ nH/B,
where H is wave height and B is the model breadth. This yields KC < 2.0 for all
wave conditions in Tab. B3 Thus, we assume the flow is attached for the circular
cylinder and that the vortex shedding from any edge of the rectangular cylinder is small
compared to the model dimensions (Bearman ef al. 1985)). Another important parameter
is the Reynolds number for oscillatory flow defined as Rn = U2 /wv, where U, is the
maximum tangential velocity outside the boundary layer. For a fully submerged circular
cylinder in attached flow we get Rn =~ 4w(3%/v, where (4 is the mean wave amplitude.
Here we have neglected the exponential decay with depth of the fluid particle velocity
due to the waves. Transition from laminar to turbulent boundary layer flow occur at
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Figure 7.11: Convergence test of free surface elevation with wave period T =
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Rng.+ ~ 10° for a smooth circular cylinder in infinite fluid. Data from Tab. yields
at most Rn ~ 7.9 - 10* < Rngj. Due to effects of roughness at the cylinder surface the
actual Rn..;; will be lower. Hence, transition to turbulence may still occur. However,
we have assumed laminar boundary layer flow. Then the boundary layer thickness in
steady-state condition is found from dgg9 = 4.64/2r/w (Schlichting and Gersten 2000)).
Table yields dpg9 = 3.2 - 1072 — 4.2 - 1073m, which is about 1% of the beam of the
circular cylinder. For the case of the rectangular cylinder, turbulence will always develop
in the free shear layers separated from the sharp edges.

Estimation of skin friction force on the circular model

As the skin friction forces are not computed with our numerical model, an estimate the
order of magnitude of the skin friction force on the circular cylinder is found. First consider
a fully submerged circular cylinder in oscillatory flow. We assume laminar boundary layers
and that the flow is attached. This problem was studied thoroughly by [Stokes (1851)]
Here we follow a procedure from |[Faltinsen (1990). A similar approach was also used
by to compute the frictional damping in roll of ship sections. Here, we
consider the boundary layer flow u(y,t) due to an oscillating current above a fixed wall.
Assume the outer flow is only a function of time and described by U(t) = Uy cos(wt).
Substituting u(y,t) = U(t) — @(y,t) in the boundary layer equations a diffusion equation
for u is obtained. The solution procedure is the same as for the classical Second Stokes
problem (Schlichting and Gersten 2000]). The steady state solution of the velocity profile
in the boundary layer is described by u(y, t) = U [ cos(wt) — exp(—n) cos(wt —n)], where

n = yy/w/2v. The wall shear stress on an impermeable wall is given by 7, = pdu/dy|,—o,
and we get 7, = pulUsy/w/vcos(wt + 7). Long wave approximation yields the local
velocity distribution outside the boundary layer expressed in polar coordinates as Uy, (0) =
2U,sin(#). The velocity amplitude in the waves is Uy ~ wH/2. This yields the in-line
skin friction force per unit length of the cylinder

F, = g,uwHD\/gcos(wt + %) (7.3)

The skin friction force takes its largest value for the highest frequency. Using data from
Tab. in ([C3) gives F,/(pgVy) = 0.012 for a fully submerged circular cylinder. Assum-
ing the skin friction for d/D = 0.5 is F,/(pgVs) ~ 0.5-0.012 and comparing this estimate
with measured forces from model tests, we see that the estimated skin friction is at most
7.3% of the measured horizontal force.

7.3.3 Comparison of computed and measured wave forces

We will now investigate how the computed wave forces obtained from simulations with
our NWT agree with the measured clamping forces from the experiments. This is done
by comparing time-series of the wave forces directly. Also the Fourier amplitudes from
the discrete Fourier transforms of the computed and measured force time-series, which
are found using FFT, are compared. In the following, results from the different test cases
will be discussed.
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Circular cylinder with d/D = 0.2

First we consider the circular floater being fixed with draft d/D = 0.2. Computed and
measured time-series of the horizontal in-line wave force F,, and the vertical wave force F,
are compared in Fig. The corresponding Fourier amplitudes, found using FFT over
an integral number of wave periods in the time interval ¢ = [16s, 21s| are compared also
compared in the figure. After 16 seconds of simulation time we see from the time-series
of computed and measured wave forces that the system is close to a steady state. In this
“steady state” regime, the horizontal wave force amplitudes obtained from simulations
with our NWT are somewhat larger than the horizontal force amplitudes measured. This
is also observed from the Fourier transforms, which shows an over-prediction of the linear
harmonic component from the computed horizontal force relative to the measured hori-
zontal force. The computed vertical force component shows in the steady state regime a
better agreement with the measurements. However, in the transient phase, larger devia-
tions are seen for the vertical force than for the horizontal force. In the Fourier transforms
of the horizontal force, we observe that there in addition to the linear harmonic compo-
nent is a pronounced second harmonic component. With pronounced is here meant that
the magnitude of the second harmonic component is significant relative to magnitude of
the linear harmonic component. A non-zero second harmonic component of the Fourier
amplitudes is also present for the vertical force. Although the magnitude of this second
harmonic is of comparable order as that for the horizontal force (61% for the measured
forces), its magnitude relative to the linear harmonic of the vertical force is marginal. The
free surface elevation measured at three positions close to the model are compared with
the free surface elevation from the present simulation in Fig. Here, the horizontal
position of the wave gauge x,, is given relative to the model position which is represented
by the cylinder axis. The agreement is satisfactory.

Now we consider the tests with wave period 7" = 1.348s for the same draft d/D = 0.2
and wave steepness Hy/Ag = 1/20. Force time-series obtained from the model test and
from the simulation are compared in Fig. [7.14(a)] The corresponding Fourier amplitudes
of the horizontal and vertical forces, calculated from the time interval ¢t = [18s, 24s|, are
presented in [7.14(b)| and [7.T4(c)| respectively. The time-series are in good agreement,
although some differences of the peak-to-peak force amplitudes are observed. When we
consider the Fourier amplitudes for the horizontal force component presented in Fig.
7.14(b)l we see that also for this wave period there is a significant contribution from the
second harmonic component on the total force. In addition, a third harmonic component is
also present. Both the linear harmonic and second harmonic component of the computed
horizontal forces are larger than the corresponding harmonic components obtained from
the experiments. In the time-series of the horizontal force component, this is seen as the
differences in the peak-to-peak force amplitudes.

The largest period simulated for the circular cylinder with draft d/D = 0.2 is T' =
1.568s. Obtained time-series of the computed wave forces for this case are compared
with the measured forces in Fig. [7.I5(a)] The computed and measured force time-series
shows the same trends, but the computed peak-to-peak force amplitudes, in particular for
the horizontal force component, are considerably larger than those in the measured force
time-series. This deviation is also reflected by the Fourier amplitudes presented in Fig.
7.15(b)l which are calculated from the time interval ¢t = [17s, 24s].
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Figure 7.12: Comparison of time-series and corresponding Fourier amplitudes of
wave forces on the circular cylinder obtained from simulations and model tests.
The test parameters are d/D = 0.2, T'= 1.084s and Hy/\y = 1/20.
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Figure 7.14: Comparison of time-series and corresponding Fourier amplitudes of
wave forces on the circular cylinder obtained from simulations and model tests.

Test parameters are d/D = 0.2, T' = 1.348s, Hy/\o = 1/20.
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Figure 7.15: Comparison of time-series and corresponding Fourier amplitudes of
wave forces on the circular cylinder obtained from simulations and model tests.
Test parameters are d/D = 0.2, T'= 1.568s, Hy/\o = 1/20.
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Circular cylinder with d/D = 0.5

We continue on the study of the circular cylinder, but now with the draft being increased
to d = 0.5D. The same wave periods and wave heights as tested in the previous case
are also tested here. Comparisons of force time-series are shown in Fig. [7.16(a)| while
corresponding Fourier amplitudes of the horizontal force and vertical force are presented
in Figs. [7.16(b)|and [7.16(c)} respectively, for the test when the wave period is T" = 1.084s.
The Fourier amplitudes are obtained from the interval ¢ = [16s,21s] of the time-series
presented. For this case, the Fourier amplitude spectrum calculated from the time-series
of the horizontal force and vertical force are very similar. The amplitude of the second
harmonic component relative to the amplitude of the linear harmonic is 15% for both the
horizontal force and for the vertical force, based on the measured data. A small third
harmonic component is also present in the vertical force signal.

The force time-series obtained from the experiments and simulations with wave period
T = 1.348s are compared in Fig. [7.17(a)| which shows good agreement, although the
computed force amplitudes of the horizontal force are somewhat larger than the measured
amplitudes. In the Fourier amplitude spectra presented in Figs. and [7.17(c)] we
observe that while the amplitude of the second harmonic component of the horizontal force
has increased, the same component has nearly vanished from the amplitude spectrum of
the vertical force. In fact, for the measured vertical force, the amplitude of the third
harmonic component exceeds the amplitude of the second harmonic.

Circular cylinder with d/D = 0.8

Finally, we consider the circular cylinder at the largest draft d = 0.8D subject to regular
waves of period 7' = 1.348s and steepness Hy/\g = 1/20. For this case, wave over-topping
on the floater was observed both in the experiments and in the numerical simulations.
A comparison of computed and measured wave excitation forces are presented in Fig.
[7.19(a)|, which shows good agreement. We note from the time-series (Fig. [7.19(a)]) that
the vertical force component has two local maxima’s for each wave load cycle in the
steady state regime. This is associated with the over-topping wave. When the free surface
elevation at the model position increases, the model experience a positive vertical force
due to the hydrodynamic pressure. When the wave elevation becomes so large that over-
topping occur, the pressure due to the water running on top of the model causes a negative
vertical force that counteracts the positive force from the hydrodynamic pressure on the
lower side of the model. As we see from the Fourier amplitude spectrum of the vertical
force component in Fig. over-topping leads to large nonlinearities of the vertical
wave loads. However, the horizontal force component for which the Fourier amplitudes are
presented in Fig. [/.19(b)| is almost entirely described by the linear harmonic. Snapshots
of the local flow kinematics at two time instants from simulations with our NWT are
presented in Figs. and [LZT] showing the velocity magnitude and the z—vorticity,
respectively. We observe that vorticity is induced in the water due to flow separation
from the boundary layer on top of the cylinder during over-topping. Further, vorticity is
generated both in front of and behind the body at the end of the over-topping process,
when the water runs off the body on both sides. The induced vortex at the right hand
side of the body is rotating clock-wise, while the vortex generated on the left side is
rotating counter clock-wise. In addition, some vorticity is observed close to the body



136 A study of fixed cylinders in regular waves

T T T
E
Z
x
[V
E
Z
>
[T
Time [s]
(a)
Horizontal force, FX Vertical force, Fy
80r ‘ ‘ ‘ ‘ ‘ 7 80r ‘ ‘ i
@ Exp. ° —®Exp.
= f —aCIP i —aCIP
2 60r 1 60r 1
(0]
E
= 401 , 40t
Q.
IS
©
ko 20t 1 20t
5
L mee ®elee0eeseesees MM
0 1 2 3 4 5 6 0 1 2 3 4 5 6
ww ww
w w

Figure 7.16: Comparison of time-series and corresponding Fourier amplitudes of
wave forces on the circular cylinder obtained from simulations and model tests.
Test parameters are d/D = 0.5, T'= 1.084s, Hy/\o = 1/20.
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Figure 7.17: Comparison of time-series and corresponding Fourier amplitudes of
wave forces on the circular cylinder obtained from simulations and model tests.
Test parameters are d/D = 0.5, T' = 1.348s, Hy/\o = 1/20.
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Figure 7.18: Computed and measured clamping forces from tests with circular
cylinder at d/D = 0.5, T'= 1.568s, Hy/\o = 1/20.

boundary due to the no-slip condition and some close to the free surface away from the
model. By comparing the numerical results against the recorded movies from the model
test experiment, the latter is assumed to be a false effect due to the finite thickness of the
air-water interface.

Rectangular cylinder with d/b= 0.2

Simulations are performed with the NWT for the rectangular model with draft d/b = 0.2
when subjected to waves with period 7" = 1.348s and steepness Hy/Ag = 1/20. Time
series of the computed wave excitation forces forces are compared with time series of the
measured clamping forces in Fig. The computed force amplitudes of the horizon-
tal force are observed to be larger than the measured force amplitudes. Corresponding
Fourier amplitudes obtained from the time window ¢ = [15s,20s] of the computed and
measured wave forces are compared in Figs. [7.22(b)] and [7.22(c)| for the horizontal force
and vertical force, respectively. The Fourier amplitude of the second harmonic component
of the horizontal force is of the same order of magnitude as the Fourier amplitude of the
linear harmonic component for this case. A pronounced second harmonic component of
the horizontal force was also observed in tests with the circular cylinder for d/D = 0.2.
However, the total vertical force amplitude is much larger than the total horizontal force
amplitude. This is because the projected pressure area in the vertical direction is propor-
tional to the model breadth, while the projected pressure area in the horizontal direction
is proportional to the model draft which is less than 20% of the breadth.
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Figure 7.19: Comparison of time-series and corresponding Fourier amplitudes of
wave forces on the circular cylinder obtained from simulations and model tests.
Test parameters are d/D = 0.8, T' = 1.348s, Hy/\o = 1/20.
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Figure 7.20: Snapshots of the local flow near the fixed model. The air-phase is
excluded. Test parameters here are d/D = 0.8, T' = 1.348s, Hy/ Ao = 1/20. The

contour values for the velocity are given in units of meters per second.
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Figure 7.21: Snapshots of the z—vorticity in the local flow near the fixed model.
The air-phase is excluded. Test parameters here are d/D = 0.8, T = 1.348s,
Hy/X\o = 1/20. Contour values for the z—vorticity are given in 1/s.
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Figure 7.22: Comparison of time-series and corresponding Fourier amplitudes
of wave forces on the rectangular cylinder obtained from simulations and model
tests. Test parameters are d/b = 0.2, T' = 1.348s, Hy/\g = 1/20.
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Figure 7.23: Comparison of time-series and corresponding Fourier amplitudes
of wave forces on the rectangular cylinder obtained from simulations and model
tests. Test parameters are d/b = 0.5, T' = 1.084s, Hy/\o = 1/20.

