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AbstratThe main objetive of this work is to study wave loads on �oaters of �sh farms. Severalinidents of major �sh esapes due to strutural ollapse of �sh farms in harsh weatherhave motivated this study, as a step towards obtaining better load models for the waveloads on the �oaters. Floaters of �sh farms are typially small ompared to dimensioningwaves. The loal two-dimensional problem of a �oater subjet to beam sea regular wavesis onsidered. The problem is addressed by means of numerial simulations, model testsand simpli�ed numerial models. A CFD numerial wave tank (NWT) for fully nonlinearwave body interation problems is developed. The numerial model applies a one-�uidmodel, where a frational step approah is used to solve the inompressible Navier-Stokesequations in time on a Cartesian staggered grid. Further, a ombined Constrained Inter-polation Pro�le (CIP-) and �nite di�erene proedure is used. An immersed boundarytehnique is applied to impose boundary onditions on the �oater.Two sets of model tests have been onduted. In the �rst set, wave loads on �xedhorizontal ylinders in beam sea waves were studied. The purpose was to obtain validationdata for the numerial wave tank. Two models were tested. One with a irular ross-setion and one with a retangular ross-setion. Model draft was varied. Other testparameters were wave period and wave steepness. The primary variables measured werethe lamping fores of the model and the wave elevation at eight positions in the �ume.Numerial simulations similar to the physial experiments were performed and resultsompared, showing good agreement. Wave over-topping on the models was observed,both in the experiments and in the simulations.In the seond set of experiments, a �oating irular ylinder in beam sea regularwaves was tested. The ylinder was moored using pre-tensioned mooring lines, yieldinga natural frequeny of the sway motion whih is representative for �sh farms. Primaryvariables measured here were the model aelerations used to obtain the body motion,surfae elevation and mooring line fores. Results were ompared with linear potential �owtheory, semi-empirial theories and simulations with the CIP-based numerial wave tank.An instability phenomenon was observed in the experiments when the wave frequenywas two times the natural frequeny in sway, ausing large amplitude sway motion whihis not predited by linear potential �ow theory. The same instability behaviour was alsoobserved in simulations with the CIP-based numerial wave tank and is believed to be dueto nonlinear hydrodynami e�ets. Experiments and numerial simulations also showsthat linear potential �ow theory largely over-predits the sway motion near resonane.This is explained by e�ets of visous �ow separation. It is also shown that higher orderharmonis of the wave loads an be signi�ant and should be onsidered when fatigueanalyses of �sh farms are performed. iii
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Chapter 1IntrodutionThe fous of this work is wave loads and wave indued motions of the �oaters of openage �sh farms. Better understanding of the hydrodynami loads on �oating �sh farms isneessary in order to develop more reliable strutures for �sh farming at exposed loations.Strutural ollapse of �oating �sh farms in harsh weather onditions, ausing large �shesapes, is still a problem. We have investigated the hydrodynami loads by means ofdediated model tests, numerial simulations using a presently developed omputational�uid dynamis (CFD) ode, in addition to theoretial methods.1.1 Bakground and motivationIn 2006, the state of world aquaulture was presented in a omprehensive report by theFood and Agriulture Organization of the United Nations (FAO 2006). Aording toFAO, �shing and harvesting of the oeans an not supply additional landings of mostwild-aught speies in order to meet the inreasing demand for sea-food produts inthe world, without endangering the resoures. In fat, many speies are already over-exploited. This has in reent years motivated a rapid growth of aquaulture around theworld. Aquaulture is today probably the fastest growing form of food prodution in theworld. We de�ne aquaulture as the propagation and rearing of freshwater and saltwaterorganisms in ontrolled or seleted environments. In 2004, about half of the global totalaquaulture prodution was from aquaulture in marine environments, while the otherhalf was from fresh-water aquaulture. The sope of �sh farming is inreasing year byyear. In 2006, about 50% of the worlds food �sh was produed by �sh farms. Based on theprojeted growth in the world population over the next two deades, it is estimated thatat least an additional 40 million tonnes of aquati food (67% of the total prodution in theworld in 2004) will be required by 2030 to maintain the urrent per apita onsumption(FAO 2006). We will in the following fous on �sh farming in marine environments, inpartiular at exposed oastal or o�shore loations.Fish farm installations and tehnologies whih are apable of operating pro�tablyat truly o�shore loations are a lear fous for development in many regions that lakindented oastlines. For example, the U.S. Government plans to inrease the value ofmarine and freshwater aquaulture prodution from $ U.S. 900 million in 1999 to $ U.S.5 billion by 2025 (NOAA 2007a). In this plan, marine aquaulture in U.S. federal watersplays a entral role and development of tehnologies for sustainable aquaulture operations1
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Figure 1.1: Produed amount and orresponding landed value of salmon andtrout in Norway from 1992 to 2007 (www.ssb.no).for �sh and shell�sh are emphasized (NOAA 2007b). As U.S. federal waters are 3 to 200miles o� the oast, the sope of o�shore aquaulture in the U.S. is believed to inreasesigni�antly in the near future. In Korea, China and Taiwan, marine �sh-farms are ofteninstalled at o�shore loations due to lak of available sheltered sites with adequate wateronditions. These regions experiene several typhoons eah year, and the �sh farms heremust be designed to ope with these in addition to the seasonal monsoons and strongoean urrents.Atlanti salmon (Salmo salar) is by far the dominating breed in Norwegian �sh farm-ing, whih in 2007 ounted for 89% of the total amount of sold farmed �sh. Otherimportant speies in Norwegian aquaulture are rainbow trout (Onorhynhus mykiss)and Atlanti od (Gadus morhua). We will in the following refer to Atlanti salmon,Atlanti od and rainbow trout as salmon, od and trout, respetively. The produedamounts of salmon and trout by Norwegian �shfarms and orresponding landed valuesduring the years from 1992 to 2007 are presented in Fig. 1.1. The produed amounts ofespeially salmon and od have had an explosive growth during the last three deades.In 2007 the total prodution of farmed salmon and trout in Norway reahed 821,000 tons(www.ssb.no). The inreasing sope of �sh farming has lead to a lak of new availableloations in sheltered areas. Hene, there is a trend that �sh farms are installed at moreand more exposed loations. This puts stronger demands on the struture in order towithstand the environmental loads. Many Norwegian �sh farmers have experiened thatthe North-Atlanti oean has a rather harsh weather limate, espeially in the winterseason. This is exempli�ed in Fig. 1.2, whih shows a �sh farm in Flatanger, Nor-way, during the winter storm Narve in January, 2006. Expansion of the Norwegian �shfarming industry has been aompanied by a reent inrease in the inidene of esapes.Several ourrenes of strutural ollapse of �sh farms in harsh weather has been reportedduring the years, many whih have resulted in large �sh esapes. Esaped farmed �shis onsidered to be harmful to the wild Atlanti salmon. Mainly, this is beause thefarmed �sh may bread with the wild salmon and lead to geneti pollution of the wild�sh, whih have developed through thousands of years to adept to the onditions in apartiular river. It is also laimed that the inreased sope of salmon �sh-farming and thelarge onentration of salmon in the �sh ages is the main ause to the growing problem
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Figure 1.2: Open age �sh farm of the irular ollar type in Flatanger, Norway.The photo is taken during the winter storm Narve in January 2006. Large elastideformations of the struture are seen. (Photo: Marius Dahle Olsen)
of sea-lie in Norway the reent years. Researh e�orts have been put into developingmore reliable strutures for �sh farming with the result of new regulations for the de-sign and operation of �oating �sh farms, whih were introdued in 2003 through NS 9415(Standard Norway 2005). Although the �sh farming industry in Norway has beome moremature now sine its beginning in the early 1980-ies, the problem of �sh esape is still notresolved. In 2007, the total number of esaped �sh reported from Norwegian �sh farmswas 450,000. The largest single esape in Norway ourred in 2005 and ounted nearly500,000 �sh. Number of esaped salmon and trout from Norwegian �sh farms reportedto the Norwegian Fisheries Diretorate in (Norwegian Fisheries Diretorate 2009a) and(Norwegian Fisheries Diretorate 2009b), for the years from 2001 to 2009 are presentedin Fig. 1.3. However, it is believed that the true numbers of esaped salmon and trout fromNorwegian �sh farms are higher. Reports by Norwegian �sh farming ompanies to the Nor-wegian Fisheries Diretorate of esape events during the period 2001-2006 indiate thatesapes of salmon an be ategorized broadly into strutural failure (52%), operational-related failure (31%) and other auses (17%). This an be esapes due damage on the netaused by predators (e.g. seal), damage due to ship olliding with the �sh farm, or damageaused by driftwood. Signi�ant esape events have also oured in other major salmonidproduing ountries, suh as Sotland, Chile and Canada (Soto, Jara, and Moreno 2001).In partiular, the introdution and rearing of Atlanti salmon as a non-native breed inChile has been ontroversial, as the environmental e�ets of esapes are unknown. Webelieve that better knowledge on the hydrodynamis related to the wave loads on the�oaters of �sh farms is neessary to improve the strutural reliability of �sh farms. Im-proved reliability of the �sh farm strutures will in turn redue the probability of esape.This is the main motivation for the present work.
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2009Figure 1.3: Number of esaped salmon and trout from Norwegian �sh farms inthe time period 2001 to 2009 reported to the Norwegian Fisheries Diretorate.The numbers from 2009 are due Otober 5th.1.1.1 Open age �sh farmsOpen age �sh farms are the most ommon type of plants used for farming Atlanti salmonand Atlanti od today. The open age �sh farm is haraterized by a slender �oatingstruture whih forms irular or retangular ages. Eah age is equipped with a net-pen,where sinkers are used to splay the net-age. The buoyany is obtained by distributedpontoons or by �oating ollars. A spread mooring system omposed of a larger number ofpre-tensioned mooring lines is used to keep the struture on its loation. However, otheronepts like single point mooring of plants have been tested. Then the �sh farm is freeto weather vane around the moored buoy. Usually open age �sh farms are equipped witha feeding system, often inluding a feed barge.The strutural design of the �sh farms has during the years been modi�ed and im-proved, often on a trial and error basis. About twenty years ago, the �oating struturewere typially made of wood, forming small ages as shown in Fig. 1.4. Today, �sh farmstrutures are usually made of steel, aluminium or high density poly-ethylene (HDPE)plasti. Further, there exists many di�erent onepts of �sh farm strutures as desribedby Fredheim and Langan (2009). The most ommon �sh farm onepts used by the Nor-wegian �sh farming industry today are desribed in the following.Cirular plasti ollar �sh farmThis type of struture has ages formed by pipes with an outer pipe diameter between225mm to 500mm. The pipes made of high-density polyethylene (HDPE) are welded toobtain a preferred length and then wrapped to form a irle. The two free ends of the pipeare then welded together to form a ring. Usually, a �oating ollar is omposed of two orthree suh rings whih are onneted using steel or HDPE lamps. Typial irumfereneof the ollar is from 60m to 200m. It is from suh ollars that the �sh farm obtain itsbuoyany. Some manufaturers also deliver walkways whih an be mounted between thepipes of the ollar. The irular plasti ollar �sh farms are elasti and deforms whensubjeted to waves and urrent (see e.g. Fig. 1.2). An issue for suh strutures is thesafety for personnel in relation to aess to the ages.
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Figure 1.4: Typial old Norwegian �sh farm in a sheltered loation. The superstruture is haraterized by wooden frames supported by �oaters or pontoons.Interonneted hinged steel �sh farmTypially, this is a steel struture omposed of more or less sti� bridges that are hingedor interonneted by �exible joints to form square or retangular ages. The bridges aretypially 12 meters of length, are made of steel and supported by distributed pontoons.Normally, the hinges only allow for rotation around one axis in the horizontal plane.Limited �exibility of the joints has shown to be a weak part of suh �sh farms, as largepoint loads may our here for some of the �exible modes of the struture. This an resultin fatigue related failures. Further, breaking of only one or a few mooring lines is ritialfor suh strutures due to the limited �exibility of the hinges. Breaking of mooring linesmay ause unfavorable loads on the plant due to redistribution of mooring line foreswhih may lead to strutural ollapse. An illustration of the underwater struture of ahinged steel age is shown in Fig. 1.5, whih also indiates how salmon usually tend to beshooling inside the pen. Shooling is when a group of �sh swim together in a oordinatedmanner and in the same diretion.Catamaran steel �sh farmCatamaran �sh farm strutures are omposed of parallel slender steel hulls whih areonneted with bridges and hinges into di�erent on�gurations. The buoyany of suh�sh farms are provided by the hulls. Catamaran �sh farms are often large and withintegrated feeding barges as shown in Fig. 1.6(a). A better overview of the struture isobtained from Fig. 1.6(b), whih shows an instantaneous situation of the visualizationoutput from a ommerial omputer software tool for strutural analysis of �sh farmswhen the struture is subjeted to a uniform steady urrent and regular waves. Limited�exibility of the hinges, whih may lead to fatigue problems for the bridges, is an issuealso for this type of struture.
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Figure 1.5: Illustration of the underwater struture of a hinged steel type �shfarm. Sinkers are attahed to the pen in order to streth the net.

(a) (b)Figure 1.6: A modern �sh farm in Norway is shown to the left. To the right is thevisualization from a ommerial omputer software tool for strutural analysisof �sh farms (www.proean.no/�shfarms.html).



1.1. Bakground and motivation 7Rigid steel �sh farmThis is a large ategory with several di�erent �sh farm designs intended for operationat exposed loations. The most ommon type of the rigid steel �sh farm is omposed ofrobust steel pipes with diameter of order 1m that are welded together to form retangularor square ages. The �oating ollar then appears as semi-submerged irular ylindersoriented with the ylinder axis horizontally in the free surfae. Also �sh farms made oftruss work exists. This type of struture is haraterized by a small water-plane area,whih implies low natural frequenies in heave, pith and roll of the struture. Buoyanyare mainly obtained from submerged pontoons. The submerged pontoons also makes thestruture less exposed to wave exitation loads. Knowledge and experiene from o�shoreengineering and the oil-industry have been utilized in the development of this struturetype.Submersible �sh farmBy adding a �roof� on the net-pens, the �sh age an be submerged for some period oftime, e.g. during a storm. Bene�ts of a submerged �sh age are redued wave loadson the struture and that problems related to iing on the super-struture are avoided.However, there are biologial issues related to submerging the �sh ages. One is thatsalmon needs aess to the free surfae for �breathing� in order to supply its swim blad-der with air. Submerging the �sh ages for a longer period of time will ause the �shto be more stressed. This has a negative e�et on the �sh growth and welfare. Theoperation of submerging a plant is performed by a ontrolled �lling of water into thepontoons or plasti ollars. Elevation of the plant is done by pumping ompressed airbak into the pontoons while evauating the water through valves. Suh submerge-able�sh farms are still on the development stage. More novel �sh farm systems are presentedin Fredheim and Langan (2009).1.1.2 Norwegian �sh farms at presentCommon for all the previously mentioned types of �sh farms is that the �oating strutureforms square or irular ages to where net pens are mounted. A modern �sh farm anhave as muh as 16 ages. The size of the ages has inreased signi�antly through theyears, and so has the number of �sh in eah age. An aspet of the inreasing size ofthe �sh farms is that the onsequenes of strutural ollapse beome more severe, bothenvironmentally and eonomially, as more �sh is likely to esape. Today, a typial lengthof the sides of a large square age is 40m, while a large irular age an have a diameterof 64m. Net age volumes are most typially 10,000 m3 to 20,000 m3 and a single agemay ontain up to 1,000 tons of �sh. This means that if the mean weight of the �sh is �vekilograms, whih is a representative value for Atlanti salmon when the �sh is ready tobe slaughtered, a single age may ontain as muh as 200,000 �sh. Salmon have a swimbladder whih is �lled with air suh that the �sh beome neutrally buoyant. Hene, thevolume of the �sh is approximately equal to the total mass of the �sh divided by the massdensity of the water. The upper limit for the average �sh density inside a pen is 25kg/m3,whih is kilograms of �sh per ubi meter of water. This means that about 2.5% of thetotal volume of a �sh age an be oupied by the �sh. However, the �sh is usually notevenly distributed within the age. For instane, salmon often tend to be shooling inside
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Figure 1.7: Salmon forming a shool inside a �sh age. This shows that theloal �sh density inside a �sh age an be relatively high due to the shoolingbehaviour.the pen, making the �sh density loally higher than the average value. An example ofsalmon forming a shool inside a �sh age is shown in Fig. 1.7. Another fator ausinghigher �sh density is urrent fores on the net whih lead to deformations of the net age,yielding a redued enlosed volume of the pen. The vertial position of the �sh insidethe pen is a funtion of feeding time, daylight, water temperature, dissolved oxygen inthe water in addition to urrent and waves. A modern Norwegian plant typially has5,000 to 6,000 tons of �sh, totally. However, there exist plants with up to 10,000 tons(Fredheim 2009).1.1.3 ChallengesIn order to design reliable strutures for �sh farming at exposed loations, it is ruial toknow what are the loads the struture will be subjet to. Figure 1.8 shows an exampleof a damaged �sh farm after a storm, where parts of the �oating ollar is below the freesurfae. Suh damages are often aused by breaking of mooring lines due to wave andurrent loads on the struture. This may lead to bukling of the �oating struture dueto large point loads aused by redistribution of mooring line fores. Due to the hangeof the mooring fores assoiated with line breakage, transient motions of the plant willour until a new equilibrium position is reahed, or if several mooring lines are broken,the struture might simply drift to the shore. Damage an also be aused by fatigue fromontinuous wave loading. An example of fatigue damage is shown in Fig. 1.9. Fatigue ismostly a problem for the joints of hinged or rigidly onneted steel types of �sh farms,with members being more or less elasti. Elastiity of the struture also implies that thestruture will theoretially have an in�nite number of natural frequenies in ase of nodamping. Although osillations at higher natural frequenies are e�etively damped bystrutural damping, the lower natural frequenies are important from a fatigue point ofview. If the struture is regularly exited at a natural frequeny with small damping, thiswill have a negative e�et on the fatigue life of the struture. Resonant elasti motionsimply ylial loads in the struture at a relatively high stress-level. Suh ylial stresses
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Figure 1.8: Example of a ollapsed �sh farm after a storm, with large �sh esapeas a result.may over time lead to fatigue damage of the struture. The fatigue life of a given struturean be estimated from the S-N urve, showing the magnitude of a ylial stress (S) andthe orresponding number of yles to failure (N) in logarithmi sale. At present, linearthree-dimensional (3D) panel methods based on potential �ow theory like e.g. WAMITare not ommon to use for response-analysis of �sh farms in waves. Engineering toolsdeveloped for strutural analysis of open age �sh farms usually apply linear potential�ow theory (long wave theory) and strip theory, where drag fores as in Morison's equationare added to the potential �ow solution, for simulating the global response of suh plantswhen subjeted to waves and urrent. Only regular waves are onsidered, suh that thefrequeny-dependent hydrodynami oe�ients of the �oaters orresponding to the wavefrequeny an be used. For the hinged steel type �sh farm, global hydroelastiity of thestruture is usually aounted for by solving the oupled equations of motions for hingedrigid bridges.The approah using linear potential-�ow theory for strutural analyses of �sh farmsmay yield good results for smaller sea-states. However, for larger sea-states linear theorymay largely over-predit the true response near resonane, or perhaps more ruial, missto apture important features assoiated with nonlinear �uid-struture interation. Inaddition, higher order harmonis of the wave loads may be important when it omes toexitation of �exible modes of the struture, whih eventually may lead to fatigue.A pratial hallenge is related to that salmon requires a high level of dissolved oxygenin the water and are also intolerant of pollution (Monahan 1993). Hene, the �ow of waterthrough densely stoked pens must be good to maintain adequate oxygen supplies and toremove polluted water. The exhange of water in the pens is important for the �sh healthand growth, whih means that desired loations for �sh farming should have a su�ientlevel of urrent. One fator that is important to onsider relative to water exhange isbio-fouling or marine growth on the nets. Bio-fouling on the nets is hard to prevent andwill redue the �ow through the net, implying a redution of the water exhange in the
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Crack

Figure 1.9: Example of fatigue on a steel type �sh farm. The rak has propa-gated through the whole setion.pens. Bio-fouling also leads to larger wave and urrent fores on the net as the e�etivearea of the net age inreases, and inreased inertial loads due to additional weight onthe pen.1.2 Previous and on-going related workThe purpose of the present work, whih addresses the wave loads on �oaters of �sh farms,is to ontribute to the higher goal of obtaining more reliable strutures for �sh farming.This goal is also shared with other studies, where other omponents of �sh farms or moreor less omplete �sh farm strutures are onsidered. In order to get an overview of thebigger piture, we will in the present setion also give referene to work whih is notdiretly relevant for wave loads on the �oaters but for modelling of �sh farms in general.Design of omplete �oating �sh farms and modelling of their response in waves andurrent is hallenging and involves several disiplines suh as hydrodynamis, struturalmehanis and ethology. When it omes to hydrodynami modelling of large omplex �shfarms, the literature is limited. Further, existing studies of more or less omplete �oating�sh farm strutures mostly rely on wave-load models whih in general are not validatedfor �oaters of �sh farms. Previous and on-going work relevant for modelling �oating �shfarm strutures in waves and urrent are given in the following.The net strutureOne of the �rst detailed theoretial analysis on the hydrodynami fore ating on a netpanel suspended in a urrent was presented by Tauti (1934). He onsidered a strethednet panel as a ontinuous membrane and proposed di�erential equations for mehanialequilibrium of the membrane, based on the assumption that the drag fore on the net wasproportional to the square of the urrent veloity. Similarity laws for saling of net stru-



1.2. Previous and on-going related work 11tures were also proposed. A omprehensive review of theoretial and experimental workon hydrodynamis related to �shing gear, with fous on the mathematial modelling ofnet strutures, was presented by Kawakami (1959). A semi-empirial formula expressingthe drag fore FD on a plane net panel subjet to a uniform urrent in the normal dire-tion of the panel was proposed by Kawakami (1964) as FD = 0.5ρCDAU2. Here, ρ is thedensity of water, CD is an experimentally determined drag oe�ient, A is the spannedarea of the net panel and U is the �uid veloity. A thorough study on the urrent fores onnet ages and the resulting net de�etions was presented by Aarsnes et al. (1990). Basedon a series of model tests where net panels were towed with di�erent orientation anglesrelative to the towing diretion, a mathematial model for the urrent indued loads onnet panels was proposed. The new mathematial model inluded a lift term in addi-tion to the drag fore proposed by Kawakami (1964). Løland (1991) modelled the �owthrough �sh farms using the wake �ow equations, whih for steady �ow an be found inShlihting and Gersten (2000). By utilizing the linearity of the wake �ow equations, hewas able to model the �ow through a sreen by adding together the wake �ow aused bythe individual ylinders forming the sreen. Both steady and unsteady ambient �ow wereonsidered. This method has shown to be appropriate for sreens with low solidity ratio.The solidity ratio Sn is de�ned as the projeted area of the sreen divided by the totalspanned area of the sreen. Hene, for a square mesh of ylinders with diameter d andseparation l we get Sn = 2d/l − (d/l)2. The possibility of hydrodynami interation be-tween twines of a net an be assessed by the CFD studies by Herfjord (1996). He studiedthe 2D problem of two irular ylinders in a side-by-side arrangement subjet to uniformross �ow. The ylinders were separated a distane l in the transverse diretion relativeto the inident �ow. He found that wake interation ours when l < 2d, with d being theylinder diameter. This means that when Sn > 0.75 the linearity assumption of the wake�ows is no longer appliable, and for inreasing solidity ratio wake interation beomesinreasingly important. Typial values of the solidity ratio for lean unfouled nets of �shages for Atlanti salmon is in the range Sn = 0.15− 0.25. Fridman (1998) pointed outthat for small values of the Reynolds number Rn = Ud/ν, where U is the urrent veloity,
d is the diameter of the twines of the net and ν is the kinemati visosity oe�ient, thedrag oe�ient CD of a net panel is highly dependent on the Reynolds number (see alsoFaltinsen and Timokha 2009). When Rn < 600 the drag oe�ient CD shows a strong in-rease with dereasing Reynolds number, while for Rn > 600 the drag oe�ient is nearlyindependent of the Reynolds number. A typial twine diameter of a �sh age for salmon is
d = 3mm. With a design urrent speed of U = 1m/s and with ν ≈ 10−6 m2/s, this yields
Rn ≈ 3000. This means that the drag oe�ient for a full sale net age for a typialdesign value of the urrent speed is nearly independent of the Reynolds number. How-ever, for model testing of �sh farms where geometri saling of the net is used to obtain amodel sale �sh age, the Reynolds number dependene of the drag oe�ient of the netis important. Saling laws for net strutures were disussed by Hu et al. (2001), and dragoe�ients obtained from experiments with trawl nets in model sale and full sale wereompared. Good omparison was shown when the Reynolds dependene of the drag oef-�ient was aounted for. Bessonneau and Marihal (1998) presented an iterative methodfor omputing the deformation of net strutures in urrent, where a �exible net was mod-elled by a set of rigid bars onneted through �exible joints. A Morison type of modelwas used to ompute the drag fore and added mass fore of the individual bar elementsin the transverse diretion, while in the tangential diretion, a frition fore was applied.



12 IntrodutionThe individual bar elements were assumed to be hydrodynamially independent. Pre-sented numerial simulations of a towed trawl struture were reported to be qualitativelyin agreement with �ume tank observations. Tsukrov et al. (2003) presented a strutural�nite element model to ompute the response of net panels due to urrent loads based onan empirial drag formulation. Results from numerial simulations were ompared withexperiments and analytial results and good agreement was observed. An approximatemodel for analysis of urrent fores and orresponding response of three-dimensional (3D)net strutures with solidity ratios Sn . 0.5 was established by Fredheim (2005), wherethe twines of the net struture was modelled as linear elasti due to axial strething. Hefound that elastiity of the net struture has a diret in�uene on the geometry of thedeformed net when exposed to external fores.Due to bio-fouling, the porosity of the net ages will hange. The in�uene of poros-ity and �sh-indued internal irulation on the �ow around �sh ages are studied in anongoing PhD-projet by Gansel (2009). This study inludes both experiments and CFD-simulations.Modelling of a net age is hallenging also from a strutural point of view, as the netages vary in raw material, size, struture and surfae treatment. Strength analysis ofnet strutures typial for aquaulture ages was performed by Moe (2009). The strengthanalysis inluded experiments with tensile testing of various netting materials and nu-merial simulations of a net age subjet to uniform urrent. A quasi-stati approah wasused in the numerial simulations, where a Finite Element Method was applied for thestruture to ompute the net deformations due to the urrent loads. Netting materialsan be divided into knotted- and knot-less strutures, where the latter is the one mostused for Norwegian �sh ages. The struture of the netting material is also relevant forhydrodynami modelling of the net. We do not onsider net loads in the present work.The �oatersWave indued loads and motions of �oating bodies is a lassial branh of problems inmarine hydrodynamis dealing with ships and o�shore strutures. General aspets andtheoretial methods for solving suh problems are disussed in many text books, e.g. byNewman (1977), Faltinsen (1990), Dean and Dalrymple (1991) and Molin (2002). The�oaters of �sh farms are often haraterized as horizontal ylinders �oating in the freesurfae. Relevant work for the wave loads and wave indued motions of the �oaters aregiven in the following.The pioneering frequeny domain theoretial work related to wave indued e�ets onylinders in the free surfae was made by Ursell. He studied the two-dimensional (2D)heave added mass and damping of a semi-submerged irular ylinder, and gave a generalexpression of the potential �ow in terms of �ow singularities satisfying the free surfaeand radiation ondition (Ursell 1949). For the 2D problem of an in�nitely long ylinderoriented horizontally below the free surfae, Ursell (1950) derived the frequeny-domainanalytial expressions for the wave fores due to beam sea waves using potential �ow the-ory. Theoretial work on the waves generated by a 2D body osillating in the free surfaewas presented by Ursell (1954), where he studied how the wave amplitude at in�nity isdependent on the body geometry and the frequeny of osillation. This dependene isrelevant for the wave damping fore of �oating bodies. Based on Ursell's work, theoretialmethods for omputing linear wave indued loads on �xed and moving bodies in the free



1.2. Previous and on-going related work 13surfae were presented by Newman in (Newman 1962) and (Newman 1965), respetively.Further, based on Ursell (1950), Ogilvie (1963) presented �rst- and seond-order foreson a horizontal ylinder submerged below a free surfae. Tasai presented two-dimensionalvalues of the hydrodynami fore and moment due to fored sway and roll motion ofylinders with Lewis-form setions, whih was obtained using linear potential �ow theory(Tasai 1959; Tasai 1961). A Lewis form setion assumes the ross-setional shape an beadequately desribed by the ross-setional area, beam and draft (see e.g. Faltinsen (2005)for the geometri limitations of suh a tehnique). The obtained hydrodynami oe�ientswere used with a strip theory to give the total sway fore and roll moment on two atualship hulls due to fored sway and roll. Results were ompared with experiments. Thefrequeny-domain linear potential �ow assoiated with the wave exitation loads on aylinder of arbitrary ross-setion in oblique sea that is not lose to head or following seaan be desribed by the Helmholtz equation (see e.g. Bolton and Ursell (1973)). The headsea ase is more ompliated and was studied by Faltinsen (1971) in his Ph.D. thesis fora ship by using the near-�eld solution by Ursell (1968) as part of his analysis. The above-mentioned work are all in the frequeny domain. Solutions to transient potential �owproblems in time-domain for a �oating body in waves are desribed by Cummins (1962)and Ogilvie (1964).A thorough experimental study on the two-dimensional hydrodynami oe�ientsfor horizontal ylinders in the free surfae due to fored sway-, heave- and roll mo-tion was presented by Vugts (1968). Measurements of wave exitation loads on theylinders when being lamped and subjet to regular waves were also presented. Wavefores on partially submerged ylinders were studied by Dixon et al. (1979) by means ofmodel test experiments and numerially using modi�ed versions of Morison's equation(Morison, O'Brien, Johnson, and Shaaf 1950). An experimental study of nonlinear waveloads on a horizontal irular ylinder beneath linear deep-water waves for Keulegan-Carpenter numbers 2 . KC . 3, was presented by Chaplin (1984). The ylinder wassubmerged below the free surfae suh that interation with the free surfae was assumedto be unimportant. For the waves tested, the ratio between the wave lengths λ andthe diameter D of the ylinder was in the range λ/D ≈ 3.8 − 15. The non-linearity ofthe measured fores was believed to be assoiated with visous �ow separation from theylinder surfae, and the measured wave fores on the ylinder was observed to be asmuh as 50% less than that predited by linear potential �ow theory. The potential �owproblem of a horizontal ylinder submerged below a free surfae has later been addressedusing numerial methods by for instane Wu and Taylor (2003), who studied nonlinearwave-body interation using a domain deomposition approah. A �nite element method(FEM) was oupled with a boundary element method (BEM), where the former methodwas used away from the body while the latter was used in the near-�eld region of the body.BEM was also used by Kristiansen (2009) to onstrut a two-dimensional fully nonlinearnumerial wave tank for wave-body interation problems. A ship setion by an o�shoreLNG-terminal was onsidered where e�ets of �ow separation from the bilges of the shipsetion were studied. The free shear layers were modelled using an invisid vortex trak-ing method. Simulations in 2D of a moving body on the surfae of a visous �uid, basedon the inompressible Navier-Stokes equations, were presented by Gentaz et al. (1997).They omputed the added mass and damping oe�ients in heave, sway and roll, inaddition to the oupling oe�ients of roll in sway, for a retangular body. Numerialresults were ompared with experiments (Vugts 1968) and with potential �ow theory re-



14 Introdutionsults. Good agreement with experiments and potential �ow theory were observed theoe�ients in heave and sway, while the agreement for the added mass and damping o-e�ients due to roll and the oupling oe�ients were less good. A 2D numerial wavetank (NWT) based on the onstrained interpolation pro�le (CIP) method was presentedby Hu et al. (2003). Validation of the NWT was performed by means of simulations offored heave of a wedge and an ellipti body. The 2D added mass and damping oe�ientwere obtained from the simulation and ompared with potential �ow theory, with reson-able agreement. Further, numerial simulations of a �oating body subjet to nonlinearwaves were presented. A numerial wave tank for three-dimensional (3D) simulationswere presented by Hu et al. (2005). The 3D NWT was veri�ed by means of omputingthe added mass and damping in heave of a hemisphere. Results from a simulation with aWigley hull at forward speed in head sea waves were also presented.The �oaters of �sh farms an generally be haraterized as small volume strutures,with ross-setional dimensions being small relative to the wave lengths of dimensioningwaves. However, the length of the �oaters an be large ompared to a harateristi wavelength. The relative motion between the struture and the free surfae may loally belarge relative to the ross-setional dimension of the �oater. If the relative motion betweenthe free surfae and the �oater beomes too large, the �oater or parts of the �oating ollarmight leave the water for then to re-enter into the water domain. If the relative veloitybetween the �oater and the water surfae is large and the �oater is haraterized by ablunt geometry, signi�ant fores may our as the �oater impats with the free surfae.This is referred to as water impat or slamming, and is haraterized by impulse loadswith high pressure peaks (Faltinsen 1990). Slamming events may ause damage to the lo-al struture, or ause global vibrations of the struture whih in turn an lead to fatigueof steel strutures. Water entry and exit of a irular ylinder was studied experimen-tally and theoretially by Greenhow and Lin (1983) and Greenhow (1988). Water entryof di�erent two-dimensional setions has been investigated numerially by Zhu (2006) andVestbøstad (2009) using a CIP-based omputational �uid dynamis (CFD) method andby Sun (2007) using BEM. Another important senario whih is relevant for the hydro-dynami loads on the �oaters of �sh farms is waves over-topping on the �oater geometry.This will be referred to simply as over-topping. Finding the wave exitation loads onthe �oater due to over-topping is numerially hallenging and haraterized by nonlin-ear e�ets. Little work has been done relative to over-topping on slender strutures inthe free surfae. However, over-topping has similarities to the hydrodynami problem ofgreen-water on the dek of a ship studied by Greo (2001).Dynami analysis of �sh farmsEngineering tools that have been developed for simulations of the response of �sh farmssubjet to waves usually applies strip theory together with potential �ow theory to om-pute wave fores on the �oaters. The added mass and damping oe�ients used in thestrip theory formulation an be found from potential �ow theory using a boundary ele-ment method (BEM) as the Frank lose �t method (Frank 1967), whih is a 2D sourepanel method using a Green funtion satisfying the free-surfae ondition and radiationondition in deep water. Another approah is to use onformal mapping, e.g. a Lewisform tehnique, to obtain these oe�ients. However, Lewis form tehnique has limitedappliability and is approximate for ross-setions with sharp orners (Faltinsen 1990).



1.3. Outline of the thesis 15Making a long wave assumption relative to the ross-setional dimension of the �oaters,the di�ration fores on the �oaters an be expressed in terms of the added mass anddamping oe�ients. Visous fores are then added to the potential �ow solution, simi-larly as the drag term in Morison's equation (Morison et al. 1950). Suh a hydrodynamiload model for the �oaters was applied together with a �nite element model for the stru-ture by Ormberg (1991), allowing for �exible deformations of the struture due to wavesand urrent loads. A simpli�ed representation of the net ages was implemented, wherethe drag and lift fores on net panels were expressed in terms of a Morison formulation.Good omparison with model tests was reported. Higher order harmoni omponents ofthe sway response in regular waves was observed. A fatigue analysis of the �sh farm inirregular long-rested waves was also presented. Later, Thomassen (2008) studied fatigueof a �sh age due to regular waves. Lader et al. (2003) modelled 3D net strutures, withon�guration as an open age �sh farm, subjet to waves and urrent. Comparisons be-tween age deformations obtained from numerial simulations and model test results werepresented, showing good agreement for the intermediate urrent speeds. However, forthe lowest urrent speed tested, the agreement is less good. Huang, Tang, and Liu (2006)presented results from numerial simulations and model tests, where the numerial modelwas based on Lader et al. (2003). Dynamis of a moored spar type �sh age in wavesand urrents was studied numerially by Fredriksson et al. (2005), using post proesseddata for waves and urrents obtained from �eld measurements as input to the numerialmodel.1.3 Outline of the thesisThis thesis is organized as follows. The physial ase of wave loads on �oaters of �sh farmsis disussed in Chapter 2, where an idealized problem is formulated. In Chapter 3, themathematial formulation of the physial problem is presented, followed by a desriptionof the numerial representation of the mathematial problem and the development ofa numerial wave tank (NWT) in Chapter 4. In hapter 5, a veri�ation study of thenumerial model is presented. Two sets of dediated model tests are desribed in Chapter6, where the �rst set deals with wave loads on �xed horizontal ylinders due to regularwaves, while in the seond set, wave-indued motions of a moored �oating irular ylinderin regular waves are onsidered. The two main studies of this work are presented inChapter 7 and Chapter 8. First, in Chapter 7, our study on non-linear wave loads on�xed horizontal ylinders due to regular waves are presented. Seond, our study on thenon-linear wave-indued motions of a moored �oating irular ylinder is presented inChapter 8. Both studies inlude omparisons between numerial results obtained fromCFD-simulations using our NWT and the experiments presented in Chapter 5. Finally,a summary of the present work and suggestions for further researh are given in the lasthapter.1.4 Main ontributionsA 2D numerial wave tank (NWT) was developed as a tool for studying nonlinear waveloads and wave indued motions for �oaters of �sh farms. The NWT was based onthe Navier-Stokes equations for inompressible �ow, where a one-�uid formulation with



16 Introdutionvarying �uid properties in the domain was used to simulate two-phase �ows. The NWTwas also apable of handling both fored and free motions of solid bodies.Experiments were onduted in 2006 where wave loads on �xed horizontal ylindersin the free surfae were onsidered. Two models were tested. One with a irular ross-setion and one with a retangular ross-setion. The models were �xed and subjetedto regular waves. Test parameters were wave period, wave steepness and model draft.The lamping fores on the models were measured. Over-topping on the ylinders wereobserved for some of the test onditions. Some results from the model tests in 2006 werepresented by Kristiansen and Faltinsen (2008b). From Fourier analyses of the measuredfore time series, we found that over-topping introdue higher order harmonis in thevertial omponent of the wave exitation fore. However, the horizontal fore omponentwas nearly linear when over-topping ourred. When it omes to wave exitation loads onylinders with small draft, we found that the seond harmoni omponent is importantfor the horizontal fore omponent.A generalized Morison model (GMM) was implemented and applied using the waveonditions from the model tests with the �xed ylinders. Computed fores were omparedwith measured fores from the experiments. We found that the GMM is not adequate foromputation of wave fores on horizontal ylinders in the free surfae when over-toppingour. However, good omparison was shown for the ases without over-topping. TheGMM was presented by Kristiansen and Faltinsen (2008a).Experiments were also onduted with a �oating irular ylinder. The ylinder wasmoored with the ylinder axis oriented horizontally in the free surfae and subjet toregular waves. An instability-like phenomenon yielding sub-harmoni response of thesway motion was disovered for the test with the wave period being half the naturalperiod in sway. This wave period was also lose to the natural period in heave of theylinder. Measured sway motion was about 250% that predited by linear potential �owtheory. It was also found that visous �ow separation matters at sway resonane, wherelinear potential �ow theory overpredits the measured sway motion by more than 500%.By Fourier analysis of the measured aelerations from the model tests, it was found thatthe seond harmoni omponent of the vertial wave exitation fore at sway resonanedid exite the natural heave frequeny. This aused the Fourier amplitude orrespondingto the seond harmoni omponent of the body aeleration in heave to exeed the linearharmoni omponent. Results from the study on the moored horizontal ylinder in waveswere published by Kristiansen and Faltinsen (2009).Based on the disussion above, we onsider the main ontributions of the present workto be the following
• Development inluding veri�ation and validation of a CIP-based numerial wavetank for simulation of fully nonlinear wave-body interation problems in those di-mensions of a visous laminar �ow
• A generalized Morison model is not adequate for wave load omputation when over-topping ours. However, suh a model an give good fore preditions when over-topping is not present
• Nonlinear e�ets due to over-topping are dominant only for the vertial omponentof the wave exitation fore



1.4. Main ontributions 17
• Nonlinear e�ets for the wave exitation fores on �oaters with small draft are mostimportant for the horizontal fore omponents
• An instability-like sub-harmoni parametri resonane phenomenon assoiated withnonlinear hydrodynami e�ets was disovered for the moored horizontal irularylinder. Numerial simulations with linear restoring fores in sway showed thatthis phenomenon was not assoiated with nonlinear e�ets from the mooring ar-rangement
• Visous damping due to �ow separation is important for limitation of the swaymotion of �oaters at resonane
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Chapter 2The physial problemWave loads on �oaters of �sh farms is from a hydrodynami point of view an extensivetopi whih an be addressed in many ways. When onretising this topi into a relevanthydrodynami problem, we should elaborate on what are the goals we are aiming for.In previous studies of integrated �sh farm systems in waves, strip theory and potential�ow theory where visous drag fores are added to the potential �ow solution, have beenused when omputing the wave loads on the �oating ollars of �sh farms (Ormberg 1991)(Thomassen 2008). However, this method has not been validated for slender strutures inthe free-surfae zone as the �oating ollars of �sh farms. Aording to Ormberg (1991),there is a lak of on�dene for this wave load model when applied to slender struturesin the free-surfae zone. To obtain better on�dene and possibly improve existing loadmodels, he suggested that simple ross setions subjeted to well de�ned waves shouldbe onsidered. With this in mind, we believe that a �rst step towards obtaining betterwave load models for �oaters of �sh farms is to investigate the wave loads and waveindued motions of �oaters in a 2D situation by means of numerial simulations andexperiments. Results an then be ompared with existing wave load models for the �oatersand eventually laks or weaknesses of the existing models an be revealed.2.1 A 2D-problem of �oaters in beam sea wavesAs explained in Chapter 1, there exist many di�erent strutural onepts of �oating �shfarms. In this work we deided to fous on the sti� surfae steel struture, whih isdesigned for use at exposed loations in the oastal zone. The �oaters for this type ofstruture appear as horizontal ylinders with the ross-setion partly submerged in thefree surfae, as an be seen in Fig. 2.1. The diameter of the �oater is typially of order1m. A 2D �ow situation our when the ylindrial �oater is subjeted to beam seawaves. Two �oater geometries will be onsidered in the present study, one with a irularross setion and one with a retangular ross setion. A deterministi approah is usedin the present study where wave loads due to regular waves are investigated. Possible�ow e�ets that are believed to be relevant for the �oaters in beam sea waves will nowbe disussed. Suh a disussion is neessary early in a study like the present one in orderto deide whih tools to apply. By �tools� we here mean mathematial models, numerialmethods or experiments. 19



20 The physial problem

Figure 2.1: Floater of a steel type �sh farm. The �oater appears as a semi-submerged horizontal ylinder. The �oater has a irular ross-setion with di-ameter 1m. A walkway is mounted to the �oater.2.1.1 Possible physial e�etsThe most relevant physial e�ets that may our and whih are not overed by linearpotential �ow theory are wave over-topping on the struture, visous �ow separation andwater entry and exit with assoiated fores. Figure 2.2 illustrates a 2D situation wherethe retangular �oater is subjet to beam sea waves. Visous �ow separation will alwaysour at the sharp orners of the ross-setion, meaning that e�ets of visosity mustbe onsidered. Wave over-topping is another senario that might our. The wave over-topping proess an be dam-break like or it ould be like a plunging breaker (Greo 2001).The latter may lead to impat loads when the breaking wave hits the top of the �oater.Impat loads an also our when a steep breaking wave hits the side of a �oater. Theplunging breaker may lead to entrapment of air (f. Fig. 2.2), whih an result inhigh pressures on the �oater over the area overed by the avity. When the relative
Viscous flow separation

Wave direction

Wave overtopping

Impact loads

Entrapment of air

Free surface Free surfaceFigure 2.2: Retangular �oater in beam sea waves. Some possible physial e�ets.Visous �ow separation will always our from the sharp orners of the ross-setion, but the extent (and hene the importane) of the separated �ow willdepend on the KC-number.



