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Abstract

It is not economically or technically feasible to make complex computer
systems that are completely secure. New attacks are constantly developed
by attackers and the security situation can therefore rapidly change. In or-
der to detect and stop attackers before any damage is done, automated tools
have to be deployed because there is not enough time for manual intervention.
Therefore there is a need for online risk assessment and proactive defense
mechanisms like Intrusion Prevention System (IPS). In the area of computer
security there have been only a few quantitative security measures until now,
and there are few published cases for methods and tools based on such mea-
sures.

The main areas of this thesis are: Quantitative characterization of risk
and security in computer systems or networks; and dynamic risk and security
assessment based on network monitoring. During our research, the focus has
been narrowed down to look for answers to the following problems:

Is it possible (and practical) to reuse some of the stochastic modeling
techniques used to model dependable systems?

Can Hidden Markov Models (HMMs) be successfully used in real time
risk assessment?

Is it feasible to prevent attacks against systems and networks based on
risk assessment?

For these problems a Markov model describing the interaction between the
system and attackers in a quantitative manner is proposed. The Markov model
describes the different security states of a network, and the transitions between
them.

Based on the initial Markov model, a HMM modeling the trustworthiness
of sensors collecting security relevant information in a computer network is
proposed. The sensor model is used for online risk assessment based on ob-
servations from sensors in a network. A security measure called intrusion
frequency is used. The intrusion frequency is estimated from the state distri-
bution estimated by the HMM. The sensor model has been validated through
simulations, and through experiment with synthetic and real network traffic.



iv

Two different approaches to online risk assessment are proposed: one based
on costs associated width states and one based on a hierarchical fuzzy infer-
ence system. Three different methods for aggregation of alerts from multiple
network sensors are discussed. The first method was to use the average of the
risk estimated by each sensor, this solution have some obvious drawbacks e.g.
when the risk from two sensors are aggregated where one is very trustworthy
and one is very little trustworthy, in this case we would have been better off
using only the risk from the most trustworthy sensor instead of the average.
The second method produces a minimum variance estimator of the risk. This
solution is based on a strict assumption on independence between sensors. In
the third proposal, one common distribution over the security state space is
maintained. The distribution is updated when an observation is received, us-
ing the sensors of the corresponding HMM. The fine tuning of the fuzzy logic
based risk assessment is achieved using a neural network learning technique. A
Distributed Intrusion Prevention System (DIPS) architecture based on fuzzy
online risk assessment is presented as a practical application of the models
developed in thesis.
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1. Introduction

In today’s society most critical infrastructures are based on dependable
computer networks. However in many cases the networks can be reachable by
attackers. As a consequence, the security of these critical systems, in addition
to traditional Quality of Service (QoS) aspects like availability, reliability and
performance, become crucial. In order to specify necessary security require-
ments, there is a need for quantifying of security attributes. We also need to
have methods for monitoring the security of the system, and means to detect
security breaches and possibly prevent intrusions.

Firewalls and Intrusion Detection Systems (IDSs) are traditionally used
for stopping suspicious traffic at the network perimeter and for detecting of
suspicious activity inside the network. Firewalls make use of static filtering
rules, and with a proper configuration, the most obvious malicious traffic can
be detected and denied to enter a network. However, clever attackers can
always find ways to circumvent these rules. Attacks launched from inside an
organization are also a serious concern, since they can not be prevented by a
firewall.

IDSs may discover attacks based on anomaly detection or signature match-
ing, but have no protection mechanisms against these attacks. Intrusion Pre-
vention System (IPS), are proactive defense mechanisms designed to detect
malicious packets embedded in normal network traffic and stop intrusions,
blocking the offending traffic.

IPSs have the same detection capabilities as IDSs, with the addition of
mechanisms that allow for stopping detected intrusions and introduce defense
mechanisms to reduce the probability of success of future attacks. Their de-
tection capabilities can be based on blacklists, whitelists and thresholds. Ex-
amples of prevention capabilities are response techniques that stop the attack
itself by terminating a network connection or a user session and response
techniques that block access to a specific target. The IPS can also change the
security environment by reconfiguring a firewall, router or switch to prevent
access from a specific attacker IP address. Some IPS technologies can even
remove or replace malicious portions of traffic possibly constituting an attack.

The use of tools for monitoring the security state of assets in a network is an
essential part of network management. Traditional risk assessment method-
ologies provide a framework for manually determining the risks of assets, and
intrusion detection systems can provide alerts regarding security incidents,
but these approaches do not provide a real-time high level overview of the risk
level of assets.

2. Thesis Idea and Motivation

Experience has shown that it is hard, maybe even impossible, to design and
implement large systems without any weaknesses. Starting with this fact, the
motivation of our work is that the only viable option is to make networked
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systems reasonable secure. The security measures should be relevant to the
threats against the values handled by the system, as well as the expected
knowledge level of the potential intruders or attackers.

The security of computer systems has traditionally been assessed from a
qualitative point of view, using some criteria. The most well known of these
are the Trusted Computer System Evaluation Criteria published by Depart-
ment of Defense [Def83] (also known as the Orange Book), and more recently
the Common Criteria (CC), published by both NIST and ISO [ISO05]. Assess-
ment based on criteria focus on the presence and absence of certain functional
characteristics and the use of specific development techniques.

There are some obvious weaknesses with this type of assessments: it is
qualitative and therefore gives no quantitative measures of the security. It is
usually done during or immediately after the design and production phases
(pre-deployment) and is therefore not assessing the security situation experi-
enced by an operational system on a day to day basis.

Existence of effective methods for quantifying and characterizing security
will make it much easier to specify and measure security. The existence of
quantitative security measures will enable us to specify security requirements
in a Service Level Agreement (SLA), similar to how dependability require-
ments like availability and reliability are specified today. When the system or
service is operational, it should be possible to measure the actual security of
the system in order to check that it is within the requirements specified in the
SLA.

2.1 Research Questions

The focus of this thesis was intended to be on methods for characterizing
and quantifying security in dynamic and complex computer systems. The
main research areas investigated in the thesis to achieve this are:

Quantitative characterization of risk and security in computer systems
or networks.

Dynamic risk and security assessment based on network monitoring.

During our research, the focus has been narrowed down to look for answers to
the following problems:

Is it possible (and practical) to reuse some of the stochastic modeling
techniques used to model dependable systems?

Can Hidden Markov Models (HMMs) be successfully used in real time
risk assessment?

Is it feasible to prevent attacks against systems and networks based on
risk assessment?
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3. Research Assumptions

When using a simplified model of a real system we have to make some
assumptions. This section will mention the most important assumptions made
for the research described in this thesis, and give some arguments for the
validity of the assumptions.

When using a Markov model to model the interaction between attackers
and a system, we assumed the history of the system to be contained in
the state of the system. Jonsson and Olovsson [JO97] suggest that a
typical attack can be divided into three different phases based on the
attacker’s behavior: the learning phase, the standard attack phases and
the innovative attack phase. In our research we have taken a more system
centric approach and models the impacts on the system rather than the
specific attack phase. A similar model with only three states is used
in a HMM based IDS in [KL07]. Gong et al. [GGPW+01] uses a state
transition model with nine states to model an intrusion tolerant system.
One approach could be to use automated tools for making more realistic
models, and then apply lumping and aggregation methods to reduce the
number of states. The validity of the assumption that it is possible to
model the system’s security state using only a limited number of states
is further discussed in Section 7.

State occupation times are assumed to be exponentially distributed,
when using the continuous time Markov model. We have also used a
discrete time Markov model which implies that the state occupation
times have to be geometrically distributed. This assumption is discussed
without a clear conclusion in [LBF+93], they discuses different reason
whey the failure rate might be constant (corresponding to an exponen-
tial distribution) decreasing or increasing. An argument of a constant
failure rate could be that the population of possible attackers are big,
and therefore will have a more random nature than an individual at-
tacker. We also assume model parameters like transition rates to only
be valid for shorter periods like hours, to take into account that there
might be an increased attacker activity on specific time and dates. Jons-
son and Olovsson [JO97] have made experiments that indicate that time
between breaches is exponentially distributed. Results from experiments
with honeypots by Kaâniche et al. [KAN+06] indicate that it may ac-
tually be better to use a semi-Markov model. This comes at a cost of
increased algorithm complexity, and we see this as a possible extension
of our work when real life data are available.

By using a HMM to model sensors, we have assumed observations to
be independent given the current state. This assumption is justified by
assuming that there are some prepossessing of alerts in order to group
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together alerts originating from the same root cause, using some corre-
lation and aggregation technique. For more details see Paper G.

In one of the papers we used minimum variance to combine risk from
individual sensors. We assume that the risk estimated from each sensor
is unbiased and independent. As this assumption is questionable, we
have also investigated other methods for combining data from multiple
sensors, as seen in Paper G.

In addition to these basic assumptions there are some assumptions about at-
tackers that are discussed in Section 4.2, and some assumptions about sensors
that are discussed in Section 4.4.

4. Background

4.1 Stochastic Modeling of Security

This section defines some basic concepts and measures related to security,
and introduce the stochastic modeling approach used in this thesis. The mod-
eling approach is state based and similar to the approach used to model de-
pendable systems. On the other hand, static methods like fault trees [NST04]
and block diagrams [NST04] are not considered in this thesis.

We start with some basic definitions that are used in the description of the
stochastic models the security in computer networks, introduced later in this
section.

Definition 1 A security policy is a set of security-motivated constraints that
are to be adhered to by, for example, an organization or a computer sys-
tem [ALRL04].

The security policy may be enforced by technical means, management ac-
tions or operational control, or a combination of these.

Definition 2 A deviation from the security policy will be regarded as a secu-
rity failure [ALRL04].

A consequence of this definition is that the same event within two different
organizations may be considered as a security failure in one organization and
as a normal situation in another organization, depending on the organization’s
security policy.

Definition 3 The adjudged or hypothesized cause of an error is called a
fault [ALRL04].

Faults can be classified as [ALRL04]:

Development faults which include all fault classes occurring during de-
velopment.
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Physical faults which include all fault classes that affect hardware.

Interaction faults which include all external faults.

Faults are divided into internal and external faults. Internal faults include the
development and physical faults and will not affect the external state of the
system in such a way that it will influence the system’s ability to deliver a
correct service. Conversely, external faults or interaction faults will affect the
service delivered by the system.

Definition 4 A vulnerability is an internal fault that enables an external fault
to harm the system [ALRL04].

A vulnerability may be located in the design, the code or the configuration of
the system. Some examples of vulnerabilities are: weak passwords, configura-
tion mistakes and software bugs.

Definition 5 The security state of a system are described by several aspects
of the computer network and its environment.

These aspects could for instance be the security condition of the network,
if security updates and patches have been installed, how the security policies
are implemented, what attack countermeasures are in place, the existence of
intrusion detection systems and so on.

In any modeling effort there is always a trade-off between model complexity
and model precision.In our approach, we seek to model the interaction between
the system and the attackers by describing the security state of the system in
terms of the different stages of a typical attack against a computer network.

Possible system states

Correct

V
u

ln
er

ab
le

F
ai

le
d

Erroneous

Figure 1. Partitioning of system states

Figure 1 illustrates a classification of system states, where all system states
are either classified as correct or erroneous. The correct states contain a subset
of vulnerable states, and the erroneous states contain a subset of failed states.
The correct states are the states where there are no internal or external errors
in the system. The vulnerable states are those states where the system con-
tains one or more unexploited vulnerability. The set of erroneous states are
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those states where a vulnerability has been exploited by an attacker and there
is an internal error in the system. The system may propagate through one
or more erroneous states before the security policy is broken and the system
enters a failed state. It is also possible that the system goes back into one of
the correct states without entering a failed state. The system may already be
in a vulnerable state when it starts operating, because of vulnerabilities intro-
duced during the system design. Two faults are needed in order to transfer
the system into an erroneous state from a correct and non vulnerable state:
one for transferring the system into a vulnerable state and one more for trans-
ferring the system from a vulnerable state and into an erroneous state. The
state model is based on the fault-error-failure terminology known from the
dependability community [ALRL04].

The relation between security and dependability attributes is illustrated in
Figure 2.

Reliability

Availability

Safety

Confidentiality

Integrity

Maintainablity

SecurityDependability

Figure 2. Attributes of security and dependability.

Definition 6 Dependability is an integrated concept of the five attributes:
availability, reliability, safety, integrity and maintainability [ALRL04].

Definition 7 Security can be defined as a composite of three attributes: con-
fidentiality, integrity and availability [ALRL04].

The attributes of availability and security is future explained here:

Availability: readiness for correct service.

Confidentiality: absence of unauthorized disclosure of information.

Integrity: absence of improper system alternation.

Maintainability: ability to undergo modifications and repairs.

Reliability: continuity of correct service.

Safety: absence of catastrophic consequences on the user(s) and the
environment.

Availability could be measured asymptotically as the percentage of time the
system is available, or as instantaneous availability which is the probability



9

that the system is available at a specific time. The system is available in a
dependability context if it is within the service specification, and it is available
in a security context if the security policy is not broken. Typical breaches to
the availability attribute of a system could be a Denial-of-service attack (DOS
attack).

Confidentiality is one of the most well known security attributes, and is
often the main motivation for using cryptography. Breaches on a system’s
confidentiality property could typically happen if someone breaks into a sys-
tem and copies or reads unauthorized information like a document containing
sensitive information or sensitive system information, e.g. a password. It is in
general not possible to repair a confidentiality failure, because it is not possible
to get people to forget or delete all copies of the information once they are
obtained.

The integrity of a system is broken if the system is altered in an unautho-
rized way, e.g. someone breaks into a system and deletes or modifies a file or
document. Integrity failures could also be caused by viruses or insiders with
malicious intentions. Integrity failures can often be detected and repaired, e.g.
by restoring a backup.

The reliability of a system can be measured by its reliability function, the
failure rate or Mean Time To First Failure (MTFF). Reliability could also be
considered in a security context. We will do that in Paper F, where we will
calculate Mean Time To Security Failure (MTSF). Taking the inverse of the
MTSF we get what we call the intrusion frequency.

In this thesis, we consider only first order Markov processes, where next
state transition only depend on current the state. This type of process is also
known as a Markov chain. The term Markov model and Markov chain will be
used interchangeably both referring to discrete and continues time first order
Markov processes.

We will now discuss the dynamic aspects of the system model that is related
to time between state transitions. In this thesis, we apply the Markov modeling
approach, which is also frequently used to model dependability attributes of
a system. We use the Markov model to model the interaction between the
system and an attacker. A Markov model is a stochastic process that has a
set of states, as described earlier in this section. The name Markov models
refers to the Markov assumption, which states that the next state transition
only depend on the current state. By making this assumption, the behavior
of the model can be described by a transition rate matrix describing how the
system moves from state to state, with an initial distribution describing the
starting conditions.

Figure 3 shows the relation between the partitioning of the system states
shown in Figure 1, and the states in the Markov model used in the four
last papers (Paper D-G). In this model all system states are lumped into the
following four super states:

1 Normal (N) indicates no suspicious activity against the network
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IA

IA: Intrusion Attempt

SA: Successful Attack

IPN SA

N:  Normal

IP:  Intrusion in Progress

FailedVulnerable

Correct Error

Figure 3. A Markov model used in security modeling of computer systems

2 Intrusion Attempt (IA) indicates that one or more attackers are trying
to gather information about the system (for possible use in a future
intrusion attempt)

3 Intrusion in Progress (IP) indicates that one or more attackers have
started an attack against the system. The system is still functioning
correctly and no confidentiality or integrity breaches have occurred

4 Successful Attack (SA) indicates that one or more attackers have broken
into the system and may have full control over the system

In the three first papers (Paper A-C) a model consisting of three states was
used. The states were called: Good (G), Attacked (A) and Compromised (C).
The difference between the two models are the splitting of the attack state
into the two states IA and IP, making the model more flexible.

The Markov model of the system’s security states is not intended to model
the system during the designs phases, and the model is therefore only valid
after the system has been deployed. For this thesis it is assumed that there are
introduced some vulnerabilities into the system during design and deployment
of the system. The system is therefore assumed to be vulnerable when it is in
the N state.

When one or more attackers have started investigating the system in order
to find some vulnerabilities that could be exploited, the system moves into the
IA state.

When the attacker finds a vulnerability and starts an active attack which
leads to an internal error state, the system moves into the IP state.

If the attack is successful and the system moves into an internal error state
such that the security policy is broken, the system moves into the SA state.
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4.2 Attacker Model

This section describes the attacker model used in this thesis. Specific attacks
or individual attackers are not modeled. Only the overall system state is
modeled with respect to security. The number of attackers is not included
in the model, i.e. we assume that the number of attackers that have broken
into the system is irrelevant. One attacker can do as much damage as many
attackers. Another reason for not modeling the specific number of attackers is
that it is very difficult to distinguish between attackers given that they can use
a bot-net or cooperate otherwise. An increasing activity from attackers will of
course be reflected in an increased probability of being in one of the attacking
states. The intelligence of the attacker does not enter into the model, i.e.
the attackers’s knowledge about the system, cooperation with other attackers,
memory constraints or constraints in his/her processing capacity are not taken
into account. The reason for not modeling these factors is mainly to keep the
model complexity at a reasonable level.

The following assumptions have been made about the attacker’s behavior:

There are always some vulnerabilities in the system that the attacker can
benefit from. This assumption is made in Paper A, indicating that it is
unrealistic to have a large computer system without some vulnerabilities.

Time between attacks is assumed to be exponentially distributed within
a shorter time period. On a longer perspective the parameters are as-
sumed to drift, but this could be remedied by re-estimation.

The attacker may give up during an attack. The probability that an at-
tacker gives up or the attack is stopped by some prevention mechanisms
is merged, since the effect on the system is the same.

There could be unsuccessful repair, leading to known vulnerabilities re-
maining in the system after it has been repaired.

Time is assumed to be a representative measure of the attacker’s effort.

4.3 Sensor Model

Section 4.1 explained how a system’s security state can be modeled by a
Markov model. In general we assume the security state of the system to be un-
observable. In order to do online risk assessment a sensor model that describes
the trustworthiness of the sensors is needed. This is the basic motivation for
using HMMs to model the system. This idea is not new, since it has been
used in process control applications for a long time. A Kalman Filter (KF)
is a specific type of HMM having continuous state space and continuous or
discrete time. In a KF the process and measurement noise are assumed to
have a Gaussian distribution.

One classic use of a KF is as a component in a system for Dynamic
Positioning (DP) of ships [Ven96]. The hidden states could e.g. be the
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Observation

Q,Λ

Create new HMM Update HMM

Sensors

(ψk, tk)

...

(ψk, tk, yk)

tk−1, γk−1

(Pk, Q
ψk , γk−1) γk

(yk)

Figure 4. Observation processing

heading, position, speed, and acceleration of the ship. Sensors in this setting
are typically Global Positioning System (GPS) receivers, wind sensors, and
accelerometers. The KF models the ship’s motion and the relation between
the system state and measurements collected by the sensors.

The model is used to predict the next position. The predicted position is
then corrected by the observation to form a minimum variance estimate of the
position.

k observation index

tk time when observation k is received

δk time between observation k − 1 and observation k

γk state distribution after observation k is processed

Q = {Q1, Q2, . . .} observation probability matrices, describing the trustwor-
thiness of the sensors

Λ transition rate matrix, describing the dynamics of the CTMM of the inter-
action between the system and the environment

Pk transition probability matrix used for processing observation k

ψk index of the sensor that has produced observation k

yk observation received at time tk.
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In order to use Markov models for prediction and detection of attacks,
we need to process observations received from sensors. A sensor can be any
information-gathering program or device, including network sniffers (using
sampling or filtering), different types of intrusion detection systems (IDS), log-
ging systems, virus detectors, honeypots, etc. Time between alerts produced
by sensors is not modeled, we are therefore able to model active monitoring as
well as alerts being produced at random times. A specific consequence of this
is that it can be produced zero, one or more observations while the system is
in the same state.

As an alternative to the KF we now consider the discrete state space shown
in Figure 3. Observations are not necessarily Gaussian distributed. They can
in fact have an arbitrary distribution described by an observation probability
matrix. Each sensor is modeled by an HMM, described by a parameter set
indicating the trustworthiness of the sensor.

One common state distribution γk is maintained for all sensors, and it is
updated each time an observation is received from one of the sensors. Figure 4
shows the two main steps in the observation processing:

1 Create HMM: First a new HMM is created, which is specific for the
sensor and time since last observation was received δk. The HMM is
represented by a parameter set consisting of two matrices and one vector.
The first matrix is the transition probability matrix Pk = eΛδk , estimated
from the transition rate matrix Λ and time since last observation δt =
tk−1− tk. The second matrix is the observation probability matrix Qψk ,
that is selected based on the index ψk of the sensor that has produced
the observation. Current state distribution γk−1 is used as the initial
distribution.

2 Update HMM: The newly created HMM is updated using a standard
update algorithm, that e.g. can be found in [Rab90]. The update algo-
rithm takes the model created in step 1 and the observation yk as input.
The output from this algorithm is the updated state distribution γk.

4.4 Assumption About Sensors

We have made the following basic assumptions about the sensors:

Sensors are not perfect, false alerts could occur, e.g. as a consequence
of underspecified signatures.

The probability of producing different alerts depends on the security
state of the assets that are monitored. In general we assume that more
severe alerts are produced when the security state of the network is more
severe.

Observations are assumed to be independent, given current state. This
requires some form of preprocessing and aggregation of alerts in order to
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collect all observations coming from the same sensor, if they are based on
the same underlying events. This is described in more details in Paper
G

Parameters are assumed to be stable during short time intervals. This
can be tackled by using some form of drift detection as proposed in
paper [KL07].

We assume filtering and correlation of alerts before they are used for risk
assessment in order to remove alerts representing attacks that the system is
protected against.

4.5 Multi Sensor Risk Assessment

Three different methods for aggregating risk from multiple sensors have
been proposed in the papers in this thesis:

1 Averaging risk, introduced in Paper C.

2 Minimum variance estimator of the risk, introduced in Paper B.

3 One common state distribution with different observation matrixes for
each sensor. This method is presented in Section 4.3. It was first in-
troduced in Paper A, and later extended to a continuous time model in
Paper G.

The averaging approach presented in Paper C, is based on using one HMM
for each sensor which takes into account the trustworthiness of that sensor
when the risk is estimated for it. When the risk from each sensor is aggregated,
an averaging operation is used, weighting the risk from all sensors equally. This
approach is easy to implement, and could be a good approach if the sensors
have similar trustworthiness. In a situation where the estimated risk from one
very trustworthy sensor and one that is not very trustworthy are aggregated, it
would have been better to use only the risk from the most trustworthy sensor,
and not the average. More details on this method can be found in Section 4
in Paper C.

The minimum variance approach is based on forming a minimum variance
estimator of the risk by weighting the risk estimated from each sensor with the
inverse of its variance. This approach takes into account the trustworthiness
of each sensor and therefore is a better estimator of the risk than the average.
A drawback with this approach is that it depends on the assumption that the
risk estimated from each sensor is independent and unbiased. More details on
this method can be found in Section 3 in Paper B.

The last approach presented in Paper A and later improved in Paper G, uses
one common distribution for all sensors in monitoring the system. When an
observation is received from one of the sensors monitoring the system, the dis-
tribution is updated using that sensor’s observation probability matrix which
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represents the trustworthiness of that sensor. This approach have some advan-
tages over the first two approaches: it takes into account the trustworthiness
of individual sensors when information from different sensors are combined; it
makes no assumption about independence between sensors except for assum-
ing independent observations given current state, as explained in Section 3;
and it is based on a Continuous Time Markov Model (CTMM) in order to
tackle the fact that observations are produced at irregular time intervals.

4.6 Modeling Risk by Costs

Two different risk assessment methods are presented in this thesis. The first
which is introduced in Paper A is based on cost associated with states, and
the second method first introduced in Paper D is based on fuzzy logic and will
be explained in Section 4.8.

Following the terminology in [Sta04], risk is measured in terms of con-
sequences and likelihood. A consequence is the (qualitative or quantitative)
outcome of an event and the likelihood is a description of the probability of the
event. To perform dynamic risk assessment, we need a mapping: C : S → R,
describing the expected cost (due to loss of confidentiality, integrity and avail-
ability) for each object. The total risk Rt for an object at time t is

Rt =
N

∑

i=1

Rt(i) =
N

∑

i=1

γt(i)C(i) (1)

where γt(i) is the probability that the object is in security state si at time
t, and C(i) is the cost value associated with state si. For further details, see
Paper A.

4.7 Intrusion Frequency

The idea behind intrusion frequency is to estimate mean time to absorption
given the distribution γk estimated by the HMM. An absorbing state is a
state if once entered is never left [Ros03]. We propose to use mean time to
absorption as a security measure and call it Mean Time to Next Security
Failure (MTNSF).

In order to do the MTNSF analysis we partition the system states into
two subsets; the set of good states SG = {N, IA, IP}, and the set of failed
states SF = {SA}. The MTNSF analysis is based on the embedded Markov
chain, which is a Discrete Time Markov Chain (DTMC). We then modify the
Markov model so that the failed state SA is made absorbing, and the good
states are then transient.

The first step in the MTNSF analysis is to estimate the average number of
times each of the transient states SG is visited before the DTMC reaches one
of the absorbing states SF . This number is called wi.
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MTNSF can now be estimated by summing the product of wi multiplied by
the mean state occupation time hi for each of the transient states SG, giving
MTNSF =

∑

i∈SG
wihi. The intrusion frequency fk can now be estimated

by inverting MTNSF.
Based on the observation yk, the distribution γk is estimated and then used

to estimate fk, which is the input to the online fuzzy risk assessment described
in the next section.

4.8 Modeling Risk by Fuzzy Logic Controllers

The model presented in Section 4.6 is not taking into account specific details
about the attacker. We have therefore developed a more comprehensive risk
model that takes into account information abut specific attacks and assets.
This model is mainly based on the Factorial Analysis of Information Risk
(FAIR) model [Jon06], but we have included fuzzy logic in our model.

Traditionally, risk assessment has been done by human experts, because
there is no exact and mathematical model which can be used to represent risk
for a given ICT system. Our approach to risk assessment in ICT systems is
based on an dynamically estimated intrusion frequency, and some additional
static system parameters.

We propose an online risk assessment system that can continuously estimate
the risk of a computer system or network, based on observations collected
from sensors in the network. Sensors in this setting could e.g. be IDS or virus
scanners. Observations are processed using our sensor model, and the intrusion
frequency estimated each time a new observation is received. We have based
our risk assessment on fuzzy logic that is used to represent knowledge collected
from security experts. This knowledge is then represented as if-then rules in
a fuzzy inference system.

The risk assessment is based on altogether nine linguistic variables which
are processed using three Fuzzy Logic Controllers (FLC1−FLC3). The three
FLC’s represent Threat Level, Vulnerability and Asset Value, which are three
derived linguistic variables. The derived linguistic variables are then combined
using FLC4 to compute the net Asset Risk. This forms a hierarchical fuzzy
system.

Of these nine linguistic variables, all except the intrusion frequency fk ob-
tained from the HMM model, are considered to be of a static nature during a
short time period. Eight of the nine linguistic variables can be obtained from
a lookup table, indexed by asset and attack category. We have used both a
Mamdani- and a Takagi-Sugeno-Kang fuzzy inference system.