Rectangular cylinder with d/b = 0.5

Time-series of computed wave forces on the rectangular cylinder with draft d/b = 0.5 due
to waves with period 7" = 1.084s and steepness Hy/Ag = 1/20 is compared with corre-
sponding measured forces in Fig. [7.23(a)] Corresponding Fourier amplitudes obtained
from the time interval t = [16s, 21s| are presented in Figs. [7.23(b)|and [7.23(¢)} The linear
harmonic component dominates for both the horizontal force and the vertical force. Good
agreement between measured and computed forces are observed for this case.

Rectangular cylinder with d/b = 0.8

Finally, we consider the rectangular cylinder with draft d/b = 0.8 when subjected to waves
with period T" = 1.084s and steepness Hy/Ag = 1/20. Wave over-topping on the model
was observed both in the experiments and in the numerical simulation with the NWT



144 A study of fixed cylinders in regular waves

for this test condition. Time series of the computed and measured wave excitation forces
are compared in Fig. . Obtained Fourier amplitudes of the horizontal and vertical
forces are compared in Figs. [7.24(b)|and [7.24(c)|, respectively. Due to short length of the
time series from the numerical simulation, the Fourier transform of the force time-series
are relatively coarse. However, we observe that the horizontal force is almost entirely
described by the linear harmonic component. Further, we observe for the vertical force
that the importance of the second harmonic component relative to the linear harmonic
component increases when over-topping occur.
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Figure 7.24: Comparison of time-series and corresponding Fourier amplitudes
of wave forces on the rectangular cylinder obtained from simulations and model
tests. Test parameters are d/b = 0.8, T' = 1.084s, Hy/A\g = 1/20. Over-topping
is observed in the model test and in the simulation. Due to short time series,
the resolution of the discrete Fourier transform is coarse.
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7.4 A generalized Morison model

In the following, a simplified numerical model for computation of wave forces on cylinders
are discussed. It is common engineering practice to apply the Morison’s equation when
wave excitation forces on vertical cylinders are sought, which yields the in-line hydrody-
namic force on the cylinder. Morison’s equation is expressed in terms of a mass coefficient
C)r and a drag coefficient C'p which generally has to be determined empirically. Further,
Morison’s equation applies for large wave lengths A relative to the cross-sectional dimen-
sion D of the cylinder. For a vertical cylinder, the wave is considered long if \/D > 5.
A consequence of this is that both acceleration and velocity in the incident wave do not
vary much over the cross-section of the cylinder and can be evaluated at the cylinder
axis as if the cylinder was not there. The mass coefficient in Morison’s equation has
two components. One component is due to the undisturbed pressure field which yields
the Froude-Kriloff force, while the other component is due to the diffraction effect of the
cylinder. We propose a generalization of Morison’s equation where the term including
the mass coefficient is replaced by an explicit expression for the diffraction force and the
Froude-Kriloff force as

1

where FP and FI'K is the 2D diffraction force and the 2D Froude-Kriloff force, respec-
tively, on the cylinder cross-section. The index ¢ indicates the direction of the force, where
i = 2 refers to the horizontal (x—) direction and ¢ = 3 refers to the vertical (y—) direction.
Further, p is mass density of water, D is the projected dimension of the cylinder in the
force direction and wu; is the fluid particle velocity evaluated at the position of the cylinder
axis as if the cylinder was not there. This approach is consistent with the linear potential
flow analysis of a semi-submersible as described by |[Faltinsen (1990). How the different
terms in ([ZZ]) are obtained are discussed in the following.

Froude-Kriloff forces

The Froude-Kriloff forces are found by integrating the hydrodynamic pressure p from the
incident wave over the wetted surface S of the cylinder, i.e.

FFE = — / pn,;dsS. (7.5)
S

Here n; is the i-th component of the unit normal vector n pointing into the fluid domain.
To first order in the wave slope € = k(4, the Froude-Kriloff force is found by integrating
the linear hydrodynamic pressure p; = —pa%, found from Bernoulli’s equation, over
the mean wetted surface of the cylinder Sy. Here ¢, is the first order velocity potential
of a regular wave. Moving to second order in &, the hydrodynamic pressure is from
Bernoulli’s equation found to be py = —p% — 0.5p|V¢1|2, where ¢ is the velocity
potential correct to second order (see e.g. [Dean and Dalrymple (1991)]). Integrating the
second order pressure over the mean wetted surface yields a second order force. We
must also account for the time-varying wetted surface of the cylinder, which is done by
integrating the linear hydrodynamic pressure from y = 0 to y = (1(z,t). (3 is the first
order free surface elevation. By Taylor expansion of Bernoulli’s equation from y = 0, the

linear hydrodynamic pressure in the wave zone is found to be p; = pg ({1 — y). This yields
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the total Froude-Kriloff force correct to O (¢2). It should be noted that it is questionable
to separate out a nonlinear Froude-Kriloff force from a nonlinear analysis as described
above.

Diffraction forces

Due to the presence of the cylinder, the hydrodynamic pressure field in the incident
wave will be modified. This yields the diffraction force. The diffraction potential can be
found either numerically of analytically and then used to calculate the diffraction forces
directly. We will use a simpler approach as described by [Newman (1977). By means of
consistency with calculation of the Froude-Kriloff forces, also the diffraction forces should
be evaluated to O (£2) and the nonlinear interaction with the incident waves should be
considered. Despite of this, a linear approach is used here for the diffraction forces. Using
linear potential flow theory, the diffraction potential can be related to the incoming wave
potential and the radiation potentials through the Haskind relation. This means the
diffraction forces on a section of the cylinder can be written in terms of two-dimensional
added mass and damping coefficients as

FP = a;i; + byu;. (7.6)

Here, 7; and wu; is the particle acceleration and particle velocity of the incident wave in
the i-th direction, respectively. One important question here is: where do we evaluate
the velocity and acceleration for a horizontal cylinder in the free surface? To answer this
question, one should go back to the derivation of the Haskind relation. Then one should
focus on what are the relations between the body boundary condition in the diffraction
problem and the body boundary condition in the radiation problem. Intuitively, the
velocity and acceleration used should represent the body boundary conditions in the
diffraction problem. But, since both particle acceleration and velocity is space-varying
under a wave, representative values should be used. Hence, for the vertical diffraction
force component on the rectangular cylinder, the velocity and acceleration is evaluated at
[z,y] = [0, —d] where d is the model draft. For the horizontal diffraction force component,
the velocity and acceleration is found from a weighted average over the center-plane of
the model, i.e. by integrating the depth dependency of the acceleration and velocity from
y = —d toy = 0. The added mass and damping coefficients are a priory unknown and has
to be found either by means of tabulated values or from computations. Since we assume
2D flow in the xy-plane, this implies we have to solve the radiation problem in heave and
surge to find the added mass and damping coefficients. Added mass and damping are
generally dependent on the frequency of oscillation, body geometry and the water depth.
The radiation problem for heave and sway motion of a rectangular cylinder at finite water
depth is solved using a linear time domain boundary element method (BEM) computer
program. Dimensionless coefficients are listed in Table Locally near the model, the
free surface elevation will be modified due to the presence of the cylinder. Amplification
of the local free surface elevation due to diffraction effects may cause the incoming wave
to over-top on the rectangular cylinder, even when the incident wave amplitude is smaller
than the freeboard. Over-topping will naturally have an effect on the vertical force time
history of the wave excitation force which will be dependent on the nature of the over-
topping wave (see |Greco et al. (2007)). Over-topping is not modelled explicitly by our
model.
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Table 7.3: Non dimensional added mass and damping coefficients in heave and
sway for a rectangular cylinder with beam B and draft d oscillating with the
non-dimensional frequency wy/B/g = 1.014 at finite water depth h/B = 1.81.

a [ a2 bao
B/d h/d pgii pwzgd pBd pwBd
2.40 4.43 0.8850 0.5592 0.9108 1.0401

1.50 2.72 0.6512 0.6737 0.2392 1.5109

Viscous drag forces

Since the pressure distribution on the cylinder is modified due to separation of vortices
at the sharp edged corners of the rectangular cylinder, the cylinder will experience a drag
force. This drag force is represented by the last term in (). The Reynolds number and
surface roughness dependence of C'p for sharp edged bodies can be neglected. However,
the KC-number dependence should be assessed. For a facing square cylinder in infinite
fluid at low KC-number flow (KC < 10), experiments shows that the drag coefficient
Cp ~ 3.0, i.e. KC-independent (Bearman et al. 1984)). Viscous drag force is included in
the horizontal direction for the whole wave cycle, and in the vertical direction only when
the vertical velocity at the cylinder centre is negative.

7.4.1 Comparisons with CFD-simulations and experiments

To test the proposed method, two test conditions from the experiments in 2006 are con-
sidered. The first case considered is where the rectangular cylinder with draft d = 0.125m
is subject to regular waves with period 7" = 1.084s and wave height H = 0.088m. This
means KC ~ 7H/B = 0.92. Over-topping was not observed in the experiments for this
case. Numerical simulation with the CIP-based NWT using the base case grid and the
same input parameters as in the experiments has been performed. The vertical forces
computed with the NWT was in good agreement with experiments, meaning the dif-
ference between computed force amplitudes and measured force amplitudes is less than
5%. Comparing peak-to-peak force amplitudes ((F,” + |F,|)/2) shows that the NWT
underpredicts the measured values from experiments by 1.5%. When it comes to hor-
izontal forces obtained with the NW'T, the agreement with experimental results is less
good. Computed horizontal force amplitudes differ from the measured horizontal force
amplitudes by 15%. Peak-to-peak force amplitudes differ by 14%. One should note here
that the time series of the forces obtained with the NWT are relatively short, meaning
forces from 2-3 wave cycles are used for comparison. This is due to the length of the
computational domain and the fact that no wave absorber is used on the wave maker in
the simulations to take care of the reflected waves from the model, which puts a limit
on the simulation time. Hence, computed forces with the NWT might not give a good
representation of the steady-state values. In addition comes the effect of increased wa-
ter depth during the simulation due to the linear imposition of boundary condition on
the wave maker. As in the experiments, overtopping was not observed in the numerical
simulation with the NWT for this case. The generalized Morison model (GMM) gives a
good representation of the measured forces, relative to the simplicity of the model. The
difference in vertical force amplitudes obtained with the GMM compared to experiments
is less than 5.5%. This is also the case for the horizontal force amplitudes. According
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Table 7.4: Measured and computed wave excitation force amplitudes ([N/m]) in
sway and heave for the test case 1 and 2 with the rectangular model. Beam-to-
draft ratio for case 1 is B/d = 2.4, while for case 2 B/d = 1.5.

Case 1 Case 2
Fr F- F; F, Fir F- F; Fr
Experiments 80.27 -73.26 53.03 -73.52 | 107.7 -111.8 41.85 -60.53
CIP 92.30 -82.34 51.73 -76.66 | 118.0 -117.9 43.66 -53.32
Gen. Morison 84.65 -70.23 50.61 -69.60 | 116.8 -98.90 37.04 -52.21
Newman, eq. (Z7) | 89.96 -89.96 65.95 -65.96 | 137.2 -137.2 54.56 -54.56

to Newman (1962)| the wave excitation force amplitude for the mode given by k£ = 2, 3,
referring to the sway and heave mode respectively, can be related to the potential flow
damping coefficient by for the mode in question as

Fka = 0.5H\/ pg%kk/w. (77)

This relation yields force amplitudes in sway and heave which are at most 25% off the
measured value in the experiments for the present case. Force amplitudes, both positive
and negative, of the in-line horizontal force and the vertical force obtained from measure-
ments and from the different numerical methods are given in Table Time series of
the free surface elevation at the model position from wave calibration tests and the forces
measured in the experiments, are compared with corresponding numerically obtained time
series from the CIP-based NWT and the generalized Morison model in Figure The
computed force time history show the same behaviour as the measured time series from
experiments.

In the second case the draft was increased to d = 0.200m, yielding a free-board of
0.050m. The cylinder was subject to regular waves with the same wave parameters as in
Case 1. Over-topping was observed in the experiments for this case, despite the fact that
the incident wave amplitude was lower than the free-board. This means local diffraction
effects are important. The over-topping wave had a dam-breaking-like behaviour. Simu-
lations with the CIP-based NWT was performed with the draft increased to d = 0.200m
using the same grid, computational domain and wave maker signal input as for Case 1.
Over-topping was also seen in the numerical simulations, with the same dam-breaking-like
behaviour as observed in the model test. An effect of over-topping on the wave excitation
forces is seen to be a bump on the positive half cycles of the vertical force time history,
associated with the pressure from the over-topping wave on the top-side of the cylinder.
This effect of over-topping on the vertical force is captured by our NWT. As in Case 1,
the generalized Morison model is applied to obtain force time series for Case 2. Resulting
time series of measured and computed forces for the case of d/H,, = 0.8 are compared
in Figure [[Z0 Since the incident wave amplitude is lower than the freeboard of the
cylinder, the generalized Morison model obviously does not predict over-topping. This
explains why the obtained time series of the vertical wave excitation force from the GMM
do not show the same trend as the measured time series and time series obtained with
the CIP-based NW'T of the vertical force. Positive and negative wave excitation force
amplitudes are compared in Tab. [[4l The generalized morison model is not tested for
the circular model.
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Figure 7.25: Comparison of incident free surface elevation at the model position
and resulting horizontal in-line and vertical forces on the rectangular cylinder
when d/H,, = 0.5, obtained from experiments and numerical simulations. Over-

topping is not observed.
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Figure 7.26: Comparison of incident free surface elevation at the model position
and resulting horizontal in-line and vertical forces on the rectangular cylinder
when d/H,, = 0.8, obtained from experiments and numerical simulations. Over-
topping is observed in experiments and in the simulations with the CIP-based

NWT.
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7.5 Summary

Our study on horizontal cylinders fixed in the free surface zone and subject to large
amplitude regular waves has been presented. Numerical wave calibration was performed
with the CIP-based NWT for all test wave conditions used in simulations with models
present. As in the experiments from 2006, both a circular and a rectangular geometry
were tested with our NWT. Fourier analysis of the measured and computed force time-
series showed that the second harmonic component of the horizontal force is important
when the draft is small relative to the beam of the model. Further, when over-topping
occur, the horizontal force is almost entirely described by the linear harmonic component,
while the second harmonic component becomes pronounced for the vertical force. This
was observed for both models tested.