2.1. A 2D-problem of �oaters in beam sea waves 21
Wave direction

Free surface Free surface

Wave overtopping

Viscous flow separationSeparation pointFigure 2.3: Cirular �oater in beam sea waves. Visous �ow separation mayour for large KC-number �ow. The loation of the separation point dependson whether the boundary layer �ow is laminar or turbulent.motion between the �oater and the waves is large, the �oater an leave the water domainompletely (water exit) for then to dive bak into the water (water entry). If the relativeveloity between the �oater and the sea surfae during water entry is large, water impator slamming may our (Faltinsen 1990). Slamming is haraterized by high pressureswhih an damage the loal struture.A possible �ow senario for the irular �oater is illustrated in Fig. 2.3. Wave over-topping, water exit and water entry are relevant also for the irular �oater. However,air-entrapment is believed not to be an issue, and probably not impat fores due towave breaking over the ylinder top. However, over-topping will in�uene signi�antlyon the vertial fores. If the relative motion between the �oater and the surroundingwater is su�iently large, visous �ow separation an also our for the irular �oater.However, in ontrast to the retangular �oater where the �ow always separate from thesharp edged orners, the loation of the separation point on the irular �oater dependson the boundary layer �ow and is not known a priory.2.1.2 Relevant �ow parametersBased on the possible physial e�ets listed above, the following non-dimensional param-eters are assumed to be relevant for the general hydrodynami problem of wave loads on�oaters of �sh farms.Reynolds number: Desribes the relative importane of the visous fores and inertiafores. The Reynolds number for a ylinder with diameter D in separated osillatory�ow is de�ned as Rn = UD/ν, where U is the undisturbed relative �uid veloityat the loation of the ylinder and ν is the kinemati visosity oe�ient. Considera �xed ylinder. The �uid veloity amplitude due to waves with frequeny ω andamplitude ζa, is given as U = ωζa exp (ky), where k = ω2/g is the wave number and
y is the vertial oordinate axis with origin at the mean free surfae and positivediretion upwards. g is the aeleration of gravity. In attahed �ow, the Reynoldsnumber is de�ned as Rn = U2

m/(ων), where Um is the maximum veloity outside theboundary layer. The ritial Reynolds number Rncrit indiates the limit for whihthe boundary layer �ow goes from being laminar to turbulent. For the irularylinder in osillatory �ow Rncrit = 105 is used.



22 The physial problemKeulegan-Carpenter number: Expresses the onvetive �uid aeleration relative tothe loal �uid aeleration on the ylinder surfae when subjeted to osillatory�ow. The Keulegan-Carpenter number is de�ned as KC = UT/D, where T = 2π/ωis the period of osillation and U is ambient veloity. For a semi-submerged ylindersubjet to regular waves, U = ωζa and hene KC = 2πζa/D. For a irular ylinderin in�nite �uid, �ow separation may our if KC & 2 for laminar boundary layer�ow.Euler number: Expresses the relative importane between pressure loads and hydro-dynami pressures and is de�ned as Eu = p0/ (0.5ρU2), where p0 is atmospheripressure and U is the inident �uid veloity. This is important if waves ause air tobe entrapped in a avity on the body surfae.Froude number: Expresses the relative importane between inertia fores and gravityfores in the �uid. The Froude number in osillatory �ow is de�ned as Fn =
ω
√

D/g.2.2 The sea environment and design onditionsFish farms must be designed to withstand environmental loads from waves and urrent.Typial wave onditions used for the design of �sh farms are presented.2.2.1 Design onditions for �oating �sh farmsIn the Norwegian regulations for the design and operation of �oating �sh farms, NS 9415(Standard Norway 2005), design wave limates or wave lasses are presented. These wavelasses are de�ned in terms of ranges of signi�ant wave heights Hs and wave peak periods
Tp. Hs is de�ned as the mean of the one third highest waves in a sea-state, while Tp isthe wave period orresponding to the wave omponent that ontains most energy in thesea-state. The design wave lasses from NS 9415 are quoted in Tab. 2.1. It should beTable 2.1: De�nition of design wave lasses from NS 9415 (Norwegian Standards2003) for the design and operation of �oating �sh farms. Hs is signi�ant waveheight and Tp is wave peak period.Wave lasses Hs [m℄ Tp [s℄ Level of exposureA 0.0 - 0.5 0.0 - 2.0 SmallB 0.5 - 1.0 1.6 - 3.2 ModerateC 1.0 - 2.0 2.5 - 5.1 LargeD 2.0 - 3.0 4.0 - 6.7 HighE > 3.0 5.3 - 18.0 Hugenoted that state of the art omputer programs for simulating �oating �sh farm systemsin waves usually apply long-rested regular waves in the analyses, where the regular waveorresponds to the most probable largest wave for the given design sea-state.



2.2. The sea environment and design onditions 23Extreme wavesBased on the PM-spetrum, an estimate of the most probable largest wave height for Nnumber of waves is found as Hmax = Hm0

√

0.5 ln (N). Hm0 = 4
√

m0 is the signi�antwave height estimated from the wave spetrum S(ω), where m0 is the spetral momentde�ned as
mk =

∫ ∞

0

ωkS(ω)dω (2.1)with k = 0. The number of waves for a sea-state of duration t (seonds) an be approx-imated as N = t/Tm2, where Tm2 = 2π
√

m0/m2 is the mean wave period obtained fromthe wave frequeny spetrum with m2 found from (2.1) with k = 2. It an be shown thatthe relation between the mean wave period and the wave peak period for PM-spetra is
Tm2 = Tp/1.41 (Faltinsen 1990). Thus, estimates of the most probable largest wave heightbased on Hs and Tp an be found as

Hmax ≈ Hs

√

0.5 ln (1.41t/Tp). (2.2)Estimates of the most probable largest wave height in a sea-state of duration four hours,using data from Tab. 2.1, are presented in Tab. 2.2. A rule of thumb is that theTable 2.2: Estimates of the most probable largest wave height Hmax in a sea-statewith duration four hours represented by a PM-spetrum. The obtained valuesof Hmax are based on the signi�ant wave heights Hs and wave peak periods Tppresented in Tab. 2.1.Wave lasses Hmax [m℄ Level of exposureA < 1.1 SmallB 1.1 - 2.1 ModerateC 2.1 - 4.1 LargeD 4.1 - 6.0 HighE > 6.0 Hugemost probable largest wave height for a sea-state desribed by a PM-spetrum and withduration four hours, is about two times the signi�ant wave height.CurrentCurrent is an important design parameter. From a �sh-health point of view, urrent isneessary for replaement of dirty water and for the supply of oxygen to the �sh-age. Forthe struture, urrent means additional loads that must be aounted for in the designof the �sh farm. The urrent will ause drag fores on the net pens and the �oaters. Inaddition to the design wave lasses, also design lasses for urrent are given in NS 9415(Standard Norway 2005). Current loads are not addressed in the present work. However,some aspets of urrent loads on �sh farms are presented in the following setion.



24 The physial problem2.3 Relative importane of hydrodynami fores on the�oater and the netIt is the total hydrodynami horizontal fore on the �sh farm that matters for the mooringsystem of a �sh farm. However, it is interesting to know the ontribution from the �oaterand the net to the total hydrodynami load on the struture. The relative importane ofthe horizontal omponent of the hydrodynami fore on the net age and on the �oaterper unit length of the �oater and the net will now be disussed.Consider the two-dimensional �ow problem where the �oater and the net is subjetedto a uniform urrent with speed Uc = 1.0m/s and regular beam sea waves with height
H = 2.0m and period T = 3.6s. The wave frequeny is then ω = 2π/T = 1.76rad/s. Thisorresponds to the wave steepness H/λ = 1/10, where λ is the wave length. The wavesare propagating in the same diretion as the urrent. Consider a semi-submerged irularylinder with diameter D = 1.0m, representing the �oater. Further, onsider a vertialstrip of the net age with depth h = 25m and unit width. We assume the netting materialis haraterized by a knot-less square mesh with solidity ratio Sn = 0.20. The �oater andthe net is restrained from moving. An Earth-�xed oordinate system Oxy is introduedwith origin in the free surfae, where x is the horizontal oordinate and y is the vertialoordinate positive upwards.Wave and urrent loads on the netThe visous drag fore is the dominating fore on the net. Due to the waves, the inident�uid veloity experiened by the net varies with depth. Under a wave rest, the �uidveloity an using linear wave theory be expressed as u(y) = Uc + ωζa exp (ky). The dragfore amplitude on the net is then omputed as

Fd = 0.5ρCd

∫ 0

−h

u(y)2dy, (2.3)where h is the depth of the net-panel. The drag oe�ient for a knot-less square meshwith solidity Sn = 0.2 is Cd = 0.3 (Løland 1991). This yields Fd = 6.1kN/m as theamplitude of the wave- and urrent-indued drag fore on the net.Wave and urrent loads on the �oaterThe wave exitation fores on a ylinder in the free surfae an aording to potential�ow theory be found as
Fa = ζa

√

ρg2bkk/ω, (2.4)where bkk with k = 2, 3 is the frequeny-dependent 2D damping oe�ient of the ylinderin sway and heave, respetively (Newman 1962). The damping oe�ient in sway of asemi-submerged irular ylinder with diameter D = 1.0m for in�nite water depth, isfor ω = 1.75rad/s found to be b22 = 108.6kg/s. With ζa = 1.0m, this means the waveexitation fore amplitude in the x−diretion is Fe = 2.5kN. Now, assume that we anapproximate the drag fore on the �oater due to urrent and waves as half the drag foreon the ylinder in in�nite �uid as Fd = 0.25ρC
(2)
d DU2

0 , where U0 = Uc + ωζa. Stritlyspeaking this is not a good assumption as we annot mirror the hydrodynami problem



2.4. Problem limitations and disussion 25about the free surfae and onsider the double body in in�nite �uid for the general ase,due to a frequeny dependent free surfae ondition (Faltinsen 1990). The drag oe�ientdue to the steady urrent in ombination with the wave indued osillatory �ow is notknown. However, for pure osillating �ow, the drag oe�ient for a irular ylinder inin�nite �uid is C
(2)
d = 0.2KC when KC < 10 (Graham 1980). Using KC = 2πζa/Dwe get KC = 6.3, whih yields C

(2)
d = 1.25. For the ase of a smooth irular ylinderin in�nite �uid subjet to uniform steady �ow, the drag oe�ient is C

(2)
d ≈ 1.0 when

Rn ≈ 106. To give a onservative approximation, we use C
(2)
d as the drag oe�ient forthe �oater. Hene, we obtain Fd = 2.4kN as the horizontal fore amplitude aused byvisous �ow separation on the �oater. This is about the same as the wave exitationfore on the �oater. Due to the long wave length relative to the diameter of the �oater(λ ≈ 20D), we assume that the horizontal omponent Fe of the wave fore on the �oaterdue to potential �ow is 90◦ out of phase relative to horizontal �uid veloity in the wave.Hene, the total wave and urrent indued fore amplitude per unit length of the �oateris found as Ffloater =

√

F 2
d + F 2

e = 3.5kN.DisussionBased on the simpli�ed analysis above, we see that it is the drag fore on the net age thatgives the largest ontribution to the total horizontal fore on the �sh age. However, forthis ase, we found that the hydrodynami horizontal fore on the �oater is of the sameorder of magnitude as the drag fore on the net panel. Here, the horizontal fore due towave exitation on the �oater was found to be about 28% relative to the total horizontalfore on the �oater and net. This indiates that wave fores on the �oater should beonsidered in the design and dimensioning of mooring systems for suh �sh farms. Itshould be noted that the analysis presented above is very approximate. It is questionableto onsider the �xed struture as the �oater and the net struture in reality will be setin motion due to the waves. However, the analysis is onsidered to be valuable in thesense of getting an impression of the relative importane of the hydrodynami fores onthe �oater and on the net age. Fores on the net age are not further pursued in thiswork. The reason for this is that the aim of our study is a thorough understanding of thewave indued motions and loads on the �oater.2.4 Problem limitations and disussionIn the previous two setions we disussed relevant physial e�ets with their assoiated�ow parameters, and quoted the design wave onditions for �sh farms given in NS 9415(Standard Norway 2005). We will now disuss the relevant physial e�ets for the �oatersin waves in the ontext of these design wave parameters. The �ow parameters due toregular waves orresponding to the most probable largest waves for the design sea-statesare estimated.Consider a horizontal irular ylinder with diameter D = 1m whih is �xed in thefree surfae zone. Using the wave heights in Tab. 2.2, we obtain KC > 3 for all the designsea-states. For a irular ylinder in in�nite �uid subjet to osillatory �ow, visous �owseparation our when KC & 2. Considering the �xed ylinder might not be relevant for�oaters of �sh farms for the higher sea-states sine then the struture will respond to the



26 The physial problemwaves, and the relative motion between the water and the �oater should be onsidered.However, sine the KC-number is larger than two for all the design sea-states, e�ets ofvisous �ow separation annot be negleted.Visous �ow separation will introdue additional drag fores on the �oater. For theirular ylinder, the loation of the separation point is a�eted by whether the boundarylayer �ow on the ylinder surfae is laminar or turbulent. Again, using the design waveparameters in Tab. 2.2 to ompute the Reynolds number for the �xed ylinder, we obtain
Rn = 1.0× 106− 2.1× 106. This suggests that the boundary layer �ow on the �oater anbe turbulent in reality. Turbulent boundary layers ombined with free surfae �ow willintrodue too muh omplexity to our numerial model relative to what we believe is theimportane of turbulene. We irumvent this problem by applying a model sale wherethe boundary layer �ow is laminar. Consequenes of this approah when it omes to thewave indued motions of the �oaters in full sale are disussed in Chapter 8.Slamming is not onsidered in the present work, neither are the e�ets of air poketformation onsidered. However, we fous on the fully nonlinear wave loading on 2D�oater setions due to regular waves. The study is performed by means of model testsand numerial simulations. The numerial simulations are performed with the presentlydeveloped Computational Fluid Dynamis (CFD) ode whih is used to model the 2Dproblem of �oaters subjeted regular waves.



Chapter 3Mathematial formulationIn order to study the 2D hydrodynamial problem represented by a ylindrial �oater inbeam sea waves, a numerial model of a physial wave-tank as illustrated in Fig. 3.1 isdeveloped. This is alled a numerial wave-tank (NWT). A �oating body is introduedinto the NWT to represent the �oater. We de�ne an Earth �xed oordinate system Oxyin our domain with origin at the initial position of the gravity enter of the �oater. Inthis hapter, the mathematial foundation for the NWT is presented. The mathematialmodel inludes the governing equations with proper boundary onditions desribing themotions of the water and the air, in addition to the equations of motion for the �oatingbody. As in a physial wave �ume, a wave maker and a beah is needed also in the NWT.The mathematial formulation of the numerial wave-tank is presented below.3.1 General assumptionsIt is not pratial to inlude �all� physial e�ets in our mathematial model. Hene, themathematial problem is simpli�ed by negleting physial e�ets that are believed not tobe important for our hydrodynami problem. With the physial reasoning from Chapter2 in mind, the following assumptions have been made:- Inompressible �uid- Visous �uid- Laminar �ow- Surfae tension is not important- 2D-�ow onditions- Planar (2D) �oater motion- No air pokets- Rigid �oater, i.e. no hydroelasti e�etsBased on these assumptions, the governing equations are established.27



28 Mathematial formulation
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Figure 3.1: The domain of the numerial wave-tank. An Earth-�xed oordinatesystem Oxy is introdued with origin at the initial position of the body enter.The bottom boundary and the right hand boundary are �xed and impermeablewalls. The left boundary is the wavemaker, while the top boundary is open.3.2 Governing equationsWe will apply a one-�uid formulation for the water and for the air. This means the �ow ofboth the air and the water is desribed by the same set of equations, with the oe�ientsof the mass density and the dynami visosity set aording to whih �uid is oupying theregion onsidered. In reality, there is a disontinuity of the mass density and the visosityof the �uid at the air-water interfae whih requires speial attention in the derivation ofthe governing equations.3.2.1 The ontinuity equationContinuity of �uid mass is a basi onept in lassial �uid mehanis, whih states that�uid mass annot just appear or disappear in the interior of a ontrol volume. This impliesthat the amount of �uid mass inside the ontrol volume an only hange by means of masstransport through its boundaries. Mathematial formulation of ontinuity for the �uidmass is not trivial when solving two-phase �ow using a one-�uid model. Conservation ofthe �uid mass for a �xed ontrol volume Ω gives the relation between the rate of hangeof the �uid mass in Ω and the mass �ux through its boundary ∂Ω as
d

dt

∫∫

Ω

ρ dΩ +

∮

∂Ω

(ρu) · n dS = 0, (3.1)where u = [u, v]T is the �uid veloity vetor and n is the unit outward normal vetor of
Ω. Now onsider the ase of two-phase �uid �ow in Ω, where the two phases are separatedby a sharp interfae Γ. If the density of the two phases is di�erent, the �uid momentum
ρu is disontinuous aross Γ. This is the ase for air-water interation �ows in reality.We want to obtain the di�erential form of the ontinuity equation, whih requires theappliation of Gauss theorem on the seond term of (3.1). However, the use of Gausstheorem requires that ρu is ontinuous throughout the domain Ω. To irumvent thisproblem, we will assume that the interfae has a �nite but small thikness where the �uiddensity varies smoothly, meaning also that the �uid momentum will be ontinuous. Then



3.3. The free surfae 29we get
∂ρ

∂t
+∇ · (ρu) = 0. (3.2)This is the onservative formulation of the ontinuity equation. By applying the hainrule for di�erentiation to (3.2) and introduing the material derivative operator D

Dt
(·) =

(

∂
∂t

+ u · ∇
)

(·), the non-onservative form of the ontinuity equation is obtained as
Dρ

Dt
+ ρ∇ · u = 0. (3.3)The �rst term of (3.3) expresses the rate of hange of the �uid mass density as one followsa �uid partile. Sine the mass density is a �uid property whih moves with the �uid�ow, the mass density represented by a �uid partile should be onstant if we assumeinompressible �ow and that no di�usion of the mass density our. This means Dρ

Dt
= 0.Thus, for two-phase inompressible �ow where the �uid density is smeared at the interfae,the ontinuity equation redues to

∇ · u = 0, (3.4)i.e. that the divergene of the veloity �eld is zero. This will be referred to as thedivergene-free onstraint.3.2.2 The momentum equationsWe have assumed the �uid to be visous and inompressible. Hene, the governing equa-tions desribing the �uid �ow are the inompressible Navier-Stokes equations. Applyingthe same assumptions of smoothness as in the derivation of the ontinuity equation, wean obtain the inompressible Navier-Stokes equations on di�erential non-onservativeform. For the ase of 2D-�ow, we get
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+ fy (3.6)where u and v is the horizontal and vertial omponents of the �uid veloity, respetively.Further, p is pressure, ρ the mass density of the �uid and µ the dynami visosity oef-�ient. Finally, fx and fy are volume �fores� ating on the �uid in the horizontal andvertial diretion, respetively. The quotes are added beause stritly speaking, fx and
fy do not have the unit of fore, but the unit of aeleration. The only volume fore inour model is gravity, ating in the negative y−diretion.3.3 The free surfaeWe de�ne the free surfae as the interfae between the air and the water. When using aone-�uid model to desribe two-phase �ow, here represented by the air and the water, noexpliit boundary ondition is imposed on the free surfae, simply beause the air-waterinterfae is not a boundary of the �uid domain. However, the instantaneous position of thefree surfae must be found in order to know the material properties of the �uid at a given



30 Mathematial formulationpoint. As argued in the derivation of the ontinuity equation, the ondition Dρ
Dt

= 0 mustbe satis�ed for all points in the domain. Now, let the �uid mass density in the domainbe desribed by ρ(x, y, t) = ρwϕ(x, y, t) + ρa (1− ϕ(x, y, t)), where ϕ(x, y, t) ∈ [0, 1] isa ontinuous salar funtion similar to a Heaviside funtion but where the disontinuityis replaed by a smooth transition. Further, ρw and ρa are onstants representing thedensity of water and air, respetively. This means Dρ
Dt

= (ρw − ρa)
Dϕ
Dt

= 0. Hene, theevolution of ρ(x, y, t) in time is found by solving
∂ϕ

∂t
+ u · ∇ϕ = 0, (3.7)where u is the �uid veloity vetor. One an also simply say that ϕ is a �uid propertywhih then must satisfy (3.7). The dynami visosity of the �uid an similarly be foundas µ(x, y, t) = µwϕ(x, y, t)+µa (1− ϕ(x, y, t)) where µw and µa are the dynami visosityoe�ients of water and air in that order. Due to the smeared air-water interfae in ourmathematial model, we will have to de�ne what to interpret as the physial free surfae.Here, we de�ne the free surfae as the ontour represented by ϕ(x, y, t) = 0.5.3.4 Initial onditionsUnless otherwise spei�ed, the initial onditions used are that the �uid and the body areat rest initially. This means the veloity �eld in the domain is zero. Hene, the pressure�eld below the free surfae is hydrostati and desribed by p = −ρwgy. Similarly, dueto the mass density of the air, an aerostati pressure distribution p = −ρagy is appliedinitially for the air-part of the domain. Continuity of the initial pressure �eld is ensured.3.5 Boundary onditionsIn order to solve the �eld equations in a presribed domain, boundary onditions (BC)for the prime variables, i.e. �uid veloity and pressure, must be spei�ed. We willonsider a retangular domain where the boundaries are �xed in spae. In addition,the presene of a �oater inside the domain yields an internal or immersed boundary forwhih boundary onditions must be imposed. Obtaining mathematial formulations ofboundary onditions for the Navier-Stokes equations is not a simple task in general. Often,the quantities to be presribed on the boundaries are not known. Some ommonly usedonepts are disussed below.Fixed and moving impermeable wallsA no-slip boundary ondition is applied on all impermeable walls in the domain, i.e. thebottom and the end wall at the beah side of the �ume. The no-slip ondition is alsoapplied on the �oating body boundary. No-slip means that the �uid partiles that areinitially loated at points on the solid boundary, remain attahed to the same points ofthe boundary. There are no relative motion between the boundary and the �uid partilesloated on the boundary. This is an assumption based on physial observations of visous�uid �ows near solid boundaries (Shlihting and Gersten 2000). Mathematially, the



3.6. Computation of fores and moments 31no-slip boundary ondition on �xed impermeable walls Sw is expressed as
u = 0 on Sw. (3.8)When it omes to the �oating body, the no-slip ondition implies that �uid partiles onthe body surfae will have to move with the body, i.e. the relative veloity between the�uid partiles at the body surfae and the body itself is zero. Mathematially speaking,
u = ub on Sb (3.9)where ub = [ub, vb]

T is the loal veloity vetor of a point on the surfae of the �oatingbody. The body veloity is either enfored or governed by the equations of motion for thebody. Also the wave maker an be modelled as a body with fored motion, yielding (3.9)as boundary ondition for the wave maker.A boundary ondition for the pressure on impermeable no-slip boundaries for the aseof time-dependent inompressible �ows is not easy to de�ne sine the pressure here ingeneral is unknown. The pressure boundary ondition must be seen in ombination withthe numerial method used to solve the governing equations for the �uid �ow. However,the normal omponent of the momentum equations to the impermeable boundary suggestsa Neumann BC for the pressure, meaning that ∂p
∂n

should be presribed on the boundary.This issue will be desribed more in detail in the next hapter.OutletThe eiling of the tank is open and thus an outlet boundary ondition should be applied.This means the �uid is allowed to �ow out of the domain. The pressure outside thetank is assumed to be atmospheri, whih means the Dirihlet ondition p = patm isimposed on the upper boundary of the domain. In reality, we know little about the �owat the outlet boundary. Therefore, a general onept is that outlet boundaries shouldbe loated far away from the region of interest (Ferziger and Peri' 2002). The outletboundary ondition whih is applied in the eiling of the tank will have in�uene on theair �ow. However, for our ase it is the water �ow that is of interest. Sine transfer of�uid momentum from the air to the water is negligible for most ases, the requirement ofthe outlet boundary to be loated far away from the region of interest (the free surfae)is less important. Further, ommonly used riterions are that the onvetive and di�usive�uxes through the outlet boundary are zero, meaning the �ow has no veloity gradientsin the diretion normal to the boundary.3.6 Computation of fores and momentsThe fores and moments ating on the �oater from the surrounding �uids (water and air)are in general due to the pressure and due to skin frition and normal visous stresses onthe body surfae. In the 2D problem, pressure fores Fp and moments Mp are found byintegrating the total �uid pressure p over the boundary Sb of the body, i.e.
Fp = −

∫

Sb

pndS (3.10)
Mp = −

∫

Sb

p (r× n) dS =

∫

Sb

n× (rp) dS, (3.11)



32 Mathematial formulationwhere n is the unit normal vetor of the body boundary Sb, pointing into the �uid domain.Further, r is the distane from the inremental element dS loated at the point (x, y) onthe body boundary to the entre of gravity (xc, yc) of the body, i.e. r = (x−xc)i+(y−yc)j.Sine it is the total pressure that is integrated, the pressure loads here are due to bothhydrodynami and hydrostati pressures.The fat that the �uid is visous implies that there is a skin frition fore ating onthe body from the water (and vie verse). There is also a fore omponent due to normalvisous stresses on the body surfae. The visous fores on the �oater an be found byintegrating the produt of the visous stress tensor and the unit normal vetor of the bodyover the boundary Sb. Hene,
Fv =

∫

Sb

τ n dS. (3.12)Similarly, visous stresses also ause a roll moment on the body whih an be expressedas
Mv =

∫

Sb

τ (r× n) dS. (3.13)The visous stress tensor τ for two dimensional �ow is de�ned as
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 . (3.14)By prolonging the outer pressure �eld to the inside of the body, an arti�ial �ow probleman be solved in the interior of the body. If this arti�ial pressure �eld inside the bodyis ontinuous and di�erentiable, we an make use of Gauss theorem to transform theline integrals in the expressions for the pressure fores and moment, (3.10) and (3.11)respetively, to surfae integrals over the area enlosed by the body boundary. Then thepressure fores an then be found as
Fp = −

∫∫

Ωb

∇p dA. (3.15)Here, ∇ = i ∂
∂x

+ j ∂
∂y

is the gradient operator and Ωb is the area enlosed by the bodyboundary. Further, the roll moment due to the �uid pressure an be written as
Mp =

∫∫

Ωb

∇× (rp) dA

=

∫∫

Ωb

p (∇× r) dA−
∫∫

Ωb

r×∇p dA.Sine ∇× r = 0, we arrive at
Mp = −

∫∫

Ωb

r×∇p dA. (3.16)If we introdue a salar funtion ϕ3 de�ned as
ϕ3 =

{

1, ∀ (x, y) ∈ Ωb

0, elsewhere
(3.17)



3.7. Equations of motion for the �oating body 33we an express the pressure fores and moment in terms of surfae integrals over theomplete domain of omputation Ω as
Fp = −

∫∫

Ω

(∇p)ϕ dA (3.18)
Mp = −

∫∫

Ω

(r×∇p)ϕ dA. (3.19)The visous fores annot be treated this way beause the visous stress tensor de�ned in(3.14) is not ontinuous aross the body boundary. The spatial derivatives of the veloity�eld has a �nite value at the outer side of the boundary, while the gradient of the arti�ialveloity �eld in the interior of the body is zero. This is beause a uniform veloity �eldequal to the rigid body veloity is imposed on the interior of the body. Hene, this mightexplain the rather poor onvergene properties for the skin frition fores when using thesurfae integral representation, as reported by Hu and Kashiwagi (2004).3.7 Equations of motion for the �oating bodyWhen the fores and moments ating on the �oater are found, the body motions in aninertial frame of referene Oxy are obtained by means of integration of Newton's seondlaw. The motion equations for the �oater for planar motion are
mẍc = Fx (3.20)
mÿc = Fy (3.21)

Iθ̈ = M, (3.22)where m is the strutural mass per unit length of the body, ẍc and ÿc are the bodyaelerations at the enter of gravity in the horizontal diretion and vertial diretion,respetively. Further, I is roll inertia about the enter of gravity, θ̈ is roll aeleration,while Fx, Fy and M are the total fores in the horizontal and vertial diretion and theroll moment about COG, in that order.3.8 Wave harateristis and wavemaker theorySome basi properties of progressive water waves, whih are frequently utilized in thepresent work, are desribed below. For intermediate and deep water relative to the wavelength, water is a dispersive medium. This means that the elerity or phase speed C ofwater waves is frequeny dependent. The elerity is simply given by C = ω/k, where ω iswave angular frequeny and k is wave number de�ned as k = 2π/λ, with λ being the wavelength. A relation between ω and k, known as the dispersion relation, is from potential�ow theory found as
ω2 = gk tanh kh, (3.23)where g is the aeleration of gravity and h is a onstant water depth. The group veloity

Cg of the wave train is an important parameter, whih will be used e.g. when onstrutingthe domain of the numerial wave-tank or when evaluating if wave re�etions in the �ume



34 Mathematial formulationare likely to be ontaminating the measurements. The group veloity is aording tolinear potential �ow theory expressed as
Cg =

dω

dk
=

C

2

[

1 +
2kh

sinh 2kh

]

. (3.24)When generating waves either experimentally in a physial wave-�ume or numeriallyin an NWT, it is onvenient to know what wavemaker paddle motion that yields a givenwave height of the waves generated. Suh a relation between the wavemaker paddle motionand the resulting steady state wave height H far away from the wavemaker an be founde.g. from linear potential �ow theory (Hughes 1993). For the piston type wavemakerwhere the paddle is ating from the bottom of the �ume to the free surfae, the waveheight-to-stroke ratio is
H

S0
=

4 sinh2 kh

sinh 2kh + 2kh
, (3.25)where S0 is the piston stroke. Further, h is water depth and k the wave number foundfrom the dispersion relation (3.23). For the �ap type wavemaker hinged at a distane lfrom the bottom of the �ume, the wave height-to-stroke ratio is

H
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4 sinh kh

sinh 2kh + 2kh

[

sinh kh +
(1− cosh kh)

k (h + l)

]

. (3.26)For the �ap type wavemaker, the stroke S0 is de�ned as two times the horizontal motionamplitude of the paddle at the mean free surfae.



Chapter 4Numerial model
4.1 Disretization of the Navier-Stokes equationsIn the previous hapter we established a mathematial model for our physial problem.The obtained mathematial model, whih is governed by the time-dependent inompress-ible Naviér-Stokes equations with proper initial- and boundary onditions, must be solvednumerially. Hene, a suitable disretization method must be found. By disretizationmethod is meant a method to approximate the di�erential equations with a set of algebraiequations for the �ow variables at a disrete set of points in time and spae. A numerialgrid de�ning these points or nodes of omputation must then be spei�ed. However, alsogrid-less methods for solving the inompressible N-S equations exists. An example hereis the Smoothed partile hydrodynamis (SPH) method (Gingold and Monaghan 1977;Monaghan 1992). We apply a grid method for our numerial wave tank. How the grid isorganized is desribed in the following.4.1.1 The numerial gridFor grid methods, there is a vast number of ways to arrange the numerial grid. Someonepts will now be desribed. First of all, the grid an be �xed in spae (Eulerian) orit an move with the �ow (Lagrangian). Further, the grid an be strutured (regular),blok-strutured or unstrutured (irregular). Blok-strutured grids, whih are omposedof some regions (bloks) in where the grid is regular. Some blok-strutured grids mayhave overlapping bloks. Suh arrangements where e.g. a body-�tted grid (whih anbe moving) is overlapping a �xed grid are alled omposite or Chimera grids. Thesetypes of grids have shown to be advantageous for �ow omputations with moving bodies(Ferziger and Peri' 2002), sine the body boundary ondition then easily an be imposed.A new type of grid whih has been used in ombination with the CIP-method is the so-alled soroban grid, introdued by Takizawa et al. (2006). For the soroban grids, the gridpoints an be moved in a systemati manner, similarly as the beads on an abaus. Infat, soroban is the Japanese word for abaus.The presene of the air-water interfae is a ompliating fator in our problem, andmust be onsidered when deiding whih type of grid arrangement to apply. Typiallywhen dealing with free surfae �ows, we separate between domain dividing methods anddomain embedding methods. Domain dividing methods apply Lagrangian type of gridswhih adept to the free surfae. Hene, regridding is required as the free surfae evolves35



36 Numerial model

Figure 4.1: Illustration of the domain embedding method. A �xed Cartesiangrid is used whih does not onform to the free surfae or the �oating body. Thegrid overs the air, the water and the �oating body.with time. For violent free surfae �ows where large distortions and even fragmentationof the free surfae may our, the regridding proess an be very umbersome and timeonsuming. For suh �ow problems it is more ommon to apply a domain embeddingmethod whih is haraterized by a �xed grid that extends from the liquid phase intothe air, as illustrated in Fig. 4.1. Sine the grid does not onform to the free surfaeand overs both air and water, an interfae apturing method must be used in orderto loate the free surfae within the domain. Due to the good performane for violentfree surfae �ows, we will base our numerial model on a domain embedding method,i.e. using a �xed grid. We have already established a mathematial model where thegoverning equations are expressed in Cartesian oordinates. Thus, when onstruting the�nite di�erene shemes, it is onvenient that also the omputational nodes are arrangedin a Cartesian manner, i.e. that the nodes are aligned in the oordinate diretions. Hene,a �xed Cartesian grid will be applied on a retangular domain. We will use the indies iand j to represent the node number in the horizontal and vertial diretion, respetively.4.1.2 Staggered grid arrangementOne may think that it is onvenient to use a grid where all the primary variables, i.e.horizontal veloity u, vertial veloity v and pressure p, are alulated in the same set ofpoints. Suh grids are referred to as olloated grids. Drawbaks of olloated grids are dif-�ulties with the pressure-veloity oupling whih then requires interpolation, in additionomes problems with unphysial osillations of the pressure (Ferziger and Peri' 2002).This has motivated for other arrangements of Cartesian grids. Harlow and Welh (1965)introdued an arrangement where a separate grid was used for eah primary variable and



4.1. Disretization of the Navier-Stokes equations 37where eah primary variable was omputed at di�erent sets of points. This resulted in aset of staggered grids. The staggered grids an be explained by having one set of grid ellswhere horizontal veloity nodes are loated on vertial ell faes, vertial veloity nodesare loated on horizontal ell faes while pressure nodes are loated at the geometrialell entres, as depited in Fig. 4.2. We use ∆xi to represent the grid line spaing in the
ui,j

∆ycj
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ui−1,j
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∆yj

∆xi
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Figure 4.2: De�nitions of the Cartesian staggered grid whih is used in the presentnumerial model. Pressure nodes are marked with irles, while horizontal andvertial arrows represents horizontal veloity nodes and vertial veloity nodes,respetively. We use ∆xi and ∆yj to represent spaing between grid lines, while
∆xci and ∆ycj represents spaing between ell entres.horizontal diretion for the grid ell ontaining pressure node with index (i, j). Similarlyis ∆yj representing the grid line spaing in the vertial diretion for the same grid ell.Appliation of grid strething auses the grid line spaings ∆xi and ∆yj to di�er from thespaings between ell entres. For onveniene, we introdue the parameters ∆xci and

∆ycj to represent the horizontal and vertial spaing between ell entres, respetively.The relation between the two are ∆xci = 0.5(∆xi +∆xi+1) and ∆ycj = 0.5(∆yj +∆yj+1).For the primary variables, we use ui,j to represent an approximation to the horizon-tal veloity u(xi, ycj) where (xi, ycj) are the oordinates of the horizontal veloity nodeonsidered. Further, vi,j represents v(xci, yj) and pi,j represents p(xci, ycj).4.1.3 Temporal disretizationThe disretized momentum equations must be integrated in time to obtain the velo-ity �eld at a later time step. Many methods exists for integrating the Naviér-Stokesequations in time. Methods lassi�ed as Frational step approahes as �rst suggestedby Harlow and Welh (1965) and Chorin (1968) are perhaps the most popular lass ofmethods. For these approahes, the terms of the N-S equations representing di�erentphysial e�ets are stepped forward in time separately. In the frational step approahby Chorin, a tentative veloity �eld is obtained by integrating an inomplete version ofthe momentum equations where the pressure term is exluded. This tentative veloity�eld is then not neessarily divergene free, meaning the veloity �eld might not satisfy



38 Numerial modelthe ontinuity equation (3.4). Then, in order to obtain a divergene free veloity �eld atthe next time step, an orthogonal projetion of the tentative veloity �eld onto the planeof zero divergene is performed. Hene, suh methods are referred to as projetion meth-ods. Chorin's method has later been modi�ed for use with �nite volume methods andstaggered grid arrangements by Kim and Moin (1985). The Harlow and Welh approahhas lead to the fully impliit method SIMPLE by Patankar (1980), where all terms aresolved simultaneously and iterates are performed until a veloity �eld free of divergene isreahed. This method was originally developed for solving the steady-state Naviér-Stokesequations but has also been used for solving unsteady problems. We will use a projetionmethod similar to that proposed by Kim and Moin, but instead of using �nite volumesfor the spatial disretization we will apply �nite di�erenes.The notation un will be used to represent an approximation to the veloity �eld u(tn),where the time tn = n∆t with n being the time step and ∆t the time inrement. However,adaptive time stepping will sometimes be used. Then the solution time is tn =
∑n

k=1 ∆tk.4.1.4 The adopted frational step approahFrational step methods are time-splitting shemes where approximate fatorizations ofthe Naviér-Stokes equations are applied, suh that eah term of the equations an betreated separately. The underlying method for time integration of the di�erent terms anbe either impliit or expliit. Here, time integration will be performed using the �rst orderexpliit Euler method.Projetion methods an be divided into pressure-free projetion methods as that intro-dued by Kim and Moin (1985) and inremental-pressure projetion methods as desribedby Brown et al. (2001). In the pressure-free projetion method, the advetion and dif-fusion terms are solved to obtain a tentative veloity �eld whih is projeted onto adivergene free plane. Hene, no pressure gradient is inluded in the tentative veloity�eld. In the latter method the pressure �eld from the former time step is used to get abetter estimate of the veloity �eld before a projetion step of the inremental hange inpressure from time tn to tn+1 is performed. The inremental pressure projetion methodwill be used here. Using the expliit Euler method for time integration, the frationalstep approah with inremental pressure projetion an be expressed as
un+1 = un +

(

Cn + Dn + P n+1
)

∆t (4.1)where C represents the onvetive terms, D represents di�usive terms, the body foresand the pressure gradient from time tn. Finally, P is the gradient of the inrementalpressure hange from time tn to tn+1. This leads to a three step approah for integratingthe N-S equations, with the following steps
u∗ = un + (Cn) ∆t (4.2)
u∗∗ = u∗ + (Dn) ∆t (4.3)
un+1 = u∗∗ +

(

P n+1
)

∆t. (4.4)The di�erent steps will be referred to as the advetion step, non-advetion step andinremental-pressure orretion step, respetively. The non-advetion step will be furtherdivided into a di�usion step and a pressure orretion step. In the inremental-pressureorretion step, the veloity is updated with the inremental hange in the pressure, whih



4.2. The CIP-method 39leads to a divergene free veloity �eld. This inremental-pressure orretion is unknownand must be found using a projetion method leading to a Poisson type equation for theinremental pressure.4.2 The CIP-methodWhen solving the advetion step, a method with small numerial di�usion is favorable.Numerial di�usion is due to arti�ial di�usion terms that are aused by trunation er-rors of the disretization. Although numerial di�usion stabilizes the numerial sheme,it is unphysial and may ause erroneous solutions. A typial example is rapid deayof the wave amplitude in simulations of propagating surfae waves. A method withsmall numerial di�usion that has shown to work well for �uid-struture interation prob-lems (Hu and Kashiwagi 2004; Hu et al. 2005) is the CIP-method. The CIP-method was�rst introdued by Takewaki et al. (1985) as a solver for one-dimensional hyperboli-typeequations, then with CIP being the abbreviation for Cubi Interpolated Pseudo-partilemethod. This method uses the values of the adveted variable and its spatial deriva-tives to onstrut an interpolating pro�le, usually a ubi polynomial, to represent theadveted variable in the upstream ell. Then the solution is found by moving the interpo-lation pro�le in a Lagrangian manner. The CIP-method has been extended to apply formulti-dimensional problems, and also other interpolating funtions than the ubi poly-nomial have been used. To onstrut a ubi polynomial, four onstraints are needed inthe 1D-formulation, while ten onstraints are needed in 2D. This ould be done by usinginformation from more than one upwind ell. However, in the CIP-method the spatialderivatives of the adveted variable are introdued as free variables. This yields a ompatsheme where information from only one upwind ell is used. Thus, to aount for othertypes of interpolating funtions, the �rst de�nition of the CIP-method has been hangedto the Constrained Interpolation Pro�le method. The CIP-method has been inorporatedinto N-S solvers where time-splitting algorithms are used (Toro 1999) as a solver for theadvetion step. CIP has also been used in multiphase �ow simulations for solving theadvetion equation for density funtions, whih appear when interfae apturing methodsare used. A review of the CIP-method for multiphase �ow simulations is presented inYabe et al. (2001).In order to explain the CIP-method, it is onvenient to start out with the 1D-formulation.Then, a 2D-formulation whih are used in our numerial model will be presented. Somemathematial bakground relevant for the CIP-method is presented in Appendix A.1.1.4.2.1 One-dimensional CIP-formulationThe one-dimensional linear advetion equation an be written as
∂f

∂t
+ u

∂f

∂x
= 0. (4.5)and desribes a funtion f(x, t) whih is adveted with the veloity u. For the speial aseof onstant veloity u = u0, the adveted funtion f(x, t) retains its initial shape and isonly shifted along the x-axis with time. Then the relation of f(x, t) between two di�erenttime instants ∆t apart is f(x, t + ∆t) = f(x − u0∆t, t), as illustrated in Fig. 4.3. For
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(b)Figure 4.3: Relation between the adveted funtion f(x, t) and the same funtionat a later time f(x, t+∆t) when the advetion veloity u is onstant is shown in(a). In (b) the adveted variable f(x, t) in the upwind ell of xi is approximatedby a ubi polynomial F n
i (ξ). The solution fn+1

i is then found by moving ξ =
−u∆t along the pro�le F n

i .the general ase where u = u(x, t), also the shape of f(x, t) will be a�eted during theadvetion proess. The CIP-method makes use of the spatial derivative of the advetedfuntion, whih are introdued as additional free variables. Then, for the 1D-problem weneed one additional equation for the time evolution of the spatial derivative g = ∂f/∂x.Di�erentiating (4.5) with respet to x and substituting ∂f/∂x = g yields
∂g

∂t
+ u(x, t)

∂g

∂x
= −∂u

∂x
g. (4.6)Equations (4.5) and (4.6) are the governing equations for the one-dimensional CIP-method. Due to the soure term on the RHS, eq. (4.6) is solved by a two-step time-splitting method. First we solve eq. (4.6) with the RHS equal to zero to obtain a tentative

g∗. Then, g∗ is updated by the soure term on the RHS of (4.6) to obtain gn+1.The solution proedure is as follows. We onsider the node xi, for whih un
i , fn

i and
gn

i are known. We want to �nd fn+1
i and gn+1

i . First, the upwind node index is found as
iw = i− sign(u), where the funtion sign is de�ned as

sign(x) =

{

1, x ≥ 0

−1, x < 0
(4.7)Then, a ubi polynomial F n

i (ξ), where ξ = x− xi, is onstruted to represent f(x, tn) inthe upwind ell, i.e. in the interval [xi, xiw]. The ubi polynomial and the orrespondingdi�erentiated pro�le is
F n

i (ξ) = C3ξ
3 + C2ξ

2 + C1ξ + C0 (4.8)
Gn

i (ξ) = 3C3ξ
2 + 2C2ξ + C1, (4.9)where Gn

i = dF n
i /dξ. The four unknown oe�ients are now found using the knownvalues of fn and gn in the two nodes of the upwind ell as onstraints. Details of thederivation of these oe�ients an be found in Appendix A.1.2. When the oe�ients arefound, the interpolation pro�les are shifted the distane ui∆t to obtain the new values

fn+1
i = F n

i (−ui∆t) (4.10)
g∗

i = Gn
i (−ui∆t). (4.11)



4.2. The CIP-method 41The spatial derivative g∗ is updated with the soure term on the RHS of (4.6) as
gn+1

i = g∗
i −∆t

(

un
i+1 − un

i−1

∆xi + ∆xi+1

)

g∗
i . (4.12)We note that (4.10), (4.11) and (4.12) are onsistent with the analytial solutions to (4.5)and (4.6) for the ase when u is a linear funtion in spae and onstant in time, whih isgiven in appendix A.1.1 (equations (A.6) and (A.10), respetively).Stability of the 1D CIP-methodWhen solving the advetion equation (4.5) numerially, there is usually an upper limit onthe time-step in order to obtain a stable solution. This riterion on the time-step for astable solution is expressed in terms of the Courant-Friedrihs-Lewy (CFL) number, whihfor the 1D ase is de�ned as CFL = U∆t/∆x. Here U is the maximum �uid veloityin the domain, ∆t is the time-step and ∆x is the spatial inrement. A ommonly usedstability riterion for the CIP-method is CFL < 1. For a given spatial disretization anda given transport veloity, we then get ∆t < ∆x/U as a onstraint for a stable alulation.Although no rigorous stability analysis is performed to verify the stability riterion, wenote that CFL = 1 marks the limit between interpolation (CFL < 1) and extrapolation(CFL > 1) on the onstrained polynomial de�ned by (4.8).4.2.2 Two-dimensional CIP-formulationSeveral variants of the CIP method has been developed for advetion alulations in two-and three- spae dimensions, as desribed by Zhu (2006). In the methods referred toas C-type and M-type CIP, diretional splitting tehniques are used suh that the two-or three-dimensional problem is redued to a set of one-dimensional problems whih arethen solved by the 1D-solution proedure. We will in the following use what is alledthe A-type CIP method. This method does not apply diretional splitting. Instead, apolynomial surfae is onstruted as the interpolation funtion representing the advetedvariable. This will now be explained.We want to solve the linear advetion equation in two spatial dimensions, whih anbe expressed as

∂f

∂t
+ u

∂f

∂x
+ v

∂f

∂y
= 0. (4.13)Di�erentiating (4.13) with respet to the spatial oordinates and introduing the newvariables g = ∂f/∂x and k = ∂f/∂y, we obtain

∂g

∂t
+ u

∂g

∂x
+ v

∂g

∂y
= −∂u

∂x
g − ∂v

∂x
k (4.14)

∂k

∂t
+ u

∂k

∂x
+ v

∂k

∂y
= −∂v

∂y
k − ∂u

∂y
g. (4.15)The hyperboli equations (4.14) and (4.15) desribing the evolution of spatial derivatives

g and k, are oupled due to the soure terms on the right hand side (RHS). In order tosolve these equations, a two-step time-splitting tehnique is used. First, pure advetionof the derivatives are omputed by setting the RHS to zero. Then the spatial derivativesare updated due to the soure terms.