4.9 Fuzzy Risk Model Optimization Using Neural
Learning

Two challenges when modeling the risk of assets with fuzzy logic controllers
(a Fuzzy Inference System (FIS)) are the construction of if-then rules and
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the parameter estimation. We therefore proposed to use an integrated model
combining fuzzy logic and neural learning.

On the other hand, in an integrated model, neural network learning al-
gorithms are used to determine the parameters of fuzzy inference systems.
Integrated neuro-fuzzy systems share data structures and knowledge repre-
sentations. A fuzzy inference system can utilize human expertise by storing
its essential components in a rule base and a database, and perform fuzzy
reasoning to estimate the overall output.

The derivation of if-then rules and corresponding membership functions de-
pends heavily on the a priori knowledge about the system under consideration.
However, there is no systematic way to transform experiences or knowledge of
human experts to the knowledge base of a fuzzy inference system.

There is also a need for adaptability or some learning algorithms to produce
outputs within the required error rate. On the other hand, an Artificial Neural
Network (ANN) learning mechanism does not rely on human expertise. Due
to the homogenous structure of an ANN, it is hard to extract structured
knowledge from either the weights or the configuration of the network. The
weights of the neural network represent the coefficients of the hyper-plane
that partition the input space into two regions with different output values.
If we can visualize this hyper-plane structure from the training data, then the
subsequent learning procedures in a neural network can be reduced. However,
in reality, the a priori knowledge is usually obtained from human experts,
and it is most appropriate to express the knowledge as a set of fuzzy if-then
rules. However, as already mentioned it is considered a challenge to encode
the knowledge into a neural network.

To a large extent, the drawbacks pertaining to these two approaches seem
complementary. As a consequence, it seems natural to consider building an
integrated system, combining the concepts of FIS and ANN modeling. A
common way to apply a learning algorithm to a fuzzy system is to represent
it in a special neural network like architecture. However, the conventional
neural network learning algorithms (e.g. gradient descent) cannot be applied
directly to such a system since the functions used in the inference process are
usually non differentiable. This problem can be tackled by using differentiable
functions in the inference system or by not using the standard neural learning
algorithm. In our simulation, we used the Adaptive Network Based Fuzzy
Inference System (ANFIS) [Jan93]. ANFIS implements a Takagi-Sugeno-Kang
(TSK) fuzzy inference system [Sug85] in which the conclusion of a fuzzy rule
is constituted by a weighted linear combination of crisp inputs rather than a
fuzzy set.

4.10 Intrusion Detection Systems

In [DDW99] Debar et al. made a taxonomy for IDSs, defining the two
main categories of IDS. We will refer to behavior-based as anomaly-based and
knowledge-based as misuse or signature-based. Anomaly-based IDSs use infor-
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mation about the normal behavior of the system it monitors in order to search
for unusual behavior while signature-based IDS search for evidence of attacks
based on knowledge accumulated from known attacks. Signature-based IDSs
have usually a lower false positive rates than anomaly-based IDSs, but they
have some drawbacks like difficulties to gather all necessary information to
detect an attack and to keep the database of signatures up to date. Anomaly-
based IDSs can detect attempts to exploit new and unforeseen vulnerabilities,
but this comes at a cost of a higher false alarm rate.

Debar et al. [DDW99] define two types of IDS: Host based IDS (HIDS)
and Network based IDS (NIDS). An HIDS is a tool for analyzing of audit
data available at the host in order to detect attacks, while a NIDS is a tool
for sniffing and analyzing network traffic in order to detect attacks. There are
several types of network attacks that are impossible or at least very difficult to
detect by an HIDS, e.g. Domain Name System (DNS) spoofing, Transmission
Control Protocol (TCP) hijacking, port scanning and Ping-Of-Death. These
attacks are usually better detected using a NIDS. The type of IDS is in general
not dependent on the category, so both types of Intrusion Detection System
(IDS) (HIDS and NIDS) could be either anomaly-based or signature-based.

In a Distributed Intrusion Detection System (DIDS), a conventional IDS is
embedded inside intelligent agents which are deployed over a network. IDS
agents communicate with each other in order to detect planned and coordi-
nated intrusion attempts.

An IDS will not do any attempts to prevent an intrusion, it will only detect
it and raise an alarm, and possibly report it to the operator.

4.11 Online Risk Assessment and Intrusion Prevention

We propose an online risk assessment and Distributed Intrusion Prevention
System (DIPS) based on our fuzzy risk model.

Definition 8 An IPS is defined as the complete process of identifying and
responding to attempts to compromise the security policy. A DIPS is an in-
trusion prevention system implemented in a distributed environment.

We consider the IPS as an integrated IDS with many more functions. Due to
the distributed nature of the IPS, the implementation poses several challenges.
IDSs are embedded inside software mobile agents and placed in the network
to be monitored. The individual IDS may be configured to detect a single
attack, or they may detect several types of attacks.

Figure 5 illustrates the basic architecture of a DIPS element, which is con-
trolled by a local controller. In a large network, each DIPS element commu-
nicates/coordinates with other DIPS local controllers and/or a central con-
troller [AJTH07]. Online risk assessment for assets protected by the DIPS are
performed by the HMM and ANFIS system which is a central part of each
DIPS element. An IDS deployed are capable of detecting events spanning
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Figure 5. Architecture of a DIPS element.

from simple problems to serious denial-of-service type of attacks. The cen-
tral controller takes the following actions based on the nature of the detected
attack:

1 If the detected attack is simply a port scan or a probe, the HMM model
will estimate the intrusion frequency of a possible future attack based
on the current distributed attack pattern. Based on the estimated in-
trusion frequency, the central controller (or administrator) would take
precautionary measures to prevent future attacks. The central controller
would also make use of online assessment of the risk of the assets being
subjected to possible serious attacks in the future.
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2 If the detected attack is very serious, the central controller would take
necessary actions to re-configure firewall rules or notify the administra-
tor. Such serious attacks would bypass the HMM model.

3 If at any time any abnormal traffic rate is noted by the monitor, then
again the central controller would take necessary actions to re-configure
firewall rules or notify the administrator etc.

5. Related Work and Foundation

5.1 Security Assessment Based on Criteria

The security of computer systems has traditionally been assessed from a
qualitative point of view, using a set of criteria. Assessment based on criteria
focus on the presence and absence of certain functional characteristics and the
use of specific development techniques. A well known set of qualitative evalu-
ation criteria are the “Trusted Computer System Evaluation Criteria” [Def83]
also known as the Orange Book published by US Department of Defense, and
it’s interpretations. The Red Book [Cen90], entitled “Trusted Network In-
terpretation”, is divided into four divisions: A, B, C and D. Where (A) is
the highest division reserved for systems providing the most comprehensive
security. The Orange Book has subsequently been replaced by the Common
Criteria (CC), also standardized by ISO/IEC [ISO05]. The CC Part 3 is or-
ganized in Evaluation Assurance Levels (EALs), where the numerical rating
is describing the depth and rigor of an evaluation. EAL 1 is the most basic
and EAL 7 is the highest level. These types of assessment represent a level
of trust, or an un-quantified belief about security, but give no quantitative
measures of security. A problem with these types of assessment is that there
is no guarantee that a system evaluated to a higher trust level is truly more
secure, despite the fact that the confidence in the correctness of the system
relative to its design, construction and, implementation and documentation
may be higher.

5.2 Stochastic Modeling of the Attack Process

In [LBF+93] Littlewood et al. introduced the concept of operational mea-
sures of computer security, with the intention of starting a discussion on the
relation between reliability and security. Many open questions that need to be
answered before the quantitative approach could be taken further were iden-
tified. The idea of using mean effort spent by an attacker to a security breach
as a security measure was launched, and the relation between time and effort
was discussed. The authors argued that an assumption of breaches being ac-
cidental seems most amenable to the reliability approach. They also discuss
the validity of using the exponential distribution as an approximation for dis-
tribution of the time to next security breach. In our research we have chosen
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to use time instead of effort, but we do assume that regular re-estimation of
the transition rates will to some extent take into account the relation between
time and effort.

Jonsson and Olovsson [JO97] conducted an intrusion experiment where stu-
dents attacked a real system under controlled conditions. From their experi-
ment they concluded that the attacking process can be split into three differ-
ent phases: the learning phase, the standard attack phase and the innovative
phase. The probability of a successful attack during the standard attack phase
is much higher than in the learning and innovative phases. The collected data
indicate that the time between breaches during the standard attack phase is
exponentially distributed, and this implies that methods that otherwise are
used for reliability actually could be applied for security threats as well. The
experiment did not focus on the effect of a large pool of possible attackers;
only a fixed number of attackers consisting of 12 groups of 2 attackers were
considered. The experiment focuses mainly on introduction and removal of
vulnerabilities caused by installation of new software and software upgrades.
One observation was that skilled attackers after some time run out of vulner-
abilities that are easy to exploit and enters the innovative phase. We assumed
that in a real system this effect would be less noticeable since more complex
systems are under constant change, often resulting in new vulnerabilities be-
ing introduced through the installation of new software, software updates, and
reconfiguration of existing software and hardware.

Kaâniche et al. [KAN+06] have performed an empirical analysis of data
collected from thirty-five honeypots located in twenty-five countries. They
found that the distribution of times between attacks is best described by a
mixed combination of a Pareto distribution and an exponential distribution.
This is an argument for using a semi-Markov model to model the intrusion
process, where state occupation times can have arbitrary distributions, and
a hidden semi-Markov model (HSMM) to model a sensor. We have chosen
to not use a HSMM, in order to keep the presentation as clear as possible.
The reason for this is the complexity of statistical inference in HSMMs. In
future works the use of different probability distributions in a HSMM may be
considered.

In [SKH05, SHK05] Sallhammar et al. introduce stochastic game theory
as a tool for modeling an attacker’s behavior, and in [SHK06] a method for
integrating dependability and security is presented. In [SHK07] they use their
model for online security and dependability assessment. They model the in-
teraction between the system and the attacker as a game, assuming that the
system is trying to minimize the loss and the attacker to maximize his/her
gain. By solving the game, a complete attack strategy can be calculated.

5.3 Stochastic Models of Intrusion Tolerant Systems

In [GGPW+01] Gong et al. present a state model representing the dy-
namic behavior of an intrusion tolerant system. Their model consists of nine
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states aimed at modeling the different actions an intrusion tolerant system can
take against an attacker, and the attacker’s response. They claim that their
model covers both known and unknown vulnerabilities by focusing on impact
rather than specific attack procedures. In the paper they do not present any
security measures, but their approach on modeling the interaction between
the attacker and the system have been an inspiration for our research. One
important model feature that we have adopted in our research, is the mod-
eling of attackers giving up attacks and the removal of known vulnerabilities
from the system. Their system model still differs from ours in that they are
modeling an intrusion tolerant system, specifically their model contain some
extra states for this purpose. Another difference is that they do not take into
account unsuccessful removal of vulnerabilities or unsuccessful reconfiguration
that we believe to be quite important in a real system.

Madan et al. [MVT02, BBMGPT04] extend the state model presented by
Gong et al. to a semi-Markov process, enabling them to compute some quanti-
tative security measures like steady state availability and mean time to security
failure. They do not model the relation between time and effort, which cor-
responds to the approach taken in our research. Still, when comparing their
model to ours, some noticeable differences appear. The main difference is that
they model a system while we model sensors comprising a system model. Fur-
thermore they use a semi-Markov model to model the system, while we use
a Markov model. They state that the use of a semi-Markov model have no
implications on the analysis since they only do a steady state analysis and not
a transient analysis. Their mean time to security failure is different from our
mean time to next security failure in that they assume the system starts in the
good state, but we use the distribution estimated by the HMM as the initial
distribution for the analysis. They model availability, integrity and confiden-
tiality, based on the steady state probabilities. This analysis do not depend on
the initial or current state distribution that we estimate with the HMM, and
this type of security measure is therefore considered to be of less importance
in a real time risk assessment system. We note, however, that the situation
may change with frequent re-estimation of model parameters.

In [WMT03] Wang et al. use Stochastic Reward Nets (SRN), which is an
extension of the Generalized Stochastic Petri Net (GSPN), to model the dy-
namics of an intrusion tolerant system. This was developed in the scalable
intrusion tolerant architecture (SITAR) research project. Their work is based
on research done by Madan et al. and is built on the same basic model as used
in [MVT02], but the new model is more specific for the SITAR system. The
model takes into account the multiple vulnerabilities in the system, the un-
successful removal of vulnerabilities and the state of three individual servers.
These extra model features come at a price; there is the large increase in the
number of states. In the resulting CTMM the number of states increases from
9 in [MVT02] to a few hundred. The approach is therefore not very attrac-
tive in our online estimation research, since the computation of our security
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measures may become too time- and memory-consuming. The difficulties of
doing parameter estimation and parameter re-estimation will also increase.
This type of model is therefore more attractive in offline settings.

Different variations of Stochastic Petri Nets have also been used, e.g.
in [SCS03] where Singh et al. use stochastic activity networks to model the
Intrusion Tolerant by Unpredictable Adoption (ITUA) architecture.

5.4 Attack and Privilege Graphs

Another interesting approach to quantifying security is [OD99], where Or-
talo et al. propose to model a computer system as a privilege graph which
exhibits security vulnerabilities. In this graph each node represents a set of
privileges owned by the user, while edges represent vulnerabilities. In [OD99]
a tool called Automatic Security Adviser exists that looks for known vulner-
abilities in the system and builds the privilege graph. A Markov model is
constructed from the privilege graph, where each edge is assigned a rate cor-
responding to the amount of effort that an attacker has to spend in order to
exploit the corresponding vulnerability. They propose a quantitative measure
called Mean Effort To Security Failure (METF), representing mean effort until
one of the privileges that must be protected according to the security policy
is obtained by an attacker. They propose different versions of METF distin-
guished by the attackers memory of visited states: Total memory assumption,
and the memory-less assumption. There are some important differences be-
tween their model and our model. Their model will only take into account
known vulnerabilities, but we are more focused on the unknown vulnerabil-
ities. In our model we assume that when a vulnerability is detected, some
effort will be made to remove it. They also do not model the fact that an
attacker may give up an attack which we consider an important property of
our model.

In their paper the security measure Mean Time To Failure is not taking
into account the security state of the system. Our security measure do this,
by using the output from the HMM (the estimated distribution) as the initial
distribution for the Mean Time To Security Failure estimate.

Sheyner et al. propose to use automated generation and analysis of attack
graphs [SHJ+02] as a part of a probabilistic reliability analysis. They model
the network as a finite state machine, where atomic attacks correspond to
transitions. They then use a model-checker to construct and analyze an at-
tack graph, and estimate likelihood of intrusion. This takes advantage of the
efficient model representation that exists in the field of model checking, in-
creasing the size of a system that can be analyzed. Their modeling approach
is quite similar to the privilege graph approach. Sheyner et al. claim that
the privilege graph approach is more attack centric than the approach used
in their paper. They find the minimal set of atomic attacks that must be
prevented in order to guarantee that the intruder can not reach his goal. By
assigning probabilities for certain events to the graph, and interpreting the
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graph as a Markov Decision Process, they are able to estimate the effect of
adding new security mechanisms in terms of the probability of detecting the
intrusion. The model presented by Sheyner et al. is quite different from our
model since they do not take time or effort into account, resulting in a static
model. To some extent, their model takes into account the fact that sensors
in the network are not perfect and some attacks are not detected. That is
similar to what we try to model.

5.5 Aggregation and Correlation of IDS Alerts

There has been a research focus lately on different types of aggregation and
correlation of IDS alerts. The main objectives of this research have been to
reduce the amount of alerts seen by the operator, group together alerts arising
from the same event, and the removal of false alerts. The output of this type
of algorithms are usually new alerts (e.g. referred to as meta-alerts), which
contain a high level description of the attack. Some interesting approaches
are:

In [DW01], Debar and Wespi propose a system that performs both aggrega-
tion and correlation of IDS alerts from many different sensors. One important
feature of their system is its ability to aggregate alerts into so called situations
according to the source and target. They also propose a method for detecting
unauthorized scans.

Data mining and clustering [Jul01] is another approach that is used for
extracting the true alerts in a large data set of IDS output by clustering alerts
according to their root cause. False positives can be reduced considerably, but
at the cost of additional increase in false negatives for infrequent alerts.

A comprehensive approach for intrusion detection alert correlation is pre-
sented by Valeur et al. in [VVKK04]. One notable feature of the proposed
system is its ability to do impact analysis of alerts in order to prioritize alerts
according to their severity, based on the security policies and security require-
ments of the sites.

Perdisci et al. propose a strategy for alarm clustering [PGR06]. They use a
learning phase to extract the attack class(es) an attack description belongs to.
Their clustering method is based on a distance measure expressing the distance
between alarms and meta alarms. As before, the meta-alarms produced are a
high level description of the attacks.

We have considered these techniques a necessary part of a risk or intru-
sion prevention system based on IDS sensors. In Paper G we have described
how alerts are transformed into observations by applying some correlation and
aggregation techniques. This is done to avoid dependencies between observa-
tions, and to have all alerts in some standardized format. We have proposed
that the alert severity ratings, together with the timestamps, are used as ob-
servations in the HMM. In [PGR06], the approach differs from our approach
in that they do not model the dynamic aspects of the interaction between the
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attacker and the system, neither do they produce any quantitative security
measures, based on the security state or situation of the asset.

5.6 Risk Assessment

Risk assessment has traditionally been a manual analysis process based on
a standardized framework, such as those recommended by National Institute
of Standards and Technology (NIST) [SGF02] and AS/NZS [Sta04]. The main
drawback with this type of methods is costs associated with hiring experts,
and the fact that it takes some time to do the actual assessment. During this
time an attack could already have occurred. Therefore there is a need for some
online risk assessment methods making a fast response possible.

In [Jon06] Jones describes a risk assessment framework called FAIR. FAIR
is an offline risk assessment method, and has been an inspiration for our fuzzy
logic risk assessment method. Our method is a simplified and modified version
of FAIR in terms of risk factors involved in the assessment; this simplification
makes it more suitable for online risk assessment. The FAIR model consists
of four basic components: threats, assets, the organization itself, and the ex-
ternal environment. In comparison, our model takes into consideration threat
level, vulnerability, and asset value. As has FAIR, we have adopted a hier-
archical structure. However, the way individual risk factors are combined is
quite different. They use a matrix to map combination of input variables to
output variables, while we use fuzzy logic controllers which, although arranged
in a similar matrix structure, are much more flexible since we can use differ-
ent membership functions for the input and output variables. The principal
difference is that we use fuzzy sets while they use crisp sets for the input and
output variables. From our point of view this type of risk models seems suit-
able for an implementation using fuzzy logic, since human expert knowledge
and opinions about risk can be embedded in the model.

In [GK04], Gehain et al. present a method for intrusion prevention called
RheoStat. This is a formal model to characterize the risk faced by a host, and
describe how risk can be managed in real-time by adapting the host’s exposure
to perceived threats. The RheoStat method is implemented by modifying the
access control system in the java runtime environment, in order to tighten the
access to resources in response to threats detected by an integrated intrusion
detection system running on the host. The decision of whether to tighten or
loosen the access to resources is based on a cost-benefit analysis, where costs
are measured by the frequency of which permissions are checked. After each
event reported by the IDS, the system tries to find the most cost efficient
subset of permissions that will bring the risk under some predefined limit.
This problem is equivalent to the NP-complete Knapsack Problem. The risk
model consists of three basic risk factors: threat, vulnerabilities, and assets.
Threats are associated with IDS signatures, i.e. the likelihood of the threat
are derived based on how completely the signature is matched. Assets are
items with value, and the consequence is the harm that an asset may suffer in
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terms of confidentiality, integrity and/or availability loss. The NIST National
Vulnerability Database (NVD) [NCSD09] is used to get information about
vulnerabilities. The actual risk estimation is based on combining these factors
using products and sums. This risk model is in some sense similar to our
model, but with some important differences. We model and measure the
activity of the attacker, in terms of intrusion frequency. We also assume that
it is important to consider time when estimating risk; our risk model will
fade out the risk over time if nothing is happening. We have also developed
a sensor model, modeling the trustworthiness of different sensors so we can
handle input from more than one sensor. This factor seems to be important in
a real network. These considerations are valid for both of our risk models, the
ones presented in Paper A to Paper D that are based on cost associated with
states, and for the models presented in Paper E to Paper G using parameters
for different attack/categories stored in a look-up table. We have not done
any research on specific methods for reaction against attacks.

5.7 HMM and IDS

A relevant introduction to HMM can be found in [Rab90]. We have made
some modifications to the algorithms presented in that paper, in order to use
a continuous time model instead of a discrete time model. We also introduce
the idea of using more than one observation matrix in order to model more
than one sensor.

Using system call data sets generated by different programs, Warrender
et al. compared different data modeling method’s ability to model normal
behavior accurately with the intent to use anomaly detection to recognize
intrusions [WFP99]. They proposed an HMM based IDS, and compared it
to a model using techniques described as Sequence Time-Delay Embedding
(STDE), and Repeated Incremental Pruning to Produce Error Reduction
(RIPPER). Registered user behavior for different UNIX programs (nemd,
ps, sendmail,...) has been used as basis for the modeling of normal behavior.
For the HMM they have suggested using roughly the same number of states
as unique system calls used by the program, ranging from 40 to 60. For each
system call, an anomaly decision is taken, based on what state transitions and
output would have been required of the HMM to produce that output. If the
system call only could have been produced using unlikely transitions and out-
puts, it is marked as a mismatch. They concluded that the system call data
was regular enough for simpler modeling methods than HMM to work well.

Wang et al. [WGZ04] repeated some of the experiments done by Warrender
et al. using traces of system calls as observables for an HMM instead of
individual system calls, and reported a better detection accuracy. They argue
that this method is suitable for online detection, since it is only the training
phase that is computationally expensive.

HMMs have been used to detect multi stage attacks [OMSH03]. Ourston et
al. model each stage of an attack as a state in the HMM, and use transitions
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to represent atomic attacks. They implemented their system using a separate
HMM for each attack category. The HMM model has one state for each attack
step (ip scan, port probe). They collect alerts from multiple sensors in the
network and sort them according to their connections (source, destination).
All alerts in one connection are subsequently analyzed by each HMM in order
to check if there is a match with one of the attack categories.

In [GSW03] GAO et al. use an HMM to forecast attacks in an IDS, mainly
operating on the application layer. They also use fuzzy logic in the deci-
sion making. In [KL06], Khanna et al. propose to build an IDS based on
an HMM with multivariate Gaussian distributed observations, and dynamical
re-estimation of parameters. In [KL07], Khanna et al. use distributed HMM
processing in combination with a Proportional Integral differential (PID) con-
trol engine to make a distributed IDS for ad hoc networks. In essence, their
approach is different from ours as they use continuous observations and are
only modeling one sensor at a time.

5.8 DIDS

The detection of certain attacks against computer networks requires in-
formation from multiple sources. In response to that fact, several different
frameworks for DIDS have been proposed. The concept of a DIDS was first
proposed by Snapp et al. [SBD+91] in 1991. A major problem considered in
that paper is the Network-user Identification problem. That is the problem
of tracking users moving across the network, possibly with a new user-id on
each computer. They designed and implemented a prototype DIDS that com-
bined distributed monitoring and data reduction through individual host and
Local Area Network (LAN) monitors with centralized data analysis through
the DIDS director. This was used to monitor a heterogeneous network of com-
puters. Another concept which is discussed in the paper is the security state
of the network represented by a number between 1 and 100. This number
represents all threats against all subjects in the network.

The use of a centralized data analyzer represents a single point of failure. To
make the system more robust, Crosbie and Spafford [CS96] propose a DIDS
architecture based on Autonomous Software Agents. This architecture was
further developed in the Autonomous Agents for Intrusion Detection (AAFID)
project. In this project a prototype of a DIDS has been developed based on
Autonomous Software Agents, and is claimed to be more robust because of
the following:

there is no single point of failure

agents are easier to reconfigure since individual agents can be added or
reconfigured without restarting

if the agent is running on the host it is monitoring, the chance of insertion
and evasion attacks are reduced, DIDS [BGFI+98].
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Their design consists of three essential components: agents, transceivers, mon-
itors. An agent is an independently running entity which monitors specific
aspects of a host; interesting events are reported to a transceiver. Each host
has one transceiver which is responsible for control and communication with
agents running on the host, for processing and aggregation of information, and
for communication with monitors. Monitors are the highest level of entities in
the AAFID architecture. They can control entities on other hosts. Monitors
are responsible for high level correlation of data and have an API which can
be accessed via a user interface. Agents are mobile and allowed to move from
host to host.

Another DIDS is the GrIDS project at UC Davis [SCCC+96]. They have
modules running on each host to send information to an engine which builds
a graph representation of the activity in the network. The graphical represen-
tation is used to report possible intrusions. GrIDS is designed to scale in large
networks, by building graphs of activity in a hierarchical structure organized
in hosts and several levels of departments.

Helmer et al. propose to use lightweight mobile agents for intrusion de-
tection [HWH+03]. In this system, software agents can move around in the
network and be upgraded and updated. The main focus of this system is the
use of learning algorithms, data warehousing, and mobile agents. A prototype
of this system has been developed in Java.

Another DIDS architecture is the Event Monitoring Enabling Responses
to Anomalous Live Disturbances (EMERALD) project [PN97] which is based
on a recursive structure allowing generic components to be deployed in a dis-
tributed manner.

Our work is more focused on modeling of the system and estimation of
risk, while other DIDS frameworks presented in this section are more focused
on how to collect and aggregate information from agents in order to detect
specific attacks. Our DIPS architecture proposed in Paper D is based on
extending a DIDS architecture to also include intrusion prevention based on
risk assessment. Intrusion prevention mechanisms add functionality to an IDS.
This is functionality like: stopping suspicious network traffic, shutting down
servers and processes that have a high risk of being under attack, and blocking
of users that behave suspiciously.

The State Transition Analysis Technique (STAT) framework of [VVK03,
VKB01] is a framework for administration and configuration of sensors in a
DIDS based on five key concepts:

STAT Technique for representing high-level descriptions of computer
attacks,

STATL Language which is an extendable language used to represent
STAT attack scenarios,

STAT Core representing the runtime of the STATL language,
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CommSTAT used by sensors to communicate in a secure way, following
the Intrusion Detection Message Exchange Format (IDMF) [DCF07] and

MetaSTAT which use CommSTAT to communicate with and control a
set of sensors.

The STAT framework also includes an alert correlating component [VVKK04]
and the infrastructure MetaSTAT which manages alerts and enables dynamic
reconfiguration of sensors. In [ÅVVK06] Årnes et al. integrate our HMM
model of risk into the STAT framework as a tool for prioritizing alerts.

6. Research Methodology

The initial idea of using HMMs in risk assessment was developed during the
summer of 2005, as a result of cooperation between several researchers working
in the security group at NTNU/Q2S. This work was published later that year,
see Paper A. The idea of using Markov models to model the security state of
a computer network is inspired by the stochastic methods used in the analysis
of dependable systems. All papers in this thesis have multiple authors and are
the result of joint work and discussions.