A generalized Morison model (GMM) for computation of wave excitation forces on
cylinders in the free surface was proposed. The model was tested using test parameters
from the experiments for a rectangular cylinder. Forces obtained with the GMM were
compared with results from experiments and simulations with the NWT. The GMM
yielded good results for the case when over-topping did not occur. However, when over-
topping occur, the GMM is no longer adequate.

The CPU-time for each of the numerical simulations performed with the CIP-based
NWT from which results have been presented, were of the order of 30 hours on an Intel(®)
Core™ Duo 2.4GHz processor.
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Chapter 8

A study of a floating circular cylinder
in regular waves

In this chapter we investigate the nonlinear wave-induced motions of a moored circular
cylinder. Time-series of the body motions in heave and sway obtained with the CIP-
based NWT are compared with measured time-series from the model tests. This work

has resulted in a journal paper (Kristiansen and Faltinsen 2009).

8.1 Numerical modelling of the 2008-experiments

The experiments from 2008 was characterized by a floating circular cylinder oriented
horizontally in the free surface, which was moored and subject to regular waves. Nonlinear
wave induced motions of the cylinder were studied. In the following, a numerical model
representation of the experiments from 2008 is presented.

8.1.1 The computational domain and grid arrangements

A numerical model of the flume used in the experiments from 2008 was constructed. With
the same argumentation as in the previous chapter, the domain length was based on the
wave length A estimated from potential flow theory, corresponding to the wave period
tested. The circular model with diameter D = 0.100m was for most cases placed at a
distance 4.5\ from the wavemaker boundary. The exception was one case where the model
was located 9.5\ from the wavemaker boundary in order to run longer simulations. The
water depth was A = 1.00m as in the experiments. Domain height was chosen to be 1.90m,
meaning the distance from the calm water surface to the top boundary was 0.90m. For
wave generation, the physical flume is equipped with a flap-type wavemaker. In the NW'T,
the flap wavemaker was modelled linearly by imposing the horizontal velocity component
of the paddle onto the left hand boundary of the domain, which was fixed in space. The
flap motion amplitude needed for generation of waves with a given wave height H was
estimated from (B20). A damping zone with length L,, = 4\ was applied at the right
hand side of the domain. The top boundary was modelled as an open boundary with
atmospheric pressure, while at the bottom boundary a no-slip condition was imposed. A
no-slip condition was also applied on the floating body. In Fig. a qualitative sketch
of the computational domain is presented.

153
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Figure 8.1: Sketch of the domain used in the simulations with the moored floating
cylinder. Here )\ is wave length, D is model diameter, h is water depth, Ax and
Ay are horizontal and vertical grid spacing, respectively. The parameter v = 2
for most cases, while a = 4 for all tests except when T" = 0.544s for where a = 9
was used.

Table 8.1: Grid parameters used to obtain three grids with different resolution for
simulations of the moored floating cylinder in waves. Due the gridding technique
will the total number of grid cells vary from case to case.

Np N, N;
Grid1 55 40 80

Grid2 60 45 90
Grid3 70 45 100

Non-uniform staggered Cartesian grids were used. Grid-stretching was applied in
order to increase the grid resolution in regions of the domain where large gradients of the
solution occur, while keeping the CPU-time at an acceptable level. The computational
domain was divided into sub-regions where different gridding strategies were applied.
In the longitudinal direction, the domain was divided in to three sub-regions L; with
1 = 1,2,3 as shown in Fig. Constant spacing Az; between the vertical grid lines
was applied in L;, where Ax; was based on the wave length \. In Ly, Axz; varied in
a squared cosine manner in order to match the relatively coarse grid in L; with a fine
grid region at the model position. Constant grid line spacing was used in the fine-grid
region of width vD inside Lo, where v = 2 for most cases. In L3, the grid increment Az;
varied as a quadratic function. For the vertical direction, quadratic grid stretching are
used in Ay and Hj, while Ay; is constant in the interface zone defined by Hy. The height
of the interface zone is for the majority of the tests Hy = 0.20m, except for cases with
large body motions, where a larger value of H, is used to avoid that the model goes out
of the fine grid region. Smooth variations of the grid increments between the different
grid regions are ensured. For each test condition, three grids with different resolution are
constructed such that grid sensitivity of the results could be tested. Grid parameters for
the three grids are listed in Tab. Bl Due to the gridding method described above, the
total number of grid cells in the domain will vary from case to case.
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Table 8.2: Computed mean wave height H,,,, from numerical wave calibration
tests and measured mean wave height, HY¢? and H'S? corresponding to WG2
and WG3, from the physical wave calibration tests. Linear wavemaker theory is

used to calculate the necessary flap amplitude for the input wave height Hj,pys.

Ts| Hupw [m] Huuw [m] HE ™ [m] HE ™ [m]

exp exp

0.457 0.023 0.021 0.023 0.023
0.497 0.028 0.024 0.029 0.029
0.544 0.033 0.029 0.035 0.033
0.601 0.040 0.036 0.044 0.042
0.761 0.065 0.060 0.069 0.062
0.878 0.086 0.081 0.085 0.085
1.038 0.120 0.116 0.120 0.119
1.132 0.143 0.139 0.138 0.139

8.1.2 Numerical wave calibration

Numerical wave calibration tests are performed, which are simulation of wave generation
with the NW'T when the model is not present. Obtained wave heights from the numercial
wave calibration tests and measured wave heights from the physical wave calibration tests
are presented in Tab. B2l The obtained wave heights in the NWT are generally lower
than the input wave height used when estimating the necessary flap amplitude of the
wavemaker. Computed time-series of the free surface elevation at x =m and x =m for
the two wave periods T" = 1.038s and 7" = 1.132s are compared with measured free
surface elevation from the physical wave calibration tests in Figs. and B3 Good
agreement between the computed and measured free surface elevation is observed for the
steady state region of the time-series, while some deviations are observed in the wave
fronts. It is in general difficult to reproduce the exact transients of the front of the
wave train in the experiments with the NWT. This has different reasons. First of all,
when the generated waves are short, it is computationally costly to resolve the waves
in a domain with dimensions of the physical flume. Thus, we have used a shorter wave
tank in the numerical simulations than the actual physical wave flume. Second, when
comparing time-series of the free surface elevation from flumes with different dimensions,
there are two important wave characteristics that has to be accounted for. These are
the phase velocity and the group velocity. If one travels with the wave front, linearly
the wave-front kinematics repeat itself when the wave front has propagated an integral
number of wave lengths. Hence, when the computed free surface elevation in the wave
front is compared with measurements done in the larger physical flume, the difference of
the distance between the wavemaker and wave probe in the physical lume and that in
the numerical flume should also be an integral number of wave lengths. However, in the
fully nonlinear problem the wave-front kinematics can be different even for two positions
located an integral number of wave lengths apart. This means that if the dimensions
of the NWT are different from the dimensions of the physical wave tank, the transient
behaviour of the wave front will not be captured well.
In the adopted free surface capturing method where the step-like color function ¢4 (x, y, t)

is used to define the water phase, the free surface is found from the color function as the
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Figure 8.2: Comparison between free surface elevation obtained from numerical
and experimental wave calibration tests. Wave period is T" = 1.038s and input
wave height is H = 0.120m.
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Figure 8.3: Comparison between free surface elevation obtained from numerical
and experimental wave calibration tests. Wave period is 7' = 1.132s and input
wave height is H = 0.143m.
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Figure 8.4: Contour levels of the color function ¢, representing water during
numerical wave calibration for case with wave period 7' = 1.038s and wave height
H = 0.120m. The free surface is represented by the contour ¢; = 0.5.

contour ¢; = 0.5. Due to numerical diffusion at the steep gradients of the color function,
some smearing of the color function is observed during the simulation. This is exemplified
in Fig. B4, where the vertical position in time of the contours defined by ¢; = 0.05,
¢1 = 0.5 and ¢; = 0.95 at the two positions z =m and x =m are shown. Numerical diffu-
sion is observed as increasing distance between the contour lines in time for the direction
given by the steepest gradient.

8.1.3 Modelling of the mooring line arrangement

The mooring system was modelled as straight linearly elastic lines where in the simulations
the far end were pin-pointed at the coordinates of the contact point between the mooring
line and the pulley from the experimental test setup. The other end of the mooring line
was located at the model center, i.e. the cylinder axis, and was thus moving with the
body. Two mooring lines were applied and the line geometry was symmetric about the
vertical y-axis through the cylinder axis when the model was resting at its equilibrium
position. Then, the horizontal and vertical extent of each mooring line was [, = 2.43m
and [, = 0.136m, and the mooring lines made an angle o = 3.2° with the calm free surface
as in the experiments. The mooring lines had pre-tension Fyy = 38.1 N and an equivalent
spring stiffness k. = 151.2N/m? in the 2D model. Mooring line forces were decomposed
to yield components in both horizontal direction and vertical direction, depending on the
instantaneous position of the model.
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8.1.4 Equivalent mass of the circular cylinder with end-plates

In the model tests presented, the model was a circular cylinder equipped with circular
end-plates. These end-plates were made of plexi-glass and contributed to 33.7% of the
total mass of the model, but their contribution to the total buoyancy were only 13.4%.
Since the NWT is a 2D code, it cannot include these end-plates into the calculations.
Further, modelling the cylinder with the same cross-sectional dimensions and measured
mass divided by the model length, as in the experiments, will give an incongruity be-
tween model weight and hydrostatic forces on the model. Hence, an equivalent mass of
the model has to be introduced when numerical simulations of the model tests are per-
formed. This effective mass is found by balance of static forces in the vertical direction,
deduced from observations and measurements in the model tests. When the model in the
experiments was moored and in its equilibrium position, the cylinder axis was observed to
have a positive vertical offset Ay = 4mm from the calm water surface, which means the
submerged area A of the circular cross-section can be determined. Then the buoyancy
force of the model, excluding the end-plates, is found as B = pgAL,,, where L,, is the
length of the model. The three mooring lines, which all made an angle o = 3.2° with the
calm water surface, had a pre-tension measured to be Fy; = 10.53N, Fyo = 11.20N and
Fo3 = 21.67N. Thus the equivalent mass of the cylinder is found, using Newton’s first law,
as M, = (B + S Fus sin(a)) / (9Lm) = 3.940kg. This equivalent mass is used as input
to the NWT.

8.2 Identification of damping in the experiments

Free decay tests of the sway motion of the moored cylinder are conducted, both numer-
ically and experimentally, in order to identify the different sources of damping in the
experiments. The numerical free decay tests was performed using the same initial condi-
tions as in the experiments. The initial horizontal offset of the model from equilibrium
was 72(0) = 0.047m. Numerical and experimental results are compared in the following
and deviations are discussed. The relative importance of different physical effects causing
decay rates of the motion amplitudes are also presented.

In Fig. time-series of the sway motion obtained from CIP-simulations are
compared with sway motion deduced from the mooring line forces measured in the ex-
periments. Corresponding decay rates of the sway motion amplitudes are shown in Fig.
B5(M)] Both in the experiments and in the simulations, the period of the sway motion
was found to be T' =~ 1.09s, which is the natural period in sway from linear potential flow
theory. In Fig. the theoretical decay rate due to linear wave radiation damping is
plotted for comparison. While the decay rate of the sway motion obtained from numeri-
cal simulations seems to approach that due to linear wave radiation damping, there is an
increase in the decay rate of the sway motion amplitudes obtained from the experiments.
This increase in the damping level with decreasing amplitude of oscillation is hard to
explain in terms of hydrodynamic effects. If the model oscillates with an amplitude 7,
equal to the initial horizontal displacement at its natural frequency, the Reynolds number
for oscillatory flow is Rn = % ~ 10* which means the boundary layer is laminar in
attached flow (Ealtinsen 1990]). Changes in the damping level are thus not likely to be
associated with transitions in the boundary layer flow. In the following, viscous effects are
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Figure 8.5: Free decay of the circular cylinder in the sway mode of motion. The
initial horizontal offset from equilibrium is 47mm. Theoretical and empirical
damping rates are added in (b) for comparison.
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discussed. Investigation of the Keulegan-Carpenter number, defined as KC' = 271,/ D,
shows that KC' > 2 for the two first periods of oscillation in the free decay test. This
means viscous flow separation is likely to occur, which is also seen in the numerical sim-
ulations where the flow separates and vortices are shed from the body surface during the
two first periods of oscillation. The damping term due to viscous flow separation are al-
ternatively estimated as follows. By assuming that the free surface acts as a wall and that
the boundary layer flow is laminar, a linearized viscous damping force Fp = —bi,1), due to
flow separation is added to the sway motion equation. Equivalent linearization is applied
to obtain b3, = B%pCDDwngaLm, where Cp ~ 0.2KC (Graham 1980)). The boundary
layer flow on the model surface will also contribute to the damping of the body motion.
If the flow is assumed attached to the body surface an estimate of the damping level in
the experiments due to skin friction on the half submerged circular cylinder of length
L,, = 0.58m with end-plates can be found by linear theory. For harmonic oscillations
with constant amplitude 7,5, = 0.02m at the natural sway frequency w,» = 5.75rad/s, the
contribution from skin friction, i.e. tangential stresses on the cylindrical part of the model,
can be shown to be |F,| = Jpwnoq\/$ DLy, ~ 0.03N (Bafchelor T967). There is also an
effect from normal viscous stresses on the surface, which according to Stokes (Stokes T85T))
yields an equal contribution as that from tangential stresses on the surface of the circu-
lar cylinder. The skin friction drag on the end-plates used to ensure 2D-conditions are
found through Stokes’ second problem to contribute |FF”| ~ 0.03N to the viscous drag
force. The influence due to the narrow gap between the end-plates and tank walls on the
viscous effects is negligible. Thus, the total damping force due to the boundary layer on
the model in the physical free decay test is of order |F*| ~ 0.09N. This damping force
is shown to decay linearly with 75,. In comparison, the linear wave radiation damping
for this case is |F,,| = 0.27N. If the flow does not separate, this means that about 25%
of the total theoretical hydrodynamic damping force is due to boundary layer effects at
the natural period in sway. Theoretical decay rate of the sway motion amplitudes due to
viscous damping and linear wave radiation damping is shown in Fig.. The obtained
damping coefficients shows that initially, damping due to viscous flow separation is of the
same order as the linear wave radiation damping. However, the increasing decay rate seen
in the later stage of the experiments could not be explained in terms of viscous effects.
Damping due to wall contact could be another explanation, but investigation of the jerk
parameter for the measured acceleration time-records does not indicate any wall contact
events that could have explained the increased damping level. However, friction in the
pulleys used in the mooring line arrangement will introduce damping to the system. Free
decay tests of the model in air was performed in order to investigate the damping from
the mooring line arrangement. Physically, this was done by suspending the model using
a long line from the roof and then draining the flume, such that the model appeared as
a long pendulum. The sway motion amplitudes from free decay in air also showed the
same tendency as seen for free decay of the sway motion for the semi-submerged cylin-
der, namely an increasing decay rate with decreasing amplitude. This means that the
increasing damping level in the last part of the free decay test is not related to hydro-
dynamic effects, but most probably associated with nonlinear damping due to friction in
the pulleys used in the mooring line arrangement. By using the experimentally obtained
decay rate for the largest sway motion amplitudes from the free decay test in air, a lin-
ear approximation of the damping coefficient due to pulley-friction was estimated. The
obtained damping coefficient, b5,, yielded a corresponding damping ratio in water due to
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the pulleys as £ = b,/ (2w, (m + az)) ~ 0.012. In comparison, the damping ratio due to
skin friction on the semi-submerged cylinder in attached flow is & = 0.0091. The theo-
retical decay rate of the sway motion amplitudes when all damping terms deduced above
are included is presented in Fig. . Since the damping coefficient due to viscous
flow separation depends on the motion amplitude, the decay rate is found by iteration.
Neither skin friction drag, nor damping due to pulley-friction is included in the numerical
simulations with the NWT. However, the forces from normal stresses due to the bound-
ary layer on the cylinder surface are implicitly included in the pressure forces. What the
results in Fig. indicate is that the very good agreement between the experiments
and the CIP shown in Fig. for the initial oscillations is coincidental. Even though
the pulley-friction and the skin-friction are not dominant, their effects should appear as
a visible difference between the experiments and CIP-simulations.