42 Numerial modelThe upwind ell for a given node is determined by the sign of the two veloity om-ponents for the node onsidered. Sine the nodes for the horizontal and vertial veloityomponents are not olloated on a staggered grid (f. Fig. 4.2), interpolation of theveloities to the node onsidered is neessary. For advetion of horizontal momentum thevertial veloity omponent has to be interpolated to the horizontal veloity node, whilefor advetion of vertial momentum the horizontal veloity omponent must be interpo-lated to the vertial veloity node. When advetion of the olor funtion is omputed,both veloity omponents must be interpolated to the ell entre. The advetion veloityomponents will be referred to as uc and vc referring to the horizontal and vertial om-ponent, respetively. Now the upwind ell for a given node (i, j) is determined based onthe sign of the veloity omponents u and v. More preisely, the upwind node indies forthe horizontal and vertial diretion is found as iw = i − sign(u) and jw = j − sign(v),respetively. The upwind ell is de�ned as the area limited by the four nodes (i, j), (iw, j),
(i, jw) and (iw, jw).When the upwind ell is found, the next step in the A-type CIP-method is to approx-imate the adveted variable f(x, y, tn) in the upwind ell with a ubi polynomial surfae
F n(ξ, η), where ξ = x − xi and η = y − yj are the loal ell oordinates. If the gridspaings ∆xi and ∆yj are of the same order of magnitude, i.e. ξ and η are of the sameorder, a omplete ubi polynomial surfae is desribed by

F n
i,j(ξ, η) = C30ξ

3 + C21ξ
2η + C12ξη

2 + C03η
3 + C20ξ

2 + C11ξη + C02η
2

+ C10ξ + C01η + C00,
(4.16)where by omplete is meant that all terms up to third order of ξ and η are inluded.Further, the di�erentiated pro�les Gn(ξ, η) = ∂F n/∂ξ and Kn(ξ, η) = ∂F n/∂η are foundas

Gn
i,j(ξ, η) = 3C30ξ

2 + 2C21ξη + C12η
2 + 2C20ξ + C11η + C10 (4.17)

Kn
i,j(ξ, η) = C21ξ

2 + 2C12ξη + 3C03η
2 + C11ξ + 2C02η + C01. (4.18)The polynomial in (4.16) ontains ten unknown oe�ients that must be determined.These oe�ients are found using the onstraints F n(ξp, ηq) = fn

p,q, with (p, q) being theindies of the four nodes desribing the upwind ell and ξp and ηq the orresponding elloordinates. Further, Gn(ξp, ηq) = gn
p,q and Kn(ξp, ηq) = kn

p,q are used for the three nodes
(p, q) = (i, j), (iw, j) and (i, jw). This yields a total of ten onstraints. If also the spatialderivatives at the fourth node (iw, jw) were used, we would have twelve onstraints butonly ten unknowns. Thus, two more terms must be added to the polynomial (4.16) ifthe spatial derivatives at the fourth node are to be used. However, the additional termswould be of fourth order and are negleted in our numerial model. When the interpolationpro�le F n

i,j is found, the solution to the linear advetion equation (4.13) is obtained as
fn+1

i,j = F n
i,j(−u∆t,−v∆t) (4.19)For the spatial derivatives, a two-step time-splitting approah is used as follows. First,due to pure advetion of the spatial derivatives we get

g∗
i,j = Gn

i,j(−u∆t,−v∆t) (4.20)
k∗

i,j = Kn
i,j(−u∆t,−v∆t), (4.21)



4.2. The CIP-method 43
η

xi xiw

yj

yjw

ξ

fn
iw,j

−→u i,j

fn
iw,jw

fn
i,jwf

fn
i,j

fn+1

i,j

F n
i,j(ξ, η)

Figure 4.4: CIP-method in two-dimensions where a ubi polynomial surfae
F n

i,j(ξ, η) is onstruted using ten onstraints and then shifted aording to thesolution of the onstant oe�ient linear advetion equation to obtain fn+1
i,j .whih onserves the shape of the di�erentiated pro�le. However, due to the varyingveloity �eld the shape of the di�erentiated pro�le will be modi�ed. This is representedby the soure terms on the RHS of (4.14) and (4.15). Updating the derivatives for thesoure terms yields

gn+1
i,j = g∗

i,j −∆t

(

∂u

∂x
g̃n

i,j +
∂v

∂x
k̃n

i,j

) (4.22)
kn+1

i,j = k∗
i,j −∆t

(

∂u

∂y
g̃n

i,j +
∂v

∂y
k̃n

i,j

)

, (4.23)where the spatial derivatives of the veloity is evaluated using entral di�erenes. Dueto the staggered grid, the atual stenil for di�erentiation depends on whih variable isbeing adveted. The A-type CIP-method is illustrated in Fig. 4.4. As for the 1D CIP-method, no rigorous stability analysis is performed for the 2D CIP-sheme. However, the1D stability riterion (CFL < 1) is used for eah of the two spatial diretions. Usually,
CFL < 0.5 is used in pratie.Generally, both the 1D and 2D approah an be summarized as follows. For eah nodeof omputation:1. Loate upwind ell based on the total veloity in the node onsidered2. Approximate the adveted variable in the upwind ell by onstruting a ubi poly-nomial urve/surfae using the node values of the adveted variable and its spatialderivatives as onstraints3. Shift the approximated pro�le aording to the analytial solution of the linearonstant oe�ient advetion equation4. Find new spatial derivatives by shifting the di�erentiated pro�le and adding soureterms5. Update variables



44 Numerial model4.3 Solving the Navier-Stokes equationsThe Naviér-Stokes equations are solved using �nite di�erenes on a Cartesian staggeredgrid. A frational step approah with an inremental pressure-projetion method is ap-plied to step the solution forward in time, as already desribed. The di�erent steps willbe explained more in detail in the following.4.3.1 Advetion stepThe �rst task in the frational step approah used here is to solve the advetion equationfor the horizontal and vertial veloity omponent. The advetion of �uid momentumimplies we have to solve the following nonlinear advetion equations
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0 (4.24)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= 0. (4.25)These equations are hard to solve. However, if we use the method of frozen oe�ients (seee.g. Strikwerda (2004)), we an approximate the nonlinear equations (4.24) and (4.25) toobtain the linear equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= 0 (4.26)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= 0, (4.27)where u and v are onstant in time during the small time interval of length ∆t. Theveloity omponents u and v are evaluated at the node of omputation, using the veloity�eld un. For the evolution of the spatial derivatives of the adveted veloity omponents,we solve (4.14) and (4.15). Then, using Eqs.(4.19-4.23) the adveted variable u∗ and itsspatial derivatives g∗ and k∗ after advetion are found.4.3.2 Di�usion stepDue to the visosity of the �uid, di�usion of �uid momentum will our. Central di�er-enes are used for the spatial disretization of the visous stress terms. When using thenon-onservative formulation of the Naviér-Stokes equations, the di�usion equations forthe two spatial diretions are oupled. For this we introdue the indies E, W, N, S refer-ring to points to the East, West, North and South relative to the node of omputation.At these points, the kinemati visosity oe�ient ν and the derivatives of the horizontaland vertial veloity omponents are to be omputed. First we onsider di�usion of thehorizontal veloity omponent, whih an be written
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(b)Figure 4.5: Variables involved in the di�usion alulation for (a) the horizon-tal veloity omponent and (b) the vertial veloity omponent. The dynamivisosity oe�ient is approximated at the points marked with a ross.Similarly, for the vertial veloity omponent we get the following expression for thedi�usion alulation, inluding the e�et of gravity,
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(4.29)where g is the aeleration of gravity. Details on the evaluation of the kinemati visos-ity and the veloity derivatives are given in appendix A.2. The omputational stenilsorresponding to (4.28) and (4.29) are illustrated in Fig. 4.5.When the expliit Euler method is used to time step the e�et of the di�usion equation,there is a stability onstraint that must be satis�ed. This stability onstraint an befound from a von Neumann analysis (Roahe 1976; Strikwerda 2004). However, due tothe hange of material properties aross the free surfae, this is not an easy task. If weonsider the di�erent phases separately, the following stability onstraint for the di�usionstep is obtained
µ∆t

ρ

(

1

∆x2
min

+
1

∆y2
min

)

≤ 1

2
. (4.30)This onstraint on the stability of the solution an be removed by using an impliit methodfor the time integration, like the seond order Crank-Niolson method.4.3.3 Pressure ouplingIn the pressure projetion method suggested by Chorin, a Poisson equation for the totalpressure is solved. Then the pressure is used to projet the veloity �eld onto a plane ofzero divergene. For methods lassi�ed by Brown et al. (2001) as inremental pressureprojetion methods, the veloity �eld is �rst updated with the old pressure �eld pn to



46 Numerial modelobtain a better predition of the veloity �eld before the projetion is performed. Updatingthe veloity �eld with the old pressure is done by
u∗∗

i,j = ũ∗∗
i,j −

∆t

0.5(ρi,j + ρi+1,j)

pn
i+1,j − pn

i,j

∆xci
(4.31)

v∗∗
i,j = ṽ∗∗
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0.5(ρi,j + ρi,j+1)

pn
i,j+1 − pn

i,j

∆yci
. (4.32)Then the projetion step is done with the inremental hange in pressure δpn+1 = pn+1−pnfrom time step n to the next time step n + 1. Consider the veloity update due to theinremental pressure gradient, whih is

un+1 − u∗∗

∆t
= −1

ρ
∇δpn+1 (4.33)Now, taking the divergene of (4.33) and imposing the ontinuity onstraint ∇·un+1 = 0,the unknown veloity un+1 is removed from the equation and we obtain a Poisson equationfor the inremental pressure δpn+1 as

∇ · u∗∗

∆t
= ∇ ·

(

1

ρ
∇δpn+1

)

. (4.34)Due to the one-�uid formulation whih implies that the �uid density in the domain isnon-onstant, Eq. (4.34) is more preisely a variable-oe�ient Poisson equation. Hene,the oe�ient matrix must be alulated for eah time step. When the Poisson equationfor the inremental pressure is solved using a suitable solver (whih will be desribed morein detail below), the tentative veloity �eld u∗∗ is updated using the inremental pressuregradient to give the veloity �eld at the next time step un+1. Hene,
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i,j = v∗∗

i,j −
∆t

0.5(ρi,j + ρi,j+1)

δpn
i,j+1 − δpn

i,j

∆yci
. (4.36)The new veloity �eld un+1 will now satisfy the ontinuity equation (3.4). Further is thepressure for the next time step found as

pn+1
i,j = pn

i,j + δpn+1
i,j . (4.37)4.3.4 Solving a Poisson equation for the inremental pressureThe variable-oe�ient inremental-pressure Poisson equation an be disretized to give
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+
v∗∗

i,j − v∗∗
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∆yj

) (4.38)



4.4. Free surfae apturing 47where ρi+1/2,j is the �uid density evaluated at the veloity node at the right ell boundary,i.e. at the veloity node ui,j. Similarly, ρi−1/2,j orresponds to the density at ui−1,j,while ρi,j+1/2 and ρi,j−1/2 orresponds to the density at the veloity nodes vi,j and vi,j−1,respetively. The Poisson equation is an elliptial equation, whih means that boundaryonditions for the inremental pressure must be spei�ed. We onsider two types ofboundary onditions. These are the Neumann ondition for whih the normal veloityis spei�ed on boundary, and the Dirihlet ondition where the pressure is spei�ed onthe boundary. By setting n · u∗∗ = n · un+1 on the boundary, the Neumann ondition isexpressed as n ·∇(δpn+1) = 0. This is applied for the rigid wall boundaries. At the upperboundary, the pressure is atmospheri, meaning the imposed pressure on the boundary isonstant in time, i.e. pn+1 = pn. This leads to the Dirihlet boundary ondition δpn+1 = 0.Equation (4.38) represents the linear system
Ax = b, (4.39)where x is a vetor of the unknown pressure inrement, A is the oe�ient matrix dueto the disretization and b is the divergene of the tentative veloity �eld, i.e. the righthand side of (4.38). How to obtain the oe�ient matrix A is desribed in appendixA.3. The system of equations an be very large, whih implies that a diret solver wouldbe ine�ient. Thus, an iterative solver is used to solve (4.39). Further, the oe�ientmatrix A will due to the disretization be non-symmetri when nonuniform grids areused. This puts additional requirements to the iterative solver. An e�ient solver that isable to handle systems where the oe�ient matrix is non-symmetri is the Bi-CGSTABalgorithm (van der Vorst 1992), whih will be used here. Due to the moving free surfaeand the fat that the oe�ient matrix depends on the �uid density, the oe�ient matrixmust be alulated at every time step. Another aspet of the moving free surfae is thatthe large variation of the density auses the eigenvalues λi of the oe�ient matrix Ato be wide spread along the real axis. Hene, the ondition number κ = |λmax/λmin| islarge and the system is alled sti� whih means hard to solve. In order to gain fasteronvergene of the iteration proess, preonditioning of the equation system is favorable.Preonditioning means that instead of solving the system represented by (4.39), we solvea modi�ed system

M−1Ax = M−1b, (4.40)where M is a preonditioning matrix that approximates A and where the inverse matrix
M−1 is easy to ompute. We will use a simple preondition algorithm alled D-ILUthat has shown to work well with Bi-CGSTAB (Barrett et al. 1994). Algorithms for thepreonditioned Bi-CGStab method and the D-ILU preonditioner are given in appendixA.3.4.4 Free surfae apturingWhen solving two-phase �ow with a one-�uid model using an embedded grid method, thefree surfae must be aptured for eah time step to know the material properties in thenode of omputation. There exist several methods for free surfae apturing. The MACsheme (Harlow and Welh 1965) is suh a method whih an treat omplex phenomenalike wave breaking. In the MAC sheme, marker partiles whih are adveted with the



48 Numerial model�ow are used to apture the free surfae. However, the omputational e�ort is large sineone has to keep trak on a large number of marker partiles. Another popular method isthe Volume of Fluid (VOF) method by Hirt and Nihols (1981). This method makes useof a density funtion whih numerial value is the area fration oupied by the liquidin eah ell. The density funtion is then used to give a ell-averaged estimate of themass density and visosity of the �uid. A transport equation for the evolution of densityfuntion is solved for the whole domain to loate the free surfae. The momentum andmass onservation equations are then solved for the liquid phase only. A problem withsuh methods is that due to the disontinuity of the density funtion at the interfae, thedensity funtion will be smeared out here when using a low-order method to solve thetransport equation. Using higher-order methods may lead to over-shoot or under-shootof the density funtion. This problem is avoided by the level-set method introdued byOsher and Sethian (1988). In the level-set method, a distane funtion is introdued.The distane funtion is a salar funtion whih value is the shortest distane to thefree surfae whih is in the normal diretion to the surfae. An advantage of the signeddistane funtion is that it is smooth suh that problems related to numerial di�usion andover- or undershoot, whih are typial issues for methods applying pure density funtions,are avoided. Appliations and further details of the level-set method are desribed inOsher and Fedkiw (2003).In the present work, we have used olor funtions for free surfae apturing. This is asimilar approah as the VOF-method.4.4.1 Color funtionsSimilar as the density funtion in the VOF-method, also the olor funtion an be on-sidered as a ell averaged density funtion. We will use one olor funtion for eah phasepresent in the domain, here represented by the water (liquid phase), the air (gas phase)and the �oating body (solid phase). The olor funtions for the water, the air and the�oater are denoted ϕ1, ϕ2 and ϕ3, respetively. As the node value of a olor funtionrepresents the area fration of a grid ell that is oupied by a given phase, all olorfuntions takes a value ϕk ∈ [0, 1], where k = 1, 2, 3. Further, the following ondition isenfored
3
∑

k=1

ϕk = 1. (4.41)The olor funtion an be onsidered as a ell averaged material property for the phase itrepresents and thus the olor funtion for water ϕ1 is adveted with the �ow. This meansthat the time evolution of ϕ1 is desribed by (3.7), whih is solved using the CIP-method.The olor funtion for the solid body is found diretly when the position and orientationof the solid body are known. This is desribed more detailed in the next setion. Whenthe olor funtions ϕ1 and ϕ3 are found, the olor funtion for the air ϕ2 an be obtainedfrom (4.41).When adveting a step-like funtion with the CIP-proedure, the adveted funtionwill smear out at the step due to numerial di�usion and due to representation of adisontinuous funtion by a ubi polynomial. This smearing may also ause a wrongphase speed of the ontour represented by ϕ1 = 0.5, whih de�nes the free surfae. Toredue this e�et, the olor funtion ϕ1 is replaed by a transformed olor funtion Φ(ϕ1)



4.5. Introdution of the �oating body 49when solving (3.7). After the advetion alulation, the olor funtion ϕ1 is reoveredby the inverse transform ϕ1 = Φ−1. Di�erent transforms are used in the literature.Yabe et al. (2001) introdued a tangent transform and its inverse funtion de�ned as
Φ = tan (π(1− ε)(ϕ1 − 0.5)) (4.42)
ϕ1 =

tan−1 Φ

π(1− ε)
+ 0.5. (4.43)Here ε is a small positive onstant whih is used to tune the thikness of the air-waterinterfae. Usually, ε = 0.02 is used. Sine the tangent funtion represents an additionalomputational ost, a simpler linear transform was proposed by Hu et al. (2005)

Φ = 0.5 + α(ϕ1 − 0.5) (4.44)
ϕ1 = 0.5 + (Φ− 0.5)/α, (4.45)with the tuning parameter α = 1.2. Both the tangent transform and the linear transformare implemented in our numerial model. However, in all ases presented the lineartransform is used. A parameter study for di�erent olor funtion transforms used in freesurfae apturing with the CIP-method is presented in Vestbøstad (2009).After advetion of the transformed olor funtion Φ and when the inverse transformhas been applied to obtain ϕn+1

1 , eventually overshoots or undershoots of ϕn+1
1 that usuallyour when adveting a step-like funtion using a higher order method are removed. Thisis done by setting ϕn+1 = 1 if ϕn+1 > 1 and ϕn+1 = 0 if ϕn+1 < 0. Then, the density andvisosity of the �uid in a given ell is omputed as

ρ =

3
∑

k=1

ρkϕk and µ =

3
∑

k=1

µkϕk, (4.46)where ρk and µk are the mass density and dynami visosity oe�ients for the phase k,respetively. For the grid ells oupied by the solid body, �titious oe�ients for themass density and dynami visosity are used with values equal to those of water.4.5 Introdution of the �oating bodyIntrodution of a solid body with arbitrary geometry into the omputational domain needsspeial treatment when a Cartesian grid is used. Sine the Cartesian grid annot onformto an arbitrary geometry, the veloity nodes will in general not be loated on the body sur-fae. This means that imposing the body boundary ondition on the �oating body wouldrequire speial treatment. Methods that deals with the problem of imposing boundaryonditions on arbitrary geometries when using Cartesian grids are alled immersed bound-ary methods and was �rst introdued by Peskin (1972) for representing the e�et of anelasti membrane of a heart valve on the blood �ow. The main feature of immersedboundary methods is that an extra body fore is added to the momentum equations inthe viinity of the body boundary to represent the e�et of the solid body on the �uid�ow. Other approahes using the same onept have later been introdued, and todayimmersed boundary methods are widely used for many appliations. Review of immersedboundary methods are given by Mittal and Iaarino (2005) and de Tullio et al. (2006).
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Figure 4.6: Computation of the olor funtion ϕ3(i, j) representing the solidbody. The intersetion points PA and PB between the body geometry and theCartesian grid, whih are found by parametrization of the body geometry, is usedto ompute the area fration Ai,j of the grid ell (i, j) overed by the body.Mittal and Iaarino (2005) divides the group of immersed boundary methods into twomain approahes, namely ontinuous foring approah and disrete foring approah de-pending on how the e�ets of the immersed boundary are introdued into the governingequations for the �uid �ow. In the ontinuous foring approah, the foring is inorporatedinto the ontinuous momentum equations before disretization. However, this method in-volves user-spei�ed parameters in the foring whih is undesirable in addition to problemswith instability issues for rigid boundaries. In the disrete foring approah, the foring isintrodued after the equations are disretized and this method has the major advantagethat user-spei�ed parameters in the foring are avoided. Here we will use a disreteforing approah similar as the diret foring method introdued by Mohd-Yusof (1997).Further, we will make use of olor funtions in the representation of the solid body. Thisis desribed in the following.4.5.1 Representing the solid body using olor funtionsWe use the olor funtion ϕ3 to represent the solid body. In the same manner as for theolor funtion ϕ1 representing water, the value of ϕ3(i, j) is de�ned as the area frationof the ell with indies (i, j) that is overed by the solid body divided by the total areaof the ell. This means ϕ3 ∈ [0, 1]. Mathematially speaking
ϕ3(i, j) =

Ai,j

∆xi∆yj
, (4.47)where Ai,j is the area of ell (i, j) overed by the solid body, as shown in Fig. 4.6. Thebody geometry is represented by a disrete number of straight line segments Sk with

k = 1, 2, ..., N . Eah line segment is desribed by the two end points (xk
0, y

k
0) and (xk

1, y
k
1).In order to ompute the area fration A of the ell oupied by the solid body, we �rst need



4.5. Introdution of the �oating body 51to loate the intersetion points (xc, yc) between the grid lines and the body boundary.This is done by �walking� along the urve de�ning the geometry. Eah line segment Sk isparametrized using the parameter t = [0, 1], whih means that all points loated on theline segment Sk is de�ned by
x = xk

0 + (xk
1 − xk

0)t (4.48)
y = yk

0 + (yk
1 − yk

0)t. (4.49)We now �nd all horizontal grid lines yj between yk
0 and yk

1 , and all vertial grid lines xibetween xk
0 and xk

1. These are the grid lines interseted by the line segment Sk. If avertial grid line is interseted, we know that the horizontal oordinate of the intersetionpoint is xc = xi. The parameter t = tc for the intersetion point is then found as
tc = (xi−xk

0)/(xk
1−xk

0) and subsequently the vertial oordinate of the same intersetionpoint is found from (4.49) with t = tc. Similarly, for the intersetion of horizontal gridlines yc = yj whih yields tc = (yj − yk
0)/(yk

1 − yk
0) and then xc is found from (4.48) with

t = tc. An index vetor whih tells whether the intersetion is with a horizontal grid lineor with a vertial grid line is also stored. Now the order of the intersetion points asthey appear on the line segment an be found by sorting tc in asending numerial order.We use a sorting algorithm based on Shell's method for this purpose (Press et al. 1992).Hene, using the sorted vetor of intersetion indies, we an now follow the urve de�ningthe body geometry through all the interseted ells and ompute ϕ3 using (4.47). Sinethe intersetion points PA and PB are now found, alulation of Ai,j is only a matter ofgeometry.4.5.2 The body boundary onditionWe want to impose the no-slip body boundary ondition (3.9) on the immersed boundary,using the diret foring method similar as that proposed by Mohd-Yusof (1997). Themethod an be desribed as follows. Disretized in time with the �rst order Euler method,the momentum equations (3.5) and (3.6) an in ompat form be written as
un+1 − un

∆t
= RHSn, (4.50)where RHSn ontains the onvetive terms, the visous terms and the pressure gradientevaluated at time step n. In order to aount for the presene of a solid body in thedomain, we modify (4.50) by adding a body fore fn on the right hand side, aordingto the immersed boundary method. This fore is nonzero only in the viinity of the bodyboundary. This yields,

un+1 − un

∆t
= RHSn + fn (4.51)Now the question is what this fore fn should be? We note that the purpose of adding fnto (4.50) is to satisfy un+1 = un+1

b on the body boundary at the new time step n+1, where
ub is the rigid body veloity. By substituting un+1 with un+1

b in (4.51) and rearranging,the fore fn is found as
fn = −RHSn +

un+1
b − un

∆t
. (4.52)Impliitly, this means that the e�et of the immersed boundary is inorporated by simplyupdating the veloity nodes of the grid ells that is partly or totally oupied by the



52 Numerial modelsolid body aording to the rigid body veloity. Di�erent interpolation tehniques an beused for this purpose as desribed by Fadlun et al. (2000). We will use a volume frationweighting approah, also used by Hu et al. (2005), where the olor funtion ϕ3 represent-ing the solid body is utilized to update the veloity nodes of the grid ells oupied bythe �oating body. This is done by
un+1 = ϕ̃3u

n+1
b + (1− ϕ̃3)u

∗∗ (4.53)
vn+1 = ϕ̃3v

n+1
b + (1− ϕ̃3)v

∗∗, (4.54)where ϕ̃3 is the olor funtion for the solid body interpolated linearly to the veloity nodeonsidered.It is after the veloity �eld has been updated aording to (4.53) that the projetionstep is performed and the inremental pressure hange δp is found, as desribed in 4.3.3.When updating the veloity �eld due to this inremental pressure orretion using (4.35)and (4.36), the �uid veloity at the body boundary may be hanged suh that the bodyboundary ondition is violated. More simply, the obtained pressure orretion mightause the �uid to �ow through the body surfae, yielding an inorret solution. Thishas to do with the fat that the fore fn is found using the tentative veloity �eld u∗∗(Fadlun et al. 2000). However, it has been shown that the pressure orretions at theimmersed boundary are always small and that this error an be redued to round-o�by two or three iterations of the time advanement sheme (de Tullio et al. 2006). Theiteration proess is simply that after the �rst update of the veloity �eld due to theinremental pressure orretion, the body boundary ondition is again imposed using(4.53) before a �nal pressure projetion step for the inremental pressure is performed.Our experiene is that two iterations are su�ient for this approah.4.6 Pressure loads on the solid bodyWhen the pressure �eld at the new time step is known, the pressure fores and momentson the solid body an be omputed using a disretized version of (3.18) and (3.19), respe-tively, with ϕ being the olor funtion desribing the solid body, ϕ3. In the mathematialformulation of the pressure fore given by Eq. (3.18), the integral is over the omplete do-main. However, sine ϕ3 = 0 outside the solid body boundary, we an make the numerialproedure more e�ient by taking the double sum only over a sub-domain enlosing thesolid body. This sub-domain is limited by the indies (i1, i2) in the horizontal diretionand (j1, j2) in the vertial diretion. For the pressure fores, this leads to
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4.6. Pressure loads on the solid body 53where
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.Here, the pressure gradients are orret to O (∆x2) and O (∆y2) on a strethed staggeredgrid. The roll moment due to the �uid pressure ating on the body surfae is alulatedas
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ϕi,j ∆xi∆yj, (4.57)where (xb, yb) are the oordinates of the entre of gravity of the solid body.4.6.1 Rigid body motionsThe instantaneous body position and orientation is de�ned by the oordinates of thegeometrial enter of the body (xb, yb) and the roll angle θ. If the enter of gravity isloated at the geometrial enter of the body, the rigid body translatory motions an befound upon integration of (3.20) and (3.21). Further is the roll angle found by integrationof (3.22). Assuming the pressure fores and moments are onstant during a time interval
∆t = tn+1 − tn, we �nd the instantaneous rigid body veloities in heave sway and roll as

Un+1
b = Un

b + ∆tF n
x /m (4.58)

V n+1
b = V n

b + ∆tF n
y /m (4.59)

θ̇n+1 = θ̇n + ∆tMn/I, (4.60)where m is the strutural mass per unit length of the body while I is the roll inertia aboutthe enter of gravity. If we assume onstant body aelerations during the time step ∆t,this implies that the body veloities in the same time interval are linearly varying. Hene,using the trapezoidal rule of integration, we �nd the oordinates of the mass enter of thebody (xb, yb) at the next time step tn+1 as
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) (4.63)Now we an �nd the instantaneous position of the disrete set of points (xn+1

k , yn+1
k )desribing the body boundary at time step tn+1 as

xn+1
k = xn+1

b + (x0
k − x0

b) cos θn+1 − (y0
k − y0

b ) sin θn+1 (4.64)
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b ) cos θn+1, (4.65)where (x0

k, y
0
k) are the initial (referene) positions of the set of points de�ning the bodyboundary, and (x0

b , y
0
b ) is the initial position of the body entre.



54 Numerial model4.7 Time-stepping of the spatial derivatives in the CIP�ow solverWhen the advetion step in the adopted frational step method is performed, a tentativeveloity �eld u∗ and a orresponding set of tentative spatial derivatives g∗ and k∗ of theveloity �eld are obtained, where g = ∂u/∂x and k = ∂u/∂y. After the advetion step,the veloity �eld is updated due to the di�usion step, the pressure oupling and due tothe presene of the �oater, before the veloity �eld un+1 for the new time step is obtained.These updates of the veloity �eld imply possible hanges to the spatial derivatives of theveloity �eld. As the spatial derivatives of the veloity �eld are used as onstraints whenonstruting the interpolation polynomial in the CIP-method, the spatial derivatives g∗and k∗ must be updated aording to the modi�ations of the veloity �eld to obtain
gn+1 and kn+1, before a new advetion step an be made. Time-stepping of the spatialderivatives are performed using the expliit Euler method. For the ase of g, we anformally write the time stepping as gn+1 = g∗ + ∆t

(

∂g

∂t

). As the new veloity �eld un+1is known, we an approximate the time derivative as ∂g
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]. Thesame approah is used for the time-stepping of k. Hene, we obtain
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] (4.66)

kn+1 = k∗ +
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. (4.67)Central di�erenes are used to ompute the spatial derivatives inside the parenthesisdiretly from the tentative veloity �eld u∗ and from the new veloity �eld un+1. Thedisretized expressions for time-stepping of the spatial derivatives are given in appendixA.4.4.8 Numerial modelling of a wave tankA damping zone is introdued by an adding a volume fore fy to the momentum equationfor the vertial diretion (Hu and Kashiwagi 2004). This fore is alulated as
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i,j , (4.68)where xs and xs is the start and end points of the damping zone in the horizontal diretion,while H is the height of the domain, h is the water depth and (xci, yj) is the oordinatesof the vertial veloity node.The wavemaker is modelled in a linear manner by setting the nodes of the horizon-tal veloity at the wavemaker boundary equal to the paddle veloity. Thus, when thewavemaker is loated on the left side of the domain, we get

un+1
0,j = un+1

wm . (4.69)The wavemaker veloity is imposed on the total height H of the domain, i.e. for y = [0, H ].



Chapter 5Veri�ation studiesVeri�ation studies are important ativities in the proess of developing a CFD-ode, andrigorous testing of the �ow solver is the key to obtain a reliable ode. A validation study ofthe veri�ed omputer program is also neessary before the ode is applied to real problems.In this hapter, the most important veri�ation tests performed in the development ofthe present ode are presented. Before we go on with presenting the di�erent test studies,we will explain what is meant by veri�ation and validation and what is the di�erenebetween the two. Guidelines for validation and veri�ation of CFD-odes were proposedin ITTC (1990) with the following de�nitions of veri�ation and validation:Veri�ation of a omputer program means to hek that the program is atually aorret representation of the mathematial model that forms the basis for it.Validation is the demonstration that the veri�ed omputer program is an adequaterepresentation of the physial reality.This means that validation is a broader ativity whih inludes veri�ation. Other de�-nitions of veri�ation and validation presented by Roahe (1976) are that veri�ation �isthe proess of demonstrating that a omputer program has solved its equations orretly�,while validation �is the proess of demonstraing that a omputer ode is solving the or-ret equations�. The latter is with respet to the physial problem being studied. Thus,veri�ation is a purely mathematial exerise that does not address the physis.We will in the following present some of the veri�ation test studies that have beenperformed for testing the present numerial ode.5.1 Error norms and order of onvergeneIn the proess of verifying the implemented �ow solver, eah step in the numerial algo-rithm represented by the frational step proedure, is studied separately. For eah ase,ideal time-dependent problems where analytial or exat solutions exist are solved numer-ially and ompared with the exat solution at a �xed time instant T = N∆t. We willlet ûN refer to the numerial solution to the given problem at a disrete set of points inspae for the time instant T , while uN is the orresponding exat solution for the sameset of points at this time instant, whih we want to approximate well. The loal error ENfor the solution time T = N∆t is de�ned as
EN = ûN − uN . (5.1)55



56 Veri�ation studiesIn order to quantify this error, a norm in whih to measure the error must be hosen. Theglobal error an be found by integration of the loal error over the domain of omputation.5.1.1 Choie of error normsTo measure the error of a numerial solution obtained with some �nite di�erene shemerelative to an exat solution, the standard p−norms are most ommonly used (LeVeque 2002).For one-dimensional spae, these are
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. (5.2)We will in the following use the 1-norm, whih is obtained by setting p = 1 in (5.2), as ameasure of the global error when solving the linear and nonlinear advetion equation. Forveri�ation of the di�usion step and the pressure solver, the 2-norm (obtained by setting
p = 2) will be used. In 2D, the global error is found by integration the loal error overthe domain of omputation as
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. (5.3)To simplify the notation, we will let εp refer to the error measure ∥∥EN
∥

∥

p
.5.1.2 Order of onvergeneAs an indiator for how fast the numerial solution approah the true solution, we speakof the order of onvergene. We an apply the onept of order of onvergene if thetime inrement ∆t is related to the spatial inrement ∆x in a �xed manner. Hene,when solving the advetion equation, the time step ∆t is hosen suh that the Courant-Friedrihs-Lewy (CFL) number is kept onstant when the grid is re�ned. Here, the CFL-number is de�ned as CFL = u∆t/∆x, with u being some referene veloity. Then theorder of onvergene of the solution ûN is de�ned to be the number r, if it exists, suhthat the errors εp vanish like O (∆xr) or as O (∆tr) (Strikwerda 2004). This implies thatthe error an be desribed as εp = C∆xr, with C being a onstant. Taking the naturallogarithm of both sides yields

ln (εp) = ln (C) + r ln (∆x) . (5.4)To �nd the order of onvergene r, we must get rid of the unknown oe�ient C. Let ε1
p bethe error of the numerial solution obtained on a grid represented by the grid inrement

∆x1. Further, let ε2
p be the error obtained from the �ner grid represented by ∆x2. Theunknown oe�ient C an now be removed by subtrating Eq. (5.4) expressed in termsof ε1 and ∆x1 from the same equation with ε2 and ∆x2. Then, the order of onvergenein 1D is found as
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ln
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ε2
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p

)

ln (∆x2/∆x1)
. (5.5)



5.2. Veri�ation of the 1D CIP-method 57For the 2D ase, we assume that the vertial disretization is related to the horizontaldisretization as ∆y = K∆x, where K is a onstant. Then, the order of onvergene in2D an be expressed as
r =

ln
(

ε2
p/ε

1
p

)

2 ln (∆x2/∆x1)
. (5.6)5.2 Veri�ation of the 1D CIP-methodAlthough the 1D-formulation of the CIP-method is not used as a part of the present�ow-solver, it has been implemented in order to get a better understanding of the CIP-method in general before going on with the CIP-method in two spatial dimensions. Twoveri�ation tests of the 1D CIP-method are presented in the following. First, a linearadvetion problem is studied, while thereafter a non-linear advetion problem is addressed.5.2.1 Linear advetionFirst we will onsider the ase of linear advetion where a funtion f(x, t) is transportedwith the veloity u along the x−axis. By linear advetion is meant that the transportveloity u is independent of the adveted variable f . The spatial derivative g = ∂f/∂xis introdued as an additional free variable. We will investigate how the funtion f andits spatial derivative g evolves while being adveted with the veloity u(x) = x. Considerthe initial ondition f(x, 0) = f0(x) being de�ned as

f0(x) =

{

sin2(2πx), 0 < x < 0.5

0, otherwise
(5.7)whih means that g(x, 0) = g0(x) is desribed by

g0(x) =

{

4π sin(2πx) cos(2πx), 0 < x < 0.5

0, otherwise.
(5.8)The governing equations for the problem are the linear advetion equation (4.5) and theorresponding equation of evolution for the spatial derivative (4.6). Taking the materialderivative of the funtion f(x, t) along a urve C in the x, t−plane yields

df

dt
=

∂f

∂t
+

∂f

∂x

dx

dt
. (5.9)Thus, by hoosing dx

dt
= u(x) in (5.9), (4.5) is through (5.9) redued to the following pairof ODE's

df

dt
= 0, f(x, 0) = f0(x) (5.10)

dx

dt
= x, x(0) = ξ. (5.11)Equation (5.10) means that the f is onstant along urves desribed by the solution of(5.11). Thus, for a urve that initially passes through the point x = ξ, the solution to



58 Veri�ation studies(5.10) is simply f(x, t) = f0(ξ) ( see Whitham (1974) for more details). By solving (5.11)we obtain
ξ = xe−t (5.12)Thus, the exat solution to (4.5) for the given initial onditions is

f(x, t) =

{

sin2(2πxe−t), 0 < x < 0.5et

0, otherwise
(5.13)The exat analytial solution for g(x, t) is then found by di�erentiating (5.13) with respetto x as

g(x, t) =

{

4πe−t sin(2πxe−t) cos(2πxe−t), 0 < x < 0.5et

0, otherwise
(5.14)Equations (5.13) and (5.14) are used to verify the implementation of the 1D CIP-method.Hene, Eq. (4.5) with the above mentioned initial onditions is solved numerially usingthe 1D CIP-method (see Se. 4.2.1) and ompared with the analytial solution. Wehoose the domain of omputation to be x ∈ [0, 2m] and t = [0, T ], where T = ln(4) is thetime it takes for the point de�ned by f0(0.5) (and thus also g0(0.5)) to reah the end ofthe domain (x = 2m). All omputations are performed under the same CFL−ondition,whih is hosen to be CFLmax = umax∆t/∆x = 0.5. With the largest advetion veloity

umax = 2m/s and the spatial inrement ∆x given, this means that the time inrementis obtained as ∆t = 0.5∆x/umax. Obtained numerial results are ompared with theexat analytial solution (5.13) and the orresponding global error ε1 are found from(5.2) with p = 1. Errors of the numerial solutions obtained with the 1D CIP-methodfrom alulations with four di�erent grids are presented in Tab. 5.1. To study theperformane of the CIP-method on a linear problem relative to a more onventionalnumerial sheme for advetion alulations, relative errors and order of onvergeneobtained with the lassial �rst order upwind-sheme (Roahe 1976) are presented in Tab.5.1 for omparison. Comparison of the obtained numerial results with the exat analytialsolution to the linear advetion problem are presented in Fig. 5.1, whih shows that theresults obtained with the present CIP-solver are in good agreement with the analytialsolution while results obtained using the �rst order upwind-sheme di�ers somewhat fromthe analytial solution.5.2.2 Nonlinear advetionIn order to study the performane of the 1D CIP-model when applied to a nonlinearadvetion problem, we onsider Burger's equation whih is de�ned as
∂u

∂t
+ u

∂u

∂x
= µ

∂2u

∂x2
, (5.15)where µ is a onstant. The non-linearity in Burger's equation is that the adveted variablealso de�nes the transport veloity, whih means the transport veloity is a priory unknown.As an be seen from the right hand side (RHS) of (5.15), Burger's equation also ontainsa di�usion term. The di�usion term has a stabilizing e�et whih ounterats the shok-formation that may our for the invisid Burger equation, whih is de�ned by (5.15)
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Table 5.1: Convergene test of linear advetion alulations with the 1D CIP-method and the �rst order upwind method. Global errors ε1 relative to the exatanalytial solution at solution time T = ln(4), obtained from (5.2) with p = 1,are presented. The time inrement ∆t is hosen suh that CFLmax = 0.5. N istotal number of time steps. CIP Upwind
∆x [m℄ ∆t [s℄ N ε1 Order (r) ε1 Order (r)
1/50 1.00× 10−2 138 1.48× 10−2 2.06× 10−1

1/100 5.00× 10−3 277 7.10× 10−3 1.06 1.23× 10−1 0.750
1/200 2.50× 10−3 554 3.50× 10−3 1.02 6.83× 10−2 0.846
1/400 1.25× 10−3 1109 1.74× 10−3 1.01 3.63× 10−2 0.910
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Figure 5.1: Veri�ation of the implemented 1D CIP-method. Numerial solutionto the linear advetion problem obtained with the CIP-sheme when ∆x = 1/50are ompared with the exat analytial solution for the solution time t ≈ 1.39s.Results obtained with the �rst order upwind-sheme are added for omparison.