Given the fundamental nature of the research questions stated in Section 2.1,
we believed the best method for tackling these questions was to start with a
theoretical approach in order to build a theoretical foundation for future re-
search. The work presented in this thesis is based on a broad literature study,
discussions and cooperation between the authors in the development of theo-
retical models. The research is aimed at developing fundamental concepts and
models to form a framework for risk assessment in operational computer sys-
tems and networks. During the literature study, different types of stochastic
models have been investigated with a main focus on models used in depend-
ability research. The emphasis in our research has been on the development
of a sensor model that comprises a system model in addition to specific prop-
erties of individual sensors. This modeling technique enable us to model the
relation between the system state and observations made by the sensors.

7. Validation of Work

The work presented in this thesis has mainly been validated by means of
mathematical analysis in order to check that the model behaves as expected.
The results have been presented at international conferences.

Simulation has been used to validate parts of the theoretical work. A simu-
lation experiment is presented in Paper C, where a discrete-event simulation is
implemented using JSIM [Mil]. JSIM is a discrete-event simulator framework
for Java. The simulated network consists of an Internet gateway (router), two
publicly available web-servers in a Demilitarized Zone (DMZ), two protected
file-servers, as well as ten workstations and ten laptops. All assets with, the
exception of the router, are monitored by a NIDS and a HIDS. State tran-
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sitions and observations were generated using an HMM. This enables us to
compare the true risk, with the estimated risk. True risk referees to the risk
estimated from the true security state, estimated risk means risk estimated
from the state distributions estimated by the HMM. Results shows that there
is a high correlation between the estimated risk and the true risk, even if the
HMM parameters are inaccurate.

In [ÅVVK06] Årnes et al. present an experiment where our risk assessment
method have been integrated into the STAT framework [VKB01], and they
have performed tests using training data from the Lincoln Laboratory [Lab00]
and real network traffic from the Technical University of Vienna [KKM+05].
The Lincoln Laboratory dataset consists of 1016 IP addresses each modeled
by a separate HMM. The same transition and observation probability matrix
where used for all HMMs except for two nodes in the network. The reason for
this is that all hosts in the network are protected by NIDSs in addition the
two nodes are protected by HIDSs, reflected in the parameter set. Alerts are
fused and aggregated by MetaStat before they are fed into the risk assessment
system. The risk assessment method used in this paper is similar to the
method we have presented in Paper B. The entire data set has a time span of
11386 sec and consists of 36635 alerts and a truth file with information about
security events in the network. In [VVK06] it is clearly demonstrated that
the risk assessment method was able to assess the risk and detect several of
the security relevant events in the data set. The system was able to assign
maximum risk to the two most critical incidents. This experiment shows that
our risk assessment method can be suitable for deployment in relatively large
networks.

Implementation and testing of the risk assessment method in an operational
computer network would of course have been preferable, but there are some
problems with this type of validation. As already mentioned Årnes et al.
tested the risk assessment method on network traffic data from the Technical
University of Vienna. The result was in some sense inconclusive, because there
were no known attacks in the test data. Also since real traffic data was used,
there where no possibility to check the assessed risk against the truth state
of the network. Another problem with performing tests in an operational
network is the reluctance many system administrators have against deploying
new experimental software that could have security and privacy implications
in their systems. We believe that the first step in validating this type of risk
assessment methods should remain theoretic, albeit followed up by simulations
and experiments later, and this corresponds to what we have done so far. For
progressing further, we recommend experiments to be performed in a closed
and tightly controlled environment similar to what is presented in [Jon06].
Only after one is convinced by these types of experiments that the IDS/IPS
is successful, a full implementation in an operational network which would be
the final step in validation of the method is envisaged.
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8. Summary of Papers

This section describes the contribution of each paper and the relation be-
tween the papers included in this thesis. A short description of my personal
contribution to each paper is also included. Figure 6 shows a graphical rep-
resentation of the relation between the papers. The indexing of papers is
chronological after when they have been written. Paper A-C and G gradually
refine the HMM modeling approach to online risk assessment and are closely
related. Paper D-F are also closely related and presents an IPS architecture
based on fuzzy logic. Paper G shows how the intrusion frequency needed as
input to the risk assessment method presented in Paper D-F can be calculated,
from the HMM model proposed in Paper A-C.

HiNFRA: Hierarchical 

Neuro−Fuzzy Learning 

for Online Risk Assessment

PAPER F

Fuzzy Online Risk 

Assessment for Distributed 

Intrusion Prediction and 

Prevention Systems

PAPER E
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Using Hidden Markov Models 

and Online Fuzzy 

Risk Assessment

PAPER DPAPER B
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Hidden Markov Models

Security Analysis of 

Real−time 

Intrusion Prevention and 
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Real−time Risk Assessment 
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Multisensor Real−time 

Risk Assessment using 

Continuous−time 

Hidden Markov Models

Figure 6. The relationship between papers included in Part II
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8.1 Paper A

Real-time Risk Assessment with Network Sensors and
Intrusion Detection Systems.

This paper considers a real-time risk assessment method for information sys-
tems and networks based on observations from networks sensors such as intru-
sion detection systems. In this paper, we introduce the idea of using HMM for
real-time assessment. We assume that the security state of a computer system
can be modeled using a first order Markov model, and that the trustworthiness
of sensors can be modeled by an HMM. The system risk is dynamically eval-
uated, providing a mechanism for handling data from sensors with different
trustworthiness in terms of false positives and negatives. The risk is estimated
by associating costs with states and using the state distribution estimated by
the HMM. In this paper, we use an HMM to aggregate observations from all
the sensors participating in the risk assessment. The paper contains an ex-
ample with two sensors, showing parameters and observations combined with
the estimated risk.

My contribution to paper A is the idea of using an HMM model to model the
security state of a network. I was also the main contributor to the development
of the model used in the paper, and in the implementation of the simulations.

8.2 Paper B

Real-time Risk Assessment with Network Sensors and
Hidden Markov Models

This paper extends Paper A and shows simulation results. Specifically, it
describes a method for handling data from multiple, heterogeneous sensors
with different levels of trustworthiness. For each particular sensor, the risk is
estimated based only on observations from that particular sensor. The total
risk for the system is then estimated by using the mean of the risk from each
sensor.

A discrete-event simulator is implemented, demonstrating the real-time risk
assessment based on observations from intrusion detection systems. Using
this simulator, we model and simulate the risk assessment of a large network
and compare the results to the true values in order to validate the proposed
approach.

My contribution to paper B was that I had main responsibility for research-
ing and writing the risk assessment section.

8.3 Paper C

Multisensor Real-time Risk Assessment using
Continuous-time Hidden Markov Models

In this paper we further extend ideas presented in Paper A and Paper B to
facilitate more flexible risk modeling with support for a wide range of sensors.
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For each sensor we maintain a state distribution estimated by an HMM, this
distribution was then used to estimate the risk. The overall risk is estimated
by aggregating the risk estimates from each sensor using the inverse variance
as weights. This forms a minimum variance estimator of the system risk. This
method is an improvement to the aggregation method presented in Paper B.

We use a continuous time Markov model to model the evolution of the
system state. When an observation is received from a sensor, a discrete Markov
model is created from the continuous time model based on time since last
observation. By using this method we take into account the fact that most
sensors produce observations at irregular time intervals, e.g. an IDS.

My contribution to paper C is to be found in section 2, 3 and 4 where I was
the main contributor to the development of the continuous time risk model,
and the multi sensor model. I was also responsible for the examples.

8.4 Paper D

DIPS: A Framework for Distributed Intrusion Prediction and
Prevention Using Hidden Markov Models and

Online Fuzzy Risk Assessment

In this paper, a DIPS is proposed. The system consists of several IPSs
over a large network, all of which communicate with each other or with a
central server to facilitate advanced network monitoring. A Hidden Markov
Model, as presented in Paper A, is used for sensing intrusions in a distributed
environment and to make a one step ahead prediction against possible serious
intrusions. The DIPS is activated based on the predicted threat level and
risk assessment of the protected assets. Intrusion attempts are blocked based
on (1) a serious attack that has already occurred (2) the rate of packet flows
(3) prediction of possible serious intrusions and (4) online risk assessment of
the assets possibly available to the intruder. The paper focus on three areas:
(1) the distributed monitoring of intrusion attempts, (2) the one step ahead
prediction of such attempts and (3) online risk assessment using fuzzy inference
systems.

The paper is based on the discrete HMM model presented in Paper A and
not the continuous HMM model presented in Paper C. The reason for this is
that we want the presentation to be clearer and not unnecessary complicated.

Professor Ajith Abraham first came up with the idea of using hierarchical
fuzzy logic for risk modeling and the use of risk as input to an IPS. I was made
responsible for the experiments and the writing of Paper D with some contri-
bution from Professor Abraham in the parts about fuzzy logic and distributed
intrusion prevention systems.

8.5 Paper E

Fuzzy Online Risk Assessment for Distributed Intrusion Prediction and
Prevention Systems
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The novelty of this paper compared to Paper D is the detailed development
of Fuzzy Logic Controllers to estimate the various risk(s) that are dependent
on several other variables based on the inputs from HMM modules and the
DIDS agents. To develop the fuzzy risk expert system, if-then fuzzy rules were
formulated based on interviews with colleagues. Preliminary results indicate
that such a system is very practical for protecting assets which are prone to
attacks or misuse, i.e. highly at risk.

I had the overall responsibility for writing the paper and for the experiments.
Professor Abraham contributed by writing the introduction and supported me
during the experiments.

8.6 Paper F

HiNFRA: Hierarchical Neuro-Fuzzy Learning for
Online Risk Assessment

Paper D and Paper E illustrate the design of fuzzy logic based online risk
assessment for DIPS. Paper F on the other hand proposes a Hierarchical
Neuro-Fuzzy online Risk Assessment (HiNFRA) model to aid the decision
making process of a DIPS. The fine tuning of fuzzy logic based risk assessment
model is achieved using a neural network learning technique. Preliminary
results indicated that the neural learning technique could improve the fuzzy
controller performance and make the risk assessment model more robust.

I was responsible for the overall writing of paper F and for the experiments,
while Professor Abraham offered some input and advise on using Adaptive
Network Based Fuzzy Inference System. He was also responsible for writing
section 2.2.

8.7 Paper G

Real-time Intrusion Prevention and
Security Analysis of Networks using HMMs

In Paper G, we further develop the idea of using a continuous time Markov
model to model a sensor that was first introduced in Paper C. However,
Paper G does not store one state distribution for each sensor as proposed
in Paper C. Rather a new HMM is created and used for updating the esti-
mated system state for each observation, based on the sensor trustworthiness,
the continuous time Markov model and the time since last observation pro-
cessed. Observations from different sensors are aggregated in the HMM and
two different security metrics are estimated. Our objective in this paper was
to calculate and maintain a state probability distribution that can be used
for intrusion prediction and prevention needs. We showed how our sensor
model can be used in the IPS architecture based on IDS sensors as presented
in Paper D-F. Our approach is illustrated by a case study presenting a small
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computer network, where we construct an attack scenario and show how the
security analysis is done.

My main contribution to Paper G was in the development of the mathe-
matical model used in the paper. I was also responsible for writing sections
3.2, 3.3 and 3.4.

8.8 Contributions of the papers

The papers included in this thesis have contributed with the following:

A model describing the different security states of a network and the
transitions between them. This model is based on probabilistic meth-
ods used in dependability modeling (Markov models) that have been
extended to model security.

Extension of the system model to a sensor model based on an HMM. The
sensor model models the trustworthiness of sensors for IDS and IPS.

Introduction of a security measure called MTNSF and its inverse called
the intrusion frequency.

Two different risk models: One based on costs associated with states
and one combining a hierarchical fuzzy inference system with the prob-
abilistic system model to model risk.

Two different methods for aggregation of information from multiple sen-
sors. The first method combines the risk estimate from each sensor to
produce a minimum variance estimator of the risk, where the variance
represents the trustworthiness of the sensor. In the second method, one
common distribution is maintained, and when an observation is received,
the risk estimate is updated taking into account the sensors trustworthi-
ness.

The use of neural network learning to estimate parameters for the fuzzy
logic based risk assessment model.

A DIPS architecture as an application of our online risk assessment
model.

8.9 My Contributions to the Papers Included in this
Thesis

All papers in this thesis are authored by multiple authors. I will therefore
in more detail explain my specific contribution to the papers included in this
thesis. Svein J. Knapskog has been my supervisor and has therefore been a
co-author of all papers except Paper B. He has been active in reviewing the
text and has given important feedback on how to improve the text. Ajith
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Abraham have introduced me to the idea of using Fuzzy logic in combination
with an HMM to model risk. We have had some fruitful discussions about the
modeling approach and he functioned as a co-supervisor on Paper D, Paper E
and Paper F. Specifically my contributions to the paper in this thesis are:

The initial idea of using an HMM to model the fact that the true security
state of a network is unobservable or hidden.

Forming the mathematical basis for Paper A, which is refined and ex-
tended in the papers following Paper A.

Responsible for the simulations in all papers except Paper C.

The idea of using a minimum variance estimation of risk, presented in
Paper C. André Årnes was mostly involved in the writing of the Paper C.

Introducing the idea of using one new observation probability matrix
for each observation, in order to take into account the time between
observations and the trustworthiness of different sensors.

The idea of using the security measures MTNSF analogous to the MTFF
frequently used as a dependability measure.

Writing the sections about the system and sensor model in all 6 papers.

The drawing of figures and plotting of graphs in all papers except
Paper C.

The writing of Paper E and Paper F, with some support from Ajith
Abraham.

I have received adequate support in the writing the papers as my skills are
more towards understanding and using mathematics and physics, than towards
the writing of running text. It has been more natural for me to concentrate
on to develop models, perform simulations, and illustrate proposed solutions
by drawing figures rather that using comprehensive textual descriptions and
explanations of the performed research.

9. Discussion and Conclusion

This thesis has focused on problems related to quantitative characterization
of risk and security in computer systems or networks and dynamic risk and
security assessment based on network monitoring. The result of the research
is the development and design of a Markov model describing the security state
of a computer network. This model is used to obtain quantitative security
measures like the intrusion frequency and system risk. The system model
is extended to include estimation of the trustworthiness of sensors collecting
security relevant information in computer networks. An online risk assessment
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method based on the sensor model is proposed and used as a basis for an IPS
architecture.

The work has been validated through mathematical analysis, simulations
and experiments. The theoretical results presented in this thesis indicate that
our risk assessment method could be useful in predicting and preventing at-
tacks against computer networks. Simulations have been used to validate parts
of the theoretical work. A simulation experiment is presented in Paper C,
where a discreet-event simulation is implemented using the JSIM [Mil], a
discrete-event simulator framework for Java. In [ÅVVK06] Årnes et al. present
an experiment where our risk assessment method have been integrated into the
STAT framework [VKB01], and they have performed tests using training data
from Lincoln Laboratory [Lab00] and real network traffic from the Technical
University of Vienna [KKM+05].

The main challenges in implementing and testing the proposed risk assess-
ment method have been parameter estimation and verification of the HMM.
One specific characteristic of the parameter estimation process is that it is im-
possible to directly observe the security state of a computer network, e.g. the
most dangerous attacks are those that never are detected. Another challenge
concerning parameter estimation is that it is difficult to get security relevant
incident data from real systems, because companies and organizations are re-
luctant to reveal any security and possibly privacy related information. A
possible solution may be to use honeypots to collect data for parameter esti-
mation, but this solution is not ideal, since a honey-pot is not a real production
system.

The number of states in the models we have investigated are quite small.
This is a conscious choice, mainly to reduce the number of parameters and to
increase the chance of realistic validation. New and more expressive models
which also take into account availability may be a topic for future research.
Another research topic could be to extend the system model from a Markov
model where state occupation times have to be exponentially distributed, to
a semi-Markov model where the state occupation times can have a general
distribution.

There are some important problems related to IPS that need focus: self
denial of service, false positives, and the fact that a DIPS is by itself an
attractive target. These problems have not been investigated in this research
and may also be a topic for future investigations.
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Abstract This paper considers a real-time risk assessment method for information sys-
tems and networks based on observations from networks sensors such as intru-
sion detection systems. The system risk is dynamically evaluated using hidden
Markov models, providing a mechanism for handling data from sensors with
different trustworthiness in terms of false positives and negatives. The method
provides a higher level of abstraction for monitoring network security, suitable
for risk management and intrusion response applications.

1. Introduction

Risk assessment is a central issue in management of large-scale networks.
However, current risk assessment methodologies focus on manual risk analysis
of networks during system design or through periodic reviews. Techniques
for real-time risk assessment are scarce, and network monitoring systems and
intrusion detection systems (IDS) are the typical approaches. In this paper,
we present a real-time risk assessment method for large scale networks that
build upon existing network monitoring and intrusion detection systems. An
additional level of abstraction is added to the network monitoring process,
focusing on risk rather than individual warnings and alerts. The method
enables the assessment of risk both on a system-wide level, as well as for
individual objects.

The main benefit of our approach is the ability to aggregate data from
different sensors with different weighting according to the trustworthiness of
the sensors. This focus on an aggregate risk level is deemed more suitable
for network management and automated response than individual intrusion
detection alerts. By using hidden Markov models (HMM), we can find the
most likely state probability distribution of monitored objects, considering the
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trustworthiness of the IDS. We do not make any assumptions on the types of
sensors used in our monitoring architecture, other than that they are capable of
providing standardized output as required by the model parameters presented
in this paper.

1.1 Target Network Architecture

The target of the risk assessment described in this paper is a generic net-
work consisting of computers, network components, services, users, etc. The
network can be arbitrarily complex, with wireless ad-hoc devices as well as
ubiquitous services. The network consists of entities that are either subjects
or objects. Subjects are capable of performing actions on the objects. A sub-
ject can be either users or programs, whereas objects are the targets of the
risk assessment. An asset may be considered an object. The unknown factors
in such a network may represent vulnerabilities that can be exploited by a ma-
licious attacker or computer program and result in unwanted incidents. The
potential exploitation of a vulnerability is described as threats to assets. The
risk of a system can be identified through the evaluation of the probability
and consequence of unwanted incidents.

1.2 Monitoring and Assessment Architecture

We assume a multiagent system architecture consisting of agents that ob-
serve objects in a network using sensors. The architecture of a multiagent risk
assessment system per se is not the focus of this paper, but a description is
included as a context.

An agent is a computer program capable of a certain degree of autonomous
actions. In a multiagent system, agents are capable of communicating and
cooperating with other agents. In this paper, an agent is responsible for col-
lecting and aggregating sensor data from a set of sensors that monitor a set
of objects. The main task of the agent is to perform real-time risk assess-
ment based on these data. A multiagent architecture has been chosen for
its flexibility and scalability, and in order to support distributed automated
response.

A sensor can be any information-gathering program or device, including
network sniffers (using sampling or filtering), different types of intrusion de-
tection systems (IDS), logging systems, virus detectors, honeypots, etc. The
main task of the sensors is to gather information regarding the security state
of objects. The assumed monitoring architecture is hybrid in the sense that it
supports any type of sensor. However, it is assumed that the sensors are able
to classify and send standardized observations according to the risk assessment
model described in this paper.
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1.3 Related Work

Risk assessment has traditionally been a manual analysis process based on
a standardized framework, such as [Sta04]. A notable example of real-time
risk assessment is presented in [GK04], which introduces a formal model for
the real time characterization of risk faced by a host. Distributed intrusion
detection systems have been demonstrated in several prototypes and research
papers, such as [SCCC+96, SBD+91]. Multiagent systems for intrusion de-
tection, as proposed in [BGFI+98] and demonstrated in e.g. [HWH+03] (an
IDS prototype based on lightweight mobile agents) are of particular relevance
for this paper. An important development in distributed intrusion detection
is the recent IDMEF (Intrusion Detection Message Exchange Format) IETF
Internet draft [DCF05]. Hidden Markov models have recently been used in
IDS architectures to detect multi-stage attacks [OMSH03], and as a tool to
detect misuse based on operating system calls [WFP99]. Intrusion tolerance
is a recent research field in information security related to the field of fault
tolerance in networks. The research project SITAR [GGPW+01] presents a
generic state transition model, similar to the model used in this paper, to de-
scribe the dynamics of intrusion tolerant systems. Probabilistic validation of
intrusion tolerant systems is presented in [SCS03].

2. Risk Assessment Model

In order to be able to perform dynamic risk assessment of a system, we
formalize the distributed network sensor architecture described in the previous
section. Let O = {o1, o2, . . .} be the set of objects that are monitored by an
agent. This set of objects represents the part of the network that the agent is
responsible for. To describe the security state of each object, we use discrete-
time Markov chains. Assume that each object consisting of N states, denoted
S = {s1, s2, . . . , sN}.

As the security state of an object changes over time, it will move between
the states in S. The sequence of states that an object visits is denoted X =
x1, x2, . . . , xT , where xt ∈ S is the state visited at time t. For the purpose of
this paper, we assume that the state space can be represented by a general
model consisting of three states: Good (G), Attacked (A) and Compromised
(C), i.e. S = {G,A,C}. State G means that the object is up and running
securely and that it is not subject to any kind of attack actions. In contrast
to [GGPW+01], we assume that objects always are vulnerable to attacks,
even in state G. As an attack against an object is initiated, it will move to
security state A. An object in state A is subject to an ongoing attack, possibly
affecting its behavior with regard to security. Finally, an object enters state
C if it has been successfully compromised by an attacker. An object in state
C is assumed to be completely at the mercy of an attacker and subject to any
kind of confidentiality, integrity and/or availability breaches.
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The security observations are provided by the sensors that monitor the ob-
jects. These observation messages are processed by agents, and it is assumed
that the messages are received or collected at discrete time intervals. An ob-
servation message can consist of any of the symbols V = {v1, v2, . . . , vM}.
These symbols may be used to represent different types of alarms, suspect
traffic patterns, entries in log data files, input from network administrators,
and so on. The sequence of observed messages that an agent receives is de-
noted Y = y1, y2, . . . , yT , where yt ∈ V is the observation message received at
time t. Based on the sequence of observation messages, the agent performs
dynamic risk assessment. The agent will often receive observation messages
from more than one sensor, and these sensors may provide different types of
data, or even inconsistent data. All sensors will not be able to register all
kinds of attacks, so we cannot assume that an agent is able to resolve the
correct state of the monitored objects at all times. The observation symbols
are therefore probabilistic functions of the object’s Markov chain, the object’s
true security state will be hidden from the agent. This is consistent with the
basic idea of HMM [Rab90].

2.1 Modeling Objects as Hidden Markov Models

Each monitored object can be represented by a HMM, defined by λ =
{P,Q, π}.

P = {pij} is the state transition probability distribution matrix for object
o, where pij = P (xt+1 = sj |xt = si), 1 ≤ i, j ≤ N . Hence, pij represents
the probability that object o will transfer into state sj next, given that its
current state is si. To be able to estimate P for real-life objects, one may use
either statistical attack data from production or experimental systems or the
subjective opinion of experts. Learning algorithms may be employed in order
to provide a better estimate of P over time.

Q = {qj(l)} is the observation symbol probability distribution matrix for
object o in state sj , whose elements are qj(l) = P (yt = vl|xt = sj), 1 ≤ j ≤
N, 1 ≤ l ≤M . In our model, the element qj(l) in Q represents the probability
that a sensor will send the observation symbol vl at time t, given that the
object is in state sj at time t. Q therefore indicates the sensor’s false-positive
and false-negative effect on the agents risk assessments.
π = {πi} is the initial state distribution for the object. Hence, πi = P (x1 =

si) is the probability that si was the initial state of the object.

2.2 Quantitative Risk Assessment

Following the terminology in [Sta04], risk is measured in terms of conse-
quences and likelihood. A consequence is the (qualitative or quantitative) out-
come of an event and the likelihood is a description of the probability of the
event. To perform dynamic risk assessment, we need a mapping: C : S → R,
describing the expected cost (due to loss of confidentiality, integrity and avail-
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ability) for each object. The total risk Rt for an object at time t is

Rt =

N
∑

i=1

Rt(i) =

N
∑

i=1

γt(i)C(i) (1)

where γt(i) is the probability that the object is in security state si at time t,
and C(i) is the cost value associated with state si.

In order to perform real-time risk assessment for an object, an agent has
to dynamically update the object’s state probability γt = {γt(i)}. Given an
observation yt, and the HMM λ, the agent can update the state probability
γt of an object using Algorithm 1. The complexity of the algorithm is O(N2).
For further details, see the Appendix.

Algorithm 1 Update state probability distribution

Require: yt, λ {the observation at time t, the hidden Markov model}
Ensure: γt {the security state probability at time t}

if t = 1 then
for i = 1 to N do
α1(i)← qi(y1)πi
γ1(i)←

qi(y1)πi
PN

j=1
qj(y1)πj

end for
else

for i = 1 to N do
αt(i)← qi(yt)

∑N
j=1 αt−1(j)pji

γt(i)←
αt(i)

PN
j=1

αt(j)

end for
end if
return γt

3. Case – Real-time Risk Assessment for a Home
Office

To illustrate the theory, we perform real-time risk assessment of a typical
home office network, consisting of an Internet router/WLAN access point, a
stationary computer with disk and printer sharing, a laptop using WLAN,
and a cell phone connected to the laptop using Bluetooth. Each of the ob-
jects (hosts) in the home office network has a sensor that processes log files
and checks system integrity (a host IDS). In addition, the access point has a
network monitoring sensor that is capable of monitoring traffic between the
outside network and the internal hosts (a network IDS).

For all objects, we use the state set S = {G,A,C}. The sensors provide
observations in a standardized message format, such as IDMEF, and they are
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capable of classifying observations as indications of the object state. Each
sensor is equipped with a database of signatures of potential attacks. For the
purpose of this example, each signature is associated with a particular state in
S. We define the observation symbols set as V = {g, a, c}, where the symbol
g is an indication of state G and so forth. Note that we have to preserve the
discrete-time property of the HMM by sampling sensor data periodically. If
there are multiple observations during a period, we sample one at random. If
there are no observations, we assume the observation symbol to be g. In order
to use multiple sensors for a single object, a round-robin sampling is used to
process only one observation for each period. This is demonstrated in example
3.

The home network is monitored by an agent that regularly receives observa-
tion symbols from the sensors. For each new symbol, the agent uses Algorithm
1 to update the objects’ security state probability, and (1) to compute its cor-
responding risk value. Estimating the matrices P and Q, as well as the cost
C associated with the different states, for the objects in this network is a
non-trivial task that is out of scope for this paper.

The parameter values in these examples are therefore chosen for illustra-
tion purposes only. Also, we only demonstrate how to perform dynamic risk
assessment of the laptop.