8.3 Comparisons between model tests and simulations

The wave-induced sway and heave motion of the cylinder are obtained by integration
of the measured accelerations. Further are the obtained model motion from numerical
simulations band-pass filtered using the same cut-off frequencies as for the measurements.
Roll motion of the circular cylinder is not considered in the present study. Comparisons
between numerical simulations and experiments are discussed in the following.

8.3.1 A model based on linear potential flow theory

Since we are dealing with nonlinear motions, we define the sway and heave motion am-
plitudes used for comparison as ng, = 0.5(n; + n;, ), where k = 2,3 refers to the sway
and heave mode, respectively. Here 1, is the positive amplitude and 7, is the negative
amplitude in steady state condition. The motion amplitudes were made dimensionless
using the incident wave height H measured in the wave calibration tests. Sway and heave
response of the model predicted by linear potential flow theory with additional damping
due to viscous and pulley effects, was used for comparison and is derived as follows. The
2D excitation force amplitude Fj, has been related to the potential damping coefficient
by as Fro = 0.5H\/pg?b},. /w (Newman 1962). We assume that roll motion is negligible.
Then, it follows from the uncoupled linear equations for sway and heave that

Nka _ F]m/ (O5H)
ot \/(Ckk — w2 (m+ ag))” + W,

(8.1)

Here, m is the structural mass of the model per unit length, ax, and by are the frequency
dependent 2D added mass and damping coefficients, ¢ is the 2D restoring coefficient,
w is wave frequency, p is mass density of water while g is the acceleration of gravity.
For the heave mode, i.e. k = 3, only linear wave radiation damping is included and
hence b33 = 0Y; in (BJ). The added mass and potential damping coefficients (ay, and
bi.) for infinite water depth was provided by Skejic (Skejic 2008). As observed from the
free decay tests, viscous damping gives a significant contribution to the total damping at
the natural period in sway. Thus, in addition to the linear wave radiation damping, the
viscous damping terms due to boundary layer effects and flow separation from the semi-
submerged circular cylinder, b5, and bY, respectively, are included in byy. The boundary
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Figure 8.6: Heave and sway response amplitudes, 713, and 7, respectively, ob-
tained from experiments and normalized by incident wave height H from wave
calibration tests. Results are compared with linear potential flow theory and
theory where viscous damping and pulley friction damping are included. Also
results based on the CIP-method are shown.

layer damping is found as b3, = muD\/w/v + p/w/(20)Sy/ L. Here, the first term is
due to skin-friction and normal-stresses on the cylindrical part of the model while the
last term is due to skin-friction on the end-plates of the model. Further, S, is the total
wetted area of the end-plates. The hydrodynamic damping coefficient in (§I]) for the
sway mode is then by, = b% + b3, + b5, Also damping due to friction in the pulleys
(bh,) is added for comparison. Since the viscous damping coefficient by, depends on the
amplitude of the sway motion, the sway motion equation including the viscous damping
term is solved by iteration to find the sway motion amplitude for a given wave height. In
Fig. B, the heave and sway motion amplitudes from the experiments are presented and
compared with linear potential flow theory using Eq. (&J]). In addition, the sway motion
amplitudes are compared with theory where the linearized viscous damping and linearized
pulley damping are included. Two noticeable features are observed. One feature was large
amplitude sway motion that occurred when the wave period was half the sway natural
period, which also was characterized by a shift in the response frequency. The second
feature is the very large discrepancy between measured sway motion and that predicted
by linear potential flow theory close to the sway natural period. These two particulars
are discussed in the following.
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Figure 8.7: An zy—plot of the heave and sway motion of the cylinder in the
time interval ¢ € [22,25]s obtained with the NWT compared with measured
response in the experiments for the case when 7' = 0.544s and wave steepness is
H/X =1/14. The arrows indicates the direction of the motion.

8.3.2 Subharmonic response

Steady-state of the cylinder motion was reached in all the test runs, except for the tests
for which the wave period was T = 0.544s. For these tests, the response amplitudes of
the sway mode of motion were observed to increase until the motion became so large
and violent that contact between the model and the side walls of the flume occurred.
In Fig. BET4l time-series of the sway motion from repetition tests with the wave period
T = 0.544s are compared. The repetition tests shows that this characteristic sway motion
was repeatable until wall-contact, but the sway response had different behaviour for the
two wave steepnesses tested. Since no steady-state was reached for tests with 7" = 0.544s,
the maximum response amplitude before contact occurred is used for comparison here,
which explains the scatter of the sway response in Fig. for this wave period. The
instability phenomenon was also observed to be characterized by a shift in the sway
response frequency. In the first stage after the wave train has reached the model, the
cylinder started to oscillate in heave and sway with period equal to the wave period,
as expected. However, after a build-up through 18 - 20 wave periods, the sway motion
frequency had become half the wave frequency, such that the frequency of the sway motion
was equal to the natural frequency in sway. In order to get a better impression of the
motion, an zy—plot of the heave and sway motion is presented in Fig. Such sub-
harmonic response cannot be explained in terms of linear potential flow theory. Results
shows that the largest sway motion amplitude obtained from experiments for some of
the repetition tests was more than 250% of that predicted by linear theory for this wave
period. Body motion obtained from numerical simulations for this particular case is
compared with experiments in Fig. for the smallest wave steepness H/A = 1/14.
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Figure 8.8: Heave and sway motion of the cylinder obtained with the NWT and
compared with measured response from experiments when 7' = 0.544s. Input
wave steepness was H/\ = 1/14.

Due to the different length of the NW'T relative to the physical flume, there is a phase
difference between the measured and simulated time-series. The computed time-series of
the body motion is thus tuned such that the wave front reach the model at the same
time as in the experiments. The reference time is measured from the startup of the
wavemaker in the physical model tests. The heave motion shows good agreement. It is
also noted that for the sway motion the numerical simulations also show a subharmonic
oscillation with frequency half the forcing frequency. The clearly seen in Fig. where
the power spectra obtained from computed and measured time-series of the sway motion
are compared. Moreover, the calculations are limited in time. The reason is the length of
the computational domain in connection with wave reflections. It is after the numerical
simulation time that the experimental sway amplitudes shows to increase strongly. In
the experiments, the sway response showed to be quite different for the two wave heights
tested (see Fig. ETI4). This indicates that the sway response for this wave period is
either sensitive to the wave steepness directly, or more likely, sensitive to the transients
associated with the wave front. Thus, if the wave front in the experiments is not well
reproduced in the simulations, deviations of the resulting sway motion should be expected.

A hypothesis is that the phenomenon is due to instabilities. An analogy is what
happens with the Mathieu equation which formally can be expressed as mZ + c(1 +
dcoswt)r = 0. Instabilities happen for instance in the vicinity of w,/w = 0.5, where
the natural frequency w, = \/c¢/m (McLachlan 1964). The apparent instability in the
present case also happens for w,/w = 0.5. However, the present coupled equation of
motion for the system cannot simply be expressed as the Mathieu equation. One initial
speculation was that the mooring system causes a time-dependent restoring coefficient
that leads to instabilities. However, numerical simulations with the present NW'T using a
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Figure 8.9: Comparison of power spectra from computed and measured sway
motion of the cylinder for when subharmonic response occur. Wave period is
T = 0.544s and input wave steepness is H/A = 1/14.

constant restoring coefficient also showed a subharmonic component of the sway motion
when T,,5/T = 2. Sub-harmonic components of the sway response was also observed in
the tests with wave period T = 0.497s, both in the experiments and in the numerical
simulations (see Figs. and BTT). However, the characteristic growth of the sway
motion amplitudes as observed for when T' = 0.544s was not seen here, and a steady state
of the model motion was reached.

8.3.3 Sway resonance

The experiments further indicate that linear potential flow theory largely over-predicts
the sway motion around resonance. The peak value of 7,,/(0.5H) from linear potential
flow theory is of order 10, while in the experiments 7y,/(0.5H) < 2. This means linear
potential flow theory over-predicts the sway motion at resonance by more than 500%.
Figure shows time-series of the response from numerical simulations by the NWT
compared with experiments when the wave period is T = 1.038s. This wave period is close
to the sway natural period. The wave height obtained from the numerical wave calibra-
tion test was H = 0.116m, while the wave height from experimental wave calibration tests
was H = 0.114m. The computed time-series of the body motion agree satisfactorily with
measurements. This means the simulations support what is seen from the experimental
results, namely that linear potential flow theory highly over-predicts the sway response
near resonance. However, the sway motion is still considered large with amplitudes of the
order of the diameter of the model. Figure shows by using Eq. (Il that the dis-
crepancy between predicted sway motion and experiments near sway resonance is mainly
explained by viscous effects due to flow separation. It should be noted that in full-scale
conditions the boundary layer flow will be turbulent and the viscous drag coefficient due to
separation will be lower. Hence, Froude-scaling of the sway motion amplitudes presented
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Figure 8.10: Sway and heave motion of cylinder obtained with the NWT com-
pared with measured response from experiments when 7" = 0.497s. Input wave

steepness was H/A = 1/14. Subharmonic effects of the response in sway is
observed.
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Figure 8.11: Power spectrum of sway motion obtained from model tests. Wave
period is 7' = 0.497s and input wave steepness is H/A = 1/14. Subharmonic
components of the response is seen around half the wave frequency.
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Figure 8.12: Sway and heave motion of cylinder obtained with the NWT com-
pared with measured response from experiments when 7' = 1.038s. Input wave
steepness was H/\ = 1/14.

will be non-conservative for the region around resonance.

8.3.4 Higher order harmonics of wave excitation forces

Accelerations of the cylinder are directly associated with the hydrodynamic forces acting
on the body through Newton’s second law. Thus, in order to study the frequency con-
tent of the hydrodynamic forces acting on the model, the Fourier amplitudes obtained
from the acceleration time-series are studied. A comparison of Fourier amplitudes of the
body accelerations obtained from simulations with the NWT and from measurements
are presented in Figs. BT4] and BT0.  Sub-harmonic components in the Fourier
amplitudes of the sway acceleration are seen in the tests with wave period T = 0.497s
and T = 0.544s. The latter test wave period is where the instability phenomenon of
the sway motion occurs. Pronounced higher order harmonic components are seen in the
model accelerations when the model is excited near the sway natural frequency as shown
in Fig. BT7d Band-pass filtering is applied to isolate the body accelerations in heave
and sway associated with the linear-, second- and third-harmonic components. Then by
integration, the body motion due to the different components are calculated separately
and then compared. Now consider the case where 7" = 1.032s and H = 0.120m. Here,
the linear- and the third harmonic components of the sway acceleration are the most
pronounced. The large third-harmonic component in the measured accelerations, thus
also in the forcing, is believed to be caused by viscous drag due to flow separation. It is
observed in the free decay tests presented that the effect of flow separation is important
for larger motion amplitudes at the sway natural frequency. Further, Fourier analysis of
the drag term in Morison’s equation shows that the drag term contains most of its energy
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steepness is H/A = 1/14.
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Figure 8.14: Comparison between Fourier amplitudes of sway and heave accel-
erations of the cylinder, obtained from simulations with the NW'T and measure-
ments. Wave period is 7' = 0.457s and input wave steepness is H/\ = 1/14.
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Figure 8.15: Comparison between Fourier amplitudes of sway and heave accel-
erations of the cylinder, obtained from simulations with the NWT and measure-
ments. Wave period is 7' = 0.601s and input wave steepness is H/\ = 1/14.
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Figure 8.16: Comparison between Fourier amplitudes of sway and heave accel-
erations of the cylinder, obtained from simulations with the NWT and measure-
ments. Wave period is 7' = 0.761s and input wave steepness is H/\ = 1/14.
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Figure 8.17: Comparison between Fourier amplitudes of sway and heave accel-
erations of the cylinder, obtained from simulations with the NWT and measure-
ments. Wave period is 7' = 1.038s and input wave steepness is H/\ = 1/14.
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Figure 8.18: Sway and heave motion of cylinder obtained with the NWT com-
pared with measured response from experiments when 7" = 0.457s. Input wave
steepness was H/\ = 1/14.

at the linear- and third-harmonic component. For the case of heave accelerations, the
linear- and second harmonic components are dominant, and in fact the second-harmonic
component exceeds the linear-harmonic component. Further, the heave motion ampli-
tude due to the second harmonic component is 42% of that due to the linear harmonic
component. However, since there is a phase between the motion due to the linear- and
second-harmonic component, the motion amplitude due to their sum is 121% (and not
142%) of the motion amplitude due to the linear-harmonic alone. It is noted that the
frequency of the second-order harmonic component for this wave frequency is close to the
heave natural frequency. Hence, the reason why the second-order harmonic component
of the heave acceleration exceeds the linear-harmonic component is associated with that
second-order wave forces excites the model at the heave natural frequency. Then, this
serves as an example that higher order harmonics of the hydrodynamic forces may excite
resonance frequencies of the structure, which are different from the wave frequency.