60 Veri�ation studieswith µ = 0 (see (LeVeque 1992)). An exat analytial solution to (5.15) on the domain
x = [0, 1m] with the initial ondition

u0(x) =
2µπ sin(πx)

a + cos(πx)
, (5.16)with a being a onstant, and boundary onditions

u(0, t) = 0 and u(1, t) = 0, (5.17)is given by Wood (2005) as
u(x, t) =

2µπ exp (−π2µt) sin (πx)

a + exp (−π2µt) cos (πx)
. (5.18)Equation (5.15) is solved numerially in the domain de�ned by x = [0, 1m] using the 1DCIP-method, with initial- and boundary onditions de�ned by (5.16) and (5.17), respe-tively. Due to the presene of the di�usion term on RHS of (5.15), a two-step time-splittingtehnique is applied. First an advetion step is solved using the 1D CIP-method. Then,a di�usion step is solved using entral di�erenes in spae. The �rst order expliit Eulermethod is used for time-stepping of the di�usion equation. Sine the CIP-method appliesthe spatial derivative of the adveted variable g(x, t) = ∂u

∂x
in its formulation, an initialondition for g(x, 0) = g0 is also needed. This is simply found by di�erentiation of (5.16)with respet to the spatial variable x, whih yields

g0(x) =
2µπ2 cos(πx) (a + sin(πx) + cos(πx))

(a + cos(πx))2 (5.19)In order to verify the evolution in time of the new variable g(x, t), the exat solution isfound by di�erentiation of (5.18) as
g(x, t) =

2µπ2 cos(πx) exp (−2π2µt) (a + sin(πx) + cos(πx))

(a + exp (−π2µt) cos(πx))2 . (5.20)We easily verify that g(x, 0) = g0(x) by setting t = 0 in (5.20). The boundary onditionsfor g an now be found from (5.20) as
g(0, t) =

2µπ2 exp (−2π2µt)

a + 1
and g(1, t) =

2µπ2 exp (−2π2µt)

1− a
(5.21)We will in the following onsider this ase using µ = 10−4s−1 and a = 1.1, whih yields themaximum initial veloity u0

max = max [u(x, 0)] = 1.37×10−3m/s. For a given disretizationof the spatial domain with onstant spaing ∆x between the nodes, the time inrement
∆t is here hosen suh that CFLmax = 0.1, initially. The time inrement is then found as
∆t = 0.1∆x/u0

max. Error of numerial solutions obtained using the 1D CIP-method andthe upwind method for the solution time t = 100s, relative to the exat analytial solutionare presented in Tab. 5.2. Order of onvergene of the numerial solutions are also shown.The adveted variable u and its spatial derivative g obtained with the implemented 1DCIP-sheme for the time instant t = 100s are ompared with the analytial solution inFig. 5.2.
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Table 5.2: Convergene test of nonlinear advetion alulations with the 1D CIP-method and the �rst order upwind method. Global errors ε1 relative to the exatanalytial solution at solution time T = 100s, obtained from (5.2) with p = 1,are presented. The time inrement ∆t is hosen suh that CFLmax = 0.1. N istotal number of time steps. CIP Upwind

∆x [m℄ ∆t [s℄ N ε1 Order (r) ε1 Order (r)
1/10 7.30 14 1.51× 10−5 2.32× 10−5

1/20 2.36 42 1.07× 10−6 3.81 1.34× 10−5 0.799
1/40 0.787 127 4.20× 10−7 1.35 8.03× 10−6 0.735
1/80 0.262 381 8.52× 10−8 2.30 4.24× 10−6 0.921
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CIPFigure 5.2: Appliation of the 1D CIP-method to nonlinear advetion. Compar-ison between the exat solution and numerial solution at time t = 100s. Thenumerial solution is obtained using time-splitting with the 1D CIP-method forthe advetion step and entral di�erenes for the di�usion step for the ase when

∆x = 1/20. Results obtained with the �rst order upwind-sheme are plotted foromparison.



62 Veri�ation studies5.3 Veri�ation of the 2D CIP-methodIn this setion veri�ation tests of the implemented 2D CIP-sheme, whih is used inthe present �ow solver, are presented. Two test ases are onsidered, with the �rst asebeing linear advetion of a smooth funtion while the seond ase is linear advetion of adisontinuous funtion. In both ases, the domain of omputation is (x, y) = [0, 1].5.3.1 Linear advetion of a smooth funtionThe linear problem represented by a smooth funtion f(x, y, t) with initial ondition
f(x, y, 0) = f0(x, y) being adveted due to a uniform, onstant veloity �eld u = [u, v] isonsidered, sine analytial solutions are available for suh ases. The equation desribingthe evolution of f in time and spae is the 2D linear advetion equation (4.13), with theoe�ients u and v being onstants. When solving (4.13) using the CIP-method, wealso need to solve for the spatial derivatives ∂f/∂x = g and ∂f/∂y = k, as they areintrodued as free variables used as onstraints for the interpolation funtion F (x, y),whih is de�ned in (4.16). The equations of evolution for the spatial derivatives g and
k for the ase of a uniform veloity �eld are (4.14) and (4.15), respetively, with theright hand side set to zero in both equations. The exat analytial solution to (4.13) is
f(x, y, t) = f0(x− ut, y − vt), meaning the initial pro�le f0 is shifted a distane ut in thehorizontal diretion and vt in the vertial diretion. The shape of the adveted pro�le fis onserved.We have onsidered the ase where the initial ondition for the adveted funtion isgiven as

f0(ξ, η) =

{

cos(πξ)2 cos(πη)2, ∀ (ξ, η) ∈ [−0.5, 0.5;−0.5, 0.5]

0, elsewhere
(5.22)where ξ = 4x/L − 3/2 and η = 4y/H − 3/2. Here, L = 1m and H = 1m is the lengthand height of the omputational domain, respetively. The veloity �eld was uniform andonstant, and de�ned as u = v = 0.2m/s. Computations with the two di�erent CFL-onditions CFL = 0.1 and CFL = 0.5 were performed. Sine the CFL-number re�etsthe relative position on the interpolation funtion F n from where the new value fn+1 isobtained, the CFL-number is an important parameter. With the veloity �eld and thespatial disretization given, the time step was adjusted to give the wanted CFL-number.Convergene of the numerial solution towards the exat solution for the solution time

t = 2 were tested using four di�erent grids. The global error of the numerial solutionrelative to the exat solution was omputed using (5.3) with p = 1, while the order ofonvergene was omputed from (5.6). Obtained global errors and orresponding ordersof onvergene are presented in Tab. 5.3. The results shows that the order of onvergenefor the present problem is r ≈ 1.3. A omparison between the numerial solution and theexat solution for a horizontal ut through the domain at y = 0.775m is presented in Fig.5.3. The ut goes through the point where the solution at time t = 2s has its maximumvalue. Undershoots of the numerial solution relative to the exat solution are observedin regions where the gradient of the adveted pro�le is large, as is seen in the zoomedview in Fig. 5.3. This is a typial problem for many higher order numerial methods forhyperboli problems, inluding the present CIP-method, and is(5.2) with p = 1 furtherdisussed in the next setion.



5.3. Veri�ation of the 2D CIP-method 63Table 5.3: Convergene test of linear advetion alulations with the 2D CIP-method. At solution time t = 2s, global errors ε1 relative to the exat analytialsolution and orders of onvergene r are obtained from (5.3) with p = 1 and (5.6),respetively. The time inrement ∆t is hosen to give the wanted CFL-onditionfor the given veloity �eld and spatial disretization.CIP, CFL = 0.1 CIP, CFL = 0.5
∆x, ∆y [m℄ ∆t [s℄ ε1 Order (r) ∆t [s℄ ε1 Order (r)

1/25 0.0200 4.15× 10−3 0.1000 2.73× 10−3

1/50 0.0100 8.91× 10−4 1.11 0.0500 5.95× 10−4 1.10
1/100 0.0050 1.52× 10−4 1.28 0.0250 9.85× 10−5 1.30
1/200 0.0025 2.58× 10−5 1.28 0.0125 1.63× 10−5 1.305.3.2 Linear advetion of a non-smooth pro�leThe olor funtion whih is used to de�ne the water in the omputational domain inthe present numerial wave tank appear initially as disontinuous Heaviside funtions.Generally, the traditional CIP-method is not adequate for suh problems, as the solutionis assumed to be desribed by a ubi polynomial funtion. To test the implemented 2DCIP-method for linear advetion of non-smooth funtions, a step-like funtion is advetedin the uniform veloity �eld u = v = 0.2m/s. The initial ondition for the advetedfuntion is

f0(ξ, η) =

{

1, ∀ (ξ, η) ∈ [−0.5, 0.5;−0.5, 0.5]

0, elsewhere
(5.23)where ξ = 4x/L − 3/2 and η = 4y/H − 3/2. Dimensions of the omputational domainare L = 1 and H = 1 for the x− and y−diretion, respetively. Numerial solutionsobtained from four di�erent grids are ompared with the exat analytial solution for thesolution time t = 2. Global error ε1 is omputed from (5.3) with p = 1, and the order ofonvergene r is estimated from (5.6). Results are presented in Tab. 5.4. As expeted,Table 5.4: Convergene test of linear advetion of a non-smooth funtion usingthe 2D CIP-method. Global errors ε1 relative to the exat analytial solution atsolution time t = 2 and order of onvergene r are obtained from (5.3) with p = 1and (5.6), respetively. The time inrement ∆t is hosen suh that CFL = 0.5.

N is total number of time steps. CIP
∆x, ∆y [m℄ ∆t [s℄ N ε1 Order (r)

1/25 0.1000 25 2.61× 10−2

1/50 0.0500 50 1.12× 10−2 1.22
1/100 0.0250 100 8.80× 10−3 0.35
1/200 0.0125 200 5.26× 10−3 0.74onvergene properties of the numerial solution towards the exat disontinuous solutionis poor. Contour plots of the initial pro�le and the numerial solution after 400 time stepsare presented in Fig. 5.4, and shows that numerial di�usion our as the ontour lines
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Figure 5.3: Veri�ation of the 2D CIP-method when ∆x = ∆y = 1/100m and
CFL = 0.5. Comparison with exat solution at time t = 2s for a horizontal utthrough the domain at y = 0.775m. This is where the solution has its maximumvalue. Undershoot of the numerial solution relative to the exat solution isobserved.of the solution after 400 time steps are more spread than the ontour lines of the initialpro�le. The numerial solution for the ase when ∆x = ∆y = 1/100 and CFL = 0.5 areompared with the exat solution for a horizontal ut through the domain at y = 0.775at the solution time t = 2s in Fig. 5.5. Over- and undershoots of the numerial solutionrelative to the exat solution are observed to be more pronouned for this ase than forthe ase with linear advetion of a smooth pro�le presented in Fig. 5.3.5.4 Veri�ation of the di�usion alulationLinear laminar boundary layer �ows generally represent good test ases for veri�ationof the di�usion step in our CFD-ode, beause they are simple to model and the fatthat analytial solutions exist. An example of laminar boundary layer �ow is the seondStokes problem, whih desribes the �ow of a visous �uid above an osillating wall.The �uid is set into motion due to visous shear fores in the �uid. The analytialsteady state solution of the seond Stokes problem an be found in many text bookse.g. Shlihting and Gersten (2000). When solving Stokes seond problem numeriallyusing a time-domain �ow solver, it is onvenient from a modelling point of view to startwith the �uid being at rest initially. Thus, in order to ompare the numerially obtainedveloity �eld with the steady state solution, one must be sure that the numerial solutionhas reahed a steady state. However, there also exists an analytial solution for thetransient start-up of Stokes seond problem (Panton 1968) whih would be better suitedfor veri�ation purposes of the time-dependent �ow solver. We will in the following setionuse the transient seond Stokes problem as a veri�ation test for the implementation ofthe di�usion terms in our numerial ode.
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66 Veri�ation studies5.4.1 The transient seond Stokes problemFirst, we will give a brief desription of the mathematial problem. Consider a semi-in�nite domain bounded an impermeable wall along the x−axis (y = 0), where the upperhalf plane is oupied by a visous �uid. Initially, the �uid is at rest. At time t = 0the wall abruptly starts to move with an osillatory motion in the horizontal diretion.Due to adhesion fores between the �uid and the wall, a no-slip ondition is applied onthe wall. Together with visous shear fores in the �uid, the no-slip ondition will auseenergy to be transferred from the wall into the �uid domain. The surrounding �uid isthen set into an osillatory motion. The in�nite length of the wall means there are noend-e�ets present, and the horizontal �uid veloity u is only a funtion of the normaldistane from the wall y in addition to time t. The vertial �uid veloity omponentis zero due to ontinuity. The mathematial problem is de�ned by the time-dependentdi�usion equation
∂u

∂t
= ν

∂2u

∂y2
, (5.24)where ν = µ/ρ is the kinemati visosity oe�ient, with µ and ρ being the dynamivisosity oe�ient and the mass density of the �uid, respetively. When �nding theanalytial solution to (5.24) the time dependent veloity �eld u(y, t) is divided into asteady-state part Us and a transient part U t as

u(y, t) = Us + U t, (5.25)where the analytial steady state solution obtained from Prandtl's boundary layer equa-tions is given as
Us(η, T ) = U0 exp(−η) sin(T − η), (5.26)with the non-dimensional parameters T = ωt and η = y

√

ω
2ν

(see Appendix). Theanalytial solution to the transient part presented by Panton (1968) is
U t(η, T ) = U0ℑ

{

−0.5 exp [Cη − iT ] erfc
[√

0.5T (C + η/T )
]

+ 0.5 exp[−Cη − iT ]erfc
[√

0.5T (C − η/T )
]}

,
(5.27)where ℑ{z} refers to the imaginary part of a omplex argument z = x + iy. Further, erfis the omplementary error funtion with omplex argument due to the omplex onstant

C = 1− i (see Appendix for further details).Numerially we annot handle unbounded or semi-in�nite domains. Hene we onsidera limited retangular domain of length L along the wall and height H in the normaldiretion from the wall. As in the mathematial formulation, the omputational domainis limited by an impermeable wall at the lower boundary (y = 0), where a no-slip onditionis applied. The remaining three boundaries are the top boundary at y = H , and the sideboundaries at x = 0 and x = L, whih are all open boundaries. To minimize end-e�etson the resulting veloity �eld due to the limited omputational domain, the dimensionsof the domain are hosen to be large ompared to a harateristi length of the problem.The boundary layer thikness for steady-state is de�ned as
δ0.99 = 4.6

√

2ν

ω
, (5.28)



5.4. Veri�ation of the di�usion alulation 67Table 5.5: Parameters used in the numerial solution of Stokes seond problem.Material properties of the �uid are those representative for water.Parameter Symbol Value UnitFrequeny of osillation ω 5.317 rad/sWall veloity amplitude U0 0.025 m/sMass density ρ 1000 kg/m3Dynami visosity µ 1.52× 10−3 kg/(ms)with ω being the osillation frequeny of the wall, is a suitable measure of harateristilength (Shlihting and Gersten 2000). This is the normal distane from the wall to wherethe absolute value of the �uid veloity in the steady state solution is redued to 1% ofthe wall veloity amplitude U0. For later purposes, the frequeny of osillation of the wallwas hoosen equal to the natural frequeny for the �rst mode of a standing wave in a 1mlong tank with 0.5m water depth. For the kinemati visosity oe�ient, respetively,representative values for water are used. The parameters used in the alulations arelisted in Tab. 5.5. Using the data from Tab. 5.5, the boundary layer thikness is foundto be δ0.99 = 0.0035. With the boundary layer thikness in mind, the domain-length and-height are hosen to be L = 0.5m and H = 0.025m, respetively. Hene, the distanebetween the mid-point of the osillating wall and the ends of the domain are more than
70 × δ0.99, whih is believed enough to avoid end e�ets. Further, the distane to theupper boundary of the domain is about 7 × δ0.99. Although the distane from the wallto the upper boundary is ten times shorter than the distane to the end-boundaries, it isassumed that the upper boundary will have no in�uene on the boundary layer �ow, asthe veloity at the upper boundary is zero.In order to e�iently resolve the visous �ow inside the thin boundary layer, gridstrething is applied in the y−diretion where the grid is divided into three regions. Inthese regions, di�erent gridding tehniques are used. Sine the envelope of the veloitypro�le of the boundary layer �ow is exponential, we use an exponential distribution ofgrid points in the y−diretion inside the boundary layer. Far away from the wall, onstantgrid spaing is used, while a quadrati distribution is used to math the exponential gridregion with the onstant grid region. Constant grid spaing is applied in the x−diretion.More details on the grid generation for this ase is presented in appendix B.1.3.Grid onvergeneConvergene tests of the numerial solution are performed, where three grids with di�erentboundary layer resolution were tested. Grid parameters for the three grids are given inTab. B.1.3. The error of the numerial solution relative to the analytial solution at thesolution time t/T = 1.07, where T is the period of osillation of the wall, is omputedfor a ut along the y−axis in the middle of the domain. The error ǫ2 is omputed usingthe 1D error norm de�ned in (5.2) with p = 2, but with using ∆yj = ∆y1 whih is thegrid spaing at the wall. When alulating the error norm, the sum is taken only overthe veloity nodes loated inside the boundary layer (y < δ0.99). The time t/T = 1.07for when the error is omputed is when the largest error ǫ2(t) is obtained with the �nest.The order of onvergene r of the numerial solution is estimated using (5.5). Obtained



68 Veri�ation studieserror estimates and orresponding order of onvergene towards the analytial solution arepresented in Tab. 5.6. Results presented in Tab. 5.6 shows that the order of onvergeneTable 5.6: Test of grid onvergene for the transient seond Stokes problem forthe horizontal veloity inside the boundary layer. Solutions are ompared attime t/T = 1.07. The error ε2 is omputed from eq.(5.2) with p = 2 and using
∆y1 whih is the grid inrement at the wall as a referene. Nbl is number of gridpoints inside the boundary layer.

Nbl ∆y1 [m℄ ε2 Order (r)6 2.55× 10−4 9.54× 10−68 1.54× 10−4 3.52× 10−6 1.9815 6.27× 10−5 6.27× 10−7 1.92is r ≈ 2. Snapshots from the transient start-up phase of Stokes seond problem arepresented in Fig. 5.6 where the numerial solution for the ase when Nbl = 8 is omparedwith the analytial solution. Nbl is the number of grid points inside the boundary layerin the ut from where the error ǫ2 is omputed. Good omparison between the numerialand analytial solution is shown. Note the overshoot of the transient solution relative tothe envelope of the steady state solution.5.5 Veri�ation of the pressure solverIn order to verify the implementation of our pressure solver, we �rst onsider the Poissonequation with onstant oe�ients whih formally an be written
∇2f = h, (5.29)where f(x, y) is unknown while h(x, y) is a known foring. For one-phase �ow problemswhere the mass density of the �uid is onstant, (5.29) is the equation to be solved inorder to �nd the pressure at the new time step when projetion methods are used. Totest our Poisson solver, we utilize trigonometri test funtions to de�ne a Poisson problemfor whih analytial solutions easily are obtained. This will now be disussed.Consider a square domain where [x, y] ∈ [0, 1m]. Further, assume the mass density ofthe �uid is onstant with ρ = 1 throughout the domain. Then we onsider a test funtionof the form

f(x, y) = cos(πx) sin(πy) (5.30)with the Dirihlet boundary ondition f(x, y) = 0 on y = [0, 1m] and Neumann boundaryondition ∂f/∂x = 0 on x = [0, 1m]. Then, inserting (5.30) into (5.29) yields the followingexpression for the foring
h(x, y) = −2π2 cos(πx) sin(πy). (5.31)We disretize the square domain into Nx and Ny number of points in the x− and

y−diretion, respetively. Further, eq. (5.29) is disretized as desribed in setion 4.3.4to yield the linear system of equations Ax = b where the elements of b are obtained asthe values of h at the node points. Solving this Poisson problem with the given boundary
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Figure 5.6: Comparison of numerial solution to the transient seond Stokesproblem obtained with the present �ow solver and the analytial solution. Num-ber of elements inside the boundary layer in the normal diretion from the wallis Nbl = 8. The envelope of the steady state solution is shown by the stippledlines.



70 Veri�ation studiesonditions, the solution vetor x should be equal to the values of (5.30) at the node points.This Poisson problem is solved both on a uniform grid and on a nonuniform (strethed)grid, using the present implementation of the Bi-CGSTAB algorithm. For the nonuniformgrid, the grid spaings ∆xi are obtained as
∆xi =

L (1− β cos2(πti))
∑Nx

i=1 (1− β cos2(πti))
(5.32)where L = 1m is the length of the domain, β = 0.9 is a strething oe�ient and ti ∈

[0, 1s]. The vertial grid spaings ∆yj is found in the same way. Convergene tests areperformed for both the uniform grid and the nonuniform grid. As a measure of error inthe numerial solution when testing for onvergene, we use the normalized error
ε =
‖xex − xnum‖

‖b‖ . (5.33)Results for both the uniform grid ase and the nonuniform grid ase are presented in Tab.5.7. The rate of onvergene towards the exat solution is found to be of seond order forboth ases.Table 5.7: Convergene of the Poisson solver applied on a non-uniform grid. Theobtained rate of onvergene is of seond order. The onvergene rate dependson how the grid strething is performed relative to the nature of the solution.The normalized error ε is de�ned in (5.33).Uniform grid Strethed grid
Nx ×Ny ε Order ε Order

8× 8 7.02× 10−4 6.66× 10−4

16× 16 1.49× 10−4 2.24 1.46× 10−4 2.19
32× 32 3.15× 10−5 2.24 3.15× 10−5 2.21
64× 64 6.40× 10−6 2.30 6.50× 10−6 2.285.6 Veri�ation of the �ow solver for one-phase �owIn the previous setions, the implementation of the main parts of the �ow solver has beenveri�ed separately. Next step is to verify the omplete �ow solver for one-phase �ow withno interior body inside the domain. For this purpose, the lassial lid-driven avity �owproblem presented by Ghia et al. (1982) has been studied.5.6.1 Lid-driven avity �owThe lid-driven avity �ow problem is a good veri�ation test ase for one-phase �ow solversdue to simple boundary- and initial onditions, and the fat that all terms in the Navier-Stokes equations matter for this ase. The physial domain of omputation has length

L = 1m and height H = 1m and is ompletely �lled with a visous and inompressible�uid with density ρ and dynami visosity µ. A no-slip boundary ondition is applied on



5.6. Veri�ation of the �ow solver for one-phase �ow 71all boundaries. There is no e�et of gravity. Initially, the �uid is at rest. At time t = 0 thetop boundary abruptly starts to move with a onstant veloity U = 1m/s in the positive
x−diretion. As the �ow is driven by visous shear fores in the �uid, the Reynoldsnumber is an important parameter haraterizing the �ow. Here, the Reynolds number isde�ned as Rn = UL/ν where nu = µ/ρ is the kinemati visosity oe�ient while U and
L are veloity and length of the top boundary, respetively. We onsider the ase with
Rn = 100. Thus, the density and the dynami visosity are hosen suh that ν = 0.01.Numerially, the moving top boundary is modelled by imposing ui,N = 2.0−ui,N−1 at thehorizontal veloity nodes of the top boundary ghost ells. Further, the spatial derivativesare set to gi,N = −gi,N−1 and ki,N = ki,N−1 in the same ghost ells.As the domain is totally enlosed by rigid non-permeable walls, the pressure is un-known at all boundaries and the Poisson equation for the pressure represents a ompleteNeumann problem. In the disretized problem, this implies that the oe�ient matrix forthe linear system of equations is singular. To overome this problem, an arti�ial pressureis spei�ed in one grid ell inside the domain at the bottom boundary.Three uniform grids are tested. The spatial inrements and orresponding time inre-ment used in the simulations are listed in Tab. 5.8. At time t = 25s of simulation, theTable 5.8: Spatial- and time inrements used in the omputations.

Nx ×Ny ∆x [m℄ ∆y [m℄ ∆t [s℄
20× 20 0.05 0.05 0.02
64× 64 0.0156 0.0156 0.002

129× 129 0.0078 0.0078 0.001�uid motion has onverged to a steady state where a primary vortex is rotating lokwiseand two seondary vorties at the lower orners are rotating ounter lokwise as shown inFig. 5.7. Loation of the vortex enter of the primary vortex is ompared with numerialresults by Ghia et al. (1982) in Tab. 5.9. Results obtained with the present �ow solverseems to onverge towards the omparison data. However, results obtained with the �nestgrid with the present �ow solver deviates from the omparison data for the same grid by1.4% and 2.1% for the horizontal and vertial oordinate, respetively.Table 5.9: Convergene test for the steady state position of the vortex enter(xc, yc) of the primary vortex.
Nx ×Ny xc[m] yc[m]Present 20× 20 0.6699 0.8001- 64× 64 0.6375 0.7673- 129× 129 0.6258 0.7500Ghia et al. (1982) 129× 129 0.6172 0.73445.6.2 Cirular ylinder in uniform ross �owTo verify the implementation of the immersed boundary method used for introduing asolid body inside the omputational domain, a ase with a �xed irular ylinder subjet
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Figure 5.7: Computed stream-lines for the lid-driven avity �ow with Rn = 100at time t = 25s obtained from simulation with the �nest grid using the presentode is shown to the left. Corresponding results presented by Ghia et al. (1982)for Rn = 100 is shown to the right. Seondary vorties at eah of the two lowerorners of the domain are observed in the present results as in results by Ghiaet al.to an inident uniform �ow is studied. The ylinder has a diameter D = 1.0m and is �xedinside a retangular domain of length L = 45D and height H = 20D. The position ofthe ylinder axis is X = 10D and Y = 10D measured from the lower left orner of thedomain. Initially, the �uid is at rest. At time t = 0 a uniform veloity U = 1.0m/s inthe x−diretion and V = 0 in the y−diretion is imposed on the left, bottom and topboundaries of the domain. An outlet boundary ondition is applied at the right handboundary, where a uniform referene pressure is spei�ed. A no-slip ondition is imposedon the ylinder surfae. The omputational domain with boundary onditions is depitedin Fig. 5.8.The non-dimensional parameter desribing the �ow for this ase is the Reynolds num-ber Rn = UD/ν. We onsider the ase with Rn = 100, whih is obtained by using thekinemati visosity oe�ient ν = 0.01m2/s. The boundary layer �ow on the ylindersurfae is laminar for this Reynolds number.The omputational gridA good resolution of the boundary layer on the ylinder surfae is neessary for an auratepredition of the �ow separation points. The position of the separation points on theylinder surfae is important for the lift and drag fores on the ylinder. From the studyof the seond Stokes problem in setion 5.4.1 we found that a number of 6-10 grid ellsinside the boundary layer in the normal diretion from the no-slip boundary was su�ientin order to apture the osillating �ow in the boundary layer. We assume that 10 grid ellsinside the boundary layer is su�ient also for this ase. The boundary layer thikness isestimated as δ ≈ D/
√

Rn. For the ase when Rn = 100, this yields δ = 0.1D. Hene, theylinder is disretized by 100 grid ells over the diameter in both the x− and y−diretion.
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U = 1 m/s V = 0 m/sXFigure 5.8: Domain and boundary onditions used for simulation of a irularylinder in uniform ross �ow. The ylinder axis is loated at X = Y = 10D,where D is the ylinder diameter. Di�erent grid zones are indiated by stippledlines.In order to keep the CPU-time on an aeptable level, strething of the omputationalgrid is applied. The omputational domain is divided into three regions in both the x−and y−diretion as indiated by the stippled lines in Fig. 5.8. Constant grid line spaingis used in L2 and H2, while a quadrati variation of the spatial inrements is used inthe remaining regions. Smooth variation of the grid inrements are ensured between theonstant grid zones and the quadrati grid zones.Table 5.10: Number of grid ells in x− and y−diretion for the di�erent regionsof the domain. This yields a total of 100,000 grid ells in the domain.
L1 L2 L3 H1 H2 H3

N 100 100 200 75 100 75Results and disussionIn the beginning, the �ow is symmetri with a growing reirulation zone behind the ylin-der. A lose view of the ylinder at this stage is shown in Fig. 5.9. The no-slip onditionon the ylinder surfae is veri�ed by inspetion of the omputed veloity �eld. Symmetryof the �ow in the early stage of the simulation supports a orret implementation of thebody boundary ondition. After some time of simulation (here at Ut/D ≈ 80), ineptionof �ow instability our in the wake. This auses vorties to be shed from the ylindersurfae, yielding a so-alled von Karman street in the wake �ow. Suh vortex sheddingleads to an osillating pressure on the ylinder surfae, whih yields a time-dependentfore on the ylinder. This fore is deomposed into an in-line fore omponent Fx (drag),and a transverse fore omponent Fy (lift). The drag- and lift fores due to the pres-sure are omputed from (4.55) and (4.56), respetively. In addition omes ontributionsfrom skin frition fores on the ylinder surfae. An expression for the drag oe�ient
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Figure 5.9: Pressure-�eld and stream traes obtained from simulation of ylinderin uniform ross-�ow at time t = 56s with Rn = 100. This is before vortexshedding our. We note that the arti�ial pressure �eld inside the ylinder issmooth.due to skin frition on a smooth irular ylinder in uniform ross-�ow was presented byHenderson (1995) as Cd,v(Rn) = 2.5818/Rn0.4369, as a �t to his numerial results. For
Rn = 100, this yields Cdv

= 0.345. Skin frition is not inluded in the present ode. Thelift fore osillates with the vortex shedding frequeny f , while the drag fore osillateswith the frequeny 2f . When the �ow has reahed a steady state, the mean pressure dragoe�ient CD,p and the peak-to-peak lift oe�ient CL are obtained as
CD,p =

Fx

0.5ρU2D
and CL =

F A+
y +

∣

∣F A−
y

∣

∣

0.5ρU2D
, (5.34)where Fx is the mean pressure drag fore, while F A+

y and F A−
y are the mean positiveand mean negative lift fore amplitudes, respetively. Obtained drag and lift oe�ientsare ompared with numerial results presented by Berthelsen and Faltinsen (2008) andHenderson (1995) in Tab. 5.11.Table 5.11: Computed mean drag oe�ient CD and peak-to-peak lift oe�ient

CL due to pressure fores only, for the ase of a irular ylinder in uniform ross�ow with Rn = 100. Skin frition fores are not inluded.Soure CD,p CLBerthelsen and Faltinsen (2008) 1.028 0.596Henderson (1995) 1.005 -Present 1.015 0.580



5.7. Veri�ation of the �ow solver for two-phase �ow 75The Strouhal number, whih is the non-dimensional vortex shedding frequeny, isfound as
St =

fD

U
, (5.35)where f is alulated as the zero up-rossing frequeny from the omputed time-seriesof the lift fore. For the present ase, St = 0.170 is obtained. This is in agreementwith numerial results found in the literature (Engelman and Jamnia 1990; Herfjord 1996;Berthelsen and Faltinsen 2008).The presently obtained results are in agreement with numerial results from the liter-ature, whih indiate that the adopted immersed boundary method and the fore alu-lation routines are orretly implemented.5.7 Veri�ation of the �ow solver for two-phase �owSo far we have only onsidered one-phase �ow in our veri�ation tests. Next step is toverify the implemented �ow solver for two-phase �ow problems. Here the two phases arerepresented by water and air. A numerial issue is numerial di�usion assoiated with the�nite thikness air-water interphase. We ontinue our veri�ation study by onsideringthe two-phase problem of small amplitude sloshing in a square tank. Free surfae �owproblems inside tanks are also referred to as sloshing and has many appliations in marinehydrodynamis.5.7.1 Small amplitude sloshingThe free deay of a small amplitude standing wave inside a square tank is studied, with theobjetive to investigate the e�et of numerial di�usion in our �ow solver. This problemwas introdued as a veri�ation test ase by Vestbøstad et al. (2007). Visous dissipationof energy in the boundary layers along the tank bottom and side walls will ause theamplitude of the standing wave to derease with time. However, when this problem issolved numerially there an also be dissipation of energy aused by numerial di�usion,whih is unphysial. This is an important issue for a numerial wave tank, as numerialdi�usion may ause the generated waves to have an unphysial deay in amplitude. Hene,in order to rely on results to be obtained with our numerial wave tank, we must verifythat the numerial dissipation of energy is negligible relative to the physial dissipation ofenergy. The ause of numerial energy dissipation an be disretization errors or smearingof the olor funtions at the interphase between the di�erent phases.Numerial setupConsider a square tank of length L = 1m and height H = 1m. The tank has vertialside walls, open tank top and is partially �lled with water and air. The �ll level is 50%,yielding a water depth h = 0.5m. We de�ne a oordinate system Oxy with origin inthe alm free surfae with a distane L/2 from the side walls. The y−axis is pointingupwards. Consider a free standing wave represented by the �rst natural mode. The wavelength of the �rst mode is λ = 2L and thus the wave number is k = π/L. Aordingto linear potential �ow theory, the wave frequeny is found to be ω = 5.32rad/s fromthe dispersion relation for �nite water depth (3.23). The orresponding wave period is
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T = 1.18s. Further, the free surfae pro�le ζ(x, t) and the orresponding veloity potential
φ(x, y, t) for a standing wave of the �st mode with amplitude ζA is

ζ(x, t) = ζA sin kx sin ωt (5.36)
φ(x, y, t) =

gζA

ω

cosh k(y + h)

cosh kh
sin kx cos ωt. (5.37)The horizontal- and vertial veloity omponents are derived from the veloity potentialas

u(x, y, t) =
∂φ

∂x
= ωζA

cosh k(y + h)

sinh kh
cos kx cos ωt (5.38)

v(x, y, t) =
∂φ

∂y
= ωζA

sinh k(y + h)

sinh kh
sin kx cos ωt (5.39)Using Bernoulli's equation, the linear hydrodynami pressure is found to be

pD(x, y, t) = −ρ
∂φ

∂t
= ρgζA

cosh k(y + h)

cosh kh
sin kx sin ωt. (5.40)At time t = 0 the free surfae pro�le obtained from (5.36) is ζ(x, 0) = 0. This providesa simple implementation. Further, from (5.40) we see that the hydrodynami pressureis zero, initially. Hene the initial pressure �eld is desribed by the hydrostati pressure

ps = −ρgy below the alm free surfae. The initial veloity �eld is found from (5.38) and(5.39) using ζA = 0.025m.Theoretial deay rate of the wave amplitudeIn order to quantify the numerial energy dissipation, we must know what is the physialdissipation of energy in the tank. A theoretial estimate of the physial energy dissipationis obtained as follows. Linear potential �ow theory is used to derive the invisid veloity�eld in the water, as de�ned in (5.38) and (5.39). This yields the veloity outside theboundary layers along the tank bottom and side walls. For small amplitude waves, theboundary layer �ow along the tank walls will be laminar. This means we an utilize theseond Stokes problem to obtain an estimate of the rate of visous energy dissipationinside the boundary layers. The theoretial deay rate for the amplitude of the standingwave is found to be
ζA

ζA0

= exp
(

− α

T
t
)

, (5.41)where
α = π

√

2ν

ωL2

(

1 +
k(L− 2h)

sinh 2kh

)

. (5.42)The omputational gridThere are basially two autions to take when onstruting the grid for this problem.One is the resolution of the boundary layer and the other is the resolution of the �nitethikness air-water interphase. Good resolution of the boundary layers at the tank bottomand side walls are neessary in order to apture the physial energy dissipation. Further, tominimize the numerial dissipation of energy due the �nite thikness air-water interphase,
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Figure 5.10: Complete grid with grid re�nement in the interphase zone used forsimulating small amplitude sloshing.the interphase should be kept as thin as possible. This means also the free surfae zoneneeds to be well resolved by the grid.Disretization of laminar boundary layers in osillatory �ow was disussed when solvingthe seond Stokes problem in setion 5.4.1. By using an exponential variation of gridinrements in the normal diretion from the wall inside the boundary layer, good resultswere obtained for the boundary layer �ow. Hene, an exponential variation of the gridinrements inside the boundary layer is used also for the present problem. However, herethe exponential grid is extended outside the boundary layer to math the oarser onstantgrid in the main bulk of the domain without a quadrati mathing zone as used for theseond Stokes problem.To obtain a �ne grid at the air-water interphase, a squared osine variation of thevertial grid inrements is used in the interphase zone. The grid inrements here arefound as
∆yj = ∆y0(1− β cos2(0.5πsj)), (5.43)where ∆y0 is the vertial grid inrement in the onstant grid zone, β < 1 is a lusteringoe�ient and s ∈ [−1, 1] is a linearly spaed parameter. A omplete grid with a squaredosine variation of grid inrements in the wave zone and exponential variation of gridinrements in the boundary layers is shown in Fig. 5.10.
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Figure 5.11: Comparison between theoretial and omputed energy dissipationof the �rst sloshing mode. The domain is resolved by 200 grid ells in boththe x− and the y−diretion. The boundary layers are resolved by 8 grid ellsin the normal diretion from the boundary, while an interphase zone of height
hwz = 0.35 entered about the mean free surfae is resolved by 86 grid ells.ResultsDuring the simulation, the potential- and kineti energy in the water is omputed. Thekineti energy in the wave is found as

Ek =
ρw

2

Nx
∑

i=1

Ny
∑

j=1

(

û2
i,j + v̂2

i,j

)

ϕi,j∆xi∆yj , (5.44)where ϕ = ϕ1 is the olor funtion for the water and
ûi,j = 0.5(ui,j + ui−1,j) (5.45)
v̂i,j = 0.5(vi,j + vi,j−1) (5.46)are the �uid veloity omponents in the ell enter. Further, is the potential energy inthe wave found as

Ep = ρwg

Nx
∑

i=1

Ny
∑

j=1

(ycj − 0.5h) ϕi,j∆xi∆yj. (5.47)The total energy in the wave is then omputed as E = Ek +Ep. Initially, the total energyof the standing wave is given as E0 = ρwgζ2
A/4. The deay of the total energy from asimulation with a 200× 200 grid and time step ∆t = 0.0015s is averaged over one periodof osillation and ompared with the theoretial deay rate in Fig. 5.11. Osillations ofthe omputed total energy of the wave is observed. This an be due to transfer of energybetween the water and air, or due to e�ets of the �nite thikness air-water interphase.However, the trend of the omputed energy deay rate seems to be in agreement with thetheoretial deay rate.5.8 Veri�ation of fored motionsIn order to verify the adopted immersed boundary method for moving boundaries, sim-ulations of fored heave motions of ylinders in the free surfae were performed with the



5.8. Veri�ation of fored motions 79present ode. Two geometries were tested, one irular and one retangular, for whih theadded mass and damping oe�ients were obtained from the omputed pressure foreson the body. The osillation amplitudes of the heave motion were small, suh that linearpotential �ow theory ould be used for an adequate omparison of the obtained oe�-ients. The hydrodynami oe�ients obtained from the simulations were also omparedwith data from model tests by Vugts (1968).5.8.1 Added mass and damping oe�ients in heaveFor the 2D hydrodynami problem of a body performing fored osillatory heave mo-tions in the free surfae, the vertial hydrodynami fore ating on the heaving body anaording to linear potential �ow theory be expressed as
F HD

3 = −a33η̈3 − b33η̇3. (5.48)Here, a33 and b33 are the 2D oe�ients in heave for added mass and potential damping,respetively. Further, η̈3 is the heave aeleration and η̇3 is the heave veloity of the body.The hydrodynami oe�ients a33 and b33 an be found from linear potential �ow theoryby solving a boundary value problem for the veloity potential φ using e.g. a boundaryelement method (BEM). Then, the hydrodynami pressure is aording to Bernoulli'sequation found from the veloity potential as p = −ρ∂φ
∂t
, where ρ is the density of waterand t is time. By integrating the hydrodynami pressure over the mean wetted surfae ofthe body F HD

3 is obtained, from whih the added mass and damping oe�ients an bedetermined. When expressing the equation of motion for the body, also the hydrostatirestoring fore F HS
3 = −c33η3 must be inluded. η3 is the heave motion and c33 = ρgBis the 2D restoring oe�ient in heave, where B is the mean wetted beam of the body.Aording to Newton's seond law, the equation desribing the heave motion of the bodyis

mη̈3 = F HD
3 + F HS

3 + F E
3 , (5.49)with m being the 2D strutural mass and F E

3 the external fore applied to the body inorder to perform steady harmoni osillations.If the added mass and damping oe�ients are to be found from experiments, usuallythe fore F E
3 applied to the model is measured. Let the body motion be expressed as

η3(t) = η3a cos ωt, where η3a is the motion amplitude and ω is frequeny of osillation.Further, assume the measured fore applied to the body is F E
3 = F3a cos (ωt + δ), where

F3a is the fore amplitude per unit length of the body and δ is the phase angle betweenthe measured fore and the body motion. Then, from (5.48) and (5.49), the 2D addedmass and damping oe�ients in heave are found as
a33 = −F3a cos δ − c33η3a

ω2η3a

−m (5.50)
b33 =

F3a sin δ

ωη3a
. (5.51)The experiments by VugtsHydrodynami oe�ients obtained from an extensive set of model tests with foredosillations of ylinders in the free surfae was presented by Vugts (1968). Several ross-setional geometries were tested and the added mass and damping oe�ients due to small



80 Veri�ation studiesamplitude osillations were dedued. Test parameters were the frequeny of osillationand osillation amplitude. The experiments were onduted in the main basin of the DelftShipbuilding Laboratory, whih measures 142m of length and 4.2m of width. Here, wehave only onsidered tests with a irular model and a retangular model. The irularmodel had a diameter of 0.300m with draft 0.150m at the mean position, suh that theylinder axis was loated in the alm free surfae. The retangular model had breadth0.400m and draft 0.200m at the mean position. Further, the retangular model hadrounded bilges with bilge radius r = 0.0025m. The water depth for all tests was in therange 1.80m - 2.25m. However, the exat water depth for the individual test runs was notreported.Numerial setupSimulations in 2D of bodies in the free surfae when fored to osillate in heave have beenperformed with the present numerial ode. A irular body and a retangular body weretested, where the body dimensions orresponded to that of the irular ylinder and theretangular ylinder tested by Vugts. However, the retangular body in the numerialsimulations had sharp orners and not rounded bilges as the retangular model in Vugtsexperiments. Dimensions of the irular and the retangular body are presented in Tab.5.12. The length of the omputational domain used in the simulations was L = 76m,Table 5.12: Dimensions of the irular model and retangular model used in thenumerial simulations. The model dimensions are equal to those for the modelstested by Vugts (1968). Retangle CirleBreadth (B) 0.40 m 0.30 mDraft (d) 0.20 m 0.15 mwhih is shorter than the atual length of the basin in where Vugts experiments wereonduted. By appliation of damping zones, wave re�etions from the side boundariesof the domain were avoided. The e�ieny of the damping zones depends on their length
Ldz relative to the wave length λ of the wave to be damped. When onstruting thedamping zone, λ = 2π/k was estimated using the dispersion relation (3.23) for the os-illation frequeny tested. For all simulations Ldz = 3λ was used, exept for the lowestosillation frequeny tested where the length of the damping zone was Ldz = 2λ. Theheight of the domain was 3.00m and the water depth was h = 1.80m for all tests, whihorresponded to the smallest water depth reported in the experiments by Vugts. A skethof the omputational domain is presented in Fig. 5.12. For eah of the two bodies,six di�erent osillation frequenies of the heave motion were tested orresponding to thenon-dimensional frequenies ω

√

B/2g = [0.25, 0.50, 0.75, 1.00, 1.25, 1.50]. For eah testfrequeny, the three osillation amplitudes η3A = 0.01m, η3A = 0.02m and η3A = 0.03mwere tested. The simulations started from alm onditions with η3(0) = η3a and η̇3(0) = 0,being the initial vertial body position and veloity, respetively.
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L2Figure 5.12: Domain used for the numerial solution to the hydrodynamialproblem of a irular ylinder whih is fored to osillate in heave. The ylinderis situated in the air-water interphase. Damping zones are introdued to avoidwave re�etions.The numerial gridA non-uniform numerial grid was onstruted as follows. By dividing the omputationaldomain into sub-regions where di�erent gridding strategies were used, a �ne grid regionwas reated at the body position. More preisely, both the x−axis and the y−axis weredivided into the three sub-regions Li and Hi where i = 1, 2, 3 as shown in Fig. 5.12. Thehorizontal grid line spaings ∆x were small and onstant in L2. Similarly, the vertialgrid line spaings ∆y were small and onstant in H2. Strething of the grid by a quadratifuntion was performed outside the �ne grid regions for both the horizontal and vertialdiretion, suh that the grid beame oarser when moving away from the free surfaein the vertial diretion and away from the �oater position for the horizontal diretion.A smooth variation of the grid spaings was ensured. The omputational domain wasdisretized using 500 grid ells in the horizontal diretion and 200 grid ells in the vertialdiretion. The time inrement was ∆t/T = 1/2000, with T = 2π/ω being the period ofosillation. Grid parameters for the atual grid are presented in Tab. 5.13.Table 5.13: Grid parameters for the �ne grid zone used when simulating foredheave motions of the irular and retangular body. B is the mean wetted beamof the body and d is the mean draft. ∆x and ∆y are the onstant grid inrementsin L2 and H2, respetively.
∆x/B ∆y/dCirular body 0.0100 0.0133Retangular body 0.0075 0.0100High frequeny visous dampingPotential �ow theory was used for omparison with the numerial results. For high fre-quenies of osillation, the potential damping approahes zero as no waves are generated.However, for the retangular body, �ow separation from the bilges yields a damping fore.In the following, a theoretial high frequeny visous damping is presented.For linear potential �ow theory, the kinemati- and dynami free surfae onditionsfor harmoni steady state osillations an be ombined to give −ω2φ + g∂φ/∂y = 0,where φ is the veloity potential. Taking the limit ω → ∞, we obtain φ = 0 on the free