3.1 Example 1: Laptop Risk Assessment by HIDS
Observations

First, we assess the risk of the laptop, based on an observation sequence
YHIDS−L, containing 20 samples collected from the laptop HIDS. We use the
HMM λL = {PL,QHIDS−L, πL}, where

PL =





pGG pGA pGC
pAG pAA pAC
pCG pCA pCC



 =





0.995 0.004 0.001
0.060 0.900 0.040
0.008 0.002 0.990



 , (2)

QHIDS−L =





qG(g) qG(a) qG(c)
qA(g) qA(a) qA(c)
qC(g) qC(a) qC(c)



 =





0.70 0.15 0.15
0.15 0.70 0.15
0.20 0.20 0.60



 , (3)

πL = (πG, πA, πC) = (0.8, 0.1, 0.1). (4)

Since the HIDS is assumed to have low false-positive and false-negative rates,
both qG(a), qG(c), qA(c) ≪ 1 and qA(g), qC(g), qC(a) ≪ 1 in QHIDS−L. The
dynamic risk in Figure 1(a) is computed based on the observation sequence
Y (as shown on the x-axis of the figure) and a security state cost estimate
measured as CL = (0, 5, 10).
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Figure 1. Laptop risk assessment

3.2 Example 2: Laptop Risk Assessment by NIDS
Observations

Now, we let the risk assessment process of the laptop be based on another
observation sequence, YNIDS−L, collected from the NIDS. A new observation
symbol probability distribution is created for the NIDS

QNIDS−L =





0.5 0.3 0.2
0.2 0.6 0.2
0.2 0.2 0.6



 . (5)

One can see that the NIDS has higher false-positive and false-negative rates,
compared to the HIDS. Figure 1(b) shows the laptop risk when using the HMM
λL = {PL,QNIDS−L, πL}. Note that the observation sequence is not identical
to the one in example 1, as the two sensors are not necessarily consistent.

3.3 Example 3: Aggregating HIDS and NIDS
Observations

The agent now aggregates the observations from the HIDS and NIDS sen-
sors by sampling from the observation sequences YHIDS−L and YNIDS−L in
a round-robin fashion. To update the current state probability γt, the agent
therefore chooses the observation symbol probability distribution correspond-
ing to the sampled sensor, i.e the HMM will be

λL = {PL,Q
∗, πL},where Q∗ =

{

QHIDS−L if yt ∈ YHIDS

QNIDS−L if yt ∈ YNIDS
. (6)

The calculated risk is illustrated in Figure 2. The graph shows that some
properties of the individual observation sequences are retained.
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4. Managing Risk with Automated Response

In order to achieve effective incident response, it must be possible to effec-
tively initiate defensive measures, for example by reconfiguring the security
services and mechanisms in order to mitigate risk. Such measures may be
manual or automatic. An information system or network can be automati-
cally reconfigured in order to reduce an identified risk, or the system can act
as a support system for system and network administrators by providing rel-
evant information and recommending specific actions. To facilitate such an
approach, it is necessary to provide a mechanism that relates a detected secu-
rity incidence to an appropriate response, based on the underlying risk model.
Such a mechanism should include a policy for what reactions should be taken
in the case of a particular incident, as well as information on who has the au-
thority to initiate or authorize the response. Examples of distributed intrusion
detection and response systems have been published in [CHSP00, PN97].

The dynamic risk-assessment method described in this paper can provide
a basis for automated response. If the risk reaches a certain level, an agent
may initiate an automated response in order to control the risk level. Such a
response may be performed both for individual objects (e.g. a compromised
host) or on a network-wide level (if the network risk level is to high). Examples
of a local response may be firewall reconfigurations for a host, changing logging
granularity, or shutting down a system. Examples of a global response may be
the revocation of a user certificate, the reconfiguration of central access con-
trol configurations, or firewall reconfigurations. Other examples include traffic
rerouting or manipulation, and honeypot technologies. Note that such adap-
tive measures has to be supervised by human intelligence, as they necessarily
introduce a risk in their own right. A firewall reconfiguration mechanism can,
for example, be exploited as part of a denial-of-service attack.
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Paper A: Real-time Risk Assessment with Network Sensors and IDS 57

5. Conclusion

We present a real-time risk-assessment method using HMM. The method
provides a mechanism for aggregating data from multiple sensors, with dif-
ferent weightings according to sensor trustworthiness. The proposed discrete-
time model relies on periodic messages from sensors, which implies the use of
sampling of alert data. For the purpose of real-life applications, we propose
further development using continuous-time models in order to be able to han-
dle highly variable alert rates from multiple sensors. We also give an indication
as to how this work can be extended into a multiagent system with automated
response, where agents are responsible for assessing and responding to the risk
for a number of objects.

Appendix: On Algorithm 1

Given the first observation y1 and the hidden Markov model λ, the initial state distribution
γ1(i) can be calculated as

γ1(i) = P (x1 = si|y1, λ) =
P (y1, x1 = si|λ)

P (y1|λ)
=

P (y1|x1 = si, λ)P (x1 = si|λ)

P (y1|λ)
. (A.1)

To find the denominator, one can condition on the first visited state and sum over all possible
states

P (y1|λ) =
N

X

j=1

P (y1|x1 = sj , λ)P (x1 = sj |λ) =
N

X

j=1

qj(y1)πj . (A.2)

Hence, by combining (A.1) and (A.2)

γ1(i) =
qi(y1)πi

PN

j=1
qj(y1)πj

, (A.3)

where qj(y1) is the probability of observing symbol y1 in state sj , and π is the initial state
probability. To simplify the calculation of the state distribution after t observations we
use the forward-variable αt(i) = P (y1y2 · · · yt, xt = si|λ), as defined in [Rab90]. By using
recursion, this variable can be calculated in an efficient way as

αt(i) = qi(yt)
N

X

j=1

αt−1(j)pji, t > 1. (A.4)

From (A.1) and (A.3) we find the initial forward variable

α1(i) = qi(y1)πi, t = 1. (A.5)

In the derivation of αt(i) we assumed that yt only depend on xt and that the Markov property
holds.
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Now we can use the forward variable αt(i) to update the state probability distribution
by new observations. This is done by

γt(i) = P (xt = si|y1y2 · · · yt, λ) =
P (y1y2 · · · yt, xt = si|λ)

P (y1y2 · · · yt|λ)

=
P (y1y2 · · · yt, xt = si|λ)

PN

j=1
P (y1y2 · · · yt, xt = sj |λ)

=
αt(i)

PN

j=1
αt(j)

.

(A.6)

Note that (A.6) is similar to Eq. 27 in [Rab90], with the exception that we do not
account for observations that occur after t, as our main interest is to calculate the object’s
state distribution after a number of observations.
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Abstract This paper presents a method for real-time risk assessment of large-scale net-
works. The method provides a mechanism for handling data from multiple,
heterogeneous sensors with different levels of trustworthiness. It aims to serve
as a higher level of abstraction for applications, such as risk management, net-
work monitoring and incident response. In order to assess network risk in a
real-time setting, the method is adapted to approximate continuous time sys-
tem behavior. In addition, design issues, such as the use of multiple sensors
and the queuing of sensor observations, are addressed. A discrete-event sim-
ulator is implemented, demonstrating the real-time risk assessment based on
observations from intrusion detection systems. Using this simulator, we model
and simulate the risk assessment of a large network and compare the results
to the true values in order to validate the proposed approach.

1. Introduction

The practice of risk management is becoming increasingly important as
information systems and networks are growing more complex and intercon-
nected. Traditional risk assessment techniques focus on manual analysis of
network components during system design, but do not address the dynamic
assessment of network risk. On the other hand, intrusion detection systems
(IDS) focus on the detection and reporting of security-related events, but often
fail to provide an overview of the overall network risk or the priorities of ob-
served alerts. In order to handle incidents in a more appropriate and efficient
manner, methods for automated real-time risk assessment are needed. In this
paper, we present and further develop a method for real-time risk assessment
based on hidden Markov models (HMMs). The purpose of this approach is
ultimately to effectively identify, prioritize, and respond to threats to critical
assets.
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This paper begins by presenting previous and related work on distributed
IDS and real-time risk assessment. The proposed reference model and the
basic risk assessment method are presented in Section 2 and 3. Section 3
also explains how the model can be used to approximate a continuous time
setting, adapted to deal with bursts of observation data. Section 4 describes
the implementation of a discrete-time, discrete-event simulator. Section 5 we
provide results from simulation experiments. Finally, Section 6 concludes the
paper and points to future work.

1.1 Previous Work

We have previously outlined a methodology for real-time risk assessment
using HMMs in a multiagent system architecture [ÅSH+05]. The method
provides a higher level of abstraction for network security monitoring, suitable
for risk management and incident response applications. The system relies on
input from a number of heterogeneous sensors, typically IDS, with different
trustworthiness in terms of false positives and negatives. This paper further
develops and addresses some of the limitations of this initial approach.

HMMs are discrete-time models, inherently not suitable for continuous time
sensor data. Moreover, the use of multiple sensors is not directly supported by
HMMs. In [ÅSH+05], these limitations were addressed by using a round-robin
sampling of observations from sensors. A major drawback of this approach is
that it cannot, without loss, handle the arrival of simultaneous observations.
In real-life applications, one must be able to handle and correctly interpret
bursts of alerts from several sensors, as well as observations arriving sparsely
distributed in time. Also, [ÅSH+05] did not consider parameter estimation.
A good model parameterization is crucial in order to obtain accurate results
from the risk assessment process. In order to reduce the number of individual
initial parameter evaluations, it is desirable to generalize the parameters for
similar objects through the use of parameter profiles. We address these issues
by estimating the security states of the monitored assets at the sensor level,
and by using generalized profiles to simplify the model parameterization task.
The security state probabilities for an asset are computed for each sensor using
the HMM method, and the risk is in turn computed for each asset as a function
of all its sensor input. A profile represents a class of assets or sensors with
common attributes. Simulation experiments are provided to demonstrate and
validate the method using a realistic scenario.

1.2 Related Work

Risk assessment has traditionally been a manual analysis process based on
a standardized framework, such as those recommended by NIST [SGF02] and
AS/NZS [Sta04]. A notable example of real-time risk assessment is presented
in [GK04], which introduces a formal model for real-time characterization of
the risk faced by a host. Intrusion tolerance is a recent research field in infor-
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mation security related to the field of fault tolerance in network dependability.
The research project SITAR [GGPW+01] presents a generic state transition
model, similar to the model used in this paper, to describe the dynamics of in-
trusion tolerant systems. Probabilistic validation of intrusion tolerant systems
is presented in e.g., [SCS03].

Distributed intrusion detection systems are discussed in several research
papers, such as DIDS [SBD+91] and GrIDS [SCCC+96], and a multi-agent
system for intrusion detection was proposed in [BGFI+98]. STAT [VKB01]
is a state-based IDS that uses state modeling to describe and detect attacks.
An alert correlation framework providing for STAT is presented in [VVKK04].
Hidden Markov models have been used in IDS architectures to detect multi-
stage attacks [OMSH03], and as a tool to detect misuse based on operating
system calls [WFP99]. Our approach shares some attributes with several of
these systems, but we attempt to study the network risk at a higher abstraction
level, rather than to detect specific attacks and intrusions. The recent IDMEF
(Intrusion Detection Message Exchange Format) IETF Internet draft [DCF05]
is expected to be a suitable language for message exchange between IDS sensors
and the risk assessment system proposed in this paper.

2. Terminology and Reference Model

This section provides a brief description of the terminology and the reference
model used in this paper. We discuss both the target network architecture and
the monitoring and assessment architecture. Ideally, these systems can be
assumed to be independent. See [ÅSH+05] for a more detailed description.

2.1 Target Network Architecture

The target of the risk assessment process is a generic, arbitrarily complex
computer network, consisting of entities that are either subjects or objects.
The subjects are capable of performing actions on the objects. For the pur-
pose of the risk assessment in this paper, an object is considered to be an
asset. Unknown factors in such a network may represent vulnerabilities that
in turn can be exploited by a malicious attacker or computer program, caus-
ing unwanted incidents. The potential exploitation of vulnerabilities can be
described as threats to the assets. The risk of the network can be estimated
by evaluating the probability and consequence of unwanted incidents.

2.2 Monitoring and Assessment Architecture

As in [ÅSH+05], we assume a multiagent system architecture consisting
of agents and sensors. A sensor primarily refers to an IDS, but can be any
information-gathering program or device capable of collecting security relevant
data, such as logging systems, virus detectors, honeypots, and network sniffers
using sampling or filtering. Their main task is to gather information about
the security state of assets and to send standardized observation messages



64

to the agents. An agent is a computer program capable of a certain degree
of autonomous actions. In this paper, agents are responsible for performing
real-time risk assessment based on data collected from a number of sensors
monitoring one or more assets. The multiagent architecture has been chosen
for its flexibility and scalability, in order to support future applications, such
as distributed automated response.

3. The Risk Assessment Model

This section formalizes the proposed risk assessment model. The model is
based on [ÅSH+05], but proposes some modifications and improvements.

3.1 Modeling Assets as Hidden Markov Models

Assume that the security of an asset can be modeled by N states, denoted
S = {s1, . . . , sN}. A state refers to an operational mode of the asset character-
ized by which units of the assets that are operational or failed, whether there
are ongoing attacks, active countermeasures, operational or maintenance ac-
tivities, whether the asset is compromised or not, etc. The decision of what to
include in the state definition is a trade-off between model expressiveness and
complexity. Different applications will likely require different state models. An
example primary for illustration will be presented in Section 5. The behavior
of an asset is characterized by the transitions between its states. Due to at-
tack attempts and compromises, or administrative activities, the security state
of an asset will change over time. The sequence of states visited is denoted
X = x1, x2, . . ., where xt ∈ S is the state visited at time t. We assume that
the probability of future states depend only on the current system state, i.e.,
P (xt+1 = si|xt, xt−1, . . . , x1) = P (xt+1 = si|xt). Hence, the security behavior
of an asset can be modeled by a Markov chain.

The risk observation messages are provided by the K sensors monitoring an
asset, indexed by k ∈ {1, . . . ,K}. An observation message from sensor k can
consist of any of the symbols in the observation symbol set V k = {vk1 , . . . , v

k
Mk
}.

Different sensors may therefore produce observation messages from different
observation symbol sets, depending on the sensor type. We assume that the
observation messages are independent variables, i.e., an observation message
will depend on the asset’s current state only and not on any previous obser-
vation messages. The sequence of messages received from sensor k is denoted
Y k = yk1 , y

k
2 , . . ., where ykt ∈ V k is the observation message received from

sensor k at time t. Based on the observation messages, an agent performs
real-time risk assessment. The observation messages can be received from sev-
eral sensors simultaneously, and they may contain conflicting information. As
one cannot assume that it is possible to resolve the correct state of the moni-
tored assets at all times, the observation symbols are probabilistic functions of
the asset’s security state. The asset’s true state is hidden. This is consistent
with the basic idea of HMMs [Rab90].
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For each sensor k monitoring an asset, there is an HMM described by the
parameter vector λk = (P,Qk, π). The parameter vector for one object is
λ = (P, (k,Qk), π), where k = 1, . . . ,K, and K is the number of sensors for
this object. P = {pij} is the state transition probability distribution matrix
for an asset, where pij = P (xt+1 = sj |xt = si), 1 ≤ i, j ≤ N . Hence, pij
represents the probability that the asset will transfer into state sj next, given
that its current state is si. π = {πi} is the initial state distribution for the
asset. Hence, πi = P (x1 = si) is the probability that the asset was in state si
when the risk assessment process started.

For each asset, there are K observation symbol probability distribution
matrices, one for each sensor monitoring the asset. The observation symbol
probability distribution matrix Qk = {qkj (l)} is a probability distribution for
an asset in state sj over the observation symbols from sensor k, whose elements
are qkj (l) = P (ykt = vkl |xt = sj), 1 ≤ j ≤ N, 1 ≤ k ≤ K, 1 ≤ l ≤ Mk.

The element qkj (l) in Qk represents the probability that sensor k will send

the observation symbol vkl given that the asset is in state sj . Qk therefore
indicates sensor k’s false-positive and false-negative effects on the agents risk
assessments.

The π vector and the P matrix describe the initial state and security be-
havior of an asset, and must be the same for all sensors monitoring the same
asset. Since each sensor may produce a unique set of observation symbols, the
Q matrix depends on the sensor k. to describing the relation between the
observation symbols and the state of the object.

3.2 Quantitative Risk Assessment

Following the terminology in [Sta04], risk can be measured in terms of
consequences and likelihoods. A consequence is the qualitative or quantitative
outcome of an event, and the likelihood is the probability of the event. To
perform risk assessment, we use a mapping: C : S → R, describing the cost
due to loss of confidentiality, integrity and availability associated with each
state of an asset. The total risk Rt for an asset at time t is

Rt =
N

∑

i=1

Rt(i) = K−1
K

∑

k=1

N
∑

i=1

C(i)γkt (i) (1)

where γkt (i) is the (estimated) probability that the asset is in security state
si at time t, based on observations from sensor k. N is the number of states
for the asset, K is the number of sensors, and C(i) is the cost value associated
with state si. Here, the sum of the estimates γkt from the sensors are weighted
equally by K−1. Ideally, the estimates should be weighted in accordance to
the reliability of the sensor data so that estimates from unbiased sensors with
low variance will be given higher priority.
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The risk value obtained from (1) represents the current asset risk at time
t. In order to perform real-time risk assessment, Rt needs to be regularly
updated. For each sensor k the agent computes the asset’s current state prob-
ability γkt = {γkt (1), . . . , γkt (N)}, at each time instant t. Given an observation
ykt , and the HMM λk = (P,Qk, π), the agent can update the state probability
by using Alg. 2. This algorithm relies on a forward variable, computed by
means of Alg. 3. To simplify the notation the sensor index k has been omitted
in these algorithms. For further details on the algorithms, see the Appendix.

Algorithm 2 Update state probability distribution γt
Require: yt, αt−1, λ {observation at time t, forward variable at time t − 1,

the HMM}
Ensure: γt {the security state probability at time t}

use Alg. 3 to compute the forward variable αt
for i = 1 to N do
γt(i)←

αt(i)
PN

j=1
αt(j)

end for
return γt = {γt(i)}

Algorithm 3 Compute forward variable αt
Require: yt, αt−1, λ {observation at time t, forward variable at time t − 1,

the HMM}
Ensure: αt {the forward variable at time t}

for i = 1 to N do
if t = 1 then
αt(i)← qi(yt)πi

else
αt(i)← qi(yt)

∑N
j=1 αt−1(j)pji

end if
end for
return αt = {αt(i)}

3.3 A Continuous Time Approximation

The HMM defined in Section 3.1 is a discrete-time model, inherently not
suitable for continuous-time observation data. A model for real-time risk as-
sessment must be able to handle bursts of alerts, as well as silent periods
without alerts. Ideally, no alerts should be discarded at any time. To cor-
rectly interpret alerts by malicious events as an indication of an ongoing at-
tack, the time interval between subsequent alerts must be considered in the
model. To solve this problem we make a continuous-time approximation, sim-
ilar to [WWT02]. By using a fixed, sufficiently short, time period between
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events in the discrete-time model, the intervals between observations will be
multiples of this period.

Recall that an agent will process a sequence of discrete-time observation
messages Y k, where ykt ∈ V

k is the observation message received from sensor
k at time t. We define the time between two subsequent observation messages
as ∆, where ∆ is a fixed value. Hence, in a continuous-time context, pij(∆) =
P (xt+∆ = sj |xt = si) represents the probability that an asset will be in state
sj after an additional time ∆, given that its current state at time t is si. For
simplicity we let pij represent pij(∆). In case there are no observation messages
during ∆, a “null” message is generated. When two or more observation
messages arrive within this time interval, they are placed in a queue and
processed at time t + ∆, t + 2∆, . . .. The queue will necessarily introduce a
delay in the risk computation. ∆ should therefore be small enough so that the
agent can handle the alert frequency of the monitored asset in real-time with
minimal loss of alerts due to a full queue. The queue size must, however, not
be so large that the system looses its ability to assess risk in real-time. As an
example, a queue size of 1200 alerts and ∆ = 1 second introduces a maximum
delay of 20 minutes, which is unacceptable for most applications. On the other
hand, the processing capacity of the agent should not be exceeded; it must be
able to update the state probability (i.e., execute Alg. 2 and 3) in less than ∆.
The selection of a suitable time interval is a configuration issue that depends
on the actual implementation.

4. The Simulator

In order to demonstrate and validate the theory in a realistic setting, we
implemented a discrete-time, discrete-event simulator. This enabled us to
simulate the security events and risk assessment process of large networks
over a longer period of time. We refer to the states generated by the simulator
as the true security states of the assets, whereas the estimated security state
distribution refers to the state distribution estimated by Alg. 1. Consequently,
by applying (1), the true risk refers to the risk value computed from the true
security state, and the estimated risk refers to the risk value computed from
the estimated security state distribution. The true and estimated risk of the
simulated systems are compared in order to study the validity of the method.

4.1 Simulator Design

The simulator was implemented using the JSIM [Mil] discrete-event simu-
lation framework for Java. JSIM consists of a Scheduler, where Events are
scheduled to be performed on Entities. The entities of the risk-assessment
simulation are Assets (representing hosts) and Sensors (representing IDS
sensors), and the events are the StateEvent, the SensorProcessEvent, the
ObservationEvent, and the RiskUpdateEvent. The simulator can be divided
into three phases: initialization, execution, and reporting. A class diagram
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showing an overview of the simulator classes is depicted in Fig. 1(a). Fig. 1(b)
depicts the scheduling of the Events.

(a) Simulator UML class diagram. (b) Overview of scheduler, events, and enti-
ties.

Figure 1. Simulator design.

During initialization, each Asset and Sensor is initialized with appropriate
HMM model parameters, i.e., P and π for Assets and Qk for Sensors. For
each Asset, an initial state x1 ∈ S is chosen, according to its initial state
probability distribution π. RiskUpdateEvents (events that cause an update
of the true security state of the Assets), SensorProcessEvents (events that
cause sensors to estimate a new security state distribution by using Alg. 1),
and RiskUpdateEvents (events that cause Assets to update their assessed
risk according to (1)), are scheduled for each time interval of the simulation.

At each time t during the execution, the StateEvents cause Assets

to transfer to their next state xt+1, based on their transition probability
matrix P. These states are sensed by the Sensors, that in turn schedule
ObservationEvents, representing a Sensor observations ykt based on the true
state and the observation probability matrix Qk. The ObservationEvents

cause the Sensors to read and queue the observations for further processing.
A SensorProcessEvent for every sensor is scheduled for each time interval
and causes each Sensor to process the first Observation in its queue and
update its state distribution using Alg. 1. Finally, for each time instant t,
the RiskUpdateEvents cause every Asset to update their risk value based on
the input from one or more Sensors. The current risk value Rt is computed
in accordance to (1) and stored in the SimStatistics class. Fig. 1(b) shows
the sequence of events acting on the entities (assets and sensors).

The simulation results are stored in the SimStatistics object during the
simulation and written to file for further analysis when the simulation has
executed. The risk values for the Assets, as well as the aggregated risk level of
the entire network, is stored for for each time instant t. Additional processing,
such as correlation analysis, is also performed at this stage.
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4.2 Implementation Issues

This section provides a discussion of some design considerations for the
risk-assessment simulation implementation.

Observation Message Queues. As discussed in Section 3.3, each Sensor

must be associated with an observation message queue, in order to handle
bursts of alerts without data loss. Whenever a Sensor receives an observation
message for a particular asset, an observation is put in a queue and processed
on a first-come first-serve basis. Only the first observation in the queue is
processed by each sensor in each time interval ∆. These mechanisms are im-
plemented in the simulator, but they would be best studied using experimental
or real traffic data. The discrete-time simulator described in this paper con-
sequently does not simulate alert burst, and using the method on real sensor
data is left for future work.

Null Observations. Most IDS sensors do not provide observations indi-
cating a good state; they only provide warnings and alerts. In this implemen-
tation, the risk assessment process therefore produces and inteprets a “null”
observation whenever the message queue of a sensor is empty. As will be seen
in the simulated example in Section 5, one can usually assume that the null
observation indicates a good state.

Profiles. For large networks, estimating initial parameters for all assets and
sensors can become very time-consuming. To address this, we implemented
the AssetProfiles and SensorProfiles java classes, which contain sets of
HMM parameters that are common to several assets and sensors. As will be
seen in Section 5, there can be profiles for different types of hosts (such as web-
servers, routers, workstations, and laptops), as well as for different types of
sensors (such as network and host IDS). For now, the profiles are implemented
directly in Java as part of the simulator, but ideally the profiles should be
described as part of an overall network model using a suitable language, such
as XML.

Scaling. In the actual implementation of Alg. 1 and 2 we used a scaled
version of the forward variable: αt(i) = Ctαt(i), where Ct = (

∑N
i=1 αt(i))

−1.
The purpose is to keep the computations within the precision range of the
computer. It can be shown that these scaling coefficients cancel out [Rab90,
pp. 272].

5. Examples and Simulation Results

The predecessor of this paper [ÅSH+05] included a simple example, which
demonstrated how the assessed risk value of an asset varies as an agent receives
and processes a predefined observation sequence. To demonstrate the method
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in a real-world context, we now simulate the risk assessment process of a large
network with multiple sensors throughout the network. In order to efficiently
manage a high number of hosts, SensorProfiles and AssetProfiles are
defined for the different types of sensors and assets.

The network consists of an Internet gateway (router), two publicly available
web-servers on a demilitarized zone (DMZ), two protected file-servers, as well
as ten workstations and ten laptops (see Fig. 2). Each host type is described
by an AssetProfile, as discussed above. The profiles represent different
levels of exposure to attacks and compromises, as well as the particular costs
associated to the assets’ states. For the purpose of this example, we assume
that the state space of each asset can be represented by a simple Markov model
with the states G (good), A (under attack), and C (compromised). State G
means that the asset is up and running securely and that it is not subject to
any kind of attack activity. In contrast to [GGPW+01], we assume that assets
are always vulnerable to attacks, even in state G. As an attack against an
asset is initiated, it will move to security state A. An asset in state A is subject
to an ongoing attack, possibly affecting its behavior with regard to security.
Finally, an asset enters state C if it has been successfully compromised by an
attacker. An asset in state C is assumed to be completely at the mercy of an
attacker and subject to any kind of confidentiality, integrity and/or availability
breaches.

We assume that the router and file servers are configured to be relatively
secure (i.e., the transition probabilities to state C are small), and that the
laptops, workstations and web servers are particularly susceptible to attacks
(i.e., the transition probabilities to state A are relatively high). All assets,
with the exception of the router, are monitored by a network intrusion detec-
tion system (NIDS) and a host intrusion detection system (HIDS), as gener-
alized by SensorProfiles. The router is only monitored by a NIDS. The
observation symbols sets are the same for both the NIDS and the HIDS:
V NIDS = V HIDS = {φ, a, c}, where symbol a is an indication of state A,
c an indication of state C, and φ (the “null” observation) an indication of
the good state G. In the examples beneath, we differentiate between λgen,
the underlying HMM that generates the true state transitions of an asset and
controls the behavior of its sensors, and λest, the estimated HMM used in the
risk assessment procedure. As pointed out in Section 3.3, the choice of an
appropriate time interval is essential. For the purpose of this simulation, we
use ∆ = 1 s.

We present two simulation experiments, based on randomly generated state
sequences and corresponding observation messages, according to λgen. Both
simulations have a time-span of 24 hours (86400 s.). The cost value vectors C =
(C(G), C(A), C(C)) for the assets are Crouter = (0, 4, 8), Cwebserver = (0, 3, 6),
Cfileserver = (0, 1, 10), Cworkstation = (0, 2, 4) and Claptop = (0, 1, 2), so that the
total maximum risk for the network is Rt = 100. The HMM model param-
eters P, Qk, and π for the assets and sensors have been assigned manually.