In the context of open cage fish farms, higher-order harmonics and even sub-harmonic
components of the wave loading on the floaters are seen to be significant for moderate
design wave conditions. These nonlinear force components may possibly excite elastic
modes of the structure and must therefore be considered when fatigue life properties of
the fish farm are analyzed.

8.4 Summary of results

Simulations of the moored floating circular cylinder with the same test conditions as in the
model tests from 2008 have been performed. Time-series of computed body motions due
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Figure 8.19: Sway and heave motion of cylinder obtained with the NWT com-

pared with measured response from experiments when 7" = 0.601s. Input wave
steepness was H/A = 1/14.
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Figure 8.20: Sway and heave motion of cylinder obtained with the NWT com-

pared with measured response from experiments when 7' = 0.761s. Input wave
steepness was H/\ = 1/14.



172

A study of a floating circular cylinder in regular waves

12 13
Time [s]

Figure 8.21: Sway and heave motion of cylinder obtained with the NWT com-
pared with measured response from experiments when 7" = 0.878s. Input wave

steepness was H/\ = 1/14.
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Figure 8.22: Sway and heave motion of cylinder obtained with the NWT com-
pared with measured response from experiments when 7" = 1.132s. Input wave

steepness was H/\ = 1/14.
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to regular beam sea waves was compared with body motions deduced from the measured
body accelerations. The different sources of damping in the experiments was studied
by means of free decay tests, both physically and numerically with the NWT. It was
found that friction from the pulleys in the mooring arrangements introduced nonlinear
damping to the system. Further, it was found that nonlinear damping due to viscous flow
separation matters at sway resonance for the system considered. This also explains why
linear potential flow theory over-predicts the sway response at resonance. The instability-
like behaviour of the sway motion as observed in the model tests was also obtained in
simulations with the NWT when the wave frequency was two times the sway natural
frequency. However, what causes this particular phenomenon could not be concluded.
Fourier analysis of the measured and computed body accelerations showed that higher
order harmonics of the hydrodynamic forces are important. It was also shown that higher
order harmonic components of the wave excitation force can excite natural frequencies of
the system that are different from the wave frequency. This is important for fatigue life
analyses of fish farms.



174 A study of a floating circular cylinder in regular waves




Chapter 9

Summary and suggestions for further
work

9.1 Summary of the present work

The present work on the wave induced effects on floaters of aquaculture plants was based
model tests and numerical simulations.

A CFD numerical wave tank (NWT) for fully nonlinear wave-body interaction prob-
lems has been developed. The NWT uses a one-fluid formulation to solve the incompress-
ible Navier-Stokes equations for the air and the water, using CIP-based finite difference
method on a Cartesian staggered grid. The NW'T can handle floating bodies.

Two sets of model tests have been conducted. In the first set from 2006, fixed horizontal
cylinders in the free surface zone were studied. Two cross-section geometries were tested.
One circular and one rectangular. The models were subject to regular beam sea waves.
Test parameters for the two models were wave period, wave steepness and model draft.
Clamping forces on the model were measured in addition to the free surface elevation at
eight positions in the flume. Wave over-topping the models were observed for some of the
test conditions.

In 2008, model tests with a floating horizontal circular cylinder were performed. The
model was tightly moored and subject to regular waves. Test parameters were wave period
and wave steepness. The wave period tested covered both the heave resonance period and
the sway resonance period. Mooring line tension and model accelerations were measured.
Free surface elevation were measured at six positions. A detailed description of how to
obtain the rigid body motions by means of integration of measured body accelerations
was presented. In order to discover contact between the floating cylinder and the tank
walls from the measured signals, the jerk parameter was introduced. The jerk is found
as the time derivative of the measured acceleration signals. Wall contact leads to spikes
in the jerk time-series. We also discovered an instability phenomenon of the sway motion
characterized as subharmonic resonance. This occurred when the wave frequency was
twice the sway natural frequency. After some time of building up, the sway motion
performed a final phase shift from the wave frequency to the natural frequency in sway.

Two separate studies based on the two model tests are performed. In the first study, the
model tests from 2006 are considered. Numerical simulations using the test setup from the
experiments are performed with the NWT. Computed time series of the wave excitation
forces are compared with the measured clamping forces on the models. Good comparisons
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are shown. Fourier analysis of the measured and computed forces are performed, which
shows that the relative importance of the second harmonic component of the horizontal
force increases with decreasing model draft. For the vertical force, the second harmonic
component is important when over-topping occurs. A generalized Morison type of model
was presented and applied to some of the test conditions from the experiments. We
concluded that such a model is not adequate for cases where over-topping occur. However,
the method yielded good results when moderate waves were tested.

The moored floating circular cylinder is considered in the second study. Also for this
case, numerical simulations using the same test conditions as in the experiments were
performed with our NWT. Time-series of the computed body motions were compared
with measurements and good agreement were shown. We found that linear potential
flow theory over-predicts the sway response at resonance by more than 500% relative to
the measured sway response. This discrepancy was explained in terms of viscous flow
separation. When adding a linearized viscous damping term as that in Morisons equation
to the hydrodynamic forces from potential flow theory, the predicted sway motion at
resonance showed good agreement with the measurements. Subharmonic resonance as
oberved for the sway motion in the model tests was also obtained in simulations with the
NWT. Measured sway amplitude in the model tests was at most 250% of that prediced
by linear potential flow theory for the case when subharmonic resonance occured. Fourier
analysis of the measured and computed body motions was performed. We found that the
third harmonic component is important at sway resonance, which we showed could be
related to viscous flow separation. We also found that higher harmonic components of
the wave forces can excite natural frequencies of the structure. This was excemplified by
that heave resonance was excited for tests where the wave frequency was half the heave
natural frequency.

9.2 Suggestions for further work

Further work that could be done relative to the present study is to improve the numer-
ical model by including a model for turbulence such that simulations of the full scale
floater with turbulent boundary layers can be performed. Then the effects of the tur-
bulent boundary layer flow on the wave induced loads and the resulting motions of the
floater could be investigated. Also an algorithm for computation of the forces due to skin
friction and viscous normal stresses on the surface of the floater should be implemented.
Improved methods for free surface capturing with less smearing of the free surface should
be considered. The numerical code should also be developed to allow for better gridding
algorithms, such that the grid can be locally refined near the body and in the free sur-
face zone. A sharp representation of the solid body boundary is also preferable. One
problem associated with numerical simulation of a floating body when a no-slip boundary
condition is applied on the body surface is how to move the contact point between the
free surface and the body boundary. This problem should be investigated. The combined
effects of current and waves on the flow around the floater and associated hydrodynamic
forces should also be studied.

There are still many hydrodynamic effects related to the floaters of aquaculture plants
that cannot be addressed with a 2D numerical model. Examples here are nonlinear 3D
effects associated with a horizontal cylinder in the free surface when the incoming waves
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crests are not parallel to the cylinder axis. Further, hydroelastic effects for a complete
floating collar in waves should be investigated.



178 Summary and suggestions for further work




Bibliography

Aarsnes, J. V., H. Rudi, and G. Lgland (1990). Current forces on cage, net deflection.
In Engineering for offshore fish farming. Thomas Telford, London.

Abramowitz, M. and I. A. Stegun (1970). Handbook of Mathematical Functions. Dover
Publications, Inc.

Ambardar, A. (1995). Analog and Digital Signal Processing. PWS Publishing Company.

Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. V. der Vorst (1994). Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods. STAM.

Batchelor, G. K. (1967). An Introduction to Fluid Dynamics. Cambridge University
Press.

Bearman, P. W.; M. J. Downie, J. M. R. Graham, and E. D. Obasaju (1985). Forces on
cylinders in viscous oscillatory flow at low Keulegan-Carpenter numbers. Journal of
Fluid Mechanics 154, 337-356.

Bearman, P. W., J. M. R. Graham, E. D. Obasaju, and G. H. Drossopoulus (1984).
The influence of corner radius on the forces experienced by cylindrical bluff bodies
in oscillatory flow. Applied Ocean Research 6(2), 83 — 89.

Berthelsen, P. A. and O. M. Faltinsen (2008). A local directional ghost cell approach for
incompressible viscous flow problems with irregular boundaries. Journal of Compu-
tational Physics 227, 4354 — 4397.

Bessonneau, J. S. and D. Marichal (1998). Study of the dynamics of submerged supple
nets (application to trawls). Ocean Engineering 25, 563 — 583.

Bolton, W. E. and F. Ursell (1973). The wave forces on an infinitely long circular
cylinder in an oblique sea. Journal of Fluid Mechanics 57, 241 — 256.

Boore, D. M. and J. J. Bommer (2005). Processing of strong-motion accelerograms:
needs, options and consequences. Soil Dynamics and FEarthquake Engineering 25,
93-115.

Brown, D. L., R. Cortez, and M. L. Minion (2001). Accurate projection methods for
the incompressible Navier-Stokes equations. Journal of Computational Physics 168,
464-499.

Chaplin, J. R. (1984). Nonlinear forces on a horizontal cylinder beneath waves. Journal
of Fluid Mechanics 147, 449-464.

Chorin, A. J. (1968). Numerical solution of the Navier-Stokes equations. Mathematics
of Computation 22, 745-762.

179



180 Bibliography

Cummins, W. (1962). The impulse response function and ship motions. In Schiffstech-
nik, pp. 101 — 109.

de Tullio, M., A. Cristallo, E. Balaras, G. Pascazio, P. D. Palma, G. Taccarino,
M. Napolitano, and R. Verzicco (2006). Recent Advances in the Immersed Boundary
Method. In European Conference on Computational Fluid Dynamics, ECCOMAS
CFD 2006.

Dean, R. G. and R. A. Dalrymple (1991). Water Wave Mechanics for Engineers and
Scientists, Volume 2 of Advanced Series on Ocean Engineering. World Scientific
Publishing Co. Pte. Ltd.

Dixon, A. G., C. A. Greated, and S. H. Salter (1979). Wave forces on partially sub-
merged cylinders. Journal of the Waterway Port Coastal and Ocean Division 105 (4),
421 — 438.

Engelman, M. S. and M.-A. Jamnia (1990). Transient flow past a circular cylinder:
A benchmark solution. International Journal for Numerical Methods in Fluids 11,
985-1000.

Ersdal, S. (2004). An Experimental Study of Hydrodynamic Forces on Cylinders and
Cables in Near Azial Flow. Ph. D. thesis, NTNU, Norwegian University of Science
and Technology.

Fadlun, E. A., R. Verzicco, P. Orlandi, and L. Mohd-Yusof (2000). Combined immersed-
boundary finite-difference methods for three-dimensional complex flow simulations.
Journal of Computational Physics 161, 35—60.

Faltinsen, O. M. (1971). Wave forces on a restrained ship in head-sea waves. Ph. D.
thesis, Naval Architecture Dept., University of Michigan.

Faltinsen, O. M. (1990). Sea Loads on Ships and Offshore Structures. Cambridge Uni-
versity Press.

Faltinsen, O. M. (2005). Hydrodynamics of High-Speed Marine Vehicles. Cambridge
University Press.

Faltinsen, O. M. and A. Timokha (2009). Sloshing. Cambridge University Press.

FAO (2006). State of world aquaculture 2006. Technical report, Food and Agriculture
Organization of the United Nations, Rome, Italy.

Ferziger, J. H. and M. Peric’ (2002). Computational Methods for Fluid Dynamics.
Springer.

Frank, W. (1967). Oscillation of cylinders in or below the free surface of deep fluids.
Report 2375, Washington DC: Naval Ship Research and Development Center.

Fredheim, A. (2005). Current Forces on Net Structures. Ph. D. thesis, NTNU, Norwe-
gian University of Science and Technology.

Fredheim, A. (2009). Key numbers in norwegian fish farming. Private communication.

Fredheim, A. and R. Langan (2009). New Technologies in Aquaculture: Improving pro-
duction efficiency, quality and environmental management. Part 6 Aquaculture Sys-
tems Design, Chapter Advances in technology for offshore and open ocean fin fish
aquaculture. Woodhead Publishing Limited.



Bibliography 181

Fredriksson, D. W., M. R. Swift, O. Eroshkin, I. Tsukrov, J. D. Irish, and B. Celikkol
(2005). Moored fish cage dynamics in waves and currents. IEEE Journal of Oceanic
Engineering 30.

Fridman, A. L. (1998). Calculations For Fishing Gear Design. Farnham, UK: Fishing
News Books.

Gansel, L. (2009). Influence of porosity and fish-induced internal circulation on the flow
around fish cages - investigations in the interaction of shear layers, the recirculation
zone and vortexr streets behind fish cages. Ph. D. thesis, Norwegian University of
Science and Technology (NTNU).

Gentaz, L., B. Alessandrini, and G. Delhommeau (1997). Motion simulation of a two-
dimensional body at the surface of a viscous fluid by a fully coupled solver. In 12th
International Workshop on Water Waves and Floating Bodies (IWWWFB).

Ghia, U., K. Ghia, and C.T.Shin (1982). High-Re Solutions for Incompressible Navier-
Stokes Equations and a Multigrid Method. Journal of Computational Physics /8,
387-411.

Gingold, R. A. and J. J. Monaghan (1977, Nov.). Smoothed particle hydrodynamics -
theory and application to non-spherical stars. Royal Astronomical Society, Monthly
Notices 181, 375 — 389.

Graham, J. M. R. (1980). The forces on sharp-edged cylinder in oscillatory flow at low
Keulegan-Carpenter numbers. Journal of Fluid Mechanics 97, 331-346.