82 Veri�ation studiessurfae. This means no waves are generated and the �uid veloity on the free surfae isonly vertial. From symmetry properties of the fored high frequeny heave problem, wean by mirroring the submerged part of the body about the mean free surfae, transformour problem into the problem of the double body osillating in in�nite �uid. Now, onemay argue that due to vortex separation at the orners of the ylinder, the assumptionof irrotational �ow is violated. However, by assuming that all vortiity is ompressedinto thin free shear layers we an still use potential �ow theory with the asymptoti freesurfae ondition outside the free shear layers. The analogy between the retangularylinder in the free surfae and the double body in in�nite �uid makes it possible to useMorison's equation (5.52) to estimate the vertial hydrodynami fores for high frequeniesof osillation. For the double body we get
F 2D

y = ρACM η̈3 + 0.5ρBCD|η̇3|η̇3. (5.52)Here, A is the area of the ross-setion of the double body, CM is the mass oe�ient, η̈3is heave aeleration of the body, B is the breadth, CD is the drag oe�ient and η̇3 is theheave veloity of the body. First term on the right hand side of (5.52) is the added massfore while the seond term is the visous drag fore due to �ow separation. Equivalentlinearization of the drag term gives FD = Bv|ηA|ω 8
3π

η̇3 (Faltinsen 1990), where the visousdamping oe�ient is Bv = 0.5ρCDB. By assuming that the drag fore on the heavingbody in the free surfae is half the value of the drag fore on the double body in in�nite�uid, we obtain the linear damping oe�ient bv
33 = 0.5FD/η̇3. The non-dimensionaldamping oe�ient for high frequenies is then

lim
ω→∞

bv
33

ρA

√

B

2g
=

2CD

3πd
ω̂η3a (5.53)where d is the mean draft of the ylinder and ω̂ = ω
√

B/2g. The drag oe�ient is ingeneral dependent on Keulegan-Carpenter number KC = UT/B ≈ 2πη3a/B and on theReynolds number for osillatory �ow Rn = U2
m/ων, where Um is maximum veloity outsidethe boundary layer. For low KC-number �ow (KC < 10), the drag oe�ient for anosillating faing square ylinder in in�nite �uid is CD ≈ 3.0, found from experiments byBearman et al. (1985). Using the present test parameters for the retangular body, KC <

0.5 was obtained. Hene, CD = 3.0 was used in (5.53) to obtain the non-dimensionalvisous damping oe�ient. This high frequeny visous damping was used for omparisonwith the damping oe�ients obtained from the numerial simulations and the dampingoe�ients presented by Vugts.Results and disussionFrom the numerial simulations, the fully nonlinear vertial fore F p
y on the osillatingbody due to the total pressure was omputed. As we wanted to ompare obtained addedmass and damping oe�ients with those from linear potential �ow theory, band-pass�ltering of the fully nonlinear fores time-series were performed suh that the linear har-moni omponent was retained. Band-pass �ltered was performed using 0.8/T and 1.5/Tas the low and high ut-frequenies, respetively. Here, T is the osillation period of thebody for the ase onsidered. As the vertial fore obtained from the numerial simula-tions was found by integration of the total pressure over the body boundary, the omputed



5.8. Veri�ation of fored motions 83fore orresponded to the sum of the hydrodynami fore F HD
y and the hydrostati fore

F HS
y from potential �ow theory. Hene, the hydrostati fore was subtrated from theomputed fore time-series F p

y to obtain F HD
y , from whih the added mass and dampingoe�ients ould be dedued. The hydrodynami oe�ients obtained from the presentnumerial simulations were ompared with the oe�ients aording to linear potential�ow theory for in�nite water depth. The potential �ow theory results for in�nite waterdepth were provided by Skeji (2008), where the hydrodynami oe�ients for the ret-angular body were obtained with a sharp-edged body. Also the oe�ients presentedby Vugts (1968) were used for omparison. Added mass and damping oe�ients forthe irular ylinder are presented in Figs. 5.8.1 and 5.8.1, respetively. Results fromsimulations with the retangular ylinder are presented in Figs. 5.8.1 and 5.8.1.Obtained oe�ients from simulations with the irular model were in good agreementwith both experiments and theory, exept for the lowest frequenies where some deviationsfrom the potential �ow theory were observed. This was also observed for the resultsobtained with the retangular body. Deviations in the low frequeny range are believedto be due to e�ets of �nite water depth in both the experiments and in the numerialsimulations. The lowest test frequeny in the simulations was ω

√

B/2g = 0.25. Usingthe dispersion relation (3.23) where k = 2π/λ, this means that the wave length λ of thewave generated for this osillation frequeny is λ = 13.7m for the retangular ylinder and
λ = 11.42m for the irular ylinder. Taking the unertainty of the atual water depth
h in Vugts experiments into aount, h/λ = 0.132 − 0.165 and h/λ = 0.158 − 0.197 forthe retangular and irular ylinder, respetively. Using h/λ = 0.5 as the deep waterlimit, we should expet an e�et of �nite water depth for both ylinders at the lowesttest frequeny and also for ω

√

B/2g = 0.50. This may explain the deviations betweensimulations and experiments for the lowest frequenies. In addition, Vugts (Vugts 1968)reported experimental inauraies, espeially for the added mass in the low frequenyrange (ω√B/2g < 0.50).The damping oe�ients for the retangular body obtained from both experimentsand simulations show some satter in the high frequeny range (ω√B/2g > 1.40) anddeviates onsiderably from the potential (wave making) damping, whih goes to zero whenthe frequeny of osillation goes to in�nity. This is explained by vortex shedding fromthe sharp edges of the retangular body. The high frequeny visous damping oe�ientobtained from (5.53) was added to the non-dimensional potential damping oe�ient inFig. 5.8.1. The high frequeny theory shows reasonable agreement with experiments. Thenumerially obtained damping oe�ients deviates some from this high frequeny theoryand the deviations inrease for dereasing amplitude of osillation. For low KC-numbers,the vorties separated from a sharp edged body are small ompared to the dimensionof the body (Bearman et al. 1985). We also note that the edges of our retangle is notperfetly sharp, while the high frequeny theory is for a sharp edged body. Aording toFaltinsen (1990), the bilge radius beomes important for the drag at small KC−values.This means that e�ets of �nite bilge radius may ontribute to the deviation betweenthe numerially obtained damping oe�ient and that from the high-frequeny theory.However, we believe that the main explanation for the deviation between the numerialresults and the high frequeny theory is related to the fat that the same grid was usedfor all tested amplitudes of the body motion. Hene, the grid resolution relative to themotion of the body dereases for dereasing motion amplitude, suh that the visous �owmight not be fully resolved by the grid for the smallest heave amplitudes tested. As



84 Veri�ation studiesexpeted, visous �ow separation was not observed for the irular body, where the smallheave amplitudes yielded KC < 1.0.Skin frition was not inluded in the numerial model. However, the numerial resultshas shown to be able to give good estimates of the hydrodynami fores on osillatingylinders in the free surfae for the frequeny range 0.75 < ω̂ < 1.25.
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5.9. Veri�ation of free motions 875.9 Veri�ation of free motionsIn order to verify the numerial model for omputation of free motion of �oaters, i.e. theimplementation of the equations of motions for the �oater, we have studied free deaytests of the heave mode of motion. Free deay tests for the sway mode are onsidered inChapter 8. Both a retangular body and a irular body are tested in the simulationswith free deay of the heave motion, and the omputed heave motions were ompared withpotential �ow theory results. Simulations of the retangular body �oating at equilibriumwere onsidered.Numerial setup and grid arrangementThe omputational domain was retangular with height H and length L, as illustrated inFig. 5.15. The domain was partially �lled with water and air. The water depth h was
L1 L2 L3

h

H2

H3

H1

L

γB

y

xH

Figure 5.15: Grid arrangement used for numerial simulations of freely �oatingbodies. Constant grid spaing ∆x was applied at the body position in the regionof length γB, and in L1 and L3. Grid strething was used to merge the �ne gridat the model position with the oarser grid at L1 and L3. In the vertial diretion,grid strething is applied over H1 and H2, while a �ne grid with onstant spaingis applied over H2.varied in the tests and is spei�ed for eah ase onsidered. A oordinate system Oxywas de�ned in the middle of the domain with origin in the alm free surfae. Positive
x−diretion was de�ned to the right, while positive y−diretion was upwards. Simulationswhere a retangular �oater or a irular �oater was introdued into the domain wereperformed. The retangular �oater had breadth B = 2.0m and height Hb = 1.0m, whilethe diameter of the irular �oater was D = 2.0m. The mass of the �oater was spei�edas input to the simulations, and the enter of gravity (COG) was de�ned to be at thearea enter of the body. Heave motion of the body η3(t) was then de�ned to be thevertial oordinate of the instantaneous position of the COG for the body tested. Ano-slip ondition for the �uid veloity was imposed on the bottom boundary and on theside boundaries of the domain. No-slip was also imposed on the body boundary. Thetop boundary of the omputational domain was modelled open with a onstant referenepressure equal to the atmospheri pressure.
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Figure 5.16: Vertial position η3(t) of COG of the �oater obtained from numerialsimulations with theoretial equilibrium position as the initial position. Resultssuggests that the numerial equilibrium position onverges to the theoretialequilibrium position. The heave motion is normalized by H/2 of the �oater.Grid strething was applied in order to redue the CPU time for the simulations. Asfor the grids used in the simulations of bodies with fored motions in the previous setion,the omputational domain was also here divided into regions Li and Hi with i = 1, 2, 3,where di�erent gridding strategies were applied. The di�erent grid zones are depited inFig. 5.15. The horizontal grid line spaing ∆y was kept onstant in the free surfae zone
H2, while the grid line spaing was desribed by an exponential funtion in H1 and H3.The spaings between the vertial grid lines, ∆x, was onstant over a region γB at themodel position. Away from the model position, in L1 and L3, onstant but larger gridline spaings were used. Strething of the grid was used in L2 to merge the �ne grid atthe model position with the oarser grid in L1 and L3. Smooth variations of the gridinrements ∆x and ∆y were ensured.5.9.1 Test of equilibriumFirst we onsider the most simple veri�ation test ase for a freely �oating body, whihis the hydrostati problem of a body �oating at its equilibrium position. The retangularbody was plaed with the COG at the origin, i.e. η3(0) = 0. As the COG was plaed atthe area enter of the body, the initial draft was d = 0.5m. For this to be the draft atequilibrium of the body, the body mass was estimated using Arhimedes law. Arhimedeslaw states that the weight of a body �oating in water is equal to the weight of the waterdisplaed by the body. Hene, the body mass was found as m = ρwBd, where ρw isthe mass density of water. Numerial simulations with the given initial onditions wereperformed on three grids of di�erent resolution in order to hek for grid onvergene of theomputed equilibrium position. Computed time-series of the vertial position η3(t) of theCOG of the retangular body are ompared in Fig. 5.16. The results shows that the �oaterstarts to osillate as in a free deay test. This means that the initial position of the body



5.9. Veri�ation of free motions 89does not orrespond to the equilibrium position of the body with the given mass. Althougha steady state ondition of the vertial position was not reahed within the length of thesimulations, the omputed heave motion η3 seemed to onverge towards a positive valueless than 1mm or 0.15% relative to the draft. This an be explained as follows. Due tothe mass density of the air, ρa, also the part of the omputational domain oupied by theair represents a pressure gradient �eld. Hene, also displaement of air by the body yieldsa buoyany fore. Balane of stati fores on the retangular body �oating with zero rollangle at equilibrium with draft de an be expressed as mg = ρagB(Hb − de) + ρwgBde,where g is aeleration of gravity. Thus, the theoretial draft of the retangular bodywhen �oating with zero roll angle at equilibrium is
de =

m− ρaA

B(ρw − ρa)
, (5.54)where A = BHb is the area enlosed by the body boundary. The theoretial equilibriumposition is then η3(t→∞) = d−de, whih is shown in Fig. 5.16 as the straight horizontalline. We observe that the heave motion of the retangular body seems to onverge towardsa value in agreement with the theoretial equilibrium position.5.9.2 Free deay of the heaving motionWhen simulating free deay tests in heave of the �oaters, we wanted the draft at equi-librium for the retangular body and the irular body to be de = 0.5Hb and de = 0.5D,respetively. Based on the above disussion, the body mass for the free deay tests wasobtained as m = 0.5A(ρa+ρw) where A = BHb for the retangular �oater and A = πD2/4for the irular �oater. Then η3 = 0 orresponds to the equilibrium position.Simulations were performed with the �oaters initially being positioned in the freesurfae with a vertial o�set from the equilibrium position and with x = 0 as the horizontaloordinate of the COG. At time t = 0 the �oater was released and started an osillatoryheave motion until equilibrium was reahed. The frequeny of osillation approahedthe heave natural frequeny for the model onsidered. For the ase of the retangular�oater with beam to draft ratio B/d = 4 at equilibrium, the natural period in heave is

Tn = 2.195s aording to potential �ow theory.The osillation amplitude of the vertial motion obtained from numerial simulationswill deay due to wave radiation damping and due to visous e�ets from �ow separationat the sharp orners of the model.Skin frition may also have ontributed to the damping of the heave motion, but isnot inluded in the numerial model.Obtained time series of the heaving motion of the �oaters are ompared with potentialtheory results provided by Yeung (1982) for the ase of a retangular model, and resultsby Maskell and Ursell (1970) based on previous work by Ursell (1964) for the ase of theirular model. The data used for omparison are obtained from deep water onditions.In�uene of water depthThree simulations where the water depth h is varied from h/λ = 0.5 to h/λ = 1.0 areompared with data from Yeung (1982) in Fig.5.18. Here λ is the wave length of the lineardeep water wave with wave frequeny is equal to the natural frequeny of the heaving
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Figure 5.17: Vertial motion η3(t) of COG of the irular �oater obtained fromnumerial free deay tests. The vertial motion is normalized by the initialvertial o�set from equilibrium position, whih is 5% of the radius of the ylinder.motion of the �oater. The resulting time series of the vertial motion shows that a waterdepth of h = 0.5λ, whih is ommonly used as a limit for deep water onditions, is notsu�ient to give a water depth-independent solution. The length of the domain is hereset to L = 7λ.
In�uene of domain lengthInitially when the �oater starts to move, all wave frequenies will be exited theoretially.This means there is a possibility for some of the radiated waves to travel to the end of theomputational domain and reah bak to the model position within the time window ofsimulation. Further is the data used for omparison for the free deay tests obtained fromBEM-alulations with deep water onditions. Hene the length of the omputationaldomain and the water depth are physial parameters that will in�uene the results of theheaving motion if they are taken too small. A parameter study is performed for the aseof the heaving retangular ylinder, where the length of the omputational domain andthe water depth is varied systematially. This is disussed in the following.Now, the water depth is kept onstant at h/λ = 1.0, while the length of the domain isvaried. The grid spaing ∆x is held onstant when the length of the domain is extended,suh that the resolution of the radiated waves is not a�eted by the domain elongation.Results for the heaving motion of the retangular ylinder obtained using three di�erentdomain lengths L = [5λ, 7λ, 9λ] are presented in Fig.5.19. The obtained time seriesdeviates from the theory towards the end of the simulation. Sine this deviation dependson the domain length, it is reasonable to believe that wave re�etions from the side wallsof the domain in�uene the results.
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Figure 5.18: Vertial motion η3(t) of COG of the retangular �oater obtainedfrom numerial simulations of free deay tests for di�erent water depths h. Thevertial motion is normalized by the initial vertial o�set from equilibrium posi-tion, whih is 2.5% of the draft.
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Figure 5.19: Vertial motion η3(t) of COG of the retangular �oater obtainedfrom numerial simulations of free deay tests for di�erent lengths L of the do-main of omputation. The vertial motion is normalized by the initial vertialo�set from equilibrium position, whih is 2.5% of the draft.



92 Veri�ation studies5.10 Summary of the veri�ation testsIn this hapter, we have presented many of the ases that have been tested to verify theimplementation of the present numerial model. First, the di�erent steps of the adoptedfrational step method were tested separately, where we onluded that the implementa-tion of all steps was orret as obtained results were in agreement with theory. Then, theomplete �ow solver was tested for one-phase �ow and for two-phase �ow problems. Theintrodution of a solid body inside the domain was tested, and satisfation of the no-slipboundary ondition on the body boundary was heked. The implemented method foralulation of pressure fores on the body was veri�ed. Further, the heave equation ofmotion for the body was veri�ed through simulations of free deay tests.Based on the results from all of these veri�ation tests, we feel on�dent that our nu-merial model is orretly implemented. Hene, if our mathematial model is an adequaterepresentation of the reality, we believe that our numerial wave tank (NWT) will be agood tool for investigation of wave fores and wave indued motions of the �oaters of �shfarms.



Chapter 6Model testsAs a part of the present study, two sets of model tests have been onduted. The �rst setwas aomplished in November 2006 and the other in September-Otober 2008. In bothexperiments the models tested were ylinders oriented with the ylinder axis horizontallyin the free surfae zone and subjeted to regular waves. Two-dimensional �ow onditionswere sought, suh that measurements ould be ompared with results from numerialsimulations with the 2D numerial wave tank.In the model tests onduted in 2006, the wave loads on �xed horizontal ylinders inthe free surfae were studied. Fous were put on nonlinear e�ets like wave over-topping onthe models and how suh events in�uene the wave loading. Measurements were intendedfor use as validation data to the 2D NWT for omputations of wave loads on �xed bodiesin the free surfae. Results from these experiments have been published in two onferenepapers (Kristiansen and Faltinsen 2008a; Kristiansen and Faltinsen 2008b). Some resultshave also been utilized by Vestbøstad et al. (2007).The experiments from 2008 were addressing the wave indued motions of a mooredirular ylinder in regular waves. Again we wanted to obtain validation data for theNWT, but now with respet to the omputation of nonlinear wave-indued body motions.Results from these experiments were published in Kristiansen and Faltinsen (2009).6.1 Over-topping on �xed horizontal ylinders in wavesModel tests addressing wave loads on �xed horizontal ylinders in regular waves wereonduted in November 2006. Wave exitation fores on the models in the horizontalin-line diretion and in the vertial diretion were measured. Also measurements of thewave elevation at some positions in the �ume were performed. As the measurements wereto be used for omparison with results from numerial simulations with the 2D NWT, wewanted the �ow onditions in the model tests to be two-dimensional. We found that anappropriate wave �ume for our model tests was the narrow wave �ume at the Division ofMarine Civil Engineering, NTNU. This �ume is 26.5m long and 0.60m wide and has side-walls of transparent Plexiglas, whih is bene�ial for good visual observation of the waves.The maximum possible water depth in the �ume is 0.65m. The �ume is equipped with apiston-type wavemaker from DHI (www.dhi.om), with the wave-board ranging from thebottom of the �ume to above the free surfae. An ative wave absorber ontrol system(AWACS) is inluded in the wavemaker software, whih absorbs the waves re�eted from93
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Figure 6.1: Shemati view of the test setup in the �ume from the model testsin 2006. On top a side view of the �ume is shown, while a top view is depitedbelow. Positions of the eight wave gauges (WG) are marked by vertial lines and�×�.Table 6.1: Main dimensions of the two models used in the experiments. Bothmodels are made of aluminium and are sti� strutures.Quantity Symbol ValueCirular ylinder: Diameter [m℄ D 0.300Length [m℄ l 0.590Retangular ylinder: Breadth [m℄ a 0.300Height [m℄ b 0.250Length [m℄ l 0.590the model to the wavemaker. This allows for long test runs without the time limitationaused by waves being re�eted from the model to the wavemaker and bak to the modelposition. In addition, the AWACS showed to be e�etive for damping out waves andmaking the water surfae alm after eah test run, reduing the waiting time betweenthe runs. At the opposite end of the �ume from the wavemaker a 5m long parabolibeah is mounted for wave absorption. The beah is overed by a rough, porous mat toinrease its energy dissipation ability. A qualitative sketh of the �ume is presented in Fig.6.1. The wavemaker software applies linear wavemaker theory to estimate the neessarystroke of the wave board for generating waves with a given wave height. However, thepredited stroke is often not su�ient for generating waves with the input wave height.One explanation of this problem is leakage around the wave board, whih auses a reduede�ieny of the wavemaker (Hughes 1993). To ompensate for the redued e�ieny, thesoftware provides a fudge fator Cs for tuning the stroke of the wave board suh that theinput wave height is obtained.6.1.1 Models, test setup and instrumentationTwo ylindrial models were tested. One model had a irular ross-setion, while theother had a retangular ross-setion. The length (transverse dimension) of both modelswas l = 0.590m, leaving a 5mm learane to both side-walls of the �ume to avoid ontat.Model dimensions are listed in Tab. 6.1. The model tested was �xed at a distane
Lm = 14.31m from the wavemaker, measured from the mean position of the paddle to
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Figure 6.2: From the wave laboratory. The irular model, seen to the far left,is mounted to the rig. The photo is taken towards the wavemaker side of the�ume.the ylinder axis. This means the distane from the model to the start of the beah wasabout 7.2m. It was ensured that the ylinder axis was perpendiular to the side walls ofthe �ume and hene parallel to the wave rests of the inoming waves. The water depthduring all tests was h = 0.54m.Choie of test parametersTest parameters were the wave period T , wave steepness ε and model draft d. Onlyregular waves were onsidered. Ten wave periods were dedued from wave lengths λ0 ofdeep water waves, linearly spaed from 5 to 15 times the beam of the models. This yieldedwave periods in the range from 0.98s to 1.70s. Three wave steepnesses were tested. Thewave steepness were based on deep water waves as ε = H0/λ0, where H0 is the deep waterwave height. For long waves relative to the water depth, e�ets of �nite water depthwill in�uene on the wave height and the wave length and make a wave generally steeperthan the orresponding deep water wave. This auses the atual wave steepness in the�ume to di�er, inreasingly with the wave period, from the orresponding deep waterwave steepness. Ten wave periods and three wave steepnesses yielded 30 di�erent waveonditions, whih are presented in Tab. 6.2. Eah model was tested at three di�erentdrafts for all wave onditions. The non-dimensional parameter κ was introdued, whihis the draft normalized by the height of the model ross-setion. This means that for theirular ylinder κ = d/D, while for the retangular ylinder κ = d/b. For both modelsand all the wave onditions, κ = [0.2, 0.5, 0.8] were tested. A test matrix was madebased on the three test parameters whih was wave period, wave steepness and modeldraft. A run index was omposed of four numbers, where the �rst one was used to speify



96 Model testsTable 6.2: Charateristis of the test waves. Due to e�ets of �nite water depth,the height, length and hene also the steepness of the generated waves will bemodi�ed. ε = H0/λ0 is the deep water wave steepness, while H and λ are theomputed wave height and wave length from linear potential �ow theory for �nitewater depth (h = 0.54m).
ε = 1/50 ε = 1/30 ε = 1/20

T [s℄ λ0 [m℄ λ [m℄ H [m℄ H/λ H [m℄ H/λ H [m℄ H/λ0.981 1.503 1.474 0.029 0.0197 0.048 0.0329 0.073 0.04931.084 1.835 1.760 0.035 0.0198 0.058 0.0329 0.087 0.04941.179 2.170 2.026 0.041 0.0200 0.068 0.0333 0.101 0.04991.266 2.502 2.267 0.046 0.0204 0.077 0.0339 0.115 0.05091.348 2.837 2.492 0.052 0.0209 0.088 0.0348 0.130 0.05221.425 3.170 2.701 0.058 0.0214 0.097 0.0357 0.145 0.05361.498 3.504 2.898 0.064 0.0221 0.107 0.0368 0.160 0.05521.568 3.839 3.082 0.070 0.0228 0.117 0.0380 0.176 0.05691.634 4.169 3.256 0.076 0.0235 0.127 0.0391 0.191 0.05871.698 4.502 3.423 0.083 0.0242 0.138 0.0403 0.207 0.0605geometry and submergene, exept for the 8000-series whih is the wave alibration tests.The seond number indiated the wave steepness while the third referred to the waveperiod. Finally, the last number in the run index was reserved for repetition tests orre-runs. Some auses of re-runs were deleted values during data aquisition beause themeasured fores or wave elevation aused voltage signals that were out of range relativeto that spei�ed in the alibration �le for the logging system software. The test matrixis presented in Tab. C.1 in appendix C.1.Data aquisitionWave exitation fores on the model for the vertial diretion and the horizontal in-linediretion were measured. Free surfae elevation was also measured. Data aquisition wasperformed as desribed below.Surfae elevationwas measured with eight wave gauges distributed in the �ume. Thewave gauges are denoted WG 1 - WG 8 and their position in the �ume are qualitativelyshown in Fig. 6.1. The wave gauges were of the apaitane type and omposed of twoparallel steel rods, eah 3mm thik, 7mm apart. Close to the model, two wave gaugeswere plaed at the same longitudinal position but at di�erent positions in the transversediretion in order to hek for two-dimensionality of the waves. This was done on boththe wavemaker side and the beah side of the model.Wave run-up was measured using two strips of opper tape that were glued onto themodel surfae on the side faing the wavemaker. The opper tape was 12mm wide andthe strips were separated by 7mm.Exitation fores were measured as the lamping fores of the models. For thispurpose, three fore transduers (fore rings) were mounted between two 12 mm thik



6.1. Over-topping on �xed horizontal ylinders in waves 97aluminium plates. All three fore transduers were aligned in the same diretion. Eahfore transduer was able to measure fores in three diretions. Due to lak of hannelson the ampli�er, fores were only measured in the vertial diretion and in the horizontalin-line diretion.Loal free surfae elevation at the model position were aptured by a high speedamera of type IDT, using a sampling frequeny of 200 frames per seond (fps). For eahrun, 600 frames were reorded, whih for the given sampling frequeny overs 3 seondsin real time. During reording with the high speed amera, a voltage signal was sent tothe logging system suh that the exat time window of the reording within the test runould be obtained.Wavemaker piston motion was logged. At start-up, the wave-board had a linear gainup of the piston motion, lasting for 5 seonds, until full gain was reahed.A Hottinger-Balwin KWS ampli�er was used to amplify the voltage signals from thefore transduers, while a separate Hottinger ampli�er was used for the wave probes. ADHI Filter Cabinet 154/IF was used for analog to digital onversion of the signals. No�ltering of the signals was performed before logging. Aquisition data were stored witha sampling frequeny of 200Hz by the DHI Wave Synthesizer software, exept from thewave-maker motion whih was logged with a sampling frequeny of 60Hz. Typial testduration (duration of data aquisition) was 60 seonds. That inludes 10 seonds of dataaquisition before the linear gain up of the wave maker.6.1.2 Measurements and observationsAll measurements were band pass �ltered with flow = 0.35Hz and fhigh = 6.0Hz as thelower and higher ut-o� frequenies, respetively. A one sided Gaussian envelope wasused at the ut-o� frequenies in order to avoid beating e�ets in the reprodued timeseries. The linear-, seond- and third order harmoni omponents of the measured signalswere studied. Repetition tests were onduted for �ve of the test onditions, where �verepetitions were performed for eah test. To quantify the repeatability of a measuredvariable, the relative error de�ned as σ/µ · 100% was used, where µ is the mean value and
σ is the standard deviation of the variable onsidered. Relative error of the fore amplitudein the steady state regime was less than 1.5%, even for ases where wave overtopping onthe model oured. For the measured wave elevation, the relative error was 4% or less.Thus, the obtained time series showed good repeatability. Statistis from the repetitiontests are presented in appendix C.1.1. Measured stroke of the steady state piston motion
S and the resulting fully non-linear wave amplitudes ζ+

A and ζ−
A measured with wave gaugeWG3 from the wave alibration tests are listed in Tab. 6.3. Here, ζ+

A and ζ−
A refer tothe positive and the negative wave amplitude, respetively. WG 3 is loated 0.356m fromthe ylinder axis towards the wavemaker. The fudge fator Cs = 1.1 in the wave makersoftware was neessary in order to obtain the wanted wave height. The need for salingof the piston stroke estimated by linear potential �ow theory (linear wavemaker theory)is explained by energy loss due to leakage through the gap between the wave board andthe �ume walls (Hughes 1993).Fully non-linear fore amplitudesA+ and A− (positive and negative respetively) in the



98 Model testsTable 6.3: Measured wave maker stroke S and measured resulting fully non-linearwave amplitudes (positive ζ+
A and negative ζ−

A ) at wave gauge 3 from the wavealibration tests. H0/λ0 is the orresponding deep water linear wave steepness.
H0/λ0 = 1/50 H0/λ0 = 1/30 H0/λ0 = 1/20

Tp [s℄ λ [m℄ S [m℄ ζ+
A [m℄ ζ−

A [m℄ S [m℄ ζ+
A [m℄ ζ−

A [m℄ S [m℄ ζ+
A [m℄ ζ−

A [m℄0.981 1.472 0.017 0.015 -0.014 0.030 0.025 -0.023 N.A. N.A. N.A.1.084 1.760 0.023 0.018 -0.017 0.038 0.032 -0.027 0.057 0.051 -0.0391.179 2.024 0.029 0.020 -0.019 0.048 0.036 -0.032 0.072 0.059 -0.0441.266 2.267 0.034 0.024 -0.022 0.057 0.041 -0.034 0.086 0.064 -0.0491.348 2.491 0.041 0.025 -0.023 0.069 0.042 -0.038 0.103 0.072 -0.0501.425 2.700 0.048 0.027 -0.026 0.080 0.047 -0.042 0.121 0.081 -0.0541.498 2.896 0.055 0.030 -0.027 0.092 0.051 -0.044 0.139 0.088 -0.0571.568 3.081 0.063 0.032 -0.028 0.104 0.057 -0.045 N.A. N.A. N.A.1.634 3.257 0.070 0.034 -0.030 0.117 0.065 -0.044 0.176 0.096 -0.0651.698 3.424 0.079 0.038 -0.031 0.131 0.063 -0.052 N.A. N.A. N.A.steady state regime for the irular ylinder are plotted in Fig. 6.3 and for the retangularylinder in Fig. 6.4. Measured fores are normalized by the hydrostati buoyany fore
FB = ρgV0 orresponding to the fully submerged model. Thus, V0 = (π/4)D2l for theirular ylinder and V0 = abl for the retangular ylinder. Figures 6.5 and 6.6 show thatwhen κ = 0.5, the measured fores are nearly linear with respet to the wave steepnessfor both models. Nonlinearities of the wave exitation fores are observed when κ = 0.2and κ = 0.8. The nonlinearities are most pronouned for the irular ylinder.Over-topping did our on both models for all wave periods when H0/λ0 = 1/20 and
κ = 0.8. For the irular ylinder, the over-topping wave was attahed to the modelsurfae during the whole over-topping proess as shown in Fig. 6.7. Over-topping on theretangular ylinder was somewhat di�erent. The over-topping wave had a dam-breaklike behaviour, until the front of water separated at the leeward top edge of the model.6.1.3 Disussion of possible errorsWhen using model tests for validation of numerial models, it is easy, but dangerous, toonsider model test results as the �true story�. Generally, as for numerial omputations,also model test results may ontain some or onsiderable errors. Thus it is importantto identify the possible soures of errors in the experiments and quantify these. Wedistinguish between preision errors and biased errors. Preision errors are somewhateasy to handle sine they are stohasti of nature and an be estimated by repetitiontests. From the omputed relative error in the repetition tests presented, we see thatpreision errors are small. Biased errors are systemati errors that an be di�ult todisover. However, there are general proedures for how to proeed in order to disoverbiased errors. One proedure is to repeat the experiment at di�erent repliation levels(Ersdal 2004), e.g. by repeating the experiment after re-rigging, or by repeating theexperiment in a di�erent laboratory. We will now disuss some possible soures to errorsin the experiments.Two-dimensional �ow onditions were sought in the tests. This means 3D �ow e�etsmay lead to biased errors in the measured free surfae elevation as well as in the measured
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Figure 6.5: Mean peak-to-peak fore amplitudes for the irular ylinder as fun-tion of mean inident wave amplitude. Nonlinearities of the measured fores areobserved when the normalized draft is d/D = 0.2 and d/D = 0.8.
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Figure 6.6: Mean peak-to-peak fore amplitudes for the retangular ylinder asfuntion of mean inident wave amplitude.fores. Examples of suh 3D e�ets are transverse sloshing, whih is standing waves inthe transverse diretion of the �ume. The natural periods of the �rst, seond and thirdsloshing mode is T t
1 = 0.880s, T t

2 = 0.620s and T t
3 = 0.506s. These sloshing periods are allsmaller than the test wave periods. However, these natural periods ould still be exitedby higher harmoni omponents of the tested waves in ombination with imperfetions ofthe wavemaker or the model. An example of suh imperfetions are the gaps between themodel and the side walls of the �ume, whih may ause disturbanes on the free surfae.There is also a gap between the wave-board and the tank walls whih is of order 1mthat may exite the transverse sloshing. To hek if transverse sloshing did appear in theexperiments, two wave gauges were distributed in the transverse diretion of the �umelose to the model position. This was done on both sides of the model (f. Fig. 6.1).Transverse sloshing was observed for some of the tests with the steepest waves (ε = 1/20).The seond sloshing mode was observed for some tests with the wave periods T = 1.43sand T = 1.50s. The �rst sloshing mode was observed for some tests with wave period

T = 1.57s, whih is lose to two times the sloshing period for the �rst mode. Sloshingan also our in the longitudinal diretion of the �ume. The �rst sloshing mode for thelongitudinal diretion is referred to as seihing. Due to the length of the �ume relative tothe water depth, seihing is haraterized by a shallow water wave. The seihing periodof the �ume (�rst natural period of longitudinal sloshing) is T s
1 = 23s. No seihing ofsigni�ane was observed in the experiments.6.1.4 Summary of resultsWave alibration tests was performed for all test wave onditions and a fudge fator of

Cs = 1.1 to sale the stroke of the wave board was needed to obtain the input waveheight. The generated waves showed good repeatability, with a relative error less than4% for the wave heights measured from the repetition tests. Waves overtopping on the
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(a) t = t0 (b) t = t0 + T/6

() t = t0 + 2T/6 (d) t = t0 + 3T/6

(e) t = t0 + 4T/6 (f) t = t0 + 5T/6Figure 6.7: Over-topping on the irular ylinder for d/D = 0.8, T = 1.348s and
H0/λ0 = 1/20. The wave is propagating from the right to the left. In (b), air issuked from the surfae into the water domain due to a low pressure zone at theright hand side of the model. The surfae of the over-topping wave is smoothand the wave does not separate from the body.



6.1. Over-topping on �xed horizontal ylinders in waves 103models oured for some of the test onditions. However, no out-of-water event wasobserved. Also the repeatability of the measured fores were good with relative errors lessthan 1.5%, even for the tests with overtopping.



104 Model tests6.2 Wave indued motions of a moored horizontal ylin-derModel tests were performed in the turn of the month from September to Otober 2008with the purpose to study the wave indued motions of a moored horizontal ylinder, andto obtain validation data for the NWT. Only regular waves were onsidered.We wanted to investigate the wave-indued motions of �oaters of �sh farms. Thereexist many on�gurations of �oaters and �oating ollars for �sh farms, so we deidedto hoose a geometry for our model whih was representative for �sh farms. Hene ourhoie felt on a ylinder with a irular ross-setion. The model sale was based onan existing steel-struture �sh farm designed for exposed loations. This struture isharaterized by square �oating ollars that are formed by four irular ylinders that arerigidly onneted. The diameter of the ylinders in full sale is 1m. The global strutureis elasti, and typial values for the wet natural period of the �rst elasti mode of the�oater are in the order of 2-3 seonds (Lien 2009). This is onsidered when deiding theharateristis of the mooring line system in the experiments.6.2.1 The laboratory, model and test setupThe experiments were onduted in a narrow wave �ume at the Department of MarineTehnology, NTNU. The �ume is onstruted from steel frames with glass-plates for thewalls and bottom. This makes the �ume very suitable for visual observations of waves,whih in addition to availability and low ost was the main reason for hoie of laboratory.Further, the fat that the �ume is narrow makes it also bene�ial for tests where 2D �owonditions are wanted. The �ume measures 13.67m of length, 0.60m of breadth and 1.30mof height, and is designed for a water depth of 1.0m. For wave generation, the �ume isequipped with a single-�ap wavemaker where the paddle is hinged 10m above the bottomof the �ume and extends through the free surfae. The wavemaker is omputer-ontrolledand apable of generating regular waves as well as irregular waves. Unfortunately, thewavemaker software do not provide an ative wave absorption ontrol system. This puta limit on the duration of the test runs. At the opposite end from the wavemaker, aonventional beah with a paraboli-ar shape is mounted for wave absorption.The model sale was 1/10 and a ylindrial model with a irular ross-setion ofdiameter D = 0.100m was tested. The model was omposed of a 0.580m long irularpipe of transparent plexi-glass with a inner ore of divinyell. Wall thikness of the pipewas 3.1mm. The model was onsidered rigid. We wanted the model mass to be onstantduring the tests, whih means we had to avoid water to enter the interior of the model.Sine divinyell absorbs water, the pipe had to be sealed at the ends. For this purposetight plugs of polyethylene were ut on the lathe suh that they perfetly entered the pipe.In addition, waterproof lay was used for sealing the joints. Due to the transpareny ofthe pipe, any leakage would easily be disovered. However, ontrol weighing of the modelafter several hours in water was performed to hek for waterproofness. To redue 3D-�ow e�ets at the ends of the model, end-plates made from transparent plexi-glass wereapplied. The end-plates were 5mm thik and shaped irular with diameter of 0.30m.This means the overall length of the model with the end-plates was L = 0.590m and a5mm gap was obtained between the end-plates and the tank walls to avoid ontat. The
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Figure 6.8: The model when moored and ready for testing. The blak ables areonneted to the aelerometers inside the model.dry mass of the model was measured to be M = 2.50kg.The model was plaed a distane 6.50m from the hinge of the wave paddle and kepton its position by four mooring lines. A piture of the moored �oating model in plae atthe desired loation is shown in Fig. 6.8. The mooring lines were fastened to the edge ofthe end-plates of the model, yielding an inreased sti�ness in roll. Two lines were appliedon the wave maker side of the model, while for the side of the model faing the beah,two lines whih were attahed to the model met to form a rowfoot. Thus, the totalnumber of mooring lines attahed to the rig was three. Eah mooring line were pointingnearly horizontally from the model position, making an angle α = 3.2◦ with the almwater surfae. Three pulleys were used to diret the mooring lines upwards before theywere attahed to linear springs. The springs were then loaded in the vertial diretion.This was to avoid transverse dynamis due to the mass of the spring, whih ould haveontaminated the fore measurements. Although not observed, transverse dynamis ofthe springs ould still our due to Mathieu-instability (MLahlan 1964). The upperend of the springs were mounted to fore transduers of type Hottinger Baldwin (18kg).A qualitative sketh of the mooring system is given in Fig. 6.9.6.2.2 Choie of test onditionsWe wanted the test waves in the experiments to be representative for a typial designwave ondition for �oating �sh farms. Design wave onditions for �oating �sh farms aredesribed in setion 2.2. Only regular waves were onsidered. For the most extreme designwaves presented in Tab. 2.2, the waves are long ompared to the ylinder diameter. Thismeans that if the full sale �oater was exposed to suh waves, the �oater would be in thesti�ness dominated regime of the heave response urve and only �oat on top of the waves.This is not very interesting from a hydrodynami point of view. More interesting are the
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Figure 6.9: Model test setup for the �oating irular ylinder. The model is kepton its loation by mooring lines attahed to springs. Spring fores are measuredby fore transduers. Pulleys are used to diret the mooring lines to the ylinderwhile keeping the springs oriented vertially.wave periods that leads to resonant motion of the �oater. The test waves were hosen toover the regions where resonane of the heave motion and the sway motion our. Thenatural periods in heave and sway for the model were estimated using linear potential�ow theory and were found as the peaks of the response urve for the onsidered mode ofmotion. The response urves were found as follows. We assumed that the heave and swaymodes were unoupled, suh that the unoupled linear equations of motion ould be used.Further, roll is negligible as the enter of gravity (COG) of the body is loated at theylinder axis, meaning that the pressure fores on the ylinder surfae annot yield a rollmoment about the COG. This yielded the following expression for the response amplitude
ηka relative to the inident wave height H ,

ηka

0.5H
=

Fka/ (0.5H)
√

(ckk − ω2 (m + akk))
2 + ω2b2

kk

, (6.1)with k = 2, 3 referring to the sway and heave mode of motion, respetively. Further, m isthe strutural mass of the model per unit length, akk and bkk are the frequeny dependent2D added mass and damping oe�ients from potential �ow theory (Skeji 2008), ckkis the 2D restoring oe�ient, ω is wave frequeny, ρ is mass density of water while
g is the aeleration of gravity. The 2D exitation fore amplitude Fka is related to thepotential damping oe�ient bkk as Fka = 0.5H

√

ρg2bkk/ω (Newman 1962). The restoringoe�ient for heave is c33 = ρgD, where D is the ylinder diameter. The natural periodin heave was predited to be Tn3 = 0.518s, when the e�et of the mooring lines wasnegleted. For sway, the 2D restoring oe�ient is found by dividing the sum of the givenspring oe�ients by the model length as c22 = (k1 + k2 + k3)/Lm. In order to obtain anatural frequeny in sway representative for the elasti modes of a steel type �sh farm,the spring sti�nesses were hosen to be k1 = 43.7N/m and k2 = 43.5N/m for the twosprings at the wavemaker side, while for the spring on the beah side the sti�ness was
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k3 = 88.2N/m. Using the given spring oe�ients in the sway natural period of the modelwas found to be Tn2 = 1.09s. Based on the obtained response urves for heave and swayof the model, ten test wave periods were hosen. For eah wave period, the two wavesteepnesses H/λ = 1/14 and H/λ = 1/10 were tested. This yielded a total of twenty testwave onditions whih are tabulated in Tab. 6.4.Table 6.4: Charateristis of the waves used in the experiments with the moored�oating irular ylinder. Ten di�erent wave periods and two wave steepnessesyielded twenty test wave onditions.