Paper B: Real-time Risk Assessment with Network Sensors and HMMs 71

Figure 2. Overview of example network topology.

Algorithms for estimating and learning these parameters are needed, but this
is not considered in this paper.

5.1 Example A: Risk Assessment with Known HMM
Parameters

In the first example, λest = λgen for all assets and sensors, i.e., we use
the same HMM both for generating state transitions and observations and
for assessing the current risk. In other words, the risk-assessment in this
example is based on perfect knowledge of the state and observation generation
parameters. This is obviously not a realistic scenario, but it allows us to
study the performance of the method under optimal circumstances. As an
example of the model parameters used in the simulation experiment, the HMM
parameters used for the NIDS SensorProfile and the router AssetProfile

are

QNIDS
router−gen =





qG(φ) qG(a) qG(c)
qA(φ) qA(a) qA(c)
qC(φ) qC(a) qC(c)



 =





0.6 0.2 0.2
0.2 0.5 0.3
0.1 0.1 0.8



 ,

πrouter−gen = (πG, πA, πC) = (1, 0, 0),

Prouter−gen =





pGG pGA pGC
pAG pAA pAC
pCG pCA pCC



 =





0.800000 0.199995 0.000005
0.700000 0.299995 0.000005
0.000005 0.000005 0.999990



 .

The laptops, workstations and web servers are likely to get compromised
early on during the simulation, whereas the file servers and the router are
more resistant to successful attacks. Fig. 3(a) depicts the assessed risk for
the network described above, simulated over a period of 24 hours (86400 s.).
All hosts are assumed to start in the state G, i.e., π = (1, 0, 0) for all assets.
Naturally, the development of the network risk varies between simulation ex-
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ecutions, as the state generation is probabilistic. Since all assets have a close
to absorbing state C, the risk level tends to increase over time, approaching
the total maximum risk level.
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(a) Assessed risk with perfect knowledge of
HMM parameters.
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(b) True risk computed from the generating
HMM.

Figure 3. Assessed and true risk for Example A.

Based on a comparison between the estimated risk level (see Fig. 3(a)) and
the true risk level (see Fig. 3(b)), it is possible to compute the correlation co-
efficient as a measure of the degree to which the two data sets correlate. Based
on 20 simulation runs, the mean correlation coefficient is 0.969 with variance
0.0003 and standard deviation 0.0179. This indicates that the estimation is
highly accurate with a high certainty. This is to be expected, as the HMM
parameters are known in advance (i.e., λest = λgen).

5.2 Example B: Risk Assessment with Estimated HMM
Parameters

We now assume that the exact HMM parameters used to generate the state
transitions and produce observation messages, λgen, is unknown, and the HMM
parameters for the risk assessment, λest, have to be estimated. In this way,
we can study the systems ability to assess risk under inaccurate estimation
parameters, i.e., when λest 6= λgen. An example of the estimated parameters
is

QNIDS
router−est =





0.950 0.030 0.020
0.050 0.900 0.050
0.020 0.020 0.960



 ,

πrouter−est = (0.7, 0.2, 0.1),

Prouter−est =





0.700 0.200 0.100
0.500 0.450 0.050
0.002 0.002 0.996



 .
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Note that in order to make the results of the two simulation experiments
comparable, the parameters used for state generation and for producing obser-
vation messages in this example (λgen) are identical to the ones in the previous
example.

Fig. 4(a) shows the assessed risk when using the estimated λest, and
Fig. 4(b) shows the true risk generated during the simulation according to
λgen. Fig. 5(a)-5(b) show the same results, but for a shorter period of time
(30 min.). By comparing these graphs, it is possible to see how close the
assessed risk value is to the true risk level of the network. Although the
estimation parameters in λest differ from the underlying HMM λgen, one can
conclude from Fig. 4(a)-5(b) that the estimated risk generally follows the
true risk. Note that the reason why the estimated risk is higher than the true
risk during the first 60 s. of the simulation (Fig.6(a)-6(b)) is the inaccurate
estimated initial state distributions πest for the assets. However, as can be
seen in Fig. 4(a)-4(b), the total risk value for the network will approach the
true risk value over time, regardless of the initial states of the assets.
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(a) Assessed risk based on estimated param-
eters.
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(b) True risk computed from the generating
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Figure 4. Assessed and true risk for Example B (24 h)

Based on 20 simulation runs with the same model parameters, the mean
correlation coefficient for the estimated risk value in this example is 0.777,
with variance 0.010 and standard deviation 0.102. Compared to the previous
example, the correlation coefficient is lower, but it still indicates a high positive
correlation. Note that the variance and the standard deviation are higher than
in the previous example.

6. Conclusion and Further Work

In this paper, we demonstrate how hidden Markov models can be used to
perform real time risk assessment of large-scale computer networks. Under the
Markov assumption, we model and simulate the risk level of a large number
of assets, based on a predefined state transition model with corresponding
HMM parameters for each asset and sensor. The simulations indicate that
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Figure 5. Assessed and true risk for Example B (30 min)
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(a) Assessed risk based on estimated param-
eters.
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Figure 6. Assessed and true risk for Example B (60 s)

the method provides insightful results about the security state and the risk
level of hosts in a network, even when the estimated model parameters are
inaccurate.

Although the initial approach described in [ÅSH+05] has been significantly
extended, there are still some open research questions that remain to be solved.
A natural extension of this work is to perform analysis based on real network
data. The possibility of modeling asset interdependencies must be considered.
For the proposed approach to be useful in practice, a method for automated
parameter reestimation is needed. Finally, the simulation framework could be
extended to simulate different types of threats and attackers, in order to study
the performance of the proposed method in a more realistic context.
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Appendix: Computing the State Distributions

In this appendix we explain the background of Alg. 2 and 2, i.e., how the security state
probabilities of an asset can be estimated. Note that the computations are independent of
the sensor type, hence, the k index has been omitted from the equations in this appendix.

Recall the sequence of observed messages Y = y1, y2, . . .. Given the first observation y1

and the hidden Markov model λ = (P,Q, π), the initial estimated state distribution γ1(i)
can be calculated as

γ1(i) = P (x1 = si|y1, λ) =
P (y1, x1 = si|λ)

P (y1|λ)
=

P (y1|x1 = si, λ)P (x1 = si|λ)

P (y1|λ)
. (A.1)

To find the denominator, one can condition on the first visited state and sum over all possible
states

P (y1|λ) =
N

X

j=1

P (y1|x1 = sj , λ)P (x1 = sj |λ) =
N

X

j=1

qj(y1)πj . (A.2)

Hence, by combining (A.1) and (A.2)

γ1(i) =
qi(y1)πi

PN

j=1
qj(y1)πj

, (A.3)

where qj(y1) is the probability of observing symbol y1 in state sj , and π is the initial state
probability. To simplify the calculation of the state distribution after t observations we use
the forward-variable

αt(i) = P (y1 · · · yt, xt = si|λ), (A.4)

as defined in [Rab90]. By using recursion, this variable can be calculated in an efficient way
as

αt(i) =

(

qi(y1)πi, t = 1

qi(yt)
PN

j=1
αt−1(j)pji, t > 1

(A.5)

where the initial forward variable α1(i) was found from (A.1) and (A.3) In the derivation
of αt(i) we assumed that yt only depend on xt and that the Markov property holds. Now
we can use the forward variable αt(i) to update the state probability distribution by new
observations. This is done by

γt(i) = P (xt = si|y1 · · · yt, λ) =
P (y1 · · · yt, xt = si|λ)

P (y1 · · · yt|λ)

=
P (y1 · · · yt, xt = si|λ)

PN

j=1
P (y1 · · · yt, xt = sj |λ)

=
αt(i)

PN

j=1
αt(j)

.

(A.6)

Note that (A.6) is similar to Eq. 27 in [Rab90], with the exception that we do not account
for observations that occur after t.
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Abstract The use of tools for monitoring the security state of assets in a network is an
essential part of network management. Traditional risk assessment method-
ologies provide a framework for manually determining the risks of assets, and
intrusion detection systems can provide alerts regarding security incidents, but
these approaches do not provide a real-time high level overview of the risk
level of assets. In this paper we further extend a previously proposed real-time
risk assessment method to facilitate more flexible modeling with support for
a wide range of sensors. Specifically, the paper develops a method for han-
dling continuous-time sensor data and for determining a weighted aggregate of
multisensor input.

1. Introduction

With the complexity of technologies in todays society, we are exposed to
an increasing amount of unknown vulnerabilities and threats. For a system
or network administrator, it is vital to have access to automated systems for
identifying risks and threats and for prioritizing security incidents. In this
paper we study and extend a previously proposed system for real-time risk
assessment. The proposed system computes a quantitative risk measure for
all assets based on input from sensors such as network-based intrusion detec-
tion systems (IDS). The approach was first proposed in [ÅSH+05], and it has
been validated using simulations in [ÅSHK06] and real-life data in [ÅVVK06].
During this work, several open research issues have been identified. There is
a need for more flexible security state modeling, and the wide range of poten-
tial sensor types require different modeling schemes. In particular, a typical

∗The Centre for Quantifiable Quality of Service in Communication Systems, Centre of Excellence,
is appointed by the Research Council of Norway, and funded by the Research Council, NTNU,
UNINETT, and Telenor.
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signature-based IDS can be much better modeled using a continuous-time hid-
den Markov model (HMM) than the discrete-time HMM in [ÅSH+05].

The contributions of this paper consist of a method for continuous-time
estimation using transition rates rather than transition probabilities, as well
as a method for computing risk as a weighted sum of sensor input, taking into
consideration the fact that some sensors are statistically more reliable and
significant than others.

In Section 2 we revisit the proposed risk assessment approach and provide
explanations of the necessary terminology. In Section 3 and 4 we present var-
ious ways of HMM modeling for a flexible real-time risk assessment system,
with particular focus on continuous-time HMMs and the aggregation of in-
put from multiple sensors. In Section 5 we discuss the results and provide
directions for further work.

2. Real-time Risk Assessment

Risk assessment is typically a manual analysis process based on stan-
dardized frameworks, such as those recommended by NIST [SGF02] and
AS/NZS [Sta04]. Such methodologies are suitable for evaluating threats and
vulnerabilities, but they are not designed to support operational network
management. A notable exception is the real-time risk assessment system
presented in [GK04], which introduces a formal model for real-time charac-
terization of the risk faced by a host. In [ÅSH+05], we presented another
real-rime risk assessment system employing HMMs. An HMM enables the
estimation of a hidden state based on observations that are not necessarily
accurate. An important feature of this approach is that it is able to model
the probability of false positives and false negatives associated with the
observations. The method is based on Rabiner’s work on HMMs [Rab90].
This section reviews the model presented in [ÅSH+05]. Some adaptations
have been introduced for the purpose of this paper.

The target of the risk assessment is a generic computer network, consisting
of assets. Unknown factors in such a network may represent vulnerabilities
that in turn can be exploited by a malicious attacker or computer program,
causing unwanted incidents. The potential exploitation of a vulnerability can
be described as threats to the assets. The risk of the network is evaluated as
the probability and consequence of unwanted incidents. The consequences of
an unwanted incident is referred to as the cost of the incident. As in [ÅSH+05],
we assume a multiagent system architecture consisting of agents and sensors.
A sensor typically refers to an IDS, but it could be any information-gathering
program or device capable of collecting security relevant data, such as logging
systems, virus detectors, honeypots, and network sniffers using sampling or
filtering. The main task of a sensor is to gather information about the security
state of assets and to send standardized observation messages to the agents.
An agent is responsible for performing real-time risk assessment based on
data collected from a number of sensors. The multiagent architecture has been
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chosen for its flexibility and scalability, in order to support future applications,
such as distributed automated response.

Assume that the security of an asset can be modeled by N states, denoted
S = {s1, . . . , sN}. Due to security incidents such as attack attempts and
compromises, the security state of an asset will change over time. The sequence
of states visited is denoted X = x1, . . . , xT , where xt ∈ S is the state visited at
time t. As in [ÅSH+05], we assume that the state space can be represented by
a fully connected Markov model with the states G (good), A (under attack),
and C (compromised), i.e., S = {G,A,C}, as shown in Fig. 1. State G

CG

A

Figure 1. Fully connected Markov model.

means that the asset is up and running securely and that it is not subject
to any kind of attack activity. As an attack against an asset is initiated, it
will move to security state A. An asset in state A is subject to an ongoing
attack, possibly affecting its behavior with regard to security. Finally, an
asset enters state C if it has been successfully compromised by an attacker.
It is then assumed to be completely at the mercy of an attacker and subject
to any kind of confidentiality, integrity, and/or availability breaches. The
risk-assessment method is general and independent of the specific states used.
Two alternative ways of modeling the security states of assets are presented
in Fig. 2(a) and 2(b). In Fig. 2(a) we show how an asset can be represented
by three separate Markov models indicating the security state with respect
to confidentiality, integrity, and availability. In Fig. 2(b) we show a left-right
model, where the asset can only transfer to a more serious state, with C as an
absorbing state.

The risk observation messages are provided by the K sensors monitoring an
asset, indexed by k ∈ {1, . . . ,K}. An observation message from sensor k can
consist of any of the symbols in the observation symbol set V k = {vk1 , . . . , v

k
M}.

Different sensor types may produce observation messages from different obser-
vation symbol sets. We assume that the observation messages are independent,
i.e., an observation message will depend on the asset’s current state only and
not on any previous observation messages. The sequence of messages received
from sensor k is denoted Y k

t = yk1 , . . . , y
k
t , where ykt ∈ V k is the observation

message received from sensor k at time t. For the purpose of this paper, we
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Figure 2. Alternative security state models.

assume an observation symbol set V k = {gk, ak, ck},∀k, corresponding to the
states in S = {G,A,C}. Based on the observation messages, an agent per-
forms real-time risk assessment. As one cannot assume that it is possible to
resolve the correct state of the monitored assets at all times, the observation
symbols are probabilistic functions of the asset’s security state. The asset’s
true state is hidden, consistent with the basic idea of HMM [Rab90].

For each sensor k monitoring an asset, there is an HMM described by the
parameter vector λk = (P,Qk, π). The parameter vector for one object is
λ = (P, (k,Qk), π), where k = 1, . . . ,K, and K is the number of sensors for
this object. P = {pij} is the state transition probability distribution matrix
for an asset, where pij = P (xt+1 = sj |xt = si), 1 ≤ i, j ≤ N . Hence, pij
represents the probability that the asset will transfer into state sj next, given
that its current state is si. π = {πi}i∈S is the initial state distribution for the
asset. Hence, πi = P (x1 = si) is the probability that si was the initial state
of an asset.

For each asset, there are K observation symbol probability distribution
matrices, one for each sensor. Each row i in the observation symbol probability
distribution matrix Qk = {qki (m)} is a probability distribution for an asset
in state si over the observation symbols from sensor k, whose elements are
qki (m) = P (ykt = vkm|xt = si), 1 ≤ i ≤ N, 1 ≤ k ≤ K, 1 ≤ m ≤ M . The
element qki (m) in Qk represents the probability that sensor k will send the
observation symbol vkm at time t, given that the asset is in state si at time
t. Qk therefore indicates sensor k’s false-positive and false-negative effects on
the agents risk assessments.

The π vector and the P matrix describe the initial state and the security
behavior of an asset, and they must be the same for all sensors monitoring
the same asset. Since each sensor may produce a unique set of observation
symbols, the Qk matrix depends on the sensor k. to describing the relation
between the observation symbols and the state of the object.For each sensor
the agent updates the probability distribution γkt = {γkt (i)}, where γkt (i) =
P (xt = si|Y

k
t ), by using the method presented in [ÅSH+05]. In [ÅSH+05],
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the risk of an asset was then evaluated as Rk
t =

∑N
i=1 γ

k
t (i)C(si), where t is

the time of the evaluation, k is the sensor used, and C(si) describing the cost
due to loss of confidentiality, integrity, and availability for each state of an
asset. In Section 4 we present a new method for multisensor assessment using
a weighted sum of the results from multiple sensors.

3. Continuous-time Markov Chains

There is a multitude of sensors that can provide security relevant informa-
tion, such as IDS, network logs, network traffic measurements, virus detectors,
etc. In our previous work, we have only considered the use of discrete-time
HMMs, but we have seen the need for continuous-time HMMs allowing for
transition rates rather than probabilities. The two HMM types complement
each other, and they are suitable for different types of sensors. Let us consider
some example sensor types. A signature based IDS matches network traffic
(network IDS) or host activity (host IDS) with signatures of known attacks
and generates alerts. Virus detection systems use a similar technique. The
alert stream of a signature based IDS is typically highly varying, and a con-
tinuous time HMM approach is preferable. An active measurement systems
can be used to perform periodical measurements of the availability of hosts
and services, for example based on delay measurements. Such a measurement
system is an example of an active sensor suitable for a discrete-time HMM
that is updated periodically. An anomaly based IDS uses statistical analysis
to identify deviation from a behavior that is presumed to be normal. Such a
sensor could be used with either a continuous- or a discrete- time model. If
the sensor is used to produce alerts in case of detected anomalies, it can be
used in a fashion similar to the signature based sensors. If the sensor is used
to compute a measure of the normality of a network or system, it can be used
as a basis for periodic computations using a discrete time model.

We assume that a continuous-time Markov chain (x(t), t ≥ 0) can be used
to model the security of an asset. The model consists of the set of states
S = {s1, . . . , sN}, the initial state distribution π, and a transition rate matrix
Λ = {λij}, 1 ≤ i, j ≤ N . When the system is in state si, it will make λij
transitions to state sj per time unit. The time spent in state si is exponentially
distributed with mean u−1

i (sojourn time), where ui =
∑

j 6=i λij is the total
rate out of state si. The rate in and out of a state must be equal and therefore
∑

j λij = 0, where λii = −ui represent the rate of transitions into state si. The

new HMM for sensor k, based on the transition rates, is then λk = (Λ,Qk, π).
The time between observations is not constant, so for each new observation,

a transition probability matrix P(∆t) = {pij(∆t)} have to be calculated, where
∆t is the time since last observation was received. Suppose that the process
x(t) is in state si at time t, then the probability that the process is in state
sj at time t + ∆t is given by pij(∆t) = P (x(t + ∆t) = sj |x(t) = si). If the
transition probability from state si to sj is independent of t, the process is
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said to be a homogeneous Markov process. The transitions probability matrix
P(∆t) can be calculated by

P(∆t) = eΛ∆t ,

and approximated by

P(∆t) ≈ lim
n→∞

(

I + Λ
t

n

)n

. (1)

More details on computing the transition probability matrix can be found
in [Ros03], pages 388 – 389.

Example 1.. Consider a network with continuous-time sensors monitoring
a central server. Through a manual risk assessment process, the administrators
have estimated the initial state distribution and the transition rates for the
system per day. Given a set of states S = {G,A,C}, the transition rate matrix
is set to

Λ =





λGG λGA λGC
λAG λAA λAC
λCG λCA λCC



 =





−1.1 1.0 0.1
4 −5 1
3 1 −4



 .

As noted above, the values indicate the transition rate per day. However,
the numbers in the diagonal of the matrix is the rate into the state, which is
equal to the sum of the rates out of the state. The first row represents the
rates in and out of state G, indicating that the rate of transitions to state A
(1 transition per day) is greater than the rate of transitions to state C (0.1
transitions per day). The bottom row of the matrix represents state C, and it
indicates that the most probable development is a return to state G due to a
successful repair.

First, we calculate the rate at which the system leaves each state

uG = λGA + λGC = 1 + 0.1 = 1.1 = −λGG,

uA = λAG + λAC = 4 + 1 = 5 = −λAA,

uC = λCG + λCA = 3 + 1 = 4 = −λCC .

From this we can calculate the sojourn time for each state

u−1
G =

10

11
, u−1

A =
1

5
, u−1

C =
1

4
.

If observations are received at t0, t1, t2, t3 = 0, 0.01, 0.11, 0.13, we have to cal-
culate the time between successive observations ∆l = tl − tl−1. This gives

∆1,∆2,∆3 = 0.01, 0.1, 0.02.
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If we apply Equation 1 for computing the transition probabilities, using n =
210 = 1024 in the approximation, we get the following transition matrix

P(∆1) = P(0.01) =





0.9893 0.0097 0.0010
0.0390 0.9515 0.0096
0.0294 0.0097 0.9609



 ,

P(∆2) = P(0.1) =





0.9133 0.0752 0.0114
0.3102 0.6239 0.0659
0.2497 0.0752 0.6750



 ,

P(∆3) = P(0.02) =





0.9791 0.0188 0.0021
0.0759 0.9058 0.0184
0.0578 0.0188 0.9234



 .

We see from the matrices above that the probability of transferring to another
state increases as the period between observations ∆ increases. For the special
case ∆ = 0, the probability of staying in the same state would be 1. Further-
more, we can see from the matrices that the rows sums to 1, as expected for a
probability distribution. The computations were performed in Matlab. Only
10 matrix multiplications were necessary in order to compute a matrix to the
power of 1024.

4. Multisensor Quantitative Risk Assessment

Following the terminology in [Sta04], risk can be measured in terms of
consequences and likelihoods. A consequence is the qualitative or quantitative
outcome of an event, and the likelihood is the probability of the event. To
perform risk assessment, we need a mapping: C : S → R, describing the cost
due to loss of confidentiality, integrity, and availability for each state of an
asset.

The risk Rt = E[C(xt)] is the expected cost at time t, and it is a function
of the hidden state xt of an asset. The only information available about xt is
the distribution γt estimated by the HMM. The risk Rk

t estimated by sensor
k is based on the observations Y k

t from sensor k

Rk
t = E[C(xt)|Y

k
t ] =

N
∑

i=1

γkt (i)C(si),

and the estimated variance σ2
t (k) of Rk

t is

σ2
t (k) = V ar[Rk

t ] =

N
∑

i=1

γkt (i)(C(si)−R
k
t )

2.
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A new estimate of the risk R0
t based on observations from all the K sensors,

is formed by taking a weighted sum of the estimated risk from each sensor.
Assuming the estimated risk from each sensor to be unbiased and independent
random variables, we can then use the inverse of the variance as weights to
get an unbiased minimum variance estimator of the risk. This can be shown
by applying the Lagrange multiplier method, see Appendix 5.

R0
t = E[C(xt)|Y

1
t , Y

2
t , . . . , Y

K
t ]

=

∑K
k=1(σ

2
t (k))

−1Rk
t

∑K
k=1(σ

2
t (k))

−1
, (2)

and the variance σ2
t (0) of R0

t can be estimated as follows

σ2
t (0) = V ar[R0

t ] =
1

∑K
k=1

1

σ2
t (k)

. (3)

A derivation of equation 3 is shown in Appendix 5.

Example 2.. Consider the same network as in Example 1. Assume that
the server is monitored by two different sensors with the following states and
cost values

S = {G,A,C},

C = (C(G), C(A), C(C)) = (0, 5, 20).

At time t, assume that the two HMMs of the two sensors have the following
estimated state distributions

γ1
t = (0.90, 0.09, 0.01),

γ2
t = (0.70, 0.20, 0.10).

We are interested in finding an estimator for the risk of the monitored asset
based on the input from the two sensors. As this estimator should have as
little variance as possible, we wish to give more weight to the sensor with the
best estimate, i.e., the sensor with the least variance. The weight is computed
as the inverse of the variance from the two sensors. We compute the mean
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and variance of the risk from each sensor

R1
t = 0.9× 0 + 0.09× 5 + 0.01× 20 = 0.650,

R2
t = 0.7× 0 + 0.2× 5 + 0.1× 20 = 3.000,

σ2
t (1) = 0.9(0− 0.65)2 + 0.09(5− 0.65)2

+ 0.01(20− 0.65)2 = 5.826,

σ2
t (2) = 0.7(0− 3)2 + 0.2(5− 3)2 + 0.1(20− 3)2

= 36.00.

We now combine the risk from each sensor to get a minimum variance estimate
of the risk

R0 =

1

5.8275
0.65 +

1

36
3

1

5.8275
+

1

36

= 0.977,

σ2
t (0) =

1
1

5.8275
+

1

36

= 5.016.

We see that the mean for the weighted risk is close to the mean for sensor 1.
This is intuitive, as sensor 1 has the least variance. We can also see that the
variance of the weighted risk is smaller than that of the individual sensors.

5. Conclusions and Further Work

We have addressed several issues to improve the proposed method for real-
time risk assessment. The rate-based assessment is proposed as an alterna-
tive for some common sensors, and the weighted multisensor risk assessment
method provides a mechanism for integrating sensors with varying accuracy
and reliability into the system. The mechanisms proposed in this paper should
be implemented and tested using real-life data and simulations, as previously
done in [ÅVVK06]. Another issue that still remains is the problem of pa-
rameter estimation and learning. It is possible to set the model parameters
using expert knowledge, but this is a cumbersome process, and it would be
preferable to automate the process of estimating and learning the parameters.

Appendix: Minimum Variance Estimator

Assume that we have K independent random variables (xk, k = 1, . . . , K) with the same
mean µ, and variance V ar[xk] = σ2

k. A new random variable x =
PK

k=1
akxk is constructed

from (xk k = 1, . . . , K), this new random variable should be unbiased E[x] = µ and have
minimum variance

V ar[x] = V ar[

K
X

k=1

akxk] =

K
X

k=1

a
2
kV ar[xk] =

K
X

k=1

a
2
kσ

2
k,
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E[x] = E[

K
X

k=1

akxk] =

K
X

k=1

akµ = µ ⇒

K
X

k=1

ak = 1

To find the optimal weights (āk, k = 1, . . . , K) we apply the Lagrange multiplier method
to to minimise the performance index f(a1, a2, . . . , aK) =

PK

k=1
a2

kσ2
k, under the restriction

g(a1, a2, . . . , aK) =
PK

k=1
ak −1 = 0. This is done by solving the equation ∇f = λ∇g, where

∇f denotes the gradient of f . This is equivalent to the following sets of partial differential
equations

∂

∂ak

[f + λg]
ak=āk

= 0, (k = 1, . . . , K),

∂

∂ak

"

K
X

l=1

a
2
l σ

2
l + λ(

K
X

l=1

al − 1)

#

ak=āk

= 0, (k = 1, . . . , K). (A.1)

When we take the derivatives we end up with the following set of lineare equations 2ākσ2
k +

λ = 0, with the solution āk = −
λ

2σ2
k

, and λ =
−2

PK

k=1

1

σ2
k

. This gives the optimal weights

āk =

1

σ2
k

PK

k=1

1

σ2
k

and the minimum variance

V ar[x] =
K

X

k=1

0

B

B

@

1

σ2
k

PK

k=1

1

σ2
k

1

C

C

A

2

σ
2
k =

1
PK

k=1

1

σ2
k

.
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Abstract This paper proposes a Distributed Intrusion Prevention System (DIPS), which
consists of several IPS over a large network (s), all of which communicate with
each other or with a central server, that facilitates advanced network monitor-
ing. A Hidden Markov Model is proposed for sensing intrusions in a distributed
environment and to make a one step ahead prediction against possible serious
intrusions. DIPS is activated based on the predicted threat level and risk as-
sessment of the protected assets. Intrusions attempts are blocked based on (1)
a serious attack that has already occurred (2) rate of packet flow (3) predic-
tion of possible serious intrusions and (4) online risk assessment of the assets
possibly available to the intruder. The focus of this paper is on the distributed
monitoring of intrusion attempts, the one step ahead prediction of such at-
tempts and online risk assessment using fuzzy inference systems. Preliminary
experiment results indicate that the proposed framework is efficient for real
time distributed intrusion monitoring and prevention.