Greco, M. (2001). A Two-Dimensional Study of Green-Water Loading. Ph. D. thesis,
Norwegian University of Science and Technology (NTNU).

Greco, M., G. Colicchio, and O. M. Faltinsen (2007). Shipping of water on a two-
dimensional structure. part 2. Journal of Fluid Mechanics 581, 371-399.

Greenhow, M. (1988). Water-entry and -exit of a horizontal circular cylinder. Applied
Ocean Research 10, 191-198.

Greenhow, M. and W.-M. Lin (1983). Non-linear free surface effects: experiments and
theory. Technical Report 83-19, Department of Ocean Engineering, Cambridge,
Massachusets Institute of Technology (MIT).

Harlow, F. H. and J. E. Welch (1965). Numerical Calculation of Time-Dependent Vis-
cous Incompressible Flow of Fluid with Free Surface. The Physics of Fluids 8(12),
2182-2189.

Henderson, R. D. (1995). Details of the drag curve near the onset of vortex shedding.
Physics of Fluids 7, 2102 — 2104.

Herfjord, K. (1996). A study of two-dimensional separated flow by a combination of
the finite element method and Navier-Stokes equations. Ph. D. thesis, Norwegian
Institute of Technology, Trondheim, Norway.

Hirt, C. W. and B. D. Nichols (1981). Volume of fluid (VOF) method for the dynamics
of free boundaries. Journal of Computational Physics 39, 201-225.

Hu, C., O. M. Faltinsen, and M. Kashiwagi (2005). 3-D numerical simulation of freely
moving floating body by CIP method. In The Fifteenth International Offshore and
Polar Engineering Conference (ISOPE), pp. 674 — 679.



182 Bibliography

Hu, C. and M. Kashiwagi (2004). A CIP-based method for numerical simulations of
violent free-surface flows. Journal of Marine Science and Technology 9, 143-157.

Hu, C., M. Kashiwagi, and T. Momoki (2003). Numerical simulation of non-linear
free surface wave generation by CIP method and its applications. In The Thirteen
International Offshore and Polar Engineering Conference (ISOPE2003), pp. 294 —
299.

Hu, F., K. Matuda, and T. Tokai (2001). Effects of drag coefficient of netting for
dynamic similarity on model testing of trawl nets. Fisheries Science 67, 84 — 89.

Huang, C.-C., H.-J. Tang, and J.-Y. Liu (2006). Dynamic analysis of net cage struc-
tures for marine aquaculture: Numerical simulation and model testing. Aquacultural
Engineering 35, 258 — 270.

Hughes, S. A. (1993). Physical Models and Laboratory Techniques in Coastal Engineer-
ing. World Scientific.

ITTC (1990). Report of the panel on validation procedures. In Proceedings of the 19th
ITTC, Madrid, Spain, pp. 577-604.

Kawakami, T. (1959). Development of mechanical studies of fishing gear. In: Modern
Fishing Gear of the World, pp. 175 — 184. London: Fishing News (Books).

Kawakami, T. (1964). The theory of designing and testing fishing nets in model. In:
Modern Fishing Gear of the World, pp. 471 — 482. London: Fishing News (Books).

Kim, J. and P. Moin (1985). Application of a Fractional-Step Method to Incompressible
Navier-Stokes Equations. Journal of Computational Physics 59, 308 — 323.

Kreyszig, E. (1999). Advanced Engineering Mathematics. John Wiley & Sons, Inc.

Kristiansen, D. and O. Faltinsen (2009). Non-linear wave-induced motions of
cylindrical-shaped floaters of fish farms. Journal of Engineering for the Maritime
Environment 223(3), 361-375.

Kristiansen, D. and O. M. Faltinsen (2008a). A study of wave loads on fixed horizontal
cylinders in the free surface. In Proceedings of the 8th International Conference on
Hydrodynamics (ICHD 2008).

Kristiansen, D. and O. M. Faltinsen (2008b). Wave loads on floaters of aquaculture
plants. In Proceedings of the 27. Offshore Mechanics and Arctic Engineering Con-
ference (OMAE).

Kristiansen, T. (2009). Two-Dimensional Numerical and Ezxperimental Studies of
Piston-mode Resonance. Ph. D. thesis, Norwegian University of Science and Tech-
nology.

Lader, P. F., B. Enerhaug, A. Fredheim, and J. Krokstad (2003). Modeling of 3d
net structures exposed to waves and current. In 3rd International Conference on
Hydroelasticity in Marine Technology, Oxford, UK.

Landau, L. D. and E. M. Lifshitz (2004). Fluid Mechanics (Second ed.), Volume 6 of
Course of Theoretical Physics. Elsevier.

LeVeque, R. J. (1992). Numerical Methods for Consevation Laws. BirkHauser Verlag.



Bibliography 183

LeVeque, R. J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press.

Lien, E. (2009). Private communication.

Loland, G. (1991). Current forces on and flow through fish farms. Ph. D. thesis, Nor-
wegian Institute of Technology.

Maskell, S. J. and F. Ursell (1970). The transient motion of a floating body. Journal of
Fluid Mechanics 44, 303 — 313.

McLachlan, N. W. (1964). Theory and Application of Mathieu Functions. Dover Pub-
lications, INC.

Mittal, R. and G. Iaccarino (2005). Immersed boundary methods. Annu. Rev. Fluid
Mechanics 37, 239-261.

Moe, H. (2009). Strength analysis of net structures. Ph. D. thesis, Norwegian University
of Science and Technology (NTNU).

Mohd-Yusof, J. (1997). Combined immersed-boundary/B-spline methods for simula-
tions of flow in complex geometries. Technical report, Center for Turbulence Re-
search.

Molin, B. (2002). Hydrodynamique des Structures Offshore (French). Editions Technip.

Molin, B. (2004). On the frictional damping in roll of ship sections. International Ship-
building Progress 51, 59 — 85.

Monaghan, J. J. (1992). Smoothed particle hydrodynamics. Annual Review of Astron-
omy and Astrophysics 30, 543 — 574.

Monahan, R. L. (1993). An Overview of Salmon Aquaculture, Chapter 1, pp. 1 — 9.
Fishing News Books.

Morison, J. R., M. P. O’Brien, J. W. Johnson, and S. A. Schaaf (1950). The force
exerted by surface waves on piles. Journal of Petroleum Transactions 189, 149 —
154.

Newman, J. N. (1962). The Exciting Forces on Fixed Bodies in Waves. Journal of Ship
Research 6(4), 10 — 17.

Newman, J. N. (1965). The Exciting Forces on a Moving Body in Waves. Journal of
Ship Research 9, 190 — 199.

Newman, J. N. (1977). Marine Hydrodynamics. The MIT Press.

NOAA (2007a). A 10-year plan for marine aquaculture. Technical report, U.S. Depart-
ment of Commerse. National Oceanic and Atmospheric Administration (NOAA).

NOAA (2007b). The national offshore aquaculture act. Technical report, U. S. Depart-
ment of Commerse. National Oceanic and Atmospheric Administration (NOAA).

Norwegian Fisheries Directorate (2009a). Remt oppdrettsfisk av laks pr. 05.10.2009.
(Norwegian). Technical report, Norwegian Fisheries Directorate.

Norwegian Fisheries Directorate (2009b). Rgmt oppdrettsfisk av regnbuegrret pr.
05.10.2009. (Norwegian). Technical report, Norwegian Fisheries Directorate.



184 Bibliography

Ogilvie, F. (1963). First- and second-order forces on a cylinder submerged under a free
surface. Journal of Fluid Mechanics 16, 451 — 472.

Ogilvie, T. (1964). Recent progress toward the understanding and prediction of ship
motions. In The Fifth Symposium on Naval Hydrodynamics.

Ormberg, H. (1991). Non-linear response analysis of floating fish farm systems. Ph. D.
thesis, Norwegian University of Science and Technology (NTNU).

Osher, S. and R. Fedkiw (2003). Level Set Methods and Dynamic Implicit Surfaces,
Volume 153 of Applied Mathematical Sciences. Springer.

Osher, S. and J. A. Sethian (1988). Fronts propagating with curvature-dependent
speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computa-
tional Physics 79, 12-49.

Panton, R. (1968). The Transient for Stokes’s Oscillating Plate: A Solution in Terms
of Tabulated Functions. Journal of Fluid Mechanics 31, 819-825.

Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow. New York: McGraw
Hill.

Peskin, C. S. (1972). Flow patterns around heart valves: A numerical method. Journal
of Computational Physics 10, 252-271.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery (1992). Numerical
Recipes in C. Cambridge University Press.

Roache, P. J. (1976). Computational Fluid Dynamics. Hermosa Publishers.
Schlichting, H. and K. Gersten (2000). Boundary Layer Theory. Springer.
Skejic, R. (2008). Added mass and damping coefficients. (Private communication).

Soto, D., F. Jara, and C. Moreno (2001). Escaped salmon in the inner seas, southern
Chile: Facing ecological and social conflicts. Fcological Applications 11, 1750-1762.

Standard Norway (2005). Marine fish farms - Requirements for design, dimensioning,
production, installation and operation. Norwegian Standard NS 9415. Standard Nor-
way. (In Norwegian).

Stokes, G. G. (1851). On the effect of the internal friction of fluids on the motion of
pendulums. Transactions of the Cambridge Philosophical Society 9(11), 8 — 106.

Strikwerda, J. C. (2004). Finite Difference Schemes and Partial Differential Equations
(Second ed.). STAM.

Sun, H. (2007). A Boundary Element Method Applied to Strongly Nonlinear Wave-
Body Interaction Problems. Ph. D. thesis, Norwegian University of Science and
Technology.

Takewaki, H., A. Nishiguchi, and T. Yabe (1985). Cubic interpolated pseudo-particle
method (CIP) for solving hyperbolic-type equations. Journal of Computational
Physics 61, 261-268.

Takizawa, K., T. Yabe, Y. Tsugawa, T. E. Tezduyar, and H. Mizoe (2006). Computation
of free-surface flows and fluid-object interactions with the CIP method based on
adaptive meshless soroban grids. Computational Mechanics 40, 167-183.



Bibliography 185

Tasai, F. (1959). On the damping force and added mass of ships heaving and pitching.
In Rep. of Research Inst. for Applied Mech., Volume 7. Kyushu University.

Tasai, F. (1961). Hydrodynamic force and moment produced by swaying and rolling
oscillation of cylinders on the free surface. In Rep. of Research Inst. for Applied
Mech., Volume 9. Kyushu University.

Tauti, M. (1934). The force acting on the plane net in motion through the water. Nippon
Suisan Gakkaishi 3, 1 — 4.

Thomassen, P. E. (2008). Methods for Dynamic Response Analysis and Fatigue Life
Estimation of Floating Fish Cages. Ph. D. thesis, Norwegian University of Science
and Technology.

Toro, E. F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer.

Tsukrov, 1., O. Eroshkin, D. Fredriksson, M. R. Swift, and B. Celikkol (2003). Finite el-
ement modeling of net panels using a consistent net element. Ocean Engineering 30,
251 — 270.

Ursell, F. (1949). On the heaving motion of a circular cylinder on the surface of a fluid.
The Quarterly Journal of Mechanics and Applied Mathematics 2, 218 — 231.

Ursell, F. (1950). Surface waves on deep water in the presence of a submerged circular
cylinder. Mathematical Proceedings of the Cambridge Philosophical Society 46, 141
— 152.

Ursell, F. (1954). Water waves generated by oscillating bodies. The Quarterly Journal
of Mechanics and Applied Mathematics 7(4), 427 — 437.

Ursell, F. (1964). The decay of the free motion of a floating body. Journal of Fluid
Mechanics 19, 305 — 319.

Ursell, F. (1968). On head seas travelling along a horizontal cylinder. Journal of Applied
Mathematics 4 (4), 414 — 427.

van der Vorst, H. A. (1992). Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of nonsymmetric linear systems. Journal on Scientific and
Statistical Computing 13, 631-644.

Vestbgstad, T. M., O. M. Faltinsen, and D. Kristiansen (2007). Validation Methods
and Benchmark Tests for a 2-D CIP Method Applied to Marine Hydrodynamics.
In The Seventeenth International Offshore and Polar Engineering Conference.

Vestbgstad, T. M. G. (2009). A numerical study of wave-in-deck impact using a two-
dimensional constrained interpolation profile method. Ph. D. thesis, Norwegian Uni-
versity of Science and Technology.

Vugts, J. H. (1968). The hydrodynamic coefficients for swaying, heaving and rolling
cylinders in a free surface. In International Shipbuilding Progress, Volume 15, pp.
251-276.

Whitham, G. B. (1974). Linear and nonlinear waves. John Wiley & Sons.

Wood, W. L. (2005). An exact solution for Burgers equation. Communications in nu-
merical methods in engineering 22, 797-798.



186 Bibliography

Wu, G. X. and R. E. Taylor (2003). The coupled finite element and boundary element
analysis of nonlinear interactions between waves and bodies. Ocean Engineering 30,
387 — 400.

Yabe, T., F. Xiao, and T. Utsumi (2001). The constrained interpolation profile method
for multiphase analysis. Journal of Computational Physics 169, 556—593.

Yeung, R. W. (1982). The transient heaving motion of floating cylinders. Journal of
Engineering Mathematics 16, 97 — 119.

Zhu, X. (2006). Application of the CIP Method to Strongly Nonlinear Wave-Body In-
teraction Problems. Ph. D. thesis, NTNU, Norwegian University of Science and
Technology.



Appendix A

Details on the numerical wave tank

A.1 Advection calculation using the CIP-method

Some details on the 1D and 2D CIP-method are presented. Also the mathematical foun-
dation for the CIP-method is described.