H/λ = 1/14 H/λ = 1/10
T [s℄ λ [m℄ H [m℄ H [m℄ CG [m/s℄0.423 0.279 0.020 0.028 0.3300.457 0.326 0.023 0.033 0.3570.497 0.386 0.028 0.039 0.3880.544 0.462 0.033 0.046 0.4250.601 0.564 0.040 0.056 0.4690.672 0.705 0.050 0.071 0.5250.761 0.904 0.065 0.090 0.5940.878 1.204 0.086 0.120 0.6861.038 1.680 0.120 0.168 0.8131.132 1.993 0.142 0.199 0.8916.2.3 Instrumentation and measurementsThe main purpose with the experiments was to study the wave-indued motions of themoored ylinder. However, the motions of the ylinder were not measured diretly, buthad to be dedued from reorded time-series of the body aelerations. The aelerationsof the model in heave, sway and roll were measured using six aelerometers. Theseaelerometers were mounted in grooves that were arved in the polyethylene end-plugs ofthe ylinder. Three aelerometers were plaed at eah end of the model in order to verifythat the motion was 2D. A sketh that shows the positions of the three aelerometersrelative to the body-�xed oordinate system Ox′y′ in a ross-setional ut of the model ispresented in Fig. 6.10(a), where r1, r2 and r3 are the normal distanes from the ylinderaxis to the position of the aelerometers. The relation between the body-�xed oordinatesystem and the Earth-�xed oordinate system Oxy de�ned in Fig. 6.9 is shown in Fig.6.10(b). For the Earth-�xed oordinate system, the x−axis is in the alm water surfaeand points in the wave propagation diretion while the y−axis is the vertial oordinatewith positive diretion upwards. The z−axis represents the transverse oordinate withpositive diretion given by the right hand rule. We wanted the body motion to be planarand desribed by heave, sway and roll in the xy−plane.Tension in the mooring lines were measured by Hottinger Baldwin (18kg) fore trans-duers that were �xed to the rig. These fore transduers proved to be very aurate andstable.Traditional apaitane wave gauges were used for measuring the free surfae elevationat six positions in the �ume. As for the model tests in 2006, lose to the model position two
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(b) Coordinate systemsFigure 6.10: The aelerometers are positioned in the ross-setion as shown tothe left. Relation between the Earth-�xed oordinate system Oxyz and body-�xed oordinate system Ox′y′z′ is shown in the right �gure. It is only the angularmotion of the body-�xed oordinate system that has in�uene on the measuredaelerations relative to the Earth-�xed frame of referene.wave gauges were plaed at the same longitudinal (x−)position but at di�erent positionsin the transverse (z−) diretion in order to hek for two-dimensionality of the waves.This was done on both the wavemaker side and the beah side of the model. Positionsof the six wave gauges used are listed in Tab. 6.5. For the longitudinal diretion, theposition of the wave gauges are given both relative to the wavemaker xwm and relative tothe model position x.Table 6.5: Position of wave gauges in the �ume relative to the mean position ofthe wavemaker xwm and relative to the initial model position x.Wave gauge xwm [m℄ x [m℄ z [m℄WG 1 4.00 -2.50 0.000WG 2 6.00 -0.50 -0.155WG 3 6.00 -0.50 0.155WG 4 7.00 0.50 -0.145WG 5 7.00 0.50 0.145WG 6 9.00 2.50 0.000Reordings of the model with a high-speed amera of type IDT Dante Dynamis wereperformed, using an image sampling ratio of 50 frames per seond. The reason for therather low sampling frequeny was to obtain longer reordings in real-time. For all testases, a time-window of 30 seonds was reorded, starting from alm water onditionssuh that the transient build up of the body motions was aptured.The measured signals from all sensors went through a Hottinger Baldwin ampli�erof type MGCplus and the data aquisition was performed with a sampling frequeny of300Hz. All signals were �ltered using an analog Butterworth low-pass �lter with ut-o�frequeny 80Hz. The Hottinger Baldwin software Catman was used for logging of themeasured data. All sensors were alibrated before measurements.



6.2. Wave indued motions of a moored horizontal ylinder 1096.2.4 Post-proessing of measured aelerationsSine the aelerometers are �xed to the moving body, they will measure aelerations ax′and ay′ in the diretions given by the body-�xed oordinate system (x′, y′) as shown inFig. 6.10(a). Here, ay′ = 0.5 (ay′2 + ay′1). To obtain the body aelerations at the enterof gravity of the body in the Earth-�xed oordinate system Oxy, the measured time-seriesof aeleration must be mapped from the diretions given by the body-�xed oordinatesystem into the Earth-�xed frame of referene (see Fig. 6.10(b)). The e�et of angular(roll) aeleration θ̈ = 0.5 (ay′2/r3 − ay′1/r2) must be aounted for. Further, if the body-�xed oordinate system is rotated with a roll angle θ relative to the Earth-�xed oordinatesystem, the measured aelerations must be orreted for the aeleration of gravity g.The instantaneous roll angle θ is found from time-integration of the roll aeleration θ̈.Aelerations in the Earth-�xed referene frame, ax and ay referring to the horizontal andvertial omponent respetively, are then alulated as
[

ax

ay

]

=

[

cos θ − sin θ
sin θ cos θ

] [

ax′

ay′

]

+ g

[

sin θ
cos θ − 1

]

+ θ̈

[

r1

r2 − r3

]

, (6.2)Details on the derivation of these expressions are given in Appendix C.2.1.Obtaining the body motionsThe body motions were obtained by time integration of the measured body aelerations.One important aspet with integration of measured aelerations is that measured timereords usually ontain noise at all frequenies. Espeially low-frequeny noise is a problemwhen measured aelerations are used to dedue the body motions. This is exempli�ed inthe following. Assume the measured horizontal aeleration an be desribed by a Fourierseries as ẍ(t) =
∑N

j=1(Aj + ǫj) cos(ωjt + δj), where Aj is the Fourier amplitude for thefrequeny interval represented by ωj of the model aeleration, ǫj is the Fourier amplitudedue to noise in the measured signal and δj is the phase angle. Then, by integration weobtain the position x(t) = −
∑N

j=1 ω−2
j (Aj + ǫj) cos(ωjt+ δj). For low frequenies ωj ≪ 1,it is lear that noise in the measured aeleration will have a major e�et on the errorof the omputed position if the noise amplitude ǫj is of the same order of magnitudeas the physial Fourier amplitude Aj . This means �ltering of the reorded aelerationsprior to integration is neessary. An estimate of the noise in the measured aelerationsis obtained by taking the Fourier transform of the reordings in a time-window beforethe wavemaker is started and while the model is at rest. The noise level for the di�erentfrequenies are ompared with the Fourier transform of the omplete time-series of theaelerations. This is then used to judge whih lower ut-frequeny to apply when �ltering,whih is the lowest frequeny where the Fourier amplitude of the noise is of omparableorder as the Fourier amplitude obtained from the total time-series. By inspetion ofthe Fourier transforms, we found that a lower ut-frequeny fcut = 0.65fw, where fw isthe wave frequeny, yielded good results for most ases (Fig. 6.11(a)). The exeptionwas when sub-harmoni response did our at nearly half the wave frequeny. Then alower ut-frequeny fcut = (0.65fw)/2 was used, suh that the physial sub-harmoniomponents of the response were not removed when �ltering the signals (Fig. 6.11(b)).When the measured time-series of aeleration is band-pass �ltered as desribed above,the aeleration of the model in an Earth-�xed frame of referene is found using (C.1).
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(b) With sub-harmonisFigure 6.11: Fourier amplitude spetra used when hoosing the lower ut-frequeny. When there is no sub-harmoni response, the lower ut-frequenyis taken as fcut = 0.65fw whih is represented by the vertial line in (a). Forases when sub-harmoni response our, the ut-frequeny fcut = (0.65fw)/2 isused as shown in (b).The obtained body aeleration ẍ(t) = [ax, ay]
T , where T is the transpose operator, isthen integrated numerially using the trapezoidal rule (Kreyszig 1999) with the initialondition ẋ(0) = 0 to obtain the veloity of the model. The time-series of the modelveloity is then band-pass �ltered, using the same pass-band as for the aelerations.Repeating the integration proedure with initial ondition x(0) = x0, the body motion isobtained.An estimate of the sway motion ould also be obtained by dividing the measuredmooring line tension with the spring oe�ient for the mooring line onsidered. Dueto small angles between the mooring lines and alm water surfae and the fat thatthe mooring lines were long relative to the ylinder diameter (f. Fig. 6.9), this wouldyield a good estimate of the sway motion. As the mooring line fores and the bodyaelerations are measured independently, this provides a possibility to ross-hek theomputed sway motion and to verify our proedure for alulating the body motions fromthe measure aelerations. Applying the same band-pass �lter for the spring fores asfor the aelerations, an estimation of the horizontal position of the model is found as

η2 = Fs/k, where Fs is the measured mooring line tension and k is the spring oe�ientorresponding to the mooring line onsidered. Time series of the obtained sway motionfrom the two di�erent approahes presented are ompared in Fig. 6.12 and shows goodagreement. More preisely, the mean di�erene of the estimated motion amplitudes (bothpositive and negative) in the time window t = 15s to t = 25s is less than 1% for the aseonsidered. The obtained body motions were also veri�ed by omparison with imagesfrom the high-speed amera reordings.6.2.5 Disussion of errors in the experimentsPossible soures of systemati errors in the experiments ould be wave re�etions fromthe beah or from the wavemaker or 3D �ow e�ets, e.g. due to exitation of transversesloshing modes in the �ume. The natural periods for the �rst and seond transverse
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Figure 6.12: Comparison of sway motion obtained from integration of measuredhorizontal aelerations with that obtained from measured mooring line tensions.The test wave period and wave steepness was T = 0.601s and H/λ = 1/14,respetively.sloshing mode was T t
1 = 0.877s and T t

2 = 0.620s, respetively. Large transverse standingwaves (similar to the seond sloshing mode) were seen lose to the model in the tests withwave period T = 0.544s and steepness H/λ = 1/10, although this wave period does notorrespond to the sloshing period for the seond mode.Contat between model and tank wallsSine we wanted a 2D �ow ondition in the experiments, the gap between the modeland the side walls of the �ume should be as small as possible. However, a narrow gapinreases the possibility of ontat between the model and the tank walls. Wall ontatwill introdue unknown fores to our system whih is highly unwanted. Unfortunately, forsome tests where the model motion beame large and violent, wall ontat was visuallyobserved. Hene, before we ould use the measurements for validation purposes, we hadto be able to detet with a high level of on�dene if and eventually when ontat didour. A good indiator for sudden ontat between the �ume walls and the model is thetime derivative of the measured aeleration time-series. This parameter is also knownas jerk (Boore and Bommer 2005). Figure 6.13 shows the measured aeleration of themodel and the orresponding jerk for a test ase where ontat between model and tankwalls was observed. Contat is seen as spikes in the jerk time-series.E�ets of the mooring systemThe pulleys used for the mooring system may have an e�et on the motions of the model.As the pulleys have a �nite mass, the inertia of the pulleys will add to the total inertiaof the system in motion. The e�et of the pulley inertia is quanti�ed by performing freedeay tests in sway of the model suspended in air. As the added mass e�et due to theair is small ompared to the strutural mass and an be negleted, the system an besimply modelled as a harmoni osillator represented by a mass and a spring. The massis the strutural mass of the model while the spring is the e�etive spring sti�ness due tothe mooring lines. Hene, the natural period of the system an be estimated. Pratially,
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n = 2π

√

L/g, where L = 2.20m isthe length of the pendulum and g is aeleration of gravity. This yielded a natural period
T p

n = 2.98s for the pendulum motion. The natural period due to the restoring fores fromthe mooring lines when the model is suspended in air is found as
Tn = 2π

√

M

keff
, (6.3)where keff = (k1 + k2) + k3 = is total e�etive spring sti�ness. For the given springsti�nesses used, the e�etive spring sti�ness is found to be keff = 176.4N/m. The massof the ylinder is M ≈ 2.500 ± 0.005kg. This approximate desription of the struturalmass is due to the ables onneting the aelerometers to the logging system and theunertainty of how muh of the ables weight that ontributes to the osillatingmass. Thisyields a dry natural period in the range T dry

n = 0.747s − 0.749s. The measured naturalperiod from free deay tests in air was found to be Tn = 0.778s, whih is 3.8% higher thanthe theoretial value where the mass of the pulleys is exluded. This di�erene betweenmeasured and theoretial natural period means the mass of the pulleys ontributes 8.2%to the osillating mass. Hene, the natural period in sway in the model tests is modi�eddue to the inertia of the pulleys. However, when the model is osillating in water theadded mass will be of the order of the strutural mass of the model. This means that therelative importane of the pully inertia is signi�antly redued. There is also an e�et offrition in the ball bearings of the pulleys. This e�et is disussed in Chapter 8.



6.2. Wave indued motions of a moored horizontal ylinder 113We wanted the springs in the mooring line system to be linear, meaning that thereis a linear relation between the fore applied to the spring and its resulting elongation.Linearity of the springs were tested by loading the springs using known weights andmeasuring the spring elongation. Results from this test are shown in Appendix C.2. Allsprings proved to be linear when loaded below their reported �oating limit, whih for allthree springs was 30N.Preision errors of the inident wave heights and model response amplitudes are es-timated from repetition tests, whih were onduted for some of the test wave periods.For the inident waves, an average wave height H is found from the steady state regionof the wave elevation time-series for eah test run. Then a measure for the random errorof the generated wave heights is the relative error εrel = σ̂H/µ̂H , where the experimentalmean σ̂H and experimental standard deviation µ̂H of the average wave heights obtainedfrom N repetition tests are de�ned as
µ̂H =

N
∑

i=1

H i

N
, (6.4)

σ̂H =

[

N
∑

i=1

(Hi − µ̂H)2

N − 1

]1/2

. (6.5)Mean of the averaged wave heights and orresponding relative errors obtained from thewave alibration tests are listed in Tab. 6.6. The relative error εtot
rel of the mean total waveheight H is less than 2% for all wave periods where repetition tests are onduted.Table 6.6: Mean averaged wave height µ̂H and relative error εrel of the total,linear- and seond harmoni omponent of the wave height obtained from �verepetition tests at steady state ondition.

T [s℄ Hinput [m℄ µ̂H [m℄ εtot
rel ε1.harm

rel ε2.harm
rel

0.497 0.028 0.029 1.46× 10−2 1.57× 10−2 4.83× 10−2

0.761 0.065 0.069 2.45× 10−3 1.65× 10−3 3.74× 10−2

1.132 0.142 0.137 1.83× 10−2 1.26× 10−2 1.09× 10−26.2.6 Summary of resultsWave alibration tests were onduted for all test wave periods and both wave steepnesses.The quality of the generated wave pro�les for the two shortest wave periods was lessgood, due to some transverse disturbanes on the free surfae. This was observed to bemainly aused by the gap between the wavemaker paddle and the side-walls of the �ume,whih measured about 2m on eah side of the paddle. For larger wave periods, thesedisturbanes were less pronouned.Steady-state of the ylinder motion was reahed in all the test runs, exept for thetests for whih the wave period was T = 0.544s. For these tests, the response amplitudesof the sway mode of motion were observed to inrease in an instability-like manner. Forsome tests, the sway motion was limited due to ontat between the model and the sidewalls of the �ume. Measured sway motion from repetition tests with the wave period
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Figure 6.14: Experimentally obtained sway response from repetition tests whenthe moored irular ylinder is subjet to regular beam sea waves with waveperiod T = 0.544s. Di�erenes between obtained time-series seen after 25s forwhen H/λ = 1/14 are explained by wall-ontat problems.



6.2. Wave indued motions of a moored horizontal ylinder 115
T = 0.544s are ompared in Fig. 6.14. The repetition tests shows that this harateristisway motion was repeatable until wall-ontat ourred. Resulting sway motion for thiswave period are observed to be slightly di�erent for the two wave steepnesses tested, asshown in Fig. 6.14. This instability-like phenomenon was observed to be haraterizedby a �nal shift in the sway response frequeny. In the �rst stage after the wave train hasreahed the model, the ylinder started to osillate in heave and sway with period equalto the wave period, as expeted. However, after a build-up through 18 - 20 wave periods,the sway motion frequeny had beome half the wave frequeny, suh that the frequenyof the sway motion was equal to the natural frequeny in sway. Trae plots of the modelmotion in heave and sway for this ase are presented in Fig. 6.15.
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Chapter 7A study of �xed ylinders in regularwavesIn this hapter results from our study on horizontal ylinders whih are �xed in the freesurfae zone and subjet regular waves are presented. The study is based on the modeltests from 2006. Numerial simulations with our 2D NWT has been performed, wherethe test onditions from the experiments was modelled. The wave exitation fores dueto regular waves where studied, with fous on the nonlinear e�ets. Nonlinearities areassoiated with model geometry and model dimensions relative to the amplitude of theinoming waves.In order to perform adequate omparisons of time-series for the omputed wave foreswith the measured wave fores, it was neessary to verify that the wave onditions simu-lated with the NWT were in agreement with the atual wave onditions in the experiments.This was done by performing numerial wave alibration tests with the NWT. Compar-isons of the measured and omputed time-series of free surfae elevation are presented.Convergene studies of the generated waves from the numerial wave alibration testsand the omputed wave fores from simulations with the model present were performed.In addition to diret omparison of time-series from the measured and omputed wavefores on the models, Fourier analysis of both the measured and omputed wave fores areperformed and obtained Fourier amplitudes are ompared. At the end of this hapter, ageneralized Morison type of model is proposed and applied to some of the test onditionsfrom the model tests.Our study on �xed horizontal ylinders in regular waves has resulted in two publia-tions (Kristiansen and Faltinsen 2008a; Kristiansen and Faltinsen 2008b).7.1 Numerial modelling of the 2006-experimentsIn order to perform numerial simulations of �xed horizontal ylinders subjet to regularwaves with the same test onditions as in the experiments from 2006, a numerial modelof the physial wave �ume was onstruted using the presently developed 2D �ow solver.De�nition of the omputational domain and arrangement of the numerial grids used inthe alulations will now be desribed. 117



118 A study of �xed ylinders in regular waves7.1.1 The omputational domainThe narrow wave �ume used in the experiments from 2006 is modelled numerially withour 2D �ow solver on a retangular domain. At the right hand boundary of the domain apiston-type wavemaker was introdued. The wavemaker was modelled linearly, meaningthe piston veloity was imposed on the horizontal veloity nodes loated at the boundarywhih was �xed in spae. The piston veloity was imposed over the total height of thedomain. A numerial beah or damping zone was applied at the left end of the domainto damp out the waves that reahed the end of the �ume.Ideally, the length of the NWT should be equal to the length of the physial �ume.However, this was not bene�ial from a omputational point of view. First of all, sinewe did not have any wave absorption system for the wavemaker in our NWT, we had tomake sure that the distane from the wavemaker to the model was su�ient to avoid thedi�rated waves from the model towards the wavemaker being re�eted bak to the model.Next, in order to properly resolve the generated waves with the numerial grid, a ertainnumber of grid ells are needed relative to the wave length and wave height. Hene, if thedomain of omputation has the dimensions of the physial �ume and we require that alltest waves are equally resolved with respet to wave length, a large number of elementswill be needed for simulation of the shortest waves ompared to that needed to simulatethe longest waves. Based on these arguments, we found it onvenient to de�ne the lengthof the NWT in terms of the wave length λ, whih was predited by linear potential �owtheory as the wave length orresponding to the test wave period T for the atual waterdepth in the �ume. The water depth in the NWT was h = 0.543m, as in the experiments.For simulations where a body was present in the NWT, there was a limit on thesimulation time due to wave re�etions reahing the model position. Sine a dampingzone was applied at the far end of the �ume while there was no wave absorption on thewavemaker, it was re�etions from the wavemaker of the di�rated waves from the modelthat limited the simulation time. Theoretially, all wave frequenies will be exited duringthe transient start-up of the wavemaker. This auses small disturbanes to be generatedin the �uid whih for the ase of an inompressible �uid propagate at an in�nite veloity.However, the surfae waves ontaining energy of signi�ane are gravity waves whih arebounded by the wave front propagating with a �nite veloity Cg, known as the groupveloity. This means that the limit of the simulation time before waves were re�etedbak to the model position ould be estimated as tr ≈ 3Lwm/Cg, with Lwm being distanefrom the wavemaker to the ylinder axis. Alternatively, given a wanted simulation time
tr, an estimate of the neessary length Lwm to avoid wave re�etions reahing the modelposition within the time window onsidered ould be found. However, for steep waves thegroup veloity will be higher than that predited by linear potential �ow theory. Further,due to nonlinear e�ets, some of the wave frequenies assoiated with the transient wavefront will also propagate faster than the linear group veloity. The estimated time forre�etions tr was only used as a guideline when hoosing the length of the domain. In thesimulations with �xed models, Lwm = 4.5λ was used. Hene, for deep water waves where
Cg = 0.5λ/T aording to linear potential �ow theory, we obtain tr ≈ 27T . When e�etsof �nite water depths matter, tr will be less. The distane from the ylinder axis to the farend boundary of the NWT, inluding the damping zone, was 5.5λ. The e�ieny of thedamping zone depends on its length Ldz relative to the wave length of the wave that is tobe damped. For the damping zone applied in our NWT, Ldz = 4λ was su�ient to avoid
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Figure 7.1: Arrangement of the grid in the NWT. A �ne grid region is appliedat the �oater position. Grid strething is used to redue the CPU time whilekeeping the grid resolution high in regions where large variations of the �owour.wave re�etions. As our �ow solver applies a one-�uid model and a surfae apturingmethod to simulate surfae waves, also the air above the free surfae had to be inludedin the omputational domain. Total height of the domain for all tests was 1.23m. Withthe given water depth, the distane from the alm water surfae to the upper boundary,where an outlet boundary ondition was applied, was 0.68m. Due to the large di�erenein mass density between air and water, the air �ow has negligible in�uene on the �ow ofwater. Hene, modi�ations of the air �ow aused by the outlet boundary has minor e�eton the hydrodynami problem. For the bottom boundary, a no-slip ondition is applied.The two bodies tested the NWT had geometry and dimensions as the ross-setions of theylindrial models used the experiments. Hene, the diameter of the irular model was
D = 0.300m, while the breadth and the height of the retangular model were a = 0.300mand b = 0.250m, respetively. Both models were rigid and �xed at a given position in thefree surfae zone. A no-slip ondition was imposed on the model surfae. The di�erentboundary onditions are de�ned in setion 3.5. Based on the previous disussion, theomputational domain depited in Fig. 7.1 was used for simulations of �xed bodies inregular waves.7.1.2 The numerial gridWe use a non-uniform Cartesian staggered grid as de�ned in 4.1.1 for disretization ofthe omputational domain. As our problem is haraterized by several �ow e�ets withlarge di�erenes in assoiated length sales, speial attention is needed when onstrutingthe numerial grid. Examples of length sales here are the length of the generated waveswhih is of the order of meters, the model dimensions in the order of entimeters, and theboundary layer thikness on the model surfae whih is of the order of millimeters. Gridstrething is applied to keep the grid resolution relatively high in the regions of the domainwhere large variations of the �ow is expeted, whih is loally at the model position inaddition to the free surfae zone in general. Important grid parameters relative to thewaves are the ratio between the wave length λ and the horizontal grid spaing ∆xi andthe ratio between the wave height H and the vertial grid spaing ∆yj . As Cartesian gridswere used, a ompliating fator was how to obtain a �ne grid resolution at the modelposition, whih should be based on the dimensions of the model (or the boundary layer onthe model surfae) and not on the waves. When using a single Cartesian grid and whenthe model was loated in the wave zone, it was not possible to keep the relation betweenthe grid parameters H/∆yj and b/∆yj onstant for the di�erent test wave onditions.



120 A study of �xed ylinders in regular wavesHene, the struture of the grids did vary slightly from test to test.The grid was onstruted as follows. For eah spatial diretion, the domain of ompu-tation was divided into three sub-regions where di�erent gridding strategies were applied.These sub-regions are denoted Li for the horizontal diretion and Hi for the vertial dire-tion with i = 1, 2, 3, as illustrated in Fig. 7.1. For the horizontal disretization startingfrom the wavemaker boundary, the grid inrement ∆xi was onstant and expressed interms of the wave length λ in the sub-region L1 = 4λ. In the sub-region L2 = λ enteredabout the model position, a osine squared strething of the grid was used to merge a�ne grid region of length γD inside L2 with the oarser grid on eah side of L2. Here, theparameter γ = 2 was used. In the �ne grid region, ∆xi was onstant and based on themodel breadth. A paraboli strething of the grid was applied in L3, suh that ∆xi wasinreasing when moving in the positive x−diretion. This was in order to inrease thenumerial di�usion of energy in the damping zone. For the vertial diretion, a �ne gridwith onstant grid spaings ∆yj was applied in the interfae zone de�ned by H2. Theheight of the interfae zone H2 was two times the height of the model tested. Paraboligrid strething was used outside H2, suh that ∆yj was inreasing when moving awayfrom the interfae zone. All grid strething was performed suh that the grid inrements
∆xi and ∆yj varied smoothly over the domain.The following grid parameters are introdued for desribing the numerial grid. NBis the number of vertial grid lines relative to the beam of the model ross-setion, Nλis the number of vertial grid lines per wave length and NI is number of horizontal gridlines in the air-water interfae zone H2. Four di�erent grids were onstruted for eahtest ondition in order to perform onvergene tests. Grid parameters desribing thesegrids are listed in Tab. 7.1. Grid 3 was used as the base ase grid.Table 7.1: Grid parameters for the four grids used in onvergene tests. NB isnumber of grid ells over the breadth of the model, Nλ number of grid ells perwave length, while NI is number of grid ells vertially in the interfae zone.Grid 3 is used as the base ase grid.Name NB Nλ NI Nx NyGrid 1 60 40 80 431 120Grid 2 80 45 100 512 145Grid 3 90 50 120 572 170Grid 4 110 60 130 690 1857.2 Numerial wave alibration testsNumerial wave alibration tests were performed in order to verify that the waves gener-ated in our NWT for some given input wave period and wave height were is in agreementwith the measured wave elevation in the wave alibration tests from the experiments in2006. By numerial wave alibration we mean numerial simulations of wave generationwithout any model present in the domain. This was performed using wave parameters forthe test wave onditions in the experiments as input to our NWT. The input parameterswere wave period and wave height. However, as for wave-making in the physial �ume,the height of the waves generated with the NWT ould not be presribed diretly, but



7.2. Numerial wave alibration tests 121was ontrolled indiretly through the imposed veloity at the wavemaker boundary. Frompotential �ow theory, a linear relation between the stroke of a piston-type wavemaker andthe resulting wave height far away from the wave board an be found as given in (3.25).To obtain a smooth wave front a linear ramp of the piston motion amplitudes were usedduring the �rst 5 seonds of simulation, before full gain of the wavemaker was reahed.Three of the wave periods from the steepest waves (H/λ = 1/20) tested in the exper-iments in 2006 were hosen, for whih numerial wave alibration tests were performedwith the NWT. These were also the wave onditions used when simulations with the mod-els were performed. Sine the omputational domain was de�ned in terms of the wavelength λ, three di�erent domains had to be onstruted. For eah domain, four grids werereated using the grid parameters from Tab. 7.1. The grid used in numerial wave ali-bration for a given wave ondition was idential to the grid used when simulations withthe models for this wave ondition were performed. Temporal disretization was relatedto the input wave period T . Typially, a time step ∆t = T/1000 was used. However,adaptive time stepping was applied to avoid numerial instabilities and break-down ofthe simulations. Obtained wave heights from the numerial wave alibration tests arepresented in Tab. 7.2.Table 7.2: Input wave periods T , wave heights Hinput and assoiated amplitude
Sa of the piston wavemaker. Resulting mean wave heights H obtained by theNWT and and He from the experiments, are also given.

T [s℄ Hinput [m℄ Sa [m℄ H [m℄ He [m℄1.084 0.087 0.026 0.079 0.0881.348 0.130 0.050 0.120 0.1211.568 0.176 0.082 0.156 -7.2.1 Grid onvergene of the generated wavesGrid onvergene are tested for numerial wave alibration with the wave period T =
1.568s, using the four grids de�ned in Tab. 7.1. Computed time-series of the free surfaeelevation were band-pass �ltered using the low ut-frequeny flow = 0.4/T and the highut-frequeny fhigh = 8/T . The band-pass �ltered time-series of the wave elevation at
x = 0.342m obtained with the di�erent grids are ompared in Fig. 7.2. For this waveperiod, this is 17.29m from the wavemaker boundary. Fourier transforms of the omputedwave elevation time-series are found from the time window t = [18s, 28s] using FFT.Resulting Fourier amplitudes are ompared in Fig. 7.3. Both the seond- and thirdharmoni omponents are observed in addition to the linear harmoni. No signi�antdi�erenes are observed between the transforms of the time-series obtained with the fourgrids. In order to test for grid onvergene of the alulations, a measure of the error isneeded. For this purpose we use the mean wave height H from a time window where thesolution is lose to steady state. An error measure is de�ned as the di�erene between Hand the orresponding mean wave height obtained with the �nest grid H

∗. The error isnormalized with the mean wave height from the �nest grid. Hene, a normalized error isde�ned as
εH =

H −H
∗

H
∗ . (7.1)
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Figure 7.2: Comparison of time-series of the free surfae elevation at x = 0.342m,obtained from onvergene testing of the inident waves. The wave period is
T = 1.568s and input wave steepness is H0/λ0 = 1/20. N is the total number ofgrid ells.
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Figure 7.3: Convergene test of omputed free surfae elevation at x = 0.342mfrom numerial wave alibration with wave period T = 1.568s and wave steepness
H0/λ0 = 1/20. Fourier amplitudes are obtained using FFT for the time window
t = [18s, 28s] of the omputed time-series. The frequeny is normalized by thewave frequeny ωw = 2π/T .
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Figure 7.4: Convergene rate for the mean wave height H from wave alibrationwith wave period T = 1.568s and wave steepness H/λ = 1/20.Normalized errors εH of the omputed waves for the time interval t = [18s, 28s] obtainedwith the four di�erent grids, are presented in Fig. 7.4. The di�erene between thenormalized error obtained with the base ase grid (grid 3) relative to that obtained withthe �nest grid is only 0.5%. Although we annot onlude that the omputed waves arefully onverged, we observe that the di�erenes of the results from the simulations withthe two �nest grids are small.7.2.2 Comparisons with the experimentsNow, as we have veri�ed that the grid sensitivity of the generated waves is small forthe base ase grid, the omputed time-series of the free surfae elevation an adequatelybe ompared with the free surfae elevation measured in the physial wave alibrationtests. Due to the di�erene in length of the NWT and the physial �ume, the waves willreah the �ne grid region where the model is to be plaed at di�erent times. We use thestarting time of the wavemaker in the NWT as the referene time when time-series fromthe numerial simulations are ompared with the measured time-series.First, results from numerial and physial wave alibration for the wave with period
T = 1.084s and input wave height Hinput = 0.087m are onsidered. The base ase grid isused in the simulation. Figure 7.5 shows time-series of the free surfae elevation alulatedat the position x = −0.356m in the NWT ompared with the measured free surfaeelevation by WG 3 from the experiments. In the physial �ume, WG 3 was loated 13.96mfrom the wavemaker. The omparison shows some deviation between the omputed time-series from that measured, in partiular for the wave front. It is also observed thatthe omputed wave heights towards the end of the simulated time window is somewhatlower that the orresponding measured wave heights. The frequeny ontents of thesimulated and measured wave elevation was obtained from the Fourier transforms of thetime-series presented in Fig. 7.5. To avoid leakage when omputing the disrete Fouriertransform from the wave elevation time-signal, the Fourier transform was omputed froman integral number of wave periods from the time interval t = [15s, 20s] (Ambardar 1995).The Fourier amplitudes obtained from the simulated time-series are ompared with thoseobtained from the measurements in Fig. 7.6, whih shows a 8.2% underpredition of
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Figure 7.5: Time-series of the free surfae elevation obtained with the NWTompared with measured free surfae elevation from experiments. Wave periodis T = 1.084s and input wave height is Hinput = 0.087m.
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Figure 7.6: Comparison of Fourier amplitudes obtained from FFT of measuredand omputed free surfae elevation in the wave alibration tests. The FFT isomputed from the time window t = [15s, 20s]. The frequeny is normalized withthe input wave frequeny ωw = 2π/T . Wave period is T = 1.084s and input waveheight is Hinput = 0.087m.the linear harmoni omponent from the omputed time-series relative to that from themeasured time-series. Good agreement between simulations and measurements is observedfor the seond harmoni omponent of the free surfae elevation.Next, we onsider results from wave alibration tests for the wave period T = 1.348and input wave height Hinput = 0.130m. Time-series of omputed free surfae elevationat x = −0.356m are ompared with measured waves from WG 3 in Fig. 7.7. Theomputed free surfae elevation is obtained from simulation with the base ase grid.Corresponding Fourier amplitudes alulated from the time window t = [16s, 24s] arepresented in Fig. 7.8. The Fourier amplitude of the linear harmoni omponent obtainedfrom the simulation is 2.6% smaller than the orresponding Fourier amplitude obtainedfrom the measurements. Computed free surfae elevation shows good agreement withmeasurements for this ase. However, some deviations are observed for the wave front.
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Figure 7.7: Time-series of the free surfae elevation obtained with the NWTompared with measured free surfae elevation from experiments. Wave periodis T = 1.348s and input wave height is Hinput = 0.130m.
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Figure 7.8: Comparison of Fourier amplitudes obtained from FFT of measuredand omputed free surfae elevation time-series in the wave alibration tests.The FFT is omputed from the time window t = [16s, 24s]. The frequeny isnormalized with the input wave frequeny ωw = 2π/T . Wave period is T = 1.348sand input wave height is Hinput = 0.130m.



126 A study of �xed ylinders in regular waves
−100

−50

0

50

100

 

 
F

x [N
/m

]

Grid 1, N=51120
Grid 2, N=73225
Grid 3, N=95540
Grid 4, N=125615

8 10 12 14 16 18 20 22

−100

−50

0

50

100

 

 

F
y [N

/m
]

Time [s]

Grid 1, N=51120
Grid 2, N=73225
Grid 3, N=95540
Grid 4, N=125615

Figure 7.9: Convergene test of wave fores for ase with wave period T = 1.348s,
H0/λ0 = 1/20. N is total number of grid ells.7.3 Nonlinear wave fores on �xed ylindersThe inident waves have been studied by means of wave alibration tests, both numeriallyand experimentally. If the kinematis of the inident waves obtained from simulationsagree with the measured waves, aordingly, also the omputed wave fores should agreewith the measurements if our model representation of the physial experiments is adequateand the numerial results are onverged. Thus, in the same manner as we on�rmed thatthe grid sensitivity for the inident waves are small, we must also verify that the omputedwave fores are onverged. This is done in the following. The horizontal and vertialfore omponents are denoted Fx and Fy, respetively. Further, we de�ne the horizontalfore omponent to be positive in the wave propagation diretion, while the vertial foreomponent is de�ned positive upwards.7.3.1 Grid onvergene for the omputed wave foresA onvergene study of the omputed wave fores are presented for the ase of the irularmodel with draft d/D = 0.5 when subjeted to waves with period T = 1.348s and inidentheight H = 0.120m as found from the numerial wave alibration test. In the same manneras for the onvergene tests of the inident waves, four grids are onstruted using the gridparameters from Tab. 7.1. Time-series of the omputed wave fores obtained with thefour grids are ompared in Fig. 7.9, whih shows that the resulting time-series are almostidential. As a measure for onvergene, we use the mean peak-to-peak fore amplitudes

F whih are omputed from the time interval t = [17s, 23s] where the time-series appear tobe lose to steady state. We de�ne the relative error of the omputed mean peak-to-peakfore amplitudes as the deviation from the mean peak-to-peak fore amplitude obtainedfrom simulation with the �nest grid F
∗. Similarly as for the wave heights, the normalized
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Figure 7.10: Test on onvergene of mean peak-to-peak fore amplitudes obtainedfrom the time window t = [17, 23]s for tests with the irular ylinder withsubmergene d/D = 0.5, T = 1.348s and H0/λ0 = 1/20.error for the peak-to-peak fore amplitudes is then de�ned as
εF =

F − F
∗

F
∗ . (7.2)Resulting normalized errors εF orresponding to the time-series shown in Fig. 7.9 obtainedwith the four grids are presented in Fig. 7.10. Although no monotone onvergeneis obtained, the peak-to-peak fore amplitudes obtained with the di�erent grids are allwithin 1.3% from that obtained with the �nest grid. Hene, we onlude that the gridsensitivity for the omputed wave fores is small.The free surfae elevation at three positions in the NWT obtained with the four gridsare ompared in Fig. 7.11. We see that di�rated waves from the model learly interatwith the inoming waves. It is mainly where the inoming waves and the di�ratedwaves forms anti-nodes, and the resulting waves beome loally steep, that the largestdi�erenes in the omputed free surfae elevation are observed. This an be explained bywave breaking whih is not adequately modelled by the smeared air-water interfae.7.3.2 Disussion of visous e�etsWe will now try to estimate what �ow behaviour we should expet at the model position.The inoming waves ause an osillatory �ow around the model. An important parameterfor ylinders in osillatory �ow is the Keulegan-Carpenter number KC = UT/B ≈ πH/B,where H is wave height and B is the model breadth. This yields KC < 2.0 for allwave onditions in Tab. 6.3. Thus, we assume the �ow is attahed for the irularylinder and that the vortex shedding from any edge of the retangular ylinder is smallompared to the model dimensions (Bearman et al. 1985). Another important parameteris the Reynolds number for osillatory �ow de�ned as Rn = U2

m/ων, where Um is themaximum tangential veloity outside the boundary layer. For a fully submerged irularylinder in attahed �ow we get Rn ≈ 4ωζ2
A/ν, where ζA is the mean wave amplitude.Here we have negleted the exponential deay with depth of the �uid partile veloitydue to the waves. Transition from laminar to turbulent boundary layer �ow our at
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Figure 7.11: Convergene test of free surfae elevation with wave period T =
1.348s, H0/λ0 = 1/20.
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Rncrit ≈ 105 for a smooth irular ylinder in in�nite �uid. Data from Tab. 6.3 yieldsat most Rn ≈ 7.9 · 104 < Rncrit. Due to e�ets of roughness at the ylinder surfae theatual Rncrit will be lower. Hene, transition to turbulene may still our. However,we have assumed laminar boundary layer �ow. Then the boundary layer thikness insteady-state ondition is found from δ0.99 = 4.6

√

2ν/ω (Shlihting and Gersten 2000).Table 6.3 yields δ0.99 = 3.2 · 10−3 − 4.2 · 10−3m, whih is about 1% of the beam of theirular ylinder. For the ase of the retangular ylinder, turbulene will always developin the free shear layers separated from the sharp edges.Estimation of skin frition fore on the irular modelAs the skin frition fores are not omputed with our numerial model, an estimate theorder of magnitude of the skin frition fore on the irular ylinder is found. First onsidera fully submerged irular ylinder in osillatory �ow. We assume laminar boundary layersand that the �ow is attahed. This problem was studied thoroughly by Stokes (1851).Here we follow a proedure from Faltinsen (1990). A similar approah was also usedby Molin (2004) to ompute the fritional damping in roll of ship setions. Here, weonsider the boundary layer �ow u(y, t) due to an osillating urrent above a �xed wall.Assume the outer �ow is only a funtion of time and desribed by U(t) = U∞ cos(ωt).Substituting u(y, t) = U(t)− ũ(y, t) in the boundary layer equations a di�usion equationfor ũ is obtained. The solution proedure is the same as for the lassial Seond Stokesproblem (Shlihting and Gersten 2000). The steady state solution of the veloity pro�lein the boundary layer is desribed by u(y, t) = U∞

[

cos(ωt)− exp(−η) cos(ωt−η)
], where

η = y
√

ω/2ν. The wall shear stress on an impermeable wall is given by τw = µ∂u/∂y|y=0,and we get τw = µU∞

√

ω/ν cos(ωt + π
4
). Long wave approximation yields the loalveloity distribution outside the boundary layer expressed in polar oordinates as U∞(θ) =

2UA sin(θ). The veloity amplitude in the waves is UA ≈ ωH/2. This yields the in-lineskin frition fore per unit length of the ylinder
Fv =

π

2
µωHD

√

ω

ν
cos(ωt +

π

4
). (7.3)The skin frition fore takes its largest value for the highest frequeny. Using data fromTab. 6.3 in (7.3) gives Fv/(ρgV0) = 0.012 for a fully submerged irular ylinder. Assum-ing the skin frition for d/D = 0.5 is Fv/(ρgV0) ≈ 0.5 · 0.012 and omparing this estimatewith measured fores from model tests, we see that the estimated skin frition is at most7.3% of the measured horizontal fore.7.3.3 Comparison of omputed and measured wave foresWe will now investigate how the omputed wave fores obtained from simulations withour NWT agree with the measured lamping fores from the experiments. This is doneby omparing time-series of the wave fores diretly. Also the Fourier amplitudes fromthe disrete Fourier transforms of the omputed and measured fore time-series, whihare found using FFT, are ompared. In the following, results from the di�erent test aseswill be disussed.



130 A study of �xed ylinders in regular wavesCirular ylinder with d/D = 0.2First we onsider the irular �oater being �xed with draft d/D = 0.2. Computed andmeasured time-series of the horizontal in-line wave fore Fx and the vertial wave fore Fyare ompared in Fig. 7.12. The orresponding Fourier amplitudes, found using FFT overan integral number of wave periods in the time interval t = [16s, 21s] are ompared alsoompared in the �gure. After 16 seonds of simulation time we see from the time-seriesof omputed and measured wave fores that the system is lose to a steady state. In this�steady state� regime, the horizontal wave fore amplitudes obtained from simulationswith our NWT are somewhat larger than the horizontal fore amplitudes measured. Thisis also observed from the Fourier transforms, whih shows an over-predition of the linearharmoni omponent from the omputed horizontal fore relative to the measured hori-zontal fore. The omputed vertial fore omponent shows in the steady state regime abetter agreement with the measurements. However, in the transient phase, larger devia-tions are seen for the vertial fore than for the horizontal fore. In the Fourier transformsof the horizontal fore, we observe that there in addition to the linear harmoni ompo-nent is a pronouned seond harmoni omponent. With pronouned is here meant thatthe magnitude of the seond harmoni omponent is signi�ant relative to magnitude ofthe linear harmoni omponent. A non-zero seond harmoni omponent of the Fourieramplitudes is also present for the vertial fore. Although the magnitude of this seondharmoni is of omparable order as that for the horizontal fore (61% for the measuredfores), its magnitude relative to the linear harmoni of the vertial fore is marginal. Thefree surfae elevation measured at three positions lose to the model are ompared withthe free surfae elevation from the present simulation in Fig. 7.13. Here, the horizontalposition of the wave gauge xm is given relative to the model position whih is representedby the ylinder axis. The agreement is satisfatory.Now we onsider the tests with wave period T = 1.348s for the same draft d/D = 0.2and wave steepness H0/λ0 = 1/20. Fore time-series obtained from the model test andfrom the simulation are ompared in Fig. 7.14(a). The orresponding Fourier amplitudesof the horizontal and vertial fores, alulated from the time interval t = [18s, 24s], arepresented in 7.14(b) and 7.14(), respetively. The time-series are in good agreement,although some di�erenes of the peak-to-peak fore amplitudes are observed. When weonsider the Fourier amplitudes for the horizontal fore omponent presented in Fig.7.14(b), we see that also for this wave period there is a signi�ant ontribution from theseond harmoni omponent on the total fore. In addition, a third harmoni omponent isalso present. Both the linear harmoni and seond harmoni omponent of the omputedhorizontal fores are larger than the orresponding harmoni omponents obtained fromthe experiments. In the time-series of the horizontal fore omponent, this is seen as thedi�erenes in the peak-to-peak fore amplitudes.The largest period simulated for the irular ylinder with draft d/D = 0.2 is T =
1.568s. Obtained time-series of the omputed wave fores for this ase are omparedwith the measured fores in Fig. 7.15(a). The omputed and measured fore time-seriesshows the same trends, but the omputed peak-to-peak fore amplitudes, in partiular forthe horizontal fore omponent, are onsiderably larger than those in the measured foretime-series. This deviation is also re�eted by the Fourier amplitudes presented in Fig.7.15(b), whih are alulated from the time interval t = [17s, 24s].
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()Figure 7.12: Comparison of time-series and orresponding Fourier amplitudes ofwave fores on the irular ylinder obtained from simulations and model tests.The test parameters are d/D = 0.2, T = 1.084s and H0/λ0 = 1/20.
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()Figure 7.14: Comparison of time-series and orresponding Fourier amplitudes ofwave fores on the irular ylinder obtained from simulations and model tests.Test parameters are d/D = 0.2, T = 1.348s, H0/λ0 = 1/20.
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()Figure 7.15: Comparison of time-series and orresponding Fourier amplitudes ofwave fores on the irular ylinder obtained from simulations and model tests.Test parameters are d/D = 0.2, T = 1.568s, H0/λ0 = 1/20.