1. Introduction

Firewalls are employed only at the network perimeter and they are not al-
ways effective against intrusion attempts. The average firewall is designed
to filter detect and deny clearly suspicious traffic. Many attacks, intentional
or otherwise, are launched from within an organisation. Intrusion detection
systems may be effective at detecting suspicious activity, but do not provide
protection against attacks. In Distributed IDS (DIDS), conventional intrusion
detection system are embedded inside intelligent agents and are deployed over
a network. In a distributed environment, IDS agents communicate with each
other, or with a central server. By having these co-operative agents distributed
across a network, incident analysts, network managers and security personnel
are able to get a broader view of what is occurring on their network as a whole.
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Distributed monitoring allows early detection of planned and coordinated at-
tacks, thereby allowing the network managers to take preventive measures. In
a DIDS, it is important to ensure that the individual IDS is light-weight and
accurate. In the DIPS framework, code fragments developed using genetic
programming models are embedded inside intelligent agents (IDS) to detect
various types of attacks [AGMV07]. Individual IDS sensor node outputs are
provided as inputs to the Hidden Markov Model (HMM).

The rest of the paper is organised as follows. Section 4 introduces key con-
cepts of distributed intrusion prevention systems and the technical require-
ments to design such systems in practice. Section 3 deals with HMM followed
by some experimental results in Section 4. Online risk assessment by fuzzy
inference system is presented in Section 5 and some conclusions are provided
towards the end.

2. Intrusion Prevention Systems (IPS)

Intrusion prevention systems are proactive defence mechanisms designed to
detect malicious packets within normal network traffic, block the offending
traffic automatically before it does any damage. Like IDS, IPS may be also
classified as Host based IPS or Network based IPS. There are a number of
challenges to the implementation of an IPS device in addition to those to be
faced when deploying passive-mode IDS products. These challenges all stem
from the fact that the IPS device is designed to work in-line, presenting a
potential choke point and single point of failure. Some of these problems could
be eliminated in a distributed intrusion prevention system, where there is no
single point of control and the problems are tackled at its source of origin as
much as possible. The main task of the IPS is to block a suspect traffic flow as
soon as possible by immediately discarding suspect information packets. The
suspicious traffic may also be re-routed for further forensic analysis etc. An
IPS should have a maximum up time since it has the potential to close a vital
network path and thus, inadvertently, cause a DoS condition. An IPS should
be computationally light since it is essential that its impact on overall network
performance is minimal and also achieve high packet processing rates. An
IPS should minimize false positives since this can lead to a Denial of Service
condition. IPS should be able to decide exactly which malicious traffic is
blocked, provide a mechanism for alerts and have forensic analysis capabilities.

2.1 Distributed Intrusion Prevention Systems (DIPS)

DIPS are simply a superset of the conventional IPS implemented in a dis-
tributed environment. We consider IPS as an integrated IDS with many more
functions as listed in Section 4. Due to the distributed nature of IPS, the
implementation poses several challenges. IDS are embedded inside software
mobile agents and placed in the network to be monitored. The individual IDS
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Figure 1. Architecture of a DIPS element.

may be configured to detect a single attack, or they may detect several types
of attacks.

Figure 1 illustrates the basic architecture of a DIPS element, which is con-
trolled by a local controller. In a large network, each DIPS element communi-
cates/coordinates with other DIPS local controller and/or a central controller
[AJTH07]. A HMM model processes the attack data information from the
various mobile agent IDS sensors. IDS deployed are capable of detecting sim-
ple problems to serious denial of service type of attacks. Based on the nature
of the detected attack, the following actions would be taken:

1 If the detected attack is simply a port scan or a probe, the HMM model
will attempt to make a prediction of a possible future attack based on
the current distributed attack pattern. Based on this prediction, the
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central controller (or administrator) would take precautionary measures
to prevent future attacks. The central controller would also make use of
an online risk assessment of the assets subjected to this possible serious
attack in the future.

2 If the detected attack is very serious, the central controller would take
necessary actions to re-configure firewall rules or notify the administrator
etc. Such serious attacks would bypass the HMM model.

3 At any time any abnormal traffic rate is noted by the monitor, then
again the central controller would take necessary actions to re-configure
firewall rules or notify the administrator etc.

In the DIPS framework, each network component may host one or many
IDS. Since there will be a large number of flag generators, these must be
extracted, summarised, analyzed, and condensed by a suitable architecture
before arriving at a final conclusion. Very often, it is to be noted that the
event information, which is detected by the IDS agents will follow a bottom
up approach for analysis and the various command and control flows will follow
a top-down approach. The physical location of IDS agents may be fixed or
mobile so as to monitor certain parts of the network segments.

The co-operative intelligent agent network is one of the most important
components of the DIDS [AJTH07]. Ideally these agents will be located on
separate network segments, and very often geographically separated. Commu-
nication among the agents is done utilizing TCP/IP sockets. Agent modules
running on host machines are capable of data analysis and to formulate ad-
equate response actions and are very often implemented as read only and
fragile. In the event of tampering or modification the agent reports to the
server agent and automatically ends its life. Agents residing in the individ-
ual analyzer/controllers consist of modules responsible for agent regeneration,
dispatch, updating and maintaining intrusion signatures and so on. These
agents control the individual IDS agents for monitoring the network, manage
all the communication and life cycle of the IDS agents and also updates the
IDS agents with detection algorithms, response and trace mechanisms

3. Hidden Markov Modeling of DIPS

Gao et al. [GSW03] developed an HMM to predict attacks in the application
layer and they claimed that the approach could be extended for network layer.
Årnes et al. [ÅSH+05] used HMMs for real time risk assessment, but not
directly for attack prediction as we proposed in this paper.

A HMM can be described as two stochastic processes; the hidden process
(xt; t = 1, 2, . . .) that representing the state of the system, and the observable
process (yt; t = 1, 2, . . .) representing the observations made by an IDS Agent.
There will be no direct relation between the t index and time. t will be a



Paper D: DIPS 99

sequence number for observations received from the IDS agents. The HMM
model used in this paper is described as follows:

A set of states S = {s1, s2, . . . , sN} describing the possible states of the
system. To simplify the notation of equations and algorithms we will
use i instead of si. In this paper only four states are used; Normal(N)
indicating no suspicious activity, Intrusion Attempt (IA) indicating sus-
picious activity against the network, e.g. probing, Intrusion in Progress
(IP) indicating that one or more attacker have started an attack against
the system, and Successful Attack (SA) indicating that one or more at-
tacker have broken into the system. The state space used in this paper
is simlar to the statespace used in [KL06].

A set of observations V = {v1, v2, . . . , vM}. To simplify the notation we
will use k instead of vk. For this paper, we assume, that each IDS Agent
only produces three different types of observations; No suspicious activ-
ity (N), Probing (P) indicating suspicious activity against the network,
and Successful Attack (SA) indicating that an IDS Agent have detected
a successful attack.

An initial distribution vector π = {πi}, πi = P (x1 = i) describing the
state of the system when the monitoring starts. We assume the system
to be in the N-state when monitoring starts.

A transition probability matrix P = {pij}, pij = P (xt = j|xt−1 = i),
describing the dynamics of the interaction between the intruder and the
system.

An observation probability matrix for each of the L IDS Agents Qlk =
{qli(k)}, q

l
i(k) = P (ylt = k|xt = i), describing the quality or the trust-

worthiness of each IDS Agent.

The HMM model used in this paper models only integrity and confidential-
ity, and make no attempts to model availability. We believe that availability
is best modeled separately. The Markov Model used in this paper is shown
in Figure 1. States drawn as circles indicate secure states, and state drawn
by a square indicates that damage has already happened. When using a dis-
crete HMM to model the system, we can make the following assumptions; all
information about the system is contained in the state of the system, observa-
tions are independent given the current state, and state occupation times are
geometrically distributed.

Assume that we have a sequence of observations from each IDS agent Yt =
{Y l

t }l=1,...,L, where Y l
t = yl1, . . . , y

l
t, and a model λ. For each of the L IDS

Agents the probability of being in each of the N states is calculated only based
on observations made by the corresponding IDS Agent γlt(i) = P (xt = i|Y l

t , λ).
The computations required for updating the probability distribution γlt can be
found as Eq. 19 and Eq. 27 in [Rab90].
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N IA IP SA

Figure 2. A Markov model modeling the security of a small network

The initial distribution π is used to initialize γ before the system starts to
process observations from the IDS agents γl0 = π, l = 1, . . . , L.

When an IDS Agent l detects suspicious activity in the network, it sends
an observation ylt to the HMM, that updates γlt.

After γ is updated the probability of being attacked (PA) is calculated based
on the probability of being in the IP state. The PA can take on one of the
three values; Low, Medium and High. A message with the current PA is sent
to the Central Controller, to be presented for the administrator through the
Administrator Console and for updating the Intrusion frequency as described
in Section 5.

4. Experimental Results Using HMM

In order to demonstrate how HMMs can be used in DIPS, we have con-
structed a model of a small network as illustrated in Figure 3 and run some
simulations to illustrate the proposed model. The example network consists of
four different assets; a router, a public web server, a file server, and a database.
Five IDS Agents denoted IDS1, . . . , IDS5 are deployed in the network, and
the observations are sent to the their corresponding HMM. We have gener-
ated a sequence of 32 observations for each of the five IDS agents Y1, · · · , Y5.
Figure 4 shows (from top to bottom); the hidden state X, observation sent
from IDS Agent 1, and the probability of being in state Intrusion in Progress
estimated by HMM 1 based on the observations from IDS Agent 1.

In the experiments, we have used four different states and three different
observation symbols as described in Section 3. This is illustrated in Figure 1.
For this illustration, we also assume that all the IDS Agents send the obser-
vations at fixed time intervals to the corresponding HMM. Even if there are
no attacks or suspicious activities, the N observations will be sent.

The system is assumed to be in the Normal state when the IPS starts. This
corresponds to the following initial distribution π = (1, 0, 0, 0). We have used
a supervised training method to estimate the transition probability matrix P
and the observation probability matrix Q. By supervised training, we mean
that the hidden state X, is used in the estimation of P and Q. The P matrix
is estimated by counting the number of transitions, and Q is estimated by
counting the number of emitted symbols for each state. All observations from
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Figure 3. Example network showing assets and IDS agents

the five sensors were used to estimate one common Q, used in all the five
HMMs. Events corresponds to the time when observations are received from
the IDS agents. We assume that all observations are received at the same
time, to make the figures more readable.

The upper graph in Figure 4 shows the hidden state used for the parameter
estimation. The graph in the middle illustrates the output from the first IDS
Agent, and the lower graph depicts the probability of being in the IP-state.



102

4 8 12 16 20 24 28 32
N

IA

IP

SA

x
t

The True or Hidden State

t

4 8 12 16 20 24 28 32
N

P

SA

Observations genrated by IDS
1

y
t1

t

4 8 12 16 20 24 28 32

0.1

0.5

1

P
(x

t =
 I
P

| 
Y

t1
)

Output from HMM
1

t

Figure 4. The hidden state, observations from the IDS and output from the HMM.

PAl is estimated for each of the L IDS Agent based on the probability
γlt(IP ) = P (xt = IP |ylt, λl) when the corresponding HMM is updated. The
probability levels used to determine the PAl is 0.1 and 0.5, also shown in
Figure 4.

Figure 5 shows the AP from the five IDS Agents, which depicts how the
output from the IPS may be visualized by the system administrator. It is
observed that three of the five IDS agents reported higher risk of being attacked
at t = 16, which is just one event before the first attack at t = 17.

High PA may lead to automated response like updating the fire wall rules
or removal of users from this system. This kind of automated response should
probably not always be based only on results from the HMM, but preferably
also include some kind of automated forensic analysis based on traffic- and
log-data stored in a database. High risk may trigger extended logging.
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Figure 5. Estimated probability of being attacked, based on observations from the five
IDS Agents.

5. Modeling Risk Assessment Using Hierarchical
Fuzzy Inference System

Risk analysis is fundamentally all about establishing probabilities. In the
DIPS framework, we model the risk analysis using threat levels, vulnerability
and asset value [Jon06]. We consider that all components within a network
scenario falls into one of these categories, and each has attributes, or derived
factors, that contribute positively or negatively to risk.

Threat level is modeled as the frequency of attacks/intrusions, obtained
from HMM predictions as described in Section 3, the probability that an in-
truder is being successful in overcoming protective controls and gains access
to act against the organization or assets and the type and severity of attacks.

Vulnerability may be defined as the probability that an asset will be unable
to resist the actions of an intruder. Vulnerability exists when this probability
exceeds a given threshold. This may be because of weaknesses in software or
hardware, missing software patches and so on. Vulnerability may be modeled
as contemporary high threat capability and low system threat resistance.

Asset may be defined as any data, device, or other component of the en-
vironment that supports information-related activities, and which can be af-
fected in a manner that result in loss. To determine asset loss could be one of
the hardest tasks of analyzing risk. It is very difficult to put a precise value on
the various types of assets, and there may be more than one value or liability
characteristic. Complex relationships might exist between the different forms
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of loss and many factors determine loss magnitude. We model asset value/loss
as cost, criticality, sensitivity and recovery.

The overall architecture for asset risk management is summarised in Fig-
ure 6.

Threat level

Asset risk

assessment
Vulnerability

Asset value

Intrusion

frequency

Probability for

threat success

Severity

Threat

capability

Threat

resistance

Cost

Criticality

Sensitivity

Recovery

Figure 6. Generic structure of the risk assessment model.
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Master FLC 
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Vulnerability
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Asset value

FLC
3

Figure 7. Hierarchical architecture of four fuzzy logic controllers.

5.1 Hierarchical Fuzzy Modeling of Risk Assessment

Most of the uncertainties in the risk assessment models are handled using
statistical approaches. However, such methods cannot handle sources of im-
precision that therefore may lead to uncertainty including scarce or incomplete
data, measurement error, data obtained from expert judgment, or subjective
interpretation of available information. In this paper we propose the use of
fuzzy set theory to incorporate uncertainties into online risk assessment for
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Figure 8. Fuzzy associative memory structure for FLC4.

DIPS. Based on the form of available information, fuzzy set theory, probabil-
ity theory, or a combination of both can be used to incorporate the uncertainty
and variability of risk variables into various risk assessment models.

Zadeh [Zad65] introduced the concept of fuzzy logic to present vagueness in
linguistics, and further implement and express human knowledge and inference
capability in a natural way. We used an hierarchical fuzzy logic controller to
asses the overall risk based on threat level, vulnerability and asset value. A
fuzzy logic controller (FLC) is composed of a knowledge base, a fuzzification
interface, an inference system and a defuzzification interface. The architecture
of the hierarchical fuzzy logic controller for risk assessment is depicted in
Figure 7. A FLC is assigned to make the inference from each of the three
input variables threat level, vulnerability and asset value and a fourth FLC
is assigned to make the overall inference for risk assessment. The Mamdani
inference method [MA75] was used for all the four FLC’s.

5.2 Fuzzy Modeling of Threat Level

Threat level is modeled as (1) frequency of attacks/intrusions (2) proba-
bility that intruder being successful in overcoming protective controls and (3)
Type and severity of attack. A Fuzzy logic controller (FLC1) observes three
input variables and produce one output variable. Three triangular member-
ship functions are assigned per input variable and three triangular membership
functions are used for the output variable.

5.3 Fuzzy Modeling of Vulnerability

Vulnerability is modeled as (1) threat capability and (2) system threat resis-
tance. Three triangular membership functions are assigned per input variable
and three triangular membership functions are used for the output variable.
A Fuzzy logic controller (FLC2) observes two input variables and produces the
output variable.
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5.4 Fuzzy Modeling of Asset Value and Loss

Asset value/loss is modelled using four variables: (1) cost (2) criticality (3)
sensitivity and (4) recovery. To minimize the number of rules only two trian-
gular membership functions are assigned per input variable and four triangular
membership functions are used for the output variable. Fuzzy logic controller
(FLC3) observes four input variables and produce one output variable.

5.5 Fuzzy Modeling of Risk

Figure 8 illustrates the fuzzy associate memory map linking threat level,
vulnerability and asset value for overall risk assessment. Four membership
functions are used to represent each of the three input variables. Triangular
membership values are used as membership functions. A fuzzy if-then rule
may be formulated as follows:

IF threat level is SIGNIFICANT and vulnerability is VERY HIGH and
asset value is HIGH THEN Risk is HIGH.

All the 9 input variable values and the output variable (risk assessment) are
scaled between 0-1. The fuzzy if-then rules were formulated based on expert
knowledge of the network model and associated risks.

6. Conclusions

This paper proposes a distributed intrusion prevention system, which is
activated based on the predicted threat level and risk assessment of the pro-
tected assets. We focus on the distributed monitoring of intrusion attempts,
one step ahead prediction of such attempts, and online risk assessment using
fuzzy inference systems. Preliminary experimental results indicate that the
proposed framework is efficient for real time distributed intrusion monitoring
and prevention.

Future work may include parameter estimation based on real data, better
HMM models, more states, continuous models, Kalman filtering and integra-
tion with mobile agents in a real network. We also intend to use supervised
learning schemes to optimise the quantity and quality of the fuzzy if-then rules
to improve the online computational performance etc.
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Abstract A Distributed Intrusion Prediction and Prevention Systems (DIPPS) not only
detects and prevents possible intrusions but also possesses the capability to
predict possible intrusions in a distributed network. Based on the DIPS sen-
sors, instead of merely preventing the attackers or blocking traffic, we propose
a fuzzy logic based online risk assessment scheme. The key idea of DIPPS
is to protect the network(s) linked to assets, which are considered to be very
risky. To implement DIPPS we used a Distributed Intrusion Detection System
(DIDS) with extended real time traffic surveillance and online risk assessment.
To model and predict the next step of an attacker, we used a Hidden Markov
Model (HMM) that captures the interaction between the attacker and the net-
work. The interaction between various DIDS and integration of their output
are achieved through a HMM. The novelty of this paper is the detailed de-
velopment of Fuzzy Logic Controllers to estimate the various risk(s) that are
dependent on several other variables based on the inputs from HMM modules
and the DIDS agents. To develop the fuzzy risk expert system, if-then fuzzy
rules were formulated based on interviews with security experts and network
administrators. Preliminary results indicate that such a system is very prac-
tical for protecting assets which are prone to attacks or misuse, i.e. highly at
risk.

1. Modelling of DIPPS

1.1 Introduction

Intrusion Prevention Systems (IPS) are proactive defense mechanisms de-
signed to detect malicious packets embedded in normal network traffic and
stop intrusions dead, blocking the offending traffic automatically before it
does any damage rather than simply raising an alert as, or after, the mali-
cious payload has been delivered. There are a number of challenges for the
implementation of an IPS device that does not come across when deploying
passive-mode Intrusion Detection System (IDS) products. These challenges all
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stem from the fact that the IPS device is designed to work in-line, presenting
a potential choke point and single point of failure. Some of these problems
could be eliminated in a distributed intrusion prevention system, where there
is not a single point of control and the problems are tackled as close to its
source of origin as possible. The main task of the IPS is to discard all suspect
packets immediately and block the offending traffic flow as soon as possible.
The suspicious traffic may be re-routed to honeynets or honeypots for further
forensic analysis etc. An IPS should have a maximum up time since it has the
potential to close a vital network path and thus, once again, causing a Self
Denial of Service (SDoS) condition. IPS should be computationally light and
also achieve high packet processing rates since it is essential that its impact on
overall network performance is minimal. The IPS should minimize false posi-
tives since this can lead to a SDoS. The IPS should be able to decide exactly
which malicious traffic is blocked and also provides a mechanism for alerts
and forensic analysis capabilities. Rest of the article is organized as follows.
Section 2 introduces DIPPS followed by HMM in Section 3. Fuzzy modeling is
illustrated in Section 4 and experiment results are given in Section 5 followed
by some Conclusions.

...
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Figure 1. Architecture of a DIPPS element.
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2. Distributed Intrusion Prediction and Prevention
Systems (DIPPS)

DIPS are simply a superset of the conventional IPS implemented in a dis-
tributed environment. We consider IPS as an integrated IDS with many addi-
tional functions as listed in Section 1.1. Due to the distributed nature of IPS,
the implementation poses several challenges. The IDSs are embedded inside
software mobile agents and placed in the network to be monitored. An indi-
vidual IDS may be configured to detect a single attack, or it may detect several
types of attacks. Figure 1 illustrates the basic architecture of a DIPPS ele-
ment, which is controlled by a local controller. In a large network, each DIPPS
element communicates/coordinates with other DIPPS local controllers and/or
a central controller. The HMM model processes the attack data information
from the various mobile agent IDS sensors. IDS deployed are capable of de-
tecting simple problems as well as serious denial of service type of attacks.
Based on the nature of the detected attack, the following actions would be
taken:

1 If the detected attack is simply a port scan or a probe, the HMM model
attempts to make a prediction of a possible future attack based on the
current distributed attack patterns. Based on this prediction, the cen-
tral controller (or administrator) would take precautionary measures to
prevent future attacks. The central controller would also make use of
an online risk assessment of the assets subjected to this possible serious
attack in the future.

2 If the detected attack is very serious, the central controller would take
necessary actions to re-configure firewall rules or notify the administrator
etc. Such serious attacks would bypass the HMM model.

3 At any time any abnormal traffic rate is noted by the monitor if a pre-
determined level is reached, the central controller may take necessary
actions to re-configure firewall rules or notify the administrator etc.

In the DIPPS framework, each network component may host one or more
IDS located in a distributed network. Since there will be a large number of flag
generators, these must be abstracted, analyzed, and condensed by a suitable
architecture before arriving at a final conclusion. Very often, it is to be noted
that the event information, which is detected by the IDS agents will follow a
bottom up approach for analysis and the various command and control flow
will follow a top-down approach. The physical location of IDS agents may be
fixed or mobile so as to monitor certain parts of the network segments.

The co-operative intelligent agent network is one of the most important
components of the DIDS [AJTH07]. Ideally these agents will be located on
separate network segments, and geographically separated. Communication
among the agents is done utilizing TCP/IP sockets. Agent modules running
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on host machines are capable of data analysis and to formulate adequate re-
sponse actions and may be implemented as read only and fragile. In the event
of tampering or modification the agent reports to the server agent and auto-
matically ends its life. Agents residing in the individual analyzer/controllers
consist of modules responsible for agent regeneration, dispatch, updating and
maintaining intrusion signatures and so on. These agents control the indi-
vidual IDS agents for monitoring the network, manage all the communication
and life cycle of the IDS agents and also update the IDS agents with detection
algorithms as well as response and trace mechanisms.

3. Hidden Markov Model (HMM)

We model the interaction between the attackers and the system by a Markov
model, and we assume the system to be in one of the following states; Normal
(N) indicating that there is no ongoing suspicious activity, Intrusion Attempt
(IA) indicating suspicious activity against the network, Intrusion in Progress
(IP) indicating that one or more attacker have started an attack against the
system, and Successfull Attack (SA) one or more attackers have already broken
into the system. By using a Markov model, we assume that next state tran-
sition only depend on current state, this is known as the Markov assumption.
To describe an IDS Agent we extend the Markov model to a Hidden Markov
Model (HMM), by assuming that the alarms produced by the HMM Agent
only depend on the state of the system. The word hidden indicates that the
state of the system is not possible to observe, but only observations (output
from the IDS Agents) that depend on the system state. Observations from
the IDS Agents are used to estimate the system state distribution. One HMM
model is used for each IDS Agent, and the state estimation is updated for each
new observation from the IDS Agent. The state distribution is further used to
estimate the intrusion frequency. The use of HMM to model the interaction
between an attacker and a system is based on [HAK07, KL06], and [MVT02]
explain how to model the interacton between an attacker and a system using
a Markov model.

4. Why Fuzzy Modeling?

If the problem to be solved can be described mathematically and there exist
techniques to solve the problem by using reasonable computational power and
time, this method should be preferred. But for some real world problems no
solution is known at all, and for these problems heuristic techniques may be
the only practical solution. An heuristic method is not guaranteed to give
the best solution, but often gives a satisfying solution. One way to make a
heuristic solution is to use previous experience and some general rules, this is
a very natural approach for humans.

Risk assessment is often done by human experts, because there is no exact
and mathematical solution to the problem. Usually the human reasoning
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and perception process cannot be expressed precisely. Different people have
different opinions about risk and the association of its dependent variables,
and fuzzy logic provides an excellent framework to model this. The key idea is
to capture knowledge or information from risk managers and security experts
and to embed this vital knowledge in the form of if-then rules in a fuzzy
inference system to automate the risk assessment.

4.1 Fuzzy Modeling of Risk

The difference between an ordinary crisp set and a fuzzy set is that elements
of a fuzzy set have a degree of membership. An element (x, µA(x)) of a
fuzzy set A is therefore a pair where µA(x) is a membership function and
represents the degree of membership for x in A. The x value is called a
crisp input, to indicate that it is a number. The membership functions for
intersections and unions of fuzzy sets are normally constructed using the T-
norm and the T-conorm operators. The most frequently used T-norm operator
is Tmin(a, b) = min(a, b) and the most frequently used T-conorm operator is
Tmax(a, b) = max(a, b).

The first step in the fuzzy inference system is to fuzzify the inputs, that
is using the membership functions to calculate the degree of membership in
different fuzzy sets. Next step is to apply if-then rules. For a Mamdani fuzzy
system the if-then rules are of the form

if x is A and y is B then z = C (1)

where A,B,C are fuzzy sets, and the first part (between if and then) is called
the antecedent and the last part (after then) is called the consequent. Usu-
ally the T-norm and T-conorm operators are used in the evaluation of the
antecedents and consequences respectively. After the if-then rules have been
applied the crisp output is calculated through a process called defuzzification.
But the most widely used defuzzificaton technique is possibly the centroid of
an area:

ZCOA =

∫

Z
µA(z)zdz

∫

Z
µA(z)dz

(2)

A unit consisting of fuzzification, rule evaluation and defuzzification is called
a Fuzzy logic controller (FLC). In this paper we use a hierarchical structure
where output from one FLC is used as input to another FLC.

For the risk assessment, nine basic linguistic variables are used that are
processed using three Fuzzy Logic Controllers (FLC1 − FLC3). The three
FLC’s represent Threat Level, Vulnerability and Asset Value, which are three
derived linguistic variables. The derived linguistic variables are then combined
using FLC4 to compute the net Asset Risk. This forms a hierarchical fuzzy
system as shown in Figure 1. In this research, we used a Mamdani fuzzy
inference system.
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Values for the input variables are estimated based on the information from
the HMM module, the DIDS and the traffic rate monitor. To simplify the cal-
culation of input values, we have used the same attack categories as proposed
by MIT Lincoln Laboratory - DARPA IDS evaluation datasets IDS [Ken99].
The local controller uses information from the DIDS and the traffic rate mon-
itor to predict which attack category the next attack will fit into.