A.1.1 Advection in 1D - mathematical background

Mathematical background for the 1D CIP-method will now be presented. Consider the
1D advection equation of of

ot +uax = 0. (A.1)
This equation describes the transport of a variable f(¢,z) with the transport velocity
u(t,z) and is classified as a partial differential equation (PDE) of the hyperbolic type,
which is in general hard to solve. We assume that both f and w are continuous in time ¢
and space x. We will make use of the material derivative which is defined as

df(t,z(t)) of Ofdx
a4 o Tarar (A.2)

By taking the material derivative of the variable f along a curve C in the xzt—plane and
say it should be equal to the left hand side of ([AJ]), we get

df _of | dwof
dt ot  dt ox
_of of _

This means we can reduce the partial differential equation ([AJ]) to the following set of
ordinary differential equations (ODEs) along the curve C.

df
=0 (A.3)
dx

The ODE (A3) implies that f is constant along the curve C' defined by ([A4]). Two cases
will now be discussed.
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First, assume that the advection velocity w is constant in time and space. Further,
assume that at time ¢ = 0, the curve C passes through the point x(0) = xy for where
the advected variable f has the initial value fy(x). The solution to [Ad) is x = x¢ + ut.
Further, as ([A3]) implies that f(¢, x) is constant along the curve C, the value of f for pairs
of x and ¢ on the curve C can be related to the initial value of f at x¢ as f(t,z) = fo(zo).
Hence,

ft,x) = folx — ut). (A.5)

Next, we consider the case when the advection velocity is linearly varying and described
by u = ax, where a is a constant. Again, assuming that for the time ¢ = 0, the curve C'
passes through x(0) = xy for where f has the initial value fy(z). Then, the solution to
[A4) is x = xgexp(at). Further, f(t,z) = fo(xp) leads to the solution

F(t2) = folw exp(—at)). (A.6)

We note that for small times ¢ < 1, using Taylor expansion of the exponential argument,
the solution is found approximately as f(¢,x) ~ f(x — ut).

Advection with a source term

Consider a modified advection equation, where a source term has been introduced to the
right hand side of ([AJ)). The new PDE is

dg dg

—= — =—b A7

ot + “or J (A7)
Here, ¢ is the transported variable, u is the transport velocity and b is a constant. The
material derivative of g along a curve C' in the xt—plane, initially passing through z(0) =
T, is set equal to the left hand side of (A7) and we get

dg _dg , dedg
dt ot dt oz
_ 99 99 _

= = —0bg.
ot * Y ox J
Hence, (A1) can been reduced to the following pair of ODEs

dg

— ) A.
% g (A.8)
dx

o A.
i (A.9)

Now, assume that u = ax and b = u/(2) = a. Then the solution to ([A9) is x = g exp(at).
The evolution of g along the curve C'is described by the ODE ([A.])), which has the solution
g(t,z) = go(xo) exp(—0bt). Substitution yields

g(t,z) = go(zexp(—at)) exp(—bt). (A.10)

For small times ¢t < 1, we note that g(t,z) =~ go(z — ut)(1 — bt).
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A.1.2 The 1D CIP-scheme

When solving the 1D advection problem using the traditional CIP-scheme, the advected
variable f(z,t) in the upwind cell is approximated by a cubic polynomial F*(£), defined
as

F'() = C38° 4 Co8? 4 C1€ + C, (A.11)

where £ = x — z; and where C5, (5, C7 and Cy are unknown coefficients. We also
introduce the differentiated profile G(£) = dF'/d¢, which is an approximation to the spatial
derivative g of the advected variable f. In order to determine the unknown coefficients,
the following constraints are used:

FHO) = f" F (i — i) = [, (A.12)
Gi0) =g  Gi(wiw— i) = giy (A.13)
This yields a system of four equations for the four unknown coefficients. To simplify the

notation, we introduce the signed node spacing Az = z;, — x;. Then, after some algebra
we get

9+ i 2( i _.fzn)
Gs="3 AR (A.14)
o 3( o — fzn> 9w T 29"
Cy = NS — N (A.15)
G =g (A.16)
Co = fi" (A.17)

When the approximation function F* is found, the advected variable and the tentative
value of the spatial derivative in the node x; for the next time step can be found as

JIt = Fr (—ulAt) (A.18)
gF = G (—ul'At). (A.19)

The spatial derivative at the new time step is obtained by adding the source term due to
the tentative value after pure advection of the differentiated profile, as

SRRV (= il S A.20
9" =9 ( Ao, T Axm) 9i (A.20)

A.1.3 The upwind method

The upwind method, which is a first order upwind differencing scheme, was implemented
for solving the 1D advection equation and applied to some of the verification test problems.
This was to be able to compare the performance of the implemented CIP-scheme with
one of the most simple and well-known numerical schemes for advection calculations. The
discretized version of the 1D advection equation using the upwind method is

uptt —uf (fiw — 1)

U niaw Ji ) A.21
N T T AL 0, (A.21)

where f is the advected variable, u is the advection velocity, At is the time increment and
Ax is the spatial increment. Further, the index i refers to the spatial node considered,
iw refers to the upwind (upstream) node and n is the time step. The upwind method is
described in most of the textbooks on CFD, e.g. (Roache T976) and ((Toro 1999).
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A.1.4 2D CIP-coefficients

When using the A-type CIP-method for solving the advection equation, usually a cubic
polynomial surface F};(§,n) is created to model the advected variable f"(z,y) in the
upwind cell. A complete cubic polynomial surface has ten coefficients that must be deter-
mined. For this purpose, the functional values f"; and their spatial derivatives %:h,j =97

and ‘950—;|i,j = ki'; in the four nodes constructing the upwind nodes are utilized. However,
the point value of the advected variable plus its two spatial derivatives in four nodes leads
to a total of twelve constraints, while we only have ten unknowns. Thus, we neglect the
spatial derivatives in the node most far away from the node of computation. This yields
the following expressions for the coefficients

:i82 (fm — fiw,j) + Az (gi,j + giwvj)

A.22
Cu - (A.22)
(fig = fiwg = figw + fiwgw) + 1sA2(gij — gijw)
S At ’ S A2
Cnn jsAx2Ay (A.23)
(fig = Jiwg = Jigw + fiwjw) + 558y (ki j — Kiw;)
= ’ ’ ’ ’ ’ A.24
iz 1sAxAy? ( )
j52(fij - fijw) + Ay(kij + k?ijw)
S AACL L SR A.25
Ci N (4.25)
3(fiwy — fij) — 15Az(2955 + Giw,j)
SACLLS L g I, A2
Cu - (A.26)
3(fijw — [fij) — 75Ay(2kij + ki juw
Coz = ( ’ J) Ay ( ? d ) (A.27)
fig = Jiwg — Jijw + fiwgw | Gigw = iy | Kiwj — Kiy
Cyp=—= ’ : ’ ’ : : : A.28
" 157sAxAy + jsAy + 1sSAx ( )
i — fawg = fogw T Fowgw . .
= isJsATAY CorisAx — CiajsAy (A.29)
ClO :gi,j (A30)
Cor =ki (A.31)
Coo =i (A.32)
Here
is = —sign(u.) (A.33)
js = —sign(v.), (A.34)

where u. and v, being respectively the horizontal and vertical velocity component inter-
polated to the node of computation. Due to the staggered grid there are three cases
which needs different interpolation, namely advection of horizontal momentum, vertical
momentum and color function. The advection velocity is interpolated to the node of
computation for the three different cases as follows.

Advection of horizontal momentum:
Ue = ui,j

ve = 0.25 (Vi j + Vit + Vijo1 + Vig1,j-1)
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Advection of vertical momentum:

Ue = 0.25 (UZ'J' + Ui—1,5 + Ui—1,5+1 + umﬂ)

Ve = Vi
Advection of color function:

Ue = 0.5 (ui,j -+ uifl,j)
Ve = 0.5 (U@j + Ui,jfl)

A.2 Details on the diffusion calculation

Some details relative to the discretization of the diffusion calculation will now be pre-
sented. First we consider the diffusion calculation for the horizontal velocity component
given by equation (EZ8). The density at the horizontal velocity node is found by inter-
polation as p. = 0.5(p; j + pi+1,;)- The dynamic viscosity coefficients are found from

HE = Hit1,j

Hw = i

pn = 0255 + pir + fige1 + fiv1je1)
trs = 0.25(fti 5 + fliv1,; + fij—1 + fig1j-1)-

The derivatives of the velocity components are computed as

* * * *
ou™ | Uiy — Ui ous | Uiy — Uiy,
0z | Az oz | Ax;

* * * *
Qu|  Uijer — Uiy Qur| Uiy — Ui
Y |y Aye; Y |g Ayc;y

* * * *
o'l Vi Uy o'l V11 Vi
0T |y Axc; oz |4 Axc;

Next, we consider the diffusion calculation for the vertical velocity component given
by equation (E29). The mass density is approximated as p. = 0.5(p; ; + pij+1), while the
dynamic viscosity coefficients are

pe = 0.25(pi  + fiy1j + Miger + fiv1je1)
prw = 0.25(pti g + pri1j + figer + fio111)
HUN = [ j+1
Hs = Hij-

Further, central differences yields

* * * *
ou™ | Ui U ou™ | Uiq g Uiy
W |p Ayc; Y |w Aye;

* * * *
™| Vi — Vi A G
oz |5 Axc; oz |y Axc;_q

* * * *

A I Sl ™| Uiy~ Vi
8y N ijJrl 8y g Ayl
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Figure A.1: Non-zero entries of the coefficient matrix A due to a 10 x 10 grid.
All non-zero entries are located in five diagonals.

A.3 Poisson equation for the incremental pressure

The discretized Poisson equation for the incremental pressure defined in ([E38) can be
written as

A; j0pij1 + B; jopi—1; + Ci ;0D + D; j0piy1; + Ei j0pi j+1 = fijs (A.35)
where
A= L (A 36)
" pije120y;Ayc '
1
Y i AriAxe ( )
1
D;; = A.38
" pi+1/27]‘A.§C‘Z'A.TCi ( )
1
E; ;= (A.39)
! pij+1/28y;Ayc;

These five coefficients represents the five non-zero diagonals of the coefficient matrix A as
depicted in Fig. [Al The coefficients C; ; corresponds to the main diagonal. Further, D; ;
and E; ; yields the first and second non-zero upper off-diagonals, while B; ; and A; ; yields
the first and second non-zero lower off-diagonals, respectively. This yields a symmetric
discretization of the Poisson equation (E34) on a uniform Cartesian grid. However, for the
case of a non-uniform grid, the coefficient matrix is not symmetric due to discretization
of the divergence operator in eq. (E34).
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Due to the small number of non-zero elements in the coefficient matrix A relative to
the size of the matrix, A is a sparse matrix. From a computational point of view, it is
waste of memory to store the total matrix. Hence, instead of solving the total matrix of
size N x N, we use the Compressed Diagonal Storage format where only the five diagonals
containing the non-zero elements are stored in a 5 x N matrix (Barretf ef al. 1994). As
the off-diagonals are shorter than the main diagonal of length N, the off-diagonals are
padded with zeros to fill the new matrix.
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A.3.1 The preconditioned Bi-Conjugate Gradient Stabilized Method

A modified version of the Bi-CGStab algorithm with preconditioning is presented in
[Barrett et al. (1994). The algorithm is as follows:

Compute r© = b — Az© for some initial guess ()
Choose 7 (for example, 7 = ()
fori=1,2,..

pi—y = Tri=h

if p;_1 = 0 method fails

@';1 = (pifl/pif2)(aif1/wifl) '
PO =70 4 5 () — w0l Y)

endif

solve Mp = p®
v = Ap

O = pifl/fTU(i)
s =70 — a0

check norm of s; if small enough: set (¥ = 20=Y + ;p and stop
solve Ms = s
t=As
w; = tls/tTt
29 = 20-Y 4 a,p + w;s
r =g — wit
check convergence; continue if necessary
for continuation it is necessary that w; # 0
end

Several preconditioners are presented in [Barrett et al. (1994). We have used the simple
incomplete LU-factorization preconditioner D-ILU, which is an incomplete factorization
preconditioner of level zero. Splitting the coefficient matrix into its diagonal, lower trian-
gular, and upper triangular parts as A = D4 + L4 + Uy, respectively, the preconditioner
can be written as M = (D + L4)D™ (D + Uy,), where D is the diagonal matrix con-
taining the pivots. Note that it is only the diagonal matrix D that needs to be stored
since the upper triangular and lower triangular matrices, U4 and L4 respectively, are left
unchanged. The pivots are generated as follows:

Let S be the nonzero set {(i,7) : a;; # 0}, where a;; are the elements of the coeffi-
cient matrix A

fori=1,2,...
set d” — Uy
fori=1,2,..

for j=i+1,i+2,..
if (i,7) € S and (j,i) € S then
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set djj — djj — ajidiiaij

In the preconditioned Bi-CGSTAB algorithm, we need to solve the system Mx = vy,
with M = (D + La)D~Y(D + U,) and where y is a known vector. The preconditioner
solve is described below.

Let M = (D + L)(I + D7'U) and y be given.
fori=1,2,...

2= dy; (yi — Zj<i lij2;)
forio=nn—-1,n—-2,..

_ —1
T = 2 — du Zj>i uijxj

A.4 Time-stepping of the spatial derivatives of the ve-
locity field

As the velocity field after the advection step w* is updated due to the diffusion step,
pressure coupling and due to forces from the floater to obtain the new velocity field
u™t! also the spatial derivatives of the velocity field are modified. Hence, the spatial
derivatives g = du/0x and k = Ou/0y must be updated before a new advection step can

be made. We define g = [g,, g.]7 and k = [k, k)T, where g, = %, o = g;, ky, = a—;‘ and

k, = g—z. Time-stepping of the spatial derivatives of the horizontal velocity component
are performed as

n+1 n+1 * *
ntl i1 T Wiy — Uiy T Ui A4l
g (Z,_]) gu ( 7]) _'_ sz + Axi+1 ( ‘ )
n+1 n+1
k,n+1 o k’* ui,j+1 - uzg 1 2j+1 + u i,j—1 (A 42)
7(7]) a Aycj +Aycj_1 ° .

Similarly, the spatial derivatives of the vertical velocity component are updated by

n+1 n+1 * *
v, — U, — V.U
nt+l i+1,5 =17 i+1,j i—1j A.43
Iuiti) = Justi) T Azc; + Aze;y (A.43)
n+1 n+1
Vi v; + ]
k/,nJrl — J+1 J-1 ]+1 4,J— 1' (A44)

viled) vi(h-g) Ay] + Ay]—l—l



196 Details on the numerical wave tank




Appendix B

Details of the verification studies

B.1 Oscillating boundary layers

Here, some mathematical details on the second Stokes problem is considered, and both
the steady solution as well as the transient solution when the oscillating wall is abruptly
started initially.