7.3. Nonlinear wave fores on �xed ylinders 135Cirular ylinder with d/D = 0.5We ontinue on the study of the irular ylinder, but now with the draft being inreasedto d = 0.5D. The same wave periods and wave heights as tested in the previous aseare also tested here. Comparisons of fore time-series are shown in Fig. 7.16(a) whileorresponding Fourier amplitudes of the horizontal fore and vertial fore are presentedin Figs. 7.16(b) and 7.16(), respetively, for the test when the wave period is T = 1.084s.The Fourier amplitudes are obtained from the interval t = [16s, 21s] of the time-seriespresented. For this ase, the Fourier amplitude spetrum alulated from the time-seriesof the horizontal fore and vertial fore are very similar. The amplitude of the seondharmoni omponent relative to the amplitude of the linear harmoni is 15% for both thehorizontal fore and for the vertial fore, based on the measured data. A small thirdharmoni omponent is also present in the vertial fore signal.The fore time-series obtained from the experiments and simulations with wave period
T = 1.348s are ompared in Fig. 7.17(a) whih shows good agreement, although theomputed fore amplitudes of the horizontal fore are somewhat larger than the measuredamplitudes. In the Fourier amplitude spetra presented in Figs. 7.17(b) and 7.17(), weobserve that while the amplitude of the seond harmoni omponent of the horizontal forehas inreased, the same omponent has nearly vanished from the amplitude spetrum ofthe vertial fore. In fat, for the measured vertial fore, the amplitude of the thirdharmoni omponent exeeds the amplitude of the seond harmoni.Cirular ylinder with d/D = 0.8Finally, we onsider the irular ylinder at the largest draft d = 0.8D subjet to regularwaves of period T = 1.348s and steepness H0/λ0 = 1/20. For this ase, wave over-toppingon the �oater was observed both in the experiments and in the numerial simulations.A omparison of omputed and measured wave exitation fores are presented in Fig.7.19(a), whih shows good agreement. We note from the time-series (Fig. 7.19(a)) thatthe vertial fore omponent has two loal maxima's for eah wave load yle in thesteady state regime. This is assoiated with the over-topping wave. When the free surfaeelevation at the model position inreases, the model experiene a positive vertial foredue to the hydrodynami pressure. When the wave elevation beomes so large that over-topping our, the pressure due to the water running on top of the model auses a negativevertial fore that ounterats the positive fore from the hydrodynami pressure on thelower side of the model. As we see from the Fourier amplitude spetrum of the vertialfore omponent in Fig. 7.19(), over-topping leads to large nonlinearities of the vertialwave loads. However, the horizontal fore omponent for whih the Fourier amplitudes arepresented in Fig. 7.19(b), is almost entirely desribed by the linear harmoni. Snapshotsof the loal �ow kinematis at two time instants from simulations with our NWT arepresented in Figs. 7.20 and 7.21 showing the veloity magnitude and the z−vortiity,respetively. We observe that vortiity is indued in the water due to �ow separationfrom the boundary layer on top of the ylinder during over-topping. Further, vortiity isgenerated both in front of and behind the body at the end of the over-topping proess,when the water runs o� the body on both sides. The indued vortex at the right handside of the body is rotating lok-wise, while the vortex generated on the left side isrotating ounter lok-wise. In addition, some vortiity is observed lose to the body
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()Figure 7.16: Comparison of time-series and orresponding Fourier amplitudes ofwave fores on the irular ylinder obtained from simulations and model tests.Test parameters are d/D = 0.5, T = 1.084s, H0/λ0 = 1/20.
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()Figure 7.17: Comparison of time-series and orresponding Fourier amplitudes ofwave fores on the irular ylinder obtained from simulations and model tests.Test parameters are d/D = 0.5, T = 1.348s, H0/λ0 = 1/20.
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Figure 7.18: Computed and measured lamping fores from tests with irularylinder at d/D = 0.5, T = 1.568s, H0/λ0 = 1/20.boundary due to the no-slip ondition and some lose to the free surfae away from themodel. By omparing the numerial results against the reorded movies from the modeltest experiment, the latter is assumed to be a false e�et due to the �nite thikness of theair-water interfae.
Retangular ylinder with d/b = 0.2Simulations are performed with the NWT for the retangular model with draft d/b = 0.2when subjeted to waves with period T = 1.348s and steepness H0/λ0 = 1/20. Timeseries of the omputed wave exitation fores fores are ompared with time series of themeasured lamping fores in Fig. 7.22(a). The omputed fore amplitudes of the horizon-tal fore are observed to be larger than the measured fore amplitudes. CorrespondingFourier amplitudes obtained from the time window t = [15s, 20s] of the omputed andmeasured wave fores are ompared in Figs. 7.22(b) and 7.22() for the horizontal foreand vertial fore, respetively. The Fourier amplitude of the seond harmoni omponentof the horizontal fore is of the same order of magnitude as the Fourier amplitude of thelinear harmoni omponent for this ase. A pronouned seond harmoni omponent ofthe horizontal fore was also observed in tests with the irular ylinder for d/D = 0.2.However, the total vertial fore amplitude is muh larger than the total horizontal foreamplitude. This is beause the projeted pressure area in the vertial diretion is propor-tional to the model breadth, while the projeted pressure area in the horizontal diretionis proportional to the model draft whih is less than 20% of the breadth.
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()Figure 7.19: Comparison of time-series and orresponding Fourier amplitudes ofwave fores on the irular ylinder obtained from simulations and model tests.Test parameters are d/D = 0.8, T = 1.348s, H0/λ0 = 1/20.
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Figure 7.20: Snapshots of the loal �ow near the �xed model. The air-phase isexluded. Test parameters here are d/D = 0.8, T = 1.348s, H0/λ0 = 1/20. Theontour values for the veloity are given in units of meters per seond.
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Figure 7.21: Snapshots of the z−vortiity in the loal �ow near the �xed model.The air-phase is exluded. Test parameters here are d/D = 0.8, T = 1.348s,
H0/λ0 = 1/20. Contour values for the z−vortiity are given in 1/s.
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Figure 7.22: Comparison of time-series and orresponding Fourier amplitudesof wave fores on the retangular ylinder obtained from simulations and modeltests. Test parameters are d/b = 0.2, T = 1.348s, H0/λ0 = 1/20.
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Figure 7.23: Comparison of time-series and orresponding Fourier amplitudesof wave fores on the retangular ylinder obtained from simulations and modeltests. Test parameters are d/b = 0.5, T = 1.084s, H0/λ0 = 1/20.Retangular ylinder with d/b = 0.5Time-series of omputed wave fores on the retangular ylinder with draft d/b = 0.5 dueto waves with period T = 1.084s and steepness H0/λ0 = 1/20 is ompared with orre-sponding measured fores in Fig. 7.23(a). Corresponding Fourier amplitudes obtainedfrom the time interval t = [16s, 21s] are presented in Figs. 7.23(b) and 7.23(). The linearharmoni omponent dominates for both the horizontal fore and the vertial fore. Goodagreement between measured and omputed fores are observed for this ase.Retangular ylinder with d/b = 0.8Finally, we onsider the retangular ylinder with draft d/b = 0.8 when subjeted to waveswith period T = 1.084s and steepness H0/λ0 = 1/20. Wave over-topping on the modelwas observed both in the experiments and in the numerial simulation with the NWT



144 A study of �xed ylinders in regular wavesfor this test ondition. Time series of the omputed and measured wave exitation foresare ompared in Fig. 7.24(a). Obtained Fourier amplitudes of the horizontal and vertialfores are ompared in Figs. 7.24(b) and 7.24(), respetively. Due to short length of thetime series from the numerial simulation, the Fourier transform of the fore time-seriesare relatively oarse. However, we observe that the horizontal fore is almost entirelydesribed by the linear harmoni omponent. Further, we observe for the vertial forethat the importane of the seond harmoni omponent relative to the linear harmoniomponent inreases when over-topping our.
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Figure 7.24: Comparison of time-series and orresponding Fourier amplitudesof wave fores on the retangular ylinder obtained from simulations and modeltests. Test parameters are d/b = 0.8, T = 1.084s, H0/λ0 = 1/20. Over-toppingis observed in the model test and in the simulation. Due to short time series,the resolution of the disrete Fourier transform is oarse.



146 A study of �xed ylinders in regular waves7.4 A generalized Morison modelIn the following, a simpli�ed numerial model for omputation of wave fores on ylindersare disussed. It is ommon engineering pratie to apply the Morison's equation whenwave exitation fores on vertial ylinders are sought, whih yields the in-line hydrody-nami fore on the ylinder. Morison's equation is expressed in terms of a mass oe�ient
CM and a drag oe�ient CD whih generally has to be determined empirially. Further,Morison's equation applies for large wave lengths λ relative to the ross-setional dimen-sion D of the ylinder. For a vertial ylinder, the wave is onsidered long if λ/D > 5.A onsequene of this is that both aeleration and veloity in the inident wave do notvary muh over the ross-setion of the ylinder and an be evaluated at the ylinderaxis as if the ylinder was not there. The mass oe�ient in Morison's equation hastwo omponents. One omponent is due to the undisturbed pressure �eld whih yieldsthe Froude-Krilo� fore, while the other omponent is due to the di�ration e�et of theylinder. We propose a generalization of Morison's equation where the term inludingthe mass oe�ient is replaed by an expliit expression for the di�ration fore and theFroude-Krilo� fore as

Fi = F D
i + F FK

i +
1

2
ρCDD |ui| ui, (7.4)where F D

i and F FK
i is the 2D di�ration fore and the 2D Froude-Krilo� fore, respe-tively, on the ylinder ross-setion. The index i indiates the diretion of the fore, where

i = 2 refers to the horizontal (x−) diretion and i = 3 refers to the vertial (y−) diretion.Further, ρ is mass density of water, D is the projeted dimension of the ylinder in thefore diretion and ui is the �uid partile veloity evaluated at the position of the ylinderaxis as if the ylinder was not there. This approah is onsistent with the linear potential�ow analysis of a semi-submersible as desribed by Faltinsen (1990). How the di�erentterms in (7.4) are obtained are disussed in the following.Froude-Krilo� foresThe Froude-Krilo� fores are found by integrating the hydrodynami pressure p from theinident wave over the wetted surfae S of the ylinder, i.e.
F FK

i = −
∫

S

pnidS. (7.5)Here ni is the i-th omponent of the unit normal vetor n pointing into the �uid domain.To �rst order in the wave slope ε = kζA, the Froude-Krilo� fore is found by integratingthe linear hydrodynami pressure p1 = −ρ∂φ1

∂t
, found from Bernoulli's equation, overthe mean wetted surfae of the ylinder S0. Here φ1 is the �rst order veloity potentialof a regular wave. Moving to seond order in ε, the hydrodynami pressure is fromBernoulli's equation found to be p2 = −ρ∂φ2

∂t
− 0.5ρ |∇φ1|2, where φ2 is the veloitypotential orret to seond order (see e.g. Dean and Dalrymple (1991)). Integrating theseond order pressure over the mean wetted surfae yields a seond order fore. Wemust also aount for the time-varying wetted surfae of the ylinder, whih is done byintegrating the linear hydrodynami pressure from y = 0 to y = ζ1(x, t). ζ1 is the �rstorder free surfae elevation. By Taylor expansion of Bernoulli's equation from y = 0, thelinear hydrodynami pressure in the wave zone is found to be p1 = ρg (ζ1 − y). This yields



7.4. A generalized Morison model 147the total Froude-Krilo� fore orret to O (ε2). It should be noted that it is questionableto separate out a nonlinear Froude-Krilo� fore from a nonlinear analysis as desribedabove.Di�ration foresDue to the presene of the ylinder, the hydrodynami pressure �eld in the inidentwave will be modi�ed. This yields the di�ration fore. The di�ration potential an befound either numerially of analytially and then used to alulate the di�ration foresdiretly. We will use a simpler approah as desribed by Newman (1977). By means ofonsisteny with alulation of the Froude-Krilo� fores, also the di�ration fores shouldbe evaluated to O (ε2) and the nonlinear interation with the inident waves should beonsidered. Despite of this, a linear approah is used here for the di�ration fores. Usinglinear potential �ow theory, the di�ration potential an be related to the inoming wavepotential and the radiation potentials through the Haskind relation. This means thedi�ration fores on a setion of the ylinder an be written in terms of two-dimensionaladded mass and damping oe�ients as
F D

i = aiiu̇i + biiui. (7.6)Here, u̇i and ui is the partile aeleration and partile veloity of the inident wave inthe i-th diretion, respetively. One important question here is: where do we evaluatethe veloity and aeleration for a horizontal ylinder in the free surfae? To answer thisquestion, one should go bak to the derivation of the Haskind relation. Then one shouldfous on what are the relations between the body boundary ondition in the di�rationproblem and the body boundary ondition in the radiation problem. Intuitively, theveloity and aeleration used should represent the body boundary onditions in thedi�ration problem. But, sine both partile aeleration and veloity is spae-varyingunder a wave, representative values should be used. Hene, for the vertial di�rationfore omponent on the retangular ylinder, the veloity and aeleration is evaluated at
[x, y] = [0,−d] where d is the model draft. For the horizontal di�ration fore omponent,the veloity and aeleration is found from a weighted average over the enter-plane ofthe model, i.e. by integrating the depth dependeny of the aeleration and veloity from
y = −d to y = 0. The added mass and damping oe�ients are a priory unknown and hasto be found either by means of tabulated values or from omputations. Sine we assume2D �ow in the xy-plane, this implies we have to solve the radiation problem in heave andsurge to �nd the added mass and damping oe�ients. Added mass and damping aregenerally dependent on the frequeny of osillation, body geometry and the water depth.The radiation problem for heave and sway motion of a retangular ylinder at �nite waterdepth is solved using a linear time domain boundary element method (BEM) omputerprogram. Dimensionless oe�ients are listed in Table 7.3. Loally near the model, thefree surfae elevation will be modi�ed due to the presene of the ylinder. Ampli�ationof the loal free surfae elevation due to di�ration e�ets may ause the inoming waveto over-top on the retangular ylinder, even when the inident wave amplitude is smallerthan the freeboard. Over-topping will naturally have an e�et on the vertial fore timehistory of the wave exitation fore whih will be dependent on the nature of the over-topping wave (see Greo et al. (2007)). Over-topping is not modelled expliitly by ourmodel.



148 A study of �xed ylinders in regular wavesTable 7.3: Non dimensional added mass and damping oe�ients in heave andsway for a retangular ylinder with beam B and draft d osillating with thenon-dimensional frequeny ω
√

B/g = 1.014 at �nite water depth h/B = 1.81.
B/d h/d a33

ρBd
b33

ρωBd
a22

ρBd
b22

ρωBd2.40 4.43 0.8850 0.5592 0.9108 1.04011.50 2.72 0.6512 0.6737 0.2392 1.5109Visous drag foresSine the pressure distribution on the ylinder is modi�ed due to separation of vortiesat the sharp edged orners of the retangular ylinder, the ylinder will experiene a dragfore. This drag fore is represented by the last term in (7.4). The Reynolds number andsurfae roughness dependene of CD for sharp edged bodies an be negleted. However,the KC-number dependene should be assessed. For a faing square ylinder in in�nite�uid at low KC-number �ow (KC < 10), experiments shows that the drag oe�ient
CD ≈ 3.0, i.e. KC-independent (Bearman et al. 1984). Visous drag fore is inluded inthe horizontal diretion for the whole wave yle, and in the vertial diretion only whenthe vertial veloity at the ylinder entre is negative.7.4.1 Comparisons with CFD-simulations and experimentsTo test the proposed method, two test onditions from the experiments in 2006 are on-sidered. The �rst ase onsidered is where the retangular ylinder with draft d = 0.125mis subjet to regular waves with period T = 1.084s and wave height H = 0.088m. Thismeans KC ≈ πH/B = 0.92. Over-topping was not observed in the experiments for thisase. Numerial simulation with the CIP-based NWT using the base ase grid and thesame input parameters as in the experiments has been performed. The vertial foresomputed with the NWT was in good agreement with experiments, meaning the dif-ferene between omputed fore amplitudes and measured fore amplitudes is less than5%. Comparing peak-to-peak fore amplitudes ((F+

y +
∣

∣F−
y

∣

∣)/2) shows that the NWTunderpredits the measured values from experiments by 1.5%. When it omes to hor-izontal fores obtained with the NWT, the agreement with experimental results is lessgood. Computed horizontal fore amplitudes di�er from the measured horizontal foreamplitudes by 15%. Peak-to-peak fore amplitudes di�er by 14%. One should note herethat the time series of the fores obtained with the NWT are relatively short, meaningfores from 2-3 wave yles are used for omparison. This is due to the length of theomputational domain and the fat that no wave absorber is used on the wave maker inthe simulations to take are of the re�eted waves from the model, whih puts a limiton the simulation time. Hene, omputed fores with the NWT might not give a goodrepresentation of the steady-state values. In addition omes the e�et of inreased wa-ter depth during the simulation due to the linear imposition of boundary ondition onthe wave maker. As in the experiments, overtopping was not observed in the numerialsimulation with the NWT for this ase. The generalized Morison model (GMM) gives agood representation of the measured fores, relative to the simpliity of the model. Thedi�erene in vertial fore amplitudes obtained with the GMM ompared to experimentsis less than 5.5%. This is also the ase for the horizontal fore amplitudes. Aording



7.4. A generalized Morison model 149Table 7.4: Measured and omputed wave exitation fore amplitudes ([N/m℄) insway and heave for the test ase 1 and 2 with the retangular model. Beam-to-draft ratio for ase 1 is B/d = 2.4, while for ase 2 B/d = 1.5.Case 1 Case 2
F+

x F−
x F+

y F−
y F+

x F−
x F+

y F−
yExperiments 80.27 -73.26 53.03 -73.52 107.7 -111.8 41.85 -60.53CIP 92.30 -82.34 51.73 -76.66 118.0 -117.9 43.66 -53.32Gen. Morison 84.65 -70.23 50.61 -69.60 116.8 -98.90 37.04 -52.21Newman, eq. (7.7) 89.96 -89.96 65.95 -65.96 137.2 -137.2 54.56 -54.56to Newman (1962), the wave exitation fore amplitude for the mode given by k = 2, 3,referring to the sway and heave mode respetively, an be related to the potential �owdamping oe�ient bkk for the mode in question as

Fka = 0.5H
√

ρg2bkk/ω. (7.7)This relation yields fore amplitudes in sway and heave whih are at most 25% o� themeasured value in the experiments for the present ase. Fore amplitudes, both positiveand negative, of the in-line horizontal fore and the vertial fore obtained from measure-ments and from the di�erent numerial methods are given in Table 7.4. Time series ofthe free surfae elevation at the model position from wave alibration tests and the foresmeasured in the experiments, are ompared with orresponding numerially obtained timeseries from the CIP-based NWT and the generalized Morison model in Figure 7.25. Theomputed fore time history show the same behaviour as the measured time series fromexperiments.In the seond ase the draft was inreased to d = 0.200m, yielding a free-board of0.050m. The ylinder was subjet to regular waves with the same wave parameters as inCase 1. Over-topping was observed in the experiments for this ase, despite the fat thatthe inident wave amplitude was lower than the free-board. This means loal di�ratione�ets are important. The over-topping wave had a dam-breaking-like behaviour. Simu-lations with the CIP-based NWT was performed with the draft inreased to d = 0.200musing the same grid, omputational domain and wave maker signal input as for Case 1.Over-topping was also seen in the numerial simulations, with the same dam-breaking-likebehaviour as observed in the model test. An e�et of over-topping on the wave exitationfores is seen to be a bump on the positive half yles of the vertial fore time history,assoiated with the pressure from the over-topping wave on the top-side of the ylinder.This e�et of over-topping on the vertial fore is aptured by our NWT. As in Case 1,the generalized Morison model is applied to obtain fore time series for Case 2. Resultingtime series of measured and omputed fores for the ase of d/Hm = 0.8 are omparedin Figure 7.26. Sine the inident wave amplitude is lower than the freeboard of theylinder, the generalized Morison model obviously does not predit over-topping. Thisexplains why the obtained time series of the vertial wave exitation fore from the GMMdo not show the same trend as the measured time series and time series obtained withthe CIP-based NWT of the vertial fore. Positive and negative wave exitation foreamplitudes are ompared in Tab. 7.4. The generalized morison model is not tested forthe irular model.
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7.5. Summary 1517.5 SummaryOur study on horizontal ylinders �xed in the free surfae zone and subjet to largeamplitude regular waves has been presented. Numerial wave alibration was performedwith the CIP-based NWT for all test wave onditions used in simulations with modelspresent. As in the experiments from 2006, both a irular and a retangular geometrywere tested with our NWT. Fourier analysis of the measured and omputed fore time-series showed that the seond harmoni omponent of the horizontal fore is importantwhen the draft is small relative to the beam of the model. Further, when over-toppingour, the horizontal fore is almost entirely desribed by the linear harmoni omponent,while the seond harmoni omponent beomes pronouned for the vertial fore. Thiswas observed for both models tested.A generalized Morison model (GMM) for omputation of wave exitation fores onylinders in the free surfae was proposed. The model was tested using test parametersfrom the experiments for a retangular ylinder. Fores obtained with the GMM wereompared with results from experiments and simulations with the NWT. The GMMyielded good results for the ase when over-topping did not our. However, when over-topping our, the GMM is no longer adequate.The CPU-time for eah of the numerial simulations performed with the CIP-basedNWT from whih results have been presented, were of the order of 30 hours on an Intel R©CoreTM Duo 2.4GHz proessor.
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Chapter 8A study of a �oating irular ylinderin regular wavesIn this hapter we investigate the nonlinear wave-indued motions of a moored irularylinder. Time-series of the body motions in heave and sway obtained with the CIP-based NWT are ompared with measured time-series from the model tests. This workhas resulted in a journal paper (Kristiansen and Faltinsen 2009).8.1 Numerial modelling of the 2008-experimentsThe experiments from 2008 was haraterized by a �oating irular ylinder orientedhorizontally in the free surfae, whih was moored and subjet to regular waves. Nonlinearwave indued motions of the ylinder were studied. In the following, a numerial modelrepresentation of the experiments from 2008 is presented.8.1.1 The omputational domain and grid arrangementsA numerial model of the �ume used in the experiments from 2008 was onstruted. Withthe same argumentation as in the previous hapter, the domain length was based on thewave length λ estimated from potential �ow theory, orresponding to the wave periodtested. The irular model with diameter D = 0.100m was for most ases plaed at adistane 4.5λ from the wavemaker boundary. The exeption was one ase where the modelwas loated 9.5λ from the wavemaker boundary in order to run longer simulations. Thewater depth was h = 1.00m as in the experiments. Domain height was hosen to be 1.90m,meaning the distane from the alm water surfae to the top boundary was 0.90m. Forwave generation, the physial �ume is equipped with a �ap-type wavemaker. In the NWT,the �ap wavemaker was modelled linearly by imposing the horizontal veloity omponentof the paddle onto the left hand boundary of the domain, whih was �xed in spae. The�ap motion amplitude needed for generation of waves with a given wave height H wasestimated from (3.26). A damping zone with length Ldz = 4λ was applied at the righthand side of the domain. The top boundary was modelled as an open boundary withatmospheri pressure, while at the bottom boundary a no-slip ondition was imposed. Ano-slip ondition was also applied on the �oating body. In Fig. 8.1 a qualitative skethof the omputational domain is presented. 153
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Figure 8.1: Sketh of the domain used in the simulations with the moored �oatingylinder. Here λ is wave length, D is model diameter, h is water depth, ∆x and
∆y are horizontal and vertial grid spaing, respetively. The parameter γ = 2for most ases, while a = 4 for all tests exept when T = 0.544s for where a = 9was used.Table 8.1: Grid parameters used to obtain three grids with di�erent resolution forsimulations of the moored �oating ylinder in waves. Due the gridding tehniquewill the total number of grid ells vary from ase to ase.

NB Nλ NIGrid 1 55 40 80Grid 2 60 45 90Grid 3 70 45 100Non-uniform staggered Cartesian grids were used. Grid-strething was applied inorder to inrease the grid resolution in regions of the domain where large gradients of thesolution our, while keeping the CPU-time at an aeptable level. The omputationaldomain was divided into sub-regions where di�erent gridding strategies were applied.In the longitudinal diretion, the domain was divided in to three sub-regions Li with
i = 1, 2, 3 as shown in Fig. 8.1. Constant spaing ∆xi between the vertial grid lineswas applied in L1, where ∆xi was based on the wave length λ. In L2, ∆xi varied ina squared osine manner in order to math the relatively oarse grid in L1 with a �negrid region at the model position. Constant grid line spaing was used in the �ne-gridregion of width γD inside L2, where γ = 2 for most ases. In L3, the grid inrement ∆xivaried as a quadrati funtion. For the vertial diretion, quadrati grid strething areused in H1 and H3, while ∆yj is onstant in the interfae zone de�ned by H2. The heightof the interfae zone is for the majority of the tests H2 = 0.20m, exept for ases withlarge body motions, where a larger value of H2 is used to avoid that the model goes outof the �ne grid region. Smooth variations of the grid inrements between the di�erentgrid regions are ensured. For eah test ondition, three grids with di�erent resolution areonstruted suh that grid sensitivity of the results ould be tested. Grid parameters forthe three grids are listed in Tab. 8.1. Due to the gridding method desribed above, thetotal number of grid ells in the domain will vary from ase to ase.



8.1. Numerial modelling of the 2008-experiments 155Table 8.2: Computed mean wave height Hnum from numerial wave alibrationtests and measured mean wave height, HWG2
exp and HWG3

exp orresponding to WG2and WG3, from the physial wave alibration tests. Linear wavemaker theory isused to alulate the neessary �ap amplitude for the input wave height Hinput.
T [s℄ Hinput [m℄ Hnum [m℄ HWG2

exp [m℄ HWG3
exp [m℄0.457 0.023 0.021 0.023 0.0230.497 0.028 0.024 0.029 0.0290.544 0.033 0.029 0.035 0.0330.601 0.040 0.036 0.044 0.0420.761 0.065 0.060 0.069 0.0620.878 0.086 0.081 0.085 0.0851.038 0.120 0.116 0.120 0.1191.132 0.143 0.139 0.138 0.1398.1.2 Numerial wave alibrationNumerial wave alibration tests are performed, whih are simulation of wave generationwith the NWT when the model is not present. Obtained wave heights from the numerialwave alibration tests and measured wave heights from the physial wave alibration testsare presented in Tab. 8.2. The obtained wave heights in the NWT are generally lowerthan the input wave height used when estimating the neessary �ap amplitude of thewavemaker. Computed time-series of the free surfae elevation at x =m and x =m forthe two wave periods T = 1.038s and T = 1.132s are ompared with measured freesurfae elevation from the physial wave alibration tests in Figs. 8.2 and 8.3. Goodagreement between the omputed and measured free surfae elevation is observed for thesteady state region of the time-series, while some deviations are observed in the wavefronts. It is in general di�ult to reprodue the exat transients of the front of thewave train in the experiments with the NWT. This has di�erent reasons. First of all,when the generated waves are short, it is omputationally ostly to resolve the wavesin a domain with dimensions of the physial �ume. Thus, we have used a shorter wavetank in the numerial simulations than the atual physial wave �ume. Seond, whenomparing time-series of the free surfae elevation from �umes with di�erent dimensions,there are two important wave harateristis that has to be aounted for. These arethe phase veloity and the group veloity. If one travels with the wave front, linearlythe wave-front kinematis repeat itself when the wave front has propagated an integralnumber of wave lengths. Hene, when the omputed free surfae elevation in the wavefront is ompared with measurements done in the larger physial �ume, the di�erene ofthe distane between the wavemaker and wave probe in the physial �ume and that inthe numerial �ume should also be an integral number of wave lengths. However, in thefully nonlinear problem the wave-front kinematis an be di�erent even for two positionsloated an integral number of wave lengths apart. This means that if the dimensionsof the NWT are di�erent from the dimensions of the physial wave tank, the transientbehaviour of the wave front will not be aptured well.In the adopted free surfae apturing method where the step-like olor funtion φ1(x, y, t)is used to de�ne the water phase, the free surfae is found from the olor funtion as the
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Figure 8.2: Comparison between free surfae elevation obtained from numerialand experimental wave alibration tests. Wave period is T = 1.038s and inputwave height is H = 0.120m.
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Figure 8.3: Comparison between free surfae elevation obtained from numerialand experimental wave alibration tests. Wave period is T = 1.132s and inputwave height is H = 0.143m.
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Figure 8.4: Contour levels of the olor funtion φ1 representing water duringnumerial wave alibration for ase with wave period T = 1.038s and wave height
H = 0.120m. The free surfae is represented by the ontour φ1 = 0.5.ontour φ1 = 0.5. Due to numerial di�usion at the steep gradients of the olor funtion,some smearing of the olor funtion is observed during the simulation. This is exempli�edin Fig. 8.4, where the vertial position in time of the ontours de�ned by φ1 = 0.05,

φ1 = 0.5 and φ1 = 0.95 at the two positions x =m and x =m are shown. Numerial di�u-sion is observed as inreasing distane between the ontour lines in time for the diretiongiven by the steepest gradient.
8.1.3 Modelling of the mooring line arrangementThe mooring system was modelled as straight linearly elasti lines where in the simulationsthe far end were pin-pointed at the oordinates of the ontat point between the mooringline and the pulley from the experimental test setup. The other end of the mooring linewas loated at the model enter, i.e. the ylinder axis, and was thus moving with thebody. Two mooring lines were applied and the line geometry was symmetri about thevertial y-axis through the ylinder axis when the model was resting at its equilibriumposition. Then, the horizontal and vertial extent of eah mooring line was lx = 2.43mand ly = 0.136m, and the mooring lines made an angle α = 3.2◦ with the alm free surfaeas in the experiments. The mooring lines had pre-tension Fs0 = 38.1N and an equivalentspring sti�ness ke = 151.2 N/m2 in the 2D model. Mooring line fores were deomposedto yield omponents in both horizontal diretion and vertial diretion, depending on theinstantaneous position of the model.



158 A study of a �oating irular ylinder in regular waves8.1.4 Equivalent mass of the irular ylinder with end-platesIn the model tests presented, the model was a irular ylinder equipped with irularend-plates. These end-plates were made of plexi-glass and ontributed to 33.7% of thetotal mass of the model, but their ontribution to the total buoyany were only 13.4%.Sine the NWT is a 2D ode, it annot inlude these end-plates into the alulations.Further, modelling the ylinder with the same ross-setional dimensions and measuredmass divided by the model length, as in the experiments, will give an inongruity be-tween model weight and hydrostati fores on the model. Hene, an equivalent mass ofthe model has to be introdued when numerial simulations of the model tests are per-formed. This e�etive mass is found by balane of stati fores in the vertial diretion,dedued from observations and measurements in the model tests. When the model in theexperiments was moored and in its equilibrium position, the ylinder axis was observed tohave a positive vertial o�set ∆y = 4mm from the alm water surfae, whih means thesubmerged area A of the irular ross-setion an be determined. Then the buoyanyfore of the model, exluding the end-plates, is found as B = ρgALm, where Lm is thelength of the model. The three mooring lines, whih all made an angle α = 3.2◦ with thealm water surfae, had a pre-tension measured to be F01 = 10.53N, F02 = 11.20N and
F03 = 21.67N. Thus the equivalent mass of the ylinder is found, using Newton's �rst law,as Me =

(

B +
∑3

i=1 F0i sin(α)
)

/ (gLm) = 3.940kg. This equivalent mass is used as inputto the NWT.8.2 Identi�ation of damping in the experimentsFree deay tests of the sway motion of the moored ylinder are onduted, both numer-ially and experimentally, in order to identify the di�erent soures of damping in theexperiments. The numerial free deay tests was performed using the same initial ondi-tions as in the experiments. The initial horizontal o�set of the model from equilibriumwas η2(0) = 0.047m. Numerial and experimental results are ompared in the followingand deviations are disussed. The relative importane of di�erent physial e�ets ausingdeay rates of the motion amplitudes are also presented.In Fig. 8.5(a), time-series of the sway motion obtained from CIP-simulations areompared with sway motion dedued from the mooring line fores measured in the ex-periments. Corresponding deay rates of the sway motion amplitudes are shown in Fig.8.5(b). Both in the experiments and in the simulations, the period of the sway motionwas found to be T ≈ 1.09s, whih is the natural period in sway from linear potential �owtheory. In Fig. 8.5(b) the theoretial deay rate due to linear wave radiation damping isplotted for omparison. While the deay rate of the sway motion obtained from numeri-al simulations seems to approah that due to linear wave radiation damping, there is aninrease in the deay rate of the sway motion amplitudes obtained from the experiments.This inrease in the damping level with dereasing amplitude of osillation is hard toexplain in terms of hydrodynami e�ets. If the model osillates with an amplitude η2aequal to the initial horizontal displaement at its natural frequeny, the Reynolds numberfor osillatory �ow is Rn =
ωη2

2a

ν
≈ 104 whih means the boundary layer is laminar inattahed �ow (Faltinsen 1990). Changes in the damping level are thus not likely to beassoiated with transitions in the boundary layer �ow. In the following, visous e�ets are
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160 A study of a �oating irular ylinder in regular wavesdisussed. Investigation of the Keulegan-Carpenter number, de�ned as KC = 2πη2a/D,shows that KC > 2 for the two �rst periods of osillation in the free deay test. Thismeans visous �ow separation is likely to our, whih is also seen in the numerial sim-ulations where the �ow separates and vorties are shed from the body surfae during thetwo �rst periods of osillation. The damping term due to visous �ow separation are al-ternatively estimated as follows. By assuming that the free surfae ats as a wall and thatthe boundary layer �ow is laminar, a linearized visous damping fore FD = −bv
22η̇2 due to�ow separation is added to the sway motion equation. Equivalent linearization is appliedto obtain bv

22 = 2
3π

ρCDDωη2aLm, where CD ≈ 0.2KC (Graham 1980). The boundarylayer �ow on the model surfae will also ontribute to the damping of the body motion.If the �ow is assumed attahed to the body surfae an estimate of the damping level inthe experiments due to skin frition on the half submerged irular ylinder of length
Lm = 0.58m with end-plates an be found by linear theory. For harmoni osillationswith onstant amplitude η2a = 0.02m at the natural sway frequeny ωn2 = 5.75 rad/s, theontribution from skin frition, i.e. tangential stresses on the ylindrial part of the model,an be shown to be |Fv| = π

2
µωη2a

√

ω
ν
DLm ≈ 0.03N (Bathelor 1967). There is also ane�et from normal visous stresses on the surfae, whih aording to Stokes (Stokes 1851)yields an equal ontribution as that from tangential stresses on the surfae of the iru-lar ylinder. The skin frition drag on the end-plates used to ensure 2D-onditions arefound through Stokes' seond problem to ontribute |F EP

v | ≈ 0.03N to the visous dragfore. The in�uene due to the narrow gap between the end-plates and tank walls on thevisous e�ets is negligible. Thus, the total damping fore due to the boundary layer onthe model in the physial free deay test is of order |F bl
v | ≈ 0.09N. This damping foreis shown to deay linearly with η2a. In omparison, the linear wave radiation dampingfor this ase is |Fw| = 0.27N. If the �ow does not separate, this means that about 25%of the total theoretial hydrodynami damping fore is due to boundary layer e�ets atthe natural period in sway. Theoretial deay rate of the sway motion amplitudes due tovisous damping and linear wave radiation damping is shown in Fig.8.5(b). The obtaineddamping oe�ients shows that initially, damping due to visous �ow separation is of thesame order as the linear wave radiation damping. However, the inreasing deay rate seenin the later stage of the experiments ould not be explained in terms of visous e�ets.Damping due to wall ontat ould be another explanation, but investigation of the jerkparameter for the measured aeleration time-reords does not indiate any wall ontatevents that ould have explained the inreased damping level. However, frition in thepulleys used in the mooring line arrangement will introdue damping to the system. Freedeay tests of the model in air was performed in order to investigate the damping fromthe mooring line arrangement. Physially, this was done by suspending the model usinga long line from the roof and then draining the �ume, suh that the model appeared asa long pendulum. The sway motion amplitudes from free deay in air also showed thesame tendeny as seen for free deay of the sway motion for the semi-submerged ylin-der, namely an inreasing deay rate with dereasing amplitude. This means that theinreasing damping level in the last part of the free deay test is not related to hydro-dynami e�ets, but most probably assoiated with nonlinear damping due to frition inthe pulleys used in the mooring line arrangement. By using the experimentally obtaineddeay rate for the largest sway motion amplitudes from the free deay test in air, a lin-ear approximation of the damping oe�ient due to pulley-frition was estimated. Theobtained damping oe�ient, bp

22, yielded a orresponding damping ratio in water due to



8.3. Comparisons between model tests and simulations 161the pulleys as ξ = bp
22/ (2ωn(m + a22)) ≈ 0.012. In omparison, the damping ratio due toskin frition on the semi-submerged ylinder in attahed �ow is ξ = 0.0091. The theo-retial deay rate of the sway motion amplitudes when all damping terms dedued aboveare inluded is presented in Fig. 8.5(b). Sine the damping oe�ient due to visous�ow separation depends on the motion amplitude, the deay rate is found by iteration.Neither skin frition drag, nor damping due to pulley-frition is inluded in the numerialsimulations with the NWT. However, the fores from normal stresses due to the bound-ary layer on the ylinder surfae are impliitly inluded in the pressure fores. What theresults in Fig. 8.5(b) indiate is that the very good agreement between the experimentsand the CIP shown in Fig. 8.5(a) for the initial osillations is oinidental. Even thoughthe pulley-frition and the skin-frition are not dominant, their e�ets should appear asa visible di�erene between the experiments and CIP-simulations.8.3 Comparisons between model tests and simulationsThe wave-indued sway and heave motion of the ylinder are obtained by integrationof the measured aelerations. Further are the obtained model motion from numerialsimulations band-pass �ltered using the same ut-o� frequenies as for the measurements.Roll motion of the irular ylinder is not onsidered in the present study. Comparisonsbetween numerial simulations and experiments are disussed in the following.8.3.1 A model based on linear potential �ow theorySine we are dealing with nonlinear motions, we de�ne the sway and heave motion am-plitudes used for omparison as ηka = 0.5(η+

k + η−
k ), where k = 2, 3 refers to the swayand heave mode, respetively. Here η+

k is the positive amplitude and η−
k is the negativeamplitude in steady state ondition. The motion amplitudes were made dimensionlessusing the inident wave height H measured in the wave alibration tests. Sway and heaveresponse of the model predited by linear potential �ow theory with additional dampingdue to visous and pulley e�ets, was used for omparison and is derived as follows. The2D exitation fore amplitude Fka has been related to the potential damping oe�ient

bw
kk as Fka = 0.5H

√

ρg2bw
kk/ω (Newman 1962). We assume that roll motion is negligible.Then, it follows from the unoupled linear equations for sway and heave that
ηka

0.5H
=

Fka/ (0.5H)
√

(ckk − ω2 (m + akk))
2 + ω2b2

kk

. (8.1)Here, m is the strutural mass of the model per unit length, akk and bkk are the frequenydependent 2D added mass and damping oe�ients, ckk is the 2D restoring oe�ient,
ω is wave frequeny, ρ is mass density of water while g is the aeleration of gravity.For the heave mode, i.e. k = 3, only linear wave radiation damping is inluded andhene b33 = bw

33 in (8.1). The added mass and potential damping oe�ients (akk and
bw
kk) for in�nite water depth was provided by Skeji (Skeji 2008). As observed from thefree deay tests, visous damping gives a signi�ant ontribution to the total damping atthe natural period in sway. Thus, in addition to the linear wave radiation damping, thevisous damping terms due to boundary layer e�ets and �ow separation from the semi-submerged irular ylinder, bbl

22 and bv
22 respetively, are inluded in b22. The boundary
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Figure 8.6: Heave and sway response amplitudes, η3a and η2a respetively, ob-tained from experiments and normalized by inident wave height H from wavealibration tests. Results are ompared with linear potential �ow theory andtheory where visous damping and pulley frition damping are inluded. Alsoresults based on the CIP-method are shown.
layer damping is found as bbl

22 = πµD
√

ω/ν + µ
√

ω/(2ν)Sw/Lm. Here, the �rst term isdue to skin-frition and normal-stresses on the ylindrial part of the model while thelast term is due to skin-frition on the end-plates of the model. Further, Sw is the totalwetted area of the end-plates. The hydrodynami damping oe�ient in (8.1) for thesway mode is then b22 = bw
22 + bv

22 + bbl
22. Also damping due to frition in the pulleys(bp

22) is added for omparison. Sine the visous damping oe�ient bv
22 depends on theamplitude of the sway motion, the sway motion equation inluding the visous dampingterm is solved by iteration to �nd the sway motion amplitude for a given wave height. InFig. 8.6, the heave and sway motion amplitudes from the experiments are presented andompared with linear potential �ow theory using Eq. (8.1). In addition, the sway motionamplitudes are ompared with theory where the linearized visous damping and linearizedpulley damping are inluded. Two notieable features are observed. One feature was largeamplitude sway motion that ourred when the wave period was half the sway naturalperiod, whih also was haraterized by a shift in the response frequeny. The seondfeature is the very large disrepany between measured sway motion and that preditedby linear potential �ow theory lose to the sway natural period. These two partiularsare disussed in the following.
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Figure 8.7: An xy−plot of the heave and sway motion of the ylinder in thetime interval t ∈ [22, 25]s obtained with the NWT ompared with measuredresponse in the experiments for the ase when T = 0.544s and wave steepness is
H/λ = 1/14. The arrows indiates the diretion of the motion.8.3.2 Subharmoni responseSteady-state of the ylinder motion was reahed in all the test runs, exept for the testsfor whih the wave period was T = 0.544s. For these tests, the response amplitudes ofthe sway mode of motion were observed to inrease until the motion beame so largeand violent that ontat between the model and the side walls of the �ume ourred.In Fig. 6.14, time-series of the sway motion from repetition tests with the wave period

T = 0.544s are ompared. The repetition tests shows that this harateristi sway motionwas repeatable until wall-ontat, but the sway response had di�erent behaviour for thetwo wave steepnesses tested. Sine no steady-state was reahed for tests with T = 0.544s,the maximum response amplitude before ontat ourred is used for omparison here,whih explains the satter of the sway response in Fig. 8.6 for this wave period. Theinstability phenomenon was also observed to be haraterized by a shift in the swayresponse frequeny. In the �rst stage after the wave train has reahed the model, theylinder started to osillate in heave and sway with period equal to the wave period,as expeted. However, after a build-up through 18 - 20 wave periods, the sway motionfrequeny had beome half the wave frequeny, suh that the frequeny of the sway motionwas equal to the natural frequeny in sway. In order to get a better impression of themotion, an xy−plot of the heave and sway motion is presented in Fig. 8.7. Suh sub-harmoni response annot be explained in terms of linear potential �ow theory. Resultsshows that the largest sway motion amplitude obtained from experiments for some ofthe repetition tests was more than 250% of that predited by linear theory for this waveperiod. Body motion obtained from numerial simulations for this partiular ase isompared with experiments in Fig. 8.8 for the smallest wave steepness H/λ = 1/14.
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Figure 8.8: Heave and sway motion of the ylinder obtained with the NWT andompared with measured response from experiments when T = 0.544s. Inputwave steepness was H/λ = 1/14.Due to the di�erent length of the NWT relative to the physial �ume, there is a phasedi�erene between the measured and simulated time-series. The omputed time-series ofthe body motion is thus tuned suh that the wave front reah the model at the sametime as in the experiments. The referene time is measured from the startup of thewavemaker in the physial model tests. The heave motion shows good agreement. It isalso noted that for the sway motion the numerial simulations also show a subharmoniosillation with frequeny half the foring frequeny. The learly seen in Fig. 8.9 wherethe power spetra obtained from omputed and measured time-series of the sway motionare ompared. Moreover, the alulations are limited in time. The reason is the length ofthe omputational domain in onnetion with wave re�etions. It is after the numerialsimulation time that the experimental sway amplitudes shows to inrease strongly. Inthe experiments, the sway response showed to be quite di�erent for the two wave heightstested (see Fig. 6.14). This indiates that the sway response for this wave period iseither sensitive to the wave steepness diretly, or more likely, sensitive to the transientsassoiated with the wave front. Thus, if the wave front in the experiments is not wellreprodued in the simulations, deviations of the resulting sway motion should be expeted.A hypothesis is that the phenomenon is due to instabilities. An analogy is whathappens with the Mathieu equation whih formally an be expressed as mẍ + c(1 +
δ cos ωt)x = 0. Instabilities happen for instane in the viinity of ωn/ω = 0.5, wherethe natural frequeny ωn =