The following sub-sections are strongly based on some of the principles of
the FAIR method described in [Jon06].

4.2 Fuzzy Modeling of Threat Level

Threat level is modeled using three linguistic variables: intrusion frequency,
probability of threat success and severity. Three Membership Functions (MF)
are used for the three inputs and the output variable.

Intrusion frequency describes the intensity of attack against the asset that
is subject to monitoring. To estimate the intrusion frequency we use the
output from the HMM module and count how often the probability of
being in state intrusion in progress exceeds a specific limit. Intrusion
frequency is measured as attacks/unit time.

Probability for threat success is estimated based on output from the
DIDS, and describes how likely it is that an attacker will mange to
overcome the proactive controls. The actual values are in the range
0− 1 and is stored in a lookup table.

Severity describes the impact of an attack on the asset.

All input variables to FLC1 have three different linguistic values Low, Medium
and High. The output from FLC1 is Threat Level, and Fig 2 illustrates the
if-then rules implemented in FLC1 as a fuzzy associative memory (FAM).
Figure 3 shows the controll surface view of FLC1 plotting Threat Level as a
function of Probability of Threat Success and Intrusion Frequency.

4.3 Fuzzy modeling of Vulnerability

The Vulnerability is estimated in FLC2. Vulnerability may be defined as
the probability that an asset will be unable to resist the action of a threat
agent [Jon06]. In this paper we model vulnerability as a derived variable from
Threat Resistance and Threat Capability. Three MF are assigned to each of
the two input variables and the output variable.

Threat resistance is the strength of the security measures compared to the
forces the attacker might use. One example of threat resistance is pass-
word length.

Threat capability is the level of force an attacker is capable of applying
against an asset.
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Figure 2. Sliced cube FAM representation of FLC1
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Figure 3. Controll Surface View of FLC1

The output variable from FLC2 is the vulnerability and the if-then rules
implemented in FLC2 is depicted in Figure 4, and Figure 5 shows a control
surface view of FLC2.
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Figure 5. Control Surface View of FLC2

4.4 Fuzzy modeling of Asset Value

The asset value is estimated in FLC3 and is derived from three linguistic
variables: Cost, Criticality, Sensitivity and Recovery. An asset is any data,
device or other component that supports information-related activities, and
which can be affected in a manner that result in loss. For all the input variables
of FLC3, we used only two MF (to reduce the number of if-then rules needed).
Three MF are used for the output variable. The if-then rules implemented
in FLC3 is shown in Table 1. The first four columns represents the input
linguistic values: a the Cost, b Criticality, c Sensitivity and d Recovery. The
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last column labeled e represents the output variable Asset Value. A control
surface view of FLC3 is shown in Figure 6.

Cost (a) Represents the cost associated with an asset that have been stolen
or destroyed

Criticality (b) Mainly characterizes the impact on an organization’s pro-
ductivity. This attribute is related to integrity and availability.

Sensitivity (c) Impact of confidential information being disclosed.

Recovery (d) How fast the loss can be re-stored and the asset be back to
normal again.

Table 1. Rule table for FLC3.

Innput Output
Rule a b c d e

1 L L L L L
2 H L L L H
3 L H L L M
4 H H L L H
5 L L H L M
6 H L H L H
7 L H H L H
8 H H H L H
9 L L L H L
10 H L L H H
11 L H L H H
12 H H L H H
13 L L H H H
14 H L H H H
15 L H H H H
16 H H H H H

4.5 Fuzzy Modeling of Risk

The risk is estimated by FLC4 and is based on the output from the three
fuzzy logic controllers FLC1 − FLC3. For the input and output variables,
three MF are used. The if-then rules used in FLC4 is illustrated in Figure 7,
and Figure 8 shows a control surface view of FLC4.
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4.6 Lookup Table

All the input variables except the Intrusion Frequency is decided based on
the information received from the DIDS agents about the the ongoing attack,
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represented by a mapping L(a) = y : A → Y from attack types a ∈ A =
{DoS,U2R,R2L,Pr} to a parameter tuple y ∈ Y = R

8. This function is
implemented and referred to as a Lookup Table and contains parameters for
different attack types. The information represents how vulnerable the system
is to different attacks according to the value of different assets. These values
have to be estimated by security experts.

For the risk assessment, two or three MF are proposed for each input vari-
able, and three MF for the output variable. For two level input variables, we
used the following two trapezoidal MF to define the Low and High linguistic
values.

µL2
(x) = trap(x,−0.6,−0.2, 0.2, 0.6)

µH2
(x) = trap(x, 0.4, 0.8, 1.2, 1.6), (3)

For three level input and output variables, we propose two trapezoidal MF
to define the Low and High linguistic values and a triangular MF to define
Medium linguistic value (as illustrated below).

µL3
(x) = trap(x,−0.4,−0.1, 0.1, 0.4)

µM3
(x) = triang(x, 0.2, 0.5, 0.8)

µH3
(x) = trap(x, 0.6, 0.9, 1.0, 1.4). (4)
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Figure 9. Membership functions

The membership functions used for input variables with three fuzzy sets are
shown in Equation 5 and Figure 9(b).

All input variables are normalized and are members of the crisp set X
defined as X = {x|0 ≤ x ≤ 1, x ∈ R}. The parameterized MF used are
triangular Equation 5 and the trapezoidal Equation 6.

triang(x, a, b, c) =















0 x < a
(x− a)/(b− a) a ≤ x ≤ b
(c− x)/(c− b) b ≤ x ≤ c

0 x > c

(5)

trap(x, a, b, c, d) =























0 x < a
(x− a)/(b− a) a ≤ x ≤ b

1 b ≤ x ≤ c
(d− x)/(d− c) c ≤ x ≤ d

0 x > d

(6)

All fuzzy if-then rules were formulated based on expert knowledge.

5. Experiment Results

To illustrate the risk assessment, we have created two lookup chart as shown
in Tables 2 and 3. Specific information about different attack categories is
stored in a lookup table. All values in the lookup table is scaled within the
range 0 − 1. The attack category used for the risk assessment is based on
inputs from the IDS agents and this value is used to assign values to eight of
the nine input variables. Only the Intrusion Frequency is estimated based on
the output from the HMM module.

Attacks are broadly divided into the following four categories: denial of
service, remote to local, user to root and surveillance/probe.

A denial of service (DoS) attack is an attack where the attacker consume
so much memory or CPU time that the legitimate users can not be served.
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Table 2. Lookup Table1

Attack Categories
Variable DoS U2R R2L PR
Intrusion frequency 0.25 0.25 0.25 0.25
Pr threat success 0.90 0.70 0.70 0.10
Severity 0.40 0.90 0.90 0.30
Threat level 0.28 0.44 0.44 0.32
Threat resistance 0.10 0.60 0.90 0.20
Threat capabilit 0.50 0.85 0.80 0.10
Vulnerability 0.86 0.85 0.50 0.50
Cost 0.30 0.30 0.30 0.30
Criticality 0.70 0.70 0.70 0.10
Sensitivity 0.15 0.85 0.85 0.20
Recovery 0.40 0.85 0.70 0.15
Asset value 0.50 0.85 0.85 0.15
Asset risk 0.34 0.50 0.50 0.40

Table 3. Lookup Table 2

Attack Categories
Variable DoS U2R R2L PR
Intrusion frequency 0.25 0.25 0.25 0.25
Pr threat success 0.70 0.70 0.50 0.10
Severity 0.50 0.90 0.70 0.45
Threat level 0.32 0.44 0.32 0.28
Threat resistance 0.20 0.80 0.70 0.20
Threat capabilit 0.40 0.80 0.80 0.10
Vulnerability 0.85 0.50 0.63 0.50
Cost 0.40 0.40 0.50 0.30
Criticality 0.60 0.80 0.80 0.10
Sensitivity 0.20 0.80 0.70 0.10
Recovery 0.30 0.80 0.50 0.25
Asset value 0.50 0.84 0.82 0.15
Asset risk 0.40 0.50 0.40 0.34

Typical examples are Ping of Death, SYN Flood and Mailbomb. This attack
is assumed to be easy to mount and indicated by high value for Probability of
Threat Success. For DoS, the severity may be relatively low since it will not
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lead to much permanent damage. In most cases, the system may be restored
to normal use once the attack is over.

An User to root (U2R) attack is an attack where an ordinary user in the
system gain root access by exploiting some vulnerability in the system. Typi-
cal vulnerabilities that are exploited is buffer overflow and pure environment
sanitation. A remote to local (R2L) attack is an attack where an attacker
without an account on the computer tries to exploit some vulnerabilities to
get access as an user of the computer. Possible attack strategies can be to ex-
ploit buffer overflows in network services software (imap, sendmail, apache).
U2R and R2L categories are the most dangerous, since by gaining root access,
the attacker could do almost everything with the system. Therefore a rela-
tively high value for the severity is used in the above table. We assume the
system to be well protected against U2R attacks indicated by relatively low
Probability of Threat Success.

When an attacker uses some automated tools like Ipsweep, Nmap or Satan
to gather information about the network and possible vulnerabilities we call
it probing. This attack is assumed to be easy to mount and could pave way
for further attacks.

Simulation results of the HMM is not reported in this paper due to space
limitations, but the reader may consult [HAK07] for some preliminary results.
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Figure 10. Parameter sensitivity for different attack categories

Figure 10 illustrates the asset risk values for different intrusion frequency
variations (0-1). For the different parameter settings (Tables 2 and 3), as
evident from Figure 10, the asset risk values show clear sensitivity for each
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attack category. This also illustrates that the proposed system is very adaptive
for different attack categories under varying conditions.

6. Conclusions

This paper proposed a detailed implementation of a fuzzy logic based on-
line risk assessment scheme, which could aid the functioning of a Distributed
Intrusion Prediction and Prevention System (DIPPS) for protecting high risk
assets. The implementation of the proposed scheme is very simple and the
developed system is easy to interpret. Our discussions with security experts
and preliminary empirical results indicate that such a system is very practical
for protecting assets, which are prone to severe attacks or misuse.

In the current fuzzy risk expert system, fuzzy if-then rules were formulated
based on expert knowledge. Our future research is targeted to develop adaptive
fuzzy inference systems when some preliminary data or knowledge related to
network risk is available. We also plan to investigate the use of different fuzzy
inference methods.
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Abstract Our previous research illustrated the design of fuzzy logic based online risk
assessment for Distributed Intrusion Prediction and Prevention Systems
(DIPPS) [HAK08]. Based on the DIPPS sensors, instead of merely preventing
the attackers or blocking traffic, we propose a fuzzy logic based online risk
assessment scheme. This paper propose a Hierarchical Neuro-Fuzzy online
Risk Assessment (HiNFRA) model to aid the decision making process of a
DIPPS. The fine tuning of fuzzy logic based risk assessment model is achieved
using a neural network learning technique. Preliminary results indicate that
the neural learning technique could improve the fuzzy controller performance
and make the risk assessment model more robust.

1. Introduction

Intrusion prevention systems are proactive defense mechanisms designed
to detect malicious packets embedded in normal network traffic and stop in-
trusions dead, blocking the offending traffic automatically before it does any
damage rather than simply raising an alert as, or after, the malicious payload
has been delivered. DIPPS are simply a superset of the conventional Intrusion
Prevention System (IPS) implemented in a distributed environment. Basic ar-
chitecture of a DIPPS element is depicted in Figure 1. We consider IPS as an
integrated Intrusion Detection System (IDS) with many additional functions.
Due to the distributed nature of IPS, the implementation poses several chal-
lenges. The IDSs are embedded inside software mobile agents and placed in
the network to be monitored [AJTH07]. An individual IDS may be configured
to detect a single attack, or it may detect several types of attacks.

In a large network, each DIPPS element communicates/coordinates with
other DIPPS local controllers and/or a central controller. The Hidden Markov
Model (HMM) [Rab90] model processes the attack data information from the
various mobile agent IDS sensors [KL06]. Based on the nature of the detected
attack, the following actions would be taken [HAK07]:
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Figure 1. Architecture of a DIPPS element

1 If the detected attack is simply a port scan or a probe, the HMM model
attempts to make a prediction of a possible future attack based on the
current distributed attack patterns. Based on this prediction, the cen-
tral controller (or administrator) would take precautionary measures to
prevent future attacks. The central controller would also make use of
an online risk assessment of the assets subjected to this possible serious
attack in the future.

2 If the detected attack is very serious, the central controller would take
necessary actions to re-configure firewall rules or notify the administrator
etc. Such serious attacks would bypass the HMM model.

3 At any time any abnormal traffic rate is noted by the monitor if a pre-
determined level is reached, the central controller may take necessary
actions to re-configure firewall rules or notify the administrator etc.

Risk assessment is often done by human experts, because there is no exact
and mathematical solution to the problem. Usually the human reasoning
and perception process cannot be expressed precisely. Different people have
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different opinions about risk and the association of its dependent variables,
and fuzzy logic provides an excellent framework to model this [HAK08].

A Fuzzy Inference System (FIS) [Zad65] can utilize human expertise by
storing its essential components in rule base and database, and perform fuzzy
reasoning to infer the overall output value. The derivation of if-then rules and
corresponding membership functions depends heavily on the a priori knowl-
edge about the system under consideration. However there is no systematic
way to transform experiences of knowledge of human experts to the knowledge
base of a FIS. There is also a need for adaptability or some learning algorithms
to produce outputs within the required error rate.

This paper is focused on the development of neural network learning tech-
niques for the optimization of a fuzzy risk assessment system. The rest of this
paper is organized as follows. Section 2 presents the proposed neuro-fuzzy
risk assessment model. Experiment results are given in Section 3 followed by
conclusions towards the end.

2. Neuro-Fuzzy Risk Assessment Model

2.1 Fuzzy modeling of risk

For risk assessment, nine basic linguistic variables are used that are pro-
cessed using three Neuro-Fuzzy Controllers (NFC1−NFC3). The three NFC’s
represent Threat Level, Vulnerability and Asset Value, which are three derived
linguistic variables. Threat level is modeled using three linguistic variables:
intrusion frequency, probability of threat success and severity. We model vul-
nerability as a derived variable from threat resistance and threat capability.
The asset value is derived from three linguistic variables: Cost, Criticality,
Sensitivity and Recovery. The derived linguistic variables are then combined
using NFC4 to compute the net Asset Risk. This forms a hierarchical fuzzy
system as shown in Figure 2.

Asset value

Risk assessment

VulnerabilityThreat level
NFC2 NFC2

Master NFC1

NFC1

Figure 2. Hierarchical architecture of four fuzzy logic controllers

Values for the input variables are estimated based on the information from
the HMM module, the DIDS and the traffic rate monitor. To simplify the cal-
culation of input values, we have used the same attack categories as proposed
by MIT Lincoln Laboratory - DARPA IDS evaluation datasets IDS [Ken99].
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The local controller uses information from the DIDS and the traffic rate mon-
itor to predict which attack category the next attack will fit into.

2.2 Fuzzy risk model optimization using neural learning

In an integrated model, neural network learning algorithms are used to de-
termine the parameters of fuzzy inference systems. Integrated neuro-fuzzy
systems share data structures and knowledge representations. A fuzzy infer-
ence system can utilize human expertise by storing its essential components
in rule base and database, and perform fuzzy reasoning to infer the overall
output value. The derivation of if-then rules and corresponding membership
functions depends heavily on the a priori knowledge about the system under
consideration. However there is no systematic way to transform experiences
of knowledge of human experts to the knowledge base of a fuzzy inference
system. There is also a need for adaptability or some learning algorithms to
produce outputs within the required error rate. On the other hand, Artificial
Neural Network (ANN) learning mechanism does not rely on human exper-
tise. Due to the homogenous structure of ANN, it is hard to extract structured
knowledge from either the weights or the configuration of the network. The
weights of the neural network represent the coefficients of the hyper-plane that
partition the input space into two regions with different output values. If we
can visualize this hyper-plane structure from the training data then the sub-
sequent learning procedures in a neural network can be reduced. However, in
reality, the a priori knowledge is usually obtained from human experts, it is
most appropriate to express the knowledge as a set of fuzzy if-then rules, and
it is very difficult to encode into a neural network.

To a large extent, the drawbacks pertaining to these two approaches seem
complementary. Therefore, it seems natural to consider building an integrated
system combining the concepts of FIS and ANN modeling. A common way
to apply a learning algorithm to a fuzzy system is to represent it in a special
neural network like architecture. However the conventional neural network
learning algorithms (gradient descent) cannot be applied directly to such a
system as the functions used in the inference process are usually non differ-
entiable. This problem can be tackled by using differentiable functions in the
inference system or by not using the standard neural learning algorithm. In
our simulation, we used the Adaptive Network Based Fuzzy Inference System
(ANFIS) [Jan93]. ANFIS implements a Takagi Sugeno Kang (TSK) fuzzy in-
ference system [Sug85] in which the conclusion of a fuzzy rule is constituted
by a weighted linear combination of the crisp inputs rather than a fuzzy set.

For a first order TSK model, a common rule set with two fuzzy if-then rules
is represented as follows:

Rule 1: If x is A1 and y is B1, then f1 = p1x + q1y + r1
Rule 2: If x is A2 and y is B2, then f2 = p2x + q2y + r2

where x and y are linguistic variables and A1, A2,, B1,, B2 are corresponding
fuzzy sets and p1 , q1, r1and p2, q2, r2 ,are linear parameters.
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Figure 3. Example network showing assets and IDS agents

ANFIS makes use of a mixture of back propagation to learn the premise
parameters and least mean square estimation to determine the consequent
parameters. A step in the learning procedure has two parts: In the first part
the input patterns are propagated, and the optimal conclusion parameters are
estimated by an iterative least mean square procedure, while the antecedent
parameters (membership functions) are assumed to be fixed for the current
cycle through the training set. In the second part the patterns are propagated
again, and in this epoch, back propagation is used to modify the antecedent
parameters, while the conclusion parameters remain fixed. This procedure is
then iterated.

3. Experiment Results

In order to illustrate the neuro-fuzzy risk assessment model, we constructed
a small network model as illustrated in Figure 3. The sample network con-
sists of four different assets; a router, a public web server, a file server, and a
database. Five IDS Agents denoted by IDS1, . . . , IDS5 are deployed in the
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Table 1. Learning results for NFC1

MF tri gbell gauss psig

Data
set 1

#MF 2 2 2 2
Epochs 49 27 17 28
Test error 0.0969 0.1159 0.1002 0.0881
Train error 0.0203 0.0172 0.0192 0.0211

Data
set 2

#MF 2 2 2 2
Epochs 45 37 22 8
Test error 0.1371 0.1500 0.1091 0.1732
Train error 0.0220 0.0225 0.0228 0.0480

Data
set 3

#MF 2 2 2 2
Epochs 42 14 16 4
Test error 0.1239 0.0694 0.0756 0.0513
Train error 0.0251 0.0379 0.0379 0.0303

Table 2. Learning results for NFC2

MF tri gbell gauss psig

Data
set 1

#MF 2 3 3 3
Epochs 22 1 1 1
Test error 0.0306 0.0392 0.0368 0.0444
Train error 0.0400 0.0256 0.0252 0.0256

Data
set 2

#MF 3 2 2 3
Epochs 1 1 2 1
Test error 0.0473 0.0443 0.0568 0.0528
Train error 0.0214 0.0681 0.0294 0.0184

Data
set 3

#MF 3 3 3 3
Epochs 1 1 1 1
Test error 0.0223 0.0350 0.0348 0.0376
Train error 0.0308 0.0272 0.0267 0.0273

network, and the observations are sent to the their corresponding HMM. The
attack category used for the risk assessment is based on inputs from the IDS
agents and this value is used to assign values to eight of the nine input vari-
ables. Only the Intrusion Frequency is estimated based on the output from
the HMM module.
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Table 3. Learning results for NFC3

MF tri gbell gauss psig

Data
set 1

#MF 2 2 2 2
Epochs 1 8 1 22
Test error 0.0840 0.0726 0.0686 0.0788
Train error 0.0342 0.0536 0.0498 0.0557

Data
set 2

#MF 2 2 2 2
Epochs 1 1 1 68
Test error 0.0627 0.1187 0.0665 0.1339
Train error 0.0352 0.0552 0.0470 0.0290

Data
set 3

#MF 2 2 2 2
Epochs 1 20 14 30
Test error 0.2268 0.2206 0.2644 0.1170
Train error 0.0332 0.0344 0.0328 0.0423

Table 4. Learning results for NFC4

MF tri gbell gauss psig

Data
set 1

#MF 2 2 2 2
Epochs 2 7 11 4
Test error 0.1691 0.1488 0.1555 0.1379
Train error 0.0748 0.0829 0.0724 0.1031

Data
set 2

#MF 2 2 2 2
Epochs 51 17 15 19
Testing error 0.1541 0.1557 0.1689 0.2250
Training error 0.0649 0.0603 0.0600 0.0600

Data
set 3

#MF 2 2 2 2
Epochs 39 20 20 24
Testing error 0.1396 0.1122 0.1148 0.1098
Training error 0.0561 0.0508 0.0485 0.0558

3.1 Hierarchical neuro-fuzzy modeling

To avoid any bias in the learning process, we randomly sampled three sets
of data from the master data set. 75% of the data was used for training and
the remaining for test data. We implemented a Hierarchical Neuro-Fuzzy Risk
Assessment (HiNFRA) model as illustrated in Figure 2. The performance of
the four controllers for different membership functions for three different data
sets are depicted in Tables 1, 2, 3 and 4. We used four different Member-
ship Functions (MF): Triangular (tri), Gaussian bell (gbell), Gaussian (gauss)
and product of two sigmoidal function (psig). As evident, depending on the
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Figure 4. Parameter sensitivity for different attack categories

membership function and data set used, different controllers are using varying
number of epochs. In some cases, the NFC was constructed after 1 learning
epoch. The four NFC’s were build individually and then connected as shown
in Figure 2.

The developed HiNFRA model is then tested using two sets of data based
on an attack situation. Specific information about different attack categories
are stored in a lookup table. All values in the lookup table is scaled within
the range 0− 1. The attack category used for the risk assessment is based on
inputs from the IDS agents and this value is used to assign values to eight of
the nine input variables. Only the Intrusion Frequency is estimated based on
the output from the HMM module.

The two lookup tables and final results (asset risk) are illustrated in Tables 5
and 6.

Figure 4 illustrates the asset risk values for different intrusion frequency
variations (0-1). For the different parameter settings (Tables 5 and 6), as
evident from Figure 4, the asset risk values show clear sensitivity for each
attack category. This also illustrates that the proposed system is very adaptive
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for different attack categories under varying conditions. Figures 5 - 8 illustrates
the surface plots of the four developed controllers.

4. Conclusions

This paper presented a detailed implementation of the Hierarchical Neuro-
Fuzzy online Risk Assessment (HiNFRA) model to aid the decision making
process of DIPPS. The fine tuning of fuzzy logic based risk assessment model is
achieved using neural network learning technique. Preliminary results indicate
that neural learning techniques could improve the fuzzy controller performance
and make the risk assessment model more robust. Compared to our previous
model [HAK08], where the fuzzy if-then rules were formulated based on expert
knowledge, the implementation of HiNFRA is more simple and adaptive.

Our future research is targeted to further develop and optimize fuzzy risk
models using evolutionary algorithms.
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Table 5. Lookup Table1

Attack Categories
Variable DoS U2R R2L PR
Intrusion frequency 0.25 0.25 0.25 0.25
Pr threat success 0.90 0.70 0.70 0.10
Severity 0.40 0.90 0.90 0.30
Threat level 0.38 0.52 0.52 0.29
Threat resistance 0.10 0.60 0.90 0.20
Threat capabilit 0.50 0.85 0.80 0.10
Vulnerability 0.46 0.36 0.15 0.10
Cost 0.30 0.30 0.30 0.30
Criticality 0.70 0.70 0.70 0.10
Sensitivity 0.15 0.85 0.85 0.20
Recovery 0.40 0.85 0.70 0.15
Asset value 0.33 0.52 0.52 0.24
Asset risk 0.27 0.54 0.54 0.19

Table 6. Lookup Table2

Attack Categories
Variable DoS U2R R2L PR
Intrusion frequency 0.25 0.25 0.25 0.25
Pr threat success 0.70 0.70 0.50 0.10
Severity 0.50 0.90 0.70 0.45
Threat level 0.42 0.52 0.44 0.31
Threat resistance 0.20 0.80 0.70 0.20
Threat capabilit 0.40 0.80 0.80 0.10
Vulnerability 0.33 0.20 0.26 0.10
Cost 0.40 0.40 0.50 0.30
Criticality 0.60 0.80 0.80 0.10
Sensitivity 0.20 0.80 0.70 0.10
Recovery 0.30 0.80 0.50 0.25
Asset value 0.39 0.59 0.60 0.24
Asset risk 0.39 0.60 0.53 0.20
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Abstract In this paper we propose to use a hidden Markov model (HMM) to model
sensors for an intrusion prevention system (IPS). Observations from different
sensors are aggregated in the HMM and the intrusion frequency security metric
is estimated. We use a Markov model that captures the interaction between
the attacker and the network to model and predict the next step of an attacker.
A new HMM is created and used for updating the estimated system state for
each observation, based on the sensor trustworthiness and the time since last
observation processed. Our objective is to calculate and maintain a state prob-
ability distribution that can be used for intrusion prediction and prevention.
We show how our sensor model can be applied to an IPS architecture based
on intrusion detection system (IDS) sensors, real-time traffic surveillance and
online risk assessment. Our approach is illustrated by a small case study.

1. Introduction

In todays society most critical infrastructures depend on computer net-
works, which in many cases could be reachable for attackers. As a consequence
the security of these critical systems, in addition to traditional quality of ser-
vice (QoS) parameters like availability, reliability and performance, needs to
meet certain requirements. In order to specify these requirements there is a
need for the security attributes to be quantified. We also need to have meth-
ods for monitoring the security of the system, and means to detect security
breaches and possibly prevent intrusions.

In this paper we will present an intrusion prevention system (IPS) architec-
ture based on intrusion detection system (IDS) sensors with extended real-time
traffic surveillance and online risk assessment. To model and predict the next
step of an attacker, we use a Markov model that captures the interaction be-
tween the attacker and the network. The system security state is not always
readily observable, due to stealthy attacks the system could be under attack



even though there are no IDS alerts indicating a security breach. Since the
true security state of the system is unknown, and we cannot expect the IDS
sensors to detect all malicious activity at all times, we model each sensor using
a hidden Markov model (HMM).

We also propose to use parameters of the Markov model as a basis for a
quantification of the security of the network under surveillance. This work is
an extension of the distributed IPS (DIPS) with online fuzzy risk assessment
proposed in [HAK07], the focus of this paper is on a more extensive mathe-
matical analysis of our model to derive quantitative measures of security that
can be used as input to the fuzzy logic based risk assessment. We also demon-
strate our approach with the help of an example case study. To simplify the
presentation, we do not consider a distributed IPS in this paper, but the ap-
proach presented could be extended to a distributed setting with the use of
distributed agents.