B.1.1 Second Stokes Problem, steady-state solution

In the case of the Second Stokes Problem the outer flow is U, = 0, while the wall oscillates
harmonically with frequency w and amplitude Uy. A consequence of U, = 0 is that the
linearized Prandtl’s boundary layer equations (Schlichting and Gersten 2000) are reduced
to the diffusion equation

2
du _ V@. (B.1)
ot 0y?

Since the liquid attach to the wall (no-slip condition), viscous shear forces will set the
surrounding fluid into motion and a wviscous wave will propagate from the wall into the
fluid domain. The no-slip condition implies that the fluid velocity at the wall is equal to
the velocity of the wall. Thus,

u(0,t) = Upsinwt, fory = 0. (B.2)

The steady state solution of eq[BJlwhich can be found in e.g. Schlichting and Gersten (2000)|
is

u(y,t) = Uy exp(—n) sin(wt — 1), (B.3)

n= y\/g- (B.4)

Here v = p1/p is the kinematic viscosity coefficient and w is the frequency of oscillation of
the wall.

with
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B.1.2 Second Stokes Problem, transient solution

We are seeking the unsteady solution of (B]). First we separate the velocity into a steady
state term U® and a transient term U*:

uw=U*+U" (B.5)
From (B) and (B3) the initial condition u(y,0) = 0 leads to
U*(n,0) = —Up exp(—n) sin(—n). (B.6)

When t — oo, the transient term must vanish such that the steady state solution re-
mains. A general solution for the transient term of [BJ] in integral form is given in
I[Landau and Lifshitz (2004)| as:

Uy, t) = 2\/;7 /OOO fo(9) (eXp {M} — exp {_@47;‘”?]) dg, (B.7)

where fo(¢) is the initial condition for U*. Substitution of (Bf) into (B) does not lead
to a tractable integral. Hence, instead of (B.fl) a complex continuation of (Bf) is used

(Panton T968):

U (n,0) = UpS{ exp[—(1 = )n] sin(—n) }. (B.8)

Substitution of (B.9) gives integrals which can be evaluated by standard techniques. This
yields:

Ut(n,T) = Uy {—0.5 exp [C'n — iT] erfe [\/ 0.57(C + n/T)}

(B.9)

+ 0.5exp[—Cn — iT]erfc [\/ 0.57(C — 'r]/T)} }

Here T' = wt and the complex constant C' = 1 —¢. This solution includes the complemen-
tary error function erfc(z) = 1 — erf(z) with complex argument z = x + iy, which must
be separated into real and imaginary components to obtain the solution:

erfc(x + iy) = F(x,y) + iG(z,y). (B.10)

Unfortunately, an expression for ' and GG does not exist. [Abramowitz and Stegun (1970)|
gives a series expansion that approximates the complex error function:

erf(x + iy) = erf(z) + %_xﬁ)[(l — cos 2zy) + i sin 22y
+%Zegﬁ7i;)[fn(w)+ign<x,y)] +e(z,y) (B.11)

where

fu(,y)
gn(z,y) = 2x cosh ny sin 2zy + n sinh ny cos 2y
le(z, y)| = 107" Jerf (2 + iy)]

x,1y) = 2x — 2x cosh ny cos 2xy + n sinh ny sin 2xy

This is used to evaluate the transient velocity field.
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Constant grid zone

Yg§ oo Quadratic grid zone

Exponential grid zone

S0 S2 S4 S6 S8 S

Figure B.1: Schematic view of how the grid arrangement close to the oscillating
wall is obtained using the parameter s. An exponential distribution of grid
points is applied in the normal direction inside the boundary layer. Constant

grid spacing is used far from the wall and a quadratic distribution of grid points
is used in a matching zone between the to regions to obtain a smooth transition.

B.1.3 Details on the grid generation

When the second Stokes problem is solved with the present flow solver, grid stretching is
applied close to the oscillating wall. The grid is divided into three grid zones, where the
grid increment follows an exponential distribution close to the wall. Far away from the
wall the grid line spacing is constant, while a quadratic variation is used in a matching
zone to merge the exponential grid with the constant grid. The distribution of grid points
in the normal direction to the wall is for the exponential zone found as

yi = B(exp(as;) — 1) (B.12)

where s; € [0,1] is a equidistant distribution vector with Ny + 1 elements and 3 is a
clustering parameter. Further, the coefficient « defined as

0

a=In <% + 1). (B.13)
g

The parabolic distribution function describing the position of grid points within the

matching zone is
yi = as; +bsi + ¢, (B.14)

where the constraints ysart = 00.99, Yenda = kdo.99 and y'(s)|eng = 0 determines the coeffi-
cients a,b and c. Here, k is the extension of the matching zone relative to the boundary
layer thickness. A schematic view of this mapping is presented in figure Bl Using the
above described procedure, three grids with different resolution of the boundary layer are
established. Grid parameters for the three grids are presented in Tab. B3
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Table B.1: Grid parameters used for the second Stokes problem. N, and N, are
the total number of grid cells in the horizontal and vertical direction, respectively.
Ny, is the number of cells in the y—direction inside the boundary layer, while
Ny, is the number of grid cells in the y—direction in the parabolic matching

zone.
Parameters N, N, Ny N,. k (/o
Grid A 200 30 15 125 0.08
Grid B 100 20 8 8 5 0.08
Grid C 7 15 6 6 5 0.08




Appendix C

Details of the model tests

C.1 The model tests from 2006

The test matrix from the model tests from 2006, where wave excitation forces on fixed
cylinders subject to regular waves were studied, are presented in Tab. The run index
is composed as follows. The first number refers to the model geometry and draft, the
second number refers to the wave steepness, while the third number refers to the wave
period. The last number is reserved for repetition tests and re-runs.

Two cylindrical model geometries were tested. One with a circular cross-section and
one with a rectangular cross-section. Both models were made of steel. A sketch of the
models used in the experiments from 2006 are presented in Fig.

C.1.1 Statistics from the 2006-experiments

Mean values and relative errors of the mean wave height obtained from repetition tests
are presented in Fig. and Mean values and relative errors of the measured wave
excitation forces for the in-line horizontal direction and the vertical direction, obtained
from repetition tests are presented in Fig.
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(a) Rectangular cylinder
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(b) Circular cylinder

Figure C.1: Sketch of models used in the experiments from 2006. The main

dimensions are given in the figure.
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Linear harmonic Second harmonic Third harmonic Max. value
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Figure C.2: Mean values of measured free surface elevation obtained from repe-
tition tests for the four wave gauges WG 1 to WG 4. Labels 1 to 5 represents
repetition tests for the case numbers 4150, 4250, 5150, 6150 and 7150, respec-
tively. Five repetitions were performed for each case. Corresponding relative
errors are given above each bar.
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Linear harmonic Second harmonic X 1d‘ﬁird harmonic Max. value
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Figure C.3: Mean values of measured free surface elevation obtained from repe-
tition tests for the four wave gauges WG 5 to WG 8. Labels 1 to 5 represents
repetition tests for the case numbers 4150, 4250, 5150, 6150 and 7150, respec-
tively. Five repetitions were performed for each case. Corresponding relative
errors are given above each bar.
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Figure C.4: Mean values of measured clamping forces from repetition tests. La-
bels 1 to 5 represents repetition tests for the case numbers 4150, 4250, 5150,
6150 and 7150, respectively. Five repetitions were performed for each case. Cor-
responding relative errors are given above each bar.



C.1. The model tests from 2006

205

d/D=02 d/D=05 d/D=03
T, [e=1/50 e=1/30 e=1/20 | e=1/50 e=1/30 e=1/20|c=1/50 e=1/30 e=1/20
0.981 | 2000 2100 2200 3000 3100 3200 4000 4100 4200
1.084 | 2010 2110 2210 3010 3110 3210 4010 4110 4210
1179 | 2021 2121 2990 3020 3120 3220 4020 4120 4220
1.266 | 2030 2130 2931 3030 3130 3230 4030 4130 4230
1.348 | 2040 2140 2241 3040 3140 3240 4041 4140 4240
1.348 4241
S| 1.348 4242
£ | 1.348 4243
£ ] 1.348 4244
5 1425 2051 2150 2950 3050 3150 3250 4050 4150 4250
E1.425 4151
S| 1.425 4152
1.425 4153
1.425 4154
1.498 | 2060 2160 2260 3060 3160 3260 4060 4160 4260
1.568 | 2070 2170 2270 3070 3170 3270 4070 4170 4270
1.634 | 2081 2181 2280 3080 3180 4080 4180
1.698 | 2090 2190 - 3090 3192 - 4090 4190 -
0.981 | 5000 5100 5200 6000 6100 6200 7000 7100 7200
1.084 | 5010 5110 5210 6010 6110 6210 7010 7110 7210
1179 | 5020 5120 5221 6020 6120 6220 7020 7120 7220
£ 11.266 | 5030 5130 5230 6030 6130 6230 7030 7130 7230
E | 1.348 | 5040 5140 5240 6040 6140 6240 7040 7140 7240
T 1.425 | 5050 5150 5250 6050 6150 6250 7050 7150 7250
= | 1.425 5151 6151 7151
B | 1425 5152 6152 7152
S | 1.425 5153 6153 7153
T 1.425 5154 6154 7154
= 11.498 | 5060 5160 5260 6060 6160 6260 7060 7160 7260
1.568 | 5070 5170 5270 6070 6170 6270 7070 7170 7270
1.634 | 5080 5180 - 6080 6180 - 7080 7180 -
1.698 | 5090 5190 - 6090 6190 - 7090 7190 -
Table C.1: Test matrix. Repetition tests have shaded background. The param-

eter ¢ = Hy/\g is the steepness for the corresponding deep water wave. Tests
where over-topping did occur are labeled red. The tests marked with “-” could

not be run because of limitations of the wave maker.
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C.2 The model tests from 2008

Some details from the experiments in 2008 with the moored circular cylinder are presented.

C.2.1 Acceleration measurements

The total acceleration relative to the Earth-fixed frame of reference in the direction of
the body coordinate y' is found as a;, = 0.5 (a,2 + a,1), while the angular acceleration is

found as 6 = 0.5 (a,2/rs — ay1/72). The total acceleration of the cylinder in the Earth-
fixed coordinate system is thus found by mapping using the Jacobian and correcting for
acceleration of gravity, —ge,, and angular acceleration. Now consider the cylinder at rest.
For # = 0, all accelerometers are calibrated to measure zero acceleration. When 6 is in-
creased to 90°, the accelerometers in the gy’ direction will measure g and the accelerometer
in the 2’-direction will measure —g, when the cylinder is at rest. If we further increase the
angle 0 to 180°, we get a,» = 0, a1 = 2¢ and a,9 = 2¢. This must be accounted for if we
want to find the accelerations in an Earth fixed frame of reference. Further, when there is
an angular acceleration 6 due to roll motion of the cylinder, we will measure a,, = —rlé,
a1 = —r90 and Qo = r30, where 71, 5 and 73 are defined in Fig[o.10(a)] The total
accelerations in the Earth-fixed reference frame are thus

az|  |cos® —sinf| |ay sin 6 - r1
LLJ o {sin@ cos ] {ay/} g |:COSQ — 1] +90 {7‘2 —7"3:| (C.1)

For small angles 6, EqICT] can be linearized. Further, applying that ry = r, = r3 = r, we

T HEAERE e

These are the linearized expressions, valid for small roll angles 6, giving the accelerations
of the model in an Earth-fixed frame of reference.

Linearity test for the springs

The linearity properties of the springs used in the mooring line arrangement are tested.
Measured elongation of the three springs from the linearity test is shown in Fig. [C3 The
results shows that the springs are linear when loaded below their reported floating limit,
which is indicated by the horizontal line in the figure.
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Figure C.5: Test of linearity of the springs used in the model tests. The dashed
line shows the given floating limit for the spring. Floating is also verified by
noting that spring 3 does not go back to its initial length after unloading.
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Appendix D

Time series

D.1 Wave elevation from tests with fixed cylinders
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Figure D.1: Computed and measured free surface elevation from tests with fixed
rectangular cylinder at WG 2, WG 3 and WG 5. d/D = 0.5, T" = 1.084s,
Ho/Xo = 1/20. (Model tests from 2006).
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D.2 Wave elevation from tests with moored cylinder

¢ [m]

Time [s]

Figure D.2: Computed free surface elevation in front of cylinder is compared with
measured free surface elevation from model tests with T = 0.457s. Input wave
steepness was H/A = 1/14. Two parallel wave gauges from the measurements
are used for comparison.
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Figure D.3: Computed free surface elevation in front of cylinder is compared with
measured free surface elevation from model tests with T = 0.497s. Input wave
steepness was H/\ = 1/14. Two parallel wave gauges from the measurements
are used for comparison.
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Figure D.4: Computed free surface elevation in front of cylinder is compared with
measured free surface elevation from model tests with 7" = 0.544s. Input wave
steepness was H/A = 1/14. Two parallel wave gauges from the measurements
are used for comparison.
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Figure D.5: Computed free surface elevation in front of cylinder is compared with
measured free surface elevation from model tests with 7" = 0.601s. Input wave
steepness was H/A = 1/14. Two parallel wave gauges from the measurements
are used for comparison.
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Figure D.6: Computed free surface elevation in front of cylinder is compared with
measured free surface elevation from model tests with T = 0.761s. Input wave
steepness was H/A = 1/14. Two parallel wave gauges from the measurements
are used for comparison.
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Figure D.7: Computed free surface elevation in front of cylinder is compared with
measured free surface elevation from model tests with T = 0.878s. Input wave
steepness was H/A = 1/14. Two parallel wave gauges from the measurements
are used for comparison.
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Figure D.8: Computed free surface elevation in front of cylinder is compared with
measured free surface elevation from model tests with T = 1.038s. Input wave
steepness was H/\ = 1/14. Two parallel wave gauges from the measurements
are used for comparison.
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Figure D.9: Computed free surface elevation in front of cylinder is compared with
measured free surface elevation from model tests with T = 1.132s. Input wave
steepness was H/\ = 1/14. Two parallel wave gauges from the measurements
are used for comparison.
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