√

c/m (MLahlan 1964). The apparent instability in thepresent ase also happens for ωn/ω = 0.5. However, the present oupled equation ofmotion for the system annot simply be expressed as the Mathieu equation. One initialspeulation was that the mooring system auses a time-dependent restoring oe�ientthat leads to instabilities. However, numerial simulations with the present NWT using a
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Figure 8.9: Comparison of power spetra from omputed and measured swaymotion of the ylinder for when subharmoni response our. Wave period is
T = 0.544s and input wave steepness is H/λ = 1/14.onstant restoring oe�ient also showed a subharmoni omponent of the sway motionwhen Tn2/T = 2. Sub-harmoni omponents of the sway response was also observed inthe tests with wave period T = 0.497s, both in the experiments and in the numerialsimulations (see Figs. 8.10 and 8.11). However, the harateristi growth of the swaymotion amplitudes as observed for when T = 0.544s was not seen here, and a steady stateof the model motion was reahed.8.3.3 Sway resonaneThe experiments further indiate that linear potential �ow theory largely over-preditsthe sway motion around resonane. The peak value of η2a/(0.5H) from linear potential�ow theory is of order 10, while in the experiments η2a/(0.5H) < 2. This means linearpotential �ow theory over-predits the sway motion at resonane by more than 500%.Figure 8.13 shows time-series of the response from numerial simulations by the NWTompared with experiments when the wave period is T = 1.038s. This wave period is loseto the sway natural period. The wave height obtained from the numerial wave alibra-tion test was H = 0.116m, while the wave height from experimental wave alibration testswas H = 0.114m. The omputed time-series of the body motion agree satisfatorily withmeasurements. This means the simulations support what is seen from the experimentalresults, namely that linear potential �ow theory highly over-predits the sway responsenear resonane. However, the sway motion is still onsidered large with amplitudes of theorder of the diameter of the model. Figure 8.6 shows by using Eq. (8.1) that the dis-repany between predited sway motion and experiments near sway resonane is mainlyexplained by visous e�ets due to �ow separation. It should be noted that in full-saleonditions the boundary layer �ow will be turbulent and the visous drag oe�ient due toseparation will be lower. Hene, Froude-saling of the sway motion amplitudes presented
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Figure 8.10: Sway and heave motion of ylinder obtained with the NWT om-pared with measured response from experiments when T = 0.497s. Input wavesteepness was H/λ = 1/14. Subharmoni e�ets of the response in sway isobserved.
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Figure 8.11: Power spetrum of sway motion obtained from model tests. Waveperiod is T = 0.497s and input wave steepness is H/λ = 1/14. Subharmoniomponents of the response is seen around half the wave frequeny.
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Figure 8.12: Sway and heave motion of ylinder obtained with the NWT om-pared with measured response from experiments when T = 1.038s. Input wavesteepness was H/λ = 1/14.will be non-onservative for the region around resonane.8.3.4 Higher order harmonis of wave exitation foresAelerations of the ylinder are diretly assoiated with the hydrodynami fores atingon the body through Newton's seond law. Thus, in order to study the frequeny on-tent of the hydrodynami fores ating on the model, the Fourier amplitudes obtainedfrom the aeleration time-series are studied. A omparison of Fourier amplitudes of thebody aelerations obtained from simulations with the NWT and from measurementsare presented in Figs. 8.14, 8.15 and 8.16. Sub-harmoni omponents in the Fourieramplitudes of the sway aeleration are seen in the tests with wave period T = 0.497sand T = 0.544s. The latter test wave period is where the instability phenomenon ofthe sway motion ours. Pronouned higher order harmoni omponents are seen in themodel aelerations when the model is exited near the sway natural frequeny as shownin Fig. 8.17. Band-pass �ltering is applied to isolate the body aelerations in heaveand sway assoiated with the linear-, seond- and third-harmoni omponents. Then byintegration, the body motion due to the di�erent omponents are alulated separatelyand then ompared. Now onsider the ase where T = 1.032s and H = 0.120m. Here,the linear- and the third harmoni omponents of the sway aeleration are the mostpronouned. The large third-harmoni omponent in the measured aelerations, thusalso in the foring, is believed to be aused by visous drag due to �ow separation. It isobserved in the free deay tests presented that the e�et of �ow separation is importantfor larger motion amplitudes at the sway natural frequeny. Further, Fourier analysis ofthe drag term in Morison's equation shows that the drag term ontains most of its energy
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Figure 8.14: Comparison between Fourier amplitudes of sway and heave ael-erations of the ylinder, obtained from simulations with the NWT and measure-ments. Wave period is T = 0.457s and input wave steepness is H/λ = 1/14.
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Figure 8.15: Comparison between Fourier amplitudes of sway and heave ael-erations of the ylinder, obtained from simulations with the NWT and measure-ments. Wave period is T = 0.601s and input wave steepness is H/λ = 1/14.
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Figure 8.16: Comparison between Fourier amplitudes of sway and heave ael-erations of the ylinder, obtained from simulations with the NWT and measure-ments. Wave period is T = 0.761s and input wave steepness is H/λ = 1/14.
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Figure 8.17: Comparison between Fourier amplitudes of sway and heave ael-erations of the ylinder, obtained from simulations with the NWT and measure-ments. Wave period is T = 1.038s and input wave steepness is H/λ = 1/14.
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Figure 8.18: Sway and heave motion of ylinder obtained with the NWT om-pared with measured response from experiments when T = 0.457s. Input wavesteepness was H/λ = 1/14.at the linear- and third-harmoni omponent. For the ase of heave aelerations, thelinear- and seond harmoni omponents are dominant, and in fat the seond-harmoniomponent exeeds the linear-harmoni omponent. Further, the heave motion ampli-tude due to the seond harmoni omponent is 42% of that due to the linear harmoniomponent. However, sine there is a phase between the motion due to the linear- andseond-harmoni omponent, the motion amplitude due to their sum is 121% (and not142%) of the motion amplitude due to the linear-harmoni alone. It is noted that thefrequeny of the seond-order harmoni omponent for this wave frequeny is lose to theheave natural frequeny. Hene, the reason why the seond-order harmoni omponentof the heave aeleration exeeds the linear-harmoni omponent is assoiated with thatseond-order wave fores exites the model at the heave natural frequeny. Then, thisserves as an example that higher order harmonis of the hydrodynami fores may exiteresonane frequenies of the struture, whih are di�erent from the wave frequeny.In the ontext of open age �sh farms, higher-order harmonis and even sub-harmoniomponents of the wave loading on the �oaters are seen to be signi�ant for moderatedesign wave onditions. These nonlinear fore omponents may possibly exite elastimodes of the struture and must therefore be onsidered when fatigue life properties ofthe �sh farm are analyzed.8.4 Summary of resultsSimulations of the moored �oating irular ylinder with the same test onditions as in themodel tests from 2008 have been performed. Time-series of omputed body motions due
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Figure 8.19: Sway and heave motion of ylinder obtained with the NWT om-pared with measured response from experiments when T = 0.601s. Input wavesteepness was H/λ = 1/14.
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Figure 8.20: Sway and heave motion of ylinder obtained with the NWT om-pared with measured response from experiments when T = 0.761s. Input wavesteepness was H/λ = 1/14.
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Figure 8.21: Sway and heave motion of ylinder obtained with the NWT om-pared with measured response from experiments when T = 0.878s. Input wavesteepness was H/λ = 1/14.
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Figure 8.22: Sway and heave motion of ylinder obtained with the NWT om-pared with measured response from experiments when T = 1.132s. Input wavesteepness was H/λ = 1/14.



8.4. Summary of results 173to regular beam sea waves was ompared with body motions dedued from the measuredbody aelerations. The di�erent soures of damping in the experiments was studiedby means of free deay tests, both physially and numerially with the NWT. It wasfound that frition from the pulleys in the mooring arrangements introdued nonlineardamping to the system. Further, it was found that nonlinear damping due to visous �owseparation matters at sway resonane for the system onsidered. This also explains whylinear potential �ow theory over-predits the sway response at resonane. The instability-like behaviour of the sway motion as observed in the model tests was also obtained insimulations with the NWT when the wave frequeny was two times the sway naturalfrequeny. However, what auses this partiular phenomenon ould not be onluded.Fourier analysis of the measured and omputed body aelerations showed that higherorder harmonis of the hydrodynami fores are important. It was also shown that higherorder harmoni omponents of the wave exitation fore an exite natural frequenies ofthe system that are di�erent from the wave frequeny. This is important for fatigue lifeanalyses of �sh farms.
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Chapter 9Summary and suggestions for furtherwork
9.1 Summary of the present workThe present work on the wave indued e�ets on �oaters of aquaulture plants was basedmodel tests and numerial simulations.A CFD numerial wave tank (NWT) for fully nonlinear wave-body interation prob-lems has been developed. The NWT uses a one-�uid formulation to solve the inompress-ible Navier-Stokes equations for the air and the water, using CIP-based �nite di�erenemethod on a Cartesian staggered grid. The NWT an handle �oating bodies.Two sets of model tests have been onduted. In the �rst set from 2006, �xed horizontalylinders in the free surfae zone were studied. Two ross-setion geometries were tested.One irular and one retangular. The models were subjet to regular beam sea waves.Test parameters for the two models were wave period, wave steepness and model draft.Clamping fores on the model were measured in addition to the free surfae elevation ateight positions in the �ume. Wave over-topping the models were observed for some of thetest onditions.In 2008, model tests with a �oating horizontal irular ylinder were performed. Themodel was tightly moored and subjet to regular waves. Test parameters were wave periodand wave steepness. The wave period tested overed both the heave resonane period andthe sway resonane period. Mooring line tension and model aelerations were measured.Free surfae elevation were measured at six positions. A detailed desription of how toobtain the rigid body motions by means of integration of measured body aelerationswas presented. In order to disover ontat between the �oating ylinder and the tankwalls from the measured signals, the jerk parameter was introdued. The jerk is foundas the time derivative of the measured aeleration signals. Wall ontat leads to spikesin the jerk time-series. We also disovered an instability phenomenon of the sway motionharaterized as subharmoni resonane. This ourred when the wave frequeny wastwie the sway natural frequeny. After some time of building up, the sway motionperformed a �nal phase shift from the wave frequeny to the natural frequeny in sway.Two separate studies based on the two model tests are performed. In the �rst study, themodel tests from 2006 are onsidered. Numerial simulations using the test setup from theexperiments are performed with the NWT. Computed time series of the wave exitationfores are ompared with the measured lamping fores on the models. Good omparisons175



176 Summary and suggestions for further workare shown. Fourier analysis of the measured and omputed fores are performed, whihshows that the relative importane of the seond harmoni omponent of the horizontalfore inreases with dereasing model draft. For the vertial fore, the seond harmoniomponent is important when over-topping ours. A generalized Morison type of modelwas presented and applied to some of the test onditions from the experiments. Weonluded that suh a model is not adequate for ases where over-topping our. However,the method yielded good results when moderate waves were tested.The moored �oating irular ylinder is onsidered in the seond study. Also for thisase, numerial simulations using the same test onditions as in the experiments wereperformed with our NWT. Time-series of the omputed body motions were omparedwith measurements and good agreement were shown. We found that linear potential�ow theory over-predits the sway response at resonane by more than 500% relative tothe measured sway response. This disrepany was explained in terms of visous �owseparation. When adding a linearized visous damping term as that in Morisons equationto the hydrodynami fores from potential �ow theory, the predited sway motion atresonane showed good agreement with the measurements. Subharmoni resonane asoberved for the sway motion in the model tests was also obtained in simulations with theNWT. Measured sway amplitude in the model tests was at most 250% of that prediedby linear potential �ow theory for the ase when subharmoni resonane oured. Fourieranalysis of the measured and omputed body motions was performed. We found that thethird harmoni omponent is important at sway resonane, whih we showed ould berelated to visous �ow separation. We also found that higher harmoni omponents ofthe wave fores an exite natural frequenies of the struture. This was exempli�ed bythat heave resonane was exited for tests where the wave frequeny was half the heavenatural frequeny.9.2 Suggestions for further workFurther work that ould be done relative to the present study is to improve the numer-ial model by inluding a model for turbulene suh that simulations of the full sale�oater with turbulent boundary layers an be performed. Then the e�ets of the tur-bulent boundary layer �ow on the wave indued loads and the resulting motions of the�oater ould be investigated. Also an algorithm for omputation of the fores due to skinfrition and visous normal stresses on the surfae of the �oater should be implemented.Improved methods for free surfae apturing with less smearing of the free surfae shouldbe onsidered. The numerial ode should also be developed to allow for better griddingalgorithms, suh that the grid an be loally re�ned near the body and in the free sur-fae zone. A sharp representation of the solid body boundary is also preferable. Oneproblem assoiated with numerial simulation of a �oating body when a no-slip boundaryondition is applied on the body surfae is how to move the ontat point between thefree surfae and the body boundary. This problem should be investigated. The ombinede�ets of urrent and waves on the �ow around the �oater and assoiated hydrodynamifores should also be studied.There are still many hydrodynami e�ets related to the �oaters of aquaulture plantsthat annot be addressed with a 2D numerial model. Examples here are nonlinear 3De�ets assoiated with a horizontal ylinder in the free surfae when the inoming waves



9.2. Suggestions for further work 177rests are not parallel to the ylinder axis. Further, hydroelasti e�ets for a omplete�oating ollar in waves should be investigated.
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Appendix ADetails on the numerial wave tank
A.1 Advetion alulation using the CIP-methodSome details on the 1D and 2D CIP-method are presented. Also the mathematial foun-dation for the CIP-method is desribed.A.1.1 Advetion in 1D - mathematial bakgroundMathematial bakground for the 1D CIP-method will now be presented. Consider the1D advetion equation

∂f

∂t
+ u

∂f

∂x
= 0. (A.1)This equation desribes the transport of a variable f(t, x) with the transport veloity

u(t, x) and is lassi�ed as a partial di�erential equation (PDE) of the hyperboli type,whih is in general hard to solve. We assume that both f and u are ontinuous in time tand spae x. We will make use of the material derivative whih is de�ned as
df(t, x(t))

dt
=

∂f

∂t
+

∂f

∂x

dx

dt
. (A.2)By taking the material derivative of the variable f along a urve C in the xt−plane andsay it should be equal to the left hand side of (A.1), we get

df

dt
=

∂f

∂t
+

dx

dt

∂f

∂x

=
∂f

∂t
+ u

∂f

∂x
= 0This means we an redue the partial di�erential equation (A.1) to the following set ofordinary di�erential equations (ODEs) along the urve C.

df

dt
= 0 (A.3)

dx

dt
= u (A.4)The ODE (A.3) implies that f is onstant along the urve C de�ned by (A.4). Two aseswill now be disussed. 187



188 Details on the numerial wave tankFirst, assume that the advetion veloity u is onstant in time and spae. Further,assume that at time t = 0, the urve C passes through the point x(0) = x0 for wherethe adveted variable f has the initial value f0(x0). The solution to (A.4) is x = x0 + ut.Further, as (A.3) implies that f(t, x) is onstant along the urve C, the value of f for pairsof x and t on the urve C an be related to the initial value of f at x0 as f(t, x) = f0(x0).Hene,
f(t, x) = f0(x− ut). (A.5)Next, we onsider the ase when the advetion veloity is linearly varying and desribedby u = ax, where a is a onstant. Again, assuming that for the time t = 0, the urve Cpasses through x(0) = x0 for where f has the initial value f0(x0). Then, the solution to(A.4) is x = x0 exp(at). Further, f(t, x) = f0(x0) leads to the solution

f(t, x) = f0(x exp(−at)). (A.6)We note that for small times t≪ 1, using Taylor expansion of the exponential argument,the solution is found approximately as f(t, x) ≈ f(x− ut).Advetion with a soure termConsider a modi�ed advetion equation, where a soure term has been introdued to theright hand side of (A.1). The new PDE is
∂g

∂t
+ u

∂g

∂x
= −bg (A.7)Here, g is the transported variable, u is the transport veloity and b is a onstant. Thematerial derivative of g along a urve C in the xt−plane, initially passing through x(0) =

x0, is set equal to the left hand side of (A.7) and we get
dg

dt
=

∂g

∂t
+

dx

dt

∂g

∂x

=
∂g

∂t
+ u

∂g

∂x
= −bg.Hene, (A.7) an been redued to the following pair of ODEs

dg

dt
= −bg (A.8)

dx

dt
= u. (A.9)Now, assume that u = ax and b = u′(x) = a. Then the solution to (A.9) is x = x0 exp(at).The evolution of g along the urve C is desribed by the ODE (A.8), whih has the solution

g(t, x) = g0(x0) exp(−bt). Substitution yields
g(t, x) = g0(x exp(−at)) exp(−bt). (A.10)For small times t≪ 1, we note that g(t, x) ≈ g0(x− ut)(1− bt).



A.1. Advetion alulation using the CIP-method 189A.1.2 The 1D CIP-shemeWhen solving the 1D advetion problem using the traditional CIP-sheme, the advetedvariable f(x, t) in the upwind ell is approximated by a ubi polynomial F n
i (ξ), de�nedas

F n
i (ξ) = C3ξ

3 + C2ξ
2 + C1ξ + C0, (A.11)where ξ = x − xi and where C3, C2, C1 and C0 are unknown oe�ients. We alsointrodue the di�erentiated pro�leG(ξ) = dF/dξ, whih is an approximation to the spatialderivative g of the adveted variable f . In order to determine the unknown oe�ients,the following onstraints are used:

F n
i (0) = fn

i F n
i (xiw − xi) = fn

iw (A.12)
Gn

i (0) = gn
i Gn

i (xiw − xi) = gn
iw (A.13)This yields a system of four equations for the four unknown oe�ients. To simplify thenotation, we introdue the signed node spaing ∆x̂ = xiw − xi. Then, after some algebrawe get

C3 =
gn

i + gn
iw

∆x̂2
− 2(fn

iw − fn
i )

∆x̂3
(A.14)

C2 =
3(fn

iw − fn
i )

∆x̂2
− gn

iw + 2gn
i

∆x̂
(A.15)

C1 = gn
i (A.16)

C0 = fn
i . (A.17)When the approximation funtion F n
i is found, the adveted variable and the tentativevalue of the spatial derivative in the node xi for the next time step an be found as

fn+1
i = F n

i (−un
i ∆t) (A.18)

g∗
i = Gn

i (−un
i ∆t). (A.19)The spatial derivative at the new time step is obtained by adding the soure term due tothe tentative value after pure advetion of the di�erentiated pro�le, as

gn+1
i = g∗

i −∆t

(

un
i+1 − un

i−1

∆xi + ∆xi+1

)

g∗
i . (A.20)A.1.3 The upwind methodThe upwind method, whih is a �rst order upwind di�erening sheme, was implementedfor solving the 1D advetion equation and applied to some of the veri�ation test problems.This was to be able to ompare the performane of the implemented CIP-sheme withone of the most simple and well-known numerial shemes for advetion alulations. Thedisretized version of the 1D advetion equation using the upwind method is

un+1
i − un

i

∆t
+ un

i

(fn
iw − fn

i )

∆x
= 0, (A.21)where f is the adveted variable, u is the advetion veloity, ∆t is the time inrement and

∆x is the spatial inrement. Further, the index i refers to the spatial node onsidered,
iw refers to the upwind (upstream) node and n is the time step. The upwind method isdesribed in most of the textbooks on CFD, e.g. (Roahe 1976) and (Toro 1999).



190 Details on the numerial wave tankA.1.4 2D CIP-oe�ientsWhen using the A-type CIP-method for solving the advetion equation, usually a ubipolynomial surfae F n
i,j(ξ, η) is reated to model the adveted variable fn(x, y) in theupwind ell. A omplete ubi polynomial surfae has ten oe�ients that must be deter-mined. For this purpose, the funtional values fn

i,j and their spatial derivatives ∂fn

∂x
|i,j = gn

i,jand ∂fn

∂y
|i,j = kn

i,j in the four nodes onstruting the upwind nodes are utilized. However,the point value of the adveted variable plus its two spatial derivatives in four nodes leadsto a total of twelve onstraints, while we only have ten unknowns. Thus, we neglet thespatial derivatives in the node most far away from the node of omputation. This yieldsthe following expressions for the oe�ients
C30 =

is2
(

fi,j − fiw,j

)

+ ∆x
(

gi,j + giw,j

)

∆x3
(A.22)

C21 =

(

fi,j − fiw,j − fi,jw + fiw,jw

)

+ is∆x
(

gi,j − gi,jw

)

js∆x2∆y
(A.23)

C12 =

(

fi,j − fiw,j − fi,jw + fiw,jw

)

+ js∆y
(

ki,j − kiw,j

)

is∆x∆y2
(A.24)

C03 =
js2
(

fi,j − fi,jw

)

+ ∆y
(

ki,j + ki,jw

)

∆y3
(A.25)

C20 =
3
(

fiw,j − fi,j

)

− is∆x
(

2gi,j + giw,j

)

∆x2
(A.26)

C02 =
3
(

fi,jw − fi,j

)

− js∆y
(

2ki,j + ki,jw

)

∆y2
(A.27)

C11 =− fi,j − fiw,j − fi,jw + fiw,jw

isjs∆x∆y
+

gi,jw − gi,j

js∆y
+

kiw,j − ki,j

is∆x
(A.28)

=
fi,j − fiw,j − fi,jw + fiw,jw

isjs∆x∆y
− C21is∆x− C12js∆y (A.29)

C10 =gi,j (A.30)
C01 =ki,j (A.31)
C00 =fi,j. (A.32)Here

is = −sign(uc) (A.33)
js = −sign(vc), (A.34)where uc and vc being respetively the horizontal and vertial veloity omponent inter-polated to the node of omputation. Due to the staggered grid there are three aseswhih needs di�erent interpolation, namely advetion of horizontal momentum, vertialmomentum and olor funtion. The advetion veloity is interpolated to the node ofomputation for the three di�erent ases as follows.Advetion of horizontal momentum:

uc = ui,j

vc = 0.25 (vi,j + vi+1,j + vi,j−1 + vi+1,j−1)



A.2. Details on the di�usion alulation 191Advetion of vertial momentum:
uc = 0.25 (ui,j + ui−1,j + ui−1,j+1 + ui,j+1)

vc = vi,jAdvetion of olor funtion:
uc = 0.5 (ui,j + ui−1,j)

vc = 0.5 (vi,j + vi,j−1)A.2 Details on the di�usion alulationSome details relative to the disretization of the di�usion alulation will now be pre-sented. First we onsider the di�usion alulation for the horizontal veloity omponentgiven by equation (4.28). The density at the horizontal veloity node is found by inter-polation as ρc = 0.5(ρi,j + ρi+1,j). The dynami visosity oe�ients are found from
µE = µi+1,j

µW = µi,j

µN = 0.25(µi,j + µi+1,j + µi,j+1 + µi+1,j+1)

µS = 0.25(µi,j + µi+1,j + µi,j−1 + µi+1,j−1).The derivatives of the veloity omponents are omputed as
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.Next, we onsider the di�usion alulation for the vertial veloity omponent givenby equation (4.29). The mass density is approximated as ρc = 0.5(ρi,j + ρi,j+1), while thedynami visosity oe�ients are

µE = 0.25(µi,j + µi+1,j + µi,j+1 + µi+1,j+1)

µW = 0.25(µi,j + µi−1,j + µi,j+1 + µi−1,j+1)

µN = µi,j+1

µS = µi,j.Further, entral di�erenes yields
∂u∗

∂y

∣

∣

∣

∣

E

=
u∗

i,j+1 − u∗
i,j

∆yci

∂u∗

∂y

∣

∣

∣

∣

W

=
u∗

i−1,j+1 − u∗
i−1,j

∆yci

∂v∗

∂x

∣

∣

∣

∣

E

=
v∗

i+1,j − v∗
i,j

∆xci

∂v∗

∂x

∣

∣

∣

∣

W

=
v∗

i,j − v∗
i−1,j

∆xci−1

∂v∗

∂y

∣

∣

∣

∣

N

=
v∗

i,j+1 − v∗
i,j

∆yj+1

∂v∗

∂y

∣

∣

∣

∣

S

=
v∗

i,j − v∗
i,j−1

∆yi

.



192 Details on the numerial wave tank

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

nz = 460Figure A.1: Non-zero entries of the oe�ient matrix A due to a 10 × 10 grid.All non-zero entries are loated in �ve diagonals.A.3 Poisson equation for the inremental pressureThe disretized Poisson equation for the inremental pressure de�ned in (4.38) an bewritten as
Ai,jδpi,j−1 + Bi,jδpi−1,j + Ci,jδpi,j + Di,jδpi+1,j + Ei,jδpi,j+1 = fi,j, (A.35)where

Ai,j =
1

ρi,j−1/2∆yj∆ycj−1

(A.36)
Bi,j =

1

ρi−1/2,j∆xi∆xci−1
(A.37)

Di,j =
1

ρi+1/2,j∆xi∆xci
(A.38)

Ei,j =
1

ρi,j+1/2∆yj∆ycj

(A.39)
Ci,j = − (Ai,j + Bi,j + Di,j + Ei,j) . (A.40)These �ve oe�ients represents the �ve non-zero diagonals of the oe�ient matrix A asdepited in Fig. A.1. The oe�ients Ci,j orresponds to the main diagonal. Further, Di,jand Ei,j yields the �rst and seond non-zero upper o�-diagonals, while Bi,j and Ai,j yieldsthe �rst and seond non-zero lower o�-diagonals, respetively. This yields a symmetridisretization of the Poisson equation (4.34) on a uniform Cartesian grid. However, for thease of a non-uniform grid, the oe�ient matrix is not symmetri due to disretizationof the divergene operator in eq. (4.34).



A.3. Poisson equation for the inremental pressure 193Due to the small number of non-zero elements in the oe�ient matrix A relative tothe size of the matrix, A is a sparse matrix. From a omputational point of view, it iswaste of memory to store the total matrix. Hene, instead of solving the total matrix ofsize N×N , we use the Compressed Diagonal Storage format where only the �ve diagonalsontaining the non-zero elements are stored in a 5× N matrix (Barrett et al. 1994). Asthe o�-diagonals are shorter than the main diagonal of length N , the o�-diagonals arepadded with zeros to �ll the new matrix.



194 Details on the numerial wave tankA.3.1 The preonditioned Bi-Conjugate Gradient Stabilized MethodA modi�ed version of the Bi-CGStab algorithm with preonditioning is presented inBarrett et al. (1994). The algorithm is as follows:Compute r(0) = b− Ax(0) for some initial guess x(0)Choose r̃ (for example, r̃ = r(0))for i = 1, 2, ...
ρi−1 = r̃Tr(i−1)if ρi−1 = 0 method failsif i = 1

p(i) = r(i−1)else
βi−1 = (ρi−1/ρi−2)(αi−1/ωi−1)
p(i) = r(i−1) + βi−1(p

(i−1) − ωi−1v
(i−1))endifsolve Mp̂ = p(i)

v(i) = Ap̂
αi = ρi−1/r̃

Tv(i)

s = r(i−1) − αiv
(i)hek norm of s; if small enough: set x(i) = x(i−1) + αip̂ and stopsolve Mŝ = s

t = Aŝ
ωi = tT s/tT t
x(i) = x(i−1) + αip̂ + ωiŝ
r(i) = s− ωithek onvergene; ontinue if neessaryfor ontinuation it is neessary that ωi 6= 0endSeveral preonditioners are presented in Barrett et al. (1994). We have used the simpleinomplete LU-fatorization preonditioner D-ILU, whih is an inomplete fatorizationpreonditioner of level zero. Splitting the oe�ient matrix into its diagonal, lower trian-gular, and upper triangular parts as A = DA + LA + UA, respetively, the preonditioneran be written as M = (D + LA)D−1(D + UA), where D is the diagonal matrix on-taining the pivots. Note that it is only the diagonal matrix D that needs to be storedsine the upper triangular and lower triangular matries, UA and LA respetively, are leftunhanged. The pivots are generated as follows:Let S be the nonzero set {(i, j) : aij 6= 0}, where aij are the elements of the oe�-ient matrix Afor i = 1, 2, ...set dii ← aiifor i = 1, 2, ...set dii ← 1/diifor j = i + 1, i + 2, ...if (i, j) ∈ S and (j, i) ∈ S then



A.4. Time-stepping of the spatial derivatives of the veloity �eld 195set djj ← djj − ajidiiaijIn the preonditioned Bi-CGSTAB algorithm, we need to solve the system Mx = y,with M = (D + LA)D−1(D + UA) and where y is a known vetor. The preonditionersolve is desribed below.Let M = (D + L)(I + D−1U) and y be given.for i = 1, 2, ...
zi = d−1

ii (yi −
∑

j<i lijzj)for i = n, n− 1, n− 2, ...
xi = zi − d−1

ii

∑

j>i uijxj

A.4 Time-stepping of the spatial derivatives of the ve-loity �eldAs the veloity �eld after the advetion step u∗ is updated due to the di�usion step,pressure oupling and due to fores from the �oater to obtain the new veloity �eld
un+1, also the spatial derivatives of the veloity �eld are modi�ed. Hene, the spatialderivatives g = ∂u/∂x and k = ∂u/∂y must be updated before a new advetion step anbe made. We de�ne g = [gu, gv]

T and k = [ku, kv]
T , where gu = ∂u

∂x
, gv = ∂v

∂x
, ku = ∂u

∂y
and

kv = ∂v
∂y
. Time-stepping of the spatial derivatives of the horizontal veloity omponentare performed as

gn+1
u;(i,j) = g∗

u;(i,j) +
un+1

i+1,j − un+1
i−1,j − u∗

i+1,j + u∗
i−1,j

∆xi + ∆xi+1
(A.41)

kn+1
u;(i,j) = k∗

u;(i,j) +
un+1

i,j+1 − un+1
i,j−1 − u∗

i,j+1 + u∗
i,j−1

∆ycj + ∆ycj−1
. (A.42)Similarly, the spatial derivatives of the vertial veloity omponent are updated by

gn+1
v;(i,j) = g∗

v;(i,j) +
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i+1,j − vn+1
i−1,j − v∗

i+1,j + v∗
i−1,j

∆xci + ∆xci−1
(A.43)

kn+1
v;(i,j) = k∗

v;(i,j) +
vn+1

i,j+1 − vn+1
i,j−1 − v∗

i,j+1 + v∗
i,j−1

∆yj + ∆yj+1
. (A.44)
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Appendix BDetails of the veri�ation studies
B.1 Osillating boundary layersHere, some mathematial details on the seond Stokes problem is onsidered, and boththe steady solution as well as the transient solution when the osillating wall is abruptlystarted initially.B.1.1 Seond Stokes Problem, steady-state solutionIn the ase of the Seond Stokes Problem the outer �ow is Ue = 0, while the wall osillatesharmonially with frequeny ω and amplitude U0. A onsequene of Ue = 0 is that thelinearized Prandtl's boundary layer equations (Shlihting and Gersten 2000) are reduedto the di�usion equation

∂u

∂t
= ν

∂2u

∂y2
. (B.1)Sine the liquid attah to the wall (no-slip ondition), visous shear fores will set thesurrounding �uid into motion and a visous wave will propagate from the wall into the�uid domain. The no-slip ondition implies that the �uid veloity at the wall is equal tothe veloity of the wall. Thus,

u(0, t) = U0 sin ωt, for y = 0. (B.2)The steady state solution of eq.B.1 whih an be found in e.g. Shlihting and Gersten (2000)is
u(y, t) = U0 exp(−η) sin(ωt− η), (B.3)with

η = y

√

ω

2ν
. (B.4)Here ν = µ/ρ is the kinemati visosity oe�ient and ω is the frequeny of osillation ofthe wall. 197



198 Details of the veri�ation studiesB.1.2 Seond Stokes Problem, transient solutionWe are seeking the unsteady solution of (B.1). First we separate the veloity into a steadystate term Us and a transient term U t:
u = Us + U t. (B.5)From (B.5) and (B.3) the initial ondition u(y, 0) = 0 leads to

U t(η, 0) = −U0 exp(−η) sin(−η). (B.6)When t → ∞, the transient term must vanish suh that the steady state solution re-mains. A general solution for the transient term of B.1 in integral form is given inLandau and Lifshitz (2004) as:
U t(y, t) =

1

2
√

πνt

∫ ∞

0

f0(ỹ)

(

exp

[−(y − ỹ)2

4νt

]

− exp

[−(y + ỹ)2

4νt

])

dỹ, (B.7)where f0(ỹ) is the initial ondition for U t. Substitution of (B.6) into (B.7) does not leadto a tratable integral. Hene, instead of (B.6) a omplex ontinuation of (B.6) is used(Panton 1968):
U t(η, 0) = U0ℑ

{

exp[−(1− i)η] sin(−η)
}

. (B.8)Substitution of (B.9) gives integrals whih an be evaluated by standard tehniques. Thisyields:
U t(η, T ) = U0ℑ

{

−0.5 exp [Cη − iT ] erfc
[√

0.5T (C + η/T )
]

+ 0.5 exp[−Cη − iT ]erfc
[√

0.5T (C − η/T )
]} (B.9)Here T = ωt and the omplex onstant C = 1− i. This solution inludes the omplemen-tary error funtion erfc(z) = 1 − erf(z) with omplex argument z = x + iy, whih mustbe separated into real and imaginary omponents to obtain the solution:

erfc(x + iy) = F (x, y) + iG(x, y). (B.10)Unfortunately, an expression for F and G does not exist. Abramowitz and Stegun (1970)gives a series expansion that approximates the omplex error funtion:
erf(x + iy) = erf(x) +

exp(−x2)

2πx
[(1− cos 2xy) + i sin 2xy]

+
2

π

∞
∑

n=1

exp(−1
4
n2)

n2 + 4x2
[fn(x, y) + ign(x, y)] + ǫ(x, y) (B.11)where

fn(x, y) = 2x− 2x cosh ny cos 2xy + n sinh ny sin 2xy

gn(x, y) = 2x cosh ny sin 2xy + n sinh ny cos 2xy

|ǫ(x, y)| ≈ 10−16 |erf(x + iy)|This is used to evaluate the transient veloity �eld.
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y0Figure B.1: Shemati view of how the grid arrangement lose to the osillatingwall is obtained using the parameter s. An exponential distribution of gridpoints is applied in the normal diretion inside the boundary layer. Constantgrid spaing is used far from the wall and a quadrati distribution of grid pointsis used in a mathing zone between the to regions to obtain a smooth transition.B.1.3 Details on the grid generationWhen the seond Stokes problem is solved with the present �ow solver, grid strething isapplied lose to the osillating wall. The grid is divided into three grid zones, where thegrid inrement follows an exponential distribution lose to the wall. Far away from thewall the grid line spaing is onstant, while a quadrati variation is used in a mathingzone to merge the exponential grid with the onstant grid. The distribution of grid pointsin the normal diretion to the wall is for the exponential zone found as

yi = β
(

exp(αsi)− 1
) (B.12)where si ∈ [0, 1] is a equidistant distribution vetor with Nbl + 1 elements and β is alustering parameter. Further, the oe�ient α de�ned as

α = ln
(δ0.99

β
+ 1
)

. (B.13)The paraboli distribution funtion desribing the position of grid points within themathing zone is
yi = as2

i + bsi + c, (B.14)where the onstraints ystart = δ0.99, yend = kδ0.99 and y′(s)|end = 0 determines the oe�-ients a, b and c. Here, k is the extension of the mathing zone relative to the boundarylayer thikness. A shemati view of this mapping is presented in �gure B.1. Using theabove desribed proedure, three grids with di�erent resolution of the boundary layer areestablished. Grid parameters for the three grids are presented in Tab. B.1.3.
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Table B.1: Grid parameters used for the seond Stokes problem. Nx and Ny arethe total number of grid ells in the horizontal and vertial diretion, respetively.
Nbl is the number of ells in the y−diretion inside the boundary layer, while
Nmz is the number of grid ells in the y−diretion in the paraboli mathingzone. Parameters Nx Ny Nbl Nmz k β/δGrid A 200 30 15 12 5 0.08Grid B 100 20 8 8 5 0.08Grid C 75 15 6 6 5 0.08



Appendix CDetails of the model tests
C.1 The model tests from 2006The test matrix from the model tests from 2006, where wave exitation fores on �xedylinders subjet to regular waves were studied, are presented in Tab. C.1. The run indexis omposed as follows. The �rst number refers to the model geometry and draft, theseond number refers to the wave steepness, while the third number refers to the waveperiod. The last number is reserved for repetition tests and re-runs.Two ylindrial model geometries were tested. One with a irular ross-setion andone with a retangular ross-setion. Both models were made of steel. A sketh of themodels used in the experiments from 2006 are presented in Fig. C.1.C.1.1 Statistis from the 2006-experimentsMean values and relative errors of the mean wave height obtained from repetition testsare presented in Fig. C.2 and C.4. Mean values and relative errors of the measured waveexitation fores for the in-line horizontal diretion and the vertial diretion, obtainedfrom repetition tests are presented in Fig. C.4.
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Figure C.2: Mean values of measured free surfae elevation obtained from repe-tition tests for the four wave gauges WG 1 to WG 4. Labels 1 to 5 representsrepetition tests for the ase numbers 4150, 4250, 5150, 6150 and 7150, respe-tively. Five repetitions were performed for eah ase. Corresponding relativeerrors are given above eah bar.
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Figure C.3: Mean values of measured free surfae elevation obtained from repe-tition tests for the four wave gauges WG 5 to WG 8. Labels 1 to 5 representsrepetition tests for the ase numbers 4150, 4250, 5150, 6150 and 7150, respe-tively. Five repetitions were performed for eah ase. Corresponding relativeerrors are given above eah bar.
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d/D = 0.2 d/D = 0.5 d/D = 0.8

Tp ε = 1/50 ε = 1/30 ε = 1/20 ε = 1/50 ε = 1/30 ε = 1/20 ε = 1/50 ε = 1/30 ε = 1/20

Cirularyl
inder

0.981 2000 2100 2200 3000 3100 3200 4000 4100 42001.084 2010 2110 2210 3010 3110 3210 4010 4110 42101.179 2021 2121 2220 3020 3120 3220 4020 4120 42201.266 2030 2130 2231 3030 3130 3230 4030 4130 42301.348 2040 2140 2241 3040 3140 3240 4041 4140 42401.348 42411.348 42421.348 42431.348 42441.425 2051 2150 2250 3050 3150 3250 4050 4150 42501.425 41511.425 41521.425 41531.425 41541.498 2060 2160 2260 3060 3160 3260 4060 4160 42601.568 2070 2170 2270 3070 3170 3270 4070 4170 42701.634 2081 2181 2280 3080 3180 - 4080 4180 -1.698 2090 2190 - 3090 3192 - 4090 4190 -

Retangular
ylinder

0.981 5000 5100 5200 6000 6100 6200 7000 7100 72001.084 5010 5110 5210 6010 6110 6210 7010 7110 72101.179 5020 5120 5221 6020 6120 6220 7020 7120 72201.266 5030 5130 5230 6030 6130 6230 7030 7130 72301.348 5040 5140 5240 6040 6140 6240 7040 7140 72401.425 5050 5150 5250 6050 6150 6250 7050 7150 72501.425 5151 6151 71511.425 5152 6152 71521.425 5153 6153 71531.425 5154 6154 71541.498 5060 5160 5260 6060 6160 6260 7060 7160 72601.568 5070 5170 5270 6070 6170 6270 7070 7170 72701.634 5080 5180 - 6080 6180 - 7080 7180 -1.698 5090 5190 - 6090 6190 - 7090 7190 -Table C.1: Test matrix. Repetition tests have shaded bakground. The param-eter ε = H0/λ0 is the steepness for the orresponding deep water wave. Testswhere over-topping did our are labeled red. The tests marked with �-� ouldnot be run beause of limitations of the wave maker.



206 Details of the model testsC.2 The model tests from 2008Some details from the experiments in 2008 with the moored irular ylinder are presented.C.2.1 Aeleration measurementsThe total aeleration relative to the Earth-�xed frame of referene in the diretion ofthe body oordinate y′ is found as a′
y = 0.5 (ay′2 + ay′1), while the angular aeleration isfound as θ̈ = 0.5 (ay′2/r3 − ay′1/r2). The total aeleration of the ylinder in the Earth-�xed oordinate system is thus found by mapping using the Jaobian and orreting foraeleration of gravity, −gey, and angular aeleration. Now onsider the ylinder at rest.For θ = 0, all aelerometers are alibrated to measure zero aeleration. When θ is in-reased to 90◦, the aelerometers in the y′ diretion will measure g and the aelerometerin the x′-diretion will measure −g, when the ylinder is at rest. If we further inrease theangle θ to 180◦, we get ax′ = 0, ay′1 = 2g and ay′2 = 2g. This must be aounted for if wewant to �nd the aelerations in an Earth �xed frame of referene. Further, when there isan angular aeleration θ̈ due to roll motion of the ylinder, we will measure ax′ = −r1θ̈,

ay′1 = −r2θ̈ and ay′2 = r3θ̈, where r1, r2 and r3 are de�ned in Fig.6.10(a). The totalaelerations in the Earth-�xed referene frame are thus
[

ax

ay

]

=

[

cos θ − sin θ
sin θ cos θ

] [

ax′

ay′

]

+ g

[

sin θ
cos θ − 1

]

+ θ̈

[

r1

r2 − r3

] (C.1)For small angles θ, Eq.C.1 an be linearized. Further, applying that r1 = r2 = r3 = r, weget
[

ax

ay

]

=

[

1 −θ
θ 1

] [

ax′

ay′

]

+

[

gθ
0

]

+

[

rθ̈
0

] (C.2)These are the linearized expressions, valid for small roll angles θ, giving the aelerationsof the model in an Earth-�xed frame of referene.Linearity test for the springsThe linearity properties of the springs used in the mooring line arrangement are tested.Measured elongation of the three springs from the linearity test is shown in Fig. C.5. Theresults shows that the springs are linear when loaded below their reported �oating limit,whih is indiated by the horizontal line in the �gure.
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Appendix DTime series
D.1 Wave elevation from tests with �xed ylinders
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Figure D.1: Computed and measured free surfae elevation from tests with �xedretangular ylinder at WG 2, WG 3 and WG 5. d/D = 0.5, T = 1.084s,
H0/λ0 = 1/20. (Model tests from 2006).
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210 Time seriesD.2 Wave elevation from tests with moored ylinder
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Figure D.2: Computed free surfae elevation in front of ylinder is ompared withmeasured free surfae elevation from model tests with T = 0.457s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for omparison.
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Figure D.3: Computed free surfae elevation in front of ylinder is ompared withmeasured free surfae elevation from model tests with T = 0.497s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for omparison.
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Figure D.4: Computed free surfae elevation in front of ylinder is ompared withmeasured free surfae elevation from model tests with T = 0.544s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for omparison.
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Figure D.5: Computed free surfae elevation in front of ylinder is ompared withmeasured free surfae elevation from model tests with T = 0.601s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for omparison.
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Figure D.6: Computed free surfae elevation in front of ylinder is ompared withmeasured free surfae elevation from model tests with T = 0.761s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for omparison.
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Figure D.7: Computed free surfae elevation in front of ylinder is ompared withmeasured free surfae elevation from model tests with T = 0.878s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for omparison.
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Figure D.8: Computed free surfae elevation in front of ylinder is ompared withmeasured free surfae elevation from model tests with T = 1.038s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for omparison.
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Figure D.9: Computed free surfae elevation in front of ylinder is ompared withmeasured free surfae elevation from model tests with T = 1.132s. Input wavesteepness was H/λ = 1/14. Two parallel wave gauges from the measurementsare used for omparison.
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