Previous work on Markov modeling of security includes Madan et al. [BB-
MGPT04], that present a method for quantifying the security attributes of
intrusion tolerant systems based on methods from the software dependability
community. Their model differs from ours as they use a static Markov model
of the system while we use a HMM to model the sensors. Khanna et al. [KL06]
propose to build an IDS based on an HMM with multivariate Gaussian dis-
tributed observations, and dynamic re-estimation of parameters. In [KL07],
Khanna et al. uses distributed HMM processing in combination with a propor-
tional integral differential (PID) control engine to make a distributed IDS for
ad hoc networks. Their approach is different from ours as they use continuous
observations and are only modeling one sensor at a time.

Årnes et al. [ÅSH+05] use HMMs for real-time risk assessment, some
promising results on simulated and real-life data can be found in [ÅVVK06].
Sallhammar et al. [SHK07] describes a framework for combined security and
dependability evaluation of computer networks, our approach differs as we use
alerts from multiple IDS sensors, and do not poll the sensors, but instead
update the system state estimate at the time when an alert is produced by
one of the sensors, since alerts do not usually come at regular intervals.

The contribution of this paper is the method used for aggregating alerts
from multiple sensors, the proposed sensor modeling technique that includes
the time between observations and the integration of our model into an IPS
architecture.

The remainder of this paper is organized as follows. Section 2 presents the
system Markov model with a motivation of the stochastic modeling approach
and the limitations and assumptions related to the model. The HMM approach
for sensor modeling is presented in Section 3, where we discuss the observation
process and the aggregation and translation of IDS alerts into observations in
the HMM, and also derive the intrusion frequency metric.
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The IPS architecture is presented in Section 4 and a small case study is given
in Section 5. Finally, Section 6 gives some concluding remarks and discusses
future work.

2. System Model

In this section we will explain our stochastic modeling approach of secu-
rity. We use a first order continuous time Markov model (CTMM), where the
states represent the security state of the system. Our objective is to calculate
and maintain a state probability distribution that can be used for intrusion
prediction and prevention.

2.1 Stochastic Modeling Approach

The security state of a system could be described by several aspects of the
computer network and its environment. These aspects could for instance be
the security condition of the network, if security updates and patches have
been installed, how the security policies are implemented, what attack coun-
termeasures are in place, the existence of intrusion detection systems and so
on. In any modeling effort there is always a trade-off between model com-
plexity and model precision, that limits how many aspects one can include
in the state definition of the model. In our approach we seek to model the
interaction between the system and the attackers by describing the security
state of the system in terms of the different stages of a typical attack against
a computer network. The system is in one of the states at any given time,
the behavior of the system can be modeled as a stochastic process as it is
probabilistic and described in terms of state transitions that are triggered by
events which happen randomly according to a probability distribution.

Since the initial ideas on quantifying security with a stochastic modeling ap-
proach, presented by Littlewood et al. [LBF+93], there has been some research
effort, for instance the work done by Madan et al. [MVT02, WMT03, BB-
MGPT04]. Markov models have traditionally been used to model and eval-
uate computer system dependability, Nicol et al. [NST04] argue that some
of the modeling techniques used in the dependability community can be ap-
plied for security evaluation, they suggest that Markov reward models may be
suitable to model security aspects of software systems. Jonsson and Olovs-
son [JO97] conducted an intrusion experiment where students attacked a real
system under controlled conditions. Their experiments illustrated that an at-
tack can be divided into different phases where time between security breaches
is exponentially distributed. This supports our approach in this paper, where
we use continuous time Markov models to model the interaction between at-
tackers and the system they are attacking. Kaâniche et al. [KAN+06] have
performed an empirical analysis of data collected from thirty five honeypots
located in twenty five countries. They found that the distribution of times be-
tween attacks is best described by a mixture distribution combining a Pareto
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Figure 1. A Markov model describing the interaction between system and attackers

distribution and an exponential distribution. This is an argument for using
a semi-Markov model to model the intrusion process, where state occupa-
tion times can have arbitrary distributions, and a hidden semi-Markov model
(HSMM) to model a sensor. We have chosen to not use a HSMM, in order
to keep the presentation as clear as possible. The reason for this is the com-
plexity of statistical inference in HSMMs, but in our further work the use of
different probability distributions in a HSMM will be considered.

2.2 Limitations and Assumptions

The security state of individual network elements is not modeled and it is
assumed that if an attacker has control over one element then the whole sys-
tem is compromised. This assumption is justified by the fact that when an
attacker has broken into one network element, it is often easy to use this ele-
ment as a platform for future attacks inside the network. We do not attempt
to model the number of attackers that are attacking the system or have broken
into the system, since it might be almost impossible to distinguish between at-
tackers that operate independently and attackers that cooperate. Attacks are
also often launched as distributed attacks using several compromised servers
as stepping stones, thus attacks that come from different IP addresses might
be originating from one or several attackers. When using a CTMM to model
the system and an HMM to model the sensors, we make the following assump-
tions; all information about the system is contained in the state of the system,
observations are independent given the current state, and state occupation
times are exponentially distributed.

2.3 Markov Model

The Markov model (Λ, π) used in this paper is shown in Figure 1. States
drawn as circles indicate secure states, states drawn by a square indicate a
security breach, i.e. the system has been compromised and suffered some loss
of integrity and/or confidentiality.



Paper G: Real-time Intrusion Pre. and Sec. Analysis of Networks using HMMs 149

The state of the system is modeled as a stochastic process x(t), where t is a
positive real number representing time since the system started operating. A
CTMM has a set of states S = {s1, s2, . . . , sN}, an initial distribution π = (πi),
describing the state of the system when monitoring starts, and a transition
rate matrix Λ = (λij), describing the dynamics of the system. To simplify the
notation of equations and algorithms we will use i and j instead of si and sj .
The relation between system states and the transition rates is given by

λij =







limdt→0
P (x(t+ dt) = j|x(t) = i)

dt
if i 6= j

∑N
j 6=i,j=1−λij if i = j

. (1)

By using a CTMM we assume time between state changes or state occupa-
tion times to be negatively exponential distributed with mean hi = 1

P

j λij
.

The statespace used in this paper consists of the following four states:

1 Normal (N) indicates no directed suspicious activity against the net-
work, except from the usual automated scannings which are considered
as background noise

2 Intrusion attempt (IA) indicates that one or more attackers are scanning
for vulnerabilities which the system is not protected against

3 Intrusion in progress (IP) indicates that one or more attackers have
started an attack against the system. The system is still functioning
correctly and no confidentiality or integrity breaches have occurred

4 Successful attack (SA) indicates that one or more attackers have broken
into the system and may have full control over the system

We will now describe in more details the meaning of each transition proba-
bility and the state occupation time. To simplify the mathematical expressions
the following notation is used: p̃a = 1− pa, p̃r = 1− pr, and p̃s = 1− ps. The
transition matrix P = (pij) is given by

P =









N IA IP SA

N 0 1 0 0
IA p̃a 0 pa 0
IP 0 p̃s 0 ps
SA pr 0 p̃r 0









, (2)

where pa denotes the probability that an attacker manually starts an ac-
tive attack on the system, after first having investigated the system by some
automatic tools to find security holes, ps is the probability that the attack is
successful, the attacker has become root and the system is completely compro-
mised, and pr is the probability that a system repair is successful, the attacker
is shut out of the system and the security vulnerabilities that were exploited
by the attacker have been removed.
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The P matrix describes the probability distribution for next transition, and
has no self transition because we model the state occupation times seperately.
State occupation times are expressed by H = (hN hIA hIP hSA),

where hN denotes the mean time before the system is targeted directly
by an attacker based on vulnerabilities found by automated scanning, hIA is
the mean time between the discovery of an exploitable vulnerability until the
active attack is launched, hIP is the mean time an attacker uses to defeat the
defense mechanisms in the system, and hSA is the mean time the the system is
not functioning correctly due to security attacks before the attack is discovered
by the network administrator and repaired.

The relation between transition probability and transition rates is given by

λij =
pij
hi

if i 6= j. (3)

3. Sensor Model

In order to use Markov models for the detection and prediction of attacks,
we need to process observations received from sensors. This is done by ex-
tending the CTMM to a Discrete time HMM by using an HMM to model
the sensors that observe the interaction between an attacker and the sys-
tem, see [Rab90] for an introduction to HMMs. Lets assume that the system
has L sensors. Each sensor ψ ∈ {1, . . . , L} is modeled by a separate HMM
(Λ, π,Qψ), that includes a common system model (Λ, π), but individual ob-
servation probability matrices Qψ, that are used to model specific properties
for each sensor. The matrix Qψ describes the quality or the trustworthiness
of sensor ψ that produced the observation, and V = {v1, v2, . . . , vM} are the
possible observations. To simplify the notation we use m instead of vm.

3.1 Aggregation and Filtering of Alerts

Different sensors produce a large variation of alerts, that need to be trans-
lated into observations. In our model this translation is done by filtering
alerts according to alert severity. The alert severity rating, together with the
timestamps, are then used as observations in the HMM. To avoid dependencies
between observations, we assume that there has been done some preprocessing
of the alerts before they are translated to observations in our model. Alerts
caused by the same event should be grouped together by some correlation or
aggregation technique.

There has been a research focus lately on different types of automatic pro-
cessing of alerts as a means to prioritize alerts, reduce the number of false
IDS alerts and hence minimize the manual work in the handling of alerts.
Aggregation and correlation techniques could be based on compression, fil-
tering or thresholding. New alerts, so-called meta-alerts that refer to attack
classes which gives a high level description of the attack, can be derived as a
generalization or refinement of the correlated alerts [VVKK04]. Aggregation
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and correlation analysis [DW01] can be used to group together alerts based
on certain criteria similar to database views. Alerts are then correlated by
detecting duplicates and consequence alerts (alerts that are logically linked
together according to pre-specified rules).

Data mining and clustering [Jul01] is another approach that is used for
extracting the true alerts in a large data set of IDS output by clustering alerts
according to their root cause. False positives can be reduced considerably, but
at the cost of additional increase in false negatives for infrequent alerts.

In our approach the amount of alerts that needs to be manually handled by
the system administrator is effectively minimized, as most of the alerts, like
alerts for port scans or probing, are only used as input to the HMM. Only
when the HMM output indicates that the system seems to be under attack
will the most serious intrusion alerts produce output to the administrator
console. These serious alerts will also be treated directly by the local controller,
that will take necessary actions to prevent the attack by reconfiguration or
termination of processes, according to prespecified rules.

3.2 The Observation Process

We have not made any assumptions about time between observations, and
there is no direct relation between observations and state-changes. As a con-
sequence the system could have made zero, one or more transitions during the
time between to successive observations.

The times of state transitions are denoted t̂l, starting with t̂0, which is the
time when the first state transition takes place. We assume the transition to
take place a infinitesimal time after t̂l. Sojourn times are denoted δ̂l = t̂l− t̂l−1,
the state transitions are illustrated by the bullets in Figure 2.

The observation process is denoted yk, the time when the observation is
produced is denoted tk, and the sensor that has produced the observation
is denoted ψk. Time between observation k − 1 and observation k is denoted
δk = tk−tk−1, the observations are illustrated with the circles in Figure 2. The
CTMM x(t) is representing the state of the system and is sampled each time
an observation is produced, to form an inhomogenous discrete time Markov
model (DTMM) xk, where xk = x(tk).

The HMM consists of two stochastic processes; the hidden process xk, and
an observable process yk that depends on xk. The relation between xk and
yk is described by a set of observation probability matrices Q = {Qψ}, one for
each sensor. The observation probability matrix that corresponds to sensor

ψ is denoted Qψ = (qψi (m)), where qψi (m) = P (yk = m|xk = i, ψk = ψ),

qψi (m) is the probability that observation symbol m is observed, given that
the system is in state i and the observation is prodced by sensor ψ.

Since observations are received at irregular intervals, the running transition
probabilities pkij = P (x(t + δk) = j|x(t) = i) depend on the time since last
observation δk, and have to be calculated each time an observation is received
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Figure 2. Observations and state changes

from one of the sensors. The running transition probability matrix Pk = (pkij)
can be derived from Kolmogorov’s equations [Ros03] as follows

Pk = eΛδk . (4)

For large state spaces this calculation can be quite expensive, but in our case
the state space is small, and the calculations inexpensive.

3.3 Aggregating Observations and Finding the State
Probabilities

The aggregation of observations from different sensors is done by having
one common state distribution γk that is updated for each new observation
received from one of the sensors. Algorithm 4 is used to update the current
state distribution γk−1, based on the following inputs: k the observation index,
γ = γk−1 current state distribution, ψ = ψk the index of the sensor that has
produced the current observation, y = yk the current observation, and δ = δk
the time between the current observation and last observation.

In addition to the dynamic variables listed above, the following parameters
are assumed to be available for the algorithm: Λ the transition rates, π the
initial state distribution, and Q the set of observation probability matrices.

The execution of Algorithm 4 proceeds as follows : first the transition prob-
ability matrix Pk is calculated based on time since last observation, then the
observation probability matrix that corresponds to the sensor that has pro-
duced the observation is selected, finally the state distribution is updated. The
algorithm is based on Equation 19 and Equation 27 in [Rab90], but use scaling
as described in [Rab90] to avoid underflow. The novelty of this algorithm is
the calculation of a new transition matrix Pk for each observation and the use
of a separate observation matrix for each sensor.
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This corresponds to using a new HMM for each observation, where the
initial distribution is γk−1, the transition probability is Pk, and the observation
probability matrix is Qψ. This means that this new HMM is updated only
once based the observation received from sensor ψ, the observation probability
matrix belonging to this specific sensor, and the time since last observation
δk.

Algorithm 4 is based on dynamic programming and uses a set of temporary
variables, during the processing of observation yk the value stored in α(i)
will represent the following probabilities α(i) = P (Yk,xk = si), known as
the forward variables. By using dynamic programming in the estimation of γ
the complexity of an update is reduced from O(2kNk) (for a straight forward
calculation) to O(N2).

Algorithm 4 Update state probability distribution

Require: k, γ, ψ, y, δ
Pk ← eΛδ

Q← Qψ

if k = 1 then
for i = 1 to N do
α(i)← qi(y)πi
γ(i)← qi(y)πi

PN
j=1

qj(y)πj

end for
else

for i = 1 to N do
α(i)← qi(y)

∑N
j=1 γ(j)p

k
ji

end for
γ ← α

PN
j=1

α(j)

end if
return γ

3.4 Intrusion Frequency Metric

An interesting security measure which will be used in the risk assessment
part of the proposed IPS is mean time to next security failure (MTNSF). This
metric is estimated by using the state probability distribution γ and a modified
version of the transition probability matrix P .

In order to do the MTNSF analysis we partition the statespace S into two
subsets; SG the set of good states, and SF the set of failed states, such that
S = SG ∪SF and ∅ = SG ∩SF . Then all failed states are made absorbing, by
setting all transition probabilities out from the failed states to zero, letting all
the good states become transient.

The new transition probability matrix is called P̂ = (p̂ij) where
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p̂ij =











pij if si ∈ SG

1 if si ∈ SF ∧ i = j

0 if si ∈ SF ∧ i 6= j

.

The idea is to estimate mean time to absorption given the distribution γ
estimated by the HMM as initial distribution. We propose to use mean time
to absorption as a security measure and call it mean time to next security
failure (MTNSF).

The first step in the MTNSF analysis is to estimate the average number of
times each of the transient states SG is visited before the DTMC reaches one
of the absorbing states SF . This number is called wi and can be estimated as
follows

wi = γ(i) +
∑

j∈SG

wj p̂ij , si ∈ SG. (5)

More detail on the estimation of wi can be found in [MVT02]. By applying
Equation 5 on our model represented by the transition probability matrix in
Equation 2, a set of linear equations are formed. By solving these equations,
we get

w1 =
γ(1)(1 + pap̃s) + γ(2)p̃a + γ(3)p̃ap̃s

pa(2− ps)

w2 =
γ(1) + γ(2) + γ(3)p̃s

pa(2− ps)
(6)

w3 =
(γ(1) + γ(2) + γ(3))p̃s

(2− ps)

MTNSF can now be estimated by summing the product of wi multiplied
by mean state occupation time hi for each of the transient states SG, giving
MTNSF =

∑

i∈SG
wihi. The intrusion frequency f can now be estimated by

inverting MTNSF,

f = (MTNSF )−1 =
1

∑

i∈SG
wihi

. (7)

Based on observation y the distribution γ is estimated and then used to
estimate f , which is the input to the online fuzzy risk assessment as described
in [HAK07].

4. IPS Architecture

This section describes the IPS originally proposed in [HAK07] with more
focus on specific types of IDS sensors.

The IPS architecture is illustrated in Figure 3.
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Figure 3. Architecture of the IPS

4.1 Alert Handling

The different sensors produce output in the form of alerts, this output is
then transformed into observations that go into the HMM, as described in
Section 3.1. Observations are assumed to be independent given the security
state, this means that data used for producing one observation should not be
used for the next observation. We assume that the format of the IDS output,
after preprocessing, is given in the XML based IDMEF (Intrusion Detection
Message Exchange Format) [DCF07], which is an emerging standard format
for IDS messages proposed by the IETF.

4.2 Prediction and Prevention Mechanisms

For each observation the HMM will update the state probability distribu-
tion, as described in Section 3.3, and calculate the intrusion frequency metric
as described in Section 3.4. The intrusion frequency will then be input to the
risk assessment component that uses this value in the calculation of a risk
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value, as described in [HAK07]. The local controller receives all these val-
ues, if one or more of them reaches a predetermined threshold value, like for
instance if the probability of being in the N state is less than 0.5, the most
serious alerts will be output on the administrator console allowing for manual
and automatic prevention mechanisms. The local controller will then take
actions to prevent the attack by reconfiguration of firewalls or termination of
user sessions or processes, as specified by predetermined rules. These rules are
derived from the organization’s security policies, one approach for doing this
can be found in [DTBCC06].

4.3 Visualization

The traffic rate monitor gives additional information to the local controller
about abnormal traffic rates, that can be a strong indication of malicious activ-
ity. After the processing of observations the HMM has an estimated probabil-
ity distribution over the security states, this is visualized at the administrator
console by graphs indicating the probability of being in a compromised state.
In addition to this the output of the risk assessment is displayed as a risk value,
together with the intrusion frequency and the traffic rates. If the system is
likely to be in an attacked state according to the calculated state probabil-
ity distribution, all serious alerts will also be displayed on the administrator
console.

5. Case study

In this section we will illustrate our approach by a case study of a small com-
puter network. We construct an attack scenario and show how the proposed
measures can be calculated.

5.1 IDS Sensors

The specific IDS sensors employed in our case study architecture, illustrated
in Figure 4, are network based IDS (NIDS), host based IDS (HIDS) and fire-
walls. Real-time detection and response is made possible by the combination
of firewalls and IDS that give input to the local controller, which can take
necessary actions to prevent attacks.

We need to have both NIDS and HIDS as they complement each other and
both types are considered a requirement when monitoring a network for secu-
rity intrusions. NIDS look for attack signatures in raw network packets, based
on pattern, frequency or anomalies. HIDS monitor system specific logs, critical
configuration files and other system components such as key executables. User
and file access activity can be monitored by a HIDS in order to detect events
not compliant with the organization’s security policy, user specific properties
like disk space utilization or abnormal user activity can also be detected.

In this small case study we will use observations from four different sensors
in the network, a HIDS on the web server, a HIDS on the database server, a
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Figure 4. Network Architecture of the IPS case study

NIDS placed between the firewall and the production network, and a NIDS
placed at the network perimeter. In a real working environment more sensors
would of course be used, but for illustrative purposes we limit the number of
sensors to get smaller matrices and a clearer presentation of the mathematical
analysis.

The alerts are assumed to be in IDEMF format, and we filter the alerts
according to the impact severity description, i.e. info, low, medium and high,
which are the permitted values of the severity attribute of the impact class
as described in [DCF07]. We do not consider the info type of alerts as ob-
servations in our model as these are not alerts per se, but only represent
informational activity.

Intuitively the low severity observations will indicate the IA state, the
medium severity observations indicate the IP state and the high severity ob-
servations indicate the SA state.
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5.2 Parameters

The observation probability matrices model the confidence and trustworthi-
ness of the sensors. A NIDS sensor located outside the firewall at the network
perimeter will naturally produce a lot of alerts that could be considered as
noise, while we expect a sensor inside the firewall to produce less and more
correct alerts. We also assume that the web server is a more attractive target
for attackers than the database, so the HIDS of the web server will produce
more observations and more low severity alerts than the database HIDS. This
is reflected in the Q matrices.

Q1 =

0

B

B

@

0.80 0.19 0.01
0.80 0.19 0.01
0.80 0.15 0.05
0.90 0.05 0.05
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A
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0
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B

@
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The transition probability matrix P and the state occupation times H have
been estimated based on data from the high-interaction honeypot described in
[ANK+06]. In a real life setting we suggest that these parameters are estimated
by security experts possibly based on data from a honeypot deployed inside the
same network as the network that is to be monitored. Of course this honeypot
needs to be safely separated from the production network by a honeywall. A
honeywall should implement data control, data capture, data analysis and data
collection. Data control is necessary to prevent the honeynet being used as a
platform for attacking or harming other systems, and could be implemented by
restricting the number of outgoing connections or by bandwidth limitations.

As the authors of [ANK+06] point out, attacks on internet servers are often
carried out in two steps. The preliminary step is the automated vulnerability
scanners, that search for known vulnerabilities and typically perform brute
force dictionary attacks, in our model this corresponds to the N state. When
an attacking script discovers a vulnerability in the system a more directed
investigation starts, for instance a password guessing attempt, this would cor-
respond to the IA state. Several days after a successful password guessing
the first step of the real intrusion takes place when a person logs on to the
server using this password, this would correspond to the IP state. After hav-
ing changed the password of the compromised user account, the attacker will
now possibly proceed with trying to install some malware or tools to be used
for either launching attacks on other networks or to take complete control of
the server by becoming root. Depending on the skills of the attacker and the
security of the server the attacker will succeed in becoming root, if this hap-
pens the server is completely compromised and we have entered the SA state
in our model.
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As can be seen from the estimated probabilities in the P matrix from Equa-
tion 2

P =









0.00 1.00 0.00 0.00
0.91 0.00 0.09 0.00
0.00 0.83 0.00 0.17
0.80 0.00 0.20 0.00









,

the probability that an attacker, after first performing a vulnerability scan,
succeeds with an intrusion attempt is pa = 0.09, this corresponds to the ratio
of successful dictionary attacks observed in the honeypot study in [ANK+06].
The probability of a successful attack ps = 0.17 is the share of the attackers
succeeding in becoming root after the initial user account intrusion. We then
assume that once a successful attack has happened and been detected, the
probability that all security vulnerabilities of the system have been removed
to be pr = 0.80, i.e. all compromised passwords on user accounts have been
changed.

The mean state occupation times h2 and h3 in

H =
(

10.00 3.90 7.20 1.00
)

are based on Table 2 in [ANK+06]. We have used the average duration in days
between creation and first successful connection to the user accounts as h2,
and the average duration between first successful connection and first intrusion
as h3. The mean occupation time in the normal state is estimated to be ten
days and we assume that a successful compromise will be discovered within
one day.

5.3 Attack Scenario

We will now describe an attack scenario on the small computer network as
shown in Figure 4. We have created observations based on a scenario where
we assume an attack on the web server to take place on the sixth day after
employment.

The transition rate matrix Λ is calculated by Equation 3 taking P and H as
arguments. Algorithm 4 is then used on each of the 37 observations y1, . . . , y37

shown in Figure 5(a), to estimate the state distributions γ1, . . . , γ37 shown in
Figure 6. For each state distribution γk the corresponding intrusion frequency
fk is estimated using Equation 6 and Equation 7.

The observations are denoted by L (low), M (medium) and H (high) and
are illustrated in Figure 5(a). The NIDS at the network perimeter (sensor 1)
triggers most of the alerts, as we consider this sensor to be the most noisy. The
HIDS at the web server (sensor 3) is assumed to produce more correct alerts,
so it is only triggering serious alerts at the time of intrusion. The database
(sensor 2) and the NIDS inside the production network (sensor 4) are also
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assumed to not produce a lot of false alerts, so they only give some less serious
observations from time to time in this scenario.

At startup we assume the system to be in the normal state N, as can be
seen from Figure 6. But as observations indicating low severity alerts, for
instance scanning alerts are received, the probability of being in the IA state
increases. Since the trustworthiness of sensor 1 is modeled to be quite low
in the Q1 matrix and the state occupation time for state N is relatively long,
the early observations indicating attacks from sensor 1 do not effect the state
probability of the IA state considerably.

We can however see a clear indication of attack activity just before day 6,
when the more trustworthy sensor 3 starts to contribute with observations,
together with more observations of medium severity coming from sensor 1.
Just before the attack takes place, the probability of the IP state also increases,
and as the high severity alerts starts to come from sensor 3 the probability of
being in state SA quickly rises.

The intrusion frequency illustrated in Figure 5(b) also starts to rise before
the attack takes place, hence giving input to the risk assessment that indicates
attack activity. The intrusion prevention mechanisms will be initiated once
the risk value, intrusion frequency or the state probabilities reaches certain
thresholds. For instance if the threshold for state IA was set to 0.4, we can
see from Figure 6 that prevention mechanisms would be triggered just before
day six.

6. Conclusions and Future Work

In this paper we have described a framework for prediction and prevention
of attacks against computer networks. Hidden Markov modeling of IDS sen-
sors and security measures based on stochastic modeling techniques usually
applied by the dependability community have been presented. The HMM ap-
proach effectively minimizes the amount of IDS alerts that needs to be handled
manually by a network administrator. The concept of security states of the
system facilitates the monitoring and visualization of network security. By
using thresholds for the probability of being in a compromised state, attack
countermeasures and prevention mechanisms can automatically be triggered
before the network is entering a vulnerable state.

This work gives a theoretical basis for a future implementation of the IPS.
Further security considerations concerning the secure communication of sensor
information have not been treated in this paper, but will need to be considered
in an actual implementation. The model needs to be tested in a real network
setting, in order to do this parameters need to be estimated. We suggest
that some parameters could be estimated based on data from a honeypot de-
ployed inside the same network as the network that is to be monitored. Also
input from security experts and experienced network administrators should
be considered when deciding the initial model parameters. The network pa-
rameters should be updated on a regular basis, in particular whenever the
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network changes its security configurations as security updates and patches
are installed. One method of reestimating the parameters could be by using a
learning algorithm like the expectation-maximization or Baum-Welch method.

The aggregation of IDS alerts into the HMM should result in fewer false pos-
itives, but could potentially lead to an increase of false negatives, the amount
of false negatives and positives would in our model depend on the parameters.
These dependencies should be investigated further by applying our modeling
technique on real life data sets.

In our future work we would like to extend the model to also include avail-
ability, by using a separate HMM with DoS alerts as observations. We will
also consider increased granularity of the model by including more states, this
will increase model complexity, so a trade-off analysis between the number
of states and complexity of calculations will also be required. We also plan
to do experiments with real life data sets to investigate the validity of the
assumption about exponentially distributed state occupation times. The use
of semi-Markov modeling to allow for other probability distributions will also
be considered in our future work.
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Figure 5. Observations and estimated intrusion frequency.